Eigen libary for mbed

Committer:
jsoh91
Date:
Tue Sep 24 00:18:23 2019 +0000
Revision:
1:3b8049da21b8
Parent:
0:13a5d365ba16
ignore and revise some of error parts

Who changed what in which revision?

UserRevisionLine numberNew contents of line
ykuroda 0:13a5d365ba16 1 // This file is part of Eigen, a lightweight C++ template library
ykuroda 0:13a5d365ba16 2 // for linear algebra.
ykuroda 0:13a5d365ba16 3 //
ykuroda 0:13a5d365ba16 4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
ykuroda 0:13a5d365ba16 5 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
ykuroda 0:13a5d365ba16 6 // Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
ykuroda 0:13a5d365ba16 7 // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
ykuroda 0:13a5d365ba16 8 // Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
ykuroda 0:13a5d365ba16 9 //
ykuroda 0:13a5d365ba16 10 // This Source Code Form is subject to the terms of the Mozilla
ykuroda 0:13a5d365ba16 11 // Public License v. 2.0. If a copy of the MPL was not distributed
ykuroda 0:13a5d365ba16 12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
ykuroda 0:13a5d365ba16 13
ykuroda 0:13a5d365ba16 14
ykuroda 0:13a5d365ba16 15 /*****************************************************************************
ykuroda 0:13a5d365ba16 16 *** Platform checks for aligned malloc functions ***
ykuroda 0:13a5d365ba16 17 *****************************************************************************/
ykuroda 0:13a5d365ba16 18
ykuroda 0:13a5d365ba16 19 #ifndef EIGEN_MEMORY_H
ykuroda 0:13a5d365ba16 20 #define EIGEN_MEMORY_H
ykuroda 0:13a5d365ba16 21
ykuroda 0:13a5d365ba16 22 #ifndef EIGEN_MALLOC_ALREADY_ALIGNED
ykuroda 0:13a5d365ba16 23
ykuroda 0:13a5d365ba16 24 // Try to determine automatically if malloc is already aligned.
ykuroda 0:13a5d365ba16 25
ykuroda 0:13a5d365ba16 26 // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
ykuroda 0:13a5d365ba16 27 // http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
ykuroda 0:13a5d365ba16 28 // This is true at least since glibc 2.8.
ykuroda 0:13a5d365ba16 29 // This leaves the question how to detect 64-bit. According to this document,
ykuroda 0:13a5d365ba16 30 // http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
ykuroda 0:13a5d365ba16 31 // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
ykuroda 0:13a5d365ba16 32 // quite safe, at least within the context of glibc, to equate 64-bit with LP64.
ykuroda 0:13a5d365ba16 33 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
ykuroda 0:13a5d365ba16 34 && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ )
ykuroda 0:13a5d365ba16 35 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
ykuroda 0:13a5d365ba16 36 #else
ykuroda 0:13a5d365ba16 37 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
ykuroda 0:13a5d365ba16 38 #endif
ykuroda 0:13a5d365ba16 39
ykuroda 0:13a5d365ba16 40 // FreeBSD 6 seems to have 16-byte aligned malloc
ykuroda 0:13a5d365ba16 41 // See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
ykuroda 0:13a5d365ba16 42 // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
ykuroda 0:13a5d365ba16 43 // See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
ykuroda 0:13a5d365ba16 44 #if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
ykuroda 0:13a5d365ba16 45 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
ykuroda 0:13a5d365ba16 46 #else
ykuroda 0:13a5d365ba16 47 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
ykuroda 0:13a5d365ba16 48 #endif
ykuroda 0:13a5d365ba16 49
ykuroda 0:13a5d365ba16 50 #if defined(__APPLE__) \
ykuroda 0:13a5d365ba16 51 || defined(_WIN64) \
ykuroda 0:13a5d365ba16 52 || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
ykuroda 0:13a5d365ba16 53 || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
ykuroda 0:13a5d365ba16 54 #define EIGEN_MALLOC_ALREADY_ALIGNED 1
ykuroda 0:13a5d365ba16 55 #else
ykuroda 0:13a5d365ba16 56 #define EIGEN_MALLOC_ALREADY_ALIGNED 0
ykuroda 0:13a5d365ba16 57 #endif
ykuroda 0:13a5d365ba16 58
ykuroda 0:13a5d365ba16 59 #endif
ykuroda 0:13a5d365ba16 60
ykuroda 0:13a5d365ba16 61 // See bug 554 (http://eigen.tuxfamily.org/bz/show_bug.cgi?id=554)
ykuroda 0:13a5d365ba16 62 // It seems to be unsafe to check _POSIX_ADVISORY_INFO without including unistd.h first.
ykuroda 0:13a5d365ba16 63 // Currently, let's include it only on unix systems:
ykuroda 0:13a5d365ba16 64 #if defined(__unix__) || defined(__unix)
ykuroda 0:13a5d365ba16 65 #include <unistd.h>
ykuroda 0:13a5d365ba16 66 #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || (defined __PGI) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
ykuroda 0:13a5d365ba16 67 #define EIGEN_HAS_POSIX_MEMALIGN 1
ykuroda 0:13a5d365ba16 68 #endif
ykuroda 0:13a5d365ba16 69 #endif
ykuroda 0:13a5d365ba16 70
ykuroda 0:13a5d365ba16 71 #ifndef EIGEN_HAS_POSIX_MEMALIGN
ykuroda 0:13a5d365ba16 72 #define EIGEN_HAS_POSIX_MEMALIGN 0
ykuroda 0:13a5d365ba16 73 #endif
ykuroda 0:13a5d365ba16 74
ykuroda 0:13a5d365ba16 75 #ifdef EIGEN_VECTORIZE_SSE
ykuroda 0:13a5d365ba16 76 #define EIGEN_HAS_MM_MALLOC 1
ykuroda 0:13a5d365ba16 77 #else
ykuroda 0:13a5d365ba16 78 #define EIGEN_HAS_MM_MALLOC 0
ykuroda 0:13a5d365ba16 79 #endif
ykuroda 0:13a5d365ba16 80
ykuroda 0:13a5d365ba16 81 namespace Eigen {
ykuroda 0:13a5d365ba16 82
ykuroda 0:13a5d365ba16 83 namespace internal {
ykuroda 0:13a5d365ba16 84
ykuroda 0:13a5d365ba16 85 inline void throw_std_bad_alloc()
ykuroda 0:13a5d365ba16 86 {
ykuroda 0:13a5d365ba16 87 #ifdef EIGEN_EXCEPTIONS
ykuroda 0:13a5d365ba16 88 throw std::bad_alloc();
ykuroda 0:13a5d365ba16 89 #else
jsoh91 1:3b8049da21b8 90 // std::size_t huge = -1;
jsoh91 1:3b8049da21b8 91 // new int[huge];
ykuroda 0:13a5d365ba16 92 #endif
ykuroda 0:13a5d365ba16 93 }
ykuroda 0:13a5d365ba16 94
ykuroda 0:13a5d365ba16 95 /*****************************************************************************
ykuroda 0:13a5d365ba16 96 *** Implementation of handmade aligned functions ***
ykuroda 0:13a5d365ba16 97 *****************************************************************************/
ykuroda 0:13a5d365ba16 98
ykuroda 0:13a5d365ba16 99 /* ----- Hand made implementations of aligned malloc/free and realloc ----- */
ykuroda 0:13a5d365ba16 100
ykuroda 0:13a5d365ba16 101 /** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned.
ykuroda 0:13a5d365ba16 102 * Fast, but wastes 16 additional bytes of memory. Does not throw any exception.
ykuroda 0:13a5d365ba16 103 */
ykuroda 0:13a5d365ba16 104 inline void* handmade_aligned_malloc(std::size_t size)
ykuroda 0:13a5d365ba16 105 {
ykuroda 0:13a5d365ba16 106 void *original = std::malloc(size+16);
ykuroda 0:13a5d365ba16 107 if (original == 0) return 0;
ykuroda 0:13a5d365ba16 108 void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16);
ykuroda 0:13a5d365ba16 109 *(reinterpret_cast<void**>(aligned) - 1) = original;
ykuroda 0:13a5d365ba16 110 return aligned;
ykuroda 0:13a5d365ba16 111 }
ykuroda 0:13a5d365ba16 112
ykuroda 0:13a5d365ba16 113 /** \internal Frees memory allocated with handmade_aligned_malloc */
ykuroda 0:13a5d365ba16 114 inline void handmade_aligned_free(void *ptr)
ykuroda 0:13a5d365ba16 115 {
ykuroda 0:13a5d365ba16 116 if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
ykuroda 0:13a5d365ba16 117 }
ykuroda 0:13a5d365ba16 118
ykuroda 0:13a5d365ba16 119 /** \internal
ykuroda 0:13a5d365ba16 120 * \brief Reallocates aligned memory.
