Sam

Files at this revision

API Documentation at this revision

Comitter:
s0313045
Date:
Thu Oct 25 12:14:32 2018 +0000
Parent:
0:502b364c9f1d
Child:
2:611a5eb132a1
Commit message:
Stable...; Can start sucessfully with strange orientation..; ; but e-stop reset not ok,,.... maybe driver not close beforehand?

Changed in this revision

main.cpp Show annotated file Show diff for this revision Revisions of this file
main_rotate_stable_wtf.txt Show annotated file Show diff for this revision Revisions of this file
main_stable2_still_on9.txt Show annotated file Show diff for this revision Revisions of this file
main_stable_ex_1_2018_10_25.txt Show annotated file Show diff for this revision Revisions of this file
--- a/main.cpp	Sun Oct 21 19:38:09 2018 +0000
+++ b/main.cpp	Thu Oct 25 12:14:32 2018 +0000
@@ -79,7 +79,7 @@
 
 float speed_max_x=1;
 float speed_max_y=1;
-float speed_max_w=10;
+float speed_max_w=1;
 
 long odom_last_read= millis();
 
@@ -109,77 +109,113 @@
 
 ///////////////////////////
 float encoder_2_global_angle = 30;         //encoder coordinate system + 30 degree    =>  global coordinate system
-float encoder_2_global_x     =   0.34;    //encoder to center distance  in x   (tung)
-float encoder_2_global_y     =   0.235;     //encoder to center distance  in y   (tung)
+//float encoder_2_global_x     =   0.34;    //encoder to center distance  in x   (tung)
+//float encoder_2_global_y     =   -0.235;     //encoder to center distance  in y   (tung)
+
+
+float encoder_2_global_x     = 0.125;//0.125;// -0.13 ;    //encoder to center distance  in x   (tung)
+float encoder_2_global_y     = 0.37; //0.35;     //encoder to center distance  in y   (tung)
 ////////////////////TUNG////////////////
 
-float    Xshift=  encoder_2_global_x;
-float    Yshift=  encoder_2_global_y;
-float    offsetX = -Yshift;
-float    offsetY = Xshift;
-
-float Ashift  =   -30*pi/float(180);
-float offsetA =   -30;
 
 float transformed_real_now_x=0;
 float transformed_real_now_y=0;
 float transformed_real_now_w=0;
 
+
+float startup_offset_x_encoder =0;
+float startup_offset_y_encoder =0;
+float startup_offset_w_encoder=0;
+
+
+
+float encoder_to_center = sqrt( ( encoder_2_global_x  * encoder_2_global_x )  + ( encoder_2_global_y  *  encoder_2_global_y ) );
+
+//#########################//
+float encoder2local_angle = 30 *pi/float(180);
+float encoder_position_angle =( ( 180 + 18.666914)  ) / float(180) * pi ;   //90 +  angle to encoder location
+float r = sqrt( ( encoder_2_global_x  * encoder_2_global_x )  + ( encoder_2_global_y  *  encoder_2_global_y ) );   //encoder to center radius
+
+
 void calculatePos(float _X,float _Y,float _A)
 {
-    float radAng=_A/float(180)*pi;
-    /*
-    posX=(float(local_posY)/1000 + self.paraX * sin(w_radian) + self.paraY * cos(w_radian) )*(1) +self.offsetX
-    posY=(float(local_posX)/1000 + self.paraX * cos(w_radian) - self.paraY * sin(w_radian) )*(-1) +self.offsetY
-    */
-    float rotatedPosX=_X*cos(Ashift)+_Y*sin(Ashift);
-    float rotatedPosY=-_X*sin(Ashift)+_Y*cos(Ashift);
-    transformed_real_now_x=(rotatedPosY/float(1000)+Xshift*sin(radAng)+Yshift*cos(radAng))+offsetX;
-    transformed_real_now_y=(rotatedPosX/float(1000)+Xshift*cos(radAng)-Yshift*sin(radAng))*(-1)+offsetY;
-    //transformed_real_now_w=_A;   //
-    transformed_real_now_w=radAng;
+    float zangle  =  _A-   360 * int(_A / 360);
+    float zrangle =  zangle *pi/float(180);    //degree 2 rad
+    
+    float tx = ( ( _X / float(1000) ) * cos( -encoder2local_angle) )  -  (  ( _Y / float(1000) )   *  sin( -encoder2local_angle) );
+    float ty = ( ( _X / float(1000) ) * sin( -encoder2local_angle) )  +  (  ( _Y / float(1000) )   *  cos( -encoder2local_angle) );
+    
+    float s  = copysign( sqrt(  2*( r*r )  -  2*(r*r)*cos(zrangle)  )    , zrangle );
+    
+    float x_bias = s * cos( zrangle / 2 );
+    float y_bias = s * sin( zrangle / 2 );
+    
+    float x_tbias = ( x_bias ) * ( cos( encoder_position_angle) )  - ( y_bias ) * ( sin( encoder_position_angle ) )    ;
+    float y_tbias = ( x_bias ) * ( sin( encoder_position_angle) )  + ( y_bias ) * ( cos( encoder_position_angle ) )    ;
+    
+    
+   // transformed_real_now_x = tx - x_tbias   - startup_offset_x_encoder;
+   // transformed_real_now_y = ty - y_tbias   - startup_offset_y_encoder;
+    
+    transformed_real_now_x = tx + y_tbias   - startup_offset_x_encoder;
+    transformed_real_now_y = ty - x_tbias   - startup_offset_y_encoder;
+    
+    
+    transformed_real_now_w=   _A *pi/float(180)                                                                        -  startup_offset_w_encoder;
+    
+    
 }
 
 
 
 
 
-
-
-
+///////////////////////
 
-///////////////////////
-float startup_offset_x_encoder = 0;
-float startup_offset_y_encoder = 0;
-float startup_offset_w_encoder = 0;
 
 
 float x_PID_P = 0.5;
 float y_PID_P = 0.5;
-float w_PID_P = 0.1;
+float w_PID_P = 1;
 
 #define constrain(amt,low,high) ((amt)<(low)?(low):((amt)>(high)?(high):(amt)))
 
 //////////////////////////////
 void start_calculatePos(float _X,float _Y,float _A)
 {
-    float radAng=_A/float(180)*pi;
-    /*
-    posX=(float(local_posY)/1000 + self.paraX * sin(w_radian) + self.paraY * cos(w_radian) )*(1) +self.offsetX
-    posY=(float(local_posX)/1000 + self.paraX * cos(w_radian) - self.paraY * sin(w_radian) )*(-1) +self.offsetY
-    */
-    float rotatedPosX=_X*cos(Ashift)+_Y*sin(Ashift);
-    float rotatedPosY=-_X*sin(Ashift)+_Y*cos(Ashift);
-    startup_offset_x_encoder  =  (rotatedPosY/float(1000)+Xshift*sin(radAng)+Yshift*cos(radAng))+offsetX;
-    startup_offset_y_encoder  =  (rotatedPosX/float(1000)+Xshift*cos(radAng)-Yshift*sin(radAng))*(-1)+offsetY;
-    //transformed_real_now_w=_A;   //
-    startup_offset_w_encoder=radAng;
+    float zangle  =  _A-   360 * int(_A / 360);
+    float zrangle =  zangle *pi/float(180);    //degree 2 rad
+    
+    float tx = ( ( _X / float(1000) ) * cos( -encoder2local_angle) )  -  (  ( _Y / float(1000) )   *  sin( -encoder2local_angle) );
+    float ty = ( ( _X / float(1000) ) * sin( -encoder2local_angle) )  +  (  ( _Y / float(1000) )   *  cos( -encoder2local_angle) );
+    
+    float s  = copysign( sqrt(  2*( r*r )  -  2*(r*r)*cos(zrangle)  )    , zrangle );
+    
+    float x_bias = s * cos( zrangle / 2 );
+    float y_bias = s * sin( zrangle / 2 );
+    
+    float x_tbias = ( x_bias ) * ( cos( encoder_position_angle) )  - ( y_bias ) * ( sin( encoder_position_angle ) )    ;
+    float y_tbias = ( x_bias ) * ( sin( encoder_position_angle) )  + ( y_bias ) * ( cos( encoder_position_angle ) )    ;
+    
+    
+  //  startup_offset_x_encoder = tx - x_tbias ;
+  //  startup_offset_y_encoder = ty - y_tbias ;
+    
+    startup_offset_x_encoder = tx + y_tbias ;
+    startup_offset_y_encoder = ty - x_tbias ;
+    
+    
+    startup_offset_w_encoder =  _A *pi/float(180);    //degree 2 rad
+    
+    
 }
 
