AHRS based on MatrixPilot DCM algorithm; ported from Pololu MinIMU-9 example code in turn based on ArduPilot 1.5 built for sensor gy_80
Fork of DCM_AHRS by
DCM.cpp@1:115cf0a84a9d, 2013-07-24 (annotated)
- Committer:
- oprospero
- Date:
- Wed Jul 24 01:58:33 2013 +0000
- Revision:
- 1:115cf0a84a9d
- Parent:
- 0:62284d27d75e
- Child:
- 2:486018bc6acd
DCM ahrs gy80
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
shimniok | 0:62284d27d75e | 1 | #include "DCM.h" |
shimniok | 0:62284d27d75e | 2 | #include "Matrix.h" |
shimniok | 0:62284d27d75e | 3 | #include "math.h" |
shimniok | 0:62284d27d75e | 4 | #include "Sensors.h" |
shimniok | 0:62284d27d75e | 5 | |
oprospero | 1:115cf0a84a9d | 6 | #include "mbed.h" |
oprospero | 1:115cf0a84a9d | 7 | //Serial pc3(USBTX, USBRX); |
oprospero | 1:115cf0a84a9d | 8 | |
oprospero | 1:115cf0a84a9d | 9 | #define MAG_SKIP 1 |
shimniok | 0:62284d27d75e | 10 | |
shimniok | 0:62284d27d75e | 11 | float DCM::constrain(float x, float a, float b) |
shimniok | 0:62284d27d75e | 12 | { |
shimniok | 0:62284d27d75e | 13 | float result = x; |
shimniok | 0:62284d27d75e | 14 | |
shimniok | 0:62284d27d75e | 15 | if (x < a) result = a; |
shimniok | 0:62284d27d75e | 16 | if (x > b) result = b; |
shimniok | 0:62284d27d75e | 17 | |
shimniok | 0:62284d27d75e | 18 | return result; |
shimniok | 0:62284d27d75e | 19 | } |
shimniok | 0:62284d27d75e | 20 | |
shimniok | 0:62284d27d75e | 21 | |
shimniok | 0:62284d27d75e | 22 | DCM::DCM(void): |
oprospero | 1:115cf0a84a9d | 23 | G_Dt(0.25), update_count(MAG_SKIP) |
shimniok | 0:62284d27d75e | 24 | { |
oprospero | 1:115cf0a84a9d | 25 | Accel_Init(); |
oprospero | 1:115cf0a84a9d | 26 | Gyro_Init(); |
oprospero | 1:115cf0a84a9d | 27 | Magn_Init(); |
shimniok | 0:62284d27d75e | 28 | for (int m=0; m < 3; m++) { |
shimniok | 0:62284d27d75e | 29 | Accel_Vector[m] = 0; |
shimniok | 0:62284d27d75e | 30 | Gyro_Vector[m] = 0; |
shimniok | 0:62284d27d75e | 31 | Omega_Vector[m] = 0; |
shimniok | 0:62284d27d75e | 32 | Omega_P[m] = 0; |
shimniok | 0:62284d27d75e | 33 | Omega_I[m] = 0; |
shimniok | 0:62284d27d75e | 34 | Omega[m] = 0; |
shimniok | 0:62284d27d75e | 35 | errorRollPitch[m] = 0; |
shimniok | 0:62284d27d75e | 36 | errorYaw[m] = 0; |
shimniok | 0:62284d27d75e | 37 | for (int n=0; n < 3; n++) { |
shimniok | 0:62284d27d75e | 38 | dcm[m][n] = (m == n) ? 1 : 0; // dcm starts as identity matrix |
shimniok | 0:62284d27d75e | 39 | } |
shimniok | 0:62284d27d75e | 40 | } |
shimniok | 0:62284d27d75e | 41 | |
shimniok | 0:62284d27d75e | 42 | } |
shimniok | 0:62284d27d75e | 43 | |
shimniok | 0:62284d27d75e | 44 | |