ykuroda 0:13a5d365ba16 121 * Since we know that our handmade version is based on std::realloc
ykuroda 0:13a5d365ba16 122 * we can use std::realloc to implement efficient reallocation.
ykuroda 0:13a5d365ba16 123 */
ykuroda 0:13a5d365ba16 124 inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0)
ykuroda 0:13a5d365ba16 125 {
ykuroda 0:13a5d365ba16 126 if (ptr == 0) return handmade_aligned_malloc(size);
ykuroda 0:13a5d365ba16 127 void *original = *(reinterpret_cast<void**>(ptr) - 1);
ykuroda 0:13a5d365ba16 128 std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original);
ykuroda 0:13a5d365ba16 129 original = std::realloc(original,size+16);
ykuroda 0:13a5d365ba16 130 if (original == 0) return 0;
ykuroda 0:13a5d365ba16 131 void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16);
ykuroda 0:13a5d365ba16 132 void *previous_aligned = static_cast<char *>(original)+previous_offset;
ykuroda 0:13a5d365ba16 133 if(aligned!=previous_aligned)
ykuroda 0:13a5d365ba16 134 std::memmove(aligned, previous_aligned, size);
ykuroda 0:13a5d365ba16 135
ykuroda 0:13a5d365ba16 136 *(reinterpret_cast<void**>(aligned) - 1) = original;
ykuroda 0:13a5d365ba16 137 return aligned;
ykuroda 0:13a5d365ba16 138 }
ykuroda 0:13a5d365ba16 139
ykuroda 0:13a5d365ba16 140 /*****************************************************************************
ykuroda 0:13a5d365ba16 141 *** Implementation of generic aligned realloc (when no realloc can be used)***
ykuroda 0:13a5d365ba16 142 *****************************************************************************/
ykuroda 0:13a5d365ba16 143
ykuroda 0:13a5d365ba16 144 void* aligned_malloc(std::size_t size);
ykuroda 0:13a5d365ba16 145 void aligned_free(void *ptr);
ykuroda 0:13a5d365ba16 146
ykuroda 0:13a5d365ba16 147 /** \internal
ykuroda 0:13a5d365ba16 148 * \brief Reallocates aligned memory.
ykuroda 0:13a5d365ba16 149 * Allows reallocation with aligned ptr types. This implementation will
ykuroda 0:13a5d365ba16 150 * always create a new memory chunk and copy the old data.
ykuroda 0:13a5d365ba16 151 */
ykuroda 0:13a5d365ba16 152 inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
ykuroda 0:13a5d365ba16 153 {
ykuroda 0:13a5d365ba16 154 if (ptr==0)
ykuroda 0:13a5d365ba16 155 return aligned_malloc(size);
ykuroda 0:13a5d365ba16 156
ykuroda 0:13a5d365ba16 157 if (size==0)
ykuroda 0:13a5d365ba16 158 {
ykuroda 0:13a5d365ba16 159 aligned_free(ptr);
ykuroda 0:13a5d365ba16 160 return 0;
ykuroda 0:13a5d365ba16 161 }
ykuroda 0:13a5d365ba16 162
ykuroda 0:13a5d365ba16 163 void* newptr = aligned_malloc(size);
ykuroda 0:13a5d365ba16 164 if (newptr == 0)
ykuroda 0:13a5d365ba16 165 {
ykuroda 0:13a5d365ba16 166 #ifdef EIGEN_HAS_ERRNO
ykuroda 0:13a5d365ba16 167 errno = ENOMEM; // according to the standard
ykuroda 0:13a5d365ba16 168 #endif
ykuroda 0:13a5d365ba16 169 return 0;
ykuroda 0:13a5d365ba16 170 }
ykuroda 0:13a5d365ba16 171
ykuroda 0:13a5d365ba16 172 if (ptr != 0)
ykuroda 0:13a5d365ba16 173 {
ykuroda 0:13a5d365ba16 174 std::memcpy(newptr, ptr, (std::min)(size,old_size));
ykuroda 0:13a5d365ba16 175 aligned_free(ptr);
ykuroda 0:13a5d365ba16 176 }
ykuroda 0:13a5d365ba16 177
ykuroda 0:13a5d365ba16 178 return newptr;
ykuroda 0:13a5d365ba16 179 }
ykuroda 0:13a5d365ba16 180
ykuroda 0:13a5d365ba16 181 /*****************************************************************************
ykuroda 0:13a5d365ba16 182 *** Implementation of portable aligned versions of malloc/free/realloc ***
ykuroda 0:13a5d365ba16 183 *****************************************************************************/
ykuroda 0:13a5d365ba16 184
ykuroda 0:13a5d365ba16 185 #ifdef EIGEN_NO_MALLOC
ykuroda 0:13a5d365ba16 186 inline void check_that_malloc_is_allowed()
ykuroda 0:13a5d365ba16 187 {
ykuroda 0:13a5d365ba16 188 eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
ykuroda 0:13a5d365ba16 189 }
ykuroda 0:13a5d365ba16 190 #elif defined EIGEN_RUNTIME_NO_MALLOC
ykuroda 0:13a5d365ba16 191 inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
ykuroda 0:13a5d365ba16 192 {
ykuroda 0:13a5d365ba16 193 static bool value = true;
ykuroda 0:13a5d365ba16 194 if (update == 1)
ykuroda 0:13a5d365ba16 195 value = new_value;
ykuroda 0:13a5d365ba16 196 return value;
ykuroda 0:13a5d365ba16 197 }
ykuroda 0:13a5d365ba16 198 inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
ykuroda 0:13a5d365ba16 199 inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
ykuroda 0:13a5d365ba16 200 inline void check_that_malloc_is_allowed()
ykuroda 0:13a5d365ba16 201 {
ykuroda 0:13a5d365ba16 202 eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
ykuroda 0:13a5d365ba16 203 }
ykuroda 0:13a5d365ba16 204 #else
ykuroda 0:13a5d365ba16 205 inline void check_that_malloc_is_allowed()
ykuroda 0:13a5d365ba16 206 {}
ykuroda 0:13a5d365ba16 207 #endif
ykuroda 0:13a5d365ba16 208
ykuroda 0:13a5d365ba16 209 /** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 bytes alignment.
ykuroda 0:13a5d365ba16 210 * On allocation error, the returned pointer is null, and std::bad_alloc is thrown.
ykuroda 0:13a5d365ba16 211 */
ykuroda 0:13a5d365ba16 212 inline void* aligned_malloc(size_t size)
ykuroda 0:13a5d365ba16 213 {
ykuroda 0:13a5d365ba16 214 check_that_malloc_is_allowed();
ykuroda 0:13a5d365ba16 215
ykuroda 0:13a5d365ba16 216 void *result;
ykuroda 0:13a5d365ba16 217 #if !EIGEN_ALIGN
ykuroda 0:13a5d365ba16 218 result = std::malloc(size);
ykuroda 0:13a5d365ba16 219 #elif EIGEN_MALLOC_ALREADY_ALIGNED
ykuroda 0:13a5d365ba16 220 result = std::malloc(size);
ykuroda 0:13a5d365ba16 221 #elif EIGEN_HAS_POSIX_MEMALIGN
ykuroda 0:13a5d365ba16 222 if(posix_memalign(&result, 16, size)) result = 0;
ykuroda 0:13a5d365ba16 223 #elif EIGEN_HAS_MM_MALLOC
ykuroda 0:13a5d365ba16 224 result = _mm_malloc(size, 16);
ykuroda 0:13a5d365ba16 225 #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
ykuroda 0:13a5d365ba16 226 result = _aligned_malloc(size, 16);
ykuroda 0:13a5d365ba16 227 #else
ykuroda 0:13a5d365ba16 228 result = handmade_aligned_malloc(size);
ykuroda 0:13a5d365ba16 229 #endif
ykuroda 0:13a5d365ba16 230
ykuroda 0:13a5d365ba16 231 if(!result && size)
ykuroda 0:13a5d365ba16 232 throw_std_bad_alloc();
ykuroda 0:13a5d365ba16 233
ykuroda 0:13a5d365ba16 234 return result;
ykuroda 0:13a5d365ba16 235 }
ykuroda 0:13a5d365ba16 236
ykuroda 0:13a5d365ba16 237 /** \internal Frees memory allocated with aligned_malloc. */
ykuroda 0:13a5d365ba16 238 inline void aligned_free(void *ptr)
ykuroda 0:13a5d365ba16 239 {
ykuroda 0:13a5d365ba16 240 #if !EIGEN_ALIGN
ykuroda 0:13a5d365ba16 241 std::free(ptr);
ykuroda 0:13a5d365ba16 242 #elif EIGEN_MALLOC_ALREADY_ALIGNED
ykuroda 0:13a5d365ba16 243 std::free(ptr);
ykuroda 0:13a5d365ba16 244 #elif EIGEN_HAS_POSIX_MEMALIGN
ykuroda 0:13a5d365ba16 245 std::free(ptr);
ykuroda 0:13a5d365ba16 246 #elif EIGEN_HAS_MM_MALLOC
ykuroda 0:13a5d365ba16 247 _mm_free(ptr);
ykuroda 0:13a5d365ba16 248 #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
ykuroda 0:13a5d365ba16 249 _aligned_free(ptr);
ykuroda 0:13a5d365ba16 250 #else
ykuroda 0:13a5d365ba16 251 handmade_aligned_free(ptr);
ykuroda 0:13a5d365ba16 252 #endif
ykuroda 0:13a5d365ba16 253 }
ykuroda 0:13a5d365ba16 254
ykuroda 0:13a5d365ba16 255 /**
ykuroda 0:13a5d365ba16 256 * \internal
ykuroda 0:13a5d365ba16 257 * \brief Reallocates an aligned block of memory.
