this is using the mbed os version 5-13-1
source/main.cpp
- Committer:
- ocomeni
- Date:
- 2019-02-28
- Revision:
- 73:6f5021cbe752
- Parent:
- 44:df8adb3bc797
- Child:
- 79:a2187bbfa407
File content as of revision 73:6f5021cbe752:
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef false
#include <events/mbed_events.h>
#include <mbed.h>
#include "ble/BLE.h"
#include "LEDService.h"
#include "ble/services/UARTService.h"
UARTService *uart;
DigitalOut alivenessLED(LED1, 0);
DigitalOut actuatedLED(LED2, 0);
RawSerial pc(USBTX, USBRX); // tx, rx
const static char DEVICE_NAME[] = "BLE-UART";
static const uint16_t uuid16_list[] = {LEDService::LED_SERVICE_UUID};
#define BUFFER_LEN 256
#define TX_BUFFER_LEN 4*256
#define RX_BUFFER_LEN 4*256
char buffer[BUFFER_LEN];
uint8_t TxBuffer[TX_BUFFER_LEN];
uint8_t RxBuffer[RX_BUFFER_LEN];
static EventQueue eventQueue(/* event count */ 10 * EVENTS_EVENT_SIZE);
LEDService *ledServicePtr;
void disconnectionCallback(const Gap::DisconnectionCallbackParams_t *params)
{
(void) params;
BLE::Instance().gap().startAdvertising();
}
void blinkCallback(void)
{
alivenessLED = !alivenessLED; /* Do blinky on LED1 to indicate system aliveness. */
}
void EchoBleUartReceived()
{
uart->writeString(buffer);
uart->writeString("\n"); //flushes uart output buffer and sends data
}
/**
* This callback allows the LEDService to receive updates to the ledState Characteristic.
*
* @param[in] params
* Information about the characterisitc being updated.
*/
void onDataWrittenCallback(const GattWriteCallbackParams *params) {
if ((params->handle == ledServicePtr->getValueHandle()) && (params->len == 1)) {
actuatedLED = *(params->data);
}
else if ((uart != NULL) && (params->handle == uart->getTXCharacteristicHandle())) {
uint16_t bytesRead = params->len;
pc.printf("received %u bytes\n\r ", bytesRead);
if(bytesRead >= 255){
pc.printf("Overflow command %u n\r ", bytesRead);
bytesRead = 255;
}
unsigned index = 0;
for (; index < bytesRead; index++) {
buffer[index] = params->data[index];
}
buffer[index++] = 0;
pc.printf("Data : %s ",buffer);
pc.printf("\r\n");
eventQueue.call(EchoBleUartReceived);
}
}
/**
* This function is called when the ble initialization process has failled
*/
void onBleInitError(BLE &ble, ble_error_t error)
{
/* Initialization error handling should go here */
}
void printMacAddress()
{
/* Print out device MAC address to the console*/
Gap::AddressType_t addr_type;
Gap::Address_t address;
BLE::Instance().gap().getAddress(&addr_type, address);
pc.printf("DEVICE MAC ADDRESS: ");
for (int i = 5; i >= 1; i--){
pc.printf("%02x:", address[i]);
}
pc.printf("%02x\r\n", address[0]);
}
/**
* Callback triggered when the ble initialization process has finished
*/
void bleInitComplete(BLE::InitializationCompleteCallbackContext *params)
{
BLE& ble = params->ble;
ble_error_t error = params->error;
if (error != BLE_ERROR_NONE) {
/* In case of error, forward the error handling to onBleInitError */
onBleInitError(ble, error);
return;
}
/* Ensure that it is the default instance of BLE */
if(ble.getInstanceID() != BLE::DEFAULT_INSTANCE) {
return;
}
ble.gap().onDisconnection(disconnectionCallback);
ble.gattServer().onDataWritten(onDataWrittenCallback);
bool initialValueForLEDCharacteristic = false;
ledServicePtr = new LEDService(ble, initialValueForLEDCharacteristic);
/* Setup primary service */
uart = new UARTService(ble);
/* setup security */
error = ble.securityManager().init();
if(error != BLE_ERROR_NONE)
{
pc.printf("\nBLE Security manager initialization failed!!\n");
}
/* setup advertising */
ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::BREDR_NOT_SUPPORTED | GapAdvertisingData::LE_GENERAL_DISCOVERABLE);
//ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LIST_16BIT_SERVICE_IDS, (uint8_t *)uuid16_list, sizeof(uuid16_list));
ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LOCAL_NAME, (uint8_t *)DEVICE_NAME, sizeof(DEVICE_NAME));
/* set up the services that can be discovered */
ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LIST_128BIT_SERVICE_IDS,(const uint8_t *)UARTServiceUUID_reversed, sizeof(UARTServiceUUID_reversed));
ble.gap().setAdvertisingType(GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED);
ble.gap().setAdvertisingInterval(1000); /* 1000ms. */
ble.gap().startAdvertising();
printMacAddress();
}
void scheduleBleEventsProcessing(BLE::OnEventsToProcessCallbackContext* context) {
BLE &ble = BLE::Instance();
eventQueue.call(Callback<void()>(&ble, &BLE::processEvents));
}
static int uartExpectedRcvCount = 0;
static int uartCharRcvCount = 0;
static bool UartBusy = false;
int WriteUartBytes(const uint8_t * txBuffer, size_t bufSize, int txLen)
{
if(txLen > bufSize)
{
txLen = bufSize;
}
for(int i=0;i<txLen;i++)
{
pc.putc(txBuffer[i]);
}
// return number of bytes written to UART
return txLen;
}
void UartRxcallback_ex() {
if(uartCharRcvCount >= uartExpectedRcvCount)
{
int x = pc.getc();
return;
}
if(uartCharRcvCount == 0)
{
pc.printf("\nFirst Call to UART attach callback!!\n");
}
// Note: you need to actually read from the serial to clear the RX interrupt
RxBuffer[uartCharRcvCount] = (uint8_t) pc.getc();
uartCharRcvCount++;
if(uartCharRcvCount >= uartExpectedRcvCount)
{
alivenessLED = !alivenessLED; /* Do blinky on LED1 to indicate system aliveness. */
pc.printf("\nNumber of Received Bytes = %d\n\n", uartCharRcvCount);
pc.printf("--- Writing back received bytes --- \n");
int n;
n = WriteUartBytes(RxBuffer, TX_BUFFER_LEN, uartCharRcvCount);
UartBusy = false;
}
}
void BackGndUartRead(uint8_t * rxBuffer, size_t bufSize, int rxLen)
{
UartBusy = true;
pc.printf("Setting up background UART read - rxLen = %d\n", rxLen);
uartCharRcvCount = 0;
if(rxLen > bufSize)
{
rxLen = bufSize;
}
uartExpectedRcvCount = rxLen;
pc.attach(&UartRxcallback_ex);
pc.printf("\nBackground UART read setup completed\n\n");
//for(int i=0;i<rxLen;i++)
//{
// rxBuffer[i] = (uint8_t) pc.getc();
//}
// return number of bytes written to UART
//return rxLen;
}
int ReadUartBytes(uint8_t * rxBuffer, size_t bufSize, int rxLen, bool echo)
{
UartBusy = true;
if(rxLen > bufSize)
{
rxLen = bufSize;
}
for(int i=0;i<rxLen;i++)
{
rxBuffer[i] = (uint8_t) pc.getc();
if(echo)pc.putc(rxBuffer[i]);
}
UartBusy = false;
//return number of bytes written to UART
return rxLen;
}
void checkUartReceive()
{
//pc.printf("Hello World!\n\r");
char cbuf[100];
int rxCnt=0;
while(pc.readable()) {
//pc.printf("uartCharRcvCount = %d\n\r", uartCharRcvCount++);
cbuf[rxCnt++] = pc.getc();
//pc.putc(pc.getc() + 1); // echo input back to terminal
}
cbuf[rxCnt] = NULL;
if(rxCnt > 0)
{
pc.printf("received %d chars\n", rxCnt);
pc.printf("%s\n", cbuf);
}
}
uint64_t lastTime = 0;
uint64_t now = 0;
uint32_t callCount = 0;
void HelloUart()
{
//if(UartBusy)return;
// 64-bit time doesn't wrap for half a billion years, at least
lastTime = now;
now = Kernel::get_ms_count();
callCount++;
pc.printf("\nHello : %d secs elapsed : CallCount = %d \n", uint32_t(now - lastTime), callCount);
}
Thread t;
int main()
{
pc.baud(115200);
eventQueue.call_every(500, blinkCallback);
eventQueue.call_every(60000, HelloUart);
//eventQueue.call_every(1000, checkUartReceive);
BLE &ble = BLE::Instance();
ble.onEventsToProcess(scheduleBleEventsProcessing);
ble.init(bleInitComplete);
for(int i=0;i<255;i++)
{
pc.putc(i);
}
int n;
//ReadUartBytes(RxBuffer, RX_BUFFER_LEN, 4);
pc.printf("\n\n\nEnter # of expected bytes: ");
n = ReadUartBytes(RxBuffer, RX_BUFFER_LEN, 4, true);
int rxLen = (int) 100*(RxBuffer[0]-'0') + 10*(RxBuffer[1]-'0') + (RxBuffer[0]-'0');
pc.printf("\n\nExpected # of Received Bytes = %d\n", rxLen);
BackGndUartRead(RxBuffer, RX_BUFFER_LEN, rxLen);
//pc.printf("--- Writing back received data --- \n\n");
//n = WriteUartBytes(RxBuffer, TX_BUFFER_LEN, rxLen);
//pc.write("\n\ntesting Serial Write\n", 40); //, checkUartReceive, SERIAL_EVENT_TX_COMPLETE);
//eventQueue.dispatch_forever();
t.start(callback(&eventQueue, &EventQueue::dispatch_forever));
return 0;
}
#endif