gpa in double prescision

Dependencies:   mbed

main.cpp

Committer:
pmic
Date:
20 months ago
Revision:
6:7ea1a4bac3c2
Parent:
5:e443d5ad409f
Child:
7:b3c5116e9fab

File content as of revision 6:7ea1a4bac3c2:

#include "mbed.h"
#include "math.h"

#define PI 3.1415927f

#include "EncoderCounter.h"
#include "DiffCounter.h"
#include "PI_Cntrl.h"
#include "IIR_filter.h"
#include "LinearCharacteristics.h"

/* Cuboid balance on one edge on Nucleo F446RE
// -----------------------------------------------------------------------------

IMPORTANT: use ..\T-RT\Messen_Ausstellungen\Praesentationen_im_Labor\Wuerfel_nucleo\Escon_Parameter_4nucleo_stark.edc
           settings for Maxon ESCON controller (upload via ESCON Studio)
           
hardware Connections:
 
 CN7                    CN10
  :                         :
  :                         :
 ..                        ..
 ..                        ..                  15.
 ..    AOUT i_des on (PA_5)o.
 ..                        ..
 ..                        ..
 ..               ENC CH A o.
 o. GND                    ..                  10.
 o. ENC CH B               ..
 ..                        ..
 ..                        ..
 .o AIN acx (PA_0)         ..  
 .o AIN acy (PA_1)         ..                  5.
 .o AIN Gyro(PA_4)         .o Analog GND
 ..                        ..
 ..                        ..              
 ..                        ..                  1. 
 ----------------------------
 CN7               CN10
 */

Serial pc(SERIAL_TX, SERIAL_RX);        // serial connection via USB - programmer
InterruptIn button(USER_BUTTON);        // User Button, short presses: reduce speed, long presses: increase speed
AnalogIn ax(PA_0);                      // analog IN (acc x) on PA_0
AnalogIn ay(PA_1);                      // analog IN (acc y) on PA_1
AnalogIn gz(PA_4);                      // analog IN (gyr z) on PB_0
AnalogOut out(PA_5);                    // analog OUT 1.6 V -> 0A 3.2A -> 2A (see ESCON)
Ticker  ControllerLoopTimer;            // interrupt for control loop
Timer t;                                // timer to analyse button

// controller parameters etc.
float out_value = 1.6f;                 // set voltage on 1.6 V (0 A current)
float kp = 4.0f;                        // speed control gain for motor speed cntrl.
float Tn = 0.05f;                       // integral time       "     "        "
float Ts = 0.0025;                      // sample time
float v_max = 200;                      // maximum speed rad/s
float n_soll = 0.0f;                    // nominal speed for speed control tests
float comp_filter_tau =1.0f;            // time constant of complementary filter

// output and statemachine
unsigned int k = 0;                     // counter for serial output
bool doesStand = 0;                     // state if the cube is standing or not
bool shouldBalance = 0;                 // state if the controller is active

// set up encoder, controller and filter instanzes           
EncoderCounter counter1(PB_6, PB_7);    // initialize counter on PB_6 and PB_7
DiffCounter diff(0.01, Ts);             // discrete differentiate, based on encoder data
PI_Cntrl pi_w2zero(-.01f, 1.0f, 0.4f);  // controller to bring motor speed to zero while balancing
IIR_filter f_ax(comp_filter_tau,Ts);                // 1st order LP for complementary filter acc_x
IIR_filter f_ay(comp_filter_tau,Ts);                // 1st order LP for complementary filter acc_y
IIR_filter f_gz(comp_filter_tau,Ts,comp_filter_tau);// 1st order LP for complementary filter gyro

// linear characteristics
LinearCharacteristics i2u(0.1067f,-15.0f);          // full range, convert desired current (Amps)  -> voltage 0..3.3V
LinearCharacteristics u2n(312.5f,1.6f);             // convert input voltage (0..3.3V) -> speed (1/min)
LinearCharacteristics u2w(32.725,1.6f);             // convert input voltage (0..3.3V) -> speed (rad/sec)
LinearCharacteristics u2ax(14.67f,1.6378f);         // convert input voltage (0..3.3V) -> acc_x m/s^2
LinearCharacteristics u2ay(15.02f ,1.6673f);        // convert input voltage (0..3.3V) -> acc_y m/s^2
LinearCharacteristics u2gz(-4.652f,1.4949f);        // convert input voltage (0..3.3V) -> w_x rad/s
LinearCharacteristics u3k3_TO_1V(0.303030303f,0,3.3f,0.0f);// normalize output voltage (0..3.3)V -> (0..1) V