 
 
 
 
+
+
 void ActionEncoder_init()
 {
     count=0;
@@ -357,8 +393,8 @@
    
     calculatePos(now_x,now_y,now_w);
     
-    /*
-    sprintf(buffer, "%f", transformed_real_now_x);
+    
+    /*sprintf(buffer, "%f", transformed_real_now_x);
     pc.printf(buffer);
     pc.printf("  ");
     sprintf(buffer, "%f", transformed_real_now_y);
@@ -366,8 +402,8 @@
     pc.printf("  ");
     sprintf(buffer, "%f", transformed_real_now_w);
     pc.printf(buffer);
-    pc.printf("\r\n");*/
-    
+    pc.printf("\r\n");
+    */
     
     
     if ((    (fabs(target_x - transformed_real_now_x)) < tolerance_x ) && (   (fabs(target_y - transformed_real_now_y)) < tolerance_y )  && (   (fabs(target_w - transformed_real_now_w)) < tolerance_w )      )
@@ -378,9 +414,9 @@
        tolerance_y = points[point_counter].required_tolerance_x;
        tolerance_w = points[point_counter].required_tolerance_x;
        
-       target_x    = points[point_counter].required_x                     +    startup_offset_x_encoder;
-       target_y    = points[point_counter].required_y                     +    startup_offset_y_encoder;
-       target_w    = points[point_counter].required_w  /float(180)*pi     +    startup_offset_w_encoder;
+       target_x    = points[point_counter].required_x                    ; //+    startup_offset_x_encoder;
+       target_y    = points[point_counter].required_y                    ; //+    startup_offset_y_encoder;
+       target_w    = points[point_counter].required_w  *pi/float(180);       ;//-    startup_offset_w_encoder;
        
        inverse( 0    ,     0         ,     0   );
        return;
@@ -440,8 +476,15 @@
 int main() {
     //while(1){
 ////////////////////////////
-    points[0] = (point_info){.required_x = 0.2,.required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
-    points[1] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[0] = (point_info){.required_x = 0,.required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[1] = (point_info){.required_x = 0.5,.required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[2] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[3] = (point_info){.required_x = 0,  .required_y = 0.2, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[4] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[5] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 90, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[6] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[7] = (point_info){.required_x = 0,  .required_y = 0, .required_w = -90, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[8] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
     
 
 
@@ -467,7 +510,7 @@
                 //startup_offset_y_encoder = now_y/1000;
                 //startup_offset_w_encoder = now_w/float(180)*pi;
                 
-                start_calculatePos(  (now_x/1000),(now_y/1000), now_w  );   //global
+                start_calculatePos(  (now_x),(now_y), now_w  );   //global
                 break;
             
             }
@@ -476,9 +519,9 @@
     }    //start first to take offset from encoder... in case already moved
     
  
-   target_x    = points[0].required_x    +  startup_offset_x_encoder;
-   target_y    = points[0].required_y    +  startup_offset_y_encoder;
-   target_w    = points[0].required_w    +  startup_offset_w_encoder;
+   target_x    = points[0].required_x;  //  +  startup_offset_x_encoder;
+   target_y    = points[0].required_y;  //  +  startup_offset_y_encoder;
+   target_w    = points[0].required_w *pi/float(180);   // -  startup_offset_w_encoder;
     