shimniok | 0:62284d27d75e | 45 | /**************************************************/ |
shimniok | 0:62284d27d75e | 46 | void DCM::Normalize(void) |
shimniok | 0:62284d27d75e | 47 | { |
shimniok | 0:62284d27d75e | 48 | float error=0; |
shimniok | 0:62284d27d75e | 49 | float temporary[3][3]; |
shimniok | 0:62284d27d75e | 50 | float renorm=0; |
shimniok | 0:62284d27d75e | 51 | |
oprospero | 1:115cf0a84a9d | 52 | error= -Vector_Dot_Product(&dcm[0][0], &dcm[1][0])*.5; //eq.19 |
shimniok | 0:62284d27d75e | 53 | |
shimniok | 0:62284d27d75e | 54 | Vector_Scale(&temporary[0][0], &dcm[1][0], error); //eq.19 |
shimniok | 0:62284d27d75e | 55 | Vector_Scale(&temporary[1][0], &dcm[0][0], error); //eq.19 |
oprospero | 1:115cf0a84a9d | 56 | |
shimniok | 0:62284d27d75e | 57 | Vector_Add(&temporary[0][0], &temporary[0][0], &dcm[0][0]);//eq.19 |
shimniok | 0:62284d27d75e | 58 | Vector_Add(&temporary[1][0], &temporary[1][0], &dcm[1][0]);//eq.19 |
shimniok | 0:62284d27d75e | 59 | |
shimniok | 0:62284d27d75e | 60 | Vector_Cross_Product(&temporary[2][0],&temporary[0][0],&temporary[1][0]); // c= a x b //eq.20 |
shimniok | 0:62284d27d75e | 61 | |
shimniok | 0:62284d27d75e | 62 | renorm= .5 *(3 - Vector_Dot_Product(&temporary[0][0],&temporary[0][0])); //eq.21 |
shimniok | 0:62284d27d75e | 63 | Vector_Scale(&dcm[0][0], &temporary[0][0], renorm); |
shimniok | 0:62284d27d75e | 64 | |
shimniok | 0:62284d27d75e | 65 | renorm= .5 *(3 - Vector_Dot_Product(&temporary[1][0],&temporary[1][0])); //eq.21 |
shimniok | 0:62284d27d75e | 66 | Vector_Scale(&dcm[1][0], &temporary[1][0], renorm); |
shimniok | 0:62284d27d75e | 67 | |
shimniok | 0:62284d27d75e | 68 | renorm= .5 *(3 - Vector_Dot_Product(&temporary[2][0],&temporary[2][0])); //eq.21 |
shimniok | 0:62284d27d75e | 69 | Vector_Scale(&dcm[2][0], &temporary[2][0], renorm); |
shimniok | 0:62284d27d75e | 70 | } |
shimniok | 0:62284d27d75e | 71 | |
shimniok | 0:62284d27d75e | 72 | /**************************************************/ |
shimniok | 0:62284d27d75e | 73 | void DCM::Drift_correction(void) |
shimniok | 0:62284d27d75e | 74 | { |
shimniok | 0:62284d27d75e | 75 | float mag_heading_x; |
shimniok | 0:62284d27d75e | 76 | float mag_heading_y; |
shimniok | 0:62284d27d75e | 77 | float errorCourse; |
shimniok | 0:62284d27d75e | 78 | //Compensation the Roll, Pitch and Yaw drift. |
shimniok | 0:62284d27d75e | 79 | static float Scaled_Omega_P[3]; |
shimniok | 0:62284d27d75e | 80 | static float Scaled_Omega_I[3]; |
shimniok | 0:62284d27d75e | 81 | float Accel_magnitude; |
shimniok | 0:62284d27d75e | 82 | float Accel_weight; |
shimniok | 0:62284d27d75e | 83 | |
shimniok | 0:62284d27d75e | 84 | |
