An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Mon Feb 03 22:09:37 2020 +0000
Revision:
107:8f3c7aeae7e0
Parent:
106:e9e3b46132c1
Child:
109:310ac82cbbee
Add two pins I missed for the diagnostic LED checks (plunger calibration button and LED pins)

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 99:8139b0c274f4 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 100:1ff35c07217c 262 #include "rotarySensor.h"
mjr 100:1ff35c07217c 263 #include "tcd1103Sensor.h"
mjr 82:4f6209cb5c33 264
mjr 2:c174f9ee414a 265
mjr 21:5048e16cc9ef 266 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 267 #include "config.h"
mjr 17:ab3cec0c8bf4 268
mjr 53:9b2611964afc 269
mjr 53:9b2611964afc 270 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 273 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 274 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 275 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 276 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 277 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 278 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 279 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 280 // interface.
mjr 53:9b2611964afc 281 //
mjr 53:9b2611964afc 282 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 283 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 284 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 285 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 286 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 287 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 288 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 289 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 292 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 293 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 294 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 295 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 296 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 297 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 298 //
mjr 53:9b2611964afc 299 const char *getOpenSDAID()
mjr 53:9b2611964afc 300 {
mjr 53:9b2611964afc 301 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 302 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 303 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 304
mjr 53:9b2611964afc 305 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 306 }
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 309 //
mjr 53:9b2611964afc 310 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 311 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 312 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 313 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 314 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 315 // want from this.
mjr 53:9b2611964afc 316 //
mjr 53:9b2611964afc 317 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 318 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 319 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 320 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 321 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 322 // macros.
mjr 53:9b2611964afc 323 //
mjr 53:9b2611964afc 324 const char *getBuildID()
mjr 53:9b2611964afc 325 {
mjr 53:9b2611964afc 326 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 327 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 328 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 329
mjr 53:9b2611964afc 330 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 331 }
mjr 53:9b2611964afc 332
mjr 74:822a92bc11d2 333 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 334 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 335 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 336 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 337 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 338 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 339 Timer mainLoopTimer;
mjr 76:7f5912b6340e 340 #endif
mjr 76:7f5912b6340e 341
mjr 53:9b2611964afc 342
mjr 5:a70c0bce770d 343 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 344 //
mjr 38:091e511ce8a0 345 // Forward declarations
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 void setNightMode(bool on);
mjr 38:091e511ce8a0 348 void toggleNightMode();
mjr 38:091e511ce8a0 349
mjr 38:091e511ce8a0 350 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 351 // utilities
mjr 17:ab3cec0c8bf4 352
mjr 77:0b96f6867312 353 // int/float point square of a number
mjr 77:0b96f6867312 354 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 355 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 356
mjr 26:cb71c4af2912 357 // floating point rounding
mjr 26:cb71c4af2912 358 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 359
mjr 17:ab3cec0c8bf4 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 40:cc0d9814522b 363 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 364 // the running state.
mjr 40:cc0d9814522b 365 //
mjr 77:0b96f6867312 366 class ExtTimer: public Timer
mjr 40:cc0d9814522b 367 {
mjr 40:cc0d9814522b 368 public:
mjr 77:0b96f6867312 369 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 370
mjr 40:cc0d9814522b 371 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 372 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 373
mjr 40:cc0d9814522b 374 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 private:
mjr 40:cc0d9814522b 377 bool running;
mjr 40:cc0d9814522b 378 };
mjr 40:cc0d9814522b 379
mjr 53:9b2611964afc 380
mjr 53:9b2611964afc 381 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 382 //
mjr 33:d832bcab089e 383 // USB product version number
mjr 5:a70c0bce770d 384 //
mjr 47:df7a88cd249c 385 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 386
mjr 33:d832bcab089e 387 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 388 //
mjr 6:cc35eb643e8f 389 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 #define JOYMAX 4096
mjr 6:cc35eb643e8f 392
mjr 9:fd65b0a94720 393
mjr 17:ab3cec0c8bf4 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 //
mjr 40:cc0d9814522b 396 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 397 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 398 //
mjr 35:e959ffba78fd 399
mjr 35:e959ffba78fd 400 // unsigned 16-bit integer
mjr 35:e959ffba78fd 401 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 402 {
mjr 35:e959ffba78fd 403 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 404 }
mjr 40:cc0d9814522b 405 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 406 {
mjr 40:cc0d9814522b 407 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 408 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 409 }
mjr 35:e959ffba78fd 410
mjr 35:e959ffba78fd 411 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 412 {
mjr 35:e959ffba78fd 413 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 414 }
mjr 40:cc0d9814522b 415 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 416 {
mjr 40:cc0d9814522b 417 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 418 }
mjr 35:e959ffba78fd 419
mjr 35:e959ffba78fd 420 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 423 }
mjr 40:cc0d9814522b 424 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 425 {
mjr 40:cc0d9814522b 426 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 427 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 428 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 429 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 430 }
mjr 35:e959ffba78fd 431
mjr 35:e959ffba78fd 432 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 433 {
mjr 35:e959ffba78fd 434 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 435 }
mjr 35:e959ffba78fd 436
mjr 53:9b2611964afc 437 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 438 //
mjr 53:9b2611964afc 439 // The internal mbed PinName format is
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 444 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 445 //
mjr 53:9b2611964afc 446 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 447 // pin name fits in 8 bits:
mjr 53:9b2611964afc 448 //
mjr 53:9b2611964afc 449 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 456 {
mjr 53:9b2611964afc 457 if (c == 0xFF)
mjr 53:9b2611964afc 458 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 459 else
mjr 53:9b2611964afc 460 return PinName(
mjr 53:9b2611964afc 461 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 462 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 463 }
mjr 40:cc0d9814522b 464 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 465 {
mjr 53:9b2611964afc 466 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 467 }
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469
mjr 35:e959ffba78fd 470 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 471 //
mjr 38:091e511ce8a0 472 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 473 //
mjr 38:091e511ce8a0 474 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 475 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 476 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 477 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 478 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 479 // SPI capability.
mjr 38:091e511ce8a0 480 //
mjr 38:091e511ce8a0 481 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 482
mjr 73:4e8ce0b18915 483 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 484 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 485 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 486 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 487
mjr 38:091e511ce8a0 488 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 489 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 490 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 491 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 492 {
mjr 73:4e8ce0b18915 493 // remember the new state
mjr 73:4e8ce0b18915 494 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 495
mjr 73:4e8ce0b18915 496 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 497 // applying it to the blue LED
mjr 73:4e8ce0b18915 498 if (diagLEDState == 0)
mjr 77:0b96f6867312 499 {
mjr 77:0b96f6867312 500 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 501 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 502 }
mjr 73:4e8ce0b18915 503
mjr 73:4e8ce0b18915 504 // set the new state
mjr 38:091e511ce8a0 505 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 506 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 507 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 508 }
mjr 38:091e511ce8a0 509
mjr 73:4e8ce0b18915 510 // update the LEDs with the current state
mjr 73:4e8ce0b18915 511 void diagLED(void)
mjr 73:4e8ce0b18915 512 {
mjr 73:4e8ce0b18915 513 diagLED(
mjr 73:4e8ce0b18915 514 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 515 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 516 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 517 }
mjr 73:4e8ce0b18915 518
mjr 106:e9e3b46132c1 519 // check an output port or pin assignment to see if it conflicts with
mjr 38:091e511ce8a0 520 // an on-board LED segment
mjr 38:091e511ce8a0 521 struct LedSeg
mjr 38:091e511ce8a0 522 {
mjr 38:091e511ce8a0 523 bool r, g, b;
mjr 38:091e511ce8a0 524 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 525
mjr 106:e9e3b46132c1 526 // check an output port to see if it conflicts with one of the LED ports
mjr 38:091e511ce8a0 527 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 528 {
mjr 38:091e511ce8a0 529 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 530 // our on-board LED segments
mjr 38:091e511ce8a0 531 int t = pc.typ;
mjr 38:091e511ce8a0 532 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 106:e9e3b46132c1 533 check(pc.pin);
mjr 106:e9e3b46132c1 534 }
mjr 106:e9e3b46132c1 535
mjr 106:e9e3b46132c1 536 // check a pin to see if it conflicts with one of the diagnostic LED ports
mjr 106:e9e3b46132c1 537 void check(uint8_t pinId)
mjr 106:e9e3b46132c1 538 {
mjr 106:e9e3b46132c1 539 PinName pin = wirePinName(pinId);
mjr 106:e9e3b46132c1 540 if (pin == LED1)
mjr 106:e9e3b46132c1 541 r = true;
mjr 106:e9e3b46132c1 542 else if (pin == LED2)
mjr 106:e9e3b46132c1 543 g = true;
mjr 106:e9e3b46132c1 544 else if (pin == LED3)
mjr 106:e9e3b46132c1 545 b = true;
mjr 38:091e511ce8a0 546 }
mjr 38:091e511ce8a0 547 };
mjr 38:091e511ce8a0 548
mjr 38:091e511ce8a0 549 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 550 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 551 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 552 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 553 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 554 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 555 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 556 {
mjr 38:091e511ce8a0 557 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 558 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 559 LedSeg l;
mjr 38:091e511ce8a0 560 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 561 l.check(cfg.outPort[i]);
mjr 106:e9e3b46132c1 562
mjr 106:e9e3b46132c1 563 // check the button inputs
mjr 106:e9e3b46132c1 564 for (int i = 0 ; i < countof(cfg.button) ; ++i)
mjr 106:e9e3b46132c1 565 l.check(cfg.button[i].pin);
mjr 106:e9e3b46132c1 566
mjr 106:e9e3b46132c1 567 // check plunger inputs
mjr 106:e9e3b46132c1 568 if (cfg.plunger.enabled && cfg.plunger.sensorType != PlungerType_None)
mjr 106:e9e3b46132c1 569 {
mjr 106:e9e3b46132c1 570 for (int i = 0 ; i < countof(cfg.plunger.sensorPin) ; ++i)
mjr 106:e9e3b46132c1 571 l.check(cfg.plunger.sensorPin[i]);
mjr 107:8f3c7aeae7e0 572
mjr 107:8f3c7aeae7e0 573 l.check(cfg.plunger.cal.btn);
mjr 107:8f3c7aeae7e0 574 l.check(cfg.plunger.cal.led);
mjr 106:e9e3b46132c1 575 }
mjr 106:e9e3b46132c1 576
mjr 106:e9e3b46132c1 577 // check the TV ON pin assignments
mjr 106:e9e3b46132c1 578 l.check(cfg.TVON.statusPin);
mjr 106:e9e3b46132c1 579 l.check(cfg.TVON.latchPin);
mjr 106:e9e3b46132c1 580 l.check(cfg.TVON.relayPin);
mjr 106:e9e3b46132c1 581
mjr 106:e9e3b46132c1 582 // check the TLC5940 pins
mjr 106:e9e3b46132c1 583 if (cfg.tlc5940.nchips != 0)
mjr 106:e9e3b46132c1 584 {
mjr 106:e9e3b46132c1 585 l.check(cfg.tlc5940.sin);
mjr 106:e9e3b46132c1 586 l.check(cfg.tlc5940.sclk);
mjr 106:e9e3b46132c1 587 l.check(cfg.tlc5940.xlat);
mjr 106:e9e3b46132c1 588 l.check(cfg.tlc5940.blank);
mjr 106:e9e3b46132c1 589 l.check(cfg.tlc5940.gsclk);
mjr 106:e9e3b46132c1 590 }
mjr 106:e9e3b46132c1 591
mjr 106:e9e3b46132c1 592 // check 74HC595 pin assignments
mjr 106:e9e3b46132c1 593 if (cfg.hc595.nchips != 0)
mjr 106:e9e3b46132c1 594 {
mjr 106:e9e3b46132c1 595 l.check(cfg.hc595.sin);
mjr 106:e9e3b46132c1 596 l.check(cfg.hc595.sclk);
mjr 106:e9e3b46132c1 597 l.check(cfg.hc595.latch);
mjr 106:e9e3b46132c1 598 l.check(cfg.hc595.ena);
mjr 106:e9e3b46132c1 599 }
mjr 106:e9e3b46132c1 600
mjr 106:e9e3b46132c1 601 // check TLC59116 pin assignments
mjr 106:e9e3b46132c1 602 if (cfg.tlc59116.chipMask != 0)
mjr 106:e9e3b46132c1 603 {
mjr 106:e9e3b46132c1 604 l.check(cfg.tlc59116.sda);
mjr 106:e9e3b46132c1 605 l.check(cfg.tlc59116.scl);
mjr 106:e9e3b46132c1 606 l.check(cfg.tlc59116.reset);
mjr 106:e9e3b46132c1 607 }
mjr 106:e9e3b46132c1 608
mjr 106:e9e3b46132c1 609 // check the IR remove control hardware
mjr 106:e9e3b46132c1 610 l.check(cfg.IR.sensor);
mjr 106:e9e3b46132c1 611 l.check(cfg.IR.emitter);
mjr 106:e9e3b46132c1 612
mjr 106:e9e3b46132c1 613 // We now know which segments are taken for other uses and which
mjr 38:091e511ce8a0 614 // are free. Create diagnostic ports for the ones not claimed for
mjr 106:e9e3b46132c1 615 // other purposes.
mjr 38:091e511ce8a0 616 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 617 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 618 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 619 }
mjr 38:091e511ce8a0 620
mjr 38:091e511ce8a0 621
mjr 38:091e511ce8a0 622 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 623 //
mjr 76:7f5912b6340e 624 // LedWiz emulation
mjr 76:7f5912b6340e 625 //
mjr 76:7f5912b6340e 626
mjr 76:7f5912b6340e 627 // LedWiz output states.
mjr 76:7f5912b6340e 628 //
mjr 76:7f5912b6340e 629 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 630 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 631 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 632 // The two axes are independent.
mjr 76:7f5912b6340e 633 //
mjr 76:7f5912b6340e 634 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 635 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 636 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 637 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 638 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 639 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 640 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 641 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 642
mjr 76:7f5912b6340e 643 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 644 static uint8_t *wizOn;
mjr 76:7f5912b6340e 645
mjr 76:7f5912b6340e 646 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 647 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 648 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 649 //
mjr 76:7f5912b6340e 650 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 651 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 652 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 653 // 130 = flash on / off
mjr 76:7f5912b6340e 654 // 131 = on / ramp down
mjr 76:7f5912b6340e 655 // 132 = ramp up / on
mjr 5:a70c0bce770d 656 //
mjr 76:7f5912b6340e 657 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 658 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 659 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 660 static uint8_t *wizVal;
mjr 76:7f5912b6340e 661
mjr 76:7f5912b6340e 662 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 663 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 664 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 665 // by the extended protocol:
mjr 76:7f5912b6340e 666 //
mjr 76:7f5912b6340e 667 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 668 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 669 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 670 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 671 // if the brightness is non-zero.
mjr 76:7f5912b6340e 672 //
mjr 76:7f5912b6340e 673 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 674 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 675 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 676 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 677 // 0..255 range.
mjr 26:cb71c4af2912 678 //
mjr 76:7f5912b6340e 679 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 680 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 681 // level.
mjr 26:cb71c4af2912 682 //
mjr 76:7f5912b6340e 683 static uint8_t *outLevel;
mjr 76:7f5912b6340e 684
mjr 76:7f5912b6340e 685
mjr 76:7f5912b6340e 686 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 687 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 688 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 689 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 690 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 691 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 692 //
mjr 76:7f5912b6340e 693 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 694 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 695 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 696 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 697 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 698 // at the maximum size.
mjr 76:7f5912b6340e 699 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 700 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 701
mjr 26:cb71c4af2912 702 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 703 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 704 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 705 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 706 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 707
mjr 76:7f5912b6340e 708
mjr 76:7f5912b6340e 709 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 710 //
mjr 76:7f5912b6340e 711 // Output Ports
mjr 76:7f5912b6340e 712 //
mjr 76:7f5912b6340e 713 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 714 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 715 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 716 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 717 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 718 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 719 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 720 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 721 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 722 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 723 // you have to ration pins among features.
mjr 76:7f5912b6340e 724 //
mjr 87:8d35c74403af 725 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 726 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 727 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 728 //
mjr 87:8d35c74403af 729 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 730 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 731 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 732 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 733 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 734 //
mjr 87:8d35c74403af 735 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 736 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 737 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 738 //
mjr 87:8d35c74403af 739 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 740 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 741 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 742 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 743 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 744 // for the chime board outputs.
mjr 76:7f5912b6340e 745 //
mjr 76:7f5912b6340e 746 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 747 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 748 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 749 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 750 //
mjr 76:7f5912b6340e 751 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 752 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 753 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 754 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 755 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 756 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 757 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 758 // of physical devices they're connected to.