     
     for( int a = 1; a < 2; a++ ){
@@ -504,6 +547,7 @@
     {
         if (Action.readable())
         {
+            //pc.putc('a');
             char c = Action.getc();
             if(readEncoder(c)) odom_update();
         }
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main_rotate_stable_wtf.txt	Thu Oct 25 12:14:32 2018 +0000
@@ -0,0 +1,553 @@
+#include "mbed.h"
+#include "actiondrv.h"
+
+#include "millis.h"
+
+/*
+ * ActionEncoder.cpp
+ *
+ *  Created on: 7 Mar 2018
+ *      Author: tung
+ */
+
+#include "ActionEncoder.hpp"
+#include "Timer.h"
+
+
+
+///////////////////////////
+//Serial Action(D8,D2 ); // tx, rx
+Serial Action(PB_6,  PB_7 );
+Serial pc(USBTX, USBRX);
+
+
+
+union {
+    uint8_t data[24];
+    float val[6];
+} posture;
+int count=0;
+int i=0;
+int done=0;
+float xangle=0;
+float yangle=0;
+float zangle=0;
+float d_angle=0;
+float pos_x=0;
+float pos_y=0;
+float angleSpeed=0;
+float temp_zangle=0;
+int   LastRead=0;
+bool newDataArrived=false;
+
+char buffer[8];
+/////////////////////////
+
+//Serial pc(USBTX, USBRX);
+char counter = 0;
+actionDrv action1(1);
+actionDrv action2(2);
+actionDrv action3(3);
+
+
+int motor1 = 0;
+int motor2 = 0;
+int motor3 = 0;
+int motor4 = 0;
+
+float pi = 3.14159265;
+double pi_div_3 = 1.04719755;
+float d = 0.525;//0.43;
+float wheelR = 0.0508; //4 inch wheel
+float gear = 10;
+
+Ticker motor_updater;
+
+Ticker odom_updater;
+////////////////////////////////////
+float now_x=0;
+float now_y=0;
+float now_w=0;
+
+float target_x=0;
+float target_y=0;
+float target_w=0;
+
+float tolerance_x=0.02;
+float tolerance_y=0.02;
+float tolerance_w=0.01;
+
+float speed_max_x=1;
+float speed_max_y=1;
+float speed_max_w=1;
+
+long odom_last_read= millis();
+
+/////////////////////////////////////
+const float RATE = 0.18;
+
+///////////////////////////////////////
+int point_counter=0;
+
+struct point_info
+{
+   float required_x;
+   float required_y;
+   float required_w;
+   float required_tolerance_x;
+   float required_tolerance_y;
+   float required_tolerance_w;
+   float required_speed_max_x;
+   float required_speed_max_y;
+   float required_speed_max_w;
+};
+
+struct point_info points[100];
+
+
+
+
+///////////////////////////
+float encoder_2_global_angle = 30;         //encoder coordinate system + 30 degree    =>  global coordinate system
+//float encoder_2_global_x     =   0.34;    //encoder to center distance  in x   (tung)
+//float encoder_2_global_y     =   -0.235;     //encoder to center distance  in y   (tung)
+
+
+float encoder_2_global_x     = 0.125;// -0.13 ;    //encoder to center distance  in x   (tung)
+float encoder_2_global_y     =  0.37; //0.35;     //encoder to center distance  in y   (tung)
+////////////////////TUNG////////////////
+
+float    Xshift=  encoder_2_global_x;
+float    Yshift=  encoder_2_global_y;
+float    offsetX = -Yshift;
+float    offsetY = Xshift;
+
+float Ashift  =   -encoder_2_global_angle*pi/float(180);
+float offsetA =   -encoder_2_global_angle;
+
+float transformed_real_now_x=0;
+float transformed_real_now_y=0;
+float transformed_real_now_w=0;
+
+
+float startup_offset_x_encoder =0;
+float startup_offset_y_encoder =0;
+float startup_offset_w_encoder=0;
+
+void calculatePos(float _X,float _Y,float _A)
+{
+    float radAng=_A/float(180)*pi;
+
+    float rotatedPosX=_X*cos(Ashift)+_Y*sin(Ashift);
+    float rotatedPosY=-_X*sin(Ashift)+_Y*cos(Ashift);
+    transformed_real_now_x=(rotatedPosY/float(1000)+Xshift*sin(radAng)+Yshift*cos(radAng))+offsetX        + startup_offset_x_encoder;
+    transformed_real_now_y=(rotatedPosX/float(1000)+Xshift*cos(radAng)-Yshift*sin(radAng))*(-1)+offsetY   + startup_offset_y_encoder;
+    //transformed_real_now_w=_A;   //
+    transformed_real_now_w=radAng                                                                         - startup_offset_w_encoder;
+}
+
+
+
+
+
+
+
+
+
+///////////////////////
+
+
+
+float x_PID_P = 0.5;
+float y_PID_P = 0.5;
+float w_PID_P = 1;
+
+#define constrain(amt,low,high) ((amt)<(low)?(low):((amt)>(high)?(high):(amt)))
+
+//////////////////////////////
+void start_calculatePos(float _X,float _Y,float _A)
+{
+    float radAng=_A/float(180)*pi;
+    float rotatedPosX=_X*cos(Ashift)+_Y*sin(Ashift);
+    float rotatedPosY=-_X*sin(Ashift)+_Y*cos(Ashift);
+    startup_offset_x_encoder  =  (rotatedPosY/float(1000)+Xshift*sin(radAng)+Yshift*cos(radAng))+offsetX;
+    startup_offset_y_encoder  =  (rotatedPosX/float(1000)+Xshift*cos(radAng)-Yshift*sin(radAng))*(-1)+offsetY;
+    //transformed_real_now_w=_A;   //
+    startup_offset_w_encoder=radAng;
+}
+
+
+
+
+
+void ActionEncoder_init()
+{
+    count=0;
+    i=0;
+    done=0;
+    xangle=0;
+    yangle=0;
+    zangle=0;
+    d_angle=0;
+    pos_x=0;
+    pos_y=0;
+    angleSpeed=0;
+    temp_zangle=0;
+    LastRead=0;
+    newDataArrived=false;
+
+}
+
+bool readEncoder(char c)
+{
+    //sprintf(buffer,"%02X",c);
+    //sprintf(buffer,"%X",c);
+    //pc.printf(buffer);
+    //pc.printf("\r\n");
+    
+    //sprintf(buffer,"%d",count);
+    //pc.printf(buffer);
+    //pc.printf("\r\n");
+    switch(count) {
+        case 0:
+            if (c==0x0d) count++;
+            else count=0;
+            break;
+        case 1:
+            if(c==0x0a) {
+                i=0;
+                count++;
+            } else if(c==0x0d) {}
+            else count=0;
+            break;
+        case 2:
+            posture.data[i]=c;
+            i++;
+            if(i>=24) {
+                i=0;
+                count++;
+            }
+            break;
+        case 3:
+            if(c==0x0a)count++;
+            else count=0;
+            break;
+        case 4:
+            if(c==0x0d) {
+                d_angle=posture.val[0]-temp_zangle;
+                if (d_angle<-180) {
+                    d_angle=d_angle+360;
+                } else if (d_angle>180) {
+                    d_angle=d_angle-360;
+                }
+                
+                now_w+=d_angle;
+                temp_zangle=posture.val[0];
+                //xangle=posture.val[1];
+                //yangle=posture.val[2];
+                now_x=posture.val[3];
+                now_y=posture.val[4];
+                //angleSpeed=posture.val[5];
+                newDataArrived=true;
+                
+            }
+            count=0;
+            done=1;
+            LastRead=millis();
+            return true;
+            //break;
+        default:
+            count=0;
+            break;
+    }
+    
+    return false;
+}
+
+bool updated()
+{
+    if (done) {
+        done=false;
+        return true;
+    } else {
+        return false;
+    }
+
+}
+
+float getXangle()
+{
+    return xangle;
+}
+
+float getYangle()
+{
+    return yangle;
+}
+
+float getZangle()
+{
+    return zangle;
+}
+
+float getXpos()
+{
+    return pos_x;
+}
+
+float getYpos()
+{
+    return pos_y;
+}
+
+float getAngleSpeed()
+{
+    return angleSpeed;
+}
+
+bool isAlive()
+{
+    if ((millis()-LastRead)<100) {
+        return true;
+    } else {
+        return false;
+    }
+}
+
+bool newDataAvailable()
+{
+    if (newDataArrived) {
+        newDataArrived=false;
+        return true;
+    } else return false;
+}
+
+char* reset()
+{
+    return "ACT0";
+}
+
+char* calibrate()
+{
+    return "ACTR";
+}
+
+
+void inverse(float x_vel, float y_vel, float w_vel)
+{
+    motor1  =  int(   (    (-1) * sin(pi_div_3) * x_vel   +  cos(pi_div_3) * y_vel +  d * w_vel     )  * 60 / (wheelR * 2 * pi)  * gear   );
