USB device stack, with KL25Z fixes for USB 3.0 hosts and sleep/resume interrupt handling

Dependents:   frdm_Slider_Keyboard idd_hw2_figlax_PanType idd_hw2_appachu_finger_chording idd_hw3_AngieWangAntonioDeLimaFernandesDanielLim_BladeSymphony ... more

Fork of USBDevice by mbed official

This is an overhauled version of the standard mbed USB device-side driver library, with bug fixes for KL25Z devices. It greatly improves reliability and stability of USB on the KL25Z, especially with devices using multiple endpoints concurrently.

I've had some nagging problems with the base mbed implementation for a long time, manifesting as occasional random disconnects that required rebooting the device. Recently (late 2015), I started implementing a USB device on the KL25Z that used multiple endpoints, and suddenly the nagging, occasional problems turned into frequent and predictable crashes. This forced me to delve into the USB stack and figure out what was really going on. Happily, the frequent crashes made it possible to track down and fix the problems. This new version is working very reliably in my testing - the random disconnects seem completely eradicated, even under very stressful conditions for the device.

Summary

  • Overall stability improvements
  • USB 3.0 host support
  • Stalled endpoint fixes
  • Sleep/resume notifications
  • Smaller memory footprint
  • General code cleanup

Update - 2/15/2016

My recent fixes introduced a new problem that made the initial connection fail most of the time on certain hosts. It's not clear if the common thread was a particular type of motherboard or USB chip set, or a specific version of Windows, or what, but several people ran into it. We tracked the problem down to the "stall" fixes in the earlier updates, which we now know weren't quite the right fixes after all. The latest update (2/15/2016) fixes this. It has new and improved "unstall" handling that so far works well with diverse hosts.

Race conditions and overall stability

The base mbed KL25Z implementation has a lot of problems with "race conditions" - timing problems that can happen when hardware interrupts occur at inopportune moments. The library shares a bunch of static variable data between interrupt handler context and regular application context. This isn't automatically a bad thing, but it does require careful coordination to make sure that the interrupt handler doesn't corrupt data that the other code was in the middle of updating when an interrupt occurs. The base mbed code, though, doesn't do any of the necessary coordination. This makes it kind of amazing that the base code worked at all for anyone, but I guess the interrupt rate is low enough in most applications that the glitch rate was below anyone's threshold to seriously investigate.

This overhaul adds the necessary coordination for the interrupt handlers to protect against these data corruptions. I think it's very solid now, and hopefully entirely free of the numerous race conditions in the old code. It's always hard to be certain that you've fixed every possible bug like this because they strike (effectively) at random, but I'm pretty confident: my test application was reliably able to trigger glitches in the base code in a matter of minutes, but the same application (with the overhauled library) now runs for days on end without dropping the connection.

Stalled endpoint fixes

USB has a standard way of handling communications errors called a "stall", which basically puts the connection into an error mode to let both sides know that they need to reset their internal states and sync up again. The original mbed version of the USB device library doesn't seem to have the necessary code to recover from this condition properly. The KL25Z hardware does some of the work, but it also seems to require the software to take some steps to "un-stall" the connection. (I keep saying "seems to" because the hardware reference material is very sketchy about all of this. Most of what I've figured out is from observing the device in action with a Windows host.) This new version adds code to do the necessary re-syncing and get the connection going again, automatically, and transparently to the user.

USB 3.0 Hosts

The original mbed code sometimes didn't work when connecting to hosts with USB 3.0 ports. This didn't affect every host, but it affected many of them. The common element seemed to be the Intel Haswell chip set on the host, but there may be other chip sets affected as well. In any case, the problem affected many PCs from the Windows 7 and 8 generation, as well as many Macs. It was possible to work around the problem by avoiding USB 3.0 ports - you could use a USB 2 port on the host, or plug a USB 2 hub between the host and device. But I wanted to just fix the problem and eliminate the need for such workarounds. This modified version of the library has such a fix, which so far has worked for everyone who's tried.

Sleep/resume notifications

This modified version also contains an innocuous change to the KL25Z USB HAL code to handle sleep and resume interrupts with calls to suspendStateChanged(). The original KL25Z code omitted these calls (and in fact didn't even enable the interrupts), but I think this was an unintentional oversight - the notifier function is part of the generic API, and other supported boards all implement it. I use this feature in my own application so that I can distinguish sleep mode from actual disconnects and handle the two conditions correctly.

Smaller memory footprint

The base mbed version of the code allocates twice as much memory for USB buffers as it really needed to. It looks like the original developers intended to implement the KL25Z USB hardware's built-in double-buffering mechanism, but they ultimately abandoned that effort. But they left in the double memory allocation. This version removes that and allocates only what's actually needed. The USB buffers aren't that big (128 bytes per endpoint), so this doesn't save a ton of memory, but even a little memory is pretty precious on this machine given that it only has 16K.

(I did look into adding the double-buffering support that the original developers abandoned, but after some experimentation I decided they were right to skip it. It just doesn't seem to mesh well with the design of the rest of the mbed USB code. I think it would take a major rewrite to make it work, and it doesn't seem worth the effort given that most applications don't need it - it would only benefit applications that are moving so much data through USB that they're pushing the limits of the CPU. And even for those, I think it would be a lot simpler to build a purely software-based buffer rotation mechanism.)

General code cleanup

The KL25Z HAL code in this version has greatly expanded commentary and a lot of general cleanup. Some of the hardware constants were given the wrong symbolic names (e.g., EVEN and ODD were reversed), and many were just missing (written as hard-coded numbers without explanation). I fixed the misnomers and added symbolic names for formerly anonymous numbers. Hopefully the next person who has to overhaul this code will at least have an easier time understanding what I thought I was doing!

Committer:
mjr
Date:
Fri Mar 17 22:01:47 2017 +0000
Revision:
54:2e181d51495a
Parent:
50:946bc763c068
Comments

Who changed what in which revision?

