Forked mbed-dev as I use an 20 pins stm32F042 and not the 32 pins version
Fork of mbed-dev by
targets/TARGET_NORDIC/TARGET_NRF5/us_ticker.c
- Committer:
- <>
- Date:
- 2016-11-24
- Revision:
- 151:5eaa88a5bcc7
- Parent:
- 150:02e0a0aed4ec
File content as of revision 151:5eaa88a5bcc7:
/* * Copyright (c) 2013 Nordic Semiconductor ASA * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA * integrated circuit in a product or a software update for such product, must reproduce * the above copyright notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be * used to endorse or promote products derived from this software without specific prior * written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary or object form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "us_ticker_api.h" #include "common_rtc.h" #include "app_util.h" #include "nrf_drv_common.h" #include "nrf_drv_config.h" #include "lp_ticker_api.h" //------------------------------------------------------------------------------ // Common stuff used also by lp_ticker and rtc_api (see "common_rtc.h"). // #include "app_util_platform.h" bool m_common_rtc_enabled = false; uint32_t volatile m_common_rtc_overflows = 0; #if defined(TARGET_MCU_NRF51822) void common_rtc_irq_handler(void) #else void COMMON_RTC_IRQ_HANDLER(void) #endif { if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, US_TICKER_EVENT)) { us_ticker_irq_handler(); } #if DEVICE_LOWPOWERTIMER if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, LP_TICKER_EVENT)) { lp_ticker_irq_handler(); } #endif if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW)) { nrf_rtc_event_clear(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW); // Don't disable this event. It shall occur periodically. ++m_common_rtc_overflows; } } #if (defined (__ICCARM__)) && defined(TARGET_MCU_NRF51822)//IAR __stackless __task #endif void RTC1_IRQHandler(void); void common_rtc_init(void) { if (m_common_rtc_enabled) { return; } NVIC_SetVector(RTC1_IRQn, (uint32_t)RTC1_IRQHandler); // RTC is driven by the low frequency (32.768 kHz) clock, a proper request // must be made to have it running. // Currently this clock is started in 'SystemInit' (see "system_nrf51.c" // or "system_nrf52.c", respectively). nrf_rtc_prescaler_set(COMMON_RTC_INSTANCE, 0); nrf_rtc_event_clear(COMMON_RTC_INSTANCE, US_TICKER_EVENT); #if defined(TARGET_MCU_NRF51822) nrf_rtc_event_clear(COMMON_RTC_INSTANCE, OS_TICK_EVENT); #endif #if DEVICE_LOWPOWERTIMER nrf_rtc_event_clear(COMMON_RTC_INSTANCE, LP_TICKER_EVENT); #endif nrf_rtc_event_clear(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW); // Interrupts on all related events are enabled permanently. Particular // events will be enabled or disabled as needed (such approach is more // energy efficient). nrf_rtc_int_enable(COMMON_RTC_INSTANCE, #if DEVICE_LOWPOWERTIMER LP_TICKER_INT_MASK | #endif US_TICKER_INT_MASK | NRF_RTC_INT_OVERFLOW_MASK); // This event is enabled permanently, since overflow indications are needed // continuously. nrf_rtc_event_enable(COMMON_RTC_INSTANCE, NRF_RTC_INT_OVERFLOW_MASK); // All other relevant events are initially disabled. nrf_rtc_event_disable(COMMON_RTC_INSTANCE, #if defined(TARGET_MCU_NRF51822) OS_TICK_INT_MASK | #endif #if DEVICE_LOWPOWERTIMER LP_TICKER_INT_MASK | #endif US_TICKER_INT_MASK); nrf_drv_common_irq_enable(nrf_drv_get_IRQn(COMMON_RTC_INSTANCE), #ifdef NRF51 APP_IRQ_PRIORITY_LOW #elif defined(NRF52) APP_IRQ_PRIORITY_LOWEST #endif ); nrf_rtc_task_trigger(COMMON_RTC_INSTANCE, NRF_RTC_TASK_START); m_common_rtc_enabled = true; } uint32_t common_rtc_32bit_ticks_get(void) { uint32_t ticks = nrf_rtc_counter_get(COMMON_RTC_INSTANCE); // The counter used for time measurements is less than 32 bit wide, // so its value is complemented with the number of registered overflows // of the counter. ticks += (m_common_rtc_overflows << RTC_COUNTER_BITS); return ticks; } uint64_t common_rtc_64bit_us_get(void) { uint32_t ticks = common_rtc_32bit_ticks_get(); // [ticks -> microseconds] return ROUNDED_DIV(((uint64_t)ticks) * 1000000, RTC_INPUT_FREQ); } void common_rtc_set_interrupt(uint32_t us_timestamp, uint32_t cc_channel, uint32_t int_mask) { // The internal counter is