s14x_nrf5x migration document

Introduction to the s140_nrf52840 migration document

About the document

This document describes how to migrate to new versions of the s140 SoftDevices. The s140_nrf52840 release notes should be read in
conjunction with this document.

For each version, we have the following sections:

® "Required changes" describes how an application would have used the previous version of the SoftDevice and how it must now use
this version for the given change.

* “New functionality" describes how to use new features and functionality offered by this version of the SoftDevice. Note: Not all new
functionality may be covered; the release notes will contain a full list of new features and functionality.

Each section describes how to migrate to a given version from the previous version. If you are migrating to the current version from the
previous version, follow the instructions in that section. To migrate between versions that are more than one version apart, follow the
migration steps for all intermediate versions in order.

Example: To migrate from version 5.0.0 to version 5.2.0, first follow the instructions to migrate to 5.1.0 from 5.0.0, then follow the instructions
to migrate to 5.2.0 from 5.1.0.

Copyright (c) Nordic Semiconductor ASA. All rights reserved.

s140 nrf52840 5.0.0-2.alpha

This section describes how to migrate to s140_nrf52840_5.0.0-2.alpha from s140_nrf52840_5.0.0-1.alpha.

Required changes

SoftDevice RAM usage

The RAM usage of the SoftDevice has changed. sd_bl e_enabl e() should be used to find the APP_RAM BASE for a particular
configuration.

New configuration API

Configuration parameters passed to sd_bl e_enabl e() have been moved to the SoftDevice configuration API.

APl updates

® Anew SV callsd_bl e _cfg_set() isadded to set the configuration. This API can be called many times to configure different parts
of the BLE stack. All configurations are optional. Configuration parameters not set by this API will take their default values.

® The SV call parameter bl e_enabl e_parans_t * p_bl e_enabl e_par ans is removed from sd_bl e_enabl e() . The SV call sd
_ble_cfg_set() mustbe used instead. The parameters of this call are given in the following table:

Old API: bl e_enabl e_parans_t member New APl: cfg_idinsd_ble cfg_set()
conmon_enabl e_par ans. vs_uui d_count BLE_COVMON_CFG_VS_UUI D
comon_enabl e_par ans. p_conn_bw_counts BLE CONN_CFG_GAP (*)

gap_enabl e_par anms. peri ph_conn_count BLE GAP_CFG_ROLE_COUNT
gap_enabl e_par ans. central _conn_count
gap_enabl e_parans. central _sec_count

gap_enabl e_par ans. p_devi ce_nane BLE _GAP_CFG _DEVI CE_NAME
gatt _enabl e_par ans BLE CONN_CFG_GATT (*)
gatts_enabl e_parans. servi ce_changed BLE GATTS_CFG_SERVI CE_CHANGED

gatts_enabl e_parans. attr_tab_size BLE _GATTS_CFG ATTR TAB_SI ZE
(*) These configurations can be set per link.
Usage

Example pseudo code to set per link ATT_MTU using the new configuration API:

const uintl6 t client rx_mu = 158;
const uint32_t long_att_conn_cfg tag = 1;

/* set ATT_MIU for connections identified by long_att_conn_cfg_tag */
ble_cfg_ t cfg;
nmenset (&cfg, 0, sizeof(ble _cfg t));

cfg.conn_cfg.conn_cfg tag = long_att_conn_cfg_tag;
cfg.conn_cfg. parans. gatt_conn_cfg.att_nmtu = client_rx_ntu;
sd_bl e_cfg_set (BLE_CONN_CFG GATT, &cfg, ...);

/* Enable the BLE Stack */
sd_bl e_enable(...);

[...]

uint1l6_t |ong_att_conn_handl e;
/* Establish connection with [ong_att_conn_cfg_tag */
sd_ble_gap_adv_start (..., long_att_conn_cfg_tag);

[...]

/* Establish connection with BLE CONN _CFG TAG DEFAULT, it will use default ATT_MIU
of 23 bytes */
sd_bl e_gap_connect (..., BLE _CONN_CFG TAG DEFAULT);

[...]

