this transfers data (which is stored in "bin" file in mbed storage) into LPC1114, LPC1115, LPC81x, LPC82x, LPC1768/LPC1769 and LPC11U68/LPC11E68 internal flash memory through ISP.

Dependencies:   mbed MODSERIAL DirectoryList

Information

日本語版がこのページ下半分にあります!

Japanese version is available lower half of this page.

Caution!

このプログラムでイカを焼くことはできません (^ ^;

"Ika-shouyu-poppoyaki" is a name of Japanese local food.
If I try to do a direct translation, it will be something like "Choo-choo grilled calamari with soy-sauce".
However, you may noticed already, it cannot be grilled by this program ;-)

ISP programming application on mbed

ISP program writes data into flash memory of target MCU.

This mbed program programs target MCU flash memory through UART. It uses "In-System Programming (ISP)" interface in target MCU (NXP LPC micro-controllers).

The ISP is done by PC with serial cable normally. The ISP protocol is executed software on a PC. The software reads a data file and transfers the data with the ISP protocol.
This program does same process of that. The mbed performs a function like "FlashMagic" or "lpc21isp".
(This program does not just copy the binary but also insert 4 byte checksum at address 0x1C.)

This program currently supports LPC1114, LPC1115, LPC81x, LPC82x, LPC1768/LPC1769 and LPC11U68/LPC11E68.

Information

For the LPC1768 and LPC1769, this program supports writing only. It cannot perform verifying.

Modification for targeting LPC82x series has been done by Mr. k4zuki. Thank you very much!
Modification for targeting LPC11U68/LPC11E68 has been done by HAPI- Tech. Thank you very much!!

/media/uploads/okano/copying_bin_e.png

How to execute

With this program, all you need to do is..

  1. Connect the mbed and the target (/RESET and /ISP_enable signals in are option. Those are not necessary if you set the target ISP mode manually)
  2. Rename your (binary) file to "bin" and copy into the mbed storage.
  3. Press reset button of mbed.
  • When the program completed successfully, you will find the LEDs on mbed blinks sequentially (LED1→LED2→LED3→LED4).
  • If it failed, the mbed reports it "Runtime error" by LEDs.
  • You can also monitor the progress and result on a terminal screen (mbed reports those by printf).
  • if you enabled "AUTO_PROGRAM_START", the program in the target will be started automatically.
  • from version 0.7, this program works as "USB-serial bridge" after the ISP writing done. The serial enabled target program (and if "AUTO_PROGRAM_START" is enabled, ) the UART will come up on the terminal screen after ISP completion. Please set "TARGET_OPERATION_BAUD_RATE" as baud rate of target program. The ISP speed can be set by "ISP_BAUD_RATE" separately.

/media/uploads/okano/files_in_storage_e.png

Information

If you don't have a file named "bin", the program will ask you which file you want to choose.
You will find a list of files on PC terminal and that interface let you select a file as source.
(The file names will appear in 8.3 format like old DOS.)

There are some options to bypassing the ISP to execute USB-serial through mode or erasing flash.

If there is a "bin" file, the program may work as usual.
(updated on 29-Jan-2015)

Sample of operation

Next picture is sample of the operation.

  1. The target (LPC1114) goes into ISP mode after first reset.
  2. mbed writes binary into flash in the target (binary size is 12668 bytes in this sample).
  3. when the writing completed, mbed starts reading the flash. the data is verified by comparing with original file.
  4. Asserting reset again with "ISP_enable pin" HIGH.
  5. The target starts to work with written binary (program). In this sample, the target sending character data on UART and toggling LED (GPIO) pin periodically.

/media/uploads/okano/isp_operation_sample_1114_e2.png

Recipe for adding chip support

Information

This section had been written by At_Zamasu_Zansu.
Thank you!

Describing how to add a target device.
Register new Device ID in target_table.cpp.

Targets defined in target_table.cpp.

target_table.cpp

target_param    target_table[]  = {
    { "unknown ttarget",        0xFFFFFFFF, 1024,    4096, 4096, UUENCODE, 0x10000200 },
    { "LPC1114FN28(FDH28)/102", 0x0A40902B, 4096,   32768, 4096, UUENCODE, 0x10000200 },
    { "LPC1114FN28(FDH28)/102", 0x1A40902B, 4096,   32768, 4096, UUENCODE, 0x10000200 },
    { "LPC810M021FN8",          0x00008100, 1024,    4096, 1024, BINARY,   0x10000300 },
    { "LPC811M001JDH16",        0x00008110, 2048,    8192, 1024, BINARY,   0x10000300 },
    { "LPC812M101JDH16",        0x00008120, 4096,   16384, 1024, BINARY,   0x10000300 },
    { "LPC812M101JD20",         0x00008121, 4096,   16384, 1024, BINARY,   0x10000300 },
    { "LPC812M101JDH20",        0x00008122, 4096,   16384, 1024, BINARY,   0x10000300 },
///added for LPC82x series
    { "LPC824M201JHI33",        0x00008241, 8192,   32768, 1024, BINARY,   0x10000300 },
    { "LPC822M101JHI33",        0x00008221, 4096,   16384, 1024, BINARY,   0x10000300 },
    { "LPC824M201JDH20",        0x00008242, 8192,   32768, 1024, BINARY,   0x10000300 },
    { "LPC822M101JDH20",        0x00008222, 4096,   16384, 1024, BINARY,   0x10000300 },
 
};

Structure of the table is defined in target_table.h.

target_table.h

typedef struct  taget_param_st {
    char            *type_name;
    int             id;
    int             ram_size;
    int             flash_size;
    int             sector_size;
    int             write_type;
    unsigned int    ram_start_address;
}

Items are defined in order of next sample in target_table.cpp

 {type_name, id, ram_size, flash_size, sector_size, write_type, ram_start_address}

Sample of how to do this

Data can be found in usermanual(UM) and datasheet. An example following.

