I2C BAE standalone hardware testing
Dependencies: FreescaleIAP mbed-rtos mbed
Fork of ACS_Flowchart_BAE_1 by
main.cpp
- Committer:
- prasanthbj05
- Date:
- 2016-06-24
- Revision:
- 17:8a8024c45dc0
- Parent:
- 16:cc77770d787f
- Child:
- 18:95f0cc565ee3
File content as of revision 17:8a8024c45dc0:
#include "mbed.h" #include "rtos.h" #include "pin_config.h" #include "ACS.h" #include "EPS.h" #include "BCN.h" #include "TCTM.h" #define tm_len 135 #define tc_len 11 #define batt_heat_low 20 #define PRINT 1 //***************************************************** flags *************************************************************// uint32_t BAE_STATUS = 0x00000000; uint32_t BAE_ENABLE = 0xFFFFFFFF; //i2c// char data_send_flag = 'h'; //.........acs...............// /* char ACS_INIT_STATUS = 'q'; char ACS_DATA_ACQ_STATUS = 'q'; char ACS_ATS_STATUS = 'q'; char ACS_MAIN_STATUS = 'q'; char ACS_STATUS = 'q'; char ACS_ATS_ENABLE = 'q'; char ACS_DATA_ACQ_ENABLE = 'q'; char ACS_STATE = 'q';*/ uint8_t ACS_INIT_STATUS = 0; uint8_t ACS_DATA_ACQ_STATUS = 0; uint8_t ACS_ATS_STATUS = 0x60; uint8_t ACS_MAIN_STATUS = 0; uint8_t ACS_STATUS = 0; uint8_t ACS_ATS_ENABLE = 1; uint8_t ACS_DATA_ACQ_ENABLE = 1; uint8_t ACS_STATE = 4; //.....................eps...................// //eps init /*char EPS_INIT_STATUS = 'q'; char EPS_BATTERY_GAUGE_STATUS = 'q'; //eps main char EPS_MAIN_STATUS = 'q'; char EPS_BATTERY_TEMP_STATUS = 'q'; char EPS_STATUS = 'q'; char EPS_BATTERY_HEAT_ENABLE = 'q'; */ uint8_t EPS_INIT_STATUS = 0; uint8_t EPS_BATTERY_GAUGE_STATUS = 0; //eps main uint8_t EPS_MAIN_STATUS = 0; uint8_t EPS_BATTERY_TEMP_STATUS = 0; uint8_t EPS_STATUS = 7; //invalid status uint8_t EPS_BATTERY_HEAT_ENABLE = 0; //.......................global variables..................................................................// new hk structure- everything has to changed based on this uint8_t BAE_data[74]; char BAE_chardata[74]; //*************************************Global declarations************************************************// const int addr = 0x20; //slave address Timer t_rfsilence; Timer t_start; Timer t_tc; Timer t_tm; Timer synch; Serial pc(USBTX, USBRX); int power_flag_dummy=2; float data[6]; extern float moment[3]; extern uint8_t BCN_FEN; extern BAE_HK_actual actual_data; extern BAE_HK_quant quant_data; extern BAE_HK_min_max bae_HK_minmax; extern BAE_HK_arch arch_data; int write_ack = 1; int read_ack = 1; uint8_t telecommand[11]; extern uint8_t telemetry[135]; bool pf1check = 0; bool pf2check = 0; bool if1check = 0; bool if2check = 0; //*****************************************************Assigning pins******************************************************// DigitalOut ATS1_SW_ENABLE(PTC0); // enable of att sens2 switch DigitalOut ATS2_SW_ENABLE(PTC16); // enable of att sens switch InterruptIn irpt_4m_mstr(PIN38); //I2c interrupt from CDMS DigitalOut irpt_2_mstr(PIN4); //I2C interrupt to CDMS I2CSlave slave (PIN1,PIN2);///pin1 pin2 DigitalOut batt_heat(PIN96); //ATS1_SW_ENABLE = 0; PwmOut PWM1(PIN93); //x //Functions used to generate PWM signal PwmOut PWM2(PIN94); //y PwmOut PWM3(PIN95); //z //PWM output comes from pins p6 //........faults //Polled Faults DigitalIn pf1(PIN5);//Attitude Sensor 1 OC bar fault signal DigitalIn pf2(PIN97);//Attitude Sensor 2 OC bar fault signal DigitalIn pf3(PIN83);//Fault Bar for TRXY driver //Interrupt