/* Start ATT_MIU exchange */
sd_bl e_gattc_exchange_mtu_request(long_att_conn_handle, client_rx_ntu);

BLE bandwidth configuration

The BLE bandwidth configuration and application packet concept has been changed. Previously, the application could specify a bandwidth
setting, which would result in a given queue size and a correpsonding given radio time allocated. Now the queue sizes and the allocated
radio time have been separated. The application can now configure:

® Eventlength
® Write without response queue size
® Handle Value Notification queue size

These settings are configurable per link.
Note that now the configured queue sizes are not directly related to on-air bandwidth:

® The application can configure one single packet to be queued in the SoftDevice, but still achieve full throughput if the application can
queue packets fast enough during connection events.

® Even if the application configures a large number of packets to be queued, not all of them will be sent during a single connection
event if the configured event length is not large enough to send the packets.

APl updates

® The bl e_enabl e_parans_t:: comon_enabl e_parans. p_conn_bw_count s parameter of the sd_bl e_enabl e() SV call is
replaced by the sd_bl e_cfg_set () SV call with cf g_i d parameter set to BLE_CONN_CFG_GAP. The following table shows how
the old bandwidth configuration corresponds to the new one for the default ATT_MTU:

Old API: BLE_CONN_BWS New API: bl e_gap_conn_cfg_t::event_l engthinsd_ble_cfg_set()

BLE_CONN_BW LOW BLE_GAP_EVENT_LENGTH M N
BLE_CONN_BW M D BLE_GAP_EVENT LENGTH DEFAULT
BLE_CONN_BW HI GH 6

The bandwidth configuration is further described in the SDS.
®* The BLE_COVMMON_OPT_CONN_BWoption is removed. Instead, during connection creation, the application should supply the conn_c

f g_t ag defined by the bl e_conn_cfg_t::conn_cfg_tag parameterinthe sd bl e cfg _set() SV call

® A new parameter conn_cf g_t ag is added to sd_bl e_gap_adv_start () and sd_bl e_gap_connect () SV calls. To create a
connection with a default configuration, BLE_CONN_CFG_TAG_DEFAULT should be provided in this parameter.

® The BLE_EVT_TX_ COVPLETE event is split on two events: BLE_GATTC_EVT_WRI TE_CVD_TX_COWPLETE and BLE_GATTS_EVT_H
VN_TX_COVPLETE.

® The SV call sd_bl e_t x_packet _count _get () is removed. Instead, the application can now configure packet counts per link,
using the SV call sd_bl e_cfg_set () withthe cfg_i d parameter setto BLE CONN_CFG GATTCand BLE_CONN_CFG _GATTS.

Usage

Example pseudo code to set configuration that corresponds to the old BLE_CONN_BW HI GH bandwidth configuration both in throughput and
packet queueing capability:

const uint32_t high_bw conn_cfg tag = 1;
ble_cfg t cfg;

/* configure connections identified by high_bw conn_cfg_ tag */

/* set connection event length */

menset (&cfg, 0, sizeof(ble_cfg_t));

cfg. conn_cfg.conn_cfg_tag = high_bw conn_cfg_tag;

cfg.conn_cfg. parans. gap_conn_cfg.event _length =6; /* 6 * 1.25 n8 = 7.5 ns
corresponds to the old BLE_CONN BWHI GH for default ATT_MIU */

cfg. conn_cfg. parans. gap_conn_cf g. conn_count = 1; /* application needs one |ink
with this configuration */
sd_ble_cfg_set (BLE_CONN_CFG GAP, &cfg, ...);

/* set HVN queue size */

menset (&cfg, 0, sizeof(ble_cfg_t));

cfg.conn_cfg.conn_cfg_tag = high_bw conn_cfg_tag;

cfg.conn_cfg. parans. gatts_conn_cfg. hvn_tx_queue_size = 7; /* application wants to
queue 7 HVNs */

sd_bl e_cfg_set (BLE_ CONN_CFG GATTS, &cfg, ...);