shimniok | 0:62284d27d75e | 85 | //*****Roll and Pitch*************** |
shimniok | 0:62284d27d75e | 86 | |
shimniok | 0:62284d27d75e | 87 | // Calculate the magnitude of the accelerometer vector |
shimniok | 0:62284d27d75e | 88 | Accel_magnitude = sqrt(Accel_Vector[0]*Accel_Vector[0] + Accel_Vector[1]*Accel_Vector[1] + Accel_Vector[2]*Accel_Vector[2]); |
shimniok | 0:62284d27d75e | 89 | Accel_magnitude = Accel_magnitude / GRAVITY; // Scale to gravity. |
shimniok | 0:62284d27d75e | 90 | // Dynamic weighting of accelerometer info (reliability filter) |
shimniok | 0:62284d27d75e | 91 | // Weight for accelerometer info (<0.5G = 0.0, 1G = 1.0 , >1.5G = 0.0) |
shimniok | 0:62284d27d75e | 92 | Accel_weight = constrain(1 - 2*abs(1 - Accel_magnitude),0,1); // |
oprospero | 1:115cf0a84a9d | 93 | |
shimniok | 0:62284d27d75e | 94 | Vector_Cross_Product(&errorRollPitch[0],&Accel_Vector[0],&dcm[2][0]); //adjust the ground of reference |
shimniok | 0:62284d27d75e | 95 | Vector_Scale(&Omega_P[0],&errorRollPitch[0],Kp_ROLLPITCH*Accel_weight); |
shimniok | 0:62284d27d75e | 96 | |
shimniok | 0:62284d27d75e | 97 | Vector_Scale(&Scaled_Omega_I[0],&errorRollPitch[0],Ki_ROLLPITCH*Accel_weight); |
oprospero | 1:115cf0a84a9d | 98 | Vector_Add(Omega_I,Omega_I,Scaled_Omega_I); |
shimniok | 0:62284d27d75e | 99 | |
shimniok | 0:62284d27d75e | 100 | //*****YAW*************** |
shimniok | 0:62284d27d75e | 101 | // We make the gyro YAW drift correction based on compass magnetic heading |
oprospero | 1:115cf0a84a9d | 102 | mag_heading_x = cos(MAG_Heading); |
oprospero | 1:115cf0a84a9d | 103 | mag_heading_y = sin(MAG_Heading); |
oprospero | 1:115cf0a84a9d | 104 | errorCourse=(dcm[0][0]*mag_heading_y) - (dcm[1][0]*mag_heading_x); //Calculating YAW error |
oprospero | 1:115cf0a84a9d | 105 | Vector_Scale(errorYaw,&dcm[2][0],errorCourse); //Applys the yaw correction to the XYZ rotation of the aircraft, depeding the position. |
oprospero | 1:115cf0a84a9d | 106 | |
oprospero | 1:115cf0a84a9d | 107 | Vector_Scale(&Scaled_Omega_P[0],&errorYaw[0],Kp_YAW);//.01proportional of YAW. |
oprospero | 1:115cf0a84a9d | 108 | Vector_Add(Omega_P,Omega_P,Scaled_Omega_P);//Adding Proportional. |
oprospero | 1:115cf0a84a9d | 109 | |
oprospero | 1:115cf0a84a9d | 110 | Vector_Scale(&Scaled_Omega_I[0],&errorYaw[0],Ki_YAW);//.00001Integrator |
oprospero | 1:115cf0a84a9d | 111 | Vector_Add(Omega_I,Omega_I,Scaled_Omega_I);//adding integrator to the Omega_I |
shimniok | 0:62284d27d75e | 112 | |
shimniok | 0:62284d27d75e | 113 | } |
shimniok | 0:62284d27d75e | 114 | |
shimniok | 0:62284d27d75e | 115 | |
shimniok | 0:62284d27d75e | 116 | /**************************************************/ |