based faults //InterruptIn ir1(PIN73);//Battery Gauge - Alert Bar Signal InterruptIn ir2(PIN72);//TRXY Driver TR switch Fault InterruptIn ir3(PIN89);//TRZ Driver Fault Bar InterruptIn ir4(PIN91);//TRZ Driver TR switch Fault InterruptIn ir5(PIN79);//CDMS - Switch Fault InterruptIn ir6(PIN80);//Beacon- Switch OC bar InterruptIn ir7(PIN42);//Charger IC - Fault Bar //DigitalOut TRXY_SW_EN(PIN71); //TR XY Switch //DigitalOut DRV_Z_SLP(PIN88); //Sleep pin of driver z //DigitalOut TRZ_SW(PIN40); //TR Z Switch //DigitalOut CDMS_RESET(PIN7); // CDMS RESET //DigitalOut BCN_SW(PIN14); //Beacon switch //DigitalOut DRV_XY_SLP(PIN82); DigitalOut TRXY_SW(PIN71); //TR XY Switch DigitalOut DRV_Z_EN(PIN88); //Sleep pin of driver z DigitalOut TRZ_SW(PIN40); //TR Z Switch DigitalOut CDMS_RESET(PIN7,1); // CDMS RESET DigitalOut BCN_SW(PIN14); //Beacon switch DigitalOut DRV_XY_EN(PIN82); /*****************************************************************Threads USed***********************************************************************************/ Thread *ptr_t_i2c; /*********************************************************FCTN HEADERS***********************************************************************************/ void FCTN_ISR_I2C(); void FCTN_TM(); void F_ACS(); void F_EPS(); void F_BCN(); //*******************************************ACS THREAD**************************************************// uint8_t iterP1; uint8_t iterP2; uint8_t iterI1; uint8_t iterI2; void F_ACS() { //...................// if(pf1check == 1) { if(iterP1 >= 3) { ATS1_SW_ENABLE = 1; // turn off ats1 permanently //FCTN_SWITCH_ATS(0); // switch on ATS2 } else { ATS1_SW_ENABLE = 0; iterP1++; } pf1check = 0; } if(pf2check == 1) { if(iterP1 >= 3) { ATS2_SW_ENABLE = 1; // turn off ats2 permanently ACS_DATA_ACQ_ENABLE = 0; ACS_STATE = 2 ; // check ACS_STATE = ACS_ZAXIS_MOMENT_ONLY } else { ATS2_SW_ENABLE = 0; iterP2++; } pf2check = 0; } if(if1check == 1) { if(iterI1 >= 3) { TRXY_SW = 0; // turn off TRXY permanently } else { TRXY_SW = 1; //switch on TRXY iterI1++; } } if(if2check == 1) { if(iterI2 >= 3) { TRZ_SW = 0; // turn off TRZ permanently ACS_STATE = 2 ; // check ACS_STATE = ACS_ZAXIS_MOMENT_ONLY } else { TRZ_SW = 1; //switch on Z iterI2++; } } //float b1[3]={-23.376,-37.56,14.739}, omega1[3]={-1.52,2.746,0.7629}, moment1[3]= {1.0498,-1.0535,1.3246}; //b1[3] = {22, 22,10}; //omega1[3] = {2.1,3.0,1.5}; // ATS1_SW_ENABLE = 0; // att sens2 switch is disabled // ATS2_SW_ENABLE = 0; // att sens switch is disabled //Thread::signal_wait(0x1); ACS_MAIN_STATUS = 1; //set ACS_MAIN_STATUS flag PWM1 = 0; //clear pwm pins PWM2 = 0; //clear pwm pins PWM3 = 0; //clear pwm pins pc.printf("\n\rEntered ACS %f\n",t_start.read()); if(ACS_DATA_ACQ_ENABLE == 1)// check if ACS_DATA_ACQ_ENABLE = 1? { //FLAG(); FCTN_ATS_DATA_ACQ(); //the angular velocity is stored in the first 3 values and magnetic field values in next 3 pc.printf("gyro values\n\r"); //printing the angular velocity and magnetic field values for(int i=0; i<3; i++) { printf("%f\n\r",actual_data.AngularSpeed_actual[i]); } pc.printf("mag values\n\r"); for(int i=0; i<3; i++) { pc.printf("%f\n\r",actual_data.Bvalue_actual[i]); } // for(int i=0;i<3;i++) // { // omega1[i]= data[i]; // b1[i] = data[i+3]; // } }//if ACS_DATA_ACQ_ENABLE = 1 else { // Z axis actuation is the only final solution, } if(ACS_STATE == 0) // check