UserRevisionLine numberNew contents of line
samux 1:80ab0d068708 1 /* Copyright (c) 2010-2011 mbed.org, MIT License
samux 1:80ab0d068708 2 *
samux 1:80ab0d068708 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
samux 1:80ab0d068708 4 * and associated documentation files (the "Software"), to deal in the Software without
samux 1:80ab0d068708 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
samux 1:80ab0d068708 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
samux 1:80ab0d068708 7 * Software is furnished to do so, subject to the following conditions:
samux 1:80ab0d068708 8 *
samux 1:80ab0d068708 9 * The above copyright notice and this permission notice shall be included in all copies or
samux 1:80ab0d068708 10 * substantial portions of the Software.
samux 1:80ab0d068708 11 *
samux 1:80ab0d068708 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
samux 1:80ab0d068708 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
samux 1:80ab0d068708 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
samux 1:80ab0d068708 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
samux 1:80ab0d068708 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
samux 1:80ab0d068708 17 */
samux 1:80ab0d068708 18
mbed_official 27:0c6524151939 19 #if defined(TARGET_LPC11U24) || defined(TARGET_LPC11U35_401) || defined(TARGET_LPC1347) || defined(TARGET_LPC11U35_501) || defined(TARGET_LPC11U68) || defined(TARGET_LPC1549)
bogdanm 11:eeb3cbbaa996 20
mbed_official 27:0c6524151939 21 #if defined(TARGET_LPC1347) || defined(TARGET_LPC1549)
bogdanm 11:eeb3cbbaa996 22 #define USB_IRQ USB_IRQ_IRQn
mbed_official 24:33920e3786aa 23 #elif defined(TARGET_LPC11U24) || defined(TARGET_LPC11U35_401) || defined(TARGET_LPC11U35_501) || defined(TARGET_LPC11U68)
bogdanm 11:eeb3cbbaa996 24 #define USB_IRQ USB_IRQn
bogdanm 11:eeb3cbbaa996 25 #endif
samux 1:80ab0d068708 26
samux 1:80ab0d068708 27 #include "USBHAL.h"
samux 1:80ab0d068708 28
samux 1:80ab0d068708 29 USBHAL * USBHAL::instance;
mbed_official 27:0c6524151939 30 #if defined(TARGET_LPC1549)
mbed_official 27:0c6524151939 31 static uint8_t usbmem[2048] __attribute__((aligned(2048)));
mbed_official 27:0c6524151939 32 #endif
samux 1:80ab0d068708 33
samux 1:80ab0d068708 34 // Valid physical endpoint numbers are 0 to (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
samux 1:80ab0d068708 35 #define LAST_PHYSICAL_ENDPOINT (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
samux 1:80ab0d068708 36
samux 1:80ab0d068708 37 // Convert physical endpoint number to register bit
samux 1:80ab0d068708 38 #define EP(endpoint) (1UL<<endpoint)
samux 1:80ab0d068708 39
samux 1:80ab0d068708 40 // Convert physical to logical
samux 1:80ab0d068708 41 #define PHY_TO_LOG(endpoint) ((endpoint)>>1)
samux 1:80ab0d068708 42
samux 1:80ab0d068708 43 // Get endpoint direction
samux 1:80ab0d068708 44 #define IN_EP(endpoint) ((endpoint) & 1U ? true : false)
samux 1:80ab0d068708 45 #define OUT_EP(endpoint) ((endpoint) & 1U ? false : true)
samux 1:80ab0d068708 46
samux 1:80ab0d068708 47 // USB RAM
mbed_official 27:0c6524151939 48 #if defined(TARGET_LPC1549)
mbed_official 27:0c6524151939 49 #define USB_RAM_START ((uint32_t)usbmem)
mbed_official 27:0c6524151939 50 #define USB_RAM_SIZE sizeof(usbmem)
mbed_official 27:0c6524151939 51 #else
samux 1:80ab0d068708 52 #define USB_RAM_START (0x20004000)
samux 1:80ab0d068708 53 #define USB_RAM_SIZE (0x00000800)
mbed_official 27:0c6524151939 54 #endif
samux 1:80ab0d068708 55
samux 1:80ab0d068708 56 // SYSAHBCLKCTRL
mbed_official 27:0c6524151939 57 #if defined(TARGET_LPC1549)
mbed_official 27:0c6524151939 58 #define CLK_USB (1UL<<23)
mbed_official 27:0c6524151939 59 #else
samux 1:80ab0d068708 60 #define CLK_USB (1UL<<14)
samux 1:80ab0d068708 61 #define CLK_USBRAM (1UL<<27)
mbed_official 27:0c6524151939 62 #endif
samux 1:80ab0d068708 63
samux 1:80ab0d068708 64 // USB Information register
samux 1:80ab0d068708 65 #define FRAME_NR(a) ((a) & 0x7ff) // Frame number
samux 1:80ab0d068708 66
samux 1:80ab0d068708 67 // USB Device Command/Status register
samux 1:80ab0d068708 68 #define DEV_ADDR_MASK (0x7f) // Device address
samux 1:80ab0d068708 69 #define DEV_ADDR(a) ((a) & DEV_ADDR_MASK)
samux 1:80ab0d068708 70 #define DEV_EN (1UL<<7) // Device enable
samux 1:80ab0d068708 71 #define SETUP (1UL<<8) // SETUP token received
samux 1:80ab0d068708 72 #define PLL_ON (1UL<<9) // PLL enabled in suspend
samux 1:80ab0d068708 73 #define DCON (1UL<<16) // Device status - connect
samux 1:80ab0d068708 74 #define DSUS (1UL<<17) // Device status - suspend
samux 1:80ab0d068708 75 #define DCON_C (1UL<<24) // Connect change
samux 1:80ab0d068708 76 #define DSUS_C (1UL<<25) // Suspend change
samux 1:80ab0d068708 77 #define DRES_C (1UL<<26) // Reset change
samux 1:80ab0d068708 78 #define VBUSDEBOUNCED (1UL<<28) // Vbus detected
samux 1:80ab0d068708 79
samux 1:80ab0d068708 80 // Endpoint Command/Status list
samux 1:80ab0d068708 81 #define CMDSTS_A (1UL<<31) // Active
samux 1:80ab0d068708 82 #define CMDSTS_D (1UL<<30) // Disable
samux 1:80ab0d068708 83 #define CMDSTS_S (1UL<<29) // Stall
samux 1:80ab0d068708 84 #define CMDSTS_TR (1UL<<28) // Toggle Reset
samux 1:80ab0d068708 85 #define CMDSTS_RF (1UL<<27) // Rate Feedback mode