+    motor2  =  int(   (    (-1) *  y_vel + d * w_vel                                                )  * 60 / (wheelR * 2 * pi)  * gear   ); 
+    motor3  =  int(   (           sin(pi_div_3) * x_vel   +  cos(pi_div_3) * y_vel +  d * w_vel     )  * 60 / (wheelR * 2 * pi)  * gear   );
+    
+}
+
+
+
+void motor_update()
+{
+    action1.SetVelocity_mod(motor1  * -1 );
+    action2.SetVelocity_mod(motor2  * -1 );
+    action3.SetVelocity_mod(motor3  * -1 );
+    wait(0.005);
+}
+
+void odom_update()
+{
+
+   
+    calculatePos(now_x,now_y,now_w);
+    
+    
+    /*sprintf(buffer, "%f", transformed_real_now_x);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%f", transformed_real_now_y);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%f", transformed_real_now_w);
+    pc.printf(buffer);
+    pc.printf("\r\n");
+    */
+    
+    
+    if ((    (fabs(target_x - transformed_real_now_x)) < tolerance_x ) && (   (fabs(target_y - transformed_real_now_y)) < tolerance_y )  && (   (fabs(target_w - transformed_real_now_w)) < tolerance_w )      )
+    {
+        point_counter+=1;
+
+       tolerance_x = points[point_counter].required_tolerance_x;
+       tolerance_y = points[point_counter].required_tolerance_x;
+       tolerance_w = points[point_counter].required_tolerance_x;
+       
+       target_x    = points[point_counter].required_x                    ; //+    startup_offset_x_encoder;
+       target_y    = points[point_counter].required_y                    ; //+    startup_offset_y_encoder;
+       target_w    = points[point_counter].required_w  /float(180)*pi    ;//-    startup_offset_w_encoder;
+       
+       inverse( 0    ,     0         ,     0   );
+       return;
+     
+    }
+    
+
+  
+    float local_vel_x = (fabs(target_x - transformed_real_now_x) > tolerance_x ) ?   constrain(  (x_PID_P * (target_x - transformed_real_now_x)    ), -speed_max_x,    speed_max_x)  : 0 ;
+    float local_vel_y = (fabs(target_y - transformed_real_now_y) > tolerance_y ) ?   constrain(  (y_PID_P * (target_y - transformed_real_now_y)    ), -speed_max_y,    speed_max_y)  : 0 ;
+    float local_vel_w = (fabs(target_w - transformed_real_now_w) > tolerance_w ) ?   constrain(  (w_PID_P * (target_w - transformed_real_now_w)    ), -speed_max_w,    speed_max_w)  : 0 ;
+    
+    
+    
+    float global_vel_x = local_vel_x * cos( -transformed_real_now_w  )  -  local_vel_y * sin( -transformed_real_now_w ); 
+    float global_vel_y = local_vel_x * sin( -transformed_real_now_w  )  +  local_vel_y * cos( -transformed_real_now_w );  //local to global transformation   (angle only)
+    
+    /*
+    pc.printf("X: ");
+    sprintf(buffer, "%f", transformed_real_now_x);
+    pc.printf(buffer);
+    pc.printf("  Y: ");
+    sprintf(buffer, "%f", transformed_real_now_y);
+    pc.printf(buffer);
+    pc.printf("  W: ");
+    sprintf(buffer, "%f", transformed_real_now_w);
+    pc.printf(buffer);
+    
+    pc.printf(" | Global: ");
+    sprintf(buffer, "%f", global_vel_x);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%f", global_vel_y);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%f", local_vel_w);
+    pc.printf(buffer);*/
+    
+    
+  
+    inverse( global_vel_x   ,  global_vel_y       ,     local_vel_w   );
+    
+    /*
+    pc.printf(" | Motor: ");
+    sprintf(buffer, "%d", motor1);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%d", motor2);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%d", motor3);
+    pc.printf(buffer);
+    pc.printf("\r\n");*/
+    
+}
+
+int main() {
+    //while(1){
+////////////////////////////
+    points[0] = (point_info){.required_x = 0,.required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[1] = (point_info){.required_x = 0.5,.required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[2] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[3] = (point_info){.required_x = 0,  .required_y = 0.2, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[4] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[5] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 90, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[6] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    
+
+
+
+
+////////////////////
+        
+    millisStart();
+    
+    
+        
+    Action.baud(115200);
+    Action.format(8,SerialBase::None,1); 
+    ActionEncoder_init();
+    while(1) 
+    {
+        if (Action.readable())
+        {
+            char c = Action.getc();
+            if (readEncoder(c))
+            {
+                //startup_offset_x_encoder = now_x/1000;
+                //startup_offset_y_encoder = now_y/1000;
+                //startup_offset_w_encoder = now_w/float(180)*pi;
+                
+                start_calculatePos(  (now_x),(now_y), now_w  );   //global
+                break;
+            
+            }
+            
+        }
+    }    //start first to take offset from encoder... in case already moved
+    
+ 
+   target_x    = points[0].required_x;  //  +  startup_offset_x_encoder;
+   target_y    = points[0].required_y;  //  +  startup_offset_y_encoder;
+   target_w    = points[0].required_w;   // -  startup_offset_w_encoder;
+    
+    
+    for( int a = 1; a < 2; a++ ){
+      action1.Enable();
+      action2.Enable();
+      action3.Enable();
+      wait(0.1);
+      action1.SetOperationalMode();
+      action2.SetOperationalMode();
+      action3.SetOperationalMode();
+      wait(0.1);
+      action1.Configvelocity(100000, 100000);
+      action2.Configvelocity(100000, 100000);
+      action3.Configvelocity(100000, 100000);  
+      wait(0.1);
+   }
+          
+    motor_updater.attach(&motor_update, RATE);  
+    //odom_updater.attach(&odom_update, RATE);
+    
+        
+    while(1) 
+    {
+        if (Action.readable())
+        {
+            //pc.putc('a');
+            char c = Action.getc();
+            if(readEncoder(c)) odom_update();
+        }
+        
+    }
+
+ 
+        
+/*
+        while (Action.readable()==1 ) 
+        {
+            char c = Action.getc();   
+            readEncoder(c);
+           
+        }
+*/
+    
+    
+/*
+    while(1)
+    {
+         
+         inverse(0.2,0,0);
+         wait(1);
+         inverse(-0.2,0,0);
+         wait(1);
+         
+         inverse(0,0,0.25);
+         wait(1);
+         inverse(0,0,-0.25);
+         wait(1);
+         
+    }
+    
+*/
+         
+
+    
+
+       
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main_stable2_still_on9.txt	Thu Oct 25 12:14:32 2018 +0000
@@ -0,0 +1,583 @@
+#include "mbed.h"
+#include "actiondrv.h"
+
+#include "millis.h"
+
+/*
+ * ActionEncoder.cpp
+ *
+ *  Created on: 7 Mar 2018
+ *      Author: tung
+ */
+
+#include "ActionEncoder.hpp"
+#include "Timer.h"
+
+
+
+///////////////////////////
+//Serial Action(D8,D2 ); // tx, rx
+Serial Action(PB_6,  PB_7 );
+Serial pc(USBTX, USBRX);
+
+
+
+union {
+    uint8_t data[24];
+    float val[6];
+} posture;
+int count=0;
+int i=0;
+int done=0;
+float xangle=0;
+float yangle=0;
+float zangle=0;
+float d_angle=0;
+float pos_x=0;
+float pos_y=0;
+float angleSpeed=0;
+float temp_zangle=0;
+int   LastRead=0;
+bool newDataArrived=false;
+
+char buffer[8];
+/////////////////////////
+
+//Serial pc(USBTX, USBRX);
+char counter = 0;
+actionDrv action1(1);
+actionDrv action2(2);
+actionDrv action3(3);
+
+
+int motor1 = 0;
+int motor2 = 0;
+int motor3 = 0;
+int motor4 = 0;
+
+float pi = 3.14159265;
