Example project for Summer School 2022.
Dependencies: PM2_Libary Eigen
main.cpp
- Committer:
- pmic
- Date:
- 2022-05-20
- Revision:
- 45:d47b1b112a04
- Parent:
- 44:a65bc3e11481
File content as of revision 45:d47b1b112a04:
#include <mbed.h>
#include "PM2_Libary.h"
#include "Eigen/Dense.h"
# define M_PI 3.14159265358979323846 // number pi
// logical variable main task
bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task
// user button on nucleo board
Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below
void user_button_released_fcn();
float ir_distance_mV2cm(float ir_distance_mV);
int main()
{
// while loop gets executed every main_task_period_ms milliseconds
const int main_task_period_ms = 10; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms
// a coutner
uint32_t main_task_cntr = 0;
// led on nucleo board
DigitalOut user_led(LED1); // create DigitalOut object to command user led
// Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
float ir_distance_mV = 0.0f; // define variable to store measurement
float ir_distance_cm = 0.0f; // compensated sensor value in cm
AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
// create SensorBar object for sparkfun line follower array, only use this if it is connected (blocking your code if not)
float sensor_bar_avgAngleRad = 0.0f;
I2C i2c(PB_9, PB_8);
//SensorBar sensor_bar(i2c, 0.1175f); // second input argument is distance from bar to wheel axis
// 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors
FastPWM pwm_M1(PB_13); // motor M1 is closed-loop speed controlled (angle velocity)
FastPWM pwm_M2(PA_9); // motor M2 is closed-loop position controlled (angle controlled)
EncoderCounter encoder_M1(PA_6, PC_7); // create encoder objects to read in the encoder counter values
EncoderCounter encoder_M2(PB_6, PB_7);
// create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
const float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
const float counts_per_turn = 20.0f * 78.125f; // define counts per turn at gearbox end: counts/turn * gearratio
const float kn = 180.0f / 12.0f; // define motor constant in rpm per V
//const float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1
//const float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1
SpeedController speedController_M1(counts_per_turn, kn, max_voltage, pwm_M1, encoder_M1); // default 78.125:1 gear box with default contoller parameters
//SpeedController speedController_M1(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M1, encoder_M1); // parameters adjusted to 100:1 gear
speedController_M1.setMaxAccelerationRPS(999.0f); // disable internal trajectory planer
PositionController positionController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear with default contoller parameters
//PositionController positionController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
//positionController_M2.setSpeedCntrlGain(kp * k_gear);
positionController_M2.setMaxAccelerationRPS(999.0f); // disable internal trajectory planer
// define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage
float max_speed_rps = 2.0f;
positionController_M2.setMaxVelocityRPS(max_speed_rps);
// attach button fall and rise functions to user button object
user_button.fall(&user_button_pressed_fcn);
user_button.rise(&user_button_released_fcn);
// start timer
main_task_timer.start();
// enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled
enable_motors = 1;
while (true) { // this loop will run forever
main_task_timer.reset();
// read analog input
ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
ir_distance_cm = ir_distance_mV2cm(ir_distance_mV);
// read SensorBar, only use this if it is connected (blocking your code if not)
//if (sensor_bar.isAnyLedActive()) {
// sensor_bar_avgAngleRad = sensor_bar.getAvgAngleRad();
//}
if (do_execute_main_task) {
speedController_M1.setDesiredSpeedRPS(2.0f);
positionController_M2.setDesiredRotation(3.0f);
} else {
speedController_M1.setDesiredSpeedRPS(0.0f);
positionController_M2.setDesiredRotation(0.0f);
}
// user_led is switching its state every second
if ( (main_task_cntr%(1000 / main_task_period_ms) == 0) && (main_task_cntr!=0) ) {
user_led = !user_led;
}
main_task_cntr++;
// do only output via serial what's really necessary (this makes your code slow)
/*
printf("IR sensor (mV): %3.3f, IR sensor (cm): %3.3f, SensorBar angle (rad): %3.3f, Speed M1 (rps) %3.3f, Position M2 (rot): %3.3f\r\n",
ir_distance_mV,
ir_distance_cm,
sensor_bar_avgAngleRad,
speedController_M1.getSpeedRPS(),
positionController_M2.getRotation());
*/
// read timer and make the main thread sleep for the remaining time span (non blocking)
int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
}
}
void user_button_pressed_fcn()
{
user_button_timer.start();
user_button_timer.reset();
}
void user_button_released_fcn()
{
// read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
user_button_timer.stop();
if (user_button_elapsed_time_ms > 200) {
do_execute_main_task = !do_execute_main_task;
}
}
float ir_distance_mV2cm(float ir_distance_mV)
{
// defining these variables static makes them persistent within the function
static float a = -4.685f; // (-6.581, -2.79)
static float c = 3.017e+04f; // (2.853e+04, 3.181e+04)
return c/(ir_distance_mV + 1) + a;
}
