KIK 01 Prototype 05
Dependencies: AverageMCP3008 mbed-rtos mbed mcp3008
Fork of KIK01_Proto03 by
main.cpp
- Committer:
- ryood
- Date:
- 2017-10-19
- Revision:
- 28:387c5a6d5206
- Parent:
- 27:b07a55935230
- Child:
- 29:947992b9904f
File content as of revision 28:387c5a6d5206:
/* * KIK01 * Kick Machine * * 2017.10.19 Proto05: Add NOS01 Controller * 2017.09.16 Proto04: SPI1 for AD8402 Wein Bridge DCO & Internal DAC for Dual-OTA-VCA * 2017.07.04 Proto03: MCP4922 DCA * 2017.06.19 Proto02 * 2017.06.04 created. * */ #include "mbed.h" #include "rtos.h" #include "mcp3008.h" #include "AverageMCP3008.h" #include "EnvelopeAR.h" #define UART_TRACE (1) #define PIN_CHECK (1) #define TITLE_STR1 ("KIK01 Kick Machine") #define TITLE_STR2 ("20171019") #define PI_F (3.1415926f) #define MCP3008_SPI_SPEED (1000000) #define AD8402_SPI_SPEED (10000000) #define ENVELOPE_UPDATE_RATE (32000) // Hz #define AD8402_RMAX (10000.0f) #define AD8402_RMIN (50.0f) AnalogOut Dac1(PA_4); AnalogOut Dac2(PA_5); // AD8402 SPI (SPI2) // SPI (PinName mosi, PinName miso, PinName sclk, PinName ssel=NC) SPI SpiMAD8402(PB_15, PB_14, PB_13); DigitalOut AD8402Cs(PC_4); // MCP3008 SPI // SPI (PinName mosi, PinName miso, PinName sclk, PinName ssel=NC) SPI SpiMAdc(PB_5, PB_4, PB_3); MCP3008 Adc1(&SpiMAdc, PB_10); MCP3008 Adc2(&SpiMAdc, PA_8); MCP3008 Adc3(&SpiMAdc, PA_9); AverageMCP3008 AvgAdc1(&Adc1, 8); AverageMCP3008 AvgAdc2(&Adc2, 8); AverageMCP3008 AvgAdc3(&Adc3, 8); // Sync DigitalOut SyncPin(PA_10); // Check pins DigitalOut Dout1(PB_9); DigitalOut Dout2(PB_8); DigitalOut Dout3(PB_6); EnvelopeAR envelopeFrequency(5, 300, 880.0f, 120.0f, 40.0f, 0.36f, 0.1f); EnvelopeAR envelopeAmplitude(50, 200, 0.99f, 1.0f, 0.0f); EnvelopeParam frequencyParam; EnvelopeParam amplitudeParam; volatile int ticks; volatile float frequency; volatile float amplitude; volatile float bpm; volatile int envelopeLength; volatile int stepLength; void AD8402Write(uint8_t address, uint8_t value) { #if (PIN_CHECK) Dout2 = 1; #endif AD8402Cs = 0; SpiMAD8402.write(address); SpiMAD8402.write(value); AD8402Cs = 1; wait_us(1); #if (PIN_CHECK) Dout2 = 0; #endif } void DcoSetFrequency(float freq) { const float c = 0.00000047; float r = 1.0f / (2.0f * PI_F * frequency * c); if (r < AD8402_RMIN) r = AD8402_RMIN; if (r > AD8402_RMAX) r = AD8402_RMAX; uint8_t v = 256.0f * (r - AD8402_RMIN) / AD8402_RMAX; AD8402Write(0, v); AD8402Write(1, v); } void DcaSetAmplitude(int channel, float amp) { switch (channel) { case 1: Dac1.write(amp); break; case 2: Dac2.write(amp * 0.8f); // Avoid LED,s Non-Linearity break; default: error("DcaSetAmplitude(): invalid channel"); } } void update() { #if (PIN_CHECK) Dout1 = 1; #endif // Output Sync Signal per steps if (ticks % stepLength == 0) { SyncPin = 1; } // set envelope parameters envelopeAmplitude.setParam(amplitudeParam); envelopeFrequency.setParam(frequencyParam); frequency = envelopeFrequency.getAmplitude(ticks); amplitude = envelopeAmplitude.getAmplitude(ticks); DcoSetFrequency(frequency); DcaSetAmplitude(1, amplitude); // DCO DcaSetAmplitude(2, amplitude); // NOS01 ticks++; if (ticks >= envelopeLength) { ticks = 0; } // Output SyncSignal SyncPin = 0; #if (PIN_CHECK) Dout1 = 0; #endif } void readParams() { bpm = AvgAdc1.read_input(7) * 180.0f + 60.0f; envelopeLength = 60 * ENVELOPE_UPDATE_RATE / bpm; stepLength = envelopeLength / 4; amplitudeParam.attack = AvgAdc1.read_input(0) * envelopeLength; amplitudeParam.release = AvgAdc1.read_input(1) * envelopeLength; amplitudeParam.v0 = AvgAdc1.read_input(4); amplitudeParam.v1 = AvgAdc1.read_input(5); amplitudeParam.v2 = AvgAdc1.read_input(6); amplitudeParam.attackTauRatio = AvgAdc1.read_input(2) + 0.01f; amplitudeParam.releaseTauRatio = AvgAdc1.read_input(3) + 0.01f; frequencyParam.attack = AvgAdc2.read_input(0) * envelopeLength * 0.1f; frequencyParam.release = AvgAdc2.read_input(1) * envelopeLength + 1; frequencyParam.v0 = AvgAdc2.read_input(4) * 4000.0f; frequencyParam.v1 = AvgAdc2.read_input(5) * 400.0f; frequencyParam.v2 = AvgAdc2.read_input(6) * 400.0f; frequencyParam.attackTauRatio = AvgAdc2.read_input(2) + 0.01f; frequencyParam.releaseTauRatio = AvgAdc2.read_input(3) + 0.01f; } int main() { #if UART_TRACE printf("\r\n\n%s %s\r\n", TITLE_STR1, TITLE_STR2); #endif SpiMAD8402.format(8, 0); SpiMAD8402.frequency(AD8402_SPI_SPEED); SpiMAdc.format(8, 0); SpiMAdc.frequency(MCP3008_SPI_SPEED); frequency = 100.0f; amplitude = 1.0f; bpm = 120.0f; readParams(); ticks = 0; Ticker samplingTicker; samplingTicker.attach(&update, (1.0f/ENVELOPE_UPDATE_RATE)); for (;;) { #if (PIN_CHECK) Dout3 = 1; #endif readParams(); #if (PIN_CHECK) Dout3 = 0; #endif #if UART_TRACE printf("%.1f\t%d\t", bpm, envelopeLength); printf("%d\t%d\t", amplitudeParam.attack, amplitudeParam.release); printf("%.2f\t%.2f\t%.2f\t", amplitudeParam.v0, amplitudeParam.v1, amplitudeParam.v2); printf("%.2f\t%.2f\t", amplitudeParam.attackTauRatio, amplitudeParam.releaseTauRatio); printf("%d\t%d\t", frequencyParam.attack, frequencyParam.release); printf("%.2f\t%.2f\t%.2f\t", frequencyParam.v0, frequencyParam.v1, frequencyParam.v2); printf("%.2f\t%.2f\r\n", frequencyParam.attackTauRatio, frequencyParam.releaseTauRatio); #endif Thread::wait(1); } }