ykuroda 0:13a5d365ba16 258 * \throws std::bad_alloc on allocation failure
ykuroda 0:13a5d365ba16 259 **/
ykuroda 0:13a5d365ba16 260 inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
ykuroda 0:13a5d365ba16 261 {
ykuroda 0:13a5d365ba16 262 EIGEN_UNUSED_VARIABLE(old_size);
ykuroda 0:13a5d365ba16 263
ykuroda 0:13a5d365ba16 264 void *result;
ykuroda 0:13a5d365ba16 265 #if !EIGEN_ALIGN
ykuroda 0:13a5d365ba16 266 result = std::realloc(ptr,new_size);
ykuroda 0:13a5d365ba16 267 #elif EIGEN_MALLOC_ALREADY_ALIGNED
ykuroda 0:13a5d365ba16 268 result = std::realloc(ptr,new_size);
ykuroda 0:13a5d365ba16 269 #elif EIGEN_HAS_POSIX_MEMALIGN
ykuroda 0:13a5d365ba16 270 result = generic_aligned_realloc(ptr,new_size,old_size);
ykuroda 0:13a5d365ba16 271 #elif EIGEN_HAS_MM_MALLOC
ykuroda 0:13a5d365ba16 272 // The defined(_mm_free) is just here to verify that this MSVC version
ykuroda 0:13a5d365ba16 273 // implements _mm_malloc/_mm_free based on the corresponding _aligned_
ykuroda 0:13a5d365ba16 274 // functions. This may not always be the case and we just try to be safe.
ykuroda 0:13a5d365ba16 275 #if defined(_MSC_VER) && (!defined(_WIN32_WCE)) && defined(_mm_free)
ykuroda 0:13a5d365ba16 276 result = _aligned_realloc(ptr,new_size,16);
ykuroda 0:13a5d365ba16 277 #else
ykuroda 0:13a5d365ba16 278 result = generic_aligned_realloc(ptr,new_size,old_size);
ykuroda 0:13a5d365ba16 279 #endif
ykuroda 0:13a5d365ba16 280 #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
ykuroda 0:13a5d365ba16 281 result = _aligned_realloc(ptr,new_size,16);
ykuroda 0:13a5d365ba16 282 #else
ykuroda 0:13a5d365ba16 283 result = handmade_aligned_realloc(ptr,new_size,old_size);
ykuroda 0:13a5d365ba16 284 #endif
ykuroda 0:13a5d365ba16 285
ykuroda 0:13a5d365ba16 286 if (!result && new_size)
ykuroda 0:13a5d365ba16 287 throw_std_bad_alloc();
ykuroda 0:13a5d365ba16 288
ykuroda 0:13a5d365ba16 289 return result;
ykuroda 0:13a5d365ba16 290 }
ykuroda 0:13a5d365ba16 291
ykuroda 0:13a5d365ba16 292 /*****************************************************************************
ykuroda 0:13a5d365ba16 293 *** Implementation of conditionally aligned functions ***
ykuroda 0:13a5d365ba16 294 *****************************************************************************/
ykuroda 0:13a5d365ba16 295
ykuroda 0:13a5d365ba16 296 /** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
ykuroda 0:13a5d365ba16 297 * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown.
ykuroda 0:13a5d365ba16 298 */
ykuroda 0:13a5d365ba16 299 template<bool Align> inline void* conditional_aligned_malloc(size_t size)
ykuroda 0:13a5d365ba16 300 {
ykuroda 0:13a5d365ba16 301 return aligned_malloc(size);
ykuroda 0:13a5d365ba16 302 }
ykuroda 0:13a5d365ba16 303
ykuroda 0:13a5d365ba16 304 template<> inline void* conditional_aligned_malloc<false>(size_t size)
ykuroda 0:13a5d365ba16 305 {
ykuroda 0:13a5d365ba16 306 check_that_malloc_is_allowed();
ykuroda 0:13a5d365ba16 307
ykuroda 0:13a5d365ba16 308 void *result = std::malloc(size);
ykuroda 0:13a5d365ba16 309 if(!result && size)
ykuroda 0:13a5d365ba16 310 throw_std_bad_alloc();
ykuroda 0:13a5d365ba16 311 return result;
ykuroda 0:13a5d365ba16 312 }
ykuroda 0:13a5d365ba16 313
ykuroda 0:13a5d365ba16 314 /** \internal Frees memory allocated with conditional_aligned_malloc */
ykuroda 0:13a5d365ba16 315 template<bool Align> inline void conditional_aligned_free(void *ptr)
ykuroda 0:13a5d365ba16 316 {
ykuroda 0:13a5d365ba16 317 aligned_free(ptr);
ykuroda 0:13a5d365ba16 318 }
ykuroda 0:13a5d365ba16 319
ykuroda 0:13a5d365ba16 320 template<> inline void conditional_aligned_free<false>(void *ptr)
ykuroda 0:13a5d365ba16 321 {
ykuroda 0:13a5d365ba16 322 std::free(ptr);
ykuroda 0:13a5d365ba16 323 }
ykuroda 0:13a5d365ba16 324
ykuroda 0:13a5d365ba16 325 template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
ykuroda 0:13a5d365ba16 326 {
ykuroda 0:13a5d365ba16 327 return aligned_realloc(ptr, new_size, old_size);
ykuroda 0:13a5d365ba16 328 }
ykuroda 0:13a5d365ba16 329
ykuroda 0:13a5d365ba16 330 template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
ykuroda 0:13a5d365ba16 331 {
ykuroda 0:13a5d365ba16 332 return std::realloc(ptr, new_size);
ykuroda 0:13a5d365ba16 333 }
ykuroda 0:13a5d365ba16 334
ykuroda 0:13a5d365ba16 335 /*****************************************************************************
ykuroda 0:13a5d365ba16 336 *** Construction/destruction of array elements ***
ykuroda 0:13a5d365ba16 337 *****************************************************************************/
ykuroda 0:13a5d365ba16 338
ykuroda 0:13a5d365ba16 339 /** \internal Constructs the elements of an array.
ykuroda 0:13a5d365ba16 340 * The \a size parameter tells on how many objects to call the constructor of T.
ykuroda 0:13a5d365ba16 341 */
ykuroda 0:13a5d365ba16 342 template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
ykuroda 0:13a5d365ba16 343 {
ykuroda 0:13a5d365ba16 344 for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
ykuroda 0:13a5d365ba16 345 return ptr;
ykuroda 0:13a5d365ba16 346 }
ykuroda 0:13a5d365ba16 347
ykuroda 0:13a5d365ba16 348 /** \internal Destructs the elements of an array.
ykuroda 0:13a5d365ba16 349 * The \a size parameters tells on how many objects to call the destructor of T.
ykuroda 0:13a5d365ba16 350 */
ykuroda 0:13a5d365ba16 351 template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
ykuroda 0:13a5d365ba16 352 {
ykuroda 0:13a5d365ba16 353 // always destruct an array starting from the end.