mjr 76:7f5912b6340e 759
mjr 76:7f5912b6340e 760
mjr 26:cb71c4af2912 761 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 762 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 763 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 764 class LwOut
mjr 6:cc35eb643e8f 765 {
mjr 6:cc35eb643e8f 766 public:
mjr 40:cc0d9814522b 767 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 768 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 769 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 770 };
mjr 26:cb71c4af2912 771
mjr 35:e959ffba78fd 772 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 773 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 774 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 775 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 776 // numbering.
mjr 35:e959ffba78fd 777 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 778 {
mjr 33:d832bcab089e 779 public:
mjr 35:e959ffba78fd 780 LwVirtualOut() { }
mjr 40:cc0d9814522b 781 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 782 };
mjr 26:cb71c4af2912 783
mjr 34:6b981a2afab7 784 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 785 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 786 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 787 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 788 {
mjr 34:6b981a2afab7 789 public:
mjr 34:6b981a2afab7 790 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 791 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 792
mjr 34:6b981a2afab7 793 private:
mjr 53:9b2611964afc 794 // underlying physical output
mjr 34:6b981a2afab7 795 LwOut *out;
mjr 34:6b981a2afab7 796 };
mjr 34:6b981a2afab7 797
mjr 53:9b2611964afc 798 // Global ZB Launch Ball state
mjr 53:9b2611964afc 799 bool zbLaunchOn = false;
mjr 53:9b2611964afc 800
mjr 53:9b2611964afc 801 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 802 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 803 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 804 {
mjr 53:9b2611964afc 805 public:
mjr 53:9b2611964afc 806 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 807 virtual void set(uint8_t val)
mjr 53:9b2611964afc 808 {
mjr 53:9b2611964afc 809 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 810 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 811
mjr 53:9b2611964afc 812 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 813 out->set(val);
mjr 53:9b2611964afc 814 }
mjr 53:9b2611964afc 815
mjr 53:9b2611964afc 816 private:
mjr 53:9b2611964afc 817 // underlying physical or virtual output
mjr 53:9b2611964afc 818 LwOut *out;
mjr 53:9b2611964afc 819 };
mjr 53:9b2611964afc 820
mjr 53:9b2611964afc 821
mjr 40:cc0d9814522b 822 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 823 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 824 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 825 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 826 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 827 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 828 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 829 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 830 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 831 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 832 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 833 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 834 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 835 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 836 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 837 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 838 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 839 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 840 };
mjr 40:cc0d9814522b 841
mjr 40:cc0d9814522b 842 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 843 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 844 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 845 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 846 {
mjr 40:cc0d9814522b 847 public:
mjr 40:cc0d9814522b 848 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 849 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 850
mjr 40:cc0d9814522b 851 private:
mjr 40:cc0d9814522b 852 LwOut *out;
mjr 40:cc0d9814522b 853 };
mjr 40:cc0d9814522b 854
mjr 77:0b96f6867312 855 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 856 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 857 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 858 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 859
mjr 40:cc0d9814522b 860 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 861 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 862 // mode is engaged.
mjr 40:cc0d9814522b 863 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 864 {
mjr 40:cc0d9814522b 865 public:
mjr 40:cc0d9814522b 866 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 867 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 868
mjr 53:9b2611964afc 869 private:
mjr 53:9b2611964afc 870 LwOut *out;
mjr 53:9b2611964afc 871 };
mjr 53:9b2611964afc 872
mjr 53:9b2611964afc 873 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 874 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 875 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 876 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 877 {
mjr 53:9b2611964afc 878 public:
mjr 53:9b2611964afc 879 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 880 virtual void set(uint8_t)
mjr 53:9b2611964afc 881 {
mjr 53:9b2611964afc 882 // ignore the host value and simply show the current
mjr 53:9b2611964afc 883 // night mode setting
mjr 53:9b2611964afc 884 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 885 }
mjr 40:cc0d9814522b 886
mjr 40:cc0d9814522b 887 private:
mjr 40:cc0d9814522b 888 LwOut *out;
mjr 40:cc0d9814522b 889 };
mjr 40:cc0d9814522b 890
mjr 26:cb71c4af2912 891
mjr 89:c43cd923401c 892 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 893 // top of a physical pin output.
mjr 89:c43cd923401c 894 //
mjr 89:c43cd923401c 895 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 896 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 897 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 898 // level is ON.
mjr 89:c43cd923401c 899 //
mjr 89:c43cd923401c 900 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 901 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 902 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 903 //
mjr 89:c43cd923401c 904 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 905 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 906 // power and start a timer.
mjr 89:c43cd923401c 907 //
mjr 89:c43cd923401c 908 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 909 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 910 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 911 //
mjr 89:c43cd923401c 912 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 913 {
mjr 89:c43cd923401c 914 public:
mjr 89:c43cd923401c 915 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 916 // the configuration.
mjr 89:c43cd923401c 917 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 918 : out(o), params(params)
mjr 89:c43cd923401c 919 {
mjr 89:c43cd923401c 920 // initially OFF
mjr 89:c43cd923401c 921 state = 0;
mjr 89:c43cd923401c 922 }
mjr 89:c43cd923401c 923
mjr 89:c43cd923401c 924 virtual void set(uint8_t level)
mjr 89:c43cd923401c 925 {
mjr 98:4df3c0f7e707 926 // remember the new nominal level set by the client
mjr 89:c43cd923401c 927 val = level;
mjr 89:c43cd923401c 928
mjr 89:c43cd923401c 929 // update the physical output according to our current timing state
mjr 89:c43cd923401c 930 switch (state)
mjr 89:c43cd923401c 931 {
mjr 89:c43cd923401c 932 case 0:
mjr 89:c43cd923401c 933 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 934 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 935 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 936 // off, so there's no change.
mjr 89:c43cd923401c 937 if (level != 0)
mjr 89:c43cd923401c 938 {
mjr 89:c43cd923401c 939 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 940 state = 1;
mjr 89:c43cd923401c 941
mjr 89:c43cd923401c 942 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 943 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 944 // requested
mjr 89:c43cd923401c 945 out->set(level);
mjr 89:c43cd923401c 946
mjr 89:c43cd923401c 947 // add myself to the pending timer list
mjr 89:c43cd923401c 948 pending[nPending++] = this;
mjr 89:c43cd923401c 949
mjr 89:c43cd923401c 950 // note the starting time
mjr 89:c43cd923401c 951 t0 = timer.read_us();
mjr 89:c43cd923401c 952 }
mjr 89:c43cd923401c 953 break;
mjr 89:c43cd923401c 954
mjr 89:c43cd923401c 955 case 1:
mjr 89:c43cd923401c 956 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 957 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 958 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 959 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 960 out->set(level);
mjr 89:c43cd923401c 961 if (level == 0)
mjr 89:c43cd923401c 962 {
mjr 89:c43cd923401c 963 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 964 // so we need to remove it from the list.
mjr 89:c43cd923401c 965 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 966 {
mjr 89:c43cd923401c 967 // is this us?
mjr 89:c43cd923401c 968 if (pending[i] == this)
mjr 89:c43cd923401c 969 {
mjr 89:c43cd923401c 970 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 971 // last list entry
mjr 89:c43cd923401c 972 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 973
mjr 89:c43cd923401c 974 // no need to look any further
mjr 89:c43cd923401c 975 break;
mjr 89:c43cd923401c 976 }
mjr 89:c43cd923401c 977 }
mjr 89:c43cd923401c 978
mjr 89:c43cd923401c 979 // switch to state 0 (off)
mjr 89:c43cd923401c 980 state = 0;
mjr 89:c43cd923401c 981 }
mjr 89:c43cd923401c 982 break;
mjr 89:c43cd923401c 983
mjr 89:c43cd923401c 984 case 2:
mjr 89:c43cd923401c 985 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 986 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 987 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 988 // as the upper bound.
mjr 89:c43cd923401c 989 if (level == 0)
mjr 89:c43cd923401c 990 {
mjr 89:c43cd923401c 991 // switching off - turn off the physical output
mjr 89:c43cd923401c 992 out->set(0);
mjr 89:c43cd923401c 993
mjr 89:c43cd923401c 994 // go to state 0 (off)
mjr 89:c43cd923401c 995 state = 0;
mjr 89:c43cd923401c 996 }
mjr 89:c43cd923401c 997 else
mjr 89:c43cd923401c 998 {
mjr 89:c43cd923401c 999 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 1000 // lower of the requested power and the hold power
mjr 89:c43cd923401c 1001 uint8_t hold = holdPower();
mjr 89:c43cd923401c 1002 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 1003 }
mjr 89:c43cd923401c 1004 break;
mjr 89:c43cd923401c 1005 }
mjr 89:c43cd923401c 1006 }
mjr 89:c43cd923401c 1007
mjr 89:c43cd923401c 1008 // Class initialization
mjr 89:c43cd923401c 1009 static void classInit(Config &cfg)
mjr 89:c43cd923401c 1010 {
mjr 89:c43cd923401c 1011 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 1012 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 1013 // all of these outputs.
mjr 89:c43cd923401c 1014 int n = 0;
mjr 89:c43cd923401c 1015 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 1016 {
mjr 89:c43cd923401c 1017 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 1018 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 1019 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 1020 ++n;
mjr 89:c43cd923401c 1021 }
mjr 89:c43cd923401c 1022
mjr 89:c43cd923401c 1023 // allocate space for the pending timer list
mjr 89:c43cd923401c 1024 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 1025
mjr 89:c43cd923401c 1026 // there's nothing in the pending list yet
mjr 89:c43cd923401c 1027 nPending = 0;
mjr 89:c43cd923401c 1028
mjr 89:c43cd923401c 1029 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 1030 // use it to figure elapsed times.
mjr 89:c43cd923401c 1031 timer.start();
mjr 89:c43cd923401c 1032 }
mjr 89:c43cd923401c 1033
mjr 89:c43cd923401c 1034 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 1035 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 1036 static void poll()
mjr 89:c43cd923401c 1037 {
mjr 89:c43cd923401c 1038 // note the current time
mjr 89:c43cd923401c 1039 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 1040
mjr 89:c43cd923401c 1041 // go through the timer list
mjr 89:c43cd923401c 1042 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 1043 {
mjr 89:c43cd923401c 1044 // get the port
mjr 89:c43cd923401c 1045 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 1046
mjr 89:c43cd923401c 1047 // assume we'll keep it
mjr 89:c43cd923401c 1048 bool remove = false;
mjr 89:c43cd923401c 1049
mjr 89:c43cd923401c 1050 // check if the port is still on
mjr 89:c43cd923401c 1051 if (port->state != 0)
mjr 89:c43cd923401c 1052 {
mjr 89:c43cd923401c 1053 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1054 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1055 {
mjr 89:c43cd923401c 1056 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1057 port->state = 2;
mjr 89:c43cd923401c 1058
mjr 89:c43cd923401c 1059 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1060 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1061 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1062 uint8_t val = port->val;
mjr 89:c43cd923401c 1063 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1064
mjr 89:c43cd923401c 1065 // we're done with the timer
mjr 89:c43cd923401c 1066 remove = true;
mjr 89:c43cd923401c 1067 }
mjr 89:c43cd923401c 1068 }
mjr 89:c43cd923401c 1069 else
mjr 89:c43cd923401c 1070 {
mjr 89:c43cd923401c 1071 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1072 // it from the timer list
mjr 89:c43cd923401c 1073 remove = true;
mjr 89:c43cd923401c 1074 }
mjr 89:c43cd923401c 1075
mjr 89:c43cd923401c 1076 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1077 if (remove)
mjr 89:c43cd923401c 1078 {
mjr 89:c43cd923401c 1079 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1080 // the last entry in the list.
mjr 89:c43cd923401c 1081 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1082
mjr 89:c43cd923401c 1083 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1084 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1085 }
mjr 89:c43cd923401c 1086 else
mjr 89:c43cd923401c 1087 {
mjr 89:c43cd923401c 1088 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1089 ++i;
mjr 89:c43cd923401c 1090 }
mjr 89:c43cd923401c 1091 }
mjr 89:c43cd923401c 1092 }
mjr 89:c43cd923401c 1093
mjr 89:c43cd923401c 1094 protected:
mjr 89:c43cd923401c 1095 // underlying physical output
mjr 89:c43cd923401c 1096 LwOut *out;
mjr 89:c43cd923401c 1097
mjr 89:c43cd923401c 1098 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1099 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1100 uint32_t t0;
mjr 89:c43cd923401c 1101
mjr 89:c43cd923401c 1102 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1103 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1104 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1105 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1106 // if it's lower.
mjr 89:c43cd923401c 1107 uint8_t val;
mjr 89:c43cd923401c 1108
mjr 89:c43cd923401c 1109 // Current port state:
mjr 89:c43cd923401c 1110 //
mjr 89:c43cd923401c 1111 // 0 = off
mjr 89:c43cd923401c 1112 // 1 = on at initial full power
mjr 89:c43cd923401c 1113 // 2 = on at hold power
mjr 89:c43cd923401c 1114 uint8_t state;
mjr 89:c43cd923401c 1115
mjr 89:c43cd923401c 1116 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1117 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1118 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1119 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1120 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1121 uint8_t params;
mjr 89:c43cd923401c 1122
mjr 99:8139b0c274f4 1123 // Figure the initial full-power time in microseconds: 50ms * (1+N),
mjr 99:8139b0c274f4 1124 // where N is the high 4 bits of the parameter byte.
mjr 99:8139b0c274f4 1125 inline uint32_t fullPowerTime_us() const { return 50000*(1 + ((params >> 4) & 0x0F)); }
mjr 89:c43cd923401c 1126
mjr 89:c43cd923401c 1127 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1128 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1129
mjr 89:c43cd923401c 1130 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1131 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1132 // (which runs continuously).
mjr 89:c43cd923401c 1133 static Timer timer;
mjr 89:c43cd923401c 1134
mjr 89:c43cd923401c 1135 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 98:4df3c0f7e707 1136 // transitions from OFF to ON, we add it to this list. We scan the
mjr 98:4df3c0f7e707 1137 // list in our polling routine to find ports that have reached the
mjr 98:4df3c0f7e707 1138 // expiration of their initial full-power intervals.
mjr 89:c43cd923401c 1139 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1140 static uint8_t nPending;
mjr 89:c43cd923401c 1141 };
mjr 89:c43cd923401c 1142
mjr 89:c43cd923401c 1143 // Flipper Logic statics
mjr 89:c43cd923401c 1144 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1145 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1146 uint8_t LwFlipperLogicOut::nPending;
mjr 99:8139b0c274f4 1147
mjr 99:8139b0c274f4 1148 // Chime Logic. This is a filter output that we layer on a physical
mjr 99:8139b0c274f4 1149 // output to set a minimum and maximum ON time for the output.
mjr 99:8139b0c274f4 1150 class LwChimeLogicOut: public LwOut
mjr 98:4df3c0f7e707 1151 {
mjr 98:4df3c0f7e707 1152 public:
mjr 99:8139b0c274f4 1153 // Set up the output. 'params' encodes the minimum and maximum time.
mjr 99:8139b0c274f4 1154 LwChimeLogicOut(LwOut *o, uint8_t params)
mjr 99:8139b0c274f4 1155 : out(o), params(params)
mjr 98:4df3c0f7e707 1156 {
mjr 98:4df3c0f7e707 1157 // initially OFF
mjr 98:4df3c0f7e707 1158 state = 0;
mjr 98:4df3c0f7e707 1159 }
mjr 98:4df3c0f7e707 1160
mjr 98:4df3c0f7e707 1161 virtual void set(uint8_t level)
mjr 98:4df3c0f7e707 1162 {
mjr 98:4df3c0f7e707 1163 // update the physical output according to our current timing state
mjr 98:4df3c0f7e707 1164 switch (state)
mjr 98:4df3c0f7e707 1165 {
mjr 98:4df3c0f7e707 1166 case 0:
mjr 98:4df3c0f7e707 1167 // We're currently off. If the new level is non-zero, switch
mjr 98:4df3c0f7e707 1168 // to state 1 (initial minimum interval) and set the requested
mjr 98:4df3c0f7e707 1169 // level. If the new level is zero, we're switching from off to
mjr 98:4df3c0f7e707 1170 // off, so there's no change.