shimniok | 0:62284d27d75e | 117 | void DCM::Matrix_update(void) |
shimniok | 0:62284d27d75e | 118 | { |
shimniok | 0:62284d27d75e | 119 | |
oprospero | 1:115cf0a84a9d | 120 | Vector_Add(&Omega[0], &Gyro_Vector[0], &Omega_I[0]); //adding proportional term |
oprospero | 1:115cf0a84a9d | 121 | Vector_Add(&Omega_Vector[0], &Omega[0], &Omega_P[0]); //adding Integrator term |
shimniok | 0:62284d27d75e | 122 | |
oprospero | 1:115cf0a84a9d | 123 | #if OUTPUTMODE==1 |
oprospero | 1:115cf0a84a9d | 124 | Update_Matrix[0][0]=0; |
oprospero | 1:115cf0a84a9d | 125 | Update_Matrix[0][1]=-G_Dt*Omega_Vector[2];//-z |
oprospero | 1:115cf0a84a9d | 126 | Update_Matrix[0][2]=G_Dt*Omega_Vector[1];//y |
oprospero | 1:115cf0a84a9d | 127 | Update_Matrix[1][0]=G_Dt*Omega_Vector[2];//z |
oprospero | 1:115cf0a84a9d | 128 | Update_Matrix[1][1]=0; |
oprospero | 1:115cf0a84a9d | 129 | Update_Matrix[1][2]=-G_Dt*Omega_Vector[0];//-x |
oprospero | 1:115cf0a84a9d | 130 | Update_Matrix[2][0]=-G_Dt*Omega_Vector[1];//-y |
oprospero | 1:115cf0a84a9d | 131 | Update_Matrix[2][1]=G_Dt*Omega_Vector[0];//x |
oprospero | 1:115cf0a84a9d | 132 | Update_Matrix[2][2]=0; |
oprospero | 1:115cf0a84a9d | 133 | #else // Uncorrected data (no drift correction) |
oprospero | 1:115cf0a84a9d | 134 | Update_Matrix[0][0]=0; |
oprospero | 1:115cf0a84a9d | 135 | Update_Matrix[0][1]=-G_Dt*Gyro_Vector[2];//-z |
oprospero | 1:115cf0a84a9d | 136 | Update_Matrix[0][2]=G_Dt*Gyro_Vector[1];//y |
oprospero | 1:115cf0a84a9d | 137 | Update_Matrix[1][0]=G_Dt*Gyro_Vector[2];//z |
oprospero | 1:115cf0a84a9d | 138 | Update_Matrix[1][1]=0; |
oprospero | 1:115cf0a84a9d | 139 | Update_Matrix[1][2]=-G_Dt*Gyro_Vector[0]; |
oprospero | 1:115cf0a84a9d | 140 | Update_Matrix[2][0]=-G_Dt*Gyro_Vector[1]; |
oprospero | 1:115cf0a84a9d | 141 | Update_Matrix[2][1]=G_Dt*Gyro_Vector[0]; |
oprospero | 1:115cf0a84a9d | 142 | Update_Matrix[2][2]=0; |
oprospero | 1:115cf0a84a9d | 143 | #endif |
oprospero | 1:115cf0a84a9d | 144 | |
oprospero | 1:115cf0a84a9d | 145 | Matrix_Multiply(Temporary_Matrix, dcm, Update_Matrix); //c=a*b |
oprospero | 1:115cf0a84a9d | 146 | // ??? Matrix_Add(dcm, dcm, Temporary_Matrix); ??? |
oprospero | 1:115cf0a84a9d | 147 | for(int x=0; x<3; x++) { //Matrix Addition (update) |
oprospero | 1:115cf0a84a9d | 148 | for(int y=0; y<3; y++) { |
oprospero | 1:115cf0a84a9d | 149 | dcm[x][y] += Temporary_Matrix[x][y]; |
oprospero | 1:115cf0a84a9d | 150 | } |
oprospero | 1:115cf0a84a9d | 151 | } |
shimniok | 0:62284d27d75e | 152 | } |
shimniok | 0:62284d27d75e | 153 | |
shimniok | 0:62284d27d75e | 154 | void DCM::Euler_angles(void) |