In case of LPC82xx
UM10800 LPC82x User manual http://www.nxp.com/documents/user_manual/UM10800.pdf
LPC82x Product data sheet http://www.nxp.com/documents/data_sheet/LPC82X.pdf

  • type_name:
    • Table 322. Part identification numbers can be found by searching in UM. Pick up a device from the Table 322.
  • id:
    • Put a Hex coding value in Table 322.
  • ram_size:
    • Put target RAM size which can be found in datasheet by searching "Ordering options". Find the RAM size in Table2 (in bytes)
  • flash_size:
    • Put target flash size from the Table 2.
      The size should be calculated as "1KB = 1024" bytes.
  • sector_size:
    • A description of "The size of a sector is 1 KB and the size of a page is 64 Byte. One sector contains 16 pages" can be found in 25.5 General description, UM. Pick up taeget sector size and put it into the table in bytes. In this case, it will be 1024.
    • In case of LPC176x, the secotr size is 4KB for first 16 sectors and rest are 32K. So it cannot be defined by single value. For this type of targets, prepare a special value for the sector size. The program calculates the size when this value is detected.
  • ram_start_address:
    • Put an address of example which can be found by searching "UART ISP Write to RAM command" or "Write to RAM" in UM

Reference




イカ醤油ポッポ焼き

mbed用ISPプログラム

NXP製のマイコンは,内部フラッシュメモリへのプログラムの書き込みをUART経由で行うことができます.
通常,この作業はPC上のソフトウェア(たとえば"FlashMagic""lpc21isp"など)を用いて,PC上のファイルのデータを,UARTで接続したマイコンの内蔵フラッシュに書き込みます.

「イカ醤油ポッポ焼き」はmbedでそれらのソフトの代わりをさせるものです.mbedストレージ内に置いた「bin」と名付けられたファイルを読み,フラッシュへ書き込みます.
この書き込みを行う際には,アドレス0x1Cに置いておく必要のある4バイトのチェックサムも自動で追加されます.

現在サポートしているターゲットはLPC1114LPC1115LPC81xLPC82xLPC1768/LPC1769LPC11U68/LPC11E68です.

Information

LPC1768 and LPC1769 では書き込みのみがサポートされます.読み出し検証は実行されません.

LPC82xシリーズをターゲットとするための変更k4zukiさんがしてくださいました.ありがとうございます!
LPC11U68/LPC11E68をターゲットとするための変更HAPI- Techさんがしてくださいました.ありがとうございます!

/media/uploads/okano/copying_bin_j.png

美味しい料理法

このプログラムの動かし方は次の通り

  1. mbedとターゲット(書き込み対象のマイコン)を接続する (ターゲットを手動でISPモードに入れる場合には,/RESET と /ISP_enable は接続する必要はありません)
  2. 書き込みたいファイル(バイナリフォーマット)の名前を「bin」に変更して,mbed内にコピー
  3. mbedのリセットボタンを押す
  • 書き込みが無事に終了するとmbed上のLEDが順番に点滅を繰り返します(LED1→LED2→LED3→LED4).
  • もし何らかのエラーが発生して失敗した場合には"Runtime error"が発生した時のLED点灯となります.
  • またコンピュータのターミナルで状況や結果を確認することもできます(mbedがprintfで状況を出力しています)
  • "AUTO_PROGRAM_START"を有効にしてあれば,書き込み終了後,ターゲットのプログラムは自動的にスタートします.
  • バージョン0.7以降,このプログラムはISP書き込みの終了後にUSB-Serialブリッジとして動作するようにしてあります.ターゲットのプログラムがシリアルを使うもので(かつ"AUTO_PROGRAM_START"が有効で)あれば,入出力はそのままISP完了後のターミナルに現れます."TARGET_OPERATION_BAUD_RATE"はターゲットのプログラムが使うボーレートに合わせてください.ISPの書き込みに使うボーレートは "これとは別に"ISP_BAUD_RATE"で指定することができます.

/media/uploads/okano/files_in_storage_j2.png

Information

もし「bin」と名付けられたファイルが見つからなければ,(PCターミナル上で)どのファイルを選択するかが訊ねられます.
その表示を確認して,どのファイルを書き込むのかを選択してください.
「bin」ファイルが有れば,これまでと同じように動作します.(ファイル名はDOSのような8.3フォーマットで表示されます)

この他,ISPをバイパスしてシリアススルー・モードに行ったり,フラッシュを消すだけという操作も可能になっています.

(2015年1月29日にアップデートされました)

動作の例

次の図は動作の例です

  1. 最初のリセットによってターゲット(LPC1114)がISPモードに入ります
  2. mbedがターゲットのフラッシュにバイナリを書き込みます(この例では12668バイトのバイナリを書いています)
  3. 書き込みが終わるとフラッシュの読み出しを始めます.このデータを元のファイルとの比較し,検証を行います
  4. ISPイネーブル・ピンをHIGHにして再度リセットを行います
  5. ターゲットは書き込まれたプログラムの実行を開始します.この例ではターゲットは周期的にUARTへ文字データを送り,LEDを(GPIOピン)を点滅させます
  6. The target starts to work with written binary (program). The target sending character data on UART and toggling LED (GPIO) pin periodically.

/media/uploads/okano/isp_operation_sample_1114_j2.png


イカ醤油ポッポ焼き味付けレシピ

Information

この節はざますざんすさんが作成してくれました.
ありがとうございます!

これは,イカ醤油ポッポ焼きに新しいターゲットデバイスを追加する場合のレシピを纏めたものです.

必要事項:target_table.cpp へ新しいDevice ID register を追加する.

target_table.cppに記載されているターゲット一覧.

target_table.cpp

target_param    target_table[]  = {
    { "unknown ttarget",        0xFFFFFFFF, 1024,    4096, 4096, UUENCODE, 0x10000200 },
    { "LPC1114FN28(FDH28)/102", 0x0A40902B, 4096,   32768, 4096, UUENCODE, 0x10000200 },
    { "LPC1114FN28(FDH28)/102", 0x1A40902B, 4096,   32768, 4096, UUENCODE, 0x10000200 },
    { "LPC810M021FN8",          0x00008100, 1024,    4096, 1024, BINARY,   0x10000300 },
    { "LPC811M001JDH16",        0x00008110, 2048,    8192, 1024, BINARY,   0x10000300 },
    { "LPC812M101JDH16",        0x00008120, 4096,   16384, 1024, BINARY,   0x10000300 },
    { "LPC812M101JD20",         0x00008121, 4096,   16384, 1024, BINARY,   0x10000300 },
    { "LPC812M101JDH20",        0x00008122, 4096,   16384, 1024, BINARY,   0x10000300 },
///added for LPC82x series
    { "LPC824M201JHI33",        0x00008241, 8192,   32768, 1024, BINARY,   0x10000300 },
    { "LPC822M101JHI33",        0x00008221, 4096,   16384, 1024, BINARY,   0x10000300 },
    { "LPC824M201JDH20",        0x00008242, 8192,   32768, 1024, BINARY,   0x10000300 },
    { "LPC822M101JDH20",        0x00008222, 4096,   16384, 1024, BINARY,   0x10000300 },
 