ykuroda 0:13a5d365ba16 354 if(ptr)
ykuroda 0:13a5d365ba16 355 while(size) ptr[--size].~T();
ykuroda 0:13a5d365ba16 356 }
ykuroda 0:13a5d365ba16 357
ykuroda 0:13a5d365ba16 358 /*****************************************************************************
ykuroda 0:13a5d365ba16 359 *** Implementation of aligned new/delete-like functions ***
ykuroda 0:13a5d365ba16 360 *****************************************************************************/
ykuroda 0:13a5d365ba16 361
ykuroda 0:13a5d365ba16 362 template<typename T>
ykuroda 0:13a5d365ba16 363 EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size)
ykuroda 0:13a5d365ba16 364 {
ykuroda 0:13a5d365ba16 365 if(size > size_t(-1) / sizeof(T))
ykuroda 0:13a5d365ba16 366 throw_std_bad_alloc();
ykuroda 0:13a5d365ba16 367 }
ykuroda 0:13a5d365ba16 368
ykuroda 0:13a5d365ba16 369 /** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
ykuroda 0:13a5d365ba16 370 * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown.
ykuroda 0:13a5d365ba16 371 * The default constructor of T is called.
ykuroda 0:13a5d365ba16 372 */
ykuroda 0:13a5d365ba16 373 template<typename T> inline T* aligned_new(size_t size)
ykuroda 0:13a5d365ba16 374 {
ykuroda 0:13a5d365ba16 375 check_size_for_overflow<T>(size);
ykuroda 0:13a5d365ba16 376 T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
ykuroda 0:13a5d365ba16 377 return construct_elements_of_array(result, size);
ykuroda 0:13a5d365ba16 378 }
ykuroda 0:13a5d365ba16 379
ykuroda 0:13a5d365ba16 380 template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
ykuroda 0:13a5d365ba16 381 {
ykuroda 0:13a5d365ba16 382 check_size_for_overflow<T>(size);
ykuroda 0:13a5d365ba16 383 T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
ykuroda 0:13a5d365ba16 384 return construct_elements_of_array(result, size);
ykuroda 0:13a5d365ba16 385 }
ykuroda 0:13a5d365ba16 386
ykuroda 0:13a5d365ba16 387 /** \internal Deletes objects constructed with aligned_new
ykuroda 0:13a5d365ba16 388 * The \a size parameters tells on how many objects to call the destructor of T.
ykuroda 0:13a5d365ba16 389 */
ykuroda 0:13a5d365ba16 390 template<typename T> inline void aligned_delete(T *ptr, size_t size)
ykuroda 0:13a5d365ba16 391 {
ykuroda 0:13a5d365ba16 392 destruct_elements_of_array<T>(ptr, size);
ykuroda 0:13a5d365ba16 393 aligned_free(ptr);
ykuroda 0:13a5d365ba16 394 }
ykuroda 0:13a5d365ba16 395
ykuroda 0:13a5d365ba16 396 /** \internal Deletes objects constructed with conditional_aligned_new
ykuroda 0:13a5d365ba16 397 * The \a size parameters tells on how many objects to call the destructor of T.
ykuroda 0:13a5d365ba16 398 */
ykuroda 0:13a5d365ba16 399 template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size)
ykuroda 0:13a5d365ba16 400 {
ykuroda 0:13a5d365ba16 401 destruct_elements_of_array<T>(ptr, size);
ykuroda 0:13a5d365ba16 402 conditional_aligned_free<Align>(ptr);
ykuroda 0:13a5d365ba16 403 }
ykuroda 0:13a5d365ba16 404
ykuroda 0:13a5d365ba16 405 template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
ykuroda 0:13a5d365ba16 406 {
ykuroda 0:13a5d365ba16 407 check_size_for_overflow<T>(new_size);
ykuroda 0:13a5d365ba16 408 check_size_for_overflow<T>(old_size);
ykuroda 0:13a5d365ba16 409 if(new_size < old_size)
ykuroda 0:13a5d365ba16 410 destruct_elements_of_array(pts+new_size, old_size-new_size);
ykuroda 0:13a5d365ba16 411 T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
ykuroda 0:13a5d365ba16 412 if(new_size > old_size)
ykuroda 0:13a5d365ba16 413 construct_elements_of_array(result+old_size, new_size-old_size);
ykuroda 0:13a5d365ba16 414 return result;
ykuroda 0:13a5d365ba16 415 }
ykuroda 0:13a5d365ba16 416
ykuroda 0:13a5d365ba16 417
ykuroda 0:13a5d365ba16 418 template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
ykuroda 0:13a5d365ba16 419 {
ykuroda 0:13a5d365ba16 420 if(size==0)
ykuroda 0:13a5d365ba16 421 return 0; // short-cut. Also fixes Bug 884
ykuroda 0:13a5d365ba16 422 check_size_for_overflow<T>(size);
ykuroda 0:13a5d365ba16 423 T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
ykuroda 0:13a5d365ba16 424 if(NumTraits<T>::RequireInitialization)
ykuroda 0:13a5d365ba16 425 construct_elements_of_array(result, size);
ykuroda 0:13a5d365ba16 426 return result;
ykuroda 0:13a5d365ba16 427 }
ykuroda 0:13a5d365ba16 428
ykuroda 0:13a5d365ba16 429 template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size)
ykuroda 0:13a5d365ba16 430 {
ykuroda 0:13a5d365ba16 431 check_size_for_overflow<T>(new_size);
ykuroda 0:13a5d365ba16 432 check_size_for_overflow<T>(old_size);
ykuroda 0:13a5d365ba16 433 if(NumTraits<T>::RequireInitialization && (new_size < old_size))
ykuroda 0:13a5d365ba16 434 destruct_elements_of_array(pts+new_size, old_size-new_size);
ykuroda 0:13a5d365ba16 435 T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
ykuroda 0:13a5d365ba16 436 if(NumTraits<T>::RequireInitialization && (new_size > old_size))
ykuroda 0:13a5d365ba16 437 construct_elements_of_array(result+old_size, new_size-old_size);
ykuroda 0:13a5d365ba16 438 return result;
ykuroda 0:13a5d365ba16 439 }
ykuroda 0:13a5d365ba16 440
ykuroda 0:13a5d365ba16 441 template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size)
ykuroda 0:13a5d365ba16 442 {
ykuroda 0:13a5d365ba16 443 if(NumTraits<T>::RequireInitialization)
ykuroda 0:13a5d365ba16 444 destruct_elements_of_array<T>(ptr, size);
ykuroda 0:13a5d365ba16 445 conditional_aligned_free<Align>(ptr);
ykuroda 0:13a5d365ba16 446 }
ykuroda 0:13a5d365ba16 447
ykuroda 0:13a5d365ba16 448 /****************************************************************************/
ykuroda 0:13a5d365ba16 449
ykuroda 0:13a5d365ba16 450 /** \internal Returns the index of the first element of the array that is well aligned for vectorization.
ykuroda 0:13a5d365ba16 451 *
ykuroda 0:13a5d365ba16 452 * \param array the address of the start of the array
ykuroda 0:13a5d365ba16 453 * \param size the size of the array
ykuroda 0:13a5d365ba16 454 *
ykuroda 0:13a5d365ba16 455 * \note If no element of the array is well aligned, the size of the array is returned. Typically,
ykuroda 0:13a5d365ba16 456 * for example with SSE, "well aligned" means 16-byte-aligned. If vectorization is disabled or if the
ykuroda 0:13a5d365ba16 457 * packet size for the given scalar type is 1, then everything is considered well-aligned.
ykuroda 0:13a5d365ba16 458 *
ykuroda 0:13a5d365ba16 459 * \note If the scalar type is vectorizable, we rely on the following assumptions: sizeof(Scalar) is a
ykuroda 0:13a5d365ba16 460 * power of 2, the packet size in bytes is also a power of 2, and is a multiple of sizeof(Scalar). On the
ykuroda 0:13a5d365ba16 461 * other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for
ykuroda 0:13a5d365ba16 462 * example with Scalar=double on certain 32-bit platforms, see bug #79.
ykuroda 0:13a5d365ba16 463 *
ykuroda 0:13a5d365ba16 464 * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h.