shimniok | 0:62284d27d75e | 155 | { |
oprospero | 1:115cf0a84a9d | 156 | pitch = RAD2DEG(-asin(dcm[2][0])); |
oprospero | 1:115cf0a84a9d | 157 | roll = RAD2DEG(atan2(dcm[2][1],dcm[2][2])); |
oprospero | 1:115cf0a84a9d | 158 | yaw = RAD2DEG(atan2(dcm[1][0],dcm[0][0])); |
shimniok | 0:62284d27d75e | 159 | } |
shimniok | 0:62284d27d75e | 160 | |
shimniok | 0:62284d27d75e | 161 | void DCM::Update_step() |
oprospero | 1:115cf0a84a9d | 162 | { |
oprospero | 1:115cf0a84a9d | 163 | Read_Accel(); |
shimniok | 0:62284d27d75e | 164 | Read_Gyro(); |
shimniok | 0:62284d27d75e | 165 | if (--update_count == 0) { |
shimniok | 0:62284d27d75e | 166 | Update_mag(); |
shimniok | 0:62284d27d75e | 167 | update_count = MAG_SKIP; |
shimniok | 0:62284d27d75e | 168 | } |
shimniok | 0:62284d27d75e | 169 | Matrix_update(); |
shimniok | 0:62284d27d75e | 170 | Normalize(); |
shimniok | 0:62284d27d75e | 171 | Drift_correction(); |
shimniok | 0:62284d27d75e | 172 | Euler_angles(); |
shimniok | 0:62284d27d75e | 173 | } |
shimniok | 0:62284d27d75e | 174 | |
shimniok | 0:62284d27d75e | 175 | void DCM::Update_mag() |
shimniok | 0:62284d27d75e | 176 | { |
oprospero | 1:115cf0a84a9d | 177 | Read_Magn(); |
shimniok | 0:62284d27d75e | 178 | Compass_Heading(); |
shimniok | 0:62284d27d75e | 179 | } |
oprospero | 1:115cf0a84a9d | 180 | |
oprospero | 1:115cf0a84a9d | 181 | void DCM::Compass_Heading() |
oprospero | 1:115cf0a84a9d | 182 | { |
oprospero | 1:115cf0a84a9d | 183 | float mag_x; |
oprospero | 1:115cf0a84a9d | 184 | float mag_y; |
oprospero | 1:115cf0a84a9d | 185 | float cos_roll; |
oprospero | 1:115cf0a84a9d | 186 | float sin_roll; |
oprospero | 1:115cf0a84a9d | 187 | float cos_pitch; |
oprospero | 1:115cf0a84a9d | 188 | float sin_pitch; |
oprospero | 1:115cf0a84a9d | 189 | |
oprospero | 1:115cf0a84a9d | 190 | cos_roll = cos(roll); |
oprospero | 1:115cf0a84a9d | 191 | sin_roll = sin(roll); |
oprospero | 1:115cf0a84a9d | 192 | cos_pitch = cos(pitch); |
oprospero | 1:115cf0a84a9d | 193 | sin_pitch = sin(pitch); |
oprospero | 1:115cf0a84a9d | 194 | |
oprospero | 1:115cf0a84a9d | 195 | // Tilt compensated magnetic field X |
oprospero | 1:115cf0a84a9d | 196 | mag_x = Magn_Vector[0]*cos_pitch + Magn_Vector[1]*sin_roll*sin_pitch + Magn_Vector[2]*cos_roll*sin_pitch; |
oprospero | 1:115cf0a84a9d | 197 | // Tilt compensated magnetic field Y |
oprospero | 1:115cf0a84a9d | 198 | mag_y = Magn_Vector[1]*cos_roll - Magn_Vector[2]*sin_roll; |
oprospero | 1:115cf0a84a9d | 199 | // Magnetic Heading |
oprospero | 1:115cf0a84a9d | 200 | MAG_Heading = atan2(-mag_y, mag_x); |
oprospero | 1:115cf0a84a9d | 201 | } |
oprospero | 1:115cf0a84a9d | 202 |