Example host software for the Maxim Integrated MAX30101 high sensitivity Heart Rate Monitor chip. Hosted on the MAX32630FTHR FeatherWing micro-controller board.
Dependencies: MAX30101_Finger_Heart_Rate_SpO2_Monitor_Driver_Source_Code USBDevice max32630fthr
MAX30101_Driver_Library_Heart_Rate/MAX30101.cpp
- Committer:
- phonemacro
- Date:
- 2018-07-21
- Revision:
- 0:ec8835052a84
File content as of revision 0:ec8835052a84:
/*******************************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************
*/
#include "mbed.h"
#include "MAX30101.h"
MAX30101 *MAX30101::instance = NULL;
//******************************************************************************
MAX30101::MAX30101(PinName sda, PinName scl, int slaveAddress):
slaveAddress(slaveAddress) {
i2c = new I2C(sda, scl);
i2c_owner = true;
i2c->frequency(400000);
onInterruptCallback = NULL;
onDataAvailableCallback = NULL;
instance = this;
}
//******************************************************************************
MAX30101::MAX30101(I2C *_i2c, int slaveAddress) :
slaveAddress(slaveAddress) {
i2c = _i2c;
i2c_owner = false;
i2c->frequency(400000);
onInterruptCallback = NULL;
onDataAvailableCallback = NULL;
instance = this;
}
//******************************************************************************
MAX30101::~MAX30101(void) {
if (i2c_owner) {
delete i2c;
}
}
//******************************************************************************
int MAX30101::int_handler(void) {
uint16_t index, i;
uint16_t rx_bytes, second_rx_bytes;
char temp_int;
char temp_frac;
uint16_t num_active_led;
uint32_t sample;
int loop = 1;
static uint8_t cntr_int = 0;
max30101_Interrupt_Status_1_t Interrupt_Status_1;
max30101_Interrupt_Status_2_t Interrupt_Status_2;
max30101_mode_configuration_t mode_configuration;
max30101_multiLED_mode_ctrl_1_t multiLED_mode_ctrl_1;
max30101_multiLED_mode_ctrl_2_t multiLED_mode_ctrl_2;
max30101_spo2_configuration_t spo2_configuration;
max30101_fifo_configuration_t fifo_configuration;
cntr_int++;
while (loop) {
if (i2c_reg_read(REG_INT_STAT_1, &Interrupt_Status_1.all) != 0) { ///< Read Interrupt flag bits
return -1;
}
if (i2c_reg_read(REG_INT_STAT_2, &Interrupt_Status_2.all) != 0) { ///< Read Interrupt flag bits
return -1;
}
/* Read all the relevant register bits */
if (i2c_reg_read(REG_MODE_CFG, &mode_configuration.all) != 0) {
return -1;
}
if (i2c_reg_read(REG_SLT2_SLT1, &multiLED_mode_ctrl_1.all) != 0) {
return -1;
}
if (i2c_reg_read(REG_SLT4_SLT3, &multiLED_mode_ctrl_2.all) != 0) {
return -1;
}
if (i2c_reg_read(REG_SPO2_CFG, &spo2_configuration.all) != 0) {
return -1;
}
if (i2c_reg_read(REG_FIFO_CFG, &fifo_configuration.all) != 0) {
return -1;
}
if (Interrupt_Status_1.bit.a_full) {
///< Read the sample(s)
char reg = REG_FIFO_DATA;
num_active_led = 0;
if (mode_configuration.bit.mode == 0x02) {///< Heart Rate mode, i.e. 1 led
num_active_led = 1;
} else if (mode_configuration.bit.mode == 0x03) { ///< SpO2 mode, i.e. 2 led
num_active_led = 2;
} else if (mode_configuration.bit.mode == 0x07) { ///< Multi-LED mode, i.e. 1-4 led
if (multiLED_mode_ctrl_1.bit.slot1 != 0) {
num_active_led++;
}
if (multiLED_mode_ctrl_1.bit.slot2 != 0) {
num_active_led++;
}
if (multiLED_mode_ctrl_2.bit.slot3 != 0) {
num_active_led++;
}
if (multiLED_mode_ctrl_2.bit.slot4 != 0) {
num_active_led++;
}
}
///< 3bytes/LED x Number of Active LED x FIFO level selected
rx_bytes = 3 * num_active_led * (32-fifo_configuration.bit.fifo_a_full);
second_rx_bytes = rx_bytes;
/**
* @brief:
* The FIFO Size is determined by the Sample size. The number of bytes
* in a Sample is dictated by number of LED's
*
* #LED Selected Bytes in "1" sample
* 1 3
* 2 6
* 3 9
* 4 12
*
* The I2C API function limits the number of bytes to read, to 256 (i.e.