ykuroda 0:13a5d365ba16 465 */
ykuroda 0:13a5d365ba16 466 template<typename Scalar, typename Index>
ykuroda 0:13a5d365ba16 467 static inline Index first_aligned(const Scalar* array, Index size)
ykuroda 0:13a5d365ba16 468 {
ykuroda 0:13a5d365ba16 469 static const Index PacketSize = packet_traits<Scalar>::size;
ykuroda 0:13a5d365ba16 470 static const Index PacketAlignedMask = PacketSize-1;
ykuroda 0:13a5d365ba16 471
ykuroda 0:13a5d365ba16 472 if(PacketSize==1)
ykuroda 0:13a5d365ba16 473 {
ykuroda 0:13a5d365ba16 474 // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements
ykuroda 0:13a5d365ba16 475 // of the array have the same alignment.
ykuroda 0:13a5d365ba16 476 return 0;
ykuroda 0:13a5d365ba16 477 }
ykuroda 0:13a5d365ba16 478 else if(size_t(array) & (sizeof(Scalar)-1))
ykuroda 0:13a5d365ba16 479 {
ykuroda 0:13a5d365ba16 480 // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar.
ykuroda 0:13a5d365ba16 481 // Consequently, no element of the array is well aligned.
ykuroda 0:13a5d365ba16 482 return size;
ykuroda 0:13a5d365ba16 483 }
ykuroda 0:13a5d365ba16 484 else
ykuroda 0:13a5d365ba16 485 {
ykuroda 0:13a5d365ba16 486 return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
ykuroda 0:13a5d365ba16 487 & PacketAlignedMask, size);
ykuroda 0:13a5d365ba16 488 }
ykuroda 0:13a5d365ba16 489 }
ykuroda 0:13a5d365ba16 490
ykuroda 0:13a5d365ba16 491 /** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size
ykuroda 0:13a5d365ba16 492 */
ykuroda 0:13a5d365ba16 493 template<typename Index>
ykuroda 0:13a5d365ba16 494 inline static Index first_multiple(Index size, Index base)
ykuroda 0:13a5d365ba16 495 {
ykuroda 0:13a5d365ba16 496 return ((size+base-1)/base)*base;
ykuroda 0:13a5d365ba16 497 }
ykuroda 0:13a5d365ba16 498
ykuroda 0:13a5d365ba16 499 // std::copy is much slower than memcpy, so let's introduce a smart_copy which
ykuroda 0:13a5d365ba16 500 // use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
ykuroda 0:13a5d365ba16 501 template<typename T, bool UseMemcpy> struct smart_copy_helper;
ykuroda 0:13a5d365ba16 502
ykuroda 0:13a5d365ba16 503 template<typename T> void smart_copy(const T* start, const T* end, T* target)
ykuroda 0:13a5d365ba16 504 {
ykuroda 0:13a5d365ba16 505 smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
ykuroda 0:13a5d365ba16 506 }
ykuroda 0:13a5d365ba16 507
ykuroda 0:13a5d365ba16 508 template<typename T> struct smart_copy_helper<T,true> {
ykuroda 0:13a5d365ba16 509 static inline void run(const T* start, const T* end, T* target)
ykuroda 0:13a5d365ba16 510 { memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); }
ykuroda 0:13a5d365ba16 511 };
ykuroda 0:13a5d365ba16 512
ykuroda 0:13a5d365ba16 513 template<typename T> struct smart_copy_helper<T,false> {
ykuroda 0:13a5d365ba16 514 static inline void run(const T* start, const T* end, T* target)
ykuroda 0:13a5d365ba16 515 { std::copy(start, end, target); }
ykuroda 0:13a5d365ba16 516 };
ykuroda 0:13a5d365ba16 517
ykuroda 0:13a5d365ba16 518
ykuroda 0:13a5d365ba16 519 /*****************************************************************************
ykuroda 0:13a5d365ba16 520 *** Implementation of runtime stack allocation (falling back to malloc) ***
ykuroda 0:13a5d365ba16 521 *****************************************************************************/
ykuroda 0:13a5d365ba16 522
ykuroda 0:13a5d365ba16 523 // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
ykuroda 0:13a5d365ba16 524 // to the appropriate stack allocation function
ykuroda 0:13a5d365ba16 525 #ifndef EIGEN_ALLOCA
ykuroda 0:13a5d365ba16 526 #if (defined __linux__) || (defined __APPLE__) || (defined alloca)
ykuroda 0:13a5d365ba16 527 #define EIGEN_ALLOCA alloca
ykuroda 0:13a5d365ba16 528 #elif defined(_MSC_VER)
ykuroda 0:13a5d365ba16 529 #define EIGEN_ALLOCA _alloca
ykuroda 0:13a5d365ba16 530 #endif
ykuroda 0:13a5d365ba16 531 #endif
ykuroda 0:13a5d365ba16 532
ykuroda 0:13a5d365ba16 533 // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
ykuroda 0:13a5d365ba16 534 // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
ykuroda 0:13a5d365ba16 535 template<typename T> class aligned_stack_memory_handler
ykuroda 0:13a5d365ba16 536 {
ykuroda 0:13a5d365ba16 537 public:
ykuroda 0:13a5d365ba16 538 /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
ykuroda 0:13a5d365ba16 539 * Note that \a ptr can be 0 regardless of the other parameters.
ykuroda 0:13a5d365ba16 540 * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
ykuroda 0:13a5d365ba16 541 * In this case, the buffer elements will also be destructed when this handler will be destructed.
ykuroda 0:13a5d365ba16 542 * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
ykuroda 0:13a5d365ba16 543 **/
ykuroda 0:13a5d365ba16 544 aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc)
ykuroda 0:13a5d365ba16 545 : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
ykuroda 0:13a5d365ba16 546 {
ykuroda 0:13a5d365ba16 547 if(NumTraits<T>::RequireInitialization && m_ptr)
ykuroda 0:13a5d365ba16 548 Eigen::internal::construct_elements_of_array(m_ptr, size);
ykuroda 0:13a5d365ba16 549 }
ykuroda 0:13a5d365ba16 550 ~aligned_stack_memory_handler()
ykuroda 0:13a5d365ba16 551 {
ykuroda 0:13a5d365ba16 552 if(NumTraits<T>::RequireInitialization && m_ptr)
ykuroda 0:13a5d365ba16 553 Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
ykuroda 0:13a5d365ba16 554 if(m_deallocate)
ykuroda 0:13a5d365ba16 555 Eigen::internal::aligned_free(m_ptr);
ykuroda 0:13a5d365ba16 556 }
ykuroda 0:13a5d365ba16 557 protected:
ykuroda 0:13a5d365ba16 558 T* m_ptr;
ykuroda 0:13a5d365ba16 559 size_t m_size;
ykuroda 0:13a5d365ba16 560 bool m_deallocate;
ykuroda 0:13a5d365ba16 561 };
ykuroda 0:13a5d365ba16 562
ykuroda 0:13a5d365ba16 563 } // end namespace internal
ykuroda 0:13a5d365ba16 564
ykuroda 0:13a5d365ba16 565 /** \internal
ykuroda 0:13a5d365ba16 566 * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack
ykuroda 0:13a5d365ba16 567 * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform
ykuroda 0:13a5d365ba16 568 * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap.
ykuroda 0:13a5d365ba16 569 * The allocated buffer is automatically deleted when exiting the scope of this declaration.
ykuroda 0:13a5d365ba16 570 * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs.
ykuroda 0:13a5d365ba16 571 * Here is an example:
ykuroda 0:13a5d365ba16 572 * \code
ykuroda 0:13a5d365ba16 573 * {
ykuroda 0:13a5d365ba16 574 * ei_declare_aligned_stack_constructed_variable(float,data,size,0);
ykuroda 0:13a5d365ba16 575 * // use data[0] to data[size-1]
ykuroda 0:13a5d365ba16 576 * }
ykuroda 0:13a5d365ba16 577 * \endcode
ykuroda 0:13a5d365ba16 578 * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token.