// user defined functions
void updateControllers(void);   // speed controller loop (via interrupt)
void pressed(void);             // user button pressed
void released(void);            // user button released

// main program and control loop
// -----------------------------------------------------------------------------
int main()
{
    // for serial comm.
    pc.baud(2000000);   
    
    // reset encoder, controller and filters
    counter1.reset();
    diff.reset(0.0f,0.0f);
    pi_w2zero.reset(0.0f);
    f_ax.reset(u2ax(3.3f*ax.read()));
    f_ay.reset(u2ay(3.3f*ay.read()));
    f_gz.reset(u2gz(3.3f*gz.read()));
    
    // reset output
    out.write(u3k3_TO_1V(i2u(0.0f))); 
    
    // attach controller loop to timer interrupt
    ControllerLoopTimer.attach(&updateControllers, Ts); //Assume Fs = 400Hz;
    button.fall(&pressed);          // attach key pressed function
    button.rise(&released);         // attach key pressed function
}

void updateControllers(void){
    
    // read sensor data
    short counts = counter1;            // get counts from Encoder
    float vel = diff(counts);           // motor velocity 
    float wz = u2gz(3.3f*gz.read());    // cuboid rot-velocity
    float ang = atan2( -f_ax(u2ax(3.3f*ax.read())), f_ay(u2ay(3.3f*ay.read()))) + f_gz(wz) + PI/4.0f; // spaghetti compl. filter
    
    // get current state of the cube
    float actualAngleDegree = ang*180.0f/PI;
    if(actualAngleDegree > -10.0f && actualAngleDegree < 10.0f){
        doesStand = 1;
    }
    else{
        doesStand = 0;
    }
    
    // update controller
    if(shouldBalance){       
        // K matrix: -5.2142   -0.6247  // from Matlab
        float desTorque = pi_w2zero(n_soll-vel)-(-5.2142f*ang-0.6247f*wz);     // state space controller for balance, calc desired Torque
        // convert Nm -> A and write to AOUT 
        out.write(u3k3_TO_1V(i2u(desTorque/0.217f)));     
    }
    else{
        out.write(u3k3_TO_1V(i2u(0.0f)));  
    }               
    
    //out.write(u3k3_TO_1V(i2u(pi_w(n_soll-vel))));          // test speed controller 
    if(++k >= 199){
        k = 0;
        pc.printf("phi=%3.2f omega=%3.2f \r\n", actualAngleDegree, vel);
        //pc.printf("ax=%3.2f ay=%3.2f gz=%3.2f \r\n",u2ax(3.3f*ax.read()),u2ay(3.3f*ay.read()),wz);
    }
}

// buttonhandling and statemachine
// -----------------------------------------------------------------------------
// start timer as soon as button is pressed
void pressed(){   
    t.start();
}

// evaluating statemachine
void released(){
    
    // readout, stop and reset timer
    float buttonTime = t.read();
    t.stop();
    t.reset();
    
    // if the cube doesStand
    if(doesStand)
    {
        // in - or decrease speed 
        if(buttonTime < 2.0f){
            // press button long -> increase speed 5 rev/min 
            if(buttonTime > 0.5f){
                n_soll -= 5.0f;
            }
            // press button short -> decrease speed 5 rev/min
            else{
                n_soll += 5.0f;
            }
            // constrain n_soll
            if(n_soll >  v_max)
                n_soll = v_max; 
            if(n_soll < -v_max)
                n_soll = -v_max;
        }
        // stop balancing
        else{
                n_soll = 0.0f;
            shouldBalance = 0;
            pi_w2zero.reset(0.0f);
        }
    }
    else{
        if(buttonTime > 2.0f)
           shouldBalance = 1;
    }
}