mjr 98:4df3c0f7e707 1171 if (level != 0)
mjr 98:4df3c0f7e707 1172 {
mjr 98:4df3c0f7e707 1173 // switch to state 1 (initial minimum interval, port is
mjr 98:4df3c0f7e707 1174 // logically on)
mjr 98:4df3c0f7e707 1175 state = 1;
mjr 98:4df3c0f7e707 1176
mjr 98:4df3c0f7e707 1177 // set the requested output level
mjr 98:4df3c0f7e707 1178 out->set(level);
mjr 98:4df3c0f7e707 1179
mjr 98:4df3c0f7e707 1180 // add myself to the pending timer list
mjr 98:4df3c0f7e707 1181 pending[nPending++] = this;
mjr 98:4df3c0f7e707 1182
mjr 98:4df3c0f7e707 1183 // note the starting time
mjr 98:4df3c0f7e707 1184 t0 = timer.read_us();
mjr 98:4df3c0f7e707 1185 }
mjr 98:4df3c0f7e707 1186 break;
mjr 98:4df3c0f7e707 1187
mjr 98:4df3c0f7e707 1188 case 1: // min ON interval, port on
mjr 98:4df3c0f7e707 1189 case 2: // min ON interval, port off
mjr 98:4df3c0f7e707 1190 // We're in the initial minimum ON interval. If the new power
mjr 98:4df3c0f7e707 1191 // level is non-zero, pass it through to the physical port, since
mjr 98:4df3c0f7e707 1192 // the client is allowed to change the power level during the
mjr 98:4df3c0f7e707 1193 // initial ON interval - they just can't turn it off entirely.
mjr 98:4df3c0f7e707 1194 // Set the state to 1 to indicate that the logical port is on.
mjr 98:4df3c0f7e707 1195 //
mjr 98:4df3c0f7e707 1196 // If the new level is zero, leave the underlying port at its
mjr 98:4df3c0f7e707 1197 // current power level, since we're not allowed to turn it off
mjr 98:4df3c0f7e707 1198 // during this period. Set the state to 2 to indicate that the
mjr 98:4df3c0f7e707 1199 // logical port is off even though the physical port has to stay
mjr 98:4df3c0f7e707 1200 // on for the remainder of the interval.
mjr 98:4df3c0f7e707 1201 if (level != 0)
mjr 98:4df3c0f7e707 1202 {
mjr 98:4df3c0f7e707 1203 // client is leaving the port on - pass through the new
mjr 98:4df3c0f7e707 1204 // power level and set state 1 (logically on)
mjr 98:4df3c0f7e707 1205 out->set(level);
mjr 98:4df3c0f7e707 1206 state = 1;
mjr 98:4df3c0f7e707 1207 }
mjr 98:4df3c0f7e707 1208 else
mjr 98:4df3c0f7e707 1209 {
mjr 98:4df3c0f7e707 1210 // Client is turning off the port - leave the underlying port
mjr 98:4df3c0f7e707 1211 // on at its current level and set state 2 (logically off).
mjr 98:4df3c0f7e707 1212 // When the minimum ON time expires, the polling routine will
mjr 98:4df3c0f7e707 1213 // see that we're logically off and will pass that through to
mjr 98:4df3c0f7e707 1214 // the underlying physical port. Until then, though, we have
mjr 98:4df3c0f7e707 1215 // to leave the physical port on to satisfy the minimum ON
mjr 98:4df3c0f7e707 1216 // time requirement.
mjr 98:4df3c0f7e707 1217 state = 2;
mjr 98:4df3c0f7e707 1218 }
mjr 98:4df3c0f7e707 1219 break;
mjr 98:4df3c0f7e707 1220
mjr 98:4df3c0f7e707 1221 case 3:
mjr 99:8139b0c274f4 1222 // We're after the minimum ON interval and before the maximum
mjr 99:8139b0c274f4 1223 // ON time limit. We can set any new level, including fully off.
mjr 99:8139b0c274f4 1224 // Pass the new power level through to the port.
mjr 98:4df3c0f7e707 1225 out->set(level);
mjr 98:4df3c0f7e707 1226
mjr 98:4df3c0f7e707 1227 // if the port is now off, return to state 0 (OFF)
mjr 98:4df3c0f7e707 1228 if (level == 0)
mjr 99:8139b0c274f4 1229 {
mjr 99:8139b0c274f4 1230 // return to the OFF state
mjr 99:8139b0c274f4 1231 state = 0;
mjr 99:8139b0c274f4 1232
mjr 99:8139b0c274f4 1233 // If we have a timer pending, remove it. A timer will be
mjr 99:8139b0c274f4 1234 // pending if we have a non-infinite maximum on time for the
mjr 99:8139b0c274f4 1235 // port.
mjr 99:8139b0c274f4 1236 for (int i = 0 ; i < nPending ; ++i)
mjr 99:8139b0c274f4 1237 {
mjr 99:8139b0c274f4 1238 // is this us?
mjr 99:8139b0c274f4 1239 if (pending[i] == this)
mjr 99:8139b0c274f4 1240 {
mjr 99:8139b0c274f4 1241 // remove myself by replacing the slot with the
mjr 99:8139b0c274f4 1242 // last list entry
mjr 99:8139b0c274f4 1243 pending[i] = pending[--nPending];
mjr 99:8139b0c274f4 1244
mjr 99:8139b0c274f4 1245 // no need to look any further
mjr 99:8139b0c274f4 1246 break;
mjr 99:8139b0c274f4 1247 }
mjr 99:8139b0c274f4 1248 }
mjr 99:8139b0c274f4 1249 }
mjr 99:8139b0c274f4 1250 break;
mjr 99:8139b0c274f4 1251
mjr 99:8139b0c274f4 1252 case 4:
mjr 99:8139b0c274f4 1253 // We're after the maximum ON time. The physical port stays off
mjr 99:8139b0c274f4 1254 // during this interval, so we don't pass any changes through to
mjr 99:8139b0c274f4 1255 // the physical port. When the client sets the level to 0, we
mjr 99:8139b0c274f4 1256 // turn off the logical port and reset to state 0.
mjr 99:8139b0c274f4 1257 if (level == 0)
mjr 98:4df3c0f7e707 1258 state = 0;
mjr 98:4df3c0f7e707 1259 break;
mjr 98:4df3c0f7e707 1260 }
mjr 98:4df3c0f7e707 1261 }
mjr 98:4df3c0f7e707 1262
mjr 98:4df3c0f7e707 1263 // Class initialization
mjr 98:4df3c0f7e707 1264 static void classInit(Config &cfg)
mjr 98:4df3c0f7e707 1265 {
mjr 98:4df3c0f7e707 1266 // Count the Minimum On Time outputs in the configuration. We
mjr 98:4df3c0f7e707 1267 // need to allocate enough pending timer list space to accommodate
mjr 98:4df3c0f7e707 1268 // all of these outputs.
mjr 98:4df3c0f7e707 1269 int n = 0;
mjr 98:4df3c0f7e707 1270 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 98:4df3c0f7e707 1271 {
mjr 98:4df3c0f7e707 1272 // if this port is active and marked as Flipper Logic, count it
mjr 98:4df3c0f7e707 1273 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 99:8139b0c274f4 1274 && (cfg.outPort[i].flags & PortFlagChimeLogic) != 0)
mjr 98:4df3c0f7e707 1275 ++n;
mjr 98:4df3c0f7e707 1276 }
mjr 98:4df3c0f7e707 1277
mjr 98:4df3c0f7e707 1278 // allocate space for the pending timer list
mjr 99:8139b0c274f4 1279 pending = new LwChimeLogicOut*[n];
mjr 98:4df3c0f7e707 1280
mjr 98:4df3c0f7e707 1281 // there's nothing in the pending list yet
mjr 98:4df3c0f7e707 1282 nPending = 0;
mjr 98:4df3c0f7e707 1283
mjr 98:4df3c0f7e707 1284 // Start our shared timer. The epoch is arbitrary, since we only
mjr 98:4df3c0f7e707 1285 // use it to figure elapsed times.
mjr 98:4df3c0f7e707 1286 timer.start();
mjr 98:4df3c0f7e707 1287 }
mjr 98:4df3c0f7e707 1288
mjr 98:4df3c0f7e707 1289 // Check for ports with pending timers. The main routine should
mjr 98:4df3c0f7e707 1290 // call this on each iteration to process our state transitions.
mjr 98:4df3c0f7e707 1291 static void poll()
mjr 98:4df3c0f7e707 1292 {
mjr 98:4df3c0f7e707 1293 // note the current time
mjr 98:4df3c0f7e707 1294 uint32_t t = timer.read_us();
mjr 98:4df3c0f7e707 1295
mjr 98:4df3c0f7e707 1296 // go through the timer list
mjr 98:4df3c0f7e707 1297 for (int i = 0 ; i < nPending ; )
mjr 98:4df3c0f7e707 1298 {
mjr 98:4df3c0f7e707 1299 // get the port
mjr 99:8139b0c274f4 1300 LwChimeLogicOut *port = pending[i];
mjr 98:4df3c0f7e707 1301
mjr 98:4df3c0f7e707 1302 // assume we'll keep it
mjr 98:4df3c0f7e707 1303 bool remove = false;
mjr 98:4df3c0f7e707 1304
mjr 99:8139b0c274f4 1305 // check our state
mjr 99:8139b0c274f4 1306 switch (port->state)
mjr 98:4df3c0f7e707 1307 {
mjr 99:8139b0c274f4 1308 case 1: // initial minimum ON time, port logically on
mjr 99:8139b0c274f4 1309 case 2: // initial minimum ON time, port logically off
mjr 99:8139b0c274f4 1310 // check if the minimum ON time has elapsed
mjr 98:4df3c0f7e707 1311 if (uint32_t(t - port->t0) > port->minOnTime_us())
mjr 98:4df3c0f7e707 1312 {
mjr 98:4df3c0f7e707 1313 // This port has completed its initial ON interval, so
mjr 98:4df3c0f7e707 1314 // it advances to the next state.
mjr 98:4df3c0f7e707 1315 if (port->state == 1)
mjr 98:4df3c0f7e707 1316 {
mjr 99:8139b0c274f4 1317 // The port is logically on, so advance to state 3.
mjr 99:8139b0c274f4 1318 // The underlying port is already at its proper level,
mjr 99:8139b0c274f4 1319 // since we pass through non-zero power settings to the
mjr 99:8139b0c274f4 1320 // underlying port throughout the initial minimum time.
mjr 99:8139b0c274f4 1321 // The timer stays active into state 3.
mjr 98:4df3c0f7e707 1322 port->state = 3;
mjr 99:8139b0c274f4 1323
mjr 99:8139b0c274f4 1324 // Special case: maximum on time 0 means "infinite".
mjr 99:8139b0c274f4 1325 // There's no need for a timer in this case; we'll
mjr 99:8139b0c274f4 1326 // just stay in state 3 until the client turns the
mjr 99:8139b0c274f4 1327 // port off.
mjr 99:8139b0c274f4 1328 if (port->maxOnTime_us() == 0)
mjr 99:8139b0c274f4 1329 remove = true;
mjr 98:4df3c0f7e707 1330 }
mjr 98:4df3c0f7e707 1331 else
mjr 98:4df3c0f7e707 1332 {
mjr 98:4df3c0f7e707 1333 // The port was switched off by the client during the
mjr 98:4df3c0f7e707 1334 // minimum ON period. We haven't passed the OFF state
mjr 98:4df3c0f7e707 1335 // to the underlying port yet, because the port has to
mjr 98:4df3c0f7e707 1336 // stay on throughout the minimum ON period. So turn
mjr 98:4df3c0f7e707 1337 // the port off now.
mjr 98:4df3c0f7e707 1338 port->out->set(0);
mjr 98:4df3c0f7e707 1339
mjr 98:4df3c0f7e707 1340 // return to state 0 (OFF)
mjr 98:4df3c0f7e707 1341 port->state = 0;
mjr 99:8139b0c274f4 1342
mjr 99:8139b0c274f4 1343 // we're done with the timer
mjr 99:8139b0c274f4 1344 remove = true;
mjr 98:4df3c0f7e707 1345 }
mjr 99:8139b0c274f4 1346 }
mjr 99:8139b0c274f4 1347 break;
mjr 99:8139b0c274f4 1348
mjr 99:8139b0c274f4 1349 case 3: // between minimum ON time and maximum ON time
mjr 99:8139b0c274f4 1350 // check if the maximum ON time has expired
mjr 99:8139b0c274f4 1351 if (uint32_t(t - port->t0) > port->maxOnTime_us())
mjr 99:8139b0c274f4 1352 {
mjr 99:8139b0c274f4 1353 // The maximum ON time has expired. Turn off the physical
mjr 99:8139b0c274f4 1354 // port.
mjr 99:8139b0c274f4 1355 port->out->set(0);
mjr 98:4df3c0f7e707 1356
mjr 99:8139b0c274f4 1357 // Switch to state 4 (logically ON past maximum time)
mjr 99:8139b0c274f4 1358 port->state = 4;
mjr 99:8139b0c274f4 1359
mjr 99:8139b0c274f4 1360 // Remove the timer on this port. This port simply stays
mjr 99:8139b0c274f4 1361 // in state 4 until the client turns off the port.
mjr 98:4df3c0f7e707 1362 remove = true;
mjr 98:4df3c0f7e707 1363 }
mjr 99:8139b0c274f4 1364 break;
mjr 98:4df3c0f7e707 1365 }
mjr 98:4df3c0f7e707 1366
mjr 98:4df3c0f7e707 1367 // if desired, remove the port from the timer list
mjr 98:4df3c0f7e707 1368 if (remove)
mjr 98:4df3c0f7e707 1369 {
mjr 98:4df3c0f7e707 1370 // Remove the list entry by overwriting the slot with
mjr 98:4df3c0f7e707 1371 // the last entry in the list.
mjr 98:4df3c0f7e707 1372 pending[i] = pending[--nPending];
mjr 98:4df3c0f7e707 1373
mjr 98:4df3c0f7e707 1374 // Note that we don't increment the loop counter, since
mjr 98:4df3c0f7e707 1375 // we now need to revisit this same slot.
mjr 98:4df3c0f7e707 1376 }
mjr 98:4df3c0f7e707 1377 else
mjr 98:4df3c0f7e707 1378 {
mjr 98:4df3c0f7e707 1379 // we're keeping this item; move on to the next one
mjr 98:4df3c0f7e707 1380 ++i;
mjr 98:4df3c0f7e707 1381 }
mjr 98:4df3c0f7e707 1382 }
mjr 98:4df3c0f7e707 1383 }
mjr 98:4df3c0f7e707 1384
mjr 98:4df3c0f7e707 1385 protected:
mjr 98:4df3c0f7e707 1386 // underlying physical output
mjr 98:4df3c0f7e707 1387 LwOut *out;
mjr 98:4df3c0f7e707 1388
mjr 98:4df3c0f7e707 1389 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 98:4df3c0f7e707 1390 // to the current 'timer' timestamp when entering state 1.
mjr 98:4df3c0f7e707 1391 uint32_t t0;
mjr 98:4df3c0f7e707 1392
mjr 98:4df3c0f7e707 1393 // Current port state:
mjr 98:4df3c0f7e707 1394 //
mjr 98:4df3c0f7e707 1395 // 0 = off
mjr 99:8139b0c274f4 1396 // 1 = in initial minimum ON interval, logical port is on
mjr 99:8139b0c274f4 1397 // 2 = in initial minimum ON interval, logical port is off
mjr 99:8139b0c274f4 1398 // 3 = in interval between minimum and maximum ON times
mjr 99:8139b0c274f4 1399 // 4 = after the maximum ON interval
mjr 99:8139b0c274f4 1400 //
mjr 99:8139b0c274f4 1401 // The "logical" on/off state of the port is the state set by the
mjr 99:8139b0c274f4 1402 // client. The "physical" state is the state of the underlying port.
mjr 99:8139b0c274f4 1403 // The relationships between logical and physical port state, and the
mjr 99:8139b0c274f4 1404 // effects of updates by the client, are as follows:
mjr 99:8139b0c274f4 1405 //
mjr 99:8139b0c274f4 1406 // State | Logical | Physical | Client set on | Client set off
mjr 99:8139b0c274f4 1407 // -----------------------------------------------------------
mjr 99:8139b0c274f4 1408 // 0 | Off | Off | phys on, -> 1 | no effect
mjr 99:8139b0c274f4 1409 // 1 | On | On | no effect | -> 2
mjr 99:8139b0c274f4 1410 // 2 | Off | On | -> 1 | no effect
mjr 99:8139b0c274f4 1411 // 3 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1412 // 4 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1413 //
mjr 99:8139b0c274f4 1414 // The polling routine makes the following transitions when the current
mjr 99:8139b0c274f4 1415 // time limit expires:
mjr 99:8139b0c274f4 1416 //
mjr 99:8139b0c274f4 1417 // 1: at end of minimum ON, -> 3 (or 4 if max == infinity)
mjr 99:8139b0c274f4 1418 // 2: at end of minimum ON, port off, -> 0
mjr 99:8139b0c274f4 1419 // 3: at end of maximum ON, port off, -> 4
mjr 98:4df3c0f7e707 1420 //
mjr 98:4df3c0f7e707 1421 uint8_t state;
mjr 98:4df3c0f7e707 1422
mjr 99:8139b0c274f4 1423 // Configuration parameters byte. This encodes the minimum and maximum
mjr 99:8139b0c274f4 1424 // ON times.