};

上記コードは以下の構造を取っている.target_table.h に以下のコードがある.

target_table.h

typedef struct  taget_param_st {
    char            *type_name;
    int             id;
    int             ram_size;
    int             flash_size;
    int             sector_size;
    int             write_type;
    unsigned int    ram_start_address;
}

以下の順番にtarget_table.cppにコーディングする.

 {type_name, id, ram_size, flash_size, sector_size, write_type, ram_start_address}

作業の手順例

データはユーザマニュアル(UM)と Data sheet から検索する.以下に例を上げる.

LPC82xxの場合
UM10800 LPC82x User manual http://www.nxp.com/documents/user_manual/UM10800.pdf
LPC82x Product data sheet http://www.nxp.com/documents/data_sheet/LPC82X.pdf

  • type_name:
    • UMから Part identification numbers を検索すると,Table 322. Part identification numbersが現れる.Table 322より Table記載のDeviceを入力.
  • id:
    • UMから Part identification numbers を検索,Table 322. よりHex codingを入力.
  • ram_size:
    • Product data sheet よりOrdering options を検索しTable2より上記Deviceと同じターゲットのRAMサイズを記載(byte)
  • flash_size:
    • Product data sheet よりOrdering options を検索しTable2より上記Deviceと同じターゲットのFlashサイズを記載(byte)
      尚,1KBは1024byteにて計算
  • sector_size:
    • UMから Flash configuration を検索し25.5 General description に「The size of a sector is 1 KB and the size of a page is 64 Byte. One sector contains 16 pages.」と記載があるので,ターゲットのSectorサイズを記載(byte単位).今回の場合は1KBなので1024byte.
    • LPC176xシリーズのセクタサイズは,最初の16セクタが4KB,残りを32KBとしているため一定の値では表せません.これに対応するため特別な値を用意して,プログラム内でその値を検出した際には実際の構成に則した計算を行うようにしています.
  • ram_start_address:
    • UMからUART ISP Write to RAM command もしくは Write to RAM を検索.Example に書いてあるアドレスを記載する.

参考

日本語版だけの(何の役にも立たない)参考情報

Information

何故このプログラムが作られたか.そして何故こんな名前なのか.
こちらを御覧ください →→ イカ醤油ポッポ焼きはイカにして生まれたか(´(ェ)`;

このプログラムを作ってみるきっかけになったツイート.

(´(ェ)`)

Committer:
okano
Date:
Wed Aug 28 11:55:00 2013 +0000
Revision:
14:a7b9f74fb856
Parent:
13:60995bf8b2c7
Child:
15:051ca36cc64b
"AUTO_PROGRAM_START" option added.; Header comment modified in main.cpp

Who changed what in which revision?