samux 1:80ab0d068708 86 #define CMDSTS_TV (1UL<<27) // Toggle Value
samux 1:80ab0d068708 87 #define CMDSTS_T (1UL<<26) // Endpoint Type
samux 1:80ab0d068708 88 #define CMDSTS_NBYTES(n) (((n)&0x3ff)<<16) // Number of bytes
samux 1:80ab0d068708 89 #define CMDSTS_ADDRESS_OFFSET(a) (((a)>>6)&0xffff) // Buffer start address
samux 1:80ab0d068708 90
samux 1:80ab0d068708 91 #define BYTES_REMAINING(s) (((s)>>16)&0x3ff) // Bytes remaining after transfer
samux 1:80ab0d068708 92
samux 1:80ab0d068708 93 // USB Non-endpoint interrupt sources
samux 1:80ab0d068708 94 #define FRAME_INT (1UL<<30)
samux 1:80ab0d068708 95 #define DEV_INT (1UL<<31)
samux 1:80ab0d068708 96
samux 1:80ab0d068708 97 static volatile int epComplete = 0;
samux 1:80ab0d068708 98
samux 1:80ab0d068708 99 // One entry for a double-buffered logical endpoint in the endpoint
samux 1:80ab0d068708 100 // command/status list. Endpoint 0 is single buffered, out[1] is used
samux 1:80ab0d068708 101 // for the SETUP packet and in[1] is not used
bogdanm 11:eeb3cbbaa996 102 typedef struct {
samux 1:80ab0d068708 103 uint32_t out[2];
samux 1:80ab0d068708 104 uint32_t in[2];
bogdanm 11:eeb3cbbaa996 105 } PACKED EP_COMMAND_STATUS;
samux 1:80ab0d068708 106
bogdanm 11:eeb3cbbaa996 107 typedef struct {
samux 1:80ab0d068708 108 uint8_t out[MAX_PACKET_SIZE_EP0];
samux 1:80ab0d068708 109 uint8_t in[MAX_PACKET_SIZE_EP0];
samux 1:80ab0d068708 110 uint8_t setup[SETUP_PACKET_SIZE];
bogdanm 11:eeb3cbbaa996 111 } PACKED CONTROL_TRANSFER;
samux 1:80ab0d068708 112
bogdanm 11:eeb3cbbaa996 113 typedef struct {
samux 1:80ab0d068708 114 uint32_t maxPacket;
samux 1:80ab0d068708 115 uint32_t buffer[2];
samux 1:80ab0d068708 116 uint32_t options;
bogdanm 11:eeb3cbbaa996 117 } PACKED EP_STATE;
samux 1:80ab0d068708 118
samux 1:80ab0d068708 119 static volatile EP_STATE endpointState[NUMBER_OF_PHYSICAL_ENDPOINTS];
samux 1:80ab0d068708 120
samux 1:80ab0d068708 121 // Pointer to the endpoint command/status list
samux 1:80ab0d068708 122 static EP_COMMAND_STATUS *ep = NULL;
samux 1:80ab0d068708 123
samux 1:80ab0d068708 124 // Pointer to endpoint 0 data (IN/OUT and SETUP)
samux 1:80ab0d068708 125 static CONTROL_TRANSFER *ct = NULL;
samux 1:80ab0d068708 126
samux 1:80ab0d068708 127 // Shadow DEVCMDSTAT register to avoid accidentally clearing flags or
samux 1:80ab0d068708 128 // initiating a remote wakeup event.
samux 1:80ab0d068708 129 static volatile uint32_t devCmdStat;
samux 1:80ab0d068708 130
samux 1:80ab0d068708 131 // Pointers used to allocate USB RAM
samux 1:80ab0d068708 132 static uint32_t usbRamPtr = USB_RAM_START;
samux 1:80ab0d068708 133 static uint32_t epRamPtr = 0; // Buffers for endpoints > 0 start here
samux 1:80ab0d068708 134
samux 1:80ab0d068708 135 #define ROUND_UP_TO_MULTIPLE(x, m) ((((x)+((m)-1))/(m))*(m))
samux 1:80ab0d068708 136
samux 1:80ab0d068708 137 void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size);
samux 1:80ab0d068708 138 void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size) {
samux 1:80ab0d068708 139 if (size > 0) {
samux 1:80ab0d068708 140 do {
samux 1:80ab0d068708 141 *dst++ = *src++;
samux 1:80ab0d068708 142 } while (--size > 0);
samux 1:80ab0d068708 143 }
samux 1:80ab0d068708 144 }
samux 1:80ab0d068708 145
samux 1:80ab0d068708 146
samux 1:80ab0d068708 147 USBHAL::USBHAL(void) {
bogdanm 11:eeb3cbbaa996 148 NVIC_DisableIRQ(USB_IRQ);
mbed_official 25:7c72828865f3 149
samux 8:335f2506f422 150 // fill in callback array
samux 8:335f2506f422 151 epCallback[0] = &USBHAL::EP1_OUT_callback;
samux 8:335f2506f422 152 epCallback[1] = &USBHAL::EP1_IN_callback;
samux 8:335f2506f422 153 epCallback[2] = &USBHAL::EP2_OUT_callback;
samux 8:335f2506f422 154 epCallback[3] = &USBHAL::EP2_IN_callback;
samux 8:335f2506f422 155 epCallback[4] = &USBHAL::EP3_OUT_callback;
samux 8:335f2506f422 156 epCallback[5] = &USBHAL::EP3_IN_callback;
samux 8:335f2506f422 157 epCallback[6] = &USBHAL::EP4_OUT_callback;
samux 8:335f2506f422 158 epCallback[7] = &USBHAL::EP4_IN_callback;
samux 1:80ab0d068708 159
mbed_official 27:0c6524151939 160 #if defined(TARGET_LPC1549)
mbed_official 27:0c6524151939 161 /* Set USB PLL input to system oscillator */
mbed_official 27:0c6524151939 162 LPC_SYSCON->USBPLLCLKSEL = 0x01;
mbed_official 27:0c6524151939 163
mbed_official 27:0c6524151939 164 /* Setup USB PLL (FCLKIN = 12MHz) * 4 = 48MHz
mbed_official 27:0c6524151939 165 MSEL = 3 (this is pre-decremented), PSEL = 1 (for P = 2)
mbed_official 27:0c6524151939 166 FCLKOUT = FCLKIN * (MSEL + 1) = 12MHz * 4 = 48MHz
mbed_official 27:0c6524151939 167 FCCO = FCLKOUT * 2 * P = 48MHz * 2 * 2 = 192MHz (within FCCO range) */
mbed_official 27:0c6524151939 168 LPC_SYSCON->USBPLLCTRL = (0x3 | (1UL << 6));
mbed_official 27:0c6524151939 169
mbed_official 27:0c6524151939 170 /* Powerup USB PLL */
mbed_official 27:0c6524151939 171 LPC_SYSCON->PDRUNCFG &= ~(CLK_USB);
mbed_official 27:0c6524151939 172
mbed_official 27:0c6524151939 173 /* Wait for PLL to lock */
mbed_official 27:0c6524151939 174 while(!(LPC_SYSCON->USBPLLSTAT & 0x01));
mbed_official 27:0c6524151939 175
mbed_official 27:0c6524151939 176 /* enable USB main clock */
mbed_official 27:0c6524151939 177 LPC_SYSCON->USBCLKSEL = 0x02;
mbed_official 27:0c6524151939 178 LPC_SYSCON->USBCLKDIV = 1;
mbed_official 27:0c6524151939 179