* char). Therefore, when set for Multiple LED's and the FIFO
* size is set to 32. It would mean there is more than 256 bytes.
* In that case two I2C reads have to be made. However It is important
* to note that each "Sample" must be read completely and reading only
* partial number of bytes from a sample will result in erroneous data.
*
*
* For example:
* Num of LED selected = 3 and FIFO size is set to 32 (i.e. 0 value in
* register), then the number of bytes will be
* 3bytes/Led * 3led's * 32 = 288 bytes in all. Since there are
* 3 LED's each sample will contain (3 * 3) 9bytes.
* Therefore Sample 1 = 9bytes, Sample 2 = 18,... Sample 28 = 252.
* Therefore the first I2C read should be 252 bytes and the second
* read should be 288-252 = 36.
*
* It turns out that this size issue comes up only when number of LED
* selected is 3 or 4 and choosing 252bytes
* for the first I2C read would work for both Number of LED selection.
*/
if (rx_bytes <= CHUNK_SIZE) {
I2CM_Read(slaveAddress, ®, 1, &max30101_rawData[0],
(char)rx_bytes /*total_databytes_1*/);
} else {
I2CM_Read(slaveAddress, ®, 1, &max30101_rawData[0], CHUNK_SIZE);
second_rx_bytes = second_rx_bytes - CHUNK_SIZE;
I2CM_Read(slaveAddress, ®, 1, &max30101_rawData[CHUNK_SIZE],
(char)second_rx_bytes);
}
index = 0;
for (i = 0; i < rx_bytes; i += 3) {
sample = ((uint32_t)(max30101_rawData[i] & 0x03) << 16) | (max30101_rawData[i + 1] << 8) | max30101_rawData[i + 2];
///< Right shift the data based on the LED_PW setting
sample = sample >> (3 - spo2_configuration.bit.led_pw); // 0=shift 3, 1=shift 2, 2=shift 1, 3=no shift
max30101_buffer[index++] = sample;
}
onDataAvailableCallback(MAX30101_OXIMETER_DATA + num_active_led, max30101_buffer, index);
}
///< This interrupt handles the temperature interrupt
if (Interrupt_Status_2.bit.die_temp_rdy) {
char reg;
reg = REG_TINT;
if (I2CM_Read(slaveAddress, ®, 1, &temp_int, 1) != 0) {
return -1;
}
reg = REG_TFRAC;
if (I2CM_Read(slaveAddress, ®, 1, &temp_frac, 1) != 0) {
return -1;
}
max30101_final_temp = (int8_t)temp_int + 0.0625f * temp_frac;
if (i2c_reg_write(REG_TEMP_EN, 0x00) != 0) { ///< Die Temperature Config, Temp disable... after one read...
return -1;
}
}
if (i2c_reg_read(REG_INT_STAT_1, &Interrupt_Status_1.all) != 0) { ///< Read Interrupt flag bits
return -1;
}
if (Interrupt_Status_1.bit.a_full != 1) {
loop = 0;
}
}
interruptPostCallback();
return 0;
}
//******************************************************************************
int MAX30101::SpO2mode_init(uint8_t fifo_waterlevel_mark, uint8_t sample_avg,
uint8_t sample_rate, uint8_t pulse_width,
uint8_t red_led_current, uint8_t ir_led_current) {
char status;
max30101_mode_configuration_t mode_configuration;
max30101_fifo_configuration_t fifo_configuration;
max30101_spo2_configuration_t spo2_configuration;
max30101_Interrupt_Enable_1_t Interrupt_Enable_1;
mode_configuration.all = 0;
mode_configuration.bit.reset = 1;
if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) // Reset the device
{
return -1;
}
///< Give it some settle time (100ms)
wait(1.0 / 10.0); ///< Let things settle down a bit
fifo_configuration.all = 0;
fifo_configuration.bit.smp_ave = sample_avg; ///< Sample averaging;
fifo_configuration.bit.fifo_roll_over_en = 1; ///< FIFO Roll over enabled
fifo_configuration.bit.fifo_a_full = fifo_waterlevel_mark; ///< Interrupt when certain level is filled
if (i2c_reg_write(REG_FIFO_CFG, fifo_configuration.all) != 0) {
return -1;
}
spo2_configuration.bit.spo2_adc_rge = 0x2; ///< ADC Range 8192 fullscale
spo2_configuration.bit.spo2_sr = sample_rate; ///< 100 Samp/sec.