UserRevisionLine numberNew contents of line
okano 11:8dfc3217d1ca 1 /**
okano 11:8dfc3217d1ca 2 * Sample of ISP operation for NXP MCUs
okano 11:8dfc3217d1ca 3 *
okano 14:a7b9f74fb856 4 * @author Tedd OKANO
okano 14:a7b9f74fb856 5 * @version 0.6
okano 11:8dfc3217d1ca 6 * @date Aug-2013
okano 14:a7b9f74fb856 7 *
okano 14:a7b9f74fb856 8 * This program programs MCU flash memory through UART. It uses
okano 14:a7b9f74fb856 9 * "In-System Programming (ISP)" interface in target MCU (NXP LPC micro-
okano 14:a7b9f74fb856 10 * controllers).
okano 14:a7b9f74fb856 11 *
okano 14:a7b9f74fb856 12 * The ISP is done by PC and serial cable normally. The ISP protocol is
okano 14:a7b9f74fb856 13 * executed software on a PC. The software reads a data file and transfers
okano 14:a7b9f74fb856 14 * the data with the ISP protocol.
okano 14:a7b9f74fb856 15 * This program does same process of that. The mbed perform the function like
okano 14:a7b9f74fb856 16 * "FlashMagic" and "lpc21isp".
okano 14:a7b9f74fb856 17 * (This program not just copies the binary but also insert 4 byte checksum at
okano 14:a7b9f74fb856 18 * address 0x1C.)
okano 14:a7b9f74fb856 19 *
okano 14:a7b9f74fb856 20 * This program currently supports LPC1114(LPC1114FN28/102 - DIP28-ARM) and
okano 14:a7b9f74fb856 21 * LPC810(LPC810M021FN8 - DIP8-ARM).
okano 11:8dfc3217d1ca 22 */
okano 11:8dfc3217d1ca 23
okano 5:ff30f5b58617 24 #include "mbed.h"
okano 5:ff30f5b58617 25 #include "target_table.h"
okano 0:6baefda2e511 26
okano 2:8d75eb0ecd20 27 BusOut leds( LED4, LED3, LED2, LED1 );
okano 2:8d75eb0ecd20 28 DigitalOut reset_pin( p26 );
okano 2:8d75eb0ecd20 29 DigitalOut isp_pin( p25 );
okano 2:8d75eb0ecd20 30 Serial target ( p28, p27 );
okano 2:8d75eb0ecd20 31 LocalFileSystem local( "local" );
okano 0:6baefda2e511 32
okano 12:5a33b5d39792 33 #define ENTER_TO_ISP_MODE 0
okano 12:5a33b5d39792 34 #define NO_ISP_MODE 1
okano 12:5a33b5d39792 35 #define STR_BUFF_SIZE 64
okano 12:5a33b5d39792 36
okano 1:54e619428ae6 37 #define SOURCE_FILE "/local/bin"
okano 8:b220fadbb3d8 38 #define BAUD_RATE 115200
okano 4:55f1977bd11a 39 //#define BAUD_RATE 57600
okano 8:b220fadbb3d8 40 //#define BAUD_RATE 9600
okano 4:55f1977bd11a 41
okano 8:b220fadbb3d8 42 int error_state = 0;
okano 7:815366f003ee 43
okano 7:815366f003ee 44 int file_size( FILE *fp );
okano 7:815366f003ee 45 void reset_target( int isp_pin_state );
okano 7:815366f003ee 46 int try_and_check( char *command, char *expected_return_str, int mode );
okano 7:815366f003ee 47 int try_and_check2( char *command, char *expected_return_str, int mode );
okano 7:815366f003ee 48 void print_command( char *command );
okano 7:815366f003ee 49 void print_result( int r );
okano 7:815366f003ee 50 char read_byte( void );
okano 7:815366f003ee 51 void erase_sectors( int last_sector );
okano 12:5a33b5d39792 52 int write_uuencoded_data( FILE *fp, int ram_size, int sector_size, unsigned int );
okano 12:5a33b5d39792 53 int write_binary_data( FILE *fp, int ram_size, int sector_size, unsigned int ram_start );
okano 7:815366f003ee 54 void initialize_uue_table( void );
okano 11:8dfc3217d1ca 55 long bin2uue( char *bin, char *str, int size );
okano 12:5a33b5d39792 56 int get_flash_writing_size( int ram_size, unsigned int ram_start );
okano 7:815366f003ee 57 void add_isp_checksum( char *b );
okano 7:815366f003ee 58 void send_RAM_transfer_checksum( int checksum );
okano 7:815366f003ee 59 void put_string( char *s );
okano 12:5a33b5d39792 60 void put_binary( char *b, int size );
okano 7:815366f003ee 61 void get_string( char *s );
okano 7:815366f003ee 62
okano 12:5a33b5d39792 63 #pragma diag_suppress 1293 // surpressing a warning message of "assignment in condition" ;)
okano 12:5a33b5d39792 64
okano 7:815366f003ee 65
okano 7:815366f003ee 66 int main()
okano 7:815366f003ee 67 {
okano 7:815366f003ee 68 FILE *fp;
okano 7:815366f003ee 69 char str_buf0[ STR_BUFF_SIZE ];
okano 7:815366f003ee 70 char str_buf1[ STR_BUFF_SIZE ];
okano 7:815366f003ee 71 int data_size;
okano 7:815366f003ee 72 int last_sector;
okano 7:815366f003ee 73 target_param *tpp;
okano 8:b220fadbb3d8 74
okano 7:815366f003ee 75 printf( "\r\n\r\n\r\nmbed ISP program : programming LPC device from mbed\r\n" );
okano 7:815366f003ee 76
okano 7:815366f003ee 77 target.baud( BAUD_RATE );
okano 8:b220fadbb3d8 78
okano 7:815366f003ee 79 reset_target( ENTER_TO_ISP_MODE );
okano 8:b220fadbb3d8 80
okano 7:815366f003ee 81 try_and_check( "?", "Synchronized", 0 );
okano 8:b220fadbb3d8 82
okano 7:815366f003ee 83 try_and_check2( "Synchronized\r\n", "OK", 0 );
okano 7:815366f003ee 84 try_and_check2( "12000\r\n", "OK", 0 );
okano 7:815366f003ee 85 try_and_check2( "U 23130\r\n", "0", 0 );
okano 7:815366f003ee 86 try_and_check2( "A 0\r\n", "0", 0 );
okano 8:b220fadbb3d8 87
okano 7:815366f003ee 88 try_and_check( "K\r\n", "0", 0 );
okano 7:815366f003ee 89 get_string( str_buf0 );