ykuroda 0:13a5d365ba16 579 */
ykuroda 0:13a5d365ba16 580 #ifdef EIGEN_ALLOCA
ykuroda 0:13a5d365ba16 581
ykuroda 0:13a5d365ba16 582 #if defined(__arm__) || defined(_WIN32)
ykuroda 0:13a5d365ba16 583 #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16)
ykuroda 0:13a5d365ba16 584 #else
ykuroda 0:13a5d365ba16 585 #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
ykuroda 0:13a5d365ba16 586 #endif
ykuroda 0:13a5d365ba16 587
ykuroda 0:13a5d365ba16 588 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
ykuroda 0:13a5d365ba16 589 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
ykuroda 0:13a5d365ba16 590 TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
ykuroda 0:13a5d365ba16 591 : reinterpret_cast<TYPE*>( \
ykuroda 0:13a5d365ba16 592 (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
ykuroda 0:13a5d365ba16 593 : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \
ykuroda 0:13a5d365ba16 594 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
ykuroda 0:13a5d365ba16 595
ykuroda 0:13a5d365ba16 596 #else
ykuroda 0:13a5d365ba16 597
ykuroda 0:13a5d365ba16 598 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
ykuroda 0:13a5d365ba16 599 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
ykuroda 0:13a5d365ba16 600 TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \
ykuroda 0:13a5d365ba16 601 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
ykuroda 0:13a5d365ba16 602
ykuroda 0:13a5d365ba16 603 #endif
ykuroda 0:13a5d365ba16 604
ykuroda 0:13a5d365ba16 605
ykuroda 0:13a5d365ba16 606 /*****************************************************************************
ykuroda 0:13a5d365ba16 607 *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] ***
ykuroda 0:13a5d365ba16 608 *****************************************************************************/
ykuroda 0:13a5d365ba16 609
ykuroda 0:13a5d365ba16 610 #if EIGEN_ALIGN
ykuroda 0:13a5d365ba16 611 #ifdef EIGEN_EXCEPTIONS
ykuroda 0:13a5d365ba16 612 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
ykuroda 0:13a5d365ba16 613 void* operator new(size_t size, const std::nothrow_t&) throw() { \
ykuroda 0:13a5d365ba16 614 try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
ykuroda 0:13a5d365ba16 615 catch (...) { return 0; } \
ykuroda 0:13a5d365ba16 616 }
ykuroda 0:13a5d365ba16 617 #else
ykuroda 0:13a5d365ba16 618 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
ykuroda 0:13a5d365ba16 619 void* operator new(size_t size, const std::nothrow_t&) throw() { \
ykuroda 0:13a5d365ba16 620 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
ykuroda 0:13a5d365ba16 621 }
ykuroda 0:13a5d365ba16 622 #endif
ykuroda 0:13a5d365ba16 623
ykuroda 0:13a5d365ba16 624 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
ykuroda 0:13a5d365ba16 625 void *operator new(size_t size) { \
ykuroda 0:13a5d365ba16 626 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
ykuroda 0:13a5d365ba16 627 } \
ykuroda 0:13a5d365ba16 628 void *operator new[](size_t size) { \
ykuroda 0:13a5d365ba16 629 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
ykuroda 0:13a5d365ba16 630 } \
ykuroda 0:13a5d365ba16 631 void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
ykuroda 0:13a5d365ba16 632 void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
ykuroda 0:13a5d365ba16 633 void operator delete(void * ptr, std::size_t /* sz */) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
ykuroda 0:13a5d365ba16 634 void operator delete[](void * ptr, std::size_t /* sz */) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
ykuroda 0:13a5d365ba16 635 /* in-place new and delete. since (at least afaik) there is no actual */ \
ykuroda 0:13a5d365ba16 636 /* memory allocated we can safely let the default implementation handle */ \
ykuroda 0:13a5d365ba16 637 /* this particular case. */ \
ykuroda 0:13a5d365ba16 638 static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
ykuroda 0:13a5d365ba16 639 static void *operator new[](size_t size, void* ptr) { return ::operator new[](size,ptr); } \
ykuroda 0:13a5d365ba16 640 void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
ykuroda 0:13a5d365ba16 641 void operator delete[](void * memory, void *ptr) throw() { return ::operator delete[](memory,ptr); } \
ykuroda 0:13a5d365ba16 642 /* nothrow-new (returns zero instead of std::bad_alloc) */ \
ykuroda 0:13a5d365ba16 643 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
ykuroda 0:13a5d365ba16 644 void operator delete(void *ptr, const std::nothrow_t&) throw() { \
ykuroda 0:13a5d365ba16 645 Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
ykuroda 0:13a5d365ba16 646 } \
ykuroda 0:13a5d365ba16 647 typedef void eigen_aligned_operator_new_marker_type;
ykuroda 0:13a5d365ba16 648 #else
ykuroda 0:13a5d365ba16 649 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
ykuroda 0:13a5d365ba16 650 #endif
ykuroda 0:13a5d365ba16 651
ykuroda 0:13a5d365ba16 652 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
ykuroda 0:13a5d365ba16 653 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
ykuroda 0:13a5d365ba16 654 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0)))
ykuroda 0:13a5d365ba16 655
ykuroda 0:13a5d365ba16 656 /****************************************************************************/
ykuroda 0:13a5d365ba16 657
ykuroda 0:13a5d365ba16 658 /** \class aligned_allocator
ykuroda 0:13a5d365ba16 659 * \ingroup Core_Module
ykuroda 0:13a5d365ba16 660 *
ykuroda 0:13a5d365ba16 661 * \brief STL compatible allocator to use with with 16 byte aligned types
ykuroda 0:13a5d365ba16 662 *
ykuroda 0:13a5d365ba16 663 * Example:
ykuroda 0:13a5d365ba16 664 * \code
ykuroda 0:13a5d365ba16 665 * // Matrix4f requires 16 bytes alignment:
ykuroda 0:13a5d365ba16 666 * std::map< int, Matrix4f, std::less<int>,
ykuroda 0:13a5d365ba16 667 * aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4;
ykuroda 0:13a5d365ba16 668 * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
ykuroda 0:13a5d365ba16 669 * std::map< int, Vector3f > my_map_vec3;
ykuroda 0:13a5d365ba16 670 * \endcode
ykuroda 0:13a5d365ba16 671 *
ykuroda 0:13a5d365ba16 672 * \sa \ref TopicStlContainers.
ykuroda 0:13a5d365ba16 673 */
ykuroda 0:13a5d365ba16 674 template<class T>
ykuroda 0:13a5d365ba16 675 class aligned_allocator
ykuroda 0:13a5d365ba16 676 {
ykuroda 0:13a5d365ba16 677 public:
ykuroda 0:13a5d365ba16 678 typedef size_t size_type;
ykuroda 0:13a5d365ba16 679 typedef std::ptrdiff_t difference_type;
ykuroda 0:13a5d365ba16 680 typedef T* pointer;
ykuroda 0:13a5d365ba16 681 typedef const T* const_pointer;
ykuroda 0:13a5d365ba16 682 typedef T& reference;
ykuroda 0:13a5d365ba16 683 typedef const T& const_reference;
ykuroda 0:13a5d365ba16 684 typedef T value_type;
ykuroda 0:13a5d365ba16 685
ykuroda 0:13a5d365ba16 686 template<class U>
ykuroda 0:13a5d365ba16 687 struct rebind
ykuroda 0:13a5d365ba16 688 {
ykuroda 0:13a5d365ba16 689 typedef aligned_allocator<U> other;
ykuroda 0:13a5d365ba16 690 };
ykuroda 0:13a5d365ba16 691
ykuroda 0:13a5d365ba16 692 pointer address( reference value ) const
ykuroda 0:13a5d365ba16 693 {
ykuroda 0:13a5d365ba16 694 return &value;
ykuroda 0:13a5d365ba16 695 }
ykuroda 0:13a5d365ba16 696
ykuroda 0:13a5d365ba16 697 const_pointer address( const_reference value ) const
ykuroda 0:13a5d365ba16 698 {
ykuroda 0:13a5d365ba16 699 return &value;
ykuroda 0:13a5d365ba16 700 }
ykuroda 0:13a5d365ba16 701
ykuroda 0:13a5d365ba16 702 aligned_allocator()
ykuroda 0:13a5d365ba16 703 {
ykuroda 0:13a5d365ba16 704 }
ykuroda 0:13a5d365ba16 705
ykuroda 0:13a5d365ba16 706 aligned_allocator( const aligned_allocator& )
ykuroda 0:13a5d365ba16 707 {
ykuroda 0:13a5d365ba16 708 }
ykuroda 0:13a5d365ba16 709
ykuroda 0:13a5d365ba16 710 template<class U>
ykuroda 0:13a5d365ba16 711 aligned_allocator( const aligned_allocator<U>& )
ykuroda 0:13a5d365ba16 712 {
ykuroda 0:13a5d365ba16 713 }
ykuroda 0:13a5d365ba16 714