mbed_official 27:0c6524151939 180 /* Enable AHB clock to the USB block. */
mbed_official 27:0c6524151939 181 LPC_SYSCON->SYSAHBCLKCTRL1 |= CLK_USB;
mbed_official 27:0c6524151939 182
mbed_official 27:0c6524151939 183 /* power UP USB Phy */
mbed_official 27:0c6524151939 184 LPC_SYSCON->PDRUNCFG &= ~(1UL << 9);
mbed_official 27:0c6524151939 185
mbed_official 27:0c6524151939 186 /* Reset USB block */
mbed_official 27:0c6524151939 187 LPC_SYSCON->PRESETCTRL1 |= (CLK_USB);
mbed_official 27:0c6524151939 188 LPC_SYSCON->PRESETCTRL1 &= ~(CLK_USB);
mbed_official 27:0c6524151939 189
mbed_official 27:0c6524151939 190 #else
mbed_official 23:ecbbaf64bc3d 191 #if defined(TARGET_LPC11U35_401) || defined(TARGET_LPC11U35_501)
mbed_official 17:bbd6dac92961 192 // USB_VBUS input with pull-down
mbed_official 17:bbd6dac92961 193 LPC_IOCON->PIO0_3 = 0x00000009;
mbed_official 17:bbd6dac92961 194 #endif
mbed_official 25:7c72828865f3 195
samux 1:80ab0d068708 196 // nUSB_CONNECT output
samux 1:80ab0d068708 197 LPC_IOCON->PIO0_6 = 0x00000001;
samux 1:80ab0d068708 198
samux 1:80ab0d068708 199 // Enable clocks (USB registers, USB RAM)
samux 1:80ab0d068708 200 LPC_SYSCON->SYSAHBCLKCTRL |= CLK_USB | CLK_USBRAM;
samux 1:80ab0d068708 201
samux 1:80ab0d068708 202 // Ensure device disconnected (DCON not set)
samux 1:80ab0d068708 203 LPC_USB->DEVCMDSTAT = 0;
mbed_official 27:0c6524151939 204 #endif
samux 1:80ab0d068708 205 // to ensure that the USB host sees the device as
samux 1:80ab0d068708 206 // disconnected if the target CPU is reset.
samux 1:80ab0d068708 207 wait(0.3);
samux 1:80ab0d068708 208
samux 1:80ab0d068708 209 // Reserve space in USB RAM for endpoint command/status list
samux 1:80ab0d068708 210 // Must be 256 byte aligned
samux 1:80ab0d068708 211 usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 256);
samux 1:80ab0d068708 212 ep = (EP_COMMAND_STATUS *)usbRamPtr;
samux 1:80ab0d068708 213 usbRamPtr += (sizeof(EP_COMMAND_STATUS) * NUMBER_OF_LOGICAL_ENDPOINTS);
samux 1:80ab0d068708 214 LPC_USB->EPLISTSTART = (uint32_t)(ep) & 0xffffff00;
samux 1:80ab0d068708 215
samux 1:80ab0d068708 216 // Reserve space in USB RAM for Endpoint 0
samux 1:80ab0d068708 217 // Must be 64 byte aligned
samux 1:80ab0d068708 218 usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 64);
samux 1:80ab0d068708 219 ct = (CONTROL_TRANSFER *)usbRamPtr;
samux 1:80ab0d068708 220 usbRamPtr += sizeof(CONTROL_TRANSFER);
samux 1:80ab0d068708 221 LPC_USB->DATABUFSTART =(uint32_t)(ct) & 0xffc00000;
samux 1:80ab0d068708 222
samux 1:80ab0d068708 223 // Setup command/status list for EP0
samux 1:80ab0d068708 224 ep[0].out[0] = 0;
samux 1:80ab0d068708 225 ep[0].in[0] = 0;
samux 1:80ab0d068708 226 ep[0].out[1] = CMDSTS_ADDRESS_OFFSET((uint32_t)ct->setup);
samux 1:80ab0d068708 227
samux 1:80ab0d068708 228 // Route all interrupts to IRQ, some can be routed to
samux 1:80ab0d068708 229 // USB_FIQ if you wish.
samux 1:80ab0d068708 230 LPC_USB->INTROUTING = 0;
samux 1:80ab0d068708 231
samux 1:80ab0d068708 232 // Set device address 0, enable USB device, no remote wakeup
samux 1:80ab0d068708 233 devCmdStat = DEV_ADDR(0) | DEV_EN | DSUS;
samux 1:80ab0d068708 234 LPC_USB->DEVCMDSTAT = devCmdStat;
samux 1:80ab0d068708 235
samux 1:80ab0d068708 236 // Enable interrupts for device events and EP0
samux 1:80ab0d068708 237 LPC_USB->INTEN = DEV_INT | EP(EP0IN) | EP(EP0OUT) | FRAME_INT;
samux 1:80ab0d068708 238 instance = this;
samux 1:80ab0d068708 239
samux 1:80ab0d068708 240 //attach IRQ handler and enable interrupts
bogdanm 11:eeb3cbbaa996 241 NVIC_SetVector(USB_IRQ, (uint32_t)&_usbisr);
samux 1:80ab0d068708 242 }
samux 1:80ab0d068708 243
samux 1:80ab0d068708 244 USBHAL::~USBHAL(void) {
samux 1:80ab0d068708 245 // Ensure device disconnected (DCON not set)
samux 1:80ab0d068708 246 LPC_USB->DEVCMDSTAT = 0;
samux 1:80ab0d068708 247 // Disable USB interrupts
bogdanm 11:eeb3cbbaa996 248 NVIC_DisableIRQ(USB_IRQ);
samux 1:80ab0d068708 249 }
samux 1:80ab0d068708 250
samux 1:80ab0d068708 251 void USBHAL::connect(void) {
bogdanm 11:eeb3cbbaa996 252 NVIC_EnableIRQ(USB_IRQ);
samux 1:80ab0d068708 253 devCmdStat |= DCON;
samux 1:80ab0d068708 254 LPC_USB->DEVCMDSTAT = devCmdStat;
samux 1:80ab0d068708 255 }
samux 1:80ab0d068708 256
samux 1:80ab0d068708 257 void USBHAL::disconnect(void) {
bogdanm 11:eeb3cbbaa996 258 NVIC_DisableIRQ(USB_IRQ);
samux 1:80ab0d068708 259 devCmdStat &= ~DCON;
samux 1:80ab0d068708 260 LPC_USB->DEVCMDSTAT = devCmdStat;
samux 1:80ab0d068708 261 }
samux 1:80ab0d068708 262
samux 1:80ab0d068708 263 void USBHAL::configureDevice(void) {
samux 8:335f2506f422 264 // Not required
samux 1:80ab0d068708 265 }
samux 1:80ab0d068708 266
samux 1:80ab0d068708 267 void USBHAL::unconfigureDevice(void) {
samux 8:335f2506f422 268 // Not required
samux 1:80ab0d068708 269 }
samux 1:80ab0d068708 270
samux 1:80ab0d068708 271 void USBHAL::EP0setup(uint8_t *buffer) {
samux 1:80ab0d068708 272 // Copy setup packet data
samux 1:80ab0d068708 273 USBMemCopy(buffer, ct->setup, SETUP_PACKET_SIZE);
samux 1:80ab0d068708 274 }
samux 1:80ab0d068708 275
samux 1:80ab0d068708 276 void USBHAL::EP0read(void) {
samux 1:80ab0d068708 277 // Start an endpoint 0 read
samux 1:80ab0d068708 278
samux 1:80ab0d068708 279 // The USB ISR will call USBDevice_EP0out() when a packet has been read,