ACS_STATE = ACS_CONTROL_OFF? { printf("\n\r acs control off\n"); FLAG(); ACS_STATUS = 0; // set ACS_STATUS = ACS_CONTROL_OFF PWM1 = 0; //clear pwm pins PWM2 = 0; //clear pwm pins PWM3 = 0; //clear pwm pins } else { if(actual_data.power_mode>1) { if(ACS_STATE == 2) // check ACS_STATE = ACS_ZAXIS_MOMENT_ONLY { FLAG(); printf("\n\r z axis moment only\n"); ACS_STATUS = 2; // set ACS_STATUS = ACS_ZAXIS_MOMENT_ONLY // FCTN_ACS_CNTRLALGO(b1, omega1); moment[0] = 0; moment[1] = 0; moment[2] =1.3;// is a dummy value FCTN_ACS_GENPWM_MAIN(moment) ; } else { if(ACS_STATE == 3) // check ACS_STATE = ACS_DATA_ACQ_FAILURE { FLAG(); printf("\n\r acs data failure "); ACS_STATUS = 3; // set ACS_STATUS = ACS_DATA_ACQ_FAILURE PWM1 = 0; //clear pwm pins PWM2 = 0; //clear pwm pins PWM3 = 0; //clear pwm pins } else { if(ACS_STATE == 4) // check ACS_STATE = ACS_NOMINAL_ONLY { FLAG(); printf("\n\r nominal"); ACS_STATUS = 4; // set ACS_STATUS = ACS_NOMINAL_ONLY FCTN_ACS_CNTRLALGO(actual_data.Bvalue_actual,actual_data.AngularSpeed_actual); printf("\n\r moment values returned by control algo \n"); for(int i=0; i<3; i++) { printf("%f\t",moment[i]); } FCTN_ACS_GENPWM_MAIN(moment) ; } else { if(ACS_STATE == 5) // check ACS_STATE = ACS_AUTO_CONTROL { FLAG(); printf("\n\r auto control"); ACS_STATUS = 5; // set ACS_STATUS = ACS_AUTO_CONTROL //FCTN_ACS_AUTOCTRL_LOGIC // gotta include this code } else { if(ACS_STATE == 6) // check ACS_STATE = ACS_DETUMBLING_ONLY { FLAG(); printf("\n\r Entered detumbling \n"); ACS_STATUS = 6; // set ACS_STATUS = ACS_DETUMBLING_ONLY FCTN_ACS_CNTRLALGO(actual_data.Bvalue_actual,actual_data.AngularSpeed_actual); // detumbling code has to be included FCTN_ACS_GENPWM_MAIN(moment) ; } else { FLAG(); printf("\n\r invalid state"); ACS_STATUS = 7 ; // set ACS_STATUS = INVALID STATE PWM1 = 0; //clear pwm pins PWM2 = 0; //clear pwm pins PWM3 = 0; //clear pwm pins }//else of invalid }//else of autocontrol }//else of nominal }//else of data acg failure }//else fo z axis moment only }//if power >2 else { FLAG(); printf("\n\r low power"); ACS_STATUS = 1; // set ACS_STATUS = ACS_LOW_POWER PWM1 = 0; //clear pwm pins PWM2 = 0; //clear pwm pins PWM3 = 0; //clear pwm pins } } //else for acs control off ACS_MAIN_STATUS = 0; //clear ACS_MAIN_STATUS flag } //***************************************************EPS THREAD***********************************************// void F_EPS() { pc.printf("\n\rEntered EPS %f\n",t_start.read()); EPS_MAIN_STATUS = 1; // Set EPS main status FCTN_BATT_TEMP_SENSOR_MAIN(actual_data.Batt_temp_actual); pc.printf("\n\r Battery temperature %f %f" ,actual_data.Batt_temp_actual[0], actual_data.Batt_temp_actual[1]); EPS_BATTERY_TEMP_STATUS = 1; //set EPS_BATTERY_TEMP_STATUS if(EPS_BATTERY_HEAT_ENABLE == 1) { if((actual_data.Batt_temp_actual[0] < batt_heat_low) && (actual_data.Batt_temp_actual[1] < batt_heat_low)) // to confirm { batt_heat = 1; //turn on battery heater } else { batt_heat = 0; //turn off battery heater } } else if(EPS_BATTERY_HEAT_ENABLE == 0) { EPS_STATUS = 1;//EPS_STATUS = EPS_BATTERY_HEATER_DISABLED } FCTN_BATTERYGAUGE_MAIN(actual_data.Batt_gauge_actual); if (actual_data.Batt_gauge_actual[1] == 200) //data not received { actual_data.power_mode = 1; EPS_BATTERY_GAUGE_STATUS = 0; //clear EPS_BATTERY_GAUGE_STATUS } else { FCTN_EPS_POWERMODE(actual_data.Batt_gauge_actual[1]); //updating power