clocked with a frequency that cannot be easily // multiplied to 1 MHz, therefore besides the translation of values // (microsecond <-> ticks) a special care of overflows handling must be // taken. Here the 32-bit timestamp value is complemented with information // about current the system up time of (ticks + number of overflows of tick // counter on upper bits, converted to microseconds), and such 64-bit value // is then translated to counter ticks. Finally, the lower 24 bits of thus // calculated value is written to the counter compare register to prepare // the interrupt generation. uint64_t current_time64 = common_rtc_64bit_us_get(); // [add upper 32 bits from the current time to the timestamp value] uint64_t timestamp64 = us_timestamp + (current_time64 & ~(uint64_t)0xFFFFFFFF); // [if the original timestamp value happens to be after the 32 bit counter // of microsends overflows, correct the upper 32 bits accordingly] if (us_timestamp < (uint32_t)(current_time64 & 0xFFFFFFFF)) { timestamp64 += ((uint64_t)1 << 32); } // [microseconds -> ticks, always round the result up to avoid too early // interrupt generation] uint32_t compare_value = (uint32_t)CEIL_DIV((timestamp64) * RTC_INPUT_FREQ, 1000000); // The COMPARE event occurs when the value in compare register is N and // the counter value changes from N-1 to N. Therefore, the minimal safe // difference between the compare value to be set and the current counter // value is 2 ticks. This guarantees that the compare trigger is properly // setup before the compare condition occurs. uint32_t closest_safe_compare = common_rtc_32bit_ticks_get() + 2; if ((int)(compare_value - closest_safe_compare) <= 0) { compare_value = closest_safe_compare; } nrf_rtc_cc_set(COMMON_RTC_INSTANCE, cc_channel, RTC_WRAP(compare_value)); nrf_rtc_event_enable(COMMON_RTC_INSTANCE, int_mask); } //------------------------------------------------------------------------------ void us_ticker_init(void) { common_rtc_init(); } uint32_t us_ticker_read() { us_ticker_init(); return (uint32_t)common_rtc_64bit_us_get(); } void us_ticker_set_interrupt(timestamp_t timestamp) { common_rtc_set_interrupt(timestamp, US_TICKER_CC_CHANNEL, US_TICKER_INT_MASK); } void us_ticker_disable_interrupt(void) { nrf_rtc_event_disable(COMMON_RTC_INSTANCE, US_TICKER_INT_MASK); } void us_ticker_clear_interrupt(void) { nrf_rtc_event_clear(COMMON_RTC_INSTANCE, US_TICKER_EVENT); } // Since there is no SysTick on NRF51, the RTC1 channel 1 is used as an // alternative source of RTOS ticks. #if defined(TARGET_MCU_NRF51822) #include "toolchain.h" #define MAX_RTC_COUNTER_VAL ((1uL << RTC_COUNTER_BITS) - 1) /** * The value previously set in the capture compare register of channel 1 */ static uint32_t previous_tick_cc_value = 0; /* RTX provide the following definitions which are used by the tick code: * os_trv: The number (minus 1) of clock cycle between two tick. * os_clockrate: Time duration between two ticks (in us). * OS_Tick_Handler: The function which handle a tick event. This function is special because it never returns. Those definitions are used by the code which handle the os tick. To allow compilation of us_ticker programs without RTOS, those symbols are exported from this module as weak ones. */ MBED_WEAK uint32_t const os_trv; MBED_WEAK uint32_t const os_clockrate; MBED_WEAK void OS_Tick_Handler() { } #if defined (__CC_ARM) /* ARMCC Compiler */ __asm void COMMON_RTC_IRQ_HANDLER(void) { IMPORT OS_Tick_Handler IMPORT common_rtc_irq_handler /** * Chanel 1 of RTC1 is used by RTX as a systick. * If the compare event on channel 1 is set, then branch to OS_Tick_Handler. * Otherwise, just execute common_rtc_irq_handler. * This function has to be written in assembly and tagged as naked because OS_Tick_Handler * will never return. * A c function would put lr on the stack before calling OS_Tick_Handler and this value * would never been dequeued. * * \code * void COMMON_RTC_IRQ_HANDLER(void) { if(NRF_RTC1->EVENTS_COMPARE[1]) { // never return... OS_Tick_Handler(); } else { common_rtc_irq_handler(); } } * \endcode */ ldr r0,=0x40011144 ldr r1, [r0, #0] cmp r1, #0 beq US_TICKER_HANDLER bl OS_Tick_Handler US_TICKER_HANDLER push {r3, lr} bl