samux 1:80ab0d068708 280 // the USBDevice layer then calls USBBusInterface_EP0getReadResult() to
samux 1:80ab0d068708 281 // read the data.
samux 1:80ab0d068708 282
samux 1:80ab0d068708 283 ep[0].out[0] = CMDSTS_A |CMDSTS_NBYTES(MAX_PACKET_SIZE_EP0) \
samux 1:80ab0d068708 284 | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out);
samux 1:80ab0d068708 285 }
samux 1:80ab0d068708 286
samux 1:80ab0d068708 287 uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
samux 1:80ab0d068708 288 // Complete an endpoint 0 read
samux 1:80ab0d068708 289 uint32_t bytesRead;
samux 1:80ab0d068708 290
samux 1:80ab0d068708 291 // Find how many bytes were read
samux 1:80ab0d068708 292 bytesRead = MAX_PACKET_SIZE_EP0 - BYTES_REMAINING(ep[0].out[0]);
samux 1:80ab0d068708 293
samux 1:80ab0d068708 294 // Copy data
samux 1:80ab0d068708 295 USBMemCopy(buffer, ct->out, bytesRead);
samux 1:80ab0d068708 296 return bytesRead;
samux 1:80ab0d068708 297 }
samux 1:80ab0d068708 298
samux 8:335f2506f422 299
samux 8:335f2506f422 300 void USBHAL::EP0readStage(void) {
samux 8:335f2506f422 301 // Not required
samux 8:335f2506f422 302 }
samux 8:335f2506f422 303
samux 1:80ab0d068708 304 void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
samux 1:80ab0d068708 305 // Start and endpoint 0 write
samux 1:80ab0d068708 306
samux 1:80ab0d068708 307 // The USB ISR will call USBDevice_EP0in() when the data has
samux 1:80ab0d068708 308 // been written, the USBDevice layer then calls
samux 1:80ab0d068708 309 // USBBusInterface_EP0getWriteResult() to complete the transaction.
samux 1:80ab0d068708 310
samux 1:80ab0d068708 311 // Copy data
samux 1:80ab0d068708 312 USBMemCopy(ct->in, buffer, size);
samux 1:80ab0d068708 313
samux 1:80ab0d068708 314 // Start transfer
samux 1:80ab0d068708 315 ep[0].in[0] = CMDSTS_A | CMDSTS_NBYTES(size) \
samux 1:80ab0d068708 316 | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->in);
samux 1:80ab0d068708 317 }
samux 1:80ab0d068708 318
samux 1:80ab0d068708 319
samux 1:80ab0d068708 320 EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
samux 1:80ab0d068708 321 uint8_t bf = 0;
samux 1:80ab0d068708 322 uint32_t flags = 0;
samux 1:80ab0d068708 323
samux 1:80ab0d068708 324 //check which buffer must be filled
samux 1:80ab0d068708 325 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 326 // Double buffered
samux 1:80ab0d068708 327 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 328 bf = 1;
samux 1:80ab0d068708 329 } else {
samux 1:80ab0d068708 330 bf = 0;
samux 1:80ab0d068708 331 }
samux 1:80ab0d068708 332 }
mbed_official 25:7c72828865f3 333
samux 1:80ab0d068708 334 // if isochronous endpoint, T = 1
samux 1:80ab0d068708 335 if(endpointState[endpoint].options & ISOCHRONOUS)
samux 1:80ab0d068708 336 {
samux 1:80ab0d068708 337 flags |= CMDSTS_T;
samux 1:80ab0d068708 338 }
mbed_official 25:7c72828865f3 339
samux 1:80ab0d068708 340 //Active the endpoint for reading
samux 1:80ab0d068708 341 ep[PHY_TO_LOG(endpoint)].out[bf] = CMDSTS_A | CMDSTS_NBYTES(maximumSize) \
samux 1:80ab0d068708 342 | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out) | flags;
samux 1:80ab0d068708 343 return EP_PENDING;
samux 1:80ab0d068708 344 }
samux 1:80ab0d068708 345
samux 1:80ab0d068708 346 EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t *data, uint32_t *bytesRead) {
samux 1:80ab0d068708 347
samux 1:80ab0d068708 348 uint8_t bf = 0;
samux 1:80ab0d068708 349
samux 1:80ab0d068708 350 if (!(epComplete & EP(endpoint)))
samux 1:80ab0d068708 351 return EP_PENDING;
samux 1:80ab0d068708 352 else {
samux 1:80ab0d068708 353 epComplete &= ~EP(endpoint);
samux 1:80ab0d068708 354
samux 1:80ab0d068708 355 //check which buffer has been filled
samux 1:80ab0d068708 356 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 357 // Double buffered (here we read the previous buffer which was used)
samux 1:80ab0d068708 358 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 359 bf = 0;
samux 1:80ab0d068708 360 } else {
samux 1:80ab0d068708 361 bf = 1;
samux 1:80ab0d068708 362 }
samux 1:80ab0d068708 363 }
samux 1:80ab0d068708 364
samux 1:80ab0d068708 365 // Find how many bytes were read
samux 1:80ab0d068708 366 *bytesRead = (uint32_t) (endpointState[endpoint].maxPacket - BYTES_REMAINING(ep[PHY_TO_LOG(endpoint)].out[bf]));
samux 1:80ab0d068708 367
samux 1:80ab0d068708 368 // Copy data
samux 1:80ab0d068708 369 USBMemCopy(data, ct->out, *bytesRead);
samux 1:80ab0d068708 370 return EP_COMPLETED;
samux 1:80ab0d068708 371 }
samux 1:80ab0d068708 372 }
samux 1:80ab0d068708 373
samux 1:80ab0d068708 374 void USBHAL::EP0getWriteResult(void) {
samux 8:335f2506f422 375 // Not required
samux 1:80ab0d068708 376 }
samux 1:80ab0d068708 377
samux 1:80ab0d068708 378 void USBHAL::EP0stall(void) {
samux 1:80ab0d068708 379 ep[0].in[0] = CMDSTS_S;
samux 1:80ab0d068708 380 ep[0].out[0] = CMDSTS_S;
samux 1:80ab0d068708 381 }
samux 1:80ab0d068708 382
samux 1:80ab0d068708 383 void USBHAL::setAddress(uint8_t address) {
samux 1:80ab0d068708 384 devCmdStat &= ~DEV_ADDR_MASK;
samux 1:80ab0d068708 385 devCmdStat |= DEV_ADDR(address);
samux 1:80ab0d068708 386 LPC_USB->DEVCMDSTAT = devCmdStat;
samux 1:80ab0d068708 387 }
samux 1:80ab0d068708 388
mjr 50:946bc763c068 389 EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, const volatile uint8_t *data, uint32_t size) {