/* set WRI TE_CMD queue size */

menset (&cfg, 0, sizeof(ble_cfg_t));

cfg. conn_cfg.conn_cfg_tag = high_bw conn_cfg_tag;
cfg.conn_cfg.parans.gattc_conn_cfg.wite_cnd_tx_queue_size = 0; /* application is
not giong to send WRITE_CMD, so set to O to save nenory */

sd_bl e_cfg_set (BLE_CONN_CFG GATTC, &cfg, ...);

/* Enable the BLE Stack */
sd_bl e_enable(...);

[...]

uint16_t high_bw conn_handl e;
/* Establish connection with high_bw conn_cfg_tag */
sd_bl e_gap_adv_start (..., high_bw conn_cfg_tag);

Data Length Update Procedure

The application now has to respond to the Data Length Update Procedure when initiated by the peer. See the description of the Data Length
Update Procedure in the New functionality section for more details.

Required changes:

}

case BLE_GAP_EVT_DATA LENGTH_UPDATE_REQUEST:

/* Al ow SoftDevice to choose Data Length Update Procedure paraneters

automatically. */

sd_bl e_gap_data_I| engt h_updat e(p_bl e_evt->evt.gap_evt.conn_handl e, NULL, NULL);
br eak;

case BLE_GAP_EVT_DATA LENGTH_UPDATE:

/* Data Length Update Procedure conpl eted, see

p_bl e_evt->evt. gap_evt. parans. data_| engt h_update. effecti ve_parans for negoti ated
paraneters. */

br eak;

Access to RAM x] . PONER registers

SoftDevice APIs are updated to provide access to the RAM x] . POAER registers instead of the deprecated RAMON RAMONB.

APl updates

sd_power _ranon_set () SV call is replaced with sd_power _r am power _set ().
sd_power _ranon_cl r () SV callis replaced with sd_power _ram power _clr ().
sd_power _ranon_get () SV call is replaced with sd_power _ram power _get ().

APl rename

Some APIs were renamed. Applications that use the old names must be updated.

APl updates

BLE_EVTS_PTR_ALI GNMVENT is renamed to BLE_EVT_PTR_ALI GNVENT.

BLE EVTS LEN MAXis renamed to BLE EVT_LEN NMAX.

GATT_MIU_SI ZE_DEFAULT is renamed to BLE_GATT_ATT_MIU_DEFAULT.

The GAP option BLE_GAP_OPT_COVPAT_MODE is renamed to BLE_GAP_OPT_COVPAT_MODE_1.

bl e_gap_opt _conpat _npde_t structure is renamed to bl e_gap_opt _conpat _node_1_t.

bl e_gap_opt _conpat _node_t:: node_1_enabl e structure member is renamed to bl e_gap_opt _conpat _node_1_t::enab
| e.

bl e_gap_opt _t:: conpat _node structure member is renamed to bl e_gap_opt _t:: conpat _node_1.

Proprietary L2CAP API removed

The proprietary API for sending and receiving data over L2CAP is removed.

APl updates

The SV calls sd_bl e_| 2cap_cid_register(),sd_ble_|2cap_cid unregister(),andsd_ble_ |2cap_tx()are
removed.

BLE L2CAP_EVT_RXevent is removed.

The following defines are removed: BLE_L2CAP_MIU_DEF, BLE_L2CAP_CI D_| NVALI D, BLE_L2CAP_CI D_DYN_BASE, BLE_L2CA
P_Cl D_DYN_MAX.

New functionality

Data Length Update Procedure

The application is given control of the Data Length Update Procedure. The application can initiate the procedure and has to respond when
initiated by the peer.

APl updates

® AnewSVcall sd_bl e_gap_data_| engt h_updat e() is added to initiate or respond to a Data Length Update Procedure.

® The BLE_EVT_DATA LENGTH_CHANGED event is replaced with BLE_GAP_EVT_DATA LENGTH_ UPDATE.

®* Anewevent BLE GAP_EVT_DATA LENGTH UPDATE_REQUEST is added to notify that a Data Length Update request has been
received. sd_bl e_gap_dat a_| engt h_updat e() must be called by the application after this event has been received to continue
the Data Length Update Procedure.