okano 7:815366f003ee 90 get_string( str_buf1 );
okano 8:b220fadbb3d8 91
okano 7:815366f003ee 92 printf( " result of \"K\" = %s %s\r\n", str_buf0, str_buf1 );
okano 8:b220fadbb3d8 93
okano 7:815366f003ee 94 try_and_check( "J\r\n", "0", 0 );
okano 7:815366f003ee 95 get_string( str_buf0 );
okano 8:b220fadbb3d8 96
okano 7:815366f003ee 97 printf( " result of \"J\" = %s\r\n", str_buf0 );
okano 8:b220fadbb3d8 98
okano 7:815366f003ee 99 tpp = find_target_param( str_buf0 );
okano 8:b220fadbb3d8 100 printf( " target device found : type = \"%s\"\r\n", tpp->type_name );
okano 8:b220fadbb3d8 101 printf( " ID = 0x%08X\r\n", tpp->id );
okano 8:b220fadbb3d8 102 printf( " RAM size = %10d bytes\r\n", tpp->ram_size );
okano 8:b220fadbb3d8 103 printf( " flash size = %10d bytes\r\n", tpp->flash_size );
okano 8:b220fadbb3d8 104
okano 12:5a33b5d39792 105 printf( " opening file: \"%s\"\r\n", SOURCE_FILE );
okano 12:5a33b5d39792 106
okano 12:5a33b5d39792 107 if ( NULL == (fp = fopen( SOURCE_FILE, "rb" )) ) {
okano 12:5a33b5d39792 108 error( "couldn't open source file" );
okano 12:5a33b5d39792 109 return ( 1 );
okano 12:5a33b5d39792 110 }
okano 12:5a33b5d39792 111
okano 12:5a33b5d39792 112 data_size = file_size( fp );
okano 12:5a33b5d39792 113 last_sector = data_size / tpp->sector_size;
okano 12:5a33b5d39792 114
okano 12:5a33b5d39792 115 printf( " data size = %d bytes, it takes %d secotrs in flash area\r\n", data_size, last_sector + 1 );
okano 12:5a33b5d39792 116 printf( " resetting target\r\n" );
okano 12:5a33b5d39792 117
okano 7:815366f003ee 118 erase_sectors( last_sector );
okano 12:5a33b5d39792 119
okano 12:5a33b5d39792 120 if ( tpp->write_type == BINARY )
okano 12:5a33b5d39792 121 write_binary_data( fp, tpp->ram_size, tpp->sector_size, tpp->ram_start_address );
okano 12:5a33b5d39792 122 else // UUENCODE
okano 12:5a33b5d39792 123 write_uuencoded_data( fp, tpp->ram_size, tpp->sector_size, tpp->ram_start_address );
okano 12:5a33b5d39792 124
okano 7:815366f003ee 125 fclose( fp );
okano 8:b220fadbb3d8 126
okano 8:b220fadbb3d8 127 printf( "\r\n %s\r\n\r\n",
okano 8:b220fadbb3d8 128 error_state ?
okano 8:b220fadbb3d8 129 "** The data could not be written :(" :
okano 8:b220fadbb3d8 130 "** The data has been written successflly :)"
okano 8:b220fadbb3d8 131 );
okano 8:b220fadbb3d8 132
okano 14:a7b9f74fb856 133 //#define AUTO_PROGRAM_START
okano 14:a7b9f74fb856 134 #ifdef AUTO_PROGRAM_START
okano 14:a7b9f74fb856 135 wait_ms( 2 ); // wait 2 ms for just in case ;)
okano 14:a7b9f74fb856 136 reset_target( NO_ISP_MODE );
okano 14:a7b9f74fb856 137 printf( " ** The program in flash has been started!!\r\n\r\n" );
okano 14:a7b9f74fb856 138 #endif
okano 14:a7b9f74fb856 139
okano 7:815366f003ee 140 int i = 0;
okano 8:b220fadbb3d8 141
okano 7:815366f003ee 142 while ( 1 ) {
okano 7:815366f003ee 143 leds = 0x1 << (i++ & 0x3);
okano 7:815366f003ee 144 wait( 0.1 );
okano 7:815366f003ee 145 }
okano 7:815366f003ee 146 }
okano 7:815366f003ee 147
okano 7:815366f003ee 148
okano 7:815366f003ee 149 int file_size( FILE *fp )
okano 7:815366f003ee 150 {
okano 7:815366f003ee 151 int size;
okano 8:b220fadbb3d8 152
okano 7:815366f003ee 153 fseek( fp, 0, SEEK_END ); // seek to end of file
okano 7:815366f003ee 154 size = ftell( fp ); // get current file pointer
okano 7:815366f003ee 155 fseek( fp, 0, SEEK_SET ); // seek back to beginning of file
okano 8:b220fadbb3d8 156
okano 7:815366f003ee 157 return size;
okano 7:815366f003ee 158 }
okano 7:815366f003ee 159
okano 7:815366f003ee 160
okano 7:815366f003ee 161 void reset_target( int isp_pin_state )
okano 7:815366f003ee 162 {
okano 7:815366f003ee 163 reset_pin = 1;
okano 13:60995bf8b2c7 164 isp_pin = isp_pin_state;
okano 7:815366f003ee 165 wait_ms( 100 );
okano 13:60995bf8b2c7 166
okano 7:815366f003ee 167 reset_pin = 0;
okano 7:815366f003ee 168 wait_ms( 100 );
okano 13:60995bf8b2c7 169
okano 7:815366f003ee 170 reset_pin = 1;
okano 7:815366f003ee 171 wait_ms( 100 );
okano 7:815366f003ee 172 }
okano 7:815366f003ee 173
okano 7:815366f003ee 174
okano 7:815366f003ee 175 int try_and_check( char *command, char *expected_return_str, int mode )
okano 7:815366f003ee 176 {
okano 7:815366f003ee 177 char rtn_str[ STR_BUFF_SIZE ];
okano 8:b220fadbb3d8 178 int result = 1;
okano 8:b220fadbb3d8 179
okano 7:815366f003ee 180 print_command( command );
okano 7:815366f003ee 181 put_string( command );
okano 8:b220fadbb3d8 182
okano 7:815366f003ee 183 get_string( rtn_str );
okano 7:815366f003ee 184 print_result( result = strcmp( expected_return_str, rtn_str ) );
okano 8:b220fadbb3d8 185
okano 8:b220fadbb3d8 186 if ( result && !mode )
okano 8:b220fadbb3d8 187 error( "command failed\r\n" );
okano 8:b220fadbb3d8 188
okano 8:b220fadbb3d8 189 error_state |= result;
okano 8:b220fadbb3d8 190
okano 7:815366f003ee 191 return ( result );
okano 7:815366f003ee 192 }
okano 7:815366f003ee 193
okano 7:815366f003ee 194