samux 1:80ab0d068708 390 uint32_t flags = 0;
samux 1:80ab0d068708 391 uint32_t bf;
samux 1:80ab0d068708 392
samux 1:80ab0d068708 393 // Validate parameters
samux 1:80ab0d068708 394 if (data == NULL) {
samux 1:80ab0d068708 395 return EP_INVALID;
samux 1:80ab0d068708 396 }
samux 1:80ab0d068708 397
samux 1:80ab0d068708 398 if (endpoint > LAST_PHYSICAL_ENDPOINT) {
samux 1:80ab0d068708 399 return EP_INVALID;
samux 1:80ab0d068708 400 }
samux 1:80ab0d068708 401
samux 1:80ab0d068708 402 if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
samux 1:80ab0d068708 403 return EP_INVALID;
samux 1:80ab0d068708 404 }
samux 1:80ab0d068708 405
samux 1:80ab0d068708 406 if (size > endpointState[endpoint].maxPacket) {
samux 1:80ab0d068708 407 return EP_INVALID;
samux 1:80ab0d068708 408 }
samux 1:80ab0d068708 409
samux 1:80ab0d068708 410 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 411 // Double buffered
samux 1:80ab0d068708 412 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 413 bf = 1;
samux 1:80ab0d068708 414 } else {
samux 1:80ab0d068708 415 bf = 0;
samux 1:80ab0d068708 416 }
samux 1:80ab0d068708 417 } else {
samux 1:80ab0d068708 418 // Single buffered
samux 1:80ab0d068708 419 bf = 0;
samux 1:80ab0d068708 420 }
samux 1:80ab0d068708 421
samux 1:80ab0d068708 422 // Check if already active
samux 1:80ab0d068708 423 if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
samux 1:80ab0d068708 424 return EP_INVALID;
samux 1:80ab0d068708 425 }
samux 1:80ab0d068708 426
samux 1:80ab0d068708 427 // Check if stalled
samux 1:80ab0d068708 428 if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
samux 1:80ab0d068708 429 return EP_STALLED;
samux 1:80ab0d068708 430 }
samux 1:80ab0d068708 431
samux 1:80ab0d068708 432 // Copy data to USB RAM
samux 1:80ab0d068708 433 USBMemCopy((uint8_t *)endpointState[endpoint].buffer[bf], data, size);
samux 1:80ab0d068708 434
samux 1:80ab0d068708 435 // Add options
samux 1:80ab0d068708 436 if (endpointState[endpoint].options & RATE_FEEDBACK_MODE) {
samux 1:80ab0d068708 437 flags |= CMDSTS_RF;
samux 1:80ab0d068708 438 }
samux 1:80ab0d068708 439
samux 1:80ab0d068708 440 if (endpointState[endpoint].options & ISOCHRONOUS) {
samux 1:80ab0d068708 441 flags |= CMDSTS_T;
samux 1:80ab0d068708 442 }
samux 1:80ab0d068708 443
samux 1:80ab0d068708 444 // Add transfer
samux 1:80ab0d068708 445 ep[PHY_TO_LOG(endpoint)].in[bf] = CMDSTS_ADDRESS_OFFSET( \
samux 1:80ab0d068708 446 endpointState[endpoint].buffer[bf]) \
samux 1:80ab0d068708 447 | CMDSTS_NBYTES(size) | CMDSTS_A | flags;
samux 1:80ab0d068708 448
samux 1:80ab0d068708 449 return EP_PENDING;
samux 1:80ab0d068708 450 }
samux 1:80ab0d068708 451
samux 1:80ab0d068708 452 EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
samux 1:80ab0d068708 453 uint32_t bf;
mbed_official 25:7c72828865f3 454
samux 1:80ab0d068708 455 // Validate parameters
samux 1:80ab0d068708 456 if (endpoint > LAST_PHYSICAL_ENDPOINT) {
samux 1:80ab0d068708 457 return EP_INVALID;
samux 1:80ab0d068708 458 }
samux 1:80ab0d068708 459
samux 1:80ab0d068708 460 if (OUT_EP(endpoint)) {
samux 1:80ab0d068708 461 return EP_INVALID;
samux 1:80ab0d068708 462 }
samux 1:80ab0d068708 463
samux 1:80ab0d068708 464 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 465 // Double buffered // TODO: FIX THIS
samux 1:80ab0d068708 466 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 467 bf = 1;
samux 1:80ab0d068708 468 } else {
samux 1:80ab0d068708 469 bf = 0;
samux 1:80ab0d068708 470 }
samux 1:80ab0d068708 471 } else {
samux 1:80ab0d068708 472 // Single buffered
samux 1:80ab0d068708 473 bf = 0;
samux 1:80ab0d068708 474 }
samux 1:80ab0d068708 475
samux 1:80ab0d068708 476 // Check if endpoint still active
samux 1:80ab0d068708 477 if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
samux 1:80ab0d068708 478 return EP_PENDING;
samux 1:80ab0d068708 479 }
samux 1:80ab0d068708 480
samux 1:80ab0d068708 481 // Check if stalled
samux 1:80ab0d068708 482 if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
samux 1:80ab0d068708 483 return EP_STALLED;
samux 1:80ab0d068708 484 }
samux 1:80ab0d068708 485
samux 1:80ab0d068708 486 return EP_COMPLETED;
samux 1:80ab0d068708 487 }
samux 1:80ab0d068708 488
samux 1:80ab0d068708 489 void USBHAL::stallEndpoint(uint8_t endpoint) {
samux 1:80ab0d068708 490
samux 8:335f2506f422 491 // FIX: should this clear active bit?
samux 1:80ab0d068708 492 if (IN_EP(endpoint)) {
samux 1:80ab0d068708 493 ep[PHY_TO_LOG(endpoint)].in[0] |= CMDSTS_S;
samux 1:80ab0d068708 494 ep[PHY_TO_LOG(endpoint)].in[1] |= CMDSTS_S;
samux 1:80ab0d068708 495 } else {
samux 1:80ab0d068708 496 ep[PHY_TO_LOG(endpoint)].out[0] |= CMDSTS_S;
samux 1:80ab0d068708 497 ep[PHY_TO_LOG(endpoint)].out[1] |= CMDSTS_S;
samux 1:80ab0d068708 498 }
samux 1:80ab0d068708 499 }
samux 1:80ab0d068708 500
samux 1:80ab0d068708 501 void USBHAL::unstallEndpoint(uint8_t endpoint) {
samux 1:80ab0d068708 502 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 503 // Double buffered
samux 1:80ab0d068708 504 if (IN_EP(endpoint)) {
samux 1:80ab0d068708 505 ep[PHY_TO_LOG(endpoint)].in[0] = 0; // S = 0
samux 1:80ab0d068708 506 ep[PHY_TO_LOG(endpoint)].in[1] = 0; // S = 0
samux 1:80ab0d068708 507