+double pi_div_3 = 1.04719755;
+float d = 0.525;//0.43;
+float wheelR = 0.0508; //4 inch wheel
+float gear = 10;
+
+Ticker motor_updater;
+
+Ticker odom_updater;
+////////////////////////////////////
+float now_x=0;
+float now_y=0;
+float now_w=0;
+
+float target_x=0;
+float target_y=0;
+float target_w=0;
+
+float tolerance_x=0.02;
+float tolerance_y=0.02;
+float tolerance_w=0.01;
+
+float speed_max_x=1;
+float speed_max_y=1;
+float speed_max_w=1;
+
+long odom_last_read= millis();
+
+/////////////////////////////////////
+const float RATE = 0.18;
+
+///////////////////////////////////////
+int point_counter=0;
+
+struct point_info
+{
+   float required_x;
+   float required_y;
+   float required_w;
+   float required_tolerance_x;
+   float required_tolerance_y;
+   float required_tolerance_w;
+   float required_speed_max_x;
+   float required_speed_max_y;
+   float required_speed_max_w;
+};
+
+struct point_info points[100];
+
+
+
+
+///////////////////////////
+float encoder_2_global_angle = 30;         //encoder coordinate system + 30 degree    =>  global coordinate system
+//float encoder_2_global_x     =   0.34;    //encoder to center distance  in x   (tung)
+//float encoder_2_global_y     =   -0.235;     //encoder to center distance  in y   (tung)
+
+
+float encoder_2_global_x     = 0.125;//0.125;// -0.13 ;    //encoder to center distance  in x   (tung)
+float encoder_2_global_y     = 0.37; //0.35;     //encoder to center distance  in y   (tung)
+////////////////////TUNG////////////////
+
+float    Xshift=  encoder_2_global_x;
+float    Yshift=  encoder_2_global_y;
+float    offsetX = -Yshift;
+float    offsetY = Xshift;
+
+float Ashift  =   -encoder_2_global_angle*pi/float(180);    //degree 2 rad
+float offsetA =   -encoder_2_global_angle;
+
+float transformed_real_now_x=0;
+float transformed_real_now_y=0;
+float transformed_real_now_w=0;
+
+
+float startup_offset_x_encoder =0;
+float startup_offset_y_encoder =0;
+float startup_offset_w_encoder=0;
+
+
+
+float encoder_to_center = sqrt( ( encoder_2_global_x  * encoder_2_global_x )  + ( encoder_2_global_y  *  encoder_2_global_y ) );
+
+
+void calculatePos(float _X,float _Y,float _A)
+{
+    float radAng=_A*pi/float(180);    //degree 2 rad
+    /*
+    posX=(float(local_posY)/1000 + self.paraX * sin(w_radian) + self.paraY * cos(w_radian) )*(1) +self.offsetX
+    posY=(float(local_posX)/1000 + self.pa+raX * cos(w_radian) - self.paraY * sin(w_radian) )*(-1) +self.offsetY
+    */
+    
+    /*
+    float rotatedPosX=_X*cos(Ashift)+_Y*sin(Ashift);
+    float rotatedPosY=-_X*sin(Ashift)+_Y*cos(Ashift);
+    transformed_real_now_x=(rotatedPosY/float(1000)+Xshift*sin(radAng)+Yshift*cos(radAng))+offsetX     -    startup_offset_x_encoder;
+    transformed_real_now_y=(rotatedPosX/float(1000)+Xshift*cos(radAng)-Yshift*sin(radAng))*(-1)+offsetY-    startup_offset_y_encoder;
+    */
+    
+    float rotatedPosX=  _X*cos(-Ashift)-_Y*sin(-Ashift);  
+    float rotatedPosY=  _X*cos(-Ashift)+_Y*sin(-Ashift);
+    
+    transformed_real_now_x=   rotatedPosY/float(1000)+    encoder_to_center  *sin(-radAng -Ashift)  +    0*cos(-radAng -Ashift)   -    startup_offset_x_encoder     ;
+    transformed_real_now_y=  (rotatedPosX/float(1000)+    encoder_to_center  *cos(-radAng -Ashift)  -    0*sin(-radAng -Ashift) )*-1   -    startup_offset_y_encoder    ;
+     
+     
+    transformed_real_now_w=radAng                                                                      -  startup_offset_w_encoder;
+}
+
+
+
+
+
+///////////////////////
+
+
+
+float x_PID_P = 0.5;
+float y_PID_P = 0.5;
+float w_PID_P = 1;
+
+#define constrain(amt,low,high) ((amt)<(low)?(low):((amt)>(high)?(high):(amt)))
+
+//////////////////////////////
+void start_calculatePos(float _X,float _Y,float _A)
+{
+    float radAng=_A*pi/float(180);    //degree 2 rad
+
+
+/*
+    float rotatedPosX=_X*cos(Ashift)+_Y*sin(Ashift);
+    float rotatedPosY=-_X*sin(Ashift)+_Y*cos(Ashift);
+    startup_offset_x_encoder  =  (rotatedPosY/float(1000)+Xshift*sin(radAng)+Yshift*cos(radAng))+offsetX;
+    startup_offset_y_encoder  =  (rotatedPosX/float(1000)+Xshift*cos(radAng)-Yshift*sin(radAng))*(-1)+offsetY;
+*/
+
+    float rotatedPosX=  _X*cos(-Ashift)-_Y*sin(-Ashift);  
+    float rotatedPosY=  _X*cos(-Ashift)+_Y*sin(-Ashift);
+    
+    startup_offset_x_encoder=   ((rotatedPosY/float(1000))+    encoder_to_center  *sin(-radAng -Ashift)  +    0*cos(-radAng -Ashift))   ; 
+    startup_offset_y_encoder = (((rotatedPosX/float(1000))+    encoder_to_center  *cos(-radAng -Ashift)  -    0*sin(-radAng -Ashift)) )*-1  ;
+   
+    startup_offset_w_encoder=radAng;
+}
+
+
+
+
+
+
+
+
+
+void ActionEncoder_init()
+{
+    count=0;
+    i=0;
+    done=0;
+    xangle=0;
+    yangle=0;
+    zangle=0;
+    d_angle=0;
+    pos_x=0;
+    pos_y=0;
+    angleSpeed=0;
+    temp_zangle=0;
+    LastRead=0;
+    newDataArrived=false;
+
+}
+
+bool readEncoder(char c)
+{
+    //sprintf(buffer,"%02X",c);
+    //sprintf(buffer,"%X",c);
+    //pc.printf(buffer);
+    //pc.printf("\r\n");
+    
+    //sprintf(buffer,"%d",count);
+    //pc.printf(buffer);
+    //pc.printf("\r\n");
+    switch(count) {
+        case 0:
+            if (c==0x0d) count++;
+            else count=0;
+            break;
+        case 1:
+            if(c==0x0a) {
+                i=0;
+                count++;
+            } else if(c==0x0d) {}
+            else count=0;
+            break;
+        case 2:
+            posture.data[i]=c;
+            i++;
+            if(i>=24) {
+                i=0;
+                count++;
+            }
+            break;
+        case 3:
+            if(c==0x0a)count++;
+            else count=0;
+            break;
+        case 4:
+            if(c==0x0d) {
+                d_angle=posture.val[0]-temp_zangle;
+                if (d_angle<-180) {
+                    d_angle=d_angle+360;
+                } else if (d_angle>180) {
+                    d_angle=d_angle-360;
+                }
+                
+                now_w+=d_angle;
+                temp_zangle=posture.val[0];
+                //xangle=posture.val[1];
+                //yangle=posture.val[2];
+                now_x=posture.val[3];
+                now_y=posture.val[4];
+                //angleSpeed=posture.val[5];
+                newDataArrived=true;
+                
+            }
+            count=0;
+            done=1;
+            LastRead=millis();
+            return true;
+            //break;
+        default:
+            count=0;
+            break;
+    }
+    
+    return false;
+}
+
+bool updated()
+{
+    if (done) {
+        done=false;
+        return true;
+    } else {
+        return false;
+    }
+
+}
+
+float getXangle()
+{
+    return xangle;
+}
+
+float getYangle()
+{
+    return yangle;
+}
+
+float getZangle()
+{
+    return zangle;
+}
+
+float getXpos()
+{
+    return pos_x;
+}
+
+float getYpos()
+{
+    return pos_y;
+}
+
+float getAngleSpeed()
+{
+    return angleSpeed;
+}
+
+bool isAlive()
+{
+    if ((millis()-LastRead)<100) {
+        return true;
+    } else {
+        return false;
+    }
+}
+
+bool newDataAvailable()
+{
+    if (newDataArrived) {
+        newDataArrived=false;
+        return true;
+    } else return false;
+}
+
+char* reset()
+{
+    return "ACT0";
+}
+
+char* calibrate()
+{
+    return "ACTR";
+}
+
+
+void inverse(float x_vel, float y_vel, float w_vel)
+{
+    motor1  =  int(   (    (-1) * sin(pi_div_3) * x_vel   +  cos(pi_div_3) * y_vel +  d * w_vel     )  * 60 / (wheelR * 2 * pi)  * gear   );