spo2_configuration.bit.led_pw = pulse_width; ///< Pulse Width=411us and ADC Resolution=18
if (i2c_reg_write(REG_SPO2_CFG, spo2_configuration.all) != 0) {
return -1;
}
if (i2c_reg_write(REG_LED1_PA, red_led_current) != 0) {
return -1;
}
if (i2c_reg_write(REG_LED2_PA, ir_led_current) != 0) {
return -1;
}
/************/
if (i2c_reg_read(REG_INT_STAT_1, &status) != 0) ///< Clear INT1 by reading the status
{
return -1;
}
if (i2c_reg_read(REG_INT_STAT_2, &status) != 0) ///< Clear INT2 by reading the status
{
return -1;
}
if (i2c_reg_write(REG_FIFO_W_PTR, 0x00) != 0) ///< Clear FIFO ptr
{
return -1;
}
if (i2c_reg_write(REG_FIFO_OVF_CNT, 0x00) != 0) ///< Clear FIFO ptr
{
return -1;
}
if (i2c_reg_write(REG_FIFO_R_PTR, 0x00) != 0) ///< Clear FIFO ptr
{
return -1;
}
Interrupt_Enable_1.all = 0;
Interrupt_Enable_1.bit.a_full_en = 1; ///< Enable FIFO almost full interrupt
if (i2c_reg_write(REG_INT_EN_1, Interrupt_Enable_1.all) != 0) {
return -1;
}
mode_configuration.all = 0;
mode_configuration.bit.mode = 0x03; ///< SpO2 mode
if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) {
return -1;
}
return 0;
}
//******************************************************************************
int MAX30101::SpO2mode_stop(void) {
max30101_Interrupt_Enable_1_t Interrupt_Enable_1;
max30101_mode_configuration_t mode_configuration;
uint8_t led1_pa;
uint8_t led2_pa;
Interrupt_Enable_1.all = 0;
Interrupt_Enable_1.bit.a_full_en = 0; ///< Disable FIFO almost full interrupt
if (i2c_reg_write(REG_INT_EN_1, Interrupt_Enable_1.all) != 0) {
return -1;
}
mode_configuration.all = 0;
mode_configuration.bit.mode = 0x00; ///< SpO2 mode off
if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) {
return -1;
}
led1_pa = 0; ///< RED LED current, 0.0
if (i2c_reg_write(REG_LED1_PA, led1_pa) != 0) {
return -1;
}
led2_pa = 0; ///< IR LED current, 0.0
if (i2c_reg_write(REG_LED2_PA, led2_pa) != 0) {
return -1;
}
return 0;
}
//******************************************************************************
int MAX30101::HRmode_init(uint8_t fifo_waterlevel_mark, uint8_t sample_avg,
uint8_t sample_rate, uint8_t pulse_width,
uint8_t red_led_current) {
/*uint8_t*/ char status;
max30101_mode_configuration_t mode_configuration;
max30101_fifo_configuration_t fifo_configuration;
max30101_spo2_configuration_t spo2_configuration;
max30101_Interrupt_Enable_1_t Interrupt_Enable_1;
mode_configuration.all = 0;
mode_configuration.bit.reset = 1;
if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) ///< Reset the device, Mode = don't use...
{
return -1;
}
///< Give it some settle time (100ms)
wait(1.0 / 10.0); ///< Let things settle down a bit
fifo_configuration.all = 0;
fifo_configuration.bit.smp_ave = sample_avg; ///< Sample averaging;
fifo_configuration.bit.fifo_roll_over_en = 1; ///< FIFO Roll over enabled
fifo_configuration.bit.fifo_a_full = fifo_waterlevel_mark; ///< Interrupt when certain level is filled
if (i2c_reg_write(REG_FIFO_CFG, fifo_configuration.all) != 0) {
return -1;
}
spo2_configuration.bit.spo2_adc_rge = 0x2; ///< ADC Range 8192 fullscale
spo2_configuration.bit.spo2_sr = sample_rate; ///< 100 Samp/sec.