mjr 99:8139b0c274f4 1425 uint8_t params;
mjr 98:4df3c0f7e707 1426
mjr 98:4df3c0f7e707 1427 // Timer. This is a shared timer for all of the minimum ON time ports.
mjr 98:4df3c0f7e707 1428 // When we transition from OFF to ON, we note the current time on this
mjr 98:4df3c0f7e707 1429 // timer to establish the start of our minimum ON period.
mjr 98:4df3c0f7e707 1430 static Timer timer;
mjr 98:4df3c0f7e707 1431
mjr 98:4df3c0f7e707 1432 // translaton table from timing parameter in config to minimum ON time
mjr 98:4df3c0f7e707 1433 static const uint32_t paramToTime_us[];
mjr 98:4df3c0f7e707 1434
mjr 99:8139b0c274f4 1435 // Figure the minimum ON time. The minimum ON time is given by the
mjr 99:8139b0c274f4 1436 // low-order 4 bits of the parameters byte, which serves as an index
mjr 99:8139b0c274f4 1437 // into our time table.
mjr 99:8139b0c274f4 1438 inline uint32_t minOnTime_us() const { return paramToTime_us[params & 0x0F]; }
mjr 99:8139b0c274f4 1439
mjr 99:8139b0c274f4 1440 // Figure the maximum ON time. The maximum time is the high 4 bits
mjr 99:8139b0c274f4 1441 // of the parameters byte. This is an index into our time table, but
mjr 99:8139b0c274f4 1442 // 0 has the special meaning "infinite".
mjr 99:8139b0c274f4 1443 inline uint32_t maxOnTime_us() const { return paramToTime_us[((params >> 4) & 0x0F)]; }
mjr 98:4df3c0f7e707 1444
mjr 98:4df3c0f7e707 1445 // Pending timer list. Whenever one of our ports transitions from OFF
mjr 98:4df3c0f7e707 1446 // to ON, we add it to this list. We scan this list in our polling
mjr 98:4df3c0f7e707 1447 // routine to find ports that have reached the ends of their initial
mjr 98:4df3c0f7e707 1448 // ON intervals.
mjr 99:8139b0c274f4 1449 static LwChimeLogicOut **pending;
mjr 98:4df3c0f7e707 1450 static uint8_t nPending;
mjr 98:4df3c0f7e707 1451 };
mjr 98:4df3c0f7e707 1452
mjr 98:4df3c0f7e707 1453 // Min Time Out statics
mjr 99:8139b0c274f4 1454 Timer LwChimeLogicOut::timer;
mjr 99:8139b0c274f4 1455 LwChimeLogicOut **LwChimeLogicOut::pending;
mjr 99:8139b0c274f4 1456 uint8_t LwChimeLogicOut::nPending;
mjr 99:8139b0c274f4 1457 const uint32_t LwChimeLogicOut::paramToTime_us[] = {
mjr 99:8139b0c274f4 1458 0, // for the max time, this means "infinite"
mjr 98:4df3c0f7e707 1459 1000,
mjr 98:4df3c0f7e707 1460 2000,
mjr 98:4df3c0f7e707 1461 5000,
mjr 98:4df3c0f7e707 1462 10000,
mjr 98:4df3c0f7e707 1463 20000,
mjr 98:4df3c0f7e707 1464 40000,
mjr 98:4df3c0f7e707 1465 80000,
mjr 98:4df3c0f7e707 1466 100000,
mjr 98:4df3c0f7e707 1467 200000,
mjr 98:4df3c0f7e707 1468 300000,
mjr 98:4df3c0f7e707 1469 400000,
mjr 98:4df3c0f7e707 1470 500000,
mjr 98:4df3c0f7e707 1471 600000,
mjr 98:4df3c0f7e707 1472 700000,
mjr 98:4df3c0f7e707 1473 800000
mjr 98:4df3c0f7e707 1474 };
mjr 89:c43cd923401c 1475
mjr 35:e959ffba78fd 1476 //
mjr 35:e959ffba78fd 1477 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1478 // assignments set in config.h.
mjr 33:d832bcab089e 1479 //
mjr 35:e959ffba78fd 1480 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1481 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1482 {
mjr 35:e959ffba78fd 1483 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1484 {
mjr 53:9b2611964afc 1485 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1486 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1487 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1488 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1489 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1490 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1491 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1492 }
mjr 35:e959ffba78fd 1493 }
mjr 26:cb71c4af2912 1494
mjr 40:cc0d9814522b 1495 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1496 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1497 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1498 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1499 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1500 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1501 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1502 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1503 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1504 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1505 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1506 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1507 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1508 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1509 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1510 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1511 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1512 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1513 };
mjr 40:cc0d9814522b 1514
mjr 40:cc0d9814522b 1515 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1516 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1517 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1518 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1519 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1520 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1521 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1522 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1523 // are always 8 bits.
mjr 40:cc0d9814522b 1524 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1525 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1526 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1527 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1528 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1529 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1530 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1531 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1532 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1533 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1534 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1535 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1536 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1537 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1538 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1539 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1540 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1541 };
mjr 40:cc0d9814522b 1542
mjr 26:cb71c4af2912 1543 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1544 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1545 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1546 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1547 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1548 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1549 {
mjr 26:cb71c4af2912 1550 public:
mjr 60:f38da020aa13 1551 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1552 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1553 {
mjr 26:cb71c4af2912 1554 if (val != prv)
mjr 40:cc0d9814522b 1555 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1556 }
mjr 60:f38da020aa13 1557 uint8_t idx;
mjr 40:cc0d9814522b 1558 uint8_t prv;
mjr 26:cb71c4af2912 1559 };
mjr 26:cb71c4af2912 1560
mjr 40:cc0d9814522b 1561 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1562 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1563 {
mjr 40:cc0d9814522b 1564 public:
mjr 60:f38da020aa13 1565 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1566 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1567 {
mjr 40:cc0d9814522b 1568 if (val != prv)
mjr 40:cc0d9814522b 1569 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1570 }
mjr 60:f38da020aa13 1571 uint8_t idx;
mjr 40:cc0d9814522b 1572 uint8_t prv;
mjr 40:cc0d9814522b 1573 };
mjr 40:cc0d9814522b 1574
mjr 87:8d35c74403af 1575 //
mjr 87:8d35c74403af 1576 // TLC59116 interface object
mjr 87:8d35c74403af 1577 //
mjr 87:8d35c74403af 1578 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1579 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1580 {
mjr 87:8d35c74403af 1581 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1582 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1583 {
mjr 87:8d35c74403af 1584 // set up the interface
mjr 87:8d35c74403af 1585 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1586 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1587 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1588 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1589
mjr 87:8d35c74403af 1590 // initialize the chips
mjr 87:8d35c74403af 1591 tlc59116->init();
mjr 87:8d35c74403af 1592 }
mjr 87:8d35c74403af 1593 }
mjr 87:8d35c74403af 1594
mjr 87:8d35c74403af 1595 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1596 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1597 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1598 // (0-15).
mjr 87:8d35c74403af 1599 //
mjr 87:8d35c74403af 1600 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1601 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1602 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1603 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1604 {
mjr 87:8d35c74403af 1605 public:
mjr 87:8d35c74403af 1606 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1607 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1608 {
mjr 87:8d35c74403af 1609 if (val != prv)
mjr 87:8d35c74403af 1610 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1611 }
mjr 87:8d35c74403af 1612
mjr 87:8d35c74403af 1613 protected:
mjr 87:8d35c74403af 1614 uint8_t addr;
mjr 87:8d35c74403af 1615 uint8_t port;
mjr 87:8d35c74403af 1616 uint8_t prv;
mjr 87:8d35c74403af 1617 };
mjr 87:8d35c74403af 1618
mjr 87:8d35c74403af 1619
mjr 87:8d35c74403af 1620 //
mjr 34:6b981a2afab7 1621 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1622 // config.h.
mjr 87:8d35c74403af 1623 //
mjr 35:e959ffba78fd 1624 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1625
mjr 35:e959ffba78fd 1626 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1627 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1628 {
mjr 35:e959ffba78fd 1629 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1630 {
mjr 53:9b2611964afc 1631 hc595 = new HC595(
mjr 53:9b2611964afc 1632 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1633 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1634 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1635 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1636 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1637 hc595->init();
mjr 35:e959ffba78fd 1638 hc595->update();
mjr 35:e959ffba78fd 1639 }
mjr 35:e959ffba78fd 1640 }
mjr 34:6b981a2afab7 1641
mjr 34:6b981a2afab7 1642 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1643 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1644 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1645 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1646 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1647 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1648 {
mjr 33:d832bcab089e 1649 public:
mjr 60:f38da020aa13 1650 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1651 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1652 {
mjr 34:6b981a2afab7 1653 if (val != prv)
mjr 40:cc0d9814522b 1654 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1655 }
mjr 60:f38da020aa13 1656 uint8_t idx;
mjr 40:cc0d9814522b 1657 uint8_t prv;
mjr 33:d832bcab089e 1658 };
mjr 33:d832bcab089e 1659
mjr 26:cb71c4af2912 1660
mjr 40:cc0d9814522b 1661
mjr 64:ef7ca92dff36 1662 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1663 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1664 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1665 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1666 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1667 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1668 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1669 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1670 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1671 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1672 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1673 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1674 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1675 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1676 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1677 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1678 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1679 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1680 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1681 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1682 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1683 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1684 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1685 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1686 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1687 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1688 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1689 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1690 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1691 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1692 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1693 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1694 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1695 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1696 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1697 };
mjr 26:cb71c4af2912 1698
mjr 64:ef7ca92dff36 1699
mjr 92:f264fbaa1be5 1700 // Conversion table for 8-bit DOF level to pulse width, with gamma correction
mjr 92:f264fbaa1be5 1701 // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0.
mjr 92:f264fbaa1be5 1702 // Note that we could use the layered gamma output on top of the regular
mjr 92:f264fbaa1be5 1703 // LwPwmOut class for this instead of a separate table, but we get much better
mjr 92:f264fbaa1be5 1704 // precision with a dedicated table, because we apply gamma correction to the
mjr 92:f264fbaa1be5 1705 // actual duty cycle values (as 'float') rather than the 8-bit DOF values.
mjr 64:ef7ca92dff36 1706 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1707 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1708 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1709 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1710 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1711 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1712 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1713 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1714 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1715 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1716 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1717 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1718 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1719 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1720 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1721 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1722 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1723 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1724 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1725 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1726 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1727 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1728 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1729 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1730 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1731 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1732 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1733 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1734 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1735 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1736 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1737 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1738 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1739 };
mjr 64:ef7ca92dff36 1740
mjr 77:0b96f6867312 1741 // Polled-update PWM output list
mjr 74:822a92bc11d2 1742 //
mjr 77:0b96f6867312 1743 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1744 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1745 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1746 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1747 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1748 //
mjr 92:f264fbaa1be5 1749 // The symptom of the problem, if it's not worked around somehow, is that
mjr 92:f264fbaa1be5 1750 // an output will get "stuck" due to a missed write. This is especially
mjr 92:f264fbaa1be5 1751 // noticeable during a series of updates such as a fade. If the last
mjr 92:f264fbaa1be5 1752 // couple of updates in a fade are lost, the output will get stuck at some
mjr 92:f264fbaa1be5 1753 // value above or below the desired final value. The stuck setting will
mjr 92:f264fbaa1be5 1754 // persist until the output is deliberately changed again later.
mjr 92:f264fbaa1be5 1755 //
mjr 92:f264fbaa1be5 1756 // Our solution: Simply repeat all PWM updates periodically. This way, any
mjr 92:f264fbaa1be5 1757 // lost write will *eventually* take hold on one of the repeats. Repeats of
mjr 92:f264fbaa1be5 1758 // the same value won't change anything and thus won't be noticeable. We do
mjr 92:f264fbaa1be5 1759 // these periodic updates during the main loop, which makes them very low
mjr 92:f264fbaa1be5 1760 // overhead (there's no interrupt overhead; we just do them when convenient
mjr 92:f264fbaa1be5 1761 // in the main loop), and also makes them very frequent. The frequency
mjr 92:f264fbaa1be5 1762 // is crucial because it ensures that updates will never be lost for long
mjr 92:f264fbaa1be5 1763 // enough to become noticeable.
mjr 92:f264fbaa1be5 1764 //
mjr 92:f264fbaa1be5 1765 // The mbed library has its own, different solution to this bug, but the
mjr 92:f264fbaa1be5 1766 // mbed solution isn't really a solution at all because it creates a separate
mjr 100:1ff35c07217c 1767 // problem of its own. The mbed approach is to reset the TPM "count" register
mjr 92:f264fbaa1be5 1768 // on every value register write. The count reset truncates the current
mjr 92:f264fbaa1be5 1769 // PWM cycle, which bypasses the hardware problem. Remember, the hardware
mjr 92:f264fbaa1be5 1770 // problem is that you can only write once per cycle; the mbed "solution" gets
mjr 92:f264fbaa1be5 1771 // around that by making sure the cycle ends immediately after the write.
mjr 92:f264fbaa1be5 1772 // The problem with this approach is that the truncated cycle causes visible
mjr 92:f264fbaa1be5 1773 // flicker if the output is connected to an LED. This is particularly
mjr 92:f264fbaa1be5 1774 // noticeable during fades, when we're updating the value register repeatedly
mjr 92:f264fbaa1be5 1775 // and rapidly: an attempt to fade from fully on to fully off causes rapid
mjr 92:f264fbaa1be5 1776 // fluttering and flashing rather than a smooth brightness fade. That's why
mjr 92:f264fbaa1be5 1777 // I had to come up with something different - the mbed solution just trades
mjr 92:f264fbaa1be5 1778 // one annoying bug for another that's just as bad.
mjr 92:f264fbaa1be5 1779 //
mjr 92:f264fbaa1be5 1780 // The hardware bug, by the way, is a case of good intentions gone bad.
mjr 92:f264fbaa1be5 1781 // The whole point of the staging register is to make things easier for
mjr 92:f264fbaa1be5 1782 // us software writers. In most PWM hardware, software has to coordinate
mjr 92:f264fbaa1be5 1783 // with the PWM duty cycle when updating registers to avoid a glitch that
mjr 92:f264fbaa1be5 1784 // you'd get by scribbling to the duty cycle register mid-cycle. The
mjr 92:f264fbaa1be5 1785 // staging register solves this by letting the software write an update at
mjr 92:f264fbaa1be5 1786 // any time, knowing that the hardware will apply the update at exactly the
mjr 92:f264fbaa1be5 1787 // end of the cycle, ensuring glitch-free updates. It's a great design,
mjr 92:f264fbaa1be5 1788 // except that it doesn't quite work. The problem is that they implemented
mjr 92:f264fbaa1be5 1789 // this clever staging register as a one-element FIFO that refuses any more
mjr 92:f264fbaa1be5 1790 // writes when full. That is, writing a value to the FIFO fills it; once
mjr 92:f264fbaa1be5 1791 // full, it ignores writes until it gets emptied out. How's it emptied out?
mjr 92:f264fbaa1be5 1792 // By the hardware moving the staged value to the real register. Sadly, they
mjr 92:f264fbaa1be5 1793 // didn't provide any way for the software to clear the register, and no way
mjr 92:f264fbaa1be5 1794 // to even tell that it's full. So we don't have glitches on write, but we're
mjr 92:f264fbaa1be5 1795 // back to the original problem that the software has to be aware of the PWM
mjr 92:f264fbaa1be5 1796 // cycle timing, because the only way for the software to know that a write
mjr 92:f264fbaa1be5 1797 // actually worked is to know that it's been at least one PWM cycle since the
mjr 92:f264fbaa1be5 1798 // last write. That largely defeats the whole purpose of the staging register,
mjr 92:f264fbaa1be5 1799 // since the whole point was to free software writers of these timing
mjr 92:f264fbaa1be5 1800 // considerations. It's still an improvement over no staging register at
mjr 92:f264fbaa1be5 1801 // all, since we at least don't have to worry about glitches, but it leaves
mjr 92:f264fbaa1be5 1802 // us with this somewhat similar hassle.