+    motor2  =  int(   (    (-1) *  y_vel + d * w_vel                                                )  * 60 / (wheelR * 2 * pi)  * gear   ); 
+    motor3  =  int(   (           sin(pi_div_3) * x_vel   +  cos(pi_div_3) * y_vel +  d * w_vel     )  * 60 / (wheelR * 2 * pi)  * gear   );
+    
+}
+
+
+
+void motor_update()
+{
+    action1.SetVelocity_mod(motor1  * -1 );
+    action2.SetVelocity_mod(motor2  * -1 );
+    action3.SetVelocity_mod(motor3  * -1 );
+    wait(0.005);
+}
+
+void odom_update()
+{
+
+   
+    calculatePos(now_x,now_y,now_w);
+    
+    
+    /*sprintf(buffer, "%f", transformed_real_now_x);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%f", transformed_real_now_y);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%f", transformed_real_now_w);
+    pc.printf(buffer);
+    pc.printf("\r\n");
+    */
+    
+    
+    if ((    (fabs(target_x - transformed_real_now_x)) < tolerance_x ) && (   (fabs(target_y - transformed_real_now_y)) < tolerance_y )  && (   (fabs(target_w - transformed_real_now_w)) < tolerance_w )      )
+    {
+        point_counter+=1;
+
+       tolerance_x = points[point_counter].required_tolerance_x;
+       tolerance_y = points[point_counter].required_tolerance_x;
+       tolerance_w = points[point_counter].required_tolerance_x;
+       
+       target_x    = points[point_counter].required_x                    ; //+    startup_offset_x_encoder;
+       target_y    = points[point_counter].required_y                    ; //+    startup_offset_y_encoder;
+       target_w    = points[point_counter].required_w  *pi/float(180);       ;//-    startup_offset_w_encoder;
+       
+       inverse( 0    ,     0         ,     0   );
+       return;
+     
+    }
+    
+
+  
+    float local_vel_x = (fabs(target_x - transformed_real_now_x) > tolerance_x ) ?   constrain(  (x_PID_P * (target_x - transformed_real_now_x)    ), -speed_max_x,    speed_max_x)  : 0 ;
+    float local_vel_y = (fabs(target_y - transformed_real_now_y) > tolerance_y ) ?   constrain(  (y_PID_P * (target_y - transformed_real_now_y)    ), -speed_max_y,    speed_max_y)  : 0 ;
+    float local_vel_w = (fabs(target_w - transformed_real_now_w) > tolerance_w ) ?   constrain(  (w_PID_P * (target_w - transformed_real_now_w)    ), -speed_max_w,    speed_max_w)  : 0 ;
+    
+    
+    
+    float global_vel_x = local_vel_x * cos( -transformed_real_now_w  )  -  local_vel_y * sin( -transformed_real_now_w ); 
+    float global_vel_y = local_vel_x * sin( -transformed_real_now_w  )  +  local_vel_y * cos( -transformed_real_now_w );  //local to global transformation   (angle only)
+    
+    /*
+    pc.printf("X: ");
+    sprintf(buffer, "%f", transformed_real_now_x);
+    pc.printf(buffer);
+    pc.printf("  Y: ");
+    sprintf(buffer, "%f", transformed_real_now_y);
+    pc.printf(buffer);
+    pc.printf("  W: ");
+    sprintf(buffer, "%f", transformed_real_now_w);
+    pc.printf(buffer);
+    
+    pc.printf(" | Global: ");
+    sprintf(buffer, "%f", global_vel_x);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%f", global_vel_y);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%f", local_vel_w);
+    pc.printf(buffer);*/
+    
+    
+  
+    inverse( global_vel_x   ,  global_vel_y       ,     local_vel_w   );
+    
+    /*
+    pc.printf(" | Motor: ");
+    sprintf(buffer, "%d", motor1);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%d", motor2);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%d", motor3);
+    pc.printf(buffer);
+    pc.printf("\r\n");*/
+    
+}
+
+int main() {
+    //while(1){
+////////////////////////////
+    points[0] = (point_info){.required_x = 0,.required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[1] = (point_info){.required_x = 0.5,.required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[2] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[3] = (point_info){.required_x = 0,  .required_y = 0.2, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[4] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[5] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 90, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[6] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[7] = (point_info){.required_x = 0,  .required_y = 0, .required_w = -90, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[8] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    
+
+
+
+
+////////////////////
+        
+    millisStart();
+    
+    
+        
+    Action.baud(115200);
+    Action.format(8,SerialBase::None,1); 
+    ActionEncoder_init();
+    while(1) 
+    {
+        if (Action.readable())
+        {
+            char c = Action.getc();
+            if (readEncoder(c))
+            {
+                //startup_offset_x_encoder = now_x/1000;
+                //startup_offset_y_encoder = now_y/1000;
+                //startup_offset_w_encoder = now_w/float(180)*pi;
+                
+                start_calculatePos(  (now_x),(now_y), now_w  );   //global
+                break;
+            
+            }
+            
+        }
+    }    //start first to take offset from encoder... in case already moved
+    
+ 
+   target_x    = points[0].required_x;  //  +  startup_offset_x_encoder;
+   target_y    = points[0].required_y;  //  +  startup_offset_y_encoder;
+   target_w    = points[0].required_w *pi/float(180);   // -  startup_offset_w_encoder;
+    
+    
+    for( int a = 1; a < 2; a++ ){
+      action1.Enable();
+      action2.Enable();
+      action3.Enable();
+      wait(0.1);
+      action1.SetOperationalMode();
+      action2.SetOperationalMode();
+      action3.SetOperationalMode();
+      wait(0.1);
+      action1.Configvelocity(100000, 100000);
+      action2.Configvelocity(100000, 100000);
+      action3.Configvelocity(100000, 100000);  
+      wait(0.1);
+   }
+          
+    motor_updater.attach(&motor_update, RATE);  
+    //odom_updater.attach(&odom_update, RATE);
+    
+        
+    while(1) 
+    {
+        if (Action.readable())
+        {
+            //pc.putc('a');
+            char c = Action.getc();
+            if(readEncoder(c)) odom_update();
+        }
+        
+    }
+
+ 
+        
+/*
+        while (Action.readable()==1 ) 
+        {
+            char c = Action.getc();   
+            readEncoder(c);
+           
+        }
+*/
+    
+    
+/*
+    while(1)
+    {
+         
+         inverse(0.2,0,0);
+         wait(1);
+         inverse(-0.2,0,0);
+         wait(1);
+         
+         inverse(0,0,0.25);
+         wait(1);
+         inverse(0,0,-0.25);
+         wait(1);
+         
+    }
+    
+*/
+         
+
+    
+
+       
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main_stable_ex_1_2018_10_25.txt	Thu Oct 25 12:14:32 2018 +0000
@@ -0,0 +1,591 @@
+#include "mbed.h"
+#include "actiondrv.h"
+
+#include "millis.h"
+
+/*
+ * ActionEncoder.cpp
+ *
+ *  Created on: 7 Mar 2018
+ *      Author: tung
+ */
+
+#include "ActionEncoder.hpp"
+#include "Timer.h"
+
+
+
+///////////////////////////
+//Serial Action(D8,D2 ); // tx, rx
+Serial Action(PB_6,  PB_7 );
+Serial pc(USBTX, USBRX);
+
+
+
+union {
+    uint8_t data[24];
+    float val[6];
+} posture;
+int count=0;
+int i=0;
+int done=0;
+float xangle=0;
+float yangle=0;
+float zangle=0;
+float d_angle=0;
+float pos_x=0;
+float pos_y=0;
+float angleSpeed=0;
+float temp_zangle=0;
+int   LastRead=0;
+bool newDataArrived=false;
+
+char buffer[8];
+/////////////////////////
