Working fork to test F0 application
Fork of CANnucleo by
CAN.cpp
- Committer:
- ptpaterson
- Date:
- 2016-01-07
- Revision:
- 18:cdab1fd4ff26
- Parent:
- 14:0344705e6fb8
File content as of revision 18:cdab1fd4ff26:
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Modified by Zoltan Hudak <hudakz@inbox.com>
*
*/
#include "CAN.h"
#include "cmsis.h"
namespace mbed
{
/**
* @brief Constructor
* @note Constructs an instance of CAN class
* @param rxPin: CAN Rx pin name
* @param txPin: CAN Tx pin name
* @param abom: Automatic recovery from bus-off state (defaults to enabled)
* @retval
*/
CAN::CAN(PinName rxPin, PinName txPin, FunctionalState abom /* = ENABLE */) :
_can(),
_irq() {
can_init(&_can, rxPin, txPin, abom);
can_irq_init(&_can, (&CAN::_irq_handler), (uint32_t)this);
}
/**
* @brief
* @note
* @param
* @retval
*/
CAN::~CAN(void) {
can_irq_free(&_can);
can_free(&_can);
}
/**
* @brief
* @note
* @param
* @retval
*/
int CAN::frequency(int f) {
return can_frequency(&_can, f);
}
/**
* @brief
* @note
* @param
* @retval
*/
int CAN::write(CANMessage msg) {
return can_write(&_can, msg, 0);
}
/**
* @brief
* @note
* @param
* @retval
*/
int CAN::read(CANMessage& msg, int handle) {
return can_read(&_can, &msg, handle);
}
/**
* @brief
* @note
* @param
* @retval
*/
void CAN::reset(void) {
can_reset(&_can);
}
/**
* @brief
* @note
* @param
* @retval
*/
unsigned char CAN::rderror(void) {
return can_rderror(&_can);
}
/**
* @brief
* @note
* @param
* @retval
*/
unsigned char CAN::tderror(void) {
return can_tderror(&_can);
}
/**
* @brief
* @note
* @param
* @retval
*/
void CAN::monitor(bool silent) {
can_monitor(&_can, (silent) ? 1 : 0);
}
/**
* @brief
* @note
* @param
* @retval
*/
int CAN::mode(Mode mode) {
return can_mode(&_can, (CanMode) mode);
}
/**
* @brief Sets up a CAN filter
* @note At the present, CANnucleo supports only mask mode and 32-bit filter scale.
* Identifier list mode filtering and 16-bit filter scale are not supported.
* There are 14 filters available (0 - 13) for the application to set up.
* Each filter is a 32-bit filter defined by a filter ID and a filter mask.
* If no filter is set up then no CAN message is accepted (received)!
* That's why filter #0 is set up in the constructor to receive all CAN messages by default.
* On reception of a message it is compared with filter #0. If there is a match, the message is stored.
* If there is no match, the incoming identifier is then compared with the next filter.
* If the received identifier does not match any of the identifiers configured in the filters,
* the message is discarded by hardware without disturbing the software.
*
* @param id: 'Filter ID' defines the bit values to be compared with the corresponding received bits
*
* Mapping of 32-bits (4-bytes) : | STID[10:3] | STID[2:0] EXID[17:13] | EXID[12:5] | EXID[4:0] IDE RTR 0 |
*
* STID - Stardard Identifier bits
* EXID - Extended Identifier bits
* [x:y]- bit range
* IDE - Identifier Extension bit (0 -> Standard Identifier, 1 -> Extended Identifier)
* RTR - Remote Transmission Request bit (0 -> Remote Transmission Request, 1 -> Standard message)
*
* @param mask: 'Filter mask' defines which bits of the 'Filter ID' are compared with the received bits
* and which bits are disregarded.
* Mapping of 32-bits (4-bytes) : | STID[10:3] | STID[2:0] EXID[17:13] | EXID[12:5] | EXID[4:0] IDE RTR 0 |
*
* STID - Stardard Identifier bits
* EXID - Extended Identifier bits
* [x:y]- bit range
* IDE - Identifier Extension bit
* RTR - Remote Transmission Request bit
*
* 1 -> bit is considered
* 0 -> bit is disregarded
*
* ----------------------------------------
* Example of filter set up and filtering:
* ----------------------------------------
*
* Let's assume we would like to receive only messages
* with standard identifier STID = 0x0207 (STID[15:0] = 00000010 00000111)
*
* We map the STID to filter ID by shifting the bits appropriately:
* Filter id = STID << (16 + (15 - 10)) = STID << 21 = 01000000 11100000 00000000 00000000 = 0x40E00000
*
* To compare only the bits representing STID we set the filter mask adequately:
* Filter mask = 11111111 11100000 00000000 00000100 = 0xFFE00004
* |||||||| ||| |
* -------- --- |
* | | |
* STID[10:3] STID[2:0] IDE
*
* Keep in mind that filter #0 was already set up in the constructor to receive all CAN messages by default.
* So we have to reconfigure it. If we were set up filter #1 here then filter #0 would receive all the messages
* and no message would reach filter #1!
*
* To set up filter #0 we call:
* can.filter(0x0207 << 21, 0xFFE00004, CANAny, 0);
*
* Only these bits (set to 1) of filter id are compared with the corresponding
* bits of received message (the others are disregarded)
* |
* ---------------------------------
* |||||||| ||| |
* Filter mask = 11111111 11100000 00000000 00000100 (= 0xFFE00004)
* Filter id = 01000000 11100000 00000000 00000000 (= 0x40E00000)
* |||||||| ||| |
* ---------------------------------
* |
* To receive the message the values of these bits must match.
* Otherwise the message is passed to the next filter or
* discarded if this was the last active filter.
* |
* ---------------------------------
* |||||||| ||| |
* Received id = 01000000 11100000 00000000 00000010 (= 0x40E00002)
* ||||| |||||||| ||||| ||
* -----------------------
* |
* These bits (set to 0 in filter mask) are disregarded (masked).
* They can have arbitrary values.
*
* NOTE: For the meaning of individual bits see the mapping of 32-bits explained above.
*
* @param format: This parameter must be CANAny
* @param handle: Selects the filter. This parameter must be a number between 0 and 13.
* @param retval: 0 - successful
* 1 - error
* 2 - busy
* 3 - time out
*/
int CAN::filter(unsigned int id, unsigned int mask, CANFormat format /* = CANAny */, int handle /* = 0 */) {
return can_filter(&_can, id, mask, format, handle);
}
/**
* @brief Attaches handler funcion to CAN1 RX0 Interrupt
* @note Only CAN1 RX0 Interrupt supported
* @param fptr: pointer to a void (*)(void) function
* @param type: not used (only CAN1 RX0 Interrupt supported)
* @retval
*/
void CAN::attach(void (*fptr) (void), IrqType type) {
HAL_NVIC_DisableIRQ(CAN_IRQ);
if(fptr) {
can_irq_set(fptr);
}
can_irq_init(&_can, &CAN::_irq_handler, (uint32_t) this);
HAL_NVIC_EnableIRQ(CAN_IRQ);
}
/**
* @brief
* @note
* @param
* @retval
*/
void CAN::_irq_handler(uint32_t id, CanIrqType type) {
CAN* handler = (CAN*)id;
handler->_irq[type].call();
}
} // namespace mbed