® The GAP option BLE_GAP_OPT_EXT_LENis removed. The sd_bl e_gap_dat a_| engt h_updat e() SV call should be used
instead.

Usage

® The Data Length Update Procedure can be initiated locally or by peer device.
® Following is the pseudo code for the case where Data Length Update Procedure is initiated by application:

const uintl6_t client_rx_ntu = 247,
const uint32_t long_att_conn_cfg_tag = 1;

/* ATT_MIU nust be configured first */
ble_cfg t cfg;
menset (&cfg, 0, sizeof(ble_cfg_t));

cfg.conn_cfg.conn_cfg_tag = long_att_conn_cfg_tag;
cfg.conn_cfg.parans.gatt_conn_cfg.att_ntu = client_rx_ntu;
sd_bl e_cfg_set (BLE_CONN_CFG _GATT, &cfg, ...);

/* Enable the BLE Stack */
sd_ble_enable(...);

[...]

uint16_t |ong_att_conn_handl e;
/* Establish connection */
sd_ble_gap_adv_start(..., long_att_conn_cfg_tag);

[...]

/* Start Data Length Update Procedure, can be done wi thout ATT_MIU exchange */
bl e_gap_data_| engt h_parans_t parans = {

.max_tx_octets = client_rx_ntu + 4,

.max_rx_octets client_rx_ntu + 4,

.max_tx_tine_us BLE_GAP_DATA LENGTH_AUTQ,

.max_rx_time_us = BLE GAP_DATA LENGTH AUTO

3
sd_bl e_gap_data_Il engt h_updat e(l ong_att_conn_handl e, ¶ns, NULL);

case BLE_GAP_EVT_DATA LENGTH _UPDATE:
{
/* Data Length Update Procedure conpleted, see
p_bl e_evt->evt.gap_evt. parans. data_|l engt h_update. effecti ve_parans for negoti ated
paraneters. */
br eak;

New compatibility mode
A new compatibility mode is added to enable interoperability with central devices that may initiate version exchange and feature exchange
control procedures in parallel. To enable this mode, use the sd_bl e_opt _set () SV call with the opt _i d parameter set to BLE_GAP_OPT_
COVPAT_MODE_2.
Slave latency configuration
It is now possible to disable and enable slave latency on an active peripheral link. To disable or re-enable slave latency, use the sd_bl e_op
t_set () SV call with the opt _i d parameter set to BLE_GAP_OPT_SLAVE_LATENCY_DI SABLE.
Support for high accuracy LFCLK oscillator source
It is now possible to configure the SoftDevice with higher accuracy LFCLK oscillator source. Four new levels are defined:

#define NRF_CLOCK LF_XTAL_ACCURACY_10_PPM (8) /**< 10 ppm */

#define NRF_CLOCK_LF_XTAL_ACCURACY_5_PPM (9) /**< 5 ppm*/

#defi ne NRF_CLOCK_LF_XTAL_ACCURACY 2 _PPM (10) /**< 2 ppm */
#defi ne NRF_CLOCK_LF_XTAL_ACCURACY 1 PPM (11) /**< 1 ppm */

New power failure levels

It is now possible to configure the SoftDevice with all the new power failure levels introduced in NRF52. Levels that are added:

NRF_POVNER_THRESHOLD V17 /**< Set the power failure threshold to 1.7 V. */
NRF_POWNER_THRESHOLD V18 /**< Set the power failure threshold to 1.8 V. */
NRF_PONER_THRESHOLD_V19 /**< Set the power failure threshold to 1.9 V. */
NRF_PONER_THRESHOLD V20 /**< Set the power failure threshold to 2.0 V. */
NRF_POVNER_THRESHOLD V22 /**< Set the power failure threshold to 2.2 V. */
NRF_POVNER_THRESHOLD V24 /**< Set the power failure threshold to 2.4 V. */
NRF_PONER_THRESHOLD_V26 /**< Set the power failure threshold to 2.6 V. */
NRF_PONER_THRESHOLD V28 /**< Set the power failure threshold to 2.8 V. */

s140 nrf52840 5.0.0-1.alpha

This section describes how to migrate to s140_nrf52840_5.0.0-1.alpha from s132_nrf52_3.0.0. This SoftDevice is designed to take
advantage of the new features of the nrf52840 chip.