level EPS_BATTERY_GAUGE_STATUS = 1; //set EPS_BATTERY_GAUGE_STATUS } // if( Temperature data received) //{ // } // else // { // Set battery temp to XX // EPS_BATTERY_TEMP_STATUS = 0; //clear EPS_BATTERY_TEMP_STATUS // EPS_STATUS = EPS_ERR_BATTERY_TEMP; // } FCTN_HK_MAIN(); // printf("\n\r here"); FCTN_APPEND_HKDATA(); minMaxHkData(); //printf("\n\r here"); EPS_MAIN_STATUS = 0; // clear EPS main status } //**************************************************BCN THREAD*******************************************************************// void F_BCN() { pc.printf("\n\rEntered BCN %f\n",t_start.read()); FCTN_BCN_TX_MAIN(); } //**************************************************TCTM THREAD*******************************************************************// /*void I2C_busreset(void) { uint8_t count=0; if((PORTE->PCR[1] & PORT_PCR_MUX(6)) && (PORTE->PCR[0] & PORT_PCR_MUX(6))) { printf("\n\rResetting\n\r"); I2C1->C1 &= 0x7f; // Disable I2C1 bus PORTE->PCR[1] = PORT_PCR_MUX(1); // PTE1 Alt1 (pin) PORTE->PCR[0] = PORT_PCR_MUX(1); // PTE0 Alt1 (pin) while(((PTE->PDIR & 0x3) != 3) && (count<10)) // When PTE0 / PTE1 are not 1 : I2C1 bus lock-up { PTE->PDDR |= 0x3; // Set PTE1 and PTE0 as a GPIO output so we can bit bang it PTE->PDOR |= 0x2; // Set PTE1 (SCL) pin high; wait_ms(1); PTE->PDOR |= 0x1; // Set PTE0 (SDA) pin high; wait_ms(1); count++; wait(1); } // Reinstate I2C1 bus pins PORTE->PCR[1] = PORT_PCR_MUX(6); // PTE1 Alt6 (SCL) PORTE->PCR[0] = PORT_PCR_MUX(6); // PTE0 Alt6 (SDA) I2C1->C1 |= 0x80; // Enable I2C1 bus printf("Count: %d\n\r",count); //wait(1); } }*/ #define PORT_PCR_MUX_MASK2 0x00000700u void debug() { // uint32_t temp=0x0AF30000; //printf("\n\rTemp = %08X",temp); //pc.printf("\n\rPORTE->PCR[0] = 0x%08X",PORTE->PCR[0]); //pc.printf("\n\rPORTE->PCR[1] = 0x%08X",PORTE->PCR[1]); pc.printf("\n\rPTE->DIR = 0x%08X",PTE->PDIR); } void debug1() { printf("\n\r Before disabling"); debug(); //wait_ms(50); I2C1->C1 &= 0x7f; printf("\n\r After muxing "); PORTE->PCR[1] = PORT_PCR_MUX(1); // PTE24 Alt1 (pin) PORTE->PCR[0] = PORT_PCR_MUX(1); // PTE25 Alt1 (pin) PTE->PDDR |= 0x3; // Set PTE1 and PTE0 as a GPIO output so we can bit bang it PTE->PDOR |= 0x2; // Set PTE1 (SCL) pin high; wait_ms(1); PTE->PDOR |= 0x1; // Set PTE0 (SDA) pin high; wait_ms(1); debug(); PORTE->PCR[1] &= (~(PORT_PCR_MUX_MASK2)); PORTE->PCR[0] &= (~(PORT_PCR_MUX_MASK2)); PORTE->PCR[1] |= PORT_PCR_MUX(6); // PTE24 Alt6 (pin) PORTE->PCR[0] |= PORT_PCR_MUX(6); // PTE25 Alt6 (pin) PORTE->PCR[1] |= 0x00000004; PORTE->PCR[0] |= 0x00000004; I2C1->C1 |= 0x80; // Enable I2C1 bus printf("\n\r After enabling I2C"); debug(); } void debug2() { printf("\n\rI2C1->A1 = 0x%02X",I2C1->A1); printf("\n\rI2C1->F = 0x%02X",I2C1->F); printf("\n\rI2C1->C1 = 0x%02X",I2C1->C1); printf("\n\rI2C1->S = 0x%02X",I2C1->S); printf("\n\rI2C1->D = 0x%02X",I2C1->D); printf("\n\rI2C1->C2 = 0x%02X",I2C1->C2); printf("\n\rI2C1->FLT = 0x%02X",I2C1->FLT); printf("\n\rI2C1->RA = 0x%02X",I2C1->RA); printf("\n\rI2C1->SMB = 0x%02X",I2C1->SMB); printf("\n\rI2C1->A2 = 0x%02X",I2C1->A2); printf("\n\rI2C1->SLTH = 0x%02X",I2C1->SLTH); printf("\n\rI2C1->SLTL = 0x%02X\n",I2C1->SLTL); } void debug3() { //pc.printf("\n\r Resetting I2C"); //debug2(); //printf("\n\r SIM->SCGC4 = 0x%08X",SIM->SCGC4); PORTE->PCR[1] &= 0xfffffffb; PORTE->PCR[0] &= 0xfffffffb; I2C1->C1 &= 0x7f; //wait_ms(2); SIM->SCGC4 &= 0xffffff7f; //printf("\n\r SIM->SCGC4 = 0x%08X",SIM->SCGC4); //wait_ms(10); SIM->SCGC4 |= 0x00000080; //printf("\n\r SIM->SCGC4 = 0x%08X",SIM->SCGC4); //wait_ms(10); I2C1->C1 |= 0x80; PORTE->PCR[1] |= 0x00000004; PORTE->PCR[0] |= 0x00000004; //wait_ms(10); wait_ms(2); //printf("\n\r After enabling clock"); //debug2(); //printf("\n"); } void I2C_busreset() { //Thread::wait(1); PORTE->PCR[1] &= 0xfffffffb; //Thread::wait(1); PORTE->PCR[0] &= 0xfffffffb; //Thread::wait(1); I2C1->C1 &= 0x7f; //Thread::wait(1); SIM->SCGC4 &= 0xffffff7f; //Thread::wait(1); SIM->SCGC4 |= 0x00000080; //Thread::wait(1); I2C1->C1 |= 0x80; //Thread::wait(1); PORTE->PCR[1] |= 0x00000004; //Thread::wait(1); PORTE->PCR[0] |= 0x00000004; Thread::wait(1); } uint32_t pdirtc1,pdirtc2,pdirtm1,pdirtm2,pdirss1,pdirss2; void T_TC(void const * args) { while(1) { //pc.printf("\n\n\rWaiting"); Thread::signal_wait(0x4); wait_us(300); // can be between 38 to 15700 if( slave.receive() == 0) { //synch.stop(); //pdirss1=PTE->PDIR; irpt_2_mstr = 0; data_send_flag = 'h'; #if PRINT pc.printf("\n\rSlave stop"); pc.printf("\n\rPTE->DIR = 0x%08X",pdirss1); #endif slave.stop(); I2C_busreset(); pdirss2=PTE->PDIR; #if PRINT pc.printf("\n\rPTE->DIR = 0x%08X",pdirss2); #endif //pc.printf("\n\rPTE->DIR = 0x%08X",pdir2); } else if( slave.receive() == 1) // slave writes to master { if(data_send_flag == 'h') { //FCTN_APPEND_HKDATA(); // pc.printf("\n\r here"); write_ack=slave.write(BAE_chardata,74); irpt_2_mstr = 0; if(write_ack==0) { irpt_2_mstr = 0; pc.printf("\n\rgot interrupt\n"); } } else if(data_send_flag == 't') { uint8_t i2c_count =0; write_ack=slave.write((char*)telemetry,135); Thread::wait(1); pdirtm1=PTE->PDIR; irpt_2_mstr = 0; //data_send_flag = 'h'; if(write_ack==0) { while(((pdirtm1 & 0x00000003)!=3)&& i2c_count<10) { Thread::wait(1); pdirtm1=PTE->PDIR; i2c_count++; } if(((pdirtm1 & 0x00000003)==3)) { pc.printf("\n\rWrite TM success"); //pc.printf("\n\rPTE->DIR = 0x%08X",PTE->PDIR); } else { //Resetting should be done here #if PRINT pc.printf("\n\rWrite TM error"); pc.printf("\n\rPTE->DIR = 0x%08X",pdirtm1); #endif I2C_busreset(); pdirtm2=PTE->PDIR; #if PRINT pc.printf("\n\rPTE->DIR = 0x%08X",pdirtm2); #endif } //pc.printf("\n\rTM count:%d",i2c_count); } else { //Thread::wait(30); #if PRINT pc.printf("\nTM ack failed"); pc.printf("\n\rPTE->DIR = 0x%08X",pdirtm1); #endif I2C_busreset(); pdirtm2=PTE->PDIR; #if PRINT pc.printf("\n\rPTE->DIR = 0x%08X",pdirtm2); #endif //Thread::wait(10); //pc.printf("\n\rPTE->DIR = 0x%08X",PTE->PDIR); //debug3(); //wait_ms(10); //pc.printf("\n\rPTE->DIR = 0x%08X",PTE->PDIR); } i2c_count=0; } else if(data_send_flag == 'i') { //to be filled data_send_flag = 'h'; } } else if( slave.receive()==3 || slave.receive()==2) // slave read { uint8_t i2c_count = 0; synch.stop(); read_ack=slave.read((char *)telecommand,11); Thread::wait(1); pdirtc1=PTE->PDIR; irpt_2_mstr = 1; data_send_flag = 't'; if(read_ack==0) { while(((pdirtc1 & 0x00000003)!