ykuroda 0:13a5d365ba16 715 ~aligned_allocator()
ykuroda 0:13a5d365ba16 716 {
ykuroda 0:13a5d365ba16 717 }
ykuroda 0:13a5d365ba16 718
ykuroda 0:13a5d365ba16 719 size_type max_size() const
ykuroda 0:13a5d365ba16 720 {
ykuroda 0:13a5d365ba16 721 return (std::numeric_limits<size_type>::max)();
ykuroda 0:13a5d365ba16 722 }
ykuroda 0:13a5d365ba16 723
ykuroda 0:13a5d365ba16 724 pointer allocate( size_type num, const void* hint = 0 )
ykuroda 0:13a5d365ba16 725 {
ykuroda 0:13a5d365ba16 726 EIGEN_UNUSED_VARIABLE(hint);
ykuroda 0:13a5d365ba16 727 internal::check_size_for_overflow<T>(num);
ykuroda 0:13a5d365ba16 728 return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) );
ykuroda 0:13a5d365ba16 729 }
ykuroda 0:13a5d365ba16 730
ykuroda 0:13a5d365ba16 731 void construct( pointer p, const T& value )
ykuroda 0:13a5d365ba16 732 {
ykuroda 0:13a5d365ba16 733 ::new( p ) T( value );
ykuroda 0:13a5d365ba16 734 }
ykuroda 0:13a5d365ba16 735
ykuroda 0:13a5d365ba16 736 void destroy( pointer p )
ykuroda 0:13a5d365ba16 737 {
ykuroda 0:13a5d365ba16 738 p->~T();
ykuroda 0:13a5d365ba16 739 }
ykuroda 0:13a5d365ba16 740
ykuroda 0:13a5d365ba16 741 void deallocate( pointer p, size_type /*num*/ )
ykuroda 0:13a5d365ba16 742 {
ykuroda 0:13a5d365ba16 743 internal::aligned_free( p );
ykuroda 0:13a5d365ba16 744 }
ykuroda 0:13a5d365ba16 745
ykuroda 0:13a5d365ba16 746 bool operator!=(const aligned_allocator<T>& ) const
ykuroda 0:13a5d365ba16 747 { return false; }
ykuroda 0:13a5d365ba16 748
ykuroda 0:13a5d365ba16 749 bool operator==(const aligned_allocator<T>& ) const
ykuroda 0:13a5d365ba16 750 { return true; }
ykuroda 0:13a5d365ba16 751 };
ykuroda 0:13a5d365ba16 752
ykuroda 0:13a5d365ba16 753 //---------- Cache sizes ----------
ykuroda 0:13a5d365ba16 754
ykuroda 0:13a5d365ba16 755 #if !defined(EIGEN_NO_CPUID)
ykuroda 0:13a5d365ba16 756 # if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
ykuroda 0:13a5d365ba16 757 # if defined(__PIC__) && defined(__i386__)
ykuroda 0:13a5d365ba16 758 // Case for x86 with PIC
ykuroda 0:13a5d365ba16 759 # define EIGEN_CPUID(abcd,func,id) \
ykuroda 0:13a5d365ba16 760 __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
ykuroda 0:13a5d365ba16 761 # elif defined(__PIC__) && defined(__x86_64__)
ykuroda 0:13a5d365ba16 762 // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model.
ykuroda 0:13a5d365ba16 763 // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway.
ykuroda 0:13a5d365ba16 764 # define EIGEN_CPUID(abcd,func,id) \
ykuroda 0:13a5d365ba16 765 __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id));
ykuroda 0:13a5d365ba16 766 # else
ykuroda 0:13a5d365ba16 767 // Case for x86_64 or x86 w/o PIC
ykuroda 0:13a5d365ba16 768 # define EIGEN_CPUID(abcd,func,id) \
ykuroda 0:13a5d365ba16 769 __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) );
ykuroda 0:13a5d365ba16 770 # endif
ykuroda 0:13a5d365ba16 771 # elif defined(_MSC_VER)
ykuroda 0:13a5d365ba16 772 # if (_MSC_VER > 1500) && ( defined(_M_IX86) || defined(_M_X64) )
ykuroda 0:13a5d365ba16 773 # define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
ykuroda 0:13a5d365ba16 774 # endif
ykuroda 0:13a5d365ba16 775 # endif
ykuroda 0:13a5d365ba16 776 #endif
ykuroda 0:13a5d365ba16 777
ykuroda 0:13a5d365ba16 778 namespace internal {
ykuroda 0:13a5d365ba16 779
ykuroda 0:13a5d365ba16 780 #ifdef EIGEN_CPUID
ykuroda 0:13a5d365ba16 781
ykuroda 0:13a5d365ba16 782 inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
ykuroda 0:13a5d365ba16 783 {
ykuroda 0:13a5d365ba16 784 return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
ykuroda 0:13a5d365ba16 785 }
ykuroda 0:13a5d365ba16 786
ykuroda 0:13a5d365ba16 787 inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
ykuroda 0:13a5d365ba16 788 {
ykuroda 0:13a5d365ba16 789 int abcd[4];
ykuroda 0:13a5d365ba16 790 l1 = l2 = l3 = 0;
ykuroda 0:13a5d365ba16 791 int cache_id = 0;
ykuroda 0:13a5d365ba16 792 int cache_type = 0;
ykuroda 0:13a5d365ba16 793 do {
ykuroda 0:13a5d365ba16 794 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
ykuroda 0:13a5d365ba16 795 EIGEN_CPUID(abcd,0x4,cache_id);
ykuroda 0:13a5d365ba16 796 cache_type = (abcd[0] & 0x0F) >> 0;
ykuroda 0:13a5d365ba16 797 if(cache_type==1||cache_type==3) // data or unified cache
ykuroda 0:13a5d365ba16 798 {
ykuroda 0:13a5d365ba16 799 int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5]
ykuroda 0:13a5d365ba16 800 int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
ykuroda 0:13a5d365ba16 801 int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
ykuroda 0:13a5d365ba16 802 int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0]
ykuroda 0:13a5d365ba16 803 int sets = (abcd[2]); // C[31:0]
ykuroda 0:13a5d365ba16 804
ykuroda 0:13a5d365ba16 805 int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
ykuroda 0:13a5d365ba16 806
ykuroda 0:13a5d365ba16 807 switch(cache_level)
ykuroda 0:13a5d365ba16 808 {
ykuroda 0:13a5d365ba16 809 case 1: l1 = cache_size; break;
ykuroda 0:13a5d365ba16 810 case 2: l2 = cache_size; break;
ykuroda 0:13a5d365ba16 811 case 3: l3 = cache_size; break;
ykuroda 0:13a5d365ba16 812 default: break;
ykuroda 0:13a5d365ba16 813 }
ykuroda 0:13a5d365ba16 814 }
ykuroda 0:13a5d365ba16 815 cache_id++;
ykuroda 0:13a5d365ba16 816 } while(cache_type>0 && cache_id<16);
ykuroda 0:13a5d365ba16 817 }
ykuroda 0:13a5d365ba16 818
ykuroda 0:13a5d365ba16 819 inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
ykuroda 0:13a5d365ba16 820 {
ykuroda 0:13a5d365ba16 821 int abcd[4];
ykuroda 0:13a5d365ba16 822 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
ykuroda 0:13a5d365ba16 823 l1 = l2 = l3 = 0;
ykuroda 0:13a5d365ba16 824 EIGEN_CPUID(abcd,0x00000002,0);
ykuroda 0:13a5d365ba16 825 unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
ykuroda 0:13a5d365ba16 826 bool check_for_p2_core2 = false;
ykuroda 0:13a5d365ba16 827 for(int i=0; i<14; ++i)
ykuroda 0:13a5d365ba16 828 {
ykuroda 0:13a5d365ba16 829 switch(bytes[i])
ykuroda 0:13a5d365ba16 830 {
ykuroda 0:13a5d365ba16 831 case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines
ykuroda 0:13a5d365ba16 832 case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines
ykuroda 0:13a5d365ba16 833 case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines
ykuroda 0:13a5d365ba16 834 case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
ykuroda 0:13a5d365ba16 835 case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
ykuroda 0:13a5d365ba16 836 case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines
ykuroda 0:13a5d365ba16 837 case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines
ykuroda 0:13a5d365ba16 838 case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
ykuroda 0:13a5d365ba16 839 case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
ykuroda 0:13a5d365ba16 840 case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
ykuroda 0:13a5d365ba16 841 case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
ykuroda 0:13a5d365ba16 842 case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
ykuroda 0:13a5d365ba16 843 case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
ykuroda 0:13a5d365ba16 844 case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
ykuroda 0:13a5d365ba16 845 case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
ykuroda 0:13a5d365ba16 846 case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
ykuroda 0:13a5d365ba16 847 case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
ykuroda 0:13a5d365ba16 848 case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
ykuroda 0:13a5d365ba16 849 case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
ykuroda 0:13a5d365ba16 850 case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
ykuroda 0:13a5d365ba16 851 case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
ykuroda 0:13a5d365ba16 852 case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