+
+//Serial pc(USBTX, USBRX);
+char counter = 0;
+actionDrv action1(1);
+actionDrv action2(2);
+actionDrv action3(3);
+
+
+int motor1 = 0;
+int motor2 = 0;
+int motor3 = 0;
+int motor4 = 0;
+
+float pi = 3.14159265;
+double pi_div_3 = 1.04719755;
+float d = 0.525;//0.43;
+float wheelR = 0.0508; //4 inch wheel
+float gear = 10;
+
+Ticker motor_updater;
+
+Ticker odom_updater;
+////////////////////////////////////
+float now_x=0;
+float now_y=0;
+float now_w=0;
+
+float target_x=0;
+float target_y=0;
+float target_w=0;
+
+float tolerance_x=0.02;
+float tolerance_y=0.02;
+float tolerance_w=0.01;
+
+float speed_max_x=1;
+float speed_max_y=1;
+float speed_max_w=1;
+
+long odom_last_read= millis();
+
+/////////////////////////////////////
+const float RATE = 0.18;
+
+///////////////////////////////////////
+int point_counter=0;
+
+struct point_info
+{
+   float required_x;
+   float required_y;
+   float required_w;
+   float required_tolerance_x;
+   float required_tolerance_y;
+   float required_tolerance_w;
+   float required_speed_max_x;
+   float required_speed_max_y;
+   float required_speed_max_w;
+};
+
+struct point_info points[100];
+
+
+
+
+///////////////////////////
+float encoder_2_global_angle = 30;         //encoder coordinate system + 30 degree    =>  global coordinate system
+//float encoder_2_global_x     =   0.34;    //encoder to center distance  in x   (tung)
+//float encoder_2_global_y     =   -0.235;     //encoder to center distance  in y   (tung)
+
+
+float encoder_2_global_x     = 0.125;//0.125;// -0.13 ;    //encoder to center distance  in x   (tung)
+float encoder_2_global_y     = 0.37; //0.35;     //encoder to center distance  in y   (tung)
+////////////////////TUNG////////////////
+
+
+float transformed_real_now_x=0;
+float transformed_real_now_y=0;
+float transformed_real_now_w=0;
+
+
+float startup_offset_x_encoder =0;
+float startup_offset_y_encoder =0;
+float startup_offset_w_encoder=0;
+
+
+
+float encoder_to_center = sqrt( ( encoder_2_global_x  * encoder_2_global_x )  + ( encoder_2_global_y  *  encoder_2_global_y ) );
+
+//#########################//
+float encoder2local_angle = 30 *pi/float(180);
+float encoder_position_angle =( ( 180 + 18.666914)  ) / float(180) * pi ;   //90 +  angle to encoder location
+float r = sqrt( ( encoder_2_global_x  * encoder_2_global_x )  + ( encoder_2_global_y  *  encoder_2_global_y ) );   //encoder to center radius
+
+
+void calculatePos(float _X,float _Y,float _A)
+{
+    float zangle  =  _A-   360 * int(_A / 360);
+    float zrangle =  zangle *pi/float(180);    //degree 2 rad
+    
+    float tx = ( ( _X / float(1000) ) * cos( -encoder2local_angle) )  -  (  ( _Y / float(1000) )   *  sin( -encoder2local_angle) );
+    float ty = ( ( _X / float(1000) ) * sin( -encoder2local_angle) )  +  (  ( _Y / float(1000) )   *  cos( -encoder2local_angle) );
+    
+    float s  = copysign( sqrt(  2*( r*r )  -  2*(r*r)*cos(zrangle)  )    , zrangle );
+    
+    float x_bias = s * cos( zrangle / 2 );
+    float y_bias = s * sin( zrangle / 2 );
+    
+    float x_tbias = ( x_bias ) * ( cos( encoder_position_angle) )  - ( y_bias ) * ( sin( encoder_position_angle ) )    ;
+    float y_tbias = ( x_bias ) * ( sin( encoder_position_angle) )  + ( y_bias ) * ( cos( encoder_position_angle ) )    ;
+    
+    
+   // transformed_real_now_x = tx - x_tbias   - startup_offset_x_encoder;
+   // transformed_real_now_y = ty - y_tbias   - startup_offset_y_encoder;
+    
+    transformed_real_now_x = tx + y_tbias   - startup_offset_x_encoder;
+    transformed_real_now_y = ty - x_tbias   - startup_offset_y_encoder;
+    
+    
+    transformed_real_now_w=   _A *pi/float(180)                                                                        -  startup_offset_w_encoder;
+    
+    
+}
+
+
+
+
+
+///////////////////////
+
+
+
+float x_PID_P = 0.5;
+float y_PID_P = 0.5;
+float w_PID_P = 1;
+
+#define constrain(amt,low,high) ((amt)<(low)?(low):((amt)>(high)?(high):(amt)))
+
+//////////////////////////////
+void start_calculatePos(float _X,float _Y,float _A)
+{
+    float zangle  =  _A-   360 * int(_A / 360);
+    float zrangle =  zangle *pi/float(180);    //degree 2 rad
+    
+    float tx = ( ( _X / float(1000) ) * cos( -encoder2local_angle) )  -  (  ( _Y / float(1000) )   *  sin( -encoder2local_angle) );
+    float ty = ( ( _X / float(1000) ) * sin( -encoder2local_angle) )  +  (  ( _Y / float(1000) )   *  cos( -encoder2local_angle) );
+    
+    float s  = copysign( sqrt(  2*( r*r )  -  2*(r*r)*cos(zrangle)  )    , zrangle );
+    
+    float x_bias = s * cos( zrangle / 2 );
+    float y_bias = s * sin( zrangle / 2 );
+    
+    float x_tbias = ( x_bias ) * ( cos( encoder_position_angle) )  - ( y_bias ) * ( sin( encoder_position_angle ) )    ;
+    float y_tbias = ( x_bias ) * ( sin( encoder_position_angle) )  + ( y_bias ) * ( cos( encoder_position_angle ) )    ;
+    
+    
+  //  startup_offset_x_encoder = tx - x_tbias ;
+  //  startup_offset_y_encoder = ty - y_tbias ;
+    
+    startup_offset_x_encoder = tx + y_tbias ;
+    startup_offset_y_encoder = ty - x_tbias ;
+    
+    
+    startup_offset_w_encoder =  _A *pi/float(180);    //degree 2 rad
+    
+    
+}
+
+
+
+
+
+
+
+void ActionEncoder_init()
+{
+    count=0;
+    i=0;
+    done=0;
+    xangle=0;
+    yangle=0;
+    zangle=0;
+    d_angle=0;
+    pos_x=0;
+    pos_y=0;
+    angleSpeed=0;
+    temp_zangle=0;
+    LastRead=0;
+    newDataArrived=false;
+
+}
+
+bool readEncoder(char c)
+{
+    //sprintf(buffer,"%02X",c);
+    //sprintf(buffer,"%X",c);
+    //pc.printf(buffer);
+    //pc.printf("\r\n");
+    
+    //sprintf(buffer,"%d",count);
+    //pc.printf(buffer);
+    //pc.printf("\r\n");
+    switch(count) {
+        case 0:
+            if (c==0x0d) count++;
+            else count=0;
+            break;
+        case 1:
+            if(c==0x0a) {
+                i=0;
+                count++;
+            } else if(c==0x0d) {}
+            else count=0;
+            break;
+        case 2:
+            posture.data[i]=c;
+            i++;
+            if(i>=24) {
+                i=0;
+                count++;
+            }
+            break;
+        case 3:
+            if(c==0x0a)count++;
+            else count=0;
+            break;
+        case 4:
+            if(c==0x0d) {
+                d_angle=posture.val[0]-temp_zangle;
+                if (d_angle<-180) {
+                    d_angle=d_angle+360;
+                } else if (d_angle>180) {
+                    d_angle=d_angle-360;
+                }
+                
+                now_w+=d_angle;
+                temp_zangle=posture.val[0];
+                //xangle=posture.val[1];
+                //yangle=posture.val[2];
+                now_x=posture.val[3];
+                now_y=posture.val[4];
+                //angleSpeed=posture.val[5];
+                newDataArrived=true;
+                
+            }
+            count=0;
+            done=1;
+            LastRead=millis();
+            return true;
+            //break;
+        default:
+            count=0;
+            break;
+    }
+    
+    return false;
+}
+
+bool updated()
+{
+    if (done) {
+        done=false;
+        return true;
+    } else {
+        return false;
+    }
+
+}
+
+float getXangle()
+{
+    return xangle;
+}
+
+float getYangle()
+{
+    return yangle;
+}
+
+float getZangle()
+{
+    return zangle;
+}
+
+float getXpos()
+{
+    return pos_x;
+}
+
+float getYpos()
+{