spo2_configuration.bit.led_pw = pulse_width; ///< Pulse Width=411us and ADC Resolution=18
if (i2c_reg_write(REG_SPO2_CFG, spo2_configuration.all) != 0) {
return -1;
}
if (i2c_reg_write(REG_LED1_PA, red_led_current) != 0) {
return -1;
}
/************/
if (i2c_reg_read(REG_INT_STAT_1, &status) != 0) ///< Clear INT1 by reading the status
{
return -1;
}
if (i2c_reg_read(REG_INT_STAT_2, &status) != 0) ///< Clear INT2 by reading the status
{
return -1;
}
if (i2c_reg_write(REG_FIFO_W_PTR, 0x00) != 0) ///< Clear FIFO ptr
{
return -1;
}
if (i2c_reg_write(REG_FIFO_OVF_CNT, 0x00) != 0) ///< Clear FIFO ptr
{
return -1;
}
if (i2c_reg_write(REG_FIFO_R_PTR, 0x00) != 0) ///< Clear FIFO ptr
{
return -1;
}
Interrupt_Enable_1.all = 0;
Interrupt_Enable_1.bit.a_full_en = 1;
// Interrupt
if (i2c_reg_write(REG_INT_EN_1, Interrupt_Enable_1.all) != 0) {
return -1;
}
mode_configuration.all = 0;
mode_configuration.bit.mode = 0x02; ///< HR mode
if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) {
return -1;
}
return 0;
}
//******************************************************************************
int MAX30101::HRmode_stop(void) {
max30101_Interrupt_Enable_1_t Interrupt_Enable_1;
max30101_mode_configuration_t mode_configuration;
Interrupt_Enable_1.all = 0;
Interrupt_Enable_1.bit.a_full_en = 0; ///< Disable FIFO almost full interrupt
if (i2c_reg_write(REG_INT_EN_1, Interrupt_Enable_1.all) != 0) {
return -1;
}
mode_configuration.all = 0;
mode_configuration.bit.mode = 0x00; ///< HR mode off
if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) {
return -1;
}
if (i2c_reg_write(REG_LED1_PA, 0) != 0) {
return -1;
}
return 0;
}
//******************************************************************************
int MAX30101::Multimode_init(uint8_t fifo_waterlevel_mark, uint8_t sample_avg,
uint8_t sample_rate, uint8_t pulse_width,
uint8_t red_led_current, uint8_t ir_led_current,
uint8_t green_led_current, uint8_t slot_1,
uint8_t slot_2, uint8_t slot_3, uint8_t slot_4) {
char status;
max30101_mode_configuration_t mode_configuration;
max30101_fifo_configuration_t fifo_configuration;
max30101_spo2_configuration_t spo2_configuration;
max30101_multiLED_mode_ctrl_1_t multiLED_mode_ctrl_1;
max30101_multiLED_mode_ctrl_2_t multiLED_mode_ctrl_2;
max30101_Interrupt_Enable_1_t Interrupt_Enable_1;
mode_configuration.all = 0;
mode_configuration.bit.reset = 1;
if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) ///< Reset the device, Mode = don't use...
{
return -1;
}
/* Give it some settle time (100ms) */ ///< Let things settle down a bit
wait(1.0 / 10.0);
fifo_configuration.all = 0;
fifo_configuration.bit.smp_ave = sample_avg; ///< Sample averaging;
fifo_configuration.bit.fifo_roll_over_en = 1; ///< FIFO Roll over enabled
fifo_configuration.bit.fifo_a_full =
fifo_waterlevel_mark; ///< Interrupt when certain level is filled
if (i2c_reg_write(REG_FIFO_CFG, fifo_configuration.all) != 0) {
return -1;
}
spo2_configuration.bit.spo2_adc_rge = 0x2; ///< ADC Range 8192 fullscale
spo2_configuration.bit.spo2_sr = sample_rate; ///< 100 Samp/sec.
spo2_configuration.bit.led_pw = pulse_width; ///< Pulse Width=411us and ADC Resolution=18
if (i2c_reg_write(REG_SPO2_CFG, spo2_configuration.all) != 0) {
return -1;
}
if (i2c_reg_write(REG_LED1_PA, red_led_current) != 0) {
return -1;
}
if (i2c_reg_write(REG_LED2_PA, ir_led_current) != 0) {
return -1;
}
if (i2c_reg_write(REG_LED3_PA, green_led_current) != 0) {
return -1;
}
///< 0x01=Red(LED1), 0x02=IR(LED2), 0x03=Green(LED3) : Use LEDn_PA to adjust the intensity
///< 0x05=Red , 0x06=IR , 0x07=Green : Use PILOT_PA to adjust the intensity DO NOT USE THIS ROW...