mjr 74:822a92bc11d2 1803 //
mjr 77:0b96f6867312 1804 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1805 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1806 // of polled items.
mjr 74:822a92bc11d2 1807 static int numPolledPwm;
mjr 74:822a92bc11d2 1808 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1809
mjr 74:822a92bc11d2 1810 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1811 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1812 {
mjr 6:cc35eb643e8f 1813 public:
mjr 43:7a6364d82a41 1814 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1815 {
mjr 77:0b96f6867312 1816 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1817 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1818 polledPwm[numPolledPwm++] = this;
mjr 93:177832c29041 1819
mjr 94:0476b3e2b996 1820 // IMPORTANT: Do not set the PWM period (frequency) here explicitly.
mjr 94:0476b3e2b996 1821 // We instead want to accept the current setting for the TPM unit
mjr 94:0476b3e2b996 1822 // we're assigned to. The KL25Z hardware can only set the period at
mjr 94:0476b3e2b996 1823 // the TPM unit level, not per channel, so if we changed the frequency
mjr 94:0476b3e2b996 1824 // here, we'd change it for everything attached to our TPM unit. LW
mjr 94:0476b3e2b996 1825 // outputs don't care about frequency other than that it's fast enough
mjr 94:0476b3e2b996 1826 // that attached LEDs won't flicker. Some other PWM users (IR remote,
mjr 94:0476b3e2b996 1827 // TLC5940) DO care about exact frequencies, because they use the PWM
mjr 94:0476b3e2b996 1828 // as a signal generator rather than merely for brightness control.
mjr 94:0476b3e2b996 1829 // If we changed the frequency here, we could clobber one of those
mjr 94:0476b3e2b996 1830 // carefully chosen frequencies and break the other subsystem. So
mjr 94:0476b3e2b996 1831 // we need to be the "free variable" here and accept whatever setting
mjr 94:0476b3e2b996 1832 // is currently on our assigned unit. To minimize flicker, the main()
mjr 94:0476b3e2b996 1833 // entrypoint sets a default PWM rate of 1kHz on all channels. All
mjr 94:0476b3e2b996 1834 // of the other subsystems that might set specific frequencies will
mjr 94:0476b3e2b996 1835 // set much high frequencies, so that should only be good for us.
mjr 94:0476b3e2b996 1836
mjr 94:0476b3e2b996 1837 // set the initial brightness value
mjr 77:0b96f6867312 1838 set(initVal);
mjr 43:7a6364d82a41 1839 }
mjr 74:822a92bc11d2 1840
mjr 40:cc0d9814522b 1841 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1842 {
mjr 77:0b96f6867312 1843 // save the new value
mjr 74:822a92bc11d2 1844 this->val = val;
mjr 77:0b96f6867312 1845
mjr 77:0b96f6867312 1846 // commit it to the hardware
mjr 77:0b96f6867312 1847 commit();
mjr 13:72dda449c3c0 1848 }
mjr 74:822a92bc11d2 1849
mjr 74:822a92bc11d2 1850 // handle periodic update polling
mjr 74:822a92bc11d2 1851 void poll()
mjr 74:822a92bc11d2 1852 {
mjr 77:0b96f6867312 1853 commit();
mjr 74:822a92bc11d2 1854 }
mjr 74:822a92bc11d2 1855
mjr 74:822a92bc11d2 1856 protected:
mjr 77:0b96f6867312 1857 virtual void commit()
mjr 74:822a92bc11d2 1858 {
mjr 74:822a92bc11d2 1859 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1860 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1861 }
mjr 74:822a92bc11d2 1862
mjr 77:0b96f6867312 1863 NewPwmOut p;
mjr 77:0b96f6867312 1864 uint8_t val;
mjr 6:cc35eb643e8f 1865 };
mjr 26:cb71c4af2912 1866
mjr 74:822a92bc11d2 1867 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1868 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1869 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1870 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1871 {
mjr 64:ef7ca92dff36 1872 public:
mjr 64:ef7ca92dff36 1873 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1874 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1875 {
mjr 64:ef7ca92dff36 1876 }
mjr 74:822a92bc11d2 1877
mjr 74:822a92bc11d2 1878 protected:
mjr 77:0b96f6867312 1879 virtual void commit()
mjr 64:ef7ca92dff36 1880 {
mjr 74:822a92bc11d2 1881 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1882 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1883 }
mjr 64:ef7ca92dff36 1884 };
mjr 64:ef7ca92dff36 1885
mjr 74:822a92bc11d2 1886 // poll the PWM outputs
mjr 74:822a92bc11d2 1887 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1888 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1889 void pollPwmUpdates()
mjr 74:822a92bc11d2 1890 {
mjr 94:0476b3e2b996 1891 // If it's been long enough since the last update, do another update.
mjr 94:0476b3e2b996 1892 // Note that the time limit is fairly arbitrary: it has to be at least
mjr 94:0476b3e2b996 1893 // 1.5X the PWM period, so that we can be sure that at least one PWM
mjr 94:0476b3e2b996 1894 // period has elapsed since the last update, but there's no hard upper
mjr 94:0476b3e2b996 1895 // bound. Instead, it only has to be short enough that fades don't
mjr 94:0476b3e2b996 1896 // become noticeably chunky. The competing interest is that we don't
mjr 94:0476b3e2b996 1897 // want to do this more often than necessary to provide incremental
mjr 94:0476b3e2b996 1898 // benefit, because the polling adds overhead to the main loop and
mjr 94:0476b3e2b996 1899 // takes time away from other tasks we could be performing. The
mjr 94:0476b3e2b996 1900 // shortest time with practical benefit is probably around 50-60Hz,
mjr 94:0476b3e2b996 1901 // since that gives us "video rate" granularity in fades. Anything
mjr 94:0476b3e2b996 1902 // faster wouldn't probably make fades look any smoother to a human
mjr 94:0476b3e2b996 1903 // viewer.
mjr 94:0476b3e2b996 1904 if (polledPwmTimer.read_us() >= 15000)
mjr 74:822a92bc11d2 1905 {
mjr 74:822a92bc11d2 1906 // time the run for statistics collection
mjr 74:822a92bc11d2 1907 IF_DIAG(
mjr 74:822a92bc11d2 1908 Timer t;
mjr 74:822a92bc11d2 1909 t.start();
mjr 74:822a92bc11d2 1910 )
mjr 74:822a92bc11d2 1911
mjr 74:822a92bc11d2 1912 // poll each output
mjr 74:822a92bc11d2 1913 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1914 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1915
mjr 74:822a92bc11d2 1916 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1917 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1918
mjr 74:822a92bc11d2 1919 // collect statistics
mjr 74:822a92bc11d2 1920 IF_DIAG(
mjr 76:7f5912b6340e 1921 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1922 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1923 )
mjr 74:822a92bc11d2 1924 }
mjr 74:822a92bc11d2 1925 }
mjr 64:ef7ca92dff36 1926
mjr 26:cb71c4af2912 1927 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1928 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1929 {
mjr 6:cc35eb643e8f 1930 public:
mjr 43:7a6364d82a41 1931 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1932 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1933 {
mjr 13:72dda449c3c0 1934 if (val != prv)
mjr 40:cc0d9814522b 1935 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1936 }
mjr 6:cc35eb643e8f 1937 DigitalOut p;
mjr 40:cc0d9814522b 1938 uint8_t prv;
mjr 6:cc35eb643e8f 1939 };
mjr 26:cb71c4af2912 1940
mjr 29:582472d0bc57 1941 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1942 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1943 // port n (0-based).
mjr 35:e959ffba78fd 1944 //
mjr 35:e959ffba78fd 1945 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1946 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1947 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1948 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1949 // 74HC595 ports).
mjr 33:d832bcab089e 1950 static int numOutputs;
mjr 33:d832bcab089e 1951 static LwOut **lwPin;
mjr 33:d832bcab089e 1952
mjr 38:091e511ce8a0 1953 // create a single output pin
mjr 53:9b2611964afc 1954 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1955 {
mjr 38:091e511ce8a0 1956 // get this item's values
mjr 38:091e511ce8a0 1957 int typ = pc.typ;
mjr 38:091e511ce8a0 1958 int pin = pc.pin;
mjr 38:091e511ce8a0 1959 int flags = pc.flags;
mjr 40:cc0d9814522b 1960 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1961 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1962 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 1963 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 99:8139b0c274f4 1964 int chimeLogic = flags & PortFlagChimeLogic;
mjr 89:c43cd923401c 1965
mjr 89:c43cd923401c 1966 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 1967 if (flipperLogic)
mjr 89:c43cd923401c 1968 gamma = false;
mjr 38:091e511ce8a0 1969
mjr 38:091e511ce8a0 1970 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1971 LwOut *lwp;
mjr 38:091e511ce8a0 1972 switch (typ)
mjr 38:091e511ce8a0 1973 {
mjr 38:091e511ce8a0 1974 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1975 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1976 if (pin != 0)
mjr 64:ef7ca92dff36 1977 {
mjr 64:ef7ca92dff36 1978 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1979 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1980 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1981 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1982 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1983 {
mjr 64:ef7ca92dff36 1984 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1985 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1986
mjr 64:ef7ca92dff36 1987 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1988 gamma = false;
mjr 64:ef7ca92dff36 1989 }
mjr 64:ef7ca92dff36 1990 else
mjr 64:ef7ca92dff36 1991 {
mjr 64:ef7ca92dff36 1992 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1993 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1994 }
mjr 64:ef7ca92dff36 1995 }
mjr 48:058ace2aed1d 1996 else
mjr 48:058ace2aed1d 1997 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1998 break;
mjr 38:091e511ce8a0 1999
mjr 38:091e511ce8a0 2000 case PortTypeGPIODig:
mjr 38:091e511ce8a0 2001 // Digital GPIO port
mjr 48:058ace2aed1d 2002 if (pin != 0)
mjr 48:058ace2aed1d 2003 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 2004 else
mjr 48:058ace2aed1d 2005 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2006 break;
mjr 38:091e511ce8a0 2007
mjr 38:091e511ce8a0 2008 case PortTypeTLC5940:
mjr 38:091e511ce8a0 2009 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 2010 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 2011 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 2012 {
mjr 40:cc0d9814522b 2013 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 2014 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 2015 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 2016 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 2017 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 2018 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 2019 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 2020 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 2021 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 2022 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 2023 // for this unlikely case.
mjr 40:cc0d9814522b 2024 if (gamma && !activeLow)
mjr 40:cc0d9814522b 2025 {
mjr 40:cc0d9814522b 2026 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 2027 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 2028
mjr 40:cc0d9814522b 2029 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 2030 gamma = false;
mjr 40:cc0d9814522b 2031 }
mjr 40:cc0d9814522b 2032 else
mjr 40:cc0d9814522b 2033 {
mjr 40:cc0d9814522b 2034 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 2035 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 2036 }
mjr 40:cc0d9814522b 2037 }
mjr 38:091e511ce8a0 2038 else
mjr 40:cc0d9814522b 2039 {
mjr 40:cc0d9814522b 2040 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 2041 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 2042 }
mjr 38:091e511ce8a0 2043 break;
mjr 38:091e511ce8a0 2044
mjr 38:091e511ce8a0 2045 case PortType74HC595:
mjr 87:8d35c74403af 2046 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 2047 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 2048 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 2049 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 2050 else
mjr 38:091e511ce8a0 2051 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2052 break;
mjr 87:8d35c74403af 2053
mjr 87:8d35c74403af 2054 case PortTypeTLC59116:
mjr 87:8d35c74403af 2055 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 2056 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 2057 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 2058 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 2059 if (tlc59116 != 0)
mjr 87:8d35c74403af 2060 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 2061 break;
mjr 38:091e511ce8a0 2062
mjr 38:091e511ce8a0 2063 case PortTypeVirtual:
mjr 43:7a6364d82a41 2064 case PortTypeDisabled:
mjr 38:091e511ce8a0 2065 default:
mjr 38:091e511ce8a0 2066 // virtual or unknown
mjr 38:091e511ce8a0 2067 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2068 break;
mjr 38:091e511ce8a0 2069 }
mjr 38:091e511ce8a0 2070
mjr 40:cc0d9814522b 2071 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 2072 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 2073 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 2074 if (activeLow)
mjr 38:091e511ce8a0 2075 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 2076
mjr 89:c43cd923401c 2077 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 2078 if (flipperLogic)
mjr 89:c43cd923401c 2079 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 2080
mjr 99:8139b0c274f4 2081 // Layer on Chime Logic if desired. Note that Chime Logic and
mjr 99:8139b0c274f4 2082 // Flipper Logic are mutually exclusive, and Flipper Logic takes
mjr 99:8139b0c274f4 2083 // precedence, so ignore the Chime Logic bit if both are set.
mjr 99:8139b0c274f4 2084 if (chimeLogic && !flipperLogic)
mjr 99:8139b0c274f4 2085 lwp = new LwChimeLogicOut(lwp, pc.flipperLogic);
mjr 98:4df3c0f7e707 2086
mjr 89:c43cd923401c 2087 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 2088 if (noisy)
mjr 40:cc0d9814522b 2089 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 2090
mjr 40:cc0d9814522b 2091 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 2092 if (gamma)
mjr 40:cc0d9814522b 2093 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 2094
mjr 53:9b2611964afc 2095 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 2096 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 2097 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 2098 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 2099 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 2100
mjr 53:9b2611964afc 2101 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 2102 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 2103 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 2104
mjr 38:091e511ce8a0 2105 // turn it off initially
mjr 38:091e511ce8a0 2106 lwp->set(0);
mjr 38:091e511ce8a0 2107
mjr 38:091e511ce8a0 2108 // return the pin
mjr 38:091e511ce8a0 2109 return lwp;
mjr 38:091e511ce8a0 2110 }
mjr 38:091e511ce8a0 2111
mjr 6:cc35eb643e8f 2112 // initialize the output pin array
mjr 35:e959ffba78fd 2113 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 2114 {
mjr 99:8139b0c274f4 2115 // Initialize the Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 2116 LwFlipperLogicOut::classInit(cfg);
mjr 99:8139b0c274f4 2117 LwChimeLogicOut::classInit(cfg);
mjr 89:c43cd923401c 2118
mjr 35:e959ffba78fd 2119 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 2120 // total number of ports.
mjr 35:e959ffba78fd 2121 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 2122 int i;
mjr 35:e959ffba78fd 2123 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 2124 {
mjr 35:e959ffba78fd 2125 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 2126 {
mjr 35:e959ffba78fd 2127 numOutputs = i;
mjr 34:6b981a2afab7 2128 break;
mjr 34:6b981a2afab7 2129 }
mjr 33:d832bcab089e 2130 }
mjr 33:d832bcab089e 2131
mjr 73:4e8ce0b18915 2132 // allocate the pin array
mjr 73:4e8ce0b18915 2133 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 2134
mjr 73:4e8ce0b18915 2135 // Allocate the current brightness array
mjr 73:4e8ce0b18915 2136 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 2137
mjr 73:4e8ce0b18915 2138 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 2139 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2140 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2141
mjr 73:4e8ce0b18915 2142 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 2143 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 2144 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 2145
mjr 73:4e8ce0b18915 2146 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 2147 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2148 wizSpeed[i] = 2;
mjr 33:d832bcab089e 2149
mjr 35:e959ffba78fd 2150 // create the pin interface object for each port
mjr 35:e959ffba78fd 2151 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 2152 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 2153 }
mjr 6:cc35eb643e8f 2154
mjr 76:7f5912b6340e 2155 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 2156 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 2157 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 2158 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 2159 // equivalent to 48.