+    return pos_y;
+}
+
+float getAngleSpeed()
+{
+    return angleSpeed;
+}
+
+bool isAlive()
+{
+    if ((millis()-LastRead)<100) {
+        return true;
+    } else {
+        return false;
+    }
+}
+
+bool newDataAvailable()
+{
+    if (newDataArrived) {
+        newDataArrived=false;
+        return true;
+    } else return false;
+}
+
+char* reset()
+{
+    return "ACT0";
+}
+
+char* calibrate()
+{
+    return "ACTR";
+}
+
+
+void inverse(float x_vel, float y_vel, float w_vel)
+{
+    motor1  =  int(   (    (-1) * sin(pi_div_3) * x_vel   +  cos(pi_div_3) * y_vel +  d * w_vel     )  * 60 / (wheelR * 2 * pi)  * gear   );
+    motor2  =  int(   (    (-1) *  y_vel + d * w_vel                                                )  * 60 / (wheelR * 2 * pi)  * gear   ); 
+    motor3  =  int(   (           sin(pi_div_3) * x_vel   +  cos(pi_div_3) * y_vel +  d * w_vel     )  * 60 / (wheelR * 2 * pi)  * gear   );
+    
+}
+
+
+
+void motor_update()
+{
+    action1.SetVelocity_mod(motor1  * -1 );
+    action2.SetVelocity_mod(motor2  * -1 );
+    action3.SetVelocity_mod(motor3  * -1 );
+    wait(0.005);
+}
+
+void odom_update()
+{
+
+   
+    calculatePos(now_x,now_y,now_w);
+    
+    
+    /*sprintf(buffer, "%f", transformed_real_now_x);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%f", transformed_real_now_y);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%f", transformed_real_now_w);
+    pc.printf(buffer);
+    pc.printf("\r\n");
+    */
+    
+    
+    if ((    (fabs(target_x - transformed_real_now_x)) < tolerance_x ) && (   (fabs(target_y - transformed_real_now_y)) < tolerance_y )  && (   (fabs(target_w - transformed_real_now_w)) < tolerance_w )      )
+    {
+        point_counter+=1;
+
+       tolerance_x = points[point_counter].required_tolerance_x;
+       tolerance_y = points[point_counter].required_tolerance_x;
+       tolerance_w = points[point_counter].required_tolerance_x;
+       
+       target_x    = points[point_counter].required_x                    ; //+    startup_offset_x_encoder;
+       target_y    = points[point_counter].required_y                    ; //+    startup_offset_y_encoder;
+       target_w    = points[point_counter].required_w  *pi/float(180);       ;//-    startup_offset_w_encoder;
+       
+       inverse( 0    ,     0         ,     0   );
+       return;
+     
+    }
+    
+
+  
+    float local_vel_x = (fabs(target_x - transformed_real_now_x) > tolerance_x ) ?   constrain(  (x_PID_P * (target_x - transformed_real_now_x)    ), -speed_max_x,    speed_max_x)  : 0 ;
+    float local_vel_y = (fabs(target_y - transformed_real_now_y) > tolerance_y ) ?   constrain(  (y_PID_P * (target_y - transformed_real_now_y)    ), -speed_max_y,    speed_max_y)  : 0 ;
+    float local_vel_w = (fabs(target_w - transformed_real_now_w) > tolerance_w ) ?   constrain(  (w_PID_P * (target_w - transformed_real_now_w)    ), -speed_max_w,    speed_max_w)  : 0 ;
+    
+    
+    
+    float global_vel_x = local_vel_x * cos( -transformed_real_now_w  )  -  local_vel_y * sin( -transformed_real_now_w ); 
+    float global_vel_y = local_vel_x * sin( -transformed_real_now_w  )  +  local_vel_y * cos( -transformed_real_now_w );  //local to global transformation   (angle only)
+    
+    /*
+    pc.printf("X: ");
+    sprintf(buffer, "%f", transformed_real_now_x);
+    pc.printf(buffer);
+    pc.printf("  Y: ");
+    sprintf(buffer, "%f", transformed_real_now_y);
+    pc.printf(buffer);
+    pc.printf("  W: ");
+    sprintf(buffer, "%f", transformed_real_now_w);
+    pc.printf(buffer);
+    
+    pc.printf(" | Global: ");
+    sprintf(buffer, "%f", global_vel_x);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%f", global_vel_y);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%f", local_vel_w);
+    pc.printf(buffer);*/
+    
+    
+  
+    inverse( global_vel_x   ,  global_vel_y       ,     local_vel_w   );
+    
+    /*
+    pc.printf(" | Motor: ");
+    sprintf(buffer, "%d", motor1);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%d", motor2);
+    pc.printf(buffer);
+    pc.printf("  ");
+    sprintf(buffer, "%d", motor3);
+    pc.printf(buffer);
+    pc.printf("\r\n");*/
+    
+}
+
+int main() {
+    //while(1){
+////////////////////////////
+    points[0] = (point_info){.required_x = 0,.required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[1] = (point_info){.required_x = 0.5,.required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[2] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[3] = (point_info){.required_x = 0,  .required_y = 0.2, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[4] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[5] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 90, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[6] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[7] = (point_info){.required_x = 0,  .required_y = 0, .required_w = -90, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    points[8] = (point_info){.required_x = 0,  .required_y = 0, .required_w = 0, .required_tolerance_x = 0.05, .required_tolerance_y = 0.05, .required_tolerance_w = 0.01, .required_speed_max_x = 0.3, .required_speed_max_y = 0.3, .required_speed_max_w = 0.01};
+    
+
+
+
+
+////////////////////
+        
+    millisStart();
+    
+    
+        
+    Action.baud(115200);
+    Action.format(8,SerialBase::None,1); 
+    ActionEncoder_init();
+    while(1) 
+    {
+        if (Action.readable())
+        {
+            char c = Action.getc();
+            if (readEncoder(c))
+            {
+                //startup_offset_x_encoder = now_x/1000;
+                //startup_offset_y_encoder = now_y/1000;
+                //startup_offset_w_encoder = now_w/float(180)*pi;
+                
+                start_calculatePos(  (now_x),(now_y), now_w  );   //global
+                break;
+            
+            }
+            
+        }
+    }    //start first to take offset from encoder... in case already moved
+    
+ 
+   target_x    = points[0].required_x;  //  +  startup_offset_x_encoder;
+   target_y    = points[0].required_y;  //  +  startup_offset_y_encoder;
+   target_w    = points[0].required_w *pi/float(180);   // -  startup_offset_w_encoder;
+    
+    
+    for( int a = 1; a < 2; a++ ){
+      action1.Enable();
+      action2.Enable();
+      action3.Enable();
+      wait(0.1);
+      action1.SetOperationalMode();
+      action2.SetOperationalMode();
+      action3.SetOperationalMode();
+      wait(0.1);
+      action1.Configvelocity(100000, 100000);
+      action2.Configvelocity(100000, 100000);
+      action3.Configvelocity(100000, 100000);  
+      wait(0.1);
+   }
+          
+    motor_updater.attach(&motor_update, RATE);  
+    //odom_updater.attach(&odom_update, RATE);
+    
+        
+    while(1) 
+    {
+        if (Action.readable())
+        {
+            //pc.putc('a');
+            char c = Action.getc();
+            if(readEncoder(c)) odom_update();
+        }
+        
+    }
+
+ 
+        
+/*
+        while (Action.readable()==1 ) 
+        {
+            char c = Action.getc();   
+            readEncoder(c);
+           
+        }
+*/
+    
+    
+/*
+    while(1)
+    {
+         
+         inverse(0.2,0,0);
+         wait(1);
+         inverse(-0.2,0,0);
+         wait(1);
+         
+         inverse(0,0,0.25);
+         wait(1);
+         inverse(0,0,-0.25);
+         wait(1);
+         
+    }
+    
+*/
+         
+
+    
+
+       
+}