multiLED_mode_ctrl_1.bit.slot1 = slot_1;
multiLED_mode_ctrl_1.bit.slot2 = slot_2;
if (i2c_reg_write(REG_SLT2_SLT1, multiLED_mode_ctrl_1.all)) {
return -1;
}
multiLED_mode_ctrl_2.all = 0;
multiLED_mode_ctrl_2.bit.slot3 = slot_3;
multiLED_mode_ctrl_2.bit.slot4 = slot_4;
if (i2c_reg_write(REG_SLT4_SLT3, multiLED_mode_ctrl_2.all)) {
return -1;
}
/************/
if (i2c_reg_read(REG_INT_STAT_1, &status) != 0) ///< Clear INT1 by reading the status
{
return -1;
}
if (i2c_reg_read(REG_INT_STAT_2, &status) != 0) ///< Clear INT2 by reading the status
{
return -1;
}
if (i2c_reg_write(REG_FIFO_W_PTR, 0x00) != 0) ///< Clear FIFO ptr
{
return -1;
}
if (i2c_reg_write(REG_FIFO_OVF_CNT, 0x00) != 0) ///< Clear FIFO ptr
{
return -1;
}
if (i2c_reg_write(REG_FIFO_R_PTR, 0x00) != 0) ///< Clear FIFO ptr
{
return -1;
}
Interrupt_Enable_1.all = 0;
Interrupt_Enable_1.bit.a_full_en = 1; ///< Enable FIFO almost full interrupt
if (i2c_reg_write(REG_INT_EN_1, Interrupt_Enable_1.all) != 0) {
return -1;
}
mode_configuration.all = 0;
mode_configuration.bit.mode = 0x07; ///< Multi-LED mode
if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) {
return -1;
}
return 0;
}
//******************************************************************************
int MAX30101::Multimode_stop(void) {
max30101_Interrupt_Enable_1_t Interrupt_Enable_1;
max30101_mode_configuration_t mode_configuration;
Interrupt_Enable_1.all = 0;
Interrupt_Enable_1.bit.a_full_en = 0; ///< Disable FIFO almost full interrupt
if (i2c_reg_write(REG_INT_EN_1, Interrupt_Enable_1.all) != 0) {
return -1;
}
mode_configuration.all = 0;
mode_configuration.bit.mode = 0x00; ///< Multi-LED mode off
if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) {
return -1;
}
if (i2c_reg_write(REG_LED1_PA, 0) != 0) {
return -1;
}
if (i2c_reg_write(REG_LED2_PA, 0) != 0) {
return -1;
}
if (i2c_reg_write(REG_LED3_PA, 0) != 0) {
return -1;
}
return 0;
}
//******************************************************************************
int MAX30101::tempread(void) {
if (i2c_reg_write(REG_INT_EN_2, 0x02) != 0) {///< Interrupt Enable 2, Temperature Interrupt
return -1;
}
if (i2c_reg_write(REG_TEMP_EN, 0x01) != 0) {///< Die Temperature Config, Temp enable...
return -1;
}
return 0;
}
//******************************************************************************
int MAX30101::i2c_reg_write(MAX30101_REG_map_t reg, char value) {
char cmdData[2] = {reg, value};
if (I2CM_Write(slaveAddress, NULL, 0, cmdData, 2) != 0) {
return -1;
}
return 0;
}
//******************************************************************************
int MAX30101::i2c_reg_read(MAX30101_REG_map_t reg, char *value) {
if (I2CM_Read(slaveAddress, (char *)®, 1, value, 1) != 0 /*1*/) {
return -1;
}
return 0;
}
//******************************************************************************
int MAX30101::I2CM_Read(int slaveAddress, char *writeData, char writeCount,
char *readData, char readCount) {
if (writeData != NULL && writeCount != 0) {
i2c->write(slaveAddress, writeData, writeCount, true);
}
if (readData != NULL && readCount != 0) {
i2c->read(slaveAddress, readData, readCount);
}
return 0;
}
//******************************************************************************
int MAX30101::I2CM_Write(int slaveAddress, char *writeData1, char writeCount1,
char *writeData2, char writeCount2) {
if (writeData1 != NULL && writeCount1 != 0) {
i2c->write(slaveAddress, writeData1, writeCount1);
}
if (writeData2 != NULL && writeCount2 != 0) {
i2c->write(slaveAddress, writeData2, writeCount2);
}
return 0;
}
//******************************************************************************
void MAX30101::onDataAvailable(DataCallbackFunction _onDataAvailable) {
onDataAvailableCallback = _onDataAvailable;
}
//******************************************************************************
void MAX30101::dataAvailable(uint32_t id, uint32_t *buffer, uint32_t length) {
if (onDataAvailableCallback != NULL) {
(*onDataAvailableCallback)(id, buffer, length);
}
}
//******************************************************************************
void MAX30101::onInterrupt(InterruptFunction _onInterrupt) {
onInterruptCallback = _onInterrupt;
}
//******************************************************************************
void MAX30101::interruptPostCallback(void) {
if (onInterruptCallback != NULL) {
(*onInterruptCallback)();
}
}
//******************************************************************************
void MAX30101::MidIntHandler(void) {
MAX30101::instance->int_handler();
}