=3)&& i2c_count<10) { Thread::wait(1); pdirtc1=PTE->PDIR; i2c_count++; } if(((pdirtc1 & 0x00000003)==3)) { pc.printf("\n\n\rRead TC success"); // FCTN_TC_DECODE((uint8_t*) telecommand); //FCTN_BAE_TM_TC((uint8_t*) telecommand); //telemetry = (char*)temp; //FCTN_TM(); //uint8_t read_ack2 = (uint8_t)(PTE->PDIR & 0x00000003); //printf("\n\rread_ack2 = %d",read_ack2); //if((read_ack ==0)&&(read_ack2==3)) //if(read_ack==0 && ((PTE->PDIR & 0x00000003)==3)) //debug2(); //pc.printf("\n\rPTE->DIR = 0x%08X",PTE->PDIR); //wait_us(10); //read_ack2 = (uint8_t)(PTE->PDIR & 0x00000003); //tempt.stop(); //data_send_flag = 't'; //uncomment later } else { #if PRINT pc.printf("\n\n\rRead TC error"); pc.printf("\n\rPTE->DIR = 0x%08X",pdirtc1); #endif I2C_busreset(); pdirtc2=PTE->PDIR; #if PRINT pc.printf("\n\rPTE->DIR = 0x%08X",pdirtc2); #endif //pc.printf("\n\rPTE->DIR = 0x%08X",PTE->PDIR); //debug3(); //printf("\n\rread_ack2 = %d and time = %d",read_ack2,tempt.read_us()); //data_send_flag = 'i'; } //pc.printf("\n\rTC count:%d",i2c_count); } else { #if PRINT pc.printf("\n\n\rTC ack failed"); pc.printf("\n\rPTE->DIR = 0x%08X",pdirtc1); #endif I2C_busreset(); pdirtc2=PTE->PDIR; #if PRINT pc.printf("\n\rPTE->DIR = 0x%08X",pdirtc2); #endif //pc.printf("\n\rPTE->DIR = 0x%08X",PTE->PDIR); } i2c_count = 0; //printf("\n\rSize of data : %d",sizeof(telecommand)); //printf("\n\rGiven Size : %d\n",11); //printf("\n\rREAD_ACK : %d",read_ack); //t_tc.start(); //pc.printf("\n\rTELECOMMAND received from CDMS is %s \n",telecommand); //pc.printf("\n\r Executing Telecommand \n"); //t_tc.stop(); //printf("\n\r time taken %d",t_tc.read_us()); //t_tc.reset(); // for(int i = 0; i<134; i++) //pc.printf("%c", telemetry[i]); } //pc.printf("Time after slave.read() = %d",synch.read_us()); //synch.reset(); } } void FCTN_TM() { //irpt_2_mstr = 0; data_send_flag = 't'; pc.printf("\n\r Telemetry Generation \n"); irpt_2_mstr = 1; } //******************************************************* I2C *******************************************************************// void FCTN_I2C_ISR() { //synch.start(); ptr_t_i2c->signal_set(0x4); } //***********************************************************FAULTS***************************************************************// /*void ir1clear() { actual_data.faultIr_status |= 0x01; // alert }*/ void ir2clear() { actual_data.faultIr_status |= 0x02; TRXY_SW = 0; // Switch off TR XY if1check = 1; } void ir3clear() { actual_data.faultIr_status |= 0x04; DRV_Z_EN = 0; wait_us(1); DRV_Z_EN = 1; } void ir4clear() { if2check = 1; actual_data.faultIr_status |= 0x08; TRZ_SW = 0; } void ir5clear() { actual_data.faultIr_status |= 0x10; CDMS_RESET = 0; wait_us(1); CDMS_RESET = 1; } void ir6clear() { actual_data.faultIr_status |= 0x20; BCN_SW = 0; wait_us(1); BCN_SW = 1; } void ir7clear() { actual_data.faultIr_status |= 0x40; } uint8_t iter2=0,iter4 = 0; void pollfault() { if (pf1==0) // OC_ATS1 { pf1check=1; actual_data.faultPoll_status |=0x01 ; ATS1_SW_ENABLE = 1; // turn off ats1 // to be turned on next cycle in ACS } else actual_data.faultPoll_status &= 0xFE; if (pf2==0) { pf2check=1; actual_data.faultPoll_status |=0x02 ; ATS2_SW_ENABLE = 1; // turn off ats2 // turn on in ACS } else actual_data.faultPoll_status &= 0xFD; if (pf3==0) { actual_data.faultPoll_status |=0x04 ; DRV_XY_EN = 0; wait_us(1); DRV_XY_EN = 1; } else actual_data.faultPoll_status &= 0xFB; /*if (ir1==1) { actual_data.faultIr_status &=0xFE; }*/ if (ir2==1) { actual_data.faultIr_status &=0xFD; } if (ir3==1) { actual_data.faultIr_status &=0xFB; } if (ir4==1) { actual_data.faultIr_status &=0xF7; } if (ir5==1) { actual_data.faultIr_status &=0xEF; } if (ir6==1) { actual_data.faultIr_status &=0xDF; }if (ir7==1) { actual_data.faultIr_status &=0xBF; } } //------------------------------------------------------------------------------------------------------------------------------------------------ //SCHEDULER //------------------------------------------------------------------------------------------------------------------------------------------------ uint8_t schedcount=1; void T_SC(void const *args) { //printf("\n\r in scheduler"); if(schedcount == 7) //to reset the counter { schedcount = 1; } if(schedcount%1==0) { //pc.printf("\nSTATE IS !!!!!! = %x !!