samux 1:80ab0d068708 508 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 8:335f2506f422 509 ep[PHY_TO_LOG(endpoint)].in[1] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 510 } else {
samux 8:335f2506f422 511 ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 512 }
samux 1:80ab0d068708 513 } else {
samux 1:80ab0d068708 514 ep[PHY_TO_LOG(endpoint)].out[0] = 0; // S = 0
samux 1:80ab0d068708 515 ep[PHY_TO_LOG(endpoint)].out[1] = 0; // S = 0
samux 1:80ab0d068708 516
samux 1:80ab0d068708 517 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 8:335f2506f422 518 ep[PHY_TO_LOG(endpoint)].out[1] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 519 } else {
samux 8:335f2506f422 520 ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 521 }
samux 1:80ab0d068708 522 }
samux 1:80ab0d068708 523 } else {
samux 1:80ab0d068708 524 // Single buffered
samux 1:80ab0d068708 525 if (IN_EP(endpoint)) {
samux 8:335f2506f422 526 ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 527 } else {
samux 8:335f2506f422 528 ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 529 }
samux 1:80ab0d068708 530 }
samux 1:80ab0d068708 531 }
samux 1:80ab0d068708 532
samux 1:80ab0d068708 533 bool USBHAL::getEndpointStallState(unsigned char endpoint) {
samux 1:80ab0d068708 534 if (IN_EP(endpoint)) {
samux 1:80ab0d068708 535 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 536 if (ep[PHY_TO_LOG(endpoint)].in[1] & CMDSTS_S) {
samux 1:80ab0d068708 537 return true;
samux 1:80ab0d068708 538 }
samux 1:80ab0d068708 539 } else {
samux 1:80ab0d068708 540 if (ep[PHY_TO_LOG(endpoint)].in[0] & CMDSTS_S) {
samux 1:80ab0d068708 541 return true;
samux 1:80ab0d068708 542 }
samux 1:80ab0d068708 543 }
samux 1:80ab0d068708 544 } else {
samux 1:80ab0d068708 545 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 546 if (ep[PHY_TO_LOG(endpoint)].out[1] & CMDSTS_S) {
samux 1:80ab0d068708 547 return true;
samux 1:80ab0d068708 548 }
samux 1:80ab0d068708 549 } else {
samux 1:80ab0d068708 550 if (ep[PHY_TO_LOG(endpoint)].out[0] & CMDSTS_S) {
samux 1:80ab0d068708 551 return true;
samux 1:80ab0d068708 552 }
samux 1:80ab0d068708 553 }
samux 1:80ab0d068708 554 }
samux 1:80ab0d068708 555
samux 1:80ab0d068708 556 return false;
samux 1:80ab0d068708 557 }
samux 1:80ab0d068708 558
samux 1:80ab0d068708 559 bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options) {
samux 1:80ab0d068708 560 uint32_t tmpEpRamPtr;
samux 1:80ab0d068708 561
samux 1:80ab0d068708 562 if (endpoint > LAST_PHYSICAL_ENDPOINT) {
samux 1:80ab0d068708 563 return false;
samux 1:80ab0d068708 564 }
samux 1:80ab0d068708 565
samux 1:80ab0d068708 566 // Not applicable to the control endpoints
samux 1:80ab0d068708 567 if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
samux 1:80ab0d068708 568 return false;
samux 1:80ab0d068708 569 }
samux 1:80ab0d068708 570
samux 1:80ab0d068708 571 // Allocate buffers in USB RAM
samux 1:80ab0d068708 572 tmpEpRamPtr = epRamPtr;
samux 1:80ab0d068708 573
samux 1:80ab0d068708 574 // Must be 64 byte aligned
samux 1:80ab0d068708 575 tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
samux 1:80ab0d068708 576
samux 1:80ab0d068708 577 if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
samux 1:80ab0d068708 578 // Out of memory
samux 1:80ab0d068708 579 return false;
samux 1:80ab0d068708 580 }
samux 1:80ab0d068708 581
samux 1:80ab0d068708 582 // Allocate first buffer
samux 1:80ab0d068708 583 endpointState[endpoint].buffer[0] = tmpEpRamPtr;
samux 1:80ab0d068708 584 tmpEpRamPtr += maxPacket;
samux 1:80ab0d068708 585
samux 1:80ab0d068708 586 if (!(options & SINGLE_BUFFERED)) {
samux 1:80ab0d068708 587 // Must be 64 byte aligned
samux 1:80ab0d068708 588 tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
samux 1:80ab0d068708 589
samux 1:80ab0d068708 590 if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
samux 1:80ab0d068708 591 // Out of memory
samux 1:80ab0d068708 592 return false;
samux 1:80ab0d068708 593 }
samux 1:80ab0d068708 594
samux 1:80ab0d068708 595 // Allocate second buffer
samux 1:80ab0d068708 596 endpointState[endpoint].buffer[1] = tmpEpRamPtr;
samux 1:80ab0d068708 597 tmpEpRamPtr += maxPacket;
samux 1:80ab0d068708 598 }
samux 1:80ab0d068708 599
samux 1:80ab0d068708 600 // Commit to this USB RAM allocation
samux 1:80ab0d068708 601 epRamPtr = tmpEpRamPtr;
samux 1:80ab0d068708 602
samux 1:80ab0d068708 603 // Remaining endpoint state values
samux 1:80ab0d068708 604 endpointState[endpoint].maxPacket = maxPacket;
samux 1:80ab0d068708 605 endpointState[endpoint].options = options;
samux 1:80ab0d068708 606
samux 1:80ab0d068708 607 // Enable double buffering if required
samux 1:80ab0d068708 608 if (options & SINGLE_BUFFERED) {
samux 1:80ab0d068708 609 LPC_USB->EPBUFCFG &= ~EP(endpoint);
samux 1:80ab0d068708 610 } else {
samux 1:80ab0d068708 611 // Double buffered
samux 1:80ab0d068708 612 LPC_USB->EPBUFCFG |= EP(endpoint);
samux 1:80ab0d068708 613 }
samux 1:80ab0d068708 614
samux 1:80ab0d068708 615 // Enable interrupt
samux 1:80ab0d068708 616 LPC_USB->INTEN |= EP(endpoint);
samux 1:80ab0d068708 617
samux 1:80ab0d068708 618 // Enable endpoint
samux 1:80ab0d068708 619 unstallEndpoint(endpoint);
samux 1:80ab0d068708 620 return true;
samux 1:80ab0d068708 621 }
samux 1:80ab0d068708 622
samux 1:80ab0d068708 623 void USBHAL::remoteWakeup(void) {
samux 1:80ab0d068708 624 // Clearing DSUS bit initiates a remote wakeup if the
samux 1:80ab0d068708 625 // device is currently enabled and suspended - otherwise
samux 1:80ab0d068708 626 // it has no effect.
samux 1:80ab0d068708 627 LPC_USB->DEVCMDSTAT = devCmdStat & ~DSUS;
samux 1:80ab0d068708 628 }
samux 1:80ab0d068708 629
samux 1:80ab0d068708 630
samux 1:80ab0d068708 631 static void disableEndpoints(void) {
samux 1:80ab0d068708 632 uint32_t logEp;
samux 1:80ab0d068708 633
samux 1:80ab0d068708 634 // Ref. Table 158 "When a bus reset is received, software
samux 1:80ab0d068708 635 // must set the disable bit of all endpoints to 1".
samux 1:80ab0d068708 636
samux 1:80ab0d068708 637 for (logEp = 1; logEp < NUMBER_OF_LOGICAL_ENDPOINTS; logEp++) {
samux 1:80ab0d068708 638 ep[logEp].out[0] = CMDSTS_D;
samux 1:80ab0d068708 639 ep[logEp].out[1] = CMDSTS_D;
samux 1:80ab0d068708 640 ep[logEp].in[0] = CMDSTS_D;
samux 1:80ab0d068708 641 ep[logEp].in[1] = CMDSTS_D;
samux 1:80ab0d068708 642 }
samux 1:80ab0d068708 643
samux 1:80ab0d068708 644 // Start of USB RAM for endpoints > 0
samux 1:80ab0d068708 645 epRamPtr = usbRamPtr;
samux 1:80ab0d068708 646 }
samux 1:80ab0d068708 647
samux 1:80ab0d068708 648
samux 1:80ab0d068708 649
samux 1:80ab0d068708 650 void USBHAL::_usbisr(void) {
samux 1:80ab0d068708 651 instance->usbisr();
samux 1:80ab0d068708 652 }
samux 1:80ab0d068708 653
samux 1:80ab0d068708 654 void USBHAL::usbisr(void) {
samux 1:80ab0d068708 655 // Start of frame
samux 1:80ab0d068708 656 if (LPC_USB->INTSTAT & FRAME_INT) {
samux 1:80ab0d068708 657 // Clear SOF interrupt
samux 1:80ab0d068708 658 LPC_USB->INTSTAT = FRAME_INT;
samux 1:80ab0d068708 659
samux 1:80ab0d068708 660 // SOF event, read frame number
samux 1:80ab0d068708 661 SOF(FRAME_NR(LPC_USB->INFO));
samux 1:80ab0d068708 662 }
samux 1:80ab0d068708 663
samux 1:80ab0d068708 664 // Device state
samux 1:80ab0d068708 665 if (LPC_USB->INTSTAT & DEV_INT) {
samux 1:80ab0d068708 666 LPC_USB->INTSTAT = DEV_INT;
samux 1:80ab0d068708 667
samux 1:80ab0d068708 668 if (LPC_USB->DEVCMDSTAT & DSUS_C) {
samux 1:80ab0d068708 669 // Suspend status changed
samux 1:80ab0d068708 670 LPC_USB->DEVCMDSTAT = devCmdStat | DSUS_C;
samux 1:80ab0d068708 671 if((LPC_USB->DEVCMDSTAT & DSUS) != 0) {
samux 1:80ab0d068708 672 suspendStateChanged(1);
samux 1:80ab0d068708 673 }
samux 1:80ab0d068708 674 }
samux 1:80ab0d068708 675
samux 1:80ab0d068708 676 if (LPC_USB->DEVCMDSTAT & DRES_C) {
samux 1:80ab0d068708 677 // Bus reset
samux 1:80ab0d068708 678 LPC_USB->DEVCMDSTAT = devCmdStat | DRES_C;
samux 1:80ab0d068708 679
samux 1:80ab0d068708 680 suspendStateChanged(0);
samux 1:80ab0d068708 681
samux 1:80ab0d068708 682 // Disable endpoints > 0
samux 1:80ab0d068708 683 disableEndpoints();
samux 1:80ab0d068708 684
samux 1:80ab0d068708 685 // Bus reset event
samux 1:80ab0d068708 686 busReset();
samux 1:80ab0d068708 687 }
samux 1:80ab0d068708 688 }
samux 1:80ab0d068708 689
samux 1:80ab0d068708 690 // Endpoint 0
samux 1:80ab0d068708 691 if (LPC_USB->INTSTAT & EP(EP0OUT)) {
samux 1:80ab0d068708 692 // Clear EP0OUT/SETUP interrupt
samux 1:80ab0d068708 693 LPC_USB->INTSTAT = EP(EP0OUT);
samux 1:80ab0d068708 694
samux 1:80ab0d068708 695 // Check if SETUP
samux 1:80ab0d068708 696 if (LPC_USB->DEVCMDSTAT & SETUP) {
samux 1:80ab0d068708 697 // Clear Active and Stall bits for EP0
samux 1:80ab0d068708 698 // Documentation does not make it clear if we must use the
samux 1:80ab0d068708 699 // EPSKIP register to achieve this, Fig. 16 and NXP reference
samux 1:80ab0d068708 700 // code suggests we can just clear the Active bits - check with
samux 1:80ab0d068708 701 // NXP to be sure.
samux 1:80ab0d068708 702 ep[0].in[0] = 0;
samux 1:80ab0d068708 703 ep[0].out[0] = 0;
samux 1:80ab0d068708 704
samux 1:80ab0d068708 705 // Clear EP0IN interrupt
samux 1:80ab0d068708 706 LPC_USB->INTSTAT = EP(EP0IN);
samux 1:80ab0d068708 707
samux 1:80ab0d068708 708 // Clear SETUP (and INTONNAK_CI/O) in device status register
samux 1:80ab0d068708 709 LPC_USB->DEVCMDSTAT = devCmdStat | SETUP;
samux 1:80ab0d068708 710
samux 1:80ab0d068708 711 // EP0 SETUP event (SETUP data received)
samux 1:80ab0d068708 712 EP0setupCallback();
samux 1:80ab0d068708 713 } else {
samux 1:80ab0d068708 714 // EP0OUT ACK event (OUT data received)
samux 1:80ab0d068708 715 EP0out();
samux 1:80ab0d068708 716 }
samux 1:80ab0d068708 717 }
samux 1:80ab0d068708 718
samux 1:80ab0d068708 719 if (LPC_USB->INTSTAT & EP(EP0IN)) {
samux 1:80ab0d068708 720 // Clear EP0IN interrupt
samux 1:80ab0d068708 721 LPC_USB->INTSTAT = EP(EP0IN);
samux 1:80ab0d068708 722
samux 1:80ab0d068708 723 // EP0IN ACK event (IN data sent)
samux 1:80ab0d068708 724 EP0in();
samux 1:80ab0d068708 725 }
mbed_official 25:7c72828865f3 726
samux 8:335f2506f422 727 for (uint8_t num = 2; num < 5*2; num++) {
samux 8:335f2506f422 728 if (LPC_USB->INTSTAT & EP(num)) {
samux 8:335f2506f422 729 LPC_USB->INTSTAT = EP(num);
samux 8:335f2506f422 730 epComplete |= EP(num);
samux 8:335f2506f422 731 if ((instance->*(epCallback[num - 2]))()) {
samux 8:335f2506f422 732 epComplete &= ~EP(num);
samux 8:335f2506f422 733 }
samux 8:335f2506f422 734 }
samux 1:80ab0d068708 735 }
samux 1:80ab0d068708 736 }
samux 1:80ab0d068708 737
samux 1:80ab0d068708 738 #endif