okano 7:815366f003ee 195 int try_and_check2( char *command, char *expected_return_str, int mode )
okano 7:815366f003ee 196 {
okano 7:815366f003ee 197 char rtn_str[ STR_BUFF_SIZE ];
okano 8:b220fadbb3d8 198 int result = 1;
okano 8:b220fadbb3d8 199
okano 7:815366f003ee 200 print_command( command );
okano 7:815366f003ee 201 put_string( command );
okano 8:b220fadbb3d8 202
okano 7:815366f003ee 203 get_string( rtn_str ); // just readout echoback
okano 7:815366f003ee 204 get_string( rtn_str );
okano 7:815366f003ee 205 print_result( result = strcmp( expected_return_str, rtn_str ) );
okano 8:b220fadbb3d8 206
okano 8:b220fadbb3d8 207 if ( result && !mode )
okano 8:b220fadbb3d8 208 error( "command failed\r\n" );
okano 8:b220fadbb3d8 209
okano 8:b220fadbb3d8 210 error_state |= result;
okano 8:b220fadbb3d8 211
okano 7:815366f003ee 212 return ( result );
okano 7:815366f003ee 213 }
okano 7:815366f003ee 214
okano 7:815366f003ee 215
okano 7:815366f003ee 216 void print_command( char *command )
okano 7:815366f003ee 217 {
okano 7:815366f003ee 218 char s[ STR_BUFF_SIZE ];
okano 7:815366f003ee 219 char *pos;
okano 8:b220fadbb3d8 220
okano 7:815366f003ee 221 strcpy( s, command );
okano 8:b220fadbb3d8 222
okano 7:815366f003ee 223 if ( pos = strchr( s, '\r' ) )
okano 7:815366f003ee 224 *pos = '\0';
okano 8:b220fadbb3d8 225
okano 7:815366f003ee 226 if ( pos = strchr( s, '\n' ) )
okano 7:815366f003ee 227 *pos = '\0';
okano 8:b220fadbb3d8 228
okano 7:815366f003ee 229 printf( " command-\"%s\" : ", s );
okano 7:815366f003ee 230 }
okano 7:815366f003ee 231
okano 7:815366f003ee 232
okano 7:815366f003ee 233 void print_result( int r )
okano 7:815366f003ee 234 {
okano 7:815366f003ee 235 printf( "%s\r\n", r ? "Fail" : "Pass" );
okano 7:815366f003ee 236 }
okano 7:815366f003ee 237
okano 7:815366f003ee 238
okano 7:815366f003ee 239 char read_byte( void )
okano 7:815366f003ee 240 {
okano 7:815366f003ee 241 while ( !target.readable() )
okano 7:815366f003ee 242 ;
okano 8:b220fadbb3d8 243
okano 7:815366f003ee 244 return ( target.getc() );
okano 7:815366f003ee 245 }
okano 7:815366f003ee 246
okano 7:815366f003ee 247
okano 7:815366f003ee 248 void erase_sectors( int last_sector )
okano 7:815366f003ee 249 {
okano 7:815366f003ee 250 char command_str[ STR_BUFF_SIZE ];
okano 8:b220fadbb3d8 251
okano 7:815366f003ee 252 sprintf( command_str, "P 0 %d\r\n", last_sector );
okano 7:815366f003ee 253 try_and_check( command_str, "0", 0 );
okano 8:b220fadbb3d8 254
okano 7:815366f003ee 255 *(command_str) = 'E';
okano 7:815366f003ee 256 try_and_check( command_str, "0", 0 );
okano 7:815366f003ee 257 }
okano 7:815366f003ee 258
okano 12:5a33b5d39792 259 #define BYTES_PER_LINE 45
okano 12:5a33b5d39792 260 char uue_table[ 64 ];
okano 7:815366f003ee 261
okano 12:5a33b5d39792 262 int write_uuencoded_data( FILE *fp, int ram_size, int sector_size, unsigned int ram_start )
okano 7:815366f003ee 263 {
okano 7:815366f003ee 264 char command_str[ STR_BUFF_SIZE ];
okano 7:815366f003ee 265 long checksum = 0;
okano 7:815366f003ee 266 int total_size = 0;
okano 7:815366f003ee 267 int size;
okano 8:b220fadbb3d8 268
okano 7:815366f003ee 269 int flash_writing_size;
okano 7:815366f003ee 270 int lines_per_transfer;
okano 7:815366f003ee 271 int transfer_size;
okano 8:b220fadbb3d8 272
okano 12:5a33b5d39792 273 char *b;
okano 12:5a33b5d39792 274
okano 7:815366f003ee 275 initialize_uue_table();
okano 8:b220fadbb3d8 276
okano 12:5a33b5d39792 277 flash_writing_size = get_flash_writing_size( ram_size, ram_start );
okano 11:8dfc3217d1ca 278 lines_per_transfer = ((flash_writing_size / BYTES_PER_LINE) + 1);
okano 11:8dfc3217d1ca 279 transfer_size = (((flash_writing_size + 11) / 12) * 12);
okano 8:b220fadbb3d8 280
okano 7:815366f003ee 281 // char b[ transfer_size ]; // this can be done in mbed-compiler. but I should do it in common way
okano 8:b220fadbb3d8 282
okano 7:815366f003ee 283 if ( NULL == (b = (char *)malloc( transfer_size * sizeof( char ) )) )
okano 7:815366f003ee 284 error( "malloc error happened\r\n" );
okano 8:b220fadbb3d8 285
okano 7:815366f003ee 286 for ( int i = flash_writing_size; i < transfer_size; i++ )
okano 7:815366f003ee 287 b[ i ] = 0; // this is not neccesary but just stuffing stuffing bytes
okano 8:b220fadbb3d8 288
okano 7:815366f003ee 289 while ( size = fread( b, sizeof( char ), flash_writing_size, fp ) ) {
okano 8:b220fadbb3d8 290
okano 7:815366f003ee 291 if ( !total_size ) {
okano 7:815366f003ee 292 // overwriting 4 bytes data for address=0x1C
okano 7:815366f003ee 293 // there is a slot for checksum that is checked in (target's) boot process
okano 7:815366f003ee 294 add_isp_checksum( b );
okano 7:815366f003ee 295 }
okano 8:b220fadbb3d8 296
okano 12:5a33b5d39792 297 sprintf( command_str, "W %ld %ld\r\n", ram_start, transfer_size );
okano 7:815366f003ee 298 try_and_check( command_str, "0", 0 );
okano 8:b220fadbb3d8 299