\n",ACS_STATE); //pc.printf("\niterp1 !!!!!! = %x !!\n",iterP1); //pc.printf("\niteri2 IS !!!!!! = %x !!\n",iterI2); //F_ACS(); } if(schedcount%2==0) { //F_EPS(); } if(schedcount%1==0) { //F_BCN(); } schedcount++; //printf("\n\r BAE is alive\n"); } Timer t_flag; void FLAG() { //.............acs..................// if(ACS_INIT_STATUS == 1) BAE_STATUS = BAE_STATUS | 0x00000080; //set ACS_INIT_STATUS flag else if(ACS_INIT_STATUS == 0) BAE_STATUS &= 0xFFFFFF7F; //clear ACS_INIT_STATUS flag if(ACS_DATA_ACQ_STATUS == 1) BAE_STATUS =BAE_STATUS | 0x00000100; //set ACS_DATA_ACQ_STATUS flag else if(ACS_DATA_ACQ_STATUS == 0) BAE_STATUS &= 0xFFFFFEFF; //clear ACS_DATA_ACQ_STATUS flag if(ACS_ATS_ENABLE == 1) BAE_ENABLE |= 0x00000004; else if(ACS_ATS_ENABLE == 0) BAE_ENABLE = BAE_ENABLE &0xFFFFFFFB | 0x00000004; if(ACS_DATA_ACQ_STATUS == 'f') BAE_STATUS |= 0x00000200; if(ACS_MAIN_STATUS == 1) BAE_STATUS = (BAE_STATUS | 0x00001000); //set ACS_MAIN_STATUS flag else if(ACS_MAIN_STATUS == 0) BAE_STATUS &= 0xFFFFEFFF; //clear ACS_MAIN_STATUS flag if(ACS_STATUS == '0') BAE_STATUS = (BAE_STATUS & 0xFFFF1FFF); // set ACS_STATUS = ACS_CONTROL_OFF else if(ACS_STATUS == '1') BAE_STATUS =(BAE_STATUS & 0xFFFF1FFF) | 0x00002000; // set ACS_STATUS = ACS_LOW_POWER else if(ACS_STATUS == '2') BAE_STATUS = (BAE_STATUS & 0xFFFF1FFF)| 0x00004000; // set ACS_STATUS = ACS_ZAXIS_MOMENT_ONLY else if(ACS_STATUS == '3') BAE_STATUS = (BAE_STATUS & 0xFFFF1FFF) | 0x00006000; // set ACS_STATUS = ACS_DATA_ACQ_FAILURE else if(ACS_STATUS == '4') BAE_STATUS = (BAE_STATUS & 0xFFFF1FFF) | 0x00008000; // set ACS_STATUS = ACS_NOMINAL_ONLY else if(ACS_STATUS == '5') BAE_STATUS =(BAE_STATUS & 0xFFFF1FFF) | 0x0000A000; // set ACS_STATUS = ACS_AUTO_CONTROL else if(ACS_STATUS == '6') BAE_STATUS =(BAE_STATUS & 0xFFFF1FFF) | 0x0000C000; // set ACS_STATUS = ACS_DETUMBLING_ONLY else BAE_STATUS =(BAE_STATUS & 0xFFFF1FFF) | 0x0000E000; // set ACS_STATUS = INVALID STATE if(ACS_STATE == '0') BAE_ENABLE = (BAE_ENABLE & 0xFFFFFF8F); //ACS_STATE = ACS_CONTROL_OFF else if(ACS_STATE == '2') BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000020); // ACS_STATE = ACS_ZAXIS_MOMENT_ONLY else if(ACS_STATE == '3') BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000030); // set ACS_STATUS = ACS_DATA_ACQ_FAILURE else if(ACS_STATE == '4') BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000040); // ACS_STATE = ACS_NOMINAL_ONLY else if(ACS_STATE == '5') BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000050); // ACS_STATE = ACS_AUTO_CONTROL else if(ACS_STATE == '6') BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000060); //ACS_STATE = ACS_DETUMBLING_CONTROL //...............eps......................