common_rtc_irq_handler pop {r3, pc} ; ALIGN ; } #elif defined (__GNUC__) /* GNU Compiler */ __attribute__((naked)) void COMMON_RTC_IRQ_HANDLER(void) { /** * Chanel 1 of RTC1 is used by RTX as a systick. * If the compare event on channel 1 is set, then branch to OS_Tick_Handler. * Otherwise, just execute common_rtc_irq_handler. * This function has to be written in assembly and tagged as naked because OS_Tick_Handler * will never return. * A c function would put lr on the stack before calling OS_Tick_Handler and this value * would never been dequeued. * * \code * void COMMON_RTC_IRQ_HANDLER(void) { if(NRF_RTC1->EVENTS_COMPARE[1]) { // never return... OS_Tick_Handler(); } else { common_rtc_irq_handler(); } } * \endcode */ __asm__ ( "ldr r0,=0x40011144\n" "ldr r1, [r0, #0]\n" "cmp r1, #0\n" "beq US_TICKER_HANDLER\n" "bl OS_Tick_Handler\n" "US_TICKER_HANDLER:\n" "push {r3, lr}\n" "bl common_rtc_irq_handler\n" "pop {r3, pc}\n" "nop" ); } #elif defined (__ICCARM__)//IAR void common_rtc_irq_handler(void); __stackless __task void COMMON_RTC_IRQ_HANDLER(void) { uint32_t temp; __asm volatile( " ldr %[temp], [%[reg2check]] \n" " cmp %[temp], #0 \n" " beq 1f \n" " bl.w OS_Tick_Handler \n" "1: \n" " push {r3, lr}\n" " blx %[rtc_irq] \n" " pop {r3, pc}\n" : /* Outputs */ [temp] "=&r"(temp) : /* Inputs */ [reg2check] "r"(0x40011144), [rtc_irq] "r"(common_rtc_irq_handler) : /* Clobbers */ "cc" ); (void)temp; } #else #error Compiler not supported. #error Provide a definition of COMMON_RTC_IRQ_HANDLER. /* * Chanel 1 of RTC1 is used by RTX as a systick. * If the compare event on channel 1 is set, then branch to OS_Tick_Handler. * Otherwise, just execute common_rtc_irq_handler. * This function has to be written in assembly and tagged as naked because OS_Tick_Handler * will never return. * A c function would put lr on the stack before calling OS_Tick_Handler and this value * will never been dequeued. After a certain time a stack overflow will happen. * * \code * void COMMON_RTC_IRQ_HANDLER(void) { if(NRF_RTC1->EVENTS_COMPARE[1]) { // never return... OS_Tick_Handler(); } else { common_rtc_irq_handler(); } } * \endcode */ #endif /** * Return the next number of clock cycle needed for the next tick. * @note This function has been carrefuly optimized for a systick occuring every 1000us. */ static uint32_t get_next_tick_cc_delta() { uint32_t delta = 0; if (os_clockrate != 1000) { // In RTX, by default SYSTICK is is used. // A tick event is generated every os_trv + 1 clock cycles of the system timer. delta = os_trv + 1; } else { // If the clockrate is set to 1000us then 1000 tick should happen every second. // Unfortunatelly, when clockrate is set to 1000, os_trv is equal to 31. // If (os_trv + 1) is used as the delta value between two ticks, 1000 ticks will be // generated in 32000 clock cycle instead of 32768 clock cycles. // As a result, if a user schedule an OS timer to start in 100s, the timer will start // instead after 97.656s // The code below fix this issue, a clock rate of 1000s will generate 1000 ticks in 32768 // clock cycles. // The strategy is simple, for 1000 ticks: // * 768 ticks will occur 33 clock cycles after the previous tick // * 232 ticks will occur 32 clock cycles after the previous tick // By default every delta is equal to 33. // Every five ticks (20%, 200 delta in one second), the delta is equal to 32 // The remaining (32) deltas equal to 32 are distributed using primes numbers. static uint32_t counter = 0; if ((counter % 5) == 0 || (counter % 31) == 0 || (counter % 139) == 0 || (counter == 503)) { delta = 32; } else { delta = 33; } ++counter; if (counter == 1000) { counter = 0; } } return delta; } static inline void clear_tick_interrupt() { nrf_rtc_event_clear(COMMON_RTC_INSTANCE, OS_TICK_EVENT); nrf_rtc_event_disable(COMMON_RTC_INSTANCE, OS_TICK_INT_MASK); } /** * Indicate if a value is included in a range which can be wrapped. * @param begin start of the range * @param end end of the range * @param val value to check * @return true if the value is included in the range and false otherwise. */ static inline bool is_in_wrapped_range(uint32_t begin, uint32_t end, uint32_t val) { // regular case, begin < end // return true if