MPU6050 arduino port by Szymon Gaertig (http://mbed.org/users/garfieldsg/code/MPU6050/) 1 memory overflow error corrected.
Dependents: MbedFreeIMU gurvanAHRS
Fork of MPU6050 by
GurvIMU.cpp
- Committer:
- pommzorz
- Date:
- 2013-06-22
- Revision:
- 6:40ac13ef7290
File content as of revision 6:40ac13ef7290:
#include "GurvIMU.h"
#include "MPU6050.h"
#include "mbed.h"
#define M_PI 3.1415926535897932384626433832795
#define twoKpDef (2.0f * 2.0f) // 2 * proportional gain
#define twoKiDef (2.0f * 0.5f) // 2 * integral gain
GurvIMU::GurvIMU()
{
//MPU
mpu = MPU6050(0x69); //0x69 = MPU6050 I2C ADDRESS
// Variable definitions
q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f; // quaternion of sensor frame relative to auxiliary frame
twoKp = twoKpDef; // 2 * proportional gain (Kp)
twoKi = twoKiDef; // 2 * integral gain (Ki)
integralFBx = 0.0f, integralFBy = 0.0f, integralFBz = 0.0f; // integral error terms scaled by Ki
cycle_nb = 0;
timer_us.start();
}
//Function definitions
void GurvIMU::getValues(float * values)
{
int16_t accgyroval[6];
mpu.getMotion6(&accgyroval[0], &accgyroval[1], &accgyroval[2], &accgyroval[3], &accgyroval[4], &accgyroval[5]);
for(int i = 0; i<3; i++) values[i] = (float) accgyroval[i];
for(int i = 3; i<6; i++) values[i] = (accgyroval[i]-offset[i]) * (M_PI / 180) / 16.4f;
}
void GurvIMU::getVerticalAcceleration(float av)
{
float values[6];
float q[4]; // quaternion
float g_x, g_y, g_z; // estimated gravity direction
getQ(q);
g_x = 2 * (q[1]*q[3] - q[0]*q[2]);
g_y = 2 * (q[0]*q[1] + q[2]*q[3]);
g_z = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3];
getValues(values);
av = g_x*values[0]+g_y*values[1]+g_z*values[2]-offset[2];
}
void GurvIMU::getOffset(void)
{
int sample_nb = 50;
float values[6];
for(int i=0; i<6 ; i++) offset[i] = 0;
for(int i=0; i<sample_nb; i++) {
getValues(values);
for(int j=0; j<6; j++) offset[j]+=values[j];
}
for(int j=0; j<6; j++) offset[j]/=sample_nb;
}
void GurvIMU::AHRS_update(float gx, float gy, float gz, float ax, float ay, float az)
{
float recipNorm;
float halfvx, halfvy, halfvz;
float halfex, halfey, halfez;
float qa, qb, qc;
dt_us=timer_us.read_us();
sample_freq = 1.0 / ((dt_us) / 1000000.0);
timer_us.reset();
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Estimated direction of gravity
halfvx = q1 * q3 - q0 * q2;
halfvy = q0 * q1 + q2 * q3;
halfvz = q0 * q0 - 0.5f + q3 * q3;
// Error is sum of cross product between estimated and measured direction of gravity
halfex = (ay * halfvz - az * halfvy);
halfey = (az * halfvx - ax * halfvz);
halfez = (ax * halfvy - ay * halfvx);
// Compute and apply integral feedback if enabled
if(twoKi > 0.0f) {
integralFBx += twoKi * halfex * (1.0f / sample_freq); // integral error scaled by Ki
integralFBy += twoKi * halfey * (1.0f / sample_freq);
integralFBz += twoKi * halfez * (1.0f / sample_freq);
gx += integralFBx; // apply integral feedback
gy += integralFBy;
gz += integralFBz;
}
else {
integralFBx = 0.0f; // prevent integral windup
integralFBy = 0.0f;
integralFBz = 0.0f;
}
// Apply proportional feedback
gx += twoKp * halfex;
gy += twoKp * halfey;
gz += twoKp * halfez;
}
// Integrate rate of change of quaternion
gx *= (0.5f * (1.0f / sample_freq)); // pre-multiply common factors
gy *= (0.5f * (1.0f / sample_freq));
gz *= (0.5f * (1.0f / sample_freq));
qa = q0;
qb = q1;
qc = q2;
q0 += (-qb * gx - qc * gy - q3 * gz);
q1 += (qa * gx + qc * gz - q3 * gy);
q2 += (qa * gy - qb * gz + q3 * gx);
q3 += (qa * gz + qb * gy - qc * gx);
// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
}
void GurvIMU::getQ(float * q) {
float val[6];
getValues(val);
//while(cycle_nb < 1000){
AHRS_update(val[3], val[4], val[5], val[0], val[1], val[2]);
//cycle_nb++;}
q[0] = q0;
q[1] = q1;
q[2] = q2;
q[3] = q3;
}
void GurvIMU::getYawPitchRollRad(float * ypr) {
float q[4]; // quaternion
float g_x, g_y, g_z; // estimated gravity direction
getQ(q);
g_x = 2 * (q[1]*q[3] - q[0]*q[2]);
g_y = 2 * (q[0]*q[1] + q[2]*q[3]);
g_z = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3];
ypr[0] = atan2(2 * q[1] * q[2] - 2 * q[0] * q[3], 2 * q[0]*q[0] + 2 * q[1] * q[1] - 1);
ypr[1] = atan(g_x * invSqrt(g_y*g_y + g_z*g_z));
ypr[2] = atan(g_y * invSqrt(g_x*g_x + g_z*g_z));
}
void GurvIMU::init()
{
mpu.initialize();
mpu.setI2CMasterModeEnabled(0);
mpu.setI2CBypassEnabled(1);
mpu.setFullScaleGyroRange(MPU6050_GYRO_FS_2000);
getOffset();
wait(0.005);
}
float invSqrt(float number)
{
volatile long i;
volatile float x, y;
volatile const float f = 1.5F;
x = number * 0.5F;
y = number;
i = * ( long * ) &y;
i = 0x5f375a86 - ( i >> 1 );
y = * ( float * ) &i;
y = y * ( f - ( x * y * y ) );
return y;
}