okano 7:815366f003ee 300 for ( int i = 0; i < lines_per_transfer; i++ ) {
okano 12:5a33b5d39792 301
okano 11:8dfc3217d1ca 302 checksum += bin2uue( b + (i * BYTES_PER_LINE), command_str, i == (lines_per_transfer - 1) ? (transfer_size % BYTES_PER_LINE) : BYTES_PER_LINE );
okano 8:b220fadbb3d8 303
okano 13:60995bf8b2c7 304 // printf( " data -- %02d %s\r", i, command_str );
okano 8:b220fadbb3d8 305
okano 7:815366f003ee 306 put_string( command_str );
okano 8:b220fadbb3d8 307
okano 7:815366f003ee 308 if ( !((i + 1) % 20) ) {
okano 7:815366f003ee 309 send_RAM_transfer_checksum( checksum );
okano 7:815366f003ee 310 checksum = 0;
okano 7:815366f003ee 311 }
okano 7:815366f003ee 312 }
okano 8:b220fadbb3d8 313
okano 7:815366f003ee 314 send_RAM_transfer_checksum( checksum );
okano 7:815366f003ee 315 checksum = 0;
okano 8:b220fadbb3d8 316
okano 12:5a33b5d39792 317 sprintf( command_str, "P %d %d\r\n", total_size / sector_size, total_size / sector_size );
okano 7:815366f003ee 318 try_and_check( command_str, "0", 0 );
okano 8:b220fadbb3d8 319
okano 12:5a33b5d39792 320 sprintf( command_str, "C %d %d %d\r\n", total_size, ram_start, flash_writing_size );
okano 7:815366f003ee 321 try_and_check( command_str, "0", 0 );
okano 8:b220fadbb3d8 322
okano 7:815366f003ee 323 total_size += size;
okano 7:815366f003ee 324 }
okano 8:b220fadbb3d8 325
okano 7:815366f003ee 326 try_and_check( "G 0 T\r\n", "0", 0 );
okano 7:815366f003ee 327 free( b );
okano 8:b220fadbb3d8 328
okano 12:5a33b5d39792 329 return ( total_size );
okano 7:815366f003ee 330 }
okano 7:815366f003ee 331
okano 7:815366f003ee 332
okano 12:5a33b5d39792 333 int write_binary_data( FILE *fp, int ram_size, int sector_size, unsigned int ram_start )
okano 12:5a33b5d39792 334 {
okano 12:5a33b5d39792 335 char command_str[ STR_BUFF_SIZE ];
okano 12:5a33b5d39792 336 int total_size = 0;
okano 12:5a33b5d39792 337 int size;
okano 12:5a33b5d39792 338 int flash_writing_size;
okano 12:5a33b5d39792 339 char *b;
okano 12:5a33b5d39792 340
okano 12:5a33b5d39792 341 flash_writing_size = 256;
okano 12:5a33b5d39792 342
okano 12:5a33b5d39792 343 if ( NULL == (b = (char *)malloc( flash_writing_size * sizeof( char ) )) )
okano 12:5a33b5d39792 344 error( "malloc error happened\r\n" );
okano 12:5a33b5d39792 345
okano 12:5a33b5d39792 346 while ( size = fread( b, sizeof( char ), flash_writing_size, fp ) ) {
okano 12:5a33b5d39792 347
okano 12:5a33b5d39792 348 if ( !total_size ) {
okano 12:5a33b5d39792 349 // overwriting 4 bytes data for address=0x1C
okano 12:5a33b5d39792 350 // there is a slot for checksum that is checked in (target's) boot process
okano 12:5a33b5d39792 351 add_isp_checksum( b );
okano 12:5a33b5d39792 352 }
okano 12:5a33b5d39792 353
okano 12:5a33b5d39792 354 sprintf( command_str, "W %ld %ld\r\n", ram_start, flash_writing_size );
okano 12:5a33b5d39792 355 try_and_check( command_str, "0", 0 );
okano 12:5a33b5d39792 356
okano 12:5a33b5d39792 357 put_binary( b, flash_writing_size );
okano 12:5a33b5d39792 358 put_string( "\r\n" );
okano 12:5a33b5d39792 359
okano 12:5a33b5d39792 360 sprintf( command_str, "P %d %d\r\n", total_size / sector_size, total_size / sector_size );
okano 12:5a33b5d39792 361 try_and_check( command_str, "0", 0 );
okano 12:5a33b5d39792 362
okano 12:5a33b5d39792 363 sprintf( command_str, "C %d %d %d\r\n", total_size, ram_start, flash_writing_size );
okano 12:5a33b5d39792 364 try_and_check( command_str, "0", 0 );
okano 12:5a33b5d39792 365
okano 12:5a33b5d39792 366 total_size += size;
okano 12:5a33b5d39792 367 printf( " total %d bytes transferred\r", total_size );
okano 12:5a33b5d39792 368
okano 12:5a33b5d39792 369 }
okano 12:5a33b5d39792 370
okano 12:5a33b5d39792 371 free( b );
okano 12:5a33b5d39792 372
okano 12:5a33b5d39792 373 return ( total_size );
okano 12:5a33b5d39792 374 }
okano 12:5a33b5d39792 375
okano 7:815366f003ee 376 void initialize_uue_table( void )
okano 7:815366f003ee 377 {
okano 7:815366f003ee 378 int i;
okano 8:b220fadbb3d8 379
okano 7:815366f003ee 380 uue_table[0] = 0x60; // 0x20 is translated to 0x60 !
okano 8:b220fadbb3d8 381
okano 7:815366f003ee 382 for (i = 1; i < 64; i++) {
okano 7:815366f003ee 383 uue_table[i] = (char)(0x20 + i);
okano 7:815366f003ee 384 }
okano 7:815366f003ee 385 }
okano 7:815366f003ee 386
okano 7:815366f003ee 387
okano 11:8dfc3217d1ca 388 long bin2uue( char *bin, char *str, int size )
okano 7:815366f003ee 389 {
okano 7:815366f003ee 390 unsigned long v;
okano 7:815366f003ee 391 long checksum = 0;
okano 7:815366f003ee 392 int strpos = 0;
okano 8:b220fadbb3d8 393
okano 11:8dfc3217d1ca 394 *(str + strpos++) = ' ' + size;
okano 8:b220fadbb3d8 395
okano 11:8dfc3217d1ca 396 for ( int i = 0; i < size; i += 3 ) {
okano 7:815366f003ee 397 checksum += *(bin + i + 0) + *(bin + i + 1) + *(bin + i + 2);
okano 7:815366f003ee 398 v = (*(bin + i + 0) << 16) | (*(bin + i + 1) << 8) | (*(bin + i + 2) << 0);