mjr 40:cc0d9814522b 2160 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 2161 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 2162 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 2163 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 2164 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 2165 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 2166 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 2167 255, 255
mjr 40:cc0d9814522b 2168 };
mjr 40:cc0d9814522b 2169
mjr 76:7f5912b6340e 2170 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 2171 // level (1..48)
mjr 76:7f5912b6340e 2172 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 2173 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 2174 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 2175 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 2176 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 2177 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 2178 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 2179 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 2180 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 2181 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 2182 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 2183 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 2184 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 2185 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 2186 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 2187 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 2188 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 2189 };
mjr 76:7f5912b6340e 2190
mjr 74:822a92bc11d2 2191 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 2192 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 2193 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 2194 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 2195 //
mjr 74:822a92bc11d2 2196 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2197 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2198 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 2199 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 2200 //
mjr 74:822a92bc11d2 2201 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 2202 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 2203 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 2204 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2205 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 2206 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 2207 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 2208 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 2209 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 2210 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 2211 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 2212 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 2213 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2214 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2215 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2216 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2217 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2218 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2219 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2220 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2221
mjr 74:822a92bc11d2 2222 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2223 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2224 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2225 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2226 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2227 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2228 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2229 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2230 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2231 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2232 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2233 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2234 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2235 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2236 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2237 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2238 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2239
mjr 74:822a92bc11d2 2240 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 2241 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2242 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2243 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2244 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2245 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2246 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2247 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2248 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2249 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2250 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2251 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2252 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2253 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2254 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2255 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2256 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2257
mjr 74:822a92bc11d2 2258 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 2259 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 2260 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 2261 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 2262 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 2263 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 2264 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 2265 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 2266 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 2267 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2268 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2269 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2270 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2271 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2272 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2273 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2274 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 2275 };
mjr 74:822a92bc11d2 2276
mjr 74:822a92bc11d2 2277 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 2278 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 2279 Timer wizCycleTimer;
mjr 74:822a92bc11d2 2280
mjr 76:7f5912b6340e 2281 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 2282 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 2283
mjr 76:7f5912b6340e 2284 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 2285 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 2286 // outputs on each cycle.
mjr 29:582472d0bc57 2287 static void wizPulse()
mjr 29:582472d0bc57 2288 {
mjr 76:7f5912b6340e 2289 // current bank
mjr 76:7f5912b6340e 2290 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 2291
mjr 76:7f5912b6340e 2292 // start a timer for statistics collection
mjr 76:7f5912b6340e 2293 IF_DIAG(
mjr 76:7f5912b6340e 2294 Timer t;
mjr 76:7f5912b6340e 2295 t.start();
mjr 76:7f5912b6340e 2296 )
mjr 76:7f5912b6340e 2297
mjr 76:7f5912b6340e 2298 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 2299 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 2300 //
mjr 76:7f5912b6340e 2301 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 2302 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 2303 //
mjr 76:7f5912b6340e 2304 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 2305 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 2306 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 2307 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 2308 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 2309 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 2310 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 2311 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 2312 // current cycle.
mjr 76:7f5912b6340e 2313 //
mjr 76:7f5912b6340e 2314 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 2315 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 2316 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 2317 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 2318 // there by less-than-obvious means.
mjr 76:7f5912b6340e 2319 //
mjr 76:7f5912b6340e 2320 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 2321 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 2322 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 2323 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 2324 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 2325 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 2326 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 2327 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 2328 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 2329 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 2330 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 2331 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 2332 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 2333 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 2334 // bit counts.
mjr 76:7f5912b6340e 2335 //
mjr 76:7f5912b6340e 2336 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 2337 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 2338 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 2339 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 2340 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 2341 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 2342 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 2343 // one division for another!
mjr 76:7f5912b6340e 2344 //
mjr 76:7f5912b6340e 2345 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 2346 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 2347 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 2348 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 2349 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 2350 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 2351 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 2352 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 2353 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 2354 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 2355 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 2356 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 2357 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 2358 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 2359 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 2360 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 2361 // remainder calculation anyway.
mjr 76:7f5912b6340e 2362 //
mjr 76:7f5912b6340e 2363 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 2364 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 2365 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 2366 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 2367 //
mjr 76:7f5912b6340e 2368 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 2369 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 2370 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 2371 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 2372 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 2373 // the result, since we started with 32.
mjr 76:7f5912b6340e 2374 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 2375 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 2376 };
mjr 76:7f5912b6340e 2377 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 2378
mjr 76:7f5912b6340e 2379 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 2380 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 2381 int toPort = fromPort+32;
mjr 76:7f5912b6340e 2382 if (toPort > numOutputs)
mjr 76:7f5912b6340e 2383 toPort = numOutputs;
mjr 76:7f5912b6340e 2384
mjr 76:7f5912b6340e 2385 // update all outputs set to flashing values
mjr 76:7f5912b6340e 2386 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 2387 {
mjr 76:7f5912b6340e 2388 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 2389 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 2390 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 2391 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 2392 if (wizOn[i])
mjr 29:582472d0bc57 2393 {
mjr 76:7f5912b6340e 2394 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 2395 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 2396 {
mjr 76:7f5912b6340e 2397 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 2398 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 2399 }
mjr 29:582472d0bc57 2400 }
mjr 76:7f5912b6340e 2401 }
mjr 76:7f5912b6340e 2402
mjr 34:6b981a2afab7 2403 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 2404 if (hc595 != 0)
mjr 35:e959ffba78fd 2405 hc595->update();
mjr 76:7f5912b6340e 2406
mjr 76:7f5912b6340e 2407 // switch to the next bank
mjr 76:7f5912b6340e 2408 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 2409 wizPulseBank = 0;
mjr 76:7f5912b6340e 2410
mjr 76:7f5912b6340e 2411 // collect timing statistics
mjr 76:7f5912b6340e 2412 IF_DIAG(
mjr 76:7f5912b6340e 2413 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 2414 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 2415 )
mjr 1:d913e0afb2ac 2416 }
mjr 38:091e511ce8a0 2417
mjr 76:7f5912b6340e 2418 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 2419 static void updateLwPort(int port)
mjr 38:091e511ce8a0 2420 {
mjr 76:7f5912b6340e 2421 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 2422 if (wizOn[port])
mjr 76:7f5912b6340e 2423 {
mjr 76:7f5912b6340e 2424 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 2425 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 2426 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 2427 // it on the next cycle.
mjr 76:7f5912b6340e 2428 int val = wizVal[port];
mjr 76:7f5912b6340e 2429 if (val <= 49)
mjr 76:7f5912b6340e 2430 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 2431 }
mjr 76:7f5912b6340e 2432 else
mjr 76:7f5912b6340e 2433 {
mjr 76:7f5912b6340e 2434 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 2435 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 2436 }
mjr 73:4e8ce0b18915 2437 }
mjr 73:4e8ce0b18915 2438
mjr 73:4e8ce0b18915 2439 // Turn off all outputs and restore everything to the default LedWiz
mjr 92:f264fbaa1be5 2440 // state. This sets all outputs to LedWiz profile value 48 (full
mjr 92:f264fbaa1be5 2441 // brightness) and switch state Off, and sets the LedWiz flash rate
mjr 92:f264fbaa1be5 2442 // to 2. This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2443 //
mjr 73:4e8ce0b18915 2444 void allOutputsOff()
mjr 73:4e8ce0b18915 2445 {
mjr 92:f264fbaa1be5 2446 // reset all outputs to OFF/48
mjr 73:4e8ce0b18915 2447 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2448 {
mjr 73:4e8ce0b18915 2449 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2450 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2451 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2452 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2453 }
mjr 73:4e8ce0b18915 2454
mjr 73:4e8ce0b18915 2455 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2456 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2457 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2458
mjr 73:4e8ce0b18915 2459 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2460 if (hc595 != 0)
mjr 38:091e511ce8a0 2461 hc595->update();
mjr 38:091e511ce8a0 2462 }
mjr 38:091e511ce8a0 2463
mjr 74:822a92bc11d2 2464 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2465 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2466 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2467 // address any port group.
mjr 74:822a92bc11d2 2468 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2469 {
mjr 76:7f5912b6340e 2470 // update all on/off states in the group
mjr 74:822a92bc11d2 2471 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2472 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2473 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2474 {
mjr 74:822a92bc11d2 2475 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2476 if (bit == 0x100) {
mjr 74:822a92bc11d2 2477 bit = 1;
mjr 74:822a92bc11d2 2478 ++imsg;
mjr 74:822a92bc11d2 2479 }
mjr 74:822a92bc11d2 2480
mjr 74:822a92bc11d2 2481 // set the on/off state
mjr 76:7f5912b6340e 2482 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2483
mjr 76:7f5912b6340e 2484 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2485 updateLwPort(port);
mjr 74:822a92bc11d2 2486 }
mjr 74:822a92bc11d2 2487
mjr 74:822a92bc11d2 2488 // set the flash speed for the port group
mjr 74:822a92bc11d2 2489 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2490 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2491
mjr 76:7f5912b6340e 2492 // update 74HC959 outputs
mjr 76:7f5912b6340e 2493 if (hc595 != 0)
mjr 76:7f5912b6340e 2494 hc595->update();
mjr 74:822a92bc11d2 2495 }
mjr 74:822a92bc11d2 2496
mjr 74:822a92bc11d2 2497 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2498 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2499 {
mjr 74:822a92bc11d2 2500 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2501 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2502 {
mjr 74:822a92bc11d2 2503 // get the value
mjr 74:822a92bc11d2 2504 uint8_t v = data[i];
mjr 74:822a92bc11d2 2505
mjr 74:822a92bc11d2 2506 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2507 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2508 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2509 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2510 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2511 // as such.
mjr 74:822a92bc11d2 2512 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2513 v = 48;
mjr 74:822a92bc11d2 2514
mjr 74:822a92bc11d2 2515 // store it
mjr 76:7f5912b6340e 2516 wizVal[port] = v;
mjr 76:7f5912b6340e 2517
mjr 76:7f5912b6340e 2518 // update the port
mjr 76:7f5912b6340e 2519 updateLwPort(port);
mjr 74:822a92bc11d2 2520 }
mjr 74:822a92bc11d2 2521
mjr 76:7f5912b6340e 2522 // update 74HC595 outputs
mjr 76:7f5912b6340e 2523 if (hc595 != 0)
mjr 76:7f5912b6340e 2524 hc595->update();
mjr 74:822a92bc11d2 2525 }
mjr 74:822a92bc11d2 2526
mjr 77:0b96f6867312 2527 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2528 //
mjr 77:0b96f6867312 2529 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2530 //
mjr 77:0b96f6867312 2531
mjr 77:0b96f6867312 2532 // receiver
mjr 77:0b96f6867312 2533 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2534
mjr 77:0b96f6867312 2535 // transmitter
mjr 77:0b96f6867312 2536 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2537
mjr 77:0b96f6867312 2538 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2539 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2540 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2541 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2542 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2543 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2544 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2545 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2546 // configuration slot n
mjr 77:0b96f6867312 2547 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2548
mjr 78:1e00b3fa11af 2549 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2550 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2551 // protocol.
mjr 78:1e00b3fa11af 2552 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2553
mjr 78:1e00b3fa11af 2554 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2555 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2556 // while waiting for the rest.
mjr 78:1e00b3fa11af 2557 static struct
mjr 78:1e00b3fa11af 2558 {
mjr 78:1e00b3fa11af 2559 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 2560 uint64_t code; // code
mjr 78:1e00b3fa11af 2561 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 2562 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 2563 } IRAdHocCmd;
mjr 88:98bce687e6c0 2564
mjr 77:0b96f6867312 2565
mjr 77:0b96f6867312 2566 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 2567 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 2568 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 2569 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 2570 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 2571 // amount of time.
mjr 77:0b96f6867312 2572 Timer IRTimer;
mjr 77:0b96f6867312 2573
mjr 77:0b96f6867312 2574 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 2575 // The states are:
mjr 77:0b96f6867312 2576 //
mjr 77:0b96f6867312 2577 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 2578 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 2579 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 2580 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 2581 //
mjr 77:0b96f6867312 2582 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 2583 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 2584 // received within a reasonable time.
mjr 77:0b96f6867312 2585 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 2586
mjr 77:0b96f6867312 2587 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 2588 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 2589 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 2590 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 2591 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 2592 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 2593 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 2594 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 2595 IRCommand learnedIRCode;
mjr 77:0b96f6867312 2596
mjr 78:1e00b3fa11af 2597 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 2598 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 2599 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 2600 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 2601 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 2602 // index; 0 represents no command.
mjr 77:0b96f6867312 2603 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 2604
mjr 77:0b96f6867312 2605 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 2606 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 2607 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 2608 // command we received.
mjr 77:0b96f6867312 2609 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 2610
mjr 77:0b96f6867312 2611 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 2612 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 2613 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 2614 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 2615 // distinct key press.
mjr 77:0b96f6867312 2616 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 2617
mjr 78:1e00b3fa11af 2618
mjr 77:0b96f6867312 2619 // initialize
mjr 77:0b96f6867312 2620 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 2621 {
mjr 77:0b96f6867312 2622 PinName pin;
mjr 77:0b96f6867312 2623
mjr 77:0b96f6867312 2624 // start the IR timer
mjr 77:0b96f6867312 2625 IRTimer.start();
mjr 77:0b96f6867312 2626
mjr 77:0b96f6867312 2627 // if there's a transmitter, set it up
mjr 77:0b96f6867312 2628 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 2629 {
mjr 77:0b96f6867312 2630 // no virtual buttons yet
mjr 77:0b96f6867312 2631 int nVirtualButtons = 0;
mjr 77:0b96f6867312 2632 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 2633
mjr 77:0b96f6867312 2634 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 2635 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2636 {
mjr 77:0b96f6867312 2637 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 2638 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 2639 }
mjr 77:0b96f6867312 2640
mjr 77:0b96f6867312 2641 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 2642 // real button inputs
mjr 77:0b96f6867312 2643 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 2644 {
mjr 77:0b96f6867312 2645 // get the button
mjr 77:0b96f6867312 2646 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 2647
mjr 77:0b96f6867312 2648 // check the unshifted button
mjr 77:0b96f6867312 2649 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 2650 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2651 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2652 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2653
mjr 77:0b96f6867312 2654 // check the shifted button
mjr 77:0b96f6867312 2655 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 2656 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2657 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2658 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2659 }
mjr 77:0b96f6867312 2660
mjr 77:0b96f6867312 2661 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 2662 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 2663 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 2664
mjr 77:0b96f6867312 2665 // create the transmitter
mjr 77:0b96f6867312 2666 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 2667
mjr 77:0b96f6867312 2668 // program the commands into the virtual button slots
mjr 77:0b96f6867312 2669 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2670 {
mjr 77:0b96f6867312 2671 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 2672 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 2673 if (vb != 0xFF)
mjr 77:0b96f6867312 2674 {
mjr 77:0b96f6867312 2675 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2676 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 2677 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 2678 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 2679 }
mjr 77:0b96f6867312 2680 }
mjr 77:0b96f6867312 2681 }
mjr 77:0b96f6867312 2682
mjr 77:0b96f6867312 2683 // if there's a receiver, set it up
mjr 77:0b96f6867312 2684 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 2685 {
mjr 77:0b96f6867312 2686 // create the receiver
mjr 77:0b96f6867312 2687 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 2688
mjr 77:0b96f6867312 2689 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 2690 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 2691 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 2692
mjr 77:0b96f6867312 2693 // enable it
mjr 77:0b96f6867312 2694 ir_rx->enable();
mjr 77:0b96f6867312 2695
mjr 77:0b96f6867312 2696 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 2697 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 2698 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 2699 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2700 {
mjr 77:0b96f6867312 2701 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2702 if (cb.protocol != 0
mjr 77:0b96f6867312 2703 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2704 {
mjr 77:0b96f6867312 2705 kbKeys = true;
mjr 77:0b96f6867312 2706 break;
mjr 77:0b96f6867312 2707 }
mjr 77:0b96f6867312 2708 }
mjr 77:0b96f6867312 2709 }
mjr 77:0b96f6867312 2710 }
mjr 77:0b96f6867312 2711
mjr 77:0b96f6867312 2712 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2713 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2714 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2715 {
mjr 77:0b96f6867312 2716 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2717 if (ir_tx != 0)
mjr 77:0b96f6867312 2718 {
mjr 77:0b96f6867312 2719 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2720 int slot = cmd - 1;
mjr 77:0b96f6867312 2721
mjr 77:0b96f6867312 2722 // press or release the virtual button
mjr 77:0b96f6867312 2723 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2724 }
mjr 77:0b96f6867312 2725 }
mjr 77:0b96f6867312 2726
mjr 78:1e00b3fa11af 2727 // Process IR input and output
mjr 77:0b96f6867312 2728 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2729 {
mjr 78:1e00b3fa11af 2730 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2731 if (ir_tx != 0)
mjr 77:0b96f6867312 2732 {
mjr 78:1e00b3fa11af 2733 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2734 // is ready to send, send it.