begin <= val < end if (begin < end) { if (begin <= val && val < end) { return true; } else { return false; } } else { // In this case end < begin because it has wrap around the limits // return false if end < val < begin if (end < val && val < begin) { return false; } else { return true; } } } /** * Register the next tick. */ static void register_next_tick() { previous_tick_cc_value = nrf_rtc_cc_get(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL); uint32_t delta = get_next_tick_cc_delta(); uint32_t new_compare_value = (previous_tick_cc_value + delta) & MAX_RTC_COUNTER_VAL; // Disable irq directly for few cycles, // Validation of the new CC value against the COUNTER, // Setting the new CC value and enabling CC IRQ should be an atomic operation // Otherwise, there is a possibility to set an invalid CC value because // the RTC1 keeps running. // This code is very short 20-38 cycles in the worst case, it shouldn't // disturb softdevice. __disable_irq(); uint32_t current_counter = nrf_rtc_counter_get(COMMON_RTC_INSTANCE); // If an overflow occur, set the next tick in COUNTER + delta clock cycles if (is_in_wrapped_range(previous_tick_cc_value, new_compare_value, current_counter + 1) == false) { new_compare_value = current_counter + delta; } nrf_rtc_cc_set(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL, new_compare_value); // Enable generation of the compare event for the value set above (this // event will trigger the interrupt). nrf_rtc_event_enable(COMMON_RTC_INSTANCE, OS_TICK_INT_MASK); __enable_irq(); } /** * Initialize alternative hardware timer as RTX kernel timer * This function is directly called by RTX. * @note this function shouldn't be called directly. * @return IRQ number of the alternative hardware timer */ int os_tick_init (void) { common_rtc_init(); nrf_rtc_int_enable(COMMON_RTC_INSTANCE, OS_TICK_INT_MASK); nrf_rtc_cc_set(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL, 0); register_next_tick(); return nrf_drv_get_IRQn(COMMON_RTC_INSTANCE); } /** * Acknowledge the tick interrupt. * This function is called by the function OS_Tick_Handler of RTX. * @note this function shouldn't be called directly. */ void os_tick_irqack(void) { clear_tick_interrupt(); register_next_tick(); } /** * Returns the overflow flag of the alternative hardware timer. * @note This function is exposed by RTX kernel. * @return 1 if the timer has overflowed and 0 otherwise. */ uint32_t os_tick_ovf(void) { uint32_t current_counter = nrf_rtc_counter_get(COMMON_RTC_INSTANCE); uint32_t next_tick_cc_value = nrf_rtc_cc_get(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL); return is_in_wrapped_range(previous_tick_cc_value, next_tick_cc_value, current_counter) ? 0 : 1; } /** * Return the value of the alternative hardware timer. * @note The documentation is not very clear about what is expected as a result, * is it an ascending counter, a descending one ? * None of this is specified. * The default systick is a descending counter and this function return values in * descending order, even if the internal counter used is an ascending one. * @return the value of the alternative hardware timer. */ uint32_t os_tick_val(void) { uint32_t current_counter = nrf_rtc_counter_get(COMMON_RTC_INSTANCE); uint32_t next_tick_cc_value = nrf_rtc_cc_get(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL); // do not use os_tick_ovf because its counter value can be different if(is_in_wrapped_range(previous_tick_cc_value, next_tick_cc_value, current_counter)) { if (next_tick_cc_value > previous_tick_cc_value) { return next_tick_cc_value - current_counter; } else if(current_counter <= next_tick_cc_value) { return next_tick_cc_value - current_counter; } else { return next_tick_cc_value + (MAX_RTC_COUNTER_VAL - current_counter); } } else { // use (os_trv + 1) has the base step, can be totally inacurate ... uint32_t clock_cycles_by_tick = os_trv + 1; // if current counter has wrap arround, add the limit to it. if (current_counter < next_tick_cc_value) { current_counter = current_counter + MAX_RTC_COUNTER_VAL; } return clock_cycles_by_tick - ((current_counter - next_tick_cc_value) % clock_cycles_by_tick); } } #endif // defined(TARGET_MCU_NRF51822)