okano 7:815366f003ee 399 *(str + strpos++) = uue_table[ (v >> 18) & 0x3F ];
okano 7:815366f003ee 400 *(str + strpos++) = uue_table[ (v >> 12) & 0x3F ];
okano 7:815366f003ee 401 *(str + strpos++) = uue_table[ (v >> 6) & 0x3F ];
okano 7:815366f003ee 402 *(str + strpos++) = uue_table[ (v >> 0) & 0x3F ];
okano 7:815366f003ee 403 }
okano 7:815366f003ee 404 *(str + strpos++) = '\n';
okano 7:815366f003ee 405 *(str + strpos++) = '\0';
okano 8:b220fadbb3d8 406
okano 7:815366f003ee 407 return checksum;
okano 7:815366f003ee 408 }
okano 6:0ae6fe8c8512 409
okano 6:0ae6fe8c8512 410
okano 12:5a33b5d39792 411 int get_flash_writing_size( int ram_size, unsigned int ram_start )
okano 6:0ae6fe8c8512 412 {
okano 6:0ae6fe8c8512 413 int flash_writing_size[] = {
okano 6:0ae6fe8c8512 414 4096,
okano 6:0ae6fe8c8512 415 1024,
okano 6:0ae6fe8c8512 416 512,
okano 6:0ae6fe8c8512 417 256
okano 6:0ae6fe8c8512 418 };
okano 6:0ae6fe8c8512 419 int available_size;
okano 6:0ae6fe8c8512 420 int i;
okano 8:b220fadbb3d8 421
okano 12:5a33b5d39792 422 available_size = ram_size - (ram_start & 0xFFFF);
okano 8:b220fadbb3d8 423
okano 6:0ae6fe8c8512 424 for ( i = 0; i < sizeof( flash_writing_size ) / sizeof( int ); i++ ) {
okano 6:0ae6fe8c8512 425 if ( flash_writing_size[ i ] < available_size )
okano 6:0ae6fe8c8512 426 break;
okano 6:0ae6fe8c8512 427 }
okano 8:b220fadbb3d8 428
okano 6:0ae6fe8c8512 429 return ( flash_writing_size[ i ] );
okano 6:0ae6fe8c8512 430 }
okano 4:55f1977bd11a 431
okano 4:55f1977bd11a 432
okano 1:54e619428ae6 433 void add_isp_checksum( char *b )
okano 1:54e619428ae6 434 {
okano 1:54e619428ae6 435 // see http://www.lpcware.com/content/nxpfile/lpc177x8x-checksum-insertion-program
okano 8:b220fadbb3d8 436
okano 1:54e619428ae6 437 unsigned int *p;
okano 1:54e619428ae6 438 unsigned int cksum = 0;
okano 8:b220fadbb3d8 439
okano 1:54e619428ae6 440 p = (unsigned int *)b;
okano 8:b220fadbb3d8 441
okano 1:54e619428ae6 442 for ( int i = 0; i < 7; i++ ) {
okano 1:54e619428ae6 443 cksum += *p++;
okano 1:54e619428ae6 444 }
okano 8:b220fadbb3d8 445
okano 1:54e619428ae6 446 printf( " -- value at checksum slot : 0x%08X\r\n", *p );
okano 8:b220fadbb3d8 447
okano 1:54e619428ae6 448 *p = 0xFFFFFFFF - cksum + 1;
okano 1:54e619428ae6 449 printf( " -- calculated checksum : 0x%08X\r\n", *p );
okano 8:b220fadbb3d8 450
okano 1:54e619428ae6 451 printf( " new checksum will be used to program flash\r\n" );
okano 1:54e619428ae6 452 }
okano 1:54e619428ae6 453
okano 1:54e619428ae6 454
okano 4:55f1977bd11a 455 void send_RAM_transfer_checksum( int checksum )
okano 4:55f1977bd11a 456 {
okano 4:55f1977bd11a 457 char command[ 16 ];
okano 8:b220fadbb3d8 458
okano 4:55f1977bd11a 459 sprintf( command, "%d\n", checksum );
okano 4:55f1977bd11a 460 try_and_check( command, "OK", 0 );
okano 4:55f1977bd11a 461 }
okano 4:55f1977bd11a 462
okano 0:6baefda2e511 463
okano 0:6baefda2e511 464 void put_string( char *s )
okano 0:6baefda2e511 465 {
okano 2:8d75eb0ecd20 466 char c;
okano 2:8d75eb0ecd20 467 static int i = 0;
okano 8:b220fadbb3d8 468
okano 3:3c380e643e74 469 while ( c = *s++ ) {
okano 0:6baefda2e511 470 target.putc( c );
okano 2:8d75eb0ecd20 471 leds = i++ & 0x1;
okano 2:8d75eb0ecd20 472 }
okano 0:6baefda2e511 473 }
okano 0:6baefda2e511 474
okano 7:815366f003ee 475
okano 12:5a33b5d39792 476 void put_binary( char *b, int size )
okano 12:5a33b5d39792 477 {
okano 12:5a33b5d39792 478 for ( int i = 0; i < size; i++ )
okano 12:5a33b5d39792 479 target.putc( *b++ );
okano 12:5a33b5d39792 480 }
okano 12:5a33b5d39792 481
okano 12:5a33b5d39792 482
okano 9:ca4c9a2ac8e1 483 Timeout timeout;
okano 9:ca4c9a2ac8e1 484
okano 9:ca4c9a2ac8e1 485 int timeout_flag = 0;
okano 9:ca4c9a2ac8e1 486
okano 9:ca4c9a2ac8e1 487 void set_flag()
okano 9:ca4c9a2ac8e1 488 {
okano 9:ca4c9a2ac8e1 489 timeout_flag = 1;
okano 9:ca4c9a2ac8e1 490 }
okano 9:ca4c9a2ac8e1 491
okano 9:ca4c9a2ac8e1 492
okano 0:6baefda2e511 493 void get_string( char *s )
okano 0:6baefda2e511 494 {
okano 0:6baefda2e511 495 int i = 0;
okano 0:6baefda2e511 496 char c = 0;
okano 9:ca4c9a2ac8e1 497 timeout_flag = 0;
okano 9:ca4c9a2ac8e1 498
okano 9:ca4c9a2ac8e1 499 timeout.attach( &set_flag, 1 );
okano 8:b220fadbb3d8 500
okano 0:6baefda2e511 501 do {
okano 0:6baefda2e511 502 do {
okano 0:6baefda2e511 503 if ( target.readable() ) {
okano 0:6baefda2e511 504 c = target.getc();
okano 8:b220fadbb3d8 505
okano 0:6baefda2e511 506 if ( ( c == '\n') || (c == '\r') )
okano 0:6baefda2e511 507 break;
okano 8:b220fadbb3d8 508
okano 0:6baefda2e511 509 *s++ = c;
okano 0:6baefda2e511 510 i++;
okano 0:6baefda2e511 511 }
okano 9:ca4c9a2ac8e1 512
okano 9:ca4c9a2ac8e1 513 if ( timeout_flag )
okano 9:ca4c9a2ac8e1 514 return;
okano 0:6baefda2e511 515 } while ( 1 );
okano 0:6baefda2e511 516 } while ( !i );
okano 8:b220fadbb3d8 517
okano 0:6baefda2e511 518 *s = '\0';
okano 0:6baefda2e511 519 }
okano 9:ca4c9a2ac8e1 520