An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Tue Nov 22 20:46:36 2016 +0000
Revision:
64:ef7ca92dff36
Parent:
55:4db125cd11a0
Child:
66:2e3583fbd2f4
Make PWM fades smooth (fixes flicker) by changing from PwmOut to FastPWM for GPIO PWM outputs

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 // USB Message Protocol
mjr 35:e959ffba78fd 2 //
mjr 35:e959ffba78fd 3 // This file is purely for documentation, to describe our USB protocol.
mjr 35:e959ffba78fd 4 // We use the standard HID setup with one endpoint in each direction.
mjr 35:e959ffba78fd 5 // See USBJoystick.cpp/.h for our USB descriptor arrangement.
mjr 35:e959ffba78fd 6 //
mjr 35:e959ffba78fd 7
mjr 35:e959ffba78fd 8 // ------ OUTGOING MESSAGES (DEVICE TO HOST) ------
mjr 35:e959ffba78fd 9 //
mjr 47:df7a88cd249c 10 // General note: 16-bit and 32-bit fields in our reports are little-endian
mjr 47:df7a88cd249c 11 // unless otherwise specified.
mjr 47:df7a88cd249c 12 //
mjr 39:b3815a1c3802 13 // 1. Joystick reports
mjr 35:e959ffba78fd 14 // In most cases, our outgoing messages are HID joystick reports, using the
mjr 35:e959ffba78fd 15 // format defined in USBJoystick.cpp. This allows us to be installed on
mjr 35:e959ffba78fd 16 // Windows as a standard USB joystick, which all versions of Windows support
mjr 35:e959ffba78fd 17 // using in-the-box drivers. This allows a completely transparent, driverless,
mjr 39:b3815a1c3802 18 // plug-and-play installation experience on Windows. Our joystick report
mjr 39:b3815a1c3802 19 // looks like this (see USBJoystick.cpp for the formal HID report descriptor):
mjr 35:e959ffba78fd 20 //
mjr 55:4db125cd11a0 21 // ss status bits:
mjr 55:4db125cd11a0 22 // 0x01 -> plunger enabled
mjr 55:4db125cd11a0 23 // 0x02 -> night mode engaged
mjr 40:cc0d9814522b 24 // 00 2nd byte of status (reserved)
mjr 40:cc0d9814522b 25 // 00 3rd byte of status (reserved)
mjr 39:b3815a1c3802 26 // 00 always zero for joystick reports
mjr 40:cc0d9814522b 27 // bb joystick buttons, low byte (buttons 1-8, 1 bit per button)
mjr 40:cc0d9814522b 28 // bb joystick buttons, 2nd byte (buttons 9-16)
mjr 40:cc0d9814522b 29 // bb joystick buttons, 3rd byte (buttons 17-24)
mjr 40:cc0d9814522b 30 // bb joystick buttons, high byte (buttons 25-32)
mjr 39:b3815a1c3802 31 // xx low byte of X position = nudge/accelerometer X axis
mjr 39:b3815a1c3802 32 // xx high byte of X position
mjr 39:b3815a1c3802 33 // yy low byte of Y position = nudge/accelerometer Y axis
mjr 39:b3815a1c3802 34 // yy high byte of Y position
mjr 39:b3815a1c3802 35 // zz low byte of Z position = plunger position
mjr 39:b3815a1c3802 36 // zz high byte of Z position
mjr 39:b3815a1c3802 37 //
mjr 39:b3815a1c3802 38 // The X, Y, and Z values are 16-bit signed integers. The accelerometer
mjr 39:b3815a1c3802 39 // values are on an abstract scale, where 0 represents no acceleration,
mjr 39:b3815a1c3802 40 // negative maximum represents -1g on that axis, and positive maximum
mjr 39:b3815a1c3802 41 // represents +1g on that axis. For the plunger position, 0 is the park
mjr 39:b3815a1c3802 42 // position (the rest position of the plunger) and positive values represent
mjr 39:b3815a1c3802 43 // retracted (pulled back) positions. A negative value means that the plunger
mjr 39:b3815a1c3802 44 // is pushed forward of the park position.
mjr 39:b3815a1c3802 45 //
mjr 39:b3815a1c3802 46 // 2. Special reports
mjr 35:e959ffba78fd 47 // We subvert the joystick report format in certain cases to report other
mjr 35:e959ffba78fd 48 // types of information, when specifically requested by the host. This allows
mjr 35:e959ffba78fd 49 // our custom configuration UI on the Windows side to query additional
mjr 35:e959ffba78fd 50 // information that we don't normally send via the joystick reports. We
mjr 35:e959ffba78fd 51 // define a custom vendor-specific "status" field in the reports that we
mjr 35:e959ffba78fd 52 // use to identify these special reports, as described below.
mjr 35:e959ffba78fd 53 //
mjr 39:b3815a1c3802 54 // Normal joystick reports always have 0 in the high bit of the 2nd byte
mjr 35:e959ffba78fd 55 // of the report. Special non-joystick reports always have 1 in the high bit
mjr 35:e959ffba78fd 56 // of the first byte. (This byte is defined in the HID Report Descriptor
mjr 35:e959ffba78fd 57 // as an opaque vendor-defined value, so the joystick interface on the
mjr 35:e959ffba78fd 58 // Windows side simply ignores it.)
mjr 35:e959ffba78fd 59 //
mjr 52:8298b2a73eb2 60 // 2A. Plunger sensor status report
mjr 52:8298b2a73eb2 61 // Software on the PC can request a detailed status report from the plunger
mjr 52:8298b2a73eb2 62 // sensor. The status information is meant as an aid to installing and
mjr 52:8298b2a73eb2 63 // adjusting the sensor device for proper performance. For imaging sensor
mjr 52:8298b2a73eb2 64 // types, the status report includes a complete current image snapshot
mjr 52:8298b2a73eb2 65 // (an array of all of the pixels the sensor is currently imaging). For
mjr 52:8298b2a73eb2 66 // all sensor types, it includes the current plunger position registered
mjr 52:8298b2a73eb2 67 // on the sensor, and some timing information.
mjr 52:8298b2a73eb2 68 //
mjr 52:8298b2a73eb2 69 // To request the sensor status, the host sends custom protocol message 65 3
mjr 52:8298b2a73eb2 70 // (see below). The device replies with a message in this format:
mjr 52:8298b2a73eb2 71 //
mjr 52:8298b2a73eb2 72 // bytes 0:1 = 0x87FF
mjr 52:8298b2a73eb2 73 // byte 2 = 0 -> first (currently only) status report packet
mjr 52:8298b2a73eb2 74 // (additional packets could be added in the future if
mjr 52:8298b2a73eb2 75 // more fields need to be added)
mjr 52:8298b2a73eb2 76 // bytes 3:4 = number of pixels to be sent in following messages, as
mjr 52:8298b2a73eb2 77 // an unsigned 16-bit little-endian integer. This is 0 if
mjr 52:8298b2a73eb2 78 // the sensor isn't an imaging type.
mjr 52:8298b2a73eb2 79 // bytes 5:6 = current plunger position registered on the sensor.
mjr 52:8298b2a73eb2 80 // For imaging sensors, this is the pixel position, so it's
mjr 52:8298b2a73eb2 81 // scaled from 0 to number of pixels - 1. For non-imaging
mjr 52:8298b2a73eb2 82 // sensors, this uses the generic joystick scale 0..4095.
mjr 52:8298b2a73eb2 83 // The special value 0xFFFF means that the position couldn't
mjr 52:8298b2a73eb2 84 // be determined,
mjr 52:8298b2a73eb2 85 // byte 7 = bit flags:
mjr 52:8298b2a73eb2 86 // 0x01 = normal orientation detected
mjr 52:8298b2a73eb2 87 // 0x02 = reversed orientation detected
mjr 52:8298b2a73eb2 88 // 0x04 = calibration mode is active (no pixel packets
mjr 52:8298b2a73eb2 89 // are sent for this reading)
mjr 52:8298b2a73eb2 90 // bytes 8:9:10 = average time for each sensor read, in 10us units.
mjr 52:8298b2a73eb2 91 // This is the average time it takes to complete the I/O
mjr 52:8298b2a73eb2 92 // operation to read the sensor, to obtain the raw sensor
mjr 52:8298b2a73eb2 93 // data for instantaneous plunger position reading. For
mjr 52:8298b2a73eb2 94 // an imaging sensor, this is the time it takes for the
mjr 52:8298b2a73eb2 95 // sensor to capture the image and transfer it to the
mjr 52:8298b2a73eb2 96 // microcontroller. For an analog sensor (e.g., an LVDT
mjr 52:8298b2a73eb2 97 // or potentiometer), it's the time to complete an ADC
mjr 52:8298b2a73eb2 98 // sample.
mjr 52:8298b2a73eb2 99 // bytes 11:12:13 = time it took to process the current frame, in 10us
mjr 52:8298b2a73eb2 100 // units. This is the software processing time that was
mjr 52:8298b2a73eb2 101 // needed to analyze the raw data read from the sensor.
mjr 52:8298b2a73eb2 102 // This is typically only non-zero for imaging sensors,
mjr 52:8298b2a73eb2 103 // where it reflects the time required to scan the pixel
mjr 52:8298b2a73eb2 104 // array to find the indicated plunger position. The time
mjr 52:8298b2a73eb2 105 // is usually zero or negligible for analog sensor types,
mjr 52:8298b2a73eb2 106 // since the only "analysis" is a multiplication to rescale
mjr 52:8298b2a73eb2 107 // the ADC sample.
mjr 52:8298b2a73eb2 108 //
mjr 52:8298b2a73eb2 109 // If the sensor is an imaging sensor type, this will be followed by a
mjr 52:8298b2a73eb2 110 // series of pixel messages. The imaging sensor types have too many pixels
mjr 52:8298b2a73eb2 111 // to send in a single USB transaction, so the device breaks up the array
mjr 52:8298b2a73eb2 112 // into as many packets as needed and sends them in sequence. For non-
mjr 52:8298b2a73eb2 113 // imaging sensors, the "number of pixels" field in the lead packet is
mjr 52:8298b2a73eb2 114 // zero, so obviously no pixel packets will follow. If the "calibration
mjr 52:8298b2a73eb2 115 // active" bit in the flags byte is set, no pixel packets are sent even
mjr 52:8298b2a73eb2 116 // if the sensor is an imaging type, since the transmission time for the
mjr 52:8298b2a73eb2 117 // pixels would intefere with the calibration process. If pixels are sent,
mjr 52:8298b2a73eb2 118 // they're sent in order starting at the first pixel. The format of each
mjr 52:8298b2a73eb2 119 // pixel packet is:
mjr 35:e959ffba78fd 120 //
mjr 35:e959ffba78fd 121 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 48:058ace2aed1d 122 // example, 0x8004 (encoded little endian as 0x04 0x80)
mjr 48:058ace2aed1d 123 // indicates index 4. This is the starting pixel number
mjr 48:058ace2aed1d 124 // in the report. The first report will be 0x00 0x80 to
mjr 48:058ace2aed1d 125 // indicate pixel #0.
mjr 47:df7a88cd249c 126 // bytes 2 = 8-bit unsigned int brightness level of pixel at index
mjr 47:df7a88cd249c 127 // bytes 3 = brightness of pixel at index+1
mjr 35:e959ffba78fd 128 // etc for the rest of the packet
mjr 35:e959ffba78fd 129 //
mjr 52:8298b2a73eb2 130 // Note that we currently only support one-dimensional imaging sensors
mjr 52:8298b2a73eb2 131 // (i.e., pixel arrays that are 1 pixel wide). The report format doesn't
mjr 52:8298b2a73eb2 132 // have any provision for a two-dimensional layout. The KL25Z probably
mjr 52:8298b2a73eb2 133 // isn't powerful enough to do real-time image analysis on a 2D image
mjr 52:8298b2a73eb2 134 // anyway, so it's unlikely that we'd be able to make 2D sensors work at
mjr 52:8298b2a73eb2 135 // all, but if we ever add such a thing we'll have to upgrade the report
mjr 52:8298b2a73eb2 136 // format here accordingly.
mjr 51:57eb311faafa 137 //
mjr 51:57eb311faafa 138 //
mjr 53:9b2611964afc 139 // 2B. Configuration report.
mjr 39:b3815a1c3802 140 // This is requested by sending custom protocol message 65 4 (see below).
mjr 39:b3815a1c3802 141 // In reponse, the device sends one report to the host using this format:
mjr 35:e959ffba78fd 142 //
mjr 35:e959ffba78fd 143 // bytes 0:1 = 0x8800. This has the bit pattern 10001 in the high
mjr 35:e959ffba78fd 144 // 5 bits, which distinguishes it from regular joystick
mjr 40:cc0d9814522b 145 // reports and from other special report types.
mjr 35:e959ffba78fd 146 // bytes 2:3 = total number of outputs, little endian
mjr 40:cc0d9814522b 147 // bytes 6:7 = plunger calibration zero point, little endian
mjr 40:cc0d9814522b 148 // bytes 8:9 = plunger calibration maximum point, little endian
mjr 52:8298b2a73eb2 149 // byte 10 = plunger calibration release time, in milliseconds
mjr 52:8298b2a73eb2 150 // byte 11 = bit flags:
mjr 40:cc0d9814522b 151 // 0x01 -> configuration loaded; 0 in this bit means that
mjr 40:cc0d9814522b 152 // the firmware has been loaded but no configuration
mjr 40:cc0d9814522b 153 // has been sent from the host
mjr 40:cc0d9814522b 154 // The remaining bytes are reserved for future use.
mjr 35:e959ffba78fd 155 //
mjr 53:9b2611964afc 156 // 2C. Device ID report.
mjr 40:cc0d9814522b 157 // This is requested by sending custom protocol message 65 7 (see below).
mjr 40:cc0d9814522b 158 // In response, the device sends one report to the host using this format:
mjr 40:cc0d9814522b 159 //
mjr 52:8298b2a73eb2 160 // bytes 0:1 = 0x9000. This has bit pattern 10010 in the high 5 bits
mjr 52:8298b2a73eb2 161 // to distinguish this from other report types.
mjr 53:9b2611964afc 162 // byte 2 = ID type. This is the same ID type sent in the request.
mjr 53:9b2611964afc 163 // bytes 3-12 = requested ID. The ID is 80 bits in big-endian byte
mjr 53:9b2611964afc 164 // order. For IDs longer than 80 bits, we truncate to the
mjr 53:9b2611964afc 165 // low-order 80 bits (that is, the last 80 bits).
mjr 53:9b2611964afc 166 //
mjr 53:9b2611964afc 167 // ID type 1 = CPU ID. This is the globally unique CPU ID
mjr 53:9b2611964afc 168 // stored in the KL25Z CPU.
mjr 35:e959ffba78fd 169 //
mjr 53:9b2611964afc 170 // ID type 2 = OpenSDA ID. This is the globally unique ID
mjr 53:9b2611964afc 171 // for the connected OpenSDA controller, if known. This
mjr 53:9b2611964afc 172 // allow the host to figure out which USB MSD (virtual
mjr 53:9b2611964afc 173 // disk drive), if any, represents the OpenSDA module for
mjr 53:9b2611964afc 174 // this Pinscape USB interface. This is primarily useful
mjr 53:9b2611964afc 175 // to determine which MSD to write in order to update the
mjr 53:9b2611964afc 176 // firmware on a given Pinscape unit.
mjr 53:9b2611964afc 177 //
mjr 53:9b2611964afc 178 // 2D. Configuration variable report.
mjr 52:8298b2a73eb2 179 // This is requested by sending custom protocol message 65 9 (see below).
mjr 52:8298b2a73eb2 180 // In response, the device sends one report to the host using this format:
mjr 52:8298b2a73eb2 181 //
mjr 52:8298b2a73eb2 182 // bytes 0:1 = 0x9800. This has bit pattern 10011 in the high 5 bits
mjr 52:8298b2a73eb2 183 // to distinguish this from other report types.
mjr 52:8298b2a73eb2 184 // byte 2 = Variable ID. This is the same variable ID sent in the
mjr 52:8298b2a73eb2 185 // query message, to relate the reply to the request.
mjr 52:8298b2a73eb2 186 // bytes 3-8 = Current value of the variable, in the format for the
mjr 52:8298b2a73eb2 187 // individual variable type. The variable formats are
mjr 52:8298b2a73eb2 188 // described in the CONFIGURATION VARIABLES section below.
mjr 52:8298b2a73eb2 189 //
mjr 53:9b2611964afc 190 // 2E. Software build information report.
mjr 53:9b2611964afc 191 // This is requested by sending custom protocol message 65 10 (see below).
mjr 53:9b2611964afc 192 // In response, the device sends one report using this format:
mjr 53:9b2611964afc 193 //
mjr 53:9b2611964afc 194 // bytes 0:1 = 0xA0. This has bit pattern 10100 in the high 5 bits
mjr 53:9b2611964afc 195 // to distinguish it from other report types.
mjr 53:9b2611964afc 196 // bytes 2:5 = Build date. This is returned as a 32-bit integer,
mjr 53:9b2611964afc 197 // little-endian as usual, encoding a decimal value
mjr 53:9b2611964afc 198 // in the format YYYYMMDD giving the date of the build.
mjr 53:9b2611964afc 199 // E.g., Feb 16 2016 is encoded as 20160216 (decimal).
mjr 53:9b2611964afc 200 // bytes 6:9 = Build time. This is a 32-bit integer, little-endian,
mjr 53:9b2611964afc 201 // encoding a decimal value in the format HHMMSS giving
mjr 53:9b2611964afc 202 // build time on a 24-hour clock.
mjr 53:9b2611964afc 203 //
mjr 52:8298b2a73eb2 204 //
mjr 35:e959ffba78fd 205 // WHY WE USE THIS HACKY APPROACH TO DIFFERENT REPORT TYPES
mjr 35:e959ffba78fd 206 //
mjr 35:e959ffba78fd 207 // The HID report system was specifically designed to provide a clean,
mjr 35:e959ffba78fd 208 // structured way for devices to describe the data they send to the host.
mjr 35:e959ffba78fd 209 // Our approach isn't clean or structured; it ignores the promises we
mjr 35:e959ffba78fd 210 // make about the contents of our report via the HID Report Descriptor
mjr 35:e959ffba78fd 211 // and stuffs our own different data format into the same structure.
mjr 35:e959ffba78fd 212 //
mjr 35:e959ffba78fd 213 // We use this hacky approach only because we can't use the official
mjr 35:e959ffba78fd 214 // mechanism, due to the constraint that we want to emulate the LedWiz.
mjr 35:e959ffba78fd 215 // The right way to send different report types is to declare different
mjr 35:e959ffba78fd 216 // report types via extra HID Report Descriptors, then send each report
mjr 35:e959ffba78fd 217 // using one of the types we declared. If it weren't for the LedWiz
mjr 35:e959ffba78fd 218 // constraint, we'd simply define the pixel dump and config query reports
mjr 35:e959ffba78fd 219 // as their own separate HID Report types, each consisting of opaque
mjr 35:e959ffba78fd 220 // blocks of bytes. But we can't do this. The snag is that some versions
mjr 35:e959ffba78fd 221 // of the LedWiz Windows host software parse the USB HID descriptors as part
mjr 35:e959ffba78fd 222 // of identifying a device as a valid LedWiz unit, and will only recognize
mjr 35:e959ffba78fd 223 // the device if it matches certain particulars about the descriptor
mjr 35:e959ffba78fd 224 // structure of a real LedWiz. One of the features that's important to
mjr 35:e959ffba78fd 225 // some versions of the software is the descriptor link structure, which
mjr 35:e959ffba78fd 226 // is affected by the layout of HID Report Descriptor entries. In order
mjr 35:e959ffba78fd 227 // to match the expected layout, we can only define a single kind of output
mjr 35:e959ffba78fd 228 // report. Since we have to use Joystick reports for the sake of VP and
mjr 35:e959ffba78fd 229 // other pinball software, and we're only allowed the one report type, we
mjr 35:e959ffba78fd 230 // have to make that one report type the Joystick type. That's why we
mjr 35:e959ffba78fd 231 // overload the joystick reports with other meanings. It's a hack, but
mjr 35:e959ffba78fd 232 // at least it's a fairly reliable and isolated hack, iun that our special
mjr 35:e959ffba78fd 233 // reports are only generated when clients specifically ask for them.
mjr 35:e959ffba78fd 234 // Plus, even if a client who doesn't ask for a special report somehow
mjr 35:e959ffba78fd 235 // gets one, the worst that happens is that they get a momentary spurious
mjr 35:e959ffba78fd 236 // reading from the accelerometer and plunger.
mjr 35:e959ffba78fd 237
mjr 35:e959ffba78fd 238
mjr 35:e959ffba78fd 239
mjr 35:e959ffba78fd 240 // ------- INCOMING MESSAGES (HOST TO DEVICE) -------
mjr 35:e959ffba78fd 241 //
mjr 35:e959ffba78fd 242 // For LedWiz compatibility, our incoming message format conforms to the
mjr 35:e959ffba78fd 243 // basic USB format used by real LedWiz units. This is simply 8 data
mjr 35:e959ffba78fd 244 // bytes, all private vendor-specific values (meaning that the Windows HID
mjr 35:e959ffba78fd 245 // driver treats them as opaque and doesn't attempt to parse them).
mjr 35:e959ffba78fd 246 //
mjr 35:e959ffba78fd 247 // Within this basic 8-byte format, we recognize the full protocol used
mjr 35:e959ffba78fd 248 // by real LedWiz units, plus an extended protocol that we define privately.
mjr 35:e959ffba78fd 249 // The LedWiz protocol leaves a large part of the potential protocol space
mjr 35:e959ffba78fd 250 // undefined, so we take advantage of this undefined region for our
mjr 35:e959ffba78fd 251 // extensions. This ensures that we can properly recognize all messages
mjr 35:e959ffba78fd 252 // intended for a real LedWiz unit, as well as messages from custom host
mjr 35:e959ffba78fd 253 // software that knows it's talking to a Pinscape unit.
mjr 35:e959ffba78fd 254
mjr 35:e959ffba78fd 255 // --- REAL LED WIZ MESSAGES ---
mjr 35:e959ffba78fd 256 //
mjr 35:e959ffba78fd 257 // The real LedWiz protocol has two message types, identified by the first
mjr 35:e959ffba78fd 258 // byte of the 8-byte USB packet:
mjr 35:e959ffba78fd 259 //
mjr 35:e959ffba78fd 260 // 64 -> SBA (64 xx xx xx xx ss uu uu)
mjr 35:e959ffba78fd 261 // xx = on/off bit mask for 8 outputs
mjr 35:e959ffba78fd 262 // ss = global flash speed setting (1-7)
mjr 35:e959ffba78fd 263 // uu = unused
mjr 35:e959ffba78fd 264 //
mjr 35:e959ffba78fd 265 // If the first byte has value 64 (0x40), it's an SBA message. This type of
mjr 35:e959ffba78fd 266 // message sets all 32 outputs individually ON or OFF according to the next
mjr 35:e959ffba78fd 267 // 32 bits (4 bytes) of the message, and sets the flash speed to the value in
mjr 35:e959ffba78fd 268 // the sixth byte. (The flash speed sets the global cycle rate for flashing
mjr 35:e959ffba78fd 269 // outputs - outputs with their values set to the range 128-132 - to a
mjr 35:e959ffba78fd 270 // relative speed, scaled linearly in frequency. 1 is the slowest at about
mjr 35:e959ffba78fd 271 // 2 Hz, 7 is the fastest at about 14 Hz.)
mjr 35:e959ffba78fd 272 //
mjr 35:e959ffba78fd 273 // 0-49 or 128-132 -> PBA (bb bb bb bb bb bb bb bb)
mjr 35:e959ffba78fd 274 // bb = brightness level/flash pattern for one output
mjr 35:e959ffba78fd 275 //
mjr 35:e959ffba78fd 276 // If the first byte is any valid brightness setting, it's a PBA message.
mjr 35:e959ffba78fd 277 // Valid brightness settings are:
mjr 35:e959ffba78fd 278 //
mjr 35:e959ffba78fd 279 // 0-48 = fixed brightness level, linearly from 0% to 100% intensity
mjr 35:e959ffba78fd 280 // 49 = fixed brightness level at 100% intensity (same as 48)
mjr 35:e959ffba78fd 281 // 129 = flashing pattern, fade up / fade down (sawtooth wave)
mjr 35:e959ffba78fd 282 // 130 = flashing pattern, on / off (square wave)
mjr 35:e959ffba78fd 283 // 131 = flashing pattern, on for 50% duty cycle / fade down
mjr 35:e959ffba78fd 284 // 132 = flashing pattern, fade up / on for 50% duty cycle
mjr 35:e959ffba78fd 285 //
mjr 35:e959ffba78fd 286 // A PBA message sets 8 outputs out of 32. Which 8 are to be set is
mjr 35:e959ffba78fd 287 // implicit in the message sequence: the first PBA sets outputs 1-8, the
mjr 35:e959ffba78fd 288 // second sets 9-16, and so on, rolling around after each fourth PBA.
mjr 35:e959ffba78fd 289 // An SBA also resets the implicit "bank" for the next PBA to outputs 1-8.
mjr 35:e959ffba78fd 290 //
mjr 35:e959ffba78fd 291 // Note that there's no special first byte to indicate the PBA message
mjr 35:e959ffba78fd 292 // type, as there is in an SBA. The first byte of a PBA is simply the
mjr 53:9b2611964afc 293 // first output setting. The way the LedWiz creators conceived this, an
mjr 53:9b2611964afc 294 // SBA message is distinguishable from a PBA because there's no such thing
mjr 53:9b2611964afc 295 // as a brightness level 64, hence 64 is never valid as a byte in an PBA
mjr 53:9b2611964afc 296 // message, hence a message starting with 64 must be something other than
mjr 53:9b2611964afc 297 // an PBA message.
mjr 35:e959ffba78fd 298 //
mjr 35:e959ffba78fd 299 // Our extended protocol uses the same principle, taking advantage of the
mjr 53:9b2611964afc 300 // many other byte values that are also invalid in PBA messages. To be a
mjr 53:9b2611964afc 301 // valid PBA message, the first byte must be in the range 0-49 or 129-132.
mjr 53:9b2611964afc 302 // As already mentioned, byte value 64 indicates an SBA message, so we
mjr 53:9b2611964afc 303 // can't use that one for private extensions. This still leaves many
mjr 53:9b2611964afc 304 // other byte values for us, though, namely 50-63, 65-128, and 133-255.
mjr 35:e959ffba78fd 305
mjr 35:e959ffba78fd 306
mjr 35:e959ffba78fd 307 // --- PRIVATE EXTENDED MESSAGES ---
mjr 35:e959ffba78fd 308 //
mjr 35:e959ffba78fd 309 // All of our extended protocol messages are identified by the first byte:
mjr 35:e959ffba78fd 310 //
mjr 35:e959ffba78fd 311 // 65 -> Miscellaneous control message. The second byte specifies the specific
mjr 35:e959ffba78fd 312 // operation:
mjr 35:e959ffba78fd 313 //
mjr 39:b3815a1c3802 314 // 0 -> No Op - does nothing. (This can be used to send a test message on the
mjr 39:b3815a1c3802 315 // USB endpoint.)
mjr 39:b3815a1c3802 316 //
mjr 35:e959ffba78fd 317 // 1 -> Set device unit number and plunger status, and save the changes immediately
mjr 35:e959ffba78fd 318 // to flash. The device will automatically reboot after the changes are saved.
mjr 35:e959ffba78fd 319 // The additional bytes of the message give the parameters:
mjr 35:e959ffba78fd 320 //
mjr 35:e959ffba78fd 321 // third byte = new unit number (0-15, corresponding to nominal unit numbers 1-16)
mjr 35:e959ffba78fd 322 // fourth byte = plunger on/off (0=disabled, 1=enabled)
mjr 35:e959ffba78fd 323 //
mjr 35:e959ffba78fd 324 // 2 -> Begin plunger calibration mode. The device stays in this mode for about
mjr 35:e959ffba78fd 325 // 15 seconds, and sets the zero point and maximum retraction points to the
mjr 35:e959ffba78fd 326 // observed endpoints of sensor readings while the mode is running. After
mjr 35:e959ffba78fd 327 // the time limit elapses, the device automatically stores the results in
mjr 35:e959ffba78fd 328 // non-volatile flash memory and exits the mode.
mjr 35:e959ffba78fd 329 //
mjr 51:57eb311faafa 330 // 3 -> Send pixel dump. The device sends one complete image snapshot from the
mjr 51:57eb311faafa 331 // plunger sensor, as as series of pixel dump messages. (The message format
mjr 51:57eb311faafa 332 // isn't big enough to allow the whole image to be sent in one message, so
mjr 53:9b2611964afc 333 // the image is broken up into as many messages as necessary.) The device
mjr 53:9b2611964afc 334 // then resumes sending normal joystick messages. If the plunger sensor
mjr 53:9b2611964afc 335 // isn't an imaging type, or no sensor is installed, no pixel messages are
mjr 53:9b2611964afc 336 // sent. Parameters:
mjr 48:058ace2aed1d 337 //
mjr 48:058ace2aed1d 338 // third byte = bit flags:
mjr 51:57eb311faafa 339 // 0x01 = low res mode. The device rescales the sensor pixel array
mjr 51:57eb311faafa 340 // sent in the dump messages to a low-resolution subset. The
mjr 51:57eb311faafa 341 // size of the subset is determined by the device. This has
mjr 51:57eb311faafa 342 // no effect on the sensor operation; it merely reduces the
mjr 51:57eb311faafa 343 // USB transmission time to allow for a faster frame rate for
mjr 51:57eb311faafa 344 // viewing in the config tool.
mjr 35:e959ffba78fd 345 //
mjr 53:9b2611964afc 346 // fourth byte = extra exposure time in 100us (.1ms) increments. For
mjr 53:9b2611964afc 347 // imaging sensors, we'll add this delay to the minimum exposure
mjr 53:9b2611964afc 348 // time. This allows the caller to explicitly adjust the exposure
mjr 53:9b2611964afc 349 // level for calibration purposes.
mjr 53:9b2611964afc 350 //
mjr 35:e959ffba78fd 351 // 4 -> Query configuration. The device sends a special configuration report,
mjr 40:cc0d9814522b 352 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 353 // joystick reports.
mjr 35:e959ffba78fd 354 //
mjr 35:e959ffba78fd 355 // 5 -> Turn all outputs off and restore LedWiz defaults. Sets output ports
mjr 35:e959ffba78fd 356 // 1-32 to OFF and LedWiz brightness/mode setting 48, sets outputs 33 and
mjr 35:e959ffba78fd 357 // higher to brightness level 0, and sets the LedWiz global flash speed to 2.
mjr 35:e959ffba78fd 358 //
mjr 35:e959ffba78fd 359 // 6 -> Save configuration to flash. This saves all variable updates sent via
mjr 35:e959ffba78fd 360 // type 66 messages since the last reboot, then automatically reboots the
mjr 35:e959ffba78fd 361 // device to put the changes into effect.
mjr 35:e959ffba78fd 362 //
mjr 53:9b2611964afc 363 // third byte = delay time in seconds. The device will wait this long
mjr 53:9b2611964afc 364 // before disconnecting, to allow the PC to perform any cleanup tasks
mjr 53:9b2611964afc 365 // while the device is still attached (e.g., modifying Windows device
mjr 53:9b2611964afc 366 // driver settings)
mjr 53:9b2611964afc 367 //
mjr 40:cc0d9814522b 368 // 7 -> Query device ID. The device replies with a special device ID report
mjr 40:cc0d9814522b 369 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 370 // joystick reports.
mjr 40:cc0d9814522b 371 //
mjr 53:9b2611964afc 372 // The third byte of the message is the ID index to retrieve:
mjr 53:9b2611964afc 373 //
mjr 53:9b2611964afc 374 // 1 = CPU ID: returns the KL25Z globally unique CPU ID.
mjr 53:9b2611964afc 375 //
mjr 53:9b2611964afc 376 // 2 = OpenSDA ID: returns the OpenSDA TUID. This must be patched
mjr 53:9b2611964afc 377 // into the firmware by the PC host when the .bin file is
mjr 53:9b2611964afc 378 // installed onto the device. This will return all 'X' bytes
mjr 53:9b2611964afc 379 // if the value wasn't patched at install time.
mjr 53:9b2611964afc 380 //
mjr 40:cc0d9814522b 381 // 8 -> Engage/disengage night mode. The third byte of the message is 1 to
mjr 55:4db125cd11a0 382 // engage night mode, 0 to disengage night mode. The current mode isn't
mjr 55:4db125cd11a0 383 // stored persistently; night mode is always off after a reset.
mjr 40:cc0d9814522b 384 //
mjr 52:8298b2a73eb2 385 // 9 -> Query configuration variable. The second byte is the config variable
mjr 52:8298b2a73eb2 386 // number (see the CONFIGURATION VARIABLES section below). For the array
mjr 52:8298b2a73eb2 387 // variables (button assignments, output ports), the third byte is the
mjr 52:8298b2a73eb2 388 // array index. The device replies with a configuration variable report
mjr 52:8298b2a73eb2 389 // (see above) with the current setting for the requested variable.
mjr 52:8298b2a73eb2 390 //
mjr 53:9b2611964afc 391 // 10 -> Query software build information. No parameters. This replies with
mjr 53:9b2611964afc 392 // the software build information report (see above).
mjr 53:9b2611964afc 393 //
mjr 35:e959ffba78fd 394 // 66 -> Set configuration variable. The second byte of the message is the config
mjr 35:e959ffba78fd 395 // variable number, and the remaining bytes give the new value for the variable.
mjr 53:9b2611964afc 396 // The value format is specific to each variable; see the CONFIGURATION VARIABLES
mjr 53:9b2611964afc 397 // section below for a list of the variables and their formats. This command
mjr 53:9b2611964afc 398 // only sets the value in RAM; it doesn't write the value to flash and doesn't
mjr 53:9b2611964afc 399 // put the change into effect. To save the new settings, the host must send a
mjr 53:9b2611964afc 400 // type 65 subtype 6 message (see above). That saves the settings to flash and
mjr 53:9b2611964afc 401 // reboots the device, which makes the new settings active.
mjr 35:e959ffba78fd 402 //
mjr 35:e959ffba78fd 403 // 200-228 -> Set extended output brightness. This sets outputs N to N+6 to the
mjr 35:e959ffba78fd 404 // respective brightness values in the 2nd through 8th bytes of the message
mjr 35:e959ffba78fd 405 // (output N is set to the 2nd byte value, N+1 is set to the 3rd byte value,
mjr 35:e959ffba78fd 406 // etc). Each brightness level is a linear brightness level from 0-255,
mjr 35:e959ffba78fd 407 // where 0 is 0% brightness and 255 is 100% brightness. N is calculated as
mjr 35:e959ffba78fd 408 // (first byte - 200)*7 + 1:
mjr 35:e959ffba78fd 409 //
mjr 35:e959ffba78fd 410 // 200 = outputs 1-7
mjr 35:e959ffba78fd 411 // 201 = outputs 8-14
mjr 35:e959ffba78fd 412 // 202 = outputs 15-21
mjr 35:e959ffba78fd 413 // ...
mjr 35:e959ffba78fd 414 // 228 = outputs 197-203
mjr 35:e959ffba78fd 415 //
mjr 53:9b2611964afc 416 // This message is the way to address ports 33 and higher. Original LedWiz
mjr 53:9b2611964afc 417 // protocol messages can't access ports above 32, since the protocol is
mjr 53:9b2611964afc 418 // hard-wired for exactly 32 ports.
mjr 35:e959ffba78fd 419 //
mjr 53:9b2611964afc 420 // Note that the extended output messages differ from regular LedWiz commands
mjr 35:e959ffba78fd 421 // in two ways. First, the brightness is the ONLY attribute when an output is
mjr 53:9b2611964afc 422 // set using this mode. There's no separate ON/OFF state per output as there
mjr 35:e959ffba78fd 423 // is with the SBA/PBA messages. To turn an output OFF with this message, set
mjr 35:e959ffba78fd 424 // the intensity to 0. Setting a non-zero intensity turns it on immediately
mjr 35:e959ffba78fd 425 // without regard to the SBA status for the port. Second, the brightness is
mjr 35:e959ffba78fd 426 // on a full 8-bit scale (0-255) rather than the LedWiz's approximately 5-bit
mjr 35:e959ffba78fd 427 // scale, because there are no parts of the range reserved for flashing modes.
mjr 35:e959ffba78fd 428 //
mjr 35:e959ffba78fd 429 // Outputs 1-32 can be controlled by EITHER the regular LedWiz SBA/PBA messages
mjr 35:e959ffba78fd 430 // or by the extended messages. The latest setting for a given port takes
mjr 35:e959ffba78fd 431 // precedence. If an SBA/PBA message was the last thing sent to a port, the
mjr 35:e959ffba78fd 432 // normal LedWiz combination of ON/OFF and brightness/flash mode status is used
mjr 35:e959ffba78fd 433 // to determine the port's physical output setting. If an extended brightness
mjr 35:e959ffba78fd 434 // message was the last thing sent to a port, the LedWiz ON/OFF status and
mjr 35:e959ffba78fd 435 // flash modes are ignored, and the fixed brightness is set. Outputs 33 and
mjr 35:e959ffba78fd 436 // higher inherently can't be addressed or affected by SBA/PBA messages.
mjr 53:9b2611964afc 437 //
mjr 53:9b2611964afc 438 // (The precedence scheme is designed to accommodate a mix of legacy and DOF
mjr 53:9b2611964afc 439 // software transparently. The behavior described is really just to ensure
mjr 53:9b2611964afc 440 // transparent interoperability; it's not something that host software writers
mjr 53:9b2611964afc 441 // should have to worry about. We expect that anyone writing new software will
mjr 53:9b2611964afc 442 // just use the extended protocol and ignore the old LedWiz commands, since
mjr 53:9b2611964afc 443 // the extended protocol is easier to use and more powerful.)
mjr 35:e959ffba78fd 444
mjr 35:e959ffba78fd 445
mjr 35:e959ffba78fd 446 // ------- CONFIGURATION VARIABLES -------
mjr 35:e959ffba78fd 447 //
mjr 35:e959ffba78fd 448 // Message type 66 (see above) sets one configuration variable. The second byte
mjr 35:e959ffba78fd 449 // of the message is the variable ID, and the rest of the bytes give the new
mjr 35:e959ffba78fd 450 // value, in a variable-specific format. 16-bit values are little endian.
mjr 55:4db125cd11a0 451 // Any bytes at the end of the message not otherwise specified are reserved
mjr 55:4db125cd11a0 452 // for future use and should always be set to 0 in the message data.
mjr 35:e959ffba78fd 453 //
mjr 53:9b2611964afc 454 // 0 -> QUERY ONLY: Describe the configuration variables. The device
mjr 53:9b2611964afc 455 // sends a config variable query report with the following fields:
mjr 53:9b2611964afc 456 //
mjr 53:9b2611964afc 457 // byte 3 -> number of scalar (non-array) variables (these are
mjr 53:9b2611964afc 458 // numbered sequentially from 1 to N)
mjr 53:9b2611964afc 459 // byte 4 -> number of array variables (these are numbered
mjr 53:9b2611964afc 460 // sequentially from 256-N to 255)
mjr 53:9b2611964afc 461 //
mjr 53:9b2611964afc 462 // The description query is meant to allow the host to capture all
mjr 53:9b2611964afc 463 // configuration settings on the device without having to know what
mjr 53:9b2611964afc 464 // the variables mean or how many there are. This is useful for
mjr 53:9b2611964afc 465 // backing up the settings in a file on the PC, for example, or for
mjr 53:9b2611964afc 466 // capturing them to restore after a firmware update. This allows
mjr 53:9b2611964afc 467 // more flexible interoperability between unsynchronized versions
mjr 53:9b2611964afc 468 // of the firmware and the host software.
mjr 53:9b2611964afc 469 //
mjr 53:9b2611964afc 470 // 1 -> USB device ID. This sets the USB vendor and product ID codes
mjr 53:9b2611964afc 471 // to use when connecting to the PC. For LedWiz emulation, use
mjr 35:e959ffba78fd 472 // vendor 0xFAFA and product 0x00EF + unit# (where unit# is the
mjr 53:9b2611964afc 473 // nominal LedWiz unit number, from 1 to 16). If you have any
mjr 53:9b2611964afc 474 // REAL LedWiz units in your system, we recommend starting the
mjr 53:9b2611964afc 475 // Pinscape LedWiz numbering at 8 to avoid conflicts with the
mjr 53:9b2611964afc 476 // real LedWiz units. If you don't have any real LedWiz units,
mjr 53:9b2611964afc 477 // you can number your Pinscape units starting from 1.
mjr 35:e959ffba78fd 478 //
mjr 53:9b2611964afc 479 // If LedWiz emulation isn't desired or causes host conflicts,
mjr 53:9b2611964afc 480 // use our private ID: Vendor 0x1209, product 0xEAEA. (These IDs
mjr 53:9b2611964afc 481 // are registered with http://pid.codes, a registry for open-source
mjr 53:9b2611964afc 482 // USB devices, so they're guaranteed to be free of conflicts with
mjr 53:9b2611964afc 483 // other properly registered devices). The device will NOT appear
mjr 53:9b2611964afc 484 // as an LedWiz if you use the private ID codes, but DOF (R3 or
mjr 53:9b2611964afc 485 // later) will still recognize it as a Pinscape controller.
mjr 53:9b2611964afc 486 //
mjr 53:9b2611964afc 487 // bytes 3:4 -> USB Vendor ID
mjr 53:9b2611964afc 488 // bytes 5:6 -> USB Product ID
mjr 53:9b2611964afc 489 //
mjr 53:9b2611964afc 490 // 2 -> Pinscape Controller unit number for DOF. The Pinscape unit
mjr 53:9b2611964afc 491 // number is independent of the LedWiz unit number, and indepedent
mjr 53:9b2611964afc 492 // of the USB vendor/product IDs. DOF (R3 and later) uses this to
mjr 53:9b2611964afc 493 // identify the unit for the extended Pinscape functionality.
mjr 53:9b2611964afc 494 // For easiest DOF configuration, we recommend numbering your
mjr 53:9b2611964afc 495 // units sequentially starting at 1 (regardless of whether or not
mjr 53:9b2611964afc 496 // you have any real LedWiz units).
mjr 53:9b2611964afc 497 //
mjr 53:9b2611964afc 498 // byte 3 -> unit number, from 1 to 16
mjr 35:e959ffba78fd 499 //
mjr 55:4db125cd11a0 500 // 3 -> Enable/disable joystick reports.
mjr 55:4db125cd11a0 501 //
mjr 55:4db125cd11a0 502 // byte 2 -> 1 to enable, 0 to disable
mjr 35:e959ffba78fd 503 //
mjr 55:4db125cd11a0 504 // When joystick reports are disabled, the device registers as a generic HID
mjr 55:4db125cd11a0 505 // device, and only sends the private report types used by the Windows config
mjr 55:4db125cd11a0 506 // tool. It won't appear to Windows as a USB game controller or joystick.
mjr 55:4db125cd11a0 507 //
mjr 55:4db125cd11a0 508 // Note that this doesn't affect whether the device also registers a keyboard
mjr 55:4db125cd11a0 509 // interface. A keyboard interface will appear if and only if any buttons
mjr 55:4db125cd11a0 510 // (including virtual buttons, such as the ZB Launch Ball feature) are assigned
mjr 55:4db125cd11a0 511 // to generate keyboard key input.
mjr 55:4db125cd11a0 512 //
mjr 55:4db125cd11a0 513 // 4 -> Accelerometer orientation.
mjr 35:e959ffba78fd 514 //
mjr 55:4db125cd11a0 515 // byte 3 -> orientation:
mjr 55:4db125cd11a0 516 // 0 = ports at front (USB ports pointing towards front of cabinet)
mjr 55:4db125cd11a0 517 // 1 = ports at left
mjr 55:4db125cd11a0 518 // 2 = ports at right
mjr 55:4db125cd11a0 519 // 3 = ports at rear
mjr 55:4db125cd11a0 520 //
mjr 55:4db125cd11a0 521 // 5 -> Plunger sensor type.
mjr 35:e959ffba78fd 522 //
mjr 55:4db125cd11a0 523 // byte 3 -> plunger type:
mjr 55:4db125cd11a0 524 // 0 = none (disabled)
mjr 55:4db125cd11a0 525 // 1 = TSL1410R linear image sensor, 1280x1 pixels, serial mode
mjr 55:4db125cd11a0 526 // *2 = TSL1410R, parallel mode
mjr 55:4db125cd11a0 527 // 3 = TSL1412R linear image sensor, 1536x1 pixels, serial mode
mjr 55:4db125cd11a0 528 // *4 = TSL1412R, parallel mode
mjr 55:4db125cd11a0 529 // 5 = Potentiometer with linear taper, or any other device that
mjr 55:4db125cd11a0 530 // represents the position reading with a single analog voltage
mjr 55:4db125cd11a0 531 // *6 = AEDR8300 optical quadrature sensor, 75lpi
mjr 55:4db125cd11a0 532 // *7 = AS5304 magnetic quadrature sensor, 160 steps per 2mm
mjr 55:4db125cd11a0 533 //
mjr 55:4db125cd11a0 534 // * The sensor types marked with asterisks (*) are reserved for types
mjr 55:4db125cd11a0 535 // that aren't currently implemented but could be added in the future.
mjr 55:4db125cd11a0 536 // Selecting these types will effectively disable the plunger.
mjr 55:4db125cd11a0 537 //
mjr 55:4db125cd11a0 538 // 6 -> Plunger pin assignments.
mjr 47:df7a88cd249c 539 //
mjr 55:4db125cd11a0 540 // byte 3 -> pin assignment 1
mjr 55:4db125cd11a0 541 // byte 4 -> pin assignment 2
mjr 55:4db125cd11a0 542 // byte 5 -> pin assignment 3
mjr 55:4db125cd11a0 543 // byte 6 -> pin assignment 4
mjr 55:4db125cd11a0 544 //
mjr 55:4db125cd11a0 545 // All of the pins use the standard GPIO port format (see "GPIO pin number
mjr 55:4db125cd11a0 546 // mappings" below). The actual use of the four pins depends on the plunger
mjr 55:4db125cd11a0 547 // type, as shown below. "NC" means that the pin isn't used at all for the
mjr 55:4db125cd11a0 548 // corresponding plunger type.
mjr 35:e959ffba78fd 549 //
mjr 55:4db125cd11a0 550 // Plunger Type Pin 1 Pin 2 Pin 3 Pin 4
mjr 35:e959ffba78fd 551 //
mjr 55:4db125cd11a0 552 // TSL1410R/1412R, serial SI (DigitalOut) CLK (DigitalOut) AO (AnalogIn) NC
mjr 55:4db125cd11a0 553 // TSL1410R/1412R, parallel SI (DigitalOut) CLK (DigitalOut) AO1 (AnalogIn) AO2 (AnalogIn)
mjr 55:4db125cd11a0 554 // Potentiometer AO (AnalogIn) NC NC NC
mjr 55:4db125cd11a0 555 // AEDR8300 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 556 // AS5304 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 557 //
mjr 55:4db125cd11a0 558 // 7 -> Plunger calibration button pin assignments.
mjr 35:e959ffba78fd 559 //
mjr 55:4db125cd11a0 560 // byte 3 -> features enabled/disabled: bit mask consisting of:
mjr 55:4db125cd11a0 561 // 0x01 button input is enabled
mjr 55:4db125cd11a0 562 // 0x02 lamp output is enabled
mjr 55:4db125cd11a0 563 // byte 4 -> DigitalIn pin for the button switch
mjr 55:4db125cd11a0 564 // byte 5 -> DigitalOut pin for the indicator lamp
mjr 55:4db125cd11a0 565 //
mjr 55:4db125cd11a0 566 // Note that setting a pin to NC (Not Connected) will disable it even if the
mjr 55:4db125cd11a0 567 // corresponding feature enable bit (in byte 3) is set.
mjr 35:e959ffba78fd 568 //
mjr 55:4db125cd11a0 569 // 8 -> ZB Launch Ball setup. This configures the ZB Launch Ball feature.
mjr 55:4db125cd11a0 570 //
mjr 55:4db125cd11a0 571 // byte 3 -> LedWiz port number (1-255) mapped to "ZB Launch Ball" in DOF
mjr 55:4db125cd11a0 572 // byte 4 -> key type
mjr 55:4db125cd11a0 573 // byte 5 -> key code
mjr 55:4db125cd11a0 574 // bytes 6:7 -> "push" distance, in 1/1000 inch increments (16 bit little endian)
mjr 55:4db125cd11a0 575 //
mjr 55:4db125cd11a0 576 // Set the port number to 0 to disable the feature. The key type and key code
mjr 55:4db125cd11a0 577 // fields use the same conventions as for a button mapping (see below). The
mjr 55:4db125cd11a0 578 // recommended push distance is 63, which represents .063" ~ 1/16".
mjr 35:e959ffba78fd 579 //
mjr 35:e959ffba78fd 580 // 9 -> TV ON relay setup. This requires external circuitry implemented on the
mjr 35:e959ffba78fd 581 // Expansion Board (or an equivalent circuit as described in the Build Guide).
mjr 55:4db125cd11a0 582 //
mjr 55:4db125cd11a0 583 // byte 3 -> "power status" input pin (DigitalIn)
mjr 55:4db125cd11a0 584 // byte 4 -> "latch" output (DigitalOut)
mjr 55:4db125cd11a0 585 // byte 5 -> relay trigger output (DigitalOut)
mjr 55:4db125cd11a0 586 // bytes 6:7 -> delay time in 10ms increments (16 bit little endian);
mjr 55:4db125cd11a0 587 // e.g., 550 (0x26 0x02) represents 5.5 seconds
mjr 55:4db125cd11a0 588 //
mjr 55:4db125cd11a0 589 // Set the delay time to 0 to disable the feature. The pin assignments will
mjr 55:4db125cd11a0 590 // be ignored if the feature is disabled.
mjr 35:e959ffba78fd 591 //
mjr 35:e959ffba78fd 592 // 10 -> TLC5940NT setup. This chip is an external PWM controller, with 32 outputs
mjr 35:e959ffba78fd 593 // per chip and a serial data interface that allows the chips to be daisy-
mjr 35:e959ffba78fd 594 // chained. We can use these chips to add an arbitrary number of PWM output
mjr 55:4db125cd11a0 595 // ports for the LedWiz emulation.
mjr 55:4db125cd11a0 596 //
mjr 35:e959ffba78fd 597 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 598 // byte 4 = SIN pin - Serial data (must connect to SPIO MOSI -> PTC6 or PTD2)
mjr 35:e959ffba78fd 599 // byte 5 = SCLK pin - Serial clock (must connect to SPIO SCLK -> PTC5 or PTD1)
mjr 35:e959ffba78fd 600 // byte 6 = XLAT pin - XLAT (latch) signal (any GPIO pin)
mjr 35:e959ffba78fd 601 // byte 7 = BLANK pin - BLANK signal (any GPIO pin)
mjr 35:e959ffba78fd 602 // byte 8 = GSCLK pin - Grayscale clock signal (must be a PWM-out capable pin)
mjr 35:e959ffba78fd 603 //
mjr 55:4db125cd11a0 604 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 605 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 606 //
mjr 35:e959ffba78fd 607 // 11 -> 74HC595 setup. This chip is an external shift register, with 8 outputs per
mjr 35:e959ffba78fd 608 // chip and a serial data interface that allows daisy-chaining. We use this
mjr 35:e959ffba78fd 609 // chips to add extra digital outputs for the LedWiz emulation. In particular,
mjr 35:e959ffba78fd 610 // the Chime Board (part of the Expansion Board suite) uses these to add timer-
mjr 55:4db125cd11a0 611 // protected outputs for coil devices (knockers, chimes, bells, etc).
mjr 55:4db125cd11a0 612 //
mjr 35:e959ffba78fd 613 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 614 // byte 4 = SIN pin - Serial data (any GPIO pin)
mjr 35:e959ffba78fd 615 // byte 5 = SCLK pin - Serial clock (any GPIO pin)
mjr 35:e959ffba78fd 616 // byte 6 = LATCH pin - LATCH signal (any GPIO pin)
mjr 35:e959ffba78fd 617 // byte 7 = ENA pin - ENABLE signal (any GPIO pin)
mjr 35:e959ffba78fd 618 //
mjr 55:4db125cd11a0 619 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 620 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 621 //
mjr 53:9b2611964afc 622 // 12 -> Disconnect reboot timeout. The reboot timeout allows the controller software
mjr 51:57eb311faafa 623 // to automatically reboot the KL25Z after it detects that the USB connection is
mjr 51:57eb311faafa 624 // broken. On some hosts, the device isn't able to reconnect after the initial
mjr 51:57eb311faafa 625 // connection is lost. The reboot timeout is a workaround for these cases. When
mjr 51:57eb311faafa 626 // the software detects that the connection is no longer active, it will reboot
mjr 51:57eb311faafa 627 // the KL25Z automatically if a new connection isn't established within the
mjr 55:4db125cd11a0 628 // timeout period. Set the timeout to 0 to disable the feature (i.e., the device
mjr 55:4db125cd11a0 629 // will never automatically reboot itself on a broken connection).
mjr 55:4db125cd11a0 630 //
mjr 55:4db125cd11a0 631 // byte 3 -> reboot timeout in seconds; 0 = disabled
mjr 51:57eb311faafa 632 //
mjr 53:9b2611964afc 633 // 13 -> Plunger calibration. In most cases, the calibration is set internally by the
mjr 52:8298b2a73eb2 634 // device by running the calibration procedure. However, it's sometimes useful
mjr 52:8298b2a73eb2 635 // for the host to be able to get and set the calibration, such as to back up
mjr 52:8298b2a73eb2 636 // the device settings on the PC, or to save and restore the current settings
mjr 52:8298b2a73eb2 637 // when installing a software update.
mjr 52:8298b2a73eb2 638 //
mjr 52:8298b2a73eb2 639 // bytes 3:4 = rest position (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 640 // bytes 5:6 = maximum retraction point (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 641 // byte 7 = measured plunger release travel time in milliseconds
mjr 52:8298b2a73eb2 642 //
mjr 53:9b2611964afc 643 // 14 -> Expansion board configuration. This doesn't affect the controller behavior
mjr 52:8298b2a73eb2 644 // directly; the individual options related to the expansion boards (such as
mjr 52:8298b2a73eb2 645 // the TLC5940 and 74HC595 setup) still need to be set separately. This is
mjr 52:8298b2a73eb2 646 // stored so that the PC config UI can store and recover the information to
mjr 52:8298b2a73eb2 647 // present in the UI. For the "classic" KL25Z-only configuration, simply set
mjr 52:8298b2a73eb2 648 // all of the fields to zero.
mjr 52:8298b2a73eb2 649 //
mjr 53:9b2611964afc 650 // byte 3 = board set type. At the moment, the Pinscape expansion boards
mjr 53:9b2611964afc 651 // are the only ones supported in the software. This allows for
mjr 53:9b2611964afc 652 // adding new designs or independent designs in the future.
mjr 53:9b2611964afc 653 // 0 = Standalone KL25Z (no expansion boards)
mjr 53:9b2611964afc 654 // 1 = Pinscape expansion boards
mjr 53:9b2611964afc 655 //
mjr 53:9b2611964afc 656 // byte 4 = board set interface revision. This *isn't* the version number
mjr 53:9b2611964afc 657 // of the board itself, but rather of its software interface. In
mjr 53:9b2611964afc 658 // other words, this doesn't change every time the EAGLE layout
mjr 53:9b2611964afc 659 // for the board changes. It only changes when a revision is made
mjr 53:9b2611964afc 660 // that affects the software, such as a GPIO pin assignment.
mjr 53:9b2611964afc 661 //
mjr 55:4db125cd11a0 662 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 663 // 0 = first release (Feb 2016)
mjr 53:9b2611964afc 664 //
mjr 55:4db125cd11a0 665 // bytes 5:8 = additional hardware-specific data. These slots are used
mjr 55:4db125cd11a0 666 // to store extra data specific to the expansion boards selected.
mjr 55:4db125cd11a0 667 //
mjr 55:4db125cd11a0 668 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 669 // byte 5 = number of main interface boards
mjr 55:4db125cd11a0 670 // byte 6 = number of MOSFET power boards
mjr 55:4db125cd11a0 671 // byte 7 = number of chime boards
mjr 53:9b2611964afc 672 //
mjr 53:9b2611964afc 673 // 15 -> Night mode setup.
mjr 53:9b2611964afc 674 //
mjr 53:9b2611964afc 675 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none. This selects
mjr 53:9b2611964afc 676 // a physically wired button that can be used to control night mode.
mjr 53:9b2611964afc 677 // The button can also be used as normal for PC input if desired.
mjr 55:4db125cd11a0 678 // Note that night mode can still be activated via a USB command
mjr 55:4db125cd11a0 679 // even if no button is assigned.
mjr 55:4db125cd11a0 680 //
mjr 53:9b2611964afc 681 // byte 4 = flags:
mjr 53:9b2611964afc 682 // 0x01 -> the wired input is an on/off switch; night mode will be
mjr 53:9b2611964afc 683 // active when the input is switched on. If this bit isn't
mjr 53:9b2611964afc 684 // set, the input is a momentary button; pushing the button
mjr 53:9b2611964afc 685 // toggles night mode.
mjr 55:4db125cd11a0 686 //
mjr 53:9b2611964afc 687 // byte 5 = indicator output number - 1..MAX_OUT_PORTS, or 0 for none. This
mjr 53:9b2611964afc 688 // selects an output port that will be turned on when night mode is
mjr 53:9b2611964afc 689 // activated. Night mode activation overrides any setting made by
mjr 53:9b2611964afc 690 // the host.
mjr 53:9b2611964afc 691 //
mjr 53:9b2611964afc 692 //
mjr 53:9b2611964afc 693 // ARRAY VARIABLES: Each variable below is an array. For each get/set message,
mjr 53:9b2611964afc 694 // byte 3 gives the array index. These are grouped at the top end of the variable
mjr 53:9b2611964afc 695 // ID range to distinguish this special feature. On QUERY, set the index byte to 0
mjr 53:9b2611964afc 696 // to query the number of slots; the reply will be a report for the array index
mjr 53:9b2611964afc 697 // variable with index 0, with the first (and only) byte after that indicating
mjr 53:9b2611964afc 698 // the maximum array index.
mjr 53:9b2611964afc 699 //
mjr 53:9b2611964afc 700 // 254 -> Input button setup. This sets up one button; it can be repeated for each
mjr 64:ef7ca92dff36 701 // button to be configured. There are MAX_EXT_BUTTONS button slots (see
mjr 64:ef7ca92dff36 702 // config.h for the constant definition), numbered 1..MAX_EXT_BUTTONS. Each
mjr 53:9b2611964afc 703 // slot can be configured as a joystick button, a regular keyboard key, or a
mjr 53:9b2611964afc 704 // media control key (mute, volume up, volume down).
mjr 53:9b2611964afc 705 //
mjr 53:9b2611964afc 706 // The bytes of the message are:
mjr 64:ef7ca92dff36 707 // byte 3 = Button number (1..MAX_EXT_BUTTONS)
mjr 64:ef7ca92dff36 708 // byte 4 = GPIO pin for the button input; mapped as a DigitalIn port
mjr 53:9b2611964afc 709 // byte 5 = key type reported to PC when button is pushed:
mjr 53:9b2611964afc 710 // 0 = none (no PC input reported when button pushed)
mjr 53:9b2611964afc 711 // 1 = joystick button -> byte 6 is the button number, 1-32
mjr 53:9b2611964afc 712 // 2 = regular keyboard key -> byte 6 is the USB key code (see below)
mjr 53:9b2611964afc 713 // byte 6 = key code, which depends on the key type in byte 5
mjr 53:9b2611964afc 714 // byte 7 = flags - a combination of these bit values:
mjr 53:9b2611964afc 715 // 0x01 = pulse mode. This reports a physical on/off switch's state
mjr 53:9b2611964afc 716 // to the host as a brief key press whenever the switch changes
mjr 53:9b2611964afc 717 // state. This is useful for the VPinMAME Coin Door button,
mjr 53:9b2611964afc 718 // which requires the End key to be pressed each time the
mjr 53:9b2611964afc 719 // door changes state.
mjr 53:9b2611964afc 720 //
mjr 53:9b2611964afc 721 // 255 -> LedWiz output port setup. This sets up one output port; it can be repeated
mjr 53:9b2611964afc 722 // for each port to be configured. There are 128 possible slots for output ports,
mjr 53:9b2611964afc 723 // numbered 1 to 128. The number of ports atcually active is determined by
mjr 53:9b2611964afc 724 // the first DISABLED port (type 0). For example, if ports 1-32 are set as GPIO
mjr 53:9b2611964afc 725 // outputs and port 33 is disabled, we'll report to the host that we have 32 ports,
mjr 53:9b2611964afc 726 // regardless of the settings for post 34 and higher.
mjr 53:9b2611964afc 727 //
mjr 53:9b2611964afc 728 // The bytes of the message are:
mjr 53:9b2611964afc 729 // byte 3 = LedWiz port number (1 to MAX_OUT_PORTS)
mjr 53:9b2611964afc 730 // byte 4 = physical output type:
mjr 53:9b2611964afc 731 // 0 = Disabled. This output isn't used, and isn't visible to the
mjr 53:9b2611964afc 732 // LedWiz/DOF software on the host. The FIRST disabled port
mjr 53:9b2611964afc 733 // determines the number of ports visible to the host - ALL ports
mjr 53:9b2611964afc 734 // after the first disabled port are also implicitly disabled.
mjr 53:9b2611964afc 735 // 1 = GPIO PWM output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 736 // operating in PWM mode. Note that only a subset of KL25Z GPIO
mjr 53:9b2611964afc 737 // ports are PWM-capable.
mjr 53:9b2611964afc 738 // 2 = GPIO Digital output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 739 // operating in digital mode. Digital ports can only be set ON
mjr 53:9b2611964afc 740 // or OFF, with no brightness/intensity control. All pins can be
mjr 53:9b2611964afc 741 // used in this mode.
mjr 53:9b2611964afc 742 // 3 = TLC5940 port: connected to TLC5940 output port number specified
mjr 53:9b2611964afc 743 // in byte 5. Ports are numbered sequentially starting from port 0
mjr 53:9b2611964afc 744 // for the first output (OUT0) on the first chip in the daisy chain.
mjr 53:9b2611964afc 745 // 4 = 74HC595 port: connected to 74HC595 output port specified in byte 5.
mjr 53:9b2611964afc 746 // As with the TLC5940 outputs, ports are numbered sequentially from 0
mjr 53:9b2611964afc 747 // for the first output on the first chip in the daisy chain.
mjr 53:9b2611964afc 748 // 5 = Virtual output: this output port exists for the purposes of the
mjr 53:9b2611964afc 749 // LedWiz/DOF software on the host, but isn't physically connected
mjr 53:9b2611964afc 750 // to any output device. This can be used to create a virtual output
mjr 53:9b2611964afc 751 // for the DOF ZB Launch Ball signal, for example, or simply as a
mjr 53:9b2611964afc 752 // placeholder in the LedWiz port numbering. The physical output ID
mjr 53:9b2611964afc 753 // (byte 5) is ignored for this port type.
mjr 53:9b2611964afc 754 // byte 5 = physical output port, interpreted according to the value in byte 4
mjr 53:9b2611964afc 755 // byte 6 = flags: a combination of these bit values:
mjr 53:9b2611964afc 756 // 0x01 = active-high output (0V on output turns attached device ON)
mjr 53:9b2611964afc 757 // 0x02 = noisemaker device: disable this output when "night mode" is engaged
mjr 53:9b2611964afc 758 // 0x04 = apply gamma correction to this output
mjr 53:9b2611964afc 759 //
mjr 53:9b2611964afc 760 // Note that the on-board LED segments can be used as LedWiz output ports. This
mjr 53:9b2611964afc 761 // is useful for testing a new installation with DOF or other PC software without
mjr 53:9b2611964afc 762 // having to connect any external devices. Assigning the on-board LED segments to
mjr 53:9b2611964afc 763 // output ports overrides their normal status/diagnostic display use, so the normal
mjr 53:9b2611964afc 764 // status flash pattern won't appear when they're used this way.
mjr 52:8298b2a73eb2 765 //
mjr 35:e959ffba78fd 766
mjr 35:e959ffba78fd 767
mjr 55:4db125cd11a0 768 // --- GPIO PIN NUMBER MAPPINGS ---
mjr 35:e959ffba78fd 769 //
mjr 53:9b2611964afc 770 // In USB messages that specify GPIO pin assignments, pins are identified by
mjr 53:9b2611964afc 771 // 8-bit integers. The special value 0xFF means NC (not connected). All actual
mjr 53:9b2611964afc 772 // pins are mapped with the port number in the top 3 bits and the pin number in
mjr 53:9b2611964afc 773 // the bottom 5 bits. Port A=0, B=1, ..., E=4. For example, PTC7 is port C (2)
mjr 53:9b2611964afc 774 // pin 7, so it's represented as (2 << 5) | 7.
mjr 53:9b2611964afc 775
mjr 35:e959ffba78fd 776
mjr 35:e959ffba78fd 777 // --- USB KEYBOARD SCAN CODES ---
mjr 35:e959ffba78fd 778 //
mjr 53:9b2611964afc 779 // For regular keyboard keys, we use the standard USB HID scan codes
mjr 53:9b2611964afc 780 // for the US keyboard layout. The scan codes are defined by the USB
mjr 53:9b2611964afc 781 // HID specifications; you can find a full list in the official USB
mjr 53:9b2611964afc 782 // specs. Some common codes are listed below as a quick reference.
mjr 35:e959ffba78fd 783 //
mjr 53:9b2611964afc 784 // Key name -> USB scan code (hex)
mjr 53:9b2611964afc 785 // A-Z -> 04-1D
mjr 53:9b2611964afc 786 // top row 1!->0) -> 1E-27
mjr 53:9b2611964afc 787 // Return -> 28
mjr 53:9b2611964afc 788 // Escape -> 29
mjr 53:9b2611964afc 789 // Backspace -> 2A
mjr 53:9b2611964afc 790 // Tab -> 2B
mjr 53:9b2611964afc 791 // Spacebar -> 2C
mjr 53:9b2611964afc 792 // -_ -> 2D
mjr 53:9b2611964afc 793 // =+ -> 2E
mjr 53:9b2611964afc 794 // [{ -> 2F
mjr 53:9b2611964afc 795 // ]} -> 30
mjr 53:9b2611964afc 796 // \| -> 31
mjr 53:9b2611964afc 797 // ;: -> 33
mjr 53:9b2611964afc 798 // '" -> 34
mjr 53:9b2611964afc 799 // `~ -> 35
mjr 53:9b2611964afc 800 // ,< -> 36
mjr 53:9b2611964afc 801 // .> -> 37
mjr 53:9b2611964afc 802 // /? -> 38
mjr 53:9b2611964afc 803 // Caps Lock -> 39
mjr 53:9b2611964afc 804 // F1-F12 -> 3A-45
mjr 53:9b2611964afc 805 // F13-F24 -> 68-73
mjr 53:9b2611964afc 806 // Print Screen -> 46
mjr 53:9b2611964afc 807 // Scroll Lock -> 47
mjr 53:9b2611964afc 808 // Pause -> 48
mjr 53:9b2611964afc 809 // Insert -> 49
mjr 53:9b2611964afc 810 // Home -> 4A
mjr 53:9b2611964afc 811 // Page Up -> 4B
mjr 53:9b2611964afc 812 // Del -> 4C
mjr 53:9b2611964afc 813 // End -> 4D
mjr 53:9b2611964afc 814 // Page Down -> 4E
mjr 53:9b2611964afc 815 // Right Arrow -> 4F
mjr 53:9b2611964afc 816 // Left Arrow -> 50
mjr 53:9b2611964afc 817 // Down Arrow -> 51
mjr 53:9b2611964afc 818 // Up Arrow -> 52
mjr 53:9b2611964afc 819 // Num Lock/Clear -> 53
mjr 53:9b2611964afc 820 // Keypad / * - + -> 54 55 56 57
mjr 53:9b2611964afc 821 // Keypad Enter -> 58
mjr 53:9b2611964afc 822 // Keypad 1-9 -> 59-61
mjr 53:9b2611964afc 823 // Keypad 0 -> 62
mjr 53:9b2611964afc 824 // Keypad . -> 63
mjr 53:9b2611964afc 825 // Mute -> 7F
mjr 53:9b2611964afc 826 // Volume Up -> 80
mjr 53:9b2611964afc 827 // Volume Down -> 81
mjr 53:9b2611964afc 828 // Left Control -> E0
mjr 53:9b2611964afc 829 // Left Shift -> E1
mjr 53:9b2611964afc 830 // Left Alt -> E2
mjr 53:9b2611964afc 831 // Left GUI -> E3
mjr 53:9b2611964afc 832 // Right Control -> E4
mjr 53:9b2611964afc 833 // Right Shift -> E5
mjr 53:9b2611964afc 834 // Right Alt -> E6
mjr 53:9b2611964afc 835 // Right GUI -> E7
mjr 53:9b2611964afc 836 //
mjr 53:9b2611964afc 837 // Note that the Mute and Volume Up & Down keys are sent to the host as
mjr 53:9b2611964afc 838 // media control keys rather than regular keyboard keys.
mjr 35:e959ffba78fd 839