ykuroda 0:13a5d365ba16 853 case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core)
ykuroda 0:13a5d365ba16 854 case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
ykuroda 0:13a5d365ba16 855 case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
ykuroda 0:13a5d365ba16 856 case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
ykuroda 0:13a5d365ba16 857 case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
ykuroda 0:13a5d365ba16 858 case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
ykuroda 0:13a5d365ba16 859 case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
ykuroda 0:13a5d365ba16 860 case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
ykuroda 0:13a5d365ba16 861 case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
ykuroda 0:13a5d365ba16 862 case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
ykuroda 0:13a5d365ba16 863 case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
ykuroda 0:13a5d365ba16 864 case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
ykuroda 0:13a5d365ba16 865 case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
ykuroda 0:13a5d365ba16 866 case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
ykuroda 0:13a5d365ba16 867 case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
ykuroda 0:13a5d365ba16 868 case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
ykuroda 0:13a5d365ba16 869 case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
ykuroda 0:13a5d365ba16 870 case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
ykuroda 0:13a5d365ba16 871 case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
ykuroda 0:13a5d365ba16 872 case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
ykuroda 0:13a5d365ba16 873 case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
ykuroda 0:13a5d365ba16 874 case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
ykuroda 0:13a5d365ba16 875 case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
ykuroda 0:13a5d365ba16 876 case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
ykuroda 0:13a5d365ba16 877 case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
ykuroda 0:13a5d365ba16 878 case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
ykuroda 0:13a5d365ba16 879 case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
ykuroda 0:13a5d365ba16 880 case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
ykuroda 0:13a5d365ba16 881 case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
ykuroda 0:13a5d365ba16 882 case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
ykuroda 0:13a5d365ba16 883 case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
ykuroda 0:13a5d365ba16 884 case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
ykuroda 0:13a5d365ba16 885 case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
ykuroda 0:13a5d365ba16 886 case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
ykuroda 0:13a5d365ba16 887 case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
ykuroda 0:13a5d365ba16 888
ykuroda 0:13a5d365ba16 889 default: break;
ykuroda 0:13a5d365ba16 890 }
ykuroda 0:13a5d365ba16 891 }
ykuroda 0:13a5d365ba16 892 if(check_for_p2_core2 && l2 == l3)
ykuroda 0:13a5d365ba16 893 l3 = 0;
ykuroda 0:13a5d365ba16 894 l1 *= 1024;
ykuroda 0:13a5d365ba16 895 l2 *= 1024;
ykuroda 0:13a5d365ba16 896 l3 *= 1024;
ykuroda 0:13a5d365ba16 897 }
ykuroda 0:13a5d365ba16 898
ykuroda 0:13a5d365ba16 899 inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
ykuroda 0:13a5d365ba16 900 {
ykuroda 0:13a5d365ba16 901 if(max_std_funcs>=4)
ykuroda 0:13a5d365ba16 902 queryCacheSizes_intel_direct(l1,l2,l3);
ykuroda 0:13a5d365ba16 903 else
ykuroda 0:13a5d365ba16 904 queryCacheSizes_intel_codes(l1,l2,l3);
ykuroda 0:13a5d365ba16 905 }
ykuroda 0:13a5d365ba16 906
ykuroda 0:13a5d365ba16 907 inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
ykuroda 0:13a5d365ba16 908 {
ykuroda 0:13a5d365ba16 909 int abcd[4];
ykuroda 0:13a5d365ba16 910 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
ykuroda 0:13a5d365ba16 911 EIGEN_CPUID(abcd,0x80000005,0);
ykuroda 0:13a5d365ba16 912 l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
ykuroda 0:13a5d365ba16 913 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
ykuroda 0:13a5d365ba16 914 EIGEN_CPUID(abcd,0x80000006,0);
ykuroda 0:13a5d365ba16 915 l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
ykuroda 0:13a5d365ba16 916 l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
ykuroda 0:13a5d365ba16 917 }
ykuroda 0:13a5d365ba16 918 #endif
ykuroda 0:13a5d365ba16 919
ykuroda 0:13a5d365ba16 920 /** \internal
ykuroda 0:13a5d365ba16 921 * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */
ykuroda 0:13a5d365ba16 922 inline void queryCacheSizes(int& l1, int& l2, int& l3)
ykuroda 0:13a5d365ba16 923 {
ykuroda 0:13a5d365ba16 924 #ifdef EIGEN_CPUID
ykuroda 0:13a5d365ba16 925 int abcd[4];
ykuroda 0:13a5d365ba16 926 const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
ykuroda 0:13a5d365ba16 927 const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
ykuroda 0:13a5d365ba16 928 const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
ykuroda 0:13a5d365ba16 929
ykuroda 0:13a5d365ba16 930 // identify the CPU vendor
ykuroda 0:13a5d365ba16 931 EIGEN_CPUID(abcd,0x0,0);
ykuroda 0:13a5d365ba16 932 int max_std_funcs = abcd[1];
ykuroda 0:13a5d365ba16 933 if(cpuid_is_vendor(abcd,GenuineIntel))
ykuroda 0:13a5d365ba16 934 queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
ykuroda 0:13a5d365ba16 935 else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
ykuroda 0:13a5d365ba16 936 queryCacheSizes_amd(l1,l2,l3);
ykuroda 0:13a5d365ba16 937 else
ykuroda 0:13a5d365ba16 938 // by default let's use Intel's API
ykuroda 0:13a5d365ba16 939 queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
ykuroda 0:13a5d365ba16 940
ykuroda 0:13a5d365ba16 941 // here is the list of other vendors:
ykuroda 0:13a5d365ba16 942 // ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
ykuroda 0:13a5d365ba16 943 // ||cpuid_is_vendor(abcd,"CyrixInstead")
ykuroda 0:13a5d365ba16 944 // ||cpuid_is_vendor(abcd,"CentaurHauls")
ykuroda 0:13a5d365ba16 945 // ||cpuid_is_vendor(abcd,"GenuineTMx86")
ykuroda 0:13a5d365ba16 946 // ||cpuid_is_vendor(abcd,"TransmetaCPU")
ykuroda 0:13a5d365ba16 947 // ||cpuid_is_vendor(abcd,"RiseRiseRise")
ykuroda 0:13a5d365ba16 948 // ||cpuid_is_vendor(abcd,"Geode by NSC")
ykuroda 0:13a5d365ba16 949 // ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
ykuroda 0:13a5d365ba16 950 // ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
ykuroda 0:13a5d365ba16 951 // ||cpuid_is_vendor(abcd,"NexGenDriven")
ykuroda 0:13a5d365ba16 952 #else
ykuroda 0:13a5d365ba16 953 l1 = l2 = l3 = -1;
ykuroda 0:13a5d365ba16 954 #endif
ykuroda 0:13a5d365ba16 955 }
ykuroda 0:13a5d365ba16 956
ykuroda 0:13a5d365ba16 957 /** \internal
ykuroda 0:13a5d365ba16 958 * \returns the size in Bytes of the L1 data cache */
ykuroda 0:13a5d365ba16 959 inline int queryL1CacheSize()
ykuroda 0:13a5d365ba16 960 {
ykuroda 0:13a5d365ba16 961 int l1(-1), l2, l3;
ykuroda 0:13a5d365ba16 962 queryCacheSizes(l1,l2,l3);
ykuroda 0:13a5d365ba16 963 return l1;
ykuroda 0:13a5d365ba16 964 }
ykuroda 0:13a5d365ba16 965
ykuroda 0:13a5d365ba16 966 /** \internal
ykuroda 0:13a5d365ba16 967 * \returns the size in Bytes of the L2 or L3 cache if this later is present */
ykuroda 0:13a5d365ba16 968 inline int queryTopLevelCacheSize()
ykuroda 0:13a5d365ba16 969 {
ykuroda 0:13a5d365ba16 970 int l1, l2(-1), l3(-1);
ykuroda 0:13a5d365ba16 971 queryCacheSizes(l1,l2,l3);
ykuroda 0:13a5d365ba16 972 return (std::max)(l2,l3);
ykuroda 0:13a5d365ba16 973 }
ykuroda 0:13a5d365ba16 974
ykuroda 0:13a5d365ba16 975 } // end namespace internal
ykuroda 0:13a5d365ba16 976
ykuroda 0:13a5d365ba16 977 } // end namespace Eigen
ykuroda 0:13a5d365ba16 978
ykuroda 0:13a5d365ba16 979 #endif // EIGEN_MEMORY_H