mjr 78:1e00b3fa11af 2735 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2736 {
mjr 78:1e00b3fa11af 2737 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2738 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2739 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2740 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2741
mjr 78:1e00b3fa11af 2742 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2743 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2744 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2745
mjr 78:1e00b3fa11af 2746 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2747 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2748 }
mjr 77:0b96f6867312 2749 }
mjr 78:1e00b3fa11af 2750
mjr 78:1e00b3fa11af 2751 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2752 if (ir_rx != 0)
mjr 77:0b96f6867312 2753 {
mjr 78:1e00b3fa11af 2754 // Time out any received command
mjr 78:1e00b3fa11af 2755 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2756 {
mjr 80:94dc2946871b 2757 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 2758 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 2759 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 2760 if (t > 200000)
mjr 78:1e00b3fa11af 2761 IRCommandIn = 0;
mjr 80:94dc2946871b 2762 else if (t > 50000)
mjr 78:1e00b3fa11af 2763 IRKeyGap = false;
mjr 78:1e00b3fa11af 2764 }
mjr 78:1e00b3fa11af 2765
mjr 78:1e00b3fa11af 2766 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2767 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2768 {
mjr 78:1e00b3fa11af 2769 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2770 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2771 // limit.
mjr 78:1e00b3fa11af 2772 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2773 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2774 int n;
mjr 78:1e00b3fa11af 2775 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2776
mjr 78:1e00b3fa11af 2777 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2778 if (n != 0)
mjr 78:1e00b3fa11af 2779 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2780
mjr 78:1e00b3fa11af 2781 // check for a command
mjr 78:1e00b3fa11af 2782 IRCommand c;
mjr 78:1e00b3fa11af 2783 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2784 {
mjr 78:1e00b3fa11af 2785 // check the current learning state
mjr 78:1e00b3fa11af 2786 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2787 {
mjr 78:1e00b3fa11af 2788 case 1:
mjr 78:1e00b3fa11af 2789 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2790 // This is it.
mjr 78:1e00b3fa11af 2791 learnedIRCode = c;
mjr 78:1e00b3fa11af 2792
mjr 78:1e00b3fa11af 2793 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2794 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2795 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2796 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2797 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2798 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2799 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2800 break;
mjr 78:1e00b3fa11af 2801
mjr 78:1e00b3fa11af 2802 case 2:
mjr 78:1e00b3fa11af 2803 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2804 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2805 //
mjr 78:1e00b3fa11af 2806 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2807 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2808 //
mjr 78:1e00b3fa11af 2809 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2810 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2811 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2812 // them.
mjr 78:1e00b3fa11af 2813 //
mjr 78:1e00b3fa11af 2814 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2815 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2816 // over.
mjr 78:1e00b3fa11af 2817 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2818 && c.hasDittos
mjr 78:1e00b3fa11af 2819 && c.ditto)
mjr 78:1e00b3fa11af 2820 {
mjr 78:1e00b3fa11af 2821 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2822 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2823 }
mjr 78:1e00b3fa11af 2824 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2825 && c.hasDittos
mjr 78:1e00b3fa11af 2826 && !c.ditto
mjr 78:1e00b3fa11af 2827 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2828 {
mjr 78:1e00b3fa11af 2829 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2830 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2831 // protocol supports them
mjr 78:1e00b3fa11af 2832 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2833 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2834 }
mjr 78:1e00b3fa11af 2835 else
mjr 78:1e00b3fa11af 2836 {
mjr 78:1e00b3fa11af 2837 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2838 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2839 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2840 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2841 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2842 }
mjr 78:1e00b3fa11af 2843 break;
mjr 78:1e00b3fa11af 2844 }
mjr 77:0b96f6867312 2845
mjr 78:1e00b3fa11af 2846 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2847 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2848 // learning mode.
mjr 78:1e00b3fa11af 2849 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2850 {
mjr 78:1e00b3fa11af 2851 // figure the flags:
mjr 78:1e00b3fa11af 2852 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2853 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2854 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2855 flags |= 0x02;
mjr 78:1e00b3fa11af 2856
mjr 78:1e00b3fa11af 2857 // report the code
mjr 78:1e00b3fa11af 2858 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2859
mjr 78:1e00b3fa11af 2860 // exit learning mode
mjr 78:1e00b3fa11af 2861 IRLearningMode = 0;
mjr 77:0b96f6867312 2862 }
mjr 77:0b96f6867312 2863 }
mjr 77:0b96f6867312 2864
mjr 78:1e00b3fa11af 2865 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2866 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2867 {
mjr 78:1e00b3fa11af 2868 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2869 // zero data elements
mjr 78:1e00b3fa11af 2870 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2871
mjr 78:1e00b3fa11af 2872
mjr 78:1e00b3fa11af 2873 // cancel learning mode
mjr 77:0b96f6867312 2874 IRLearningMode = 0;
mjr 77:0b96f6867312 2875 }
mjr 77:0b96f6867312 2876 }
mjr 78:1e00b3fa11af 2877 else
mjr 77:0b96f6867312 2878 {
mjr 78:1e00b3fa11af 2879 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2880 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2881 ir_rx->process();
mjr 78:1e00b3fa11af 2882
mjr 78:1e00b3fa11af 2883 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2884 // have been read.
mjr 78:1e00b3fa11af 2885 IRCommand c;
mjr 78:1e00b3fa11af 2886 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2887 {
mjr 78:1e00b3fa11af 2888 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2889 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2890 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2891 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2892 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2893 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2894 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2895 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2896 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2897 //
mjr 78:1e00b3fa11af 2898 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2899 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2900 // command.
mjr 78:1e00b3fa11af 2901 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2902 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2903 {
mjr 78:1e00b3fa11af 2904 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2905 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2906 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2907 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2908 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2909 if (c.ditto)
mjr 78:1e00b3fa11af 2910 {
mjr 78:1e00b3fa11af 2911 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2912 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2913 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2914 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2915 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2916 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2917 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2918 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2919 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2920 }
mjr 78:1e00b3fa11af 2921 else
mjr 78:1e00b3fa11af 2922 {
mjr 78:1e00b3fa11af 2923 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2924 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2925 // prior command.
mjr 78:1e00b3fa11af 2926 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2927 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2928 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2929
mjr 78:1e00b3fa11af 2930 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2931 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2932 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2933 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2934 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2935 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2936 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2937 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2938 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2939 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2940 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2941 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2942 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2943 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2944 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2945 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2946 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2947 autoRepeat =
mjr 78:1e00b3fa11af 2948 repeat
mjr 78:1e00b3fa11af 2949 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2950 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2951 }
mjr 78:1e00b3fa11af 2952 }
mjr 78:1e00b3fa11af 2953
mjr 78:1e00b3fa11af 2954 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2955 if (repeat)
mjr 78:1e00b3fa11af 2956 {
mjr 78:1e00b3fa11af 2957 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2958 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2959 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2960 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2961 // key press event.
mjr 78:1e00b3fa11af 2962 if (!autoRepeat)
mjr 78:1e00b3fa11af 2963 IRKeyGap = true;
mjr 78:1e00b3fa11af 2964
mjr 78:1e00b3fa11af 2965 // restart the key-up timer
mjr 78:1e00b3fa11af 2966 IRTimer.reset();
mjr 78:1e00b3fa11af 2967 }
mjr 78:1e00b3fa11af 2968 else if (c.ditto)
mjr 78:1e00b3fa11af 2969 {
mjr 78:1e00b3fa11af 2970 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2971 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2972 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2973 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2974 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2975 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2976 // a full command for a new key press.
mjr 78:1e00b3fa11af 2977 IRCommandIn = 0;
mjr 77:0b96f6867312 2978 }
mjr 77:0b96f6867312 2979 else
mjr 77:0b96f6867312 2980 {
mjr 78:1e00b3fa11af 2981 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2982 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2983 // the new command).
mjr 78:1e00b3fa11af 2984 IRCommandIn = 0;
mjr 77:0b96f6867312 2985
mjr 78:1e00b3fa11af 2986 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2987 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2988 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2989 {
mjr 78:1e00b3fa11af 2990 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2991 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2992 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2993 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2994 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2995 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2996 {
mjr 78:1e00b3fa11af 2997 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2998 // remember the starting time.
mjr 78:1e00b3fa11af 2999 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 3000 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 3001 IRTimer.reset();
mjr 78:1e00b3fa11af 3002
mjr 78:1e00b3fa11af 3003 // no need to keep searching
mjr 78:1e00b3fa11af 3004 break;
mjr 78:1e00b3fa11af 3005 }
mjr 77:0b96f6867312 3006 }
mjr 77:0b96f6867312 3007 }
mjr 77:0b96f6867312 3008 }
mjr 77:0b96f6867312 3009 }
mjr 77:0b96f6867312 3010 }
mjr 77:0b96f6867312 3011 }
mjr 77:0b96f6867312 3012
mjr 74:822a92bc11d2 3013
mjr 11:bd9da7088e6e 3014 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 3015 //
mjr 11:bd9da7088e6e 3016 // Button input
mjr 11:bd9da7088e6e 3017 //
mjr 11:bd9da7088e6e 3018
mjr 18:5e890ebd0023 3019 // button state
mjr 18:5e890ebd0023 3020 struct ButtonState
mjr 18:5e890ebd0023 3021 {
mjr 38:091e511ce8a0 3022 ButtonState()
mjr 38:091e511ce8a0 3023 {
mjr 53:9b2611964afc 3024 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 3025 virtState = 0;
mjr 53:9b2611964afc 3026 dbState = 0;
mjr 38:091e511ce8a0 3027 pulseState = 0;
mjr 53:9b2611964afc 3028 pulseTime = 0;
mjr 38:091e511ce8a0 3029 }
mjr 35:e959ffba78fd 3030
mjr 53:9b2611964afc 3031 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 3032 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 3033 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 3034 //
mjr 53:9b2611964afc 3035 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 3036 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 3037 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 3038 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 3039 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 3040 void virtPress(bool on)
mjr 53:9b2611964afc 3041 {
mjr 53:9b2611964afc 3042 // Increment or decrement the current state
mjr 53:9b2611964afc 3043 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 3044 }
mjr 53:9b2611964afc 3045
mjr 53:9b2611964afc 3046 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 3047 TinyDigitalIn di;
mjr 38:091e511ce8a0 3048
mjr 65:739875521aae 3049 // Time of last pulse state transition.
mjr 65:739875521aae 3050 //
mjr 65:739875521aae 3051 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 3052 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 3053 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 3054 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 3055 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 3056 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 3057 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 3058 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 3059 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 3060 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 3061 // This software system can't be fooled that way.)
mjr 65:739875521aae 3062 uint32_t pulseTime;
mjr 18:5e890ebd0023 3063
mjr 65:739875521aae 3064 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 3065 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 3066 uint8_t cfgIndex;
mjr 53:9b2611964afc 3067
mjr 53:9b2611964afc 3068 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 3069 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 3070 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 3071 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 3072 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 3073 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 3074 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 3075 // and physical source states.
mjr 53:9b2611964afc 3076 uint8_t virtState;
mjr 38:091e511ce8a0 3077
mjr 38:091e511ce8a0 3078 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 3079 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 3080 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 3081 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 3082 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 3083 uint8_t dbState;
mjr 38:091e511ce8a0 3084
mjr 65:739875521aae 3085 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 3086 uint8_t physState : 1;
mjr 65:739875521aae 3087
mjr 65:739875521aae 3088 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 3089 uint8_t logState : 1;
mjr 65:739875521aae 3090
mjr 79:682ae3171a08 3091 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 3092 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 3093 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 3094 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 3095 uint8_t prevLogState : 1;
mjr 65:739875521aae 3096
mjr 65:739875521aae 3097 // Pulse state
mjr 65:739875521aae 3098 //
mjr 65:739875521aae 3099 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 3100 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 3101 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 3102 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 3103 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 3104 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 3105 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 3106 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 3107 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 3108 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 3109 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 3110 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 3111 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 3112 //
mjr 38:091e511ce8a0 3113 // Pulse state:
mjr 38:091e511ce8a0 3114 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 3115 // 1 -> off
mjr 38:091e511ce8a0 3116 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 3117 // 3 -> on
mjr 38:091e511ce8a0 3118 // 4 -> transitioning on-off
mjr 65:739875521aae 3119 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 3120
mjr 65:739875521aae 3121 } __attribute__((packed));
mjr 65:739875521aae 3122
mjr 65:739875521aae 3123 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 3124 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 3125 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 3126
mjr 66:2e3583fbd2f4 3127 // Shift button state
mjr 66:2e3583fbd2f4 3128 struct
mjr 66:2e3583fbd2f4 3129 {
mjr 66:2e3583fbd2f4 3130 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 3131 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 3132 // 0 = not shifted
mjr 66:2e3583fbd2f4 3133 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 3134 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 3135 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 3136 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 3137 }
mjr 66:2e3583fbd2f4 3138 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 3139
mjr 38:091e511ce8a0 3140 // Button data
mjr 38:091e511ce8a0 3141 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 3142
mjr 38:091e511ce8a0 3143 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 3144 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 3145 // modifier keys.
mjr 38:091e511ce8a0 3146 struct
mjr 38:091e511ce8a0 3147 {
mjr 38:091e511ce8a0 3148 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 3149 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 3150 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 3151 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 3152 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 3153
mjr 38:091e511ce8a0 3154 // Media key state
mjr 38:091e511ce8a0 3155 struct
mjr 38:091e511ce8a0 3156 {
mjr 38:091e511ce8a0 3157 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 3158 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 3159 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 3160
mjr 79:682ae3171a08 3161 // button scan interrupt timer
mjr 79:682ae3171a08 3162 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 3163
mjr 38:091e511ce8a0 3164 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 3165 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 3166 void scanButtons()
mjr 38:091e511ce8a0 3167 {
mjr 79:682ae3171a08 3168 // schedule the next interrupt
mjr 79:682ae3171a08 3169 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 3170
mjr 38:091e511ce8a0 3171 // scan all button input pins
mjr 73:4e8ce0b18915 3172 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 3173 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 3174 {
mjr 73:4e8ce0b18915 3175 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 3176 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 3177 bs->dbState = db;
mjr 73:4e8ce0b18915 3178
mjr 73:4e8ce0b18915 3179 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 3180 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 3181 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 3182 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 3183 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 3184 db &= stable;
mjr 73:4e8ce0b18915 3185 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 3186 bs->physState = !db;
mjr 38:091e511ce8a0 3187 }
mjr 38:091e511ce8a0 3188 }
mjr 38:091e511ce8a0 3189
mjr 38:091e511ce8a0 3190 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 3191 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 3192 // in the physical button state.
mjr 38:091e511ce8a0 3193 Timer buttonTimer;
mjr 12:669df364a565 3194
mjr 65:739875521aae 3195 // Count a button during the initial setup scan
mjr 72:884207c0aab0 3196 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 3197 {
mjr 65:739875521aae 3198 // count it
mjr 65:739875521aae 3199 ++nButtons;
mjr 65:739875521aae 3200
mjr 67:c39e66c4e000 3201 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 3202 // keyboard interface
mjr 72:884207c0aab0 3203 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 3204 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 3205 kbKeys = true;
mjr 65:739875521aae 3206 }
mjr 65:739875521aae 3207
mjr 11:bd9da7088e6e 3208 // initialize the button inputs
mjr 35:e959ffba78fd 3209 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 3210 {
mjr 66:2e3583fbd2f4 3211 // presume no shift key
mjr 66:2e3583fbd2f4 3212 shiftButton.index = -1;
mjr 82:4f6209cb5c33 3213 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 3214
mjr 65:739875521aae 3215 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 3216 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 3217 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 3218 nButtons = 0;
mjr 65:739875521aae 3219 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 3220 {
mjr 65:739875521aae 3221 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 3222 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 3223 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 3224 }
mjr 65:739875521aae 3225
mjr 65:739875521aae 3226 // Count virtual buttons
mjr 65:739875521aae 3227
mjr 65:739875521aae 3228 // ZB Launch
mjr 65:739875521aae 3229 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 3230 {
mjr 65:739875521aae 3231 // valid - remember the live button index
mjr 65:739875521aae 3232 zblButtonIndex = nButtons;
mjr 65:739875521aae 3233
mjr 65:739875521aae 3234 // count it
mjr 72:884207c0aab0 3235 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 3236 }
mjr 65:739875521aae 3237
mjr 65:739875521aae 3238 // Allocate the live button slots
mjr 65:739875521aae 3239 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 3240
mjr 65:739875521aae 3241 // Configure the physical inputs
mjr 65:739875521aae 3242 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 3243 {
mjr 65:739875521aae 3244 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 3245 if (pin != NC)
mjr 65:739875521aae 3246 {
mjr 65:739875521aae 3247 // point back to the config slot for the keyboard data
mjr 65:739875521aae 3248 bs->cfgIndex = i;
mjr 65:739875521aae 3249
mjr 65:739875521aae 3250 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 3251 bs->di.assignPin(pin);
mjr 65:739875521aae 3252
mjr 65:739875521aae 3253 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 3254 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 3255 bs->pulseState = 1;
mjr 65:739875521aae 3256
mjr 66:2e3583fbd2f4 3257 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 3258 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 3259 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 3260 // config slots are left unused.