// if (EPS_INIT_STATUS==1) // Set EPS_INIT_STATUS BAE_STATUS |= 0x00010000; else if(EPS_INIT_STATUS==0) // Clear BAE_STATUS &= 0xFFFEFFFF; if (EPS_MAIN_STATUS==1) // Set EPS_MAIIN_STATUS BAE_STATUS |= 0x00040000; else if(EPS_MAIN_STATUS==0) // Clear BAE_STATUS &= 0xFFFBFFFF; if (EPS_BATTERY_GAUGE_STATUS==1) // Set EPS_BATTERY_GAUGE_STATUS BAE_STATUS |= 0x00020000; else if(EPS_BATTERY_GAUGE_STATUS==0) // Clear BAE_STATUS &= 0xFFFDFFFF; if (EPS_BATTERY_TEMP_STATUS==1) // Set EPS_BATTERY_TEMP_STATUS BAE_STATUS |= 0x00080000; else if(EPS_BATTERY_TEMP_STATUS==0) // Clear BAE_STATUS &= 0xFFF7FFFF; if (EPS_STATUS==0) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF); // Set EPS_ERR_BATTERY_TEMP else if (EPS_STATUS==1) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00010000; // Set EPS_BATTERY_HEATER_DISABLED else if (EPS_STATUS==2) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00020000; // Set EPS_ERR_HEATER_SWITCH_OFF else if (EPS_STATUS==3) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00030000; // Set EPS_ERR_HEATER_SWITCH_ON else if (EPS_STATUS==4) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00040000; // Set EPS_BATTERY_HEATER_OFF else if (EPS_STATUS==5) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00050000; // Set EPS_BATTERY_HEATER_ON if(EPS_BATTERY_HEAT_ENABLE == 1) BAE_ENABLE |= 0x00000080; else if(EPS_BATTERY_HEAT_ENABLE == 0) BAE_ENABLE = BAE_ENABLE &0xFFFFFF7; pc.printf("\n\r BAE status %x BAE ENABLE %x ",BAE_STATUS,BAE_ENABLE); } void FCTN_BAE_INIT() { printf("\n\r Initialising BAE "); //..........intial status....// ACS_STATE = 4; ACS_ATS_ENABLE = 1; ACS_DATA_ACQ_ENABLE = 1; EPS_BATTERY_HEAT_ENABLE = 1; actual_data.power_mode=3; //............intializing pins................// ATS2_SW_ENABLE = 1; ATS1_SW_ENABLE = 1; wait_ms(5); ATS1_SW_ENABLE = 0; ACS_ATS_STATUS = 0x60; //Set Sensor 1 working , Sensor2 working and powered off by default DRV_XY_EN = 1; DRV_Z_EN = 1; TRZ_SW = 1; TRXY_SW = 1; //............................// //FCTN_ACS_INIT(); //FCTN_EPS_INIT(); //FCTN_BCN_INIT(); FLAG(); } int main() { pc.baud(9600); pc.printf("\n\r BAE Activated. Testing Version 1.1 \n"); //CDMS_RESET = 1; /*if (BCN_FEN == 0) //dummy implementation { pc.printf("\n\r RF silence "); FCTN_BCN_FEN(); t_rfsilence.start();//Start the timer for RF_Silence while(t_rfsilence.read() < RF_SILENCE_TIME); } */ //ACS_INIT_STATUS = 0; //ACS_DATA_ACQ_STATUS = 0; //FLAG(); FCTN_BAE_INIT(); //pc.printf("\n\rPORTE->PCR[0] = 0x%08X",PORTE->PCR[0]); //pc.printf("\n\rPORTE->PCR[1] = 0x%08X",PORTE->PCR[1]); //...i2c.. //strcpy(telemetry,"This is telemetry THis is sample telemetry. ffffffffffffffffffffffffffffff end"); slave.address(addr); irpt_2_mstr = 0; ptr_t_i2c = new Thread(T_TC); ptr_t_i2c->set_priority(osPriorityHigh); irpt_4m_mstr.enable_irq(); irpt_4m_mstr.rise(&FCTN_I2C_ISR); // ir1.fall(&ir1clear); //Battery Gauge - Alert Bar Signal /* ir2.fall(&ir2clear); //TRXY Driver TR switch Fault ir3.fall(&ir3clear); //TRZ Driver Fault Bar ir4.fall(&ir4clear); //TRZ Driver TR switch Fault ir5.fall(&ir5clear); //CDMS - Switch Fault ir6.fall(&ir6clear); //Beacon- Switch OC bar ir7.fall(&ir7clear); //Charger IC - Fault Bar */ RtosTimer t_sc_timer(T_SC,osTimerPeriodic); // Initiating the scheduler thread t_sc_timer.start(10000); t_start.start(); pc.printf("\n\rStarted scheduler %f\n\r",t_start.read()); printf("\n\rPTE->DIR = 0x%08X",PTE->PDIR); //printf("\n\rInitial values\n"); //debug(); //debug2(); //FCTN_BAE_INIT(); while(1); //required to prevent main from terminating }