Required changes

SoftDevice flash and RAM usage
The size of the SoftDevice has changed and therefore a change to the application project file is required.

For Keil this means:

1. Go into the properties of the project and find the Target tab
2. Change IROM1 Startto 0x20000.

If the project uses a scatter file or linker script instead, then these must be updated accordingly.

The RAM usage of SoftDevice has also changed. sd_bl e_enabl e() should be used to find the APP_RAM_BASE for a particular
configuration.

Renamed defines
Some defines have been renamed to make the API more consistent. Any code using these defines has to be updated with the new names:

* GATT MTU_ S| ZE_DEFAULT renamed to BLE_GATT MU _S| ZE_DEFAULT
* BLE_EVTS LEN_MAX renamed to BLE_EVT_LEN_MAX
* BLE_EVTS PTR ALI GNVENT renamed to BLE_EVT_PTR ALI GNVENT

New functionality

Multiple PHYs

The SoftDevice introduces support for using multiple PHYs to adapt the speed and reliability of data transmission to the channel capacity.
For higher throughput, a 2 Mbps PHY is supported. For higher reliability, a 125kbps Coded PHY is supported.

APl updates

® A new GAP option, BLE_GAP_OPT_PREFERRED_PHYS_SET, has been added to indicate to the controller about which PHYs the

controller shall prefer so it can respond to any requests to update PHYs by peers.
® Anew SV call, sd_bl e_gap_phy_request (), has been added to request the controller to attempt to change to a new PHY.

®* Anew event, BLE_GAP_EVT_PHY_UPDATE, has been added to indicate that the PHY of a connection has changed or that a local
initiated PHY update procedure has finished.

Usage

Example pseudo code for setting the preferred PHY's for new connections
Note: This will only have an effect if the peer device initiates the procedure to change the PHY. The stack will not initiate a PHY Update

procedure autonomously.

bl e_opt _t opts;

opts. gap_opt. preferred_phys.tx_phys = BLE_GAP_PHY_1MBPS | BLE_GAP_PHY_2MBPS
opts. gap_opt. preferred_phys. rx_phys = BLE GAP_PHY_1MBPS | BLE_GAP_PHY_2MBPS;
TEST_SD _UTI L_NRF_SUCCESS_OR_ASSERT(sd_bl e_opt _set (BLE_GAP_OPT_PREFERRED_PHYS_SET,
&opts));

[Advertise and connect / Scan and connect]

Request the controller to attempt to change to a new PHY for an established connection:

bl e_gap_phys_t phys = { BLE _GAP_PHY_CODED, BLE_GAP_PHY_CCDED};
sd_bl e_gap_phy_request (conn_handl e, &phys);

Handle PHY Update event:

/* Handl e the event */
case BLE_GAP_EVT_PHY_UPDATE
if (ble_event.evt.gap_evt.parans. phy_update.status == BLE HCl _STATUS_CODE_SUCCESS)
{
/'l The PHY was changed (after either the application or the peer requested it)
/'l ble_event.evt.gap_evt. parans. phy_update.tx_phy and
bl e_event . evt.gap_evt. parans. phy_update. rx_phy contain the new PHYs
}
el se
{

/1l A PHY update was requested which could not be perfornmed successfully

}

Higher TX power on nRF52840

The SoftDevice now supports configuring higher TX power to be used with nRF52840.

The following additional values are supported by the sd_bl e_gap_t x_power _set () SV-call +2dBm, +5dBm, +6dBm, +7dBm, +8dBm,
+9dBm.

These power levels can be used in the same way the existing power levels are used in the s132_nrf52_3.0.0 SoftDevice.

	s14x_nrf5x migration document