mjr 78:1e00b3fa11af 3261 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 3262 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 3263
mjr 65:739875521aae 3264 // advance to the next button
mjr 65:739875521aae 3265 ++bs;
mjr 65:739875521aae 3266 }
mjr 65:739875521aae 3267 }
mjr 65:739875521aae 3268
mjr 53:9b2611964afc 3269 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 3270 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 3271 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 3272 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 3273
mjr 53:9b2611964afc 3274 // ZB Launch Ball button
mjr 65:739875521aae 3275 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 3276 {
mjr 65:739875521aae 3277 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 3278 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 3279 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 3280 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 3281 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 3282 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 3283 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 3284 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 3285
mjr 66:2e3583fbd2f4 3286 // advance to the next button
mjr 65:739875521aae 3287 ++bs;
mjr 11:bd9da7088e6e 3288 }
mjr 12:669df364a565 3289
mjr 38:091e511ce8a0 3290 // start the button scan thread
mjr 79:682ae3171a08 3291 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 3292
mjr 38:091e511ce8a0 3293 // start the button state transition timer
mjr 12:669df364a565 3294 buttonTimer.start();
mjr 11:bd9da7088e6e 3295 }
mjr 11:bd9da7088e6e 3296
mjr 67:c39e66c4e000 3297 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 3298 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 3299 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 3300 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 3301 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 3302 //
mjr 67:c39e66c4e000 3303 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 3304 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 3305 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 3306 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 3307 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 3308 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 3309 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 3310 //
mjr 67:c39e66c4e000 3311 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 3312 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 3313 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 3314 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 3315 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 3316 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 3317 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 3318 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 3319 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 3320 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 3321 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 3322 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 3323 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 3324 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 3325 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 3326 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 3327 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 3328 };
mjr 77:0b96f6867312 3329
mjr 77:0b96f6867312 3330 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 3331 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 3332 // states of the button iputs.
mjr 77:0b96f6867312 3333 struct KeyState
mjr 77:0b96f6867312 3334 {
mjr 77:0b96f6867312 3335 KeyState()
mjr 77:0b96f6867312 3336 {
mjr 77:0b96f6867312 3337 // zero all members
mjr 77:0b96f6867312 3338 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 3339 }
mjr 77:0b96f6867312 3340
mjr 77:0b96f6867312 3341 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 3342 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 3343 uint8_t mediakeys;
mjr 77:0b96f6867312 3344
mjr 77:0b96f6867312 3345 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 3346 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 3347 // USBJoystick.cpp).
mjr 77:0b96f6867312 3348 uint8_t modkeys;
mjr 77:0b96f6867312 3349
mjr 77:0b96f6867312 3350 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 3351 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 3352 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 3353 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 3354 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 3355 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 3356 uint8_t keys[7];
mjr 77:0b96f6867312 3357
mjr 77:0b96f6867312 3358 // number of valid entries in keys[] array
mjr 77:0b96f6867312 3359 int nkeys;
mjr 77:0b96f6867312 3360
mjr 77:0b96f6867312 3361 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 3362 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 3363 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 3364 uint32_t js;
mjr 77:0b96f6867312 3365
mjr 77:0b96f6867312 3366
mjr 77:0b96f6867312 3367 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 3368 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 3369 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 3370 {
mjr 77:0b96f6867312 3371 // add the key according to the type
mjr 77:0b96f6867312 3372 switch (typ)
mjr 77:0b96f6867312 3373 {
mjr 77:0b96f6867312 3374 case BtnTypeJoystick:
mjr 77:0b96f6867312 3375 // joystick button
mjr 77:0b96f6867312 3376 js |= (1 << (val - 1));
mjr 77:0b96f6867312 3377 break;
mjr 77:0b96f6867312 3378
mjr 77:0b96f6867312 3379 case BtnTypeKey:
mjr 77:0b96f6867312 3380 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 3381 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 3382 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 3383 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 3384 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 3385 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 3386 // explicitly using media keys if desired.
mjr 77:0b96f6867312 3387 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 3388 {
mjr 77:0b96f6867312 3389 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 3390 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 3391 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 3392 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 3393 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 3394 }
mjr 77:0b96f6867312 3395 else
mjr 77:0b96f6867312 3396 {
mjr 77:0b96f6867312 3397 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 3398 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 3399 // apply, add the key to the key array.
mjr 77:0b96f6867312 3400 if (nkeys < 7)
mjr 77:0b96f6867312 3401 {
mjr 77:0b96f6867312 3402 bool found = false;
mjr 77:0b96f6867312 3403 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 3404 {
mjr 77:0b96f6867312 3405 if (keys[i] == val)
mjr 77:0b96f6867312 3406 {
mjr 77:0b96f6867312 3407 found = true;
mjr 77:0b96f6867312 3408 break;
mjr 77:0b96f6867312 3409 }
mjr 77:0b96f6867312 3410 }
mjr 77:0b96f6867312 3411 if (!found)
mjr 77:0b96f6867312 3412 keys[nkeys++] = val;
mjr 77:0b96f6867312 3413 }
mjr 77:0b96f6867312 3414 }
mjr 77:0b96f6867312 3415 break;
mjr 77:0b96f6867312 3416
mjr 77:0b96f6867312 3417 case BtnTypeMedia:
mjr 77:0b96f6867312 3418 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 3419 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 3420 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 3421 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 3422 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 3423 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 3424 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 3425 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 3426 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 3427 break;
mjr 77:0b96f6867312 3428 }
mjr 77:0b96f6867312 3429 }
mjr 77:0b96f6867312 3430 };
mjr 67:c39e66c4e000 3431
mjr 67:c39e66c4e000 3432
mjr 38:091e511ce8a0 3433 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 3434 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 3435 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 3436 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 3437 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 3438 {
mjr 77:0b96f6867312 3439 // key state
mjr 77:0b96f6867312 3440 KeyState ks;
mjr 38:091e511ce8a0 3441
mjr 38:091e511ce8a0 3442 // calculate the time since the last run
mjr 53:9b2611964afc 3443 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 3444 buttonTimer.reset();
mjr 66:2e3583fbd2f4 3445
mjr 66:2e3583fbd2f4 3446 // check the shift button state
mjr 66:2e3583fbd2f4 3447 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 3448 {
mjr 78:1e00b3fa11af 3449 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 3450 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 3451
mjr 78:1e00b3fa11af 3452 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 3453 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3454 {
mjr 66:2e3583fbd2f4 3455 case 0:
mjr 78:1e00b3fa11af 3456 default:
mjr 78:1e00b3fa11af 3457 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 3458 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 3459 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 3460 switch (shiftButton.state)
mjr 78:1e00b3fa11af 3461 {
mjr 78:1e00b3fa11af 3462 case 0:
mjr 78:1e00b3fa11af 3463 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 3464 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 3465 if (sbs->physState)
mjr 78:1e00b3fa11af 3466 shiftButton.state = 1;
mjr 78:1e00b3fa11af 3467 break;
mjr 78:1e00b3fa11af 3468
mjr 78:1e00b3fa11af 3469 case 1:
mjr 78:1e00b3fa11af 3470 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 3471 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 3472 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 3473 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 3474 // pulse event.
mjr 78:1e00b3fa11af 3475 if (!sbs->physState)
mjr 78:1e00b3fa11af 3476 {
mjr 78:1e00b3fa11af 3477 shiftButton.state = 3;
mjr 78:1e00b3fa11af 3478 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 3479 }
mjr 78:1e00b3fa11af 3480 break;
mjr 78:1e00b3fa11af 3481
mjr 78:1e00b3fa11af 3482 case 2:
mjr 78:1e00b3fa11af 3483 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 3484 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 3485 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 3486 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 3487 // suppressed.
mjr 78:1e00b3fa11af 3488 if (!sbs->physState)
mjr 78:1e00b3fa11af 3489 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3490 break;
mjr 78:1e00b3fa11af 3491
mjr 78:1e00b3fa11af 3492 case 3:
mjr 78:1e00b3fa11af 3493 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 3494 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 3495 // has expired.
mjr 78:1e00b3fa11af 3496 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 3497 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 3498 else
mjr 78:1e00b3fa11af 3499 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3500 break;
mjr 78:1e00b3fa11af 3501 }
mjr 66:2e3583fbd2f4 3502 break;
mjr 66:2e3583fbd2f4 3503
mjr 66:2e3583fbd2f4 3504 case 1:
mjr 78:1e00b3fa11af 3505 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 3506 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 3507 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 3508 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 3509 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 3510 break;
mjr 66:2e3583fbd2f4 3511 }
mjr 66:2e3583fbd2f4 3512 }
mjr 38:091e511ce8a0 3513
mjr 11:bd9da7088e6e 3514 // scan the button list
mjr 18:5e890ebd0023 3515 ButtonState *bs = buttonState;
mjr 65:739875521aae 3516 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 3517 {
mjr 77:0b96f6867312 3518 // get the config entry for the button
mjr 77:0b96f6867312 3519 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 3520
mjr 66:2e3583fbd2f4 3521 // Check the button type:
mjr 66:2e3583fbd2f4 3522 // - shift button
mjr 66:2e3583fbd2f4 3523 // - pulsed button
mjr 66:2e3583fbd2f4 3524 // - regular button
mjr 66:2e3583fbd2f4 3525 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 3526 {
mjr 78:1e00b3fa11af 3527 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 3528 // depends on the mode.
mjr 78:1e00b3fa11af 3529 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3530 {
mjr 78:1e00b3fa11af 3531 case 0:
mjr 78:1e00b3fa11af 3532 default:
mjr 78:1e00b3fa11af 3533 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 3534 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 3535 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 3536 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 3537 break;
mjr 78:1e00b3fa11af 3538
mjr 78:1e00b3fa11af 3539 case 1:
mjr 78:1e00b3fa11af 3540 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 3541 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 3542 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 3543 break;
mjr 66:2e3583fbd2f4 3544 }
mjr 66:2e3583fbd2f4 3545 }
mjr 66:2e3583fbd2f4 3546 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 3547 {
mjr 38:091e511ce8a0 3548 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 3549 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 3550 {
mjr 53:9b2611964afc 3551 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 3552 bs->pulseTime -= dt;
mjr 53:9b2611964afc 3553 }
mjr 53:9b2611964afc 3554 else
mjr 53:9b2611964afc 3555 {
mjr 53:9b2611964afc 3556 // pulse time expired - check for a state change
mjr 53:9b2611964afc 3557 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 3558 switch (bs->pulseState)
mjr 18:5e890ebd0023 3559 {
mjr 38:091e511ce8a0 3560 case 1:
mjr 38:091e511ce8a0 3561 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 3562 if (bs->physState)
mjr 53:9b2611964afc 3563 {
mjr 38:091e511ce8a0 3564 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3565 bs->pulseState = 2;
mjr 53:9b2611964afc 3566 bs->logState = 1;
mjr 38:091e511ce8a0 3567 }
mjr 38:091e511ce8a0 3568 break;
mjr 18:5e890ebd0023 3569
mjr 38:091e511ce8a0 3570 case 2:
mjr 38:091e511ce8a0 3571 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 3572 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 3573 // change in state in the logical button
mjr 38:091e511ce8a0 3574 bs->pulseState = 3;
mjr 38:091e511ce8a0 3575 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3576 bs->logState = 0;
mjr 38:091e511ce8a0 3577 break;
mjr 38:091e511ce8a0 3578
mjr 38:091e511ce8a0 3579 case 3:
mjr 38:091e511ce8a0 3580 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 3581 if (!bs->physState)
mjr 53:9b2611964afc 3582 {
mjr 38:091e511ce8a0 3583 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3584 bs->pulseState = 4;
mjr 53:9b2611964afc 3585 bs->logState = 1;
mjr 38:091e511ce8a0 3586 }
mjr 38:091e511ce8a0 3587 break;
mjr 38:091e511ce8a0 3588
mjr 38:091e511ce8a0 3589 case 4:
mjr 38:091e511ce8a0 3590 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 3591 bs->pulseState = 1;
mjr 38:091e511ce8a0 3592 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3593 bs->logState = 0;
mjr 38:091e511ce8a0 3594 break;
mjr 18:5e890ebd0023 3595 }
mjr 18:5e890ebd0023 3596 }
mjr 38:091e511ce8a0 3597 }
mjr 38:091e511ce8a0 3598 else
mjr 38:091e511ce8a0 3599 {
mjr 38:091e511ce8a0 3600 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 3601 bs->logState = bs->physState;
mjr 38:091e511ce8a0 3602 }
mjr 77:0b96f6867312 3603
mjr 77:0b96f6867312 3604 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 3605 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 3606 //
mjr 78:1e00b3fa11af 3607 // - the shift button is down, AND
mjr 78:1e00b3fa11af 3608 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 3609 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 3610 //
mjr 78:1e00b3fa11af 3611 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 3612 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 3613 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 3614 //
mjr 78:1e00b3fa11af 3615 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 3616 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 3617 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 3618 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 3619 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 3620 bool useShift =
mjr 77:0b96f6867312 3621 (shiftButton.state != 0
mjr 78:1e00b3fa11af 3622 && shiftButton.index != i
mjr 77:0b96f6867312 3623 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 3624 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 3625 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 3626
mjr 77:0b96f6867312 3627 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 3628 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 3629 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 3630 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 3631 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 3632 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 3633 shiftButton.state = 2;
mjr 35:e959ffba78fd 3634
mjr 38:091e511ce8a0 3635 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 3636 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 3637 {
mjr 77:0b96f6867312 3638 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 3639 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 3640 {
mjr 77:0b96f6867312 3641 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 3642 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 3643 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 3644 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 3645 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 3646 // the night mode state.
mjr 77:0b96f6867312 3647 //
mjr 77:0b96f6867312 3648 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 3649 // mode. Shifting only works for toggle mode.
mjr 82:4f6209cb5c33 3650 if ((cfg.nightMode.flags & 0x01) != 0)
mjr 53:9b2611964afc 3651 {
mjr 77:0b96f6867312 3652 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 3653 // current switch state.
mjr 53:9b2611964afc 3654 setNightMode(bs->logState);
mjr 53:9b2611964afc 3655 }
mjr 82:4f6209cb5c33 3656 else if (bs->logState)
mjr 53:9b2611964afc 3657 {
mjr 77:0b96f6867312 3658 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 3659 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 3660 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 3661 // OFF to ON.
mjr 66:2e3583fbd2f4 3662 //
mjr 77:0b96f6867312 3663 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 3664 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 3665 // button.
mjr 77:0b96f6867312 3666 bool pressed;
mjr 98:4df3c0f7e707 3667 if (shiftButton.index == i)
mjr 98:4df3c0f7e707 3668 {
mjr 98:4df3c0f7e707 3669 // This button is both the Shift button AND the Night
mjr 98:4df3c0f7e707 3670 // Mode button. This is a special case in that the
mjr 98:4df3c0f7e707 3671 // Shift status is irrelevant, because it's obviously
mjr 98:4df3c0f7e707 3672 // identical to the Night Mode status. So it doesn't
mjr 98:4df3c0f7e707 3673 // matter whether or not the Night Mode button has the
mjr 98:4df3c0f7e707 3674 // shifted flags; the raw button state is all that
mjr 98:4df3c0f7e707 3675 // counts in this case.
mjr 98:4df3c0f7e707 3676 pressed = true;
mjr 98:4df3c0f7e707 3677 }
mjr 98:4df3c0f7e707 3678 else if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 3679 {
mjr 77:0b96f6867312 3680 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 3681 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 3682 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 3683 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 3684 }
mjr 77:0b96f6867312 3685 else
mjr 77:0b96f6867312 3686 {
mjr 77:0b96f6867312 3687 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 3688 // regular unshifted button. The button press only
mjr 77:0b96f6867312 3689 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 3690 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 3691 }
mjr 66:2e3583fbd2f4 3692
mjr 66:2e3583fbd2f4 3693 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 3694 // toggle night mode
mjr 66:2e3583fbd2f4 3695 if (pressed)
mjr 53:9b2611964afc 3696 toggleNightMode();
mjr 53:9b2611964afc 3697 }
mjr 35:e959ffba78fd 3698 }
mjr 38:091e511ce8a0 3699
mjr 77:0b96f6867312 3700 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 3701 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 3702 if (irc != 0)
mjr 77:0b96f6867312 3703 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 3704
mjr 38:091e511ce8a0 3705 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 3706 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 3707 }
mjr 38:091e511ce8a0 3708
mjr 53:9b2611964afc 3709 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 3710 // key state list
mjr 53:9b2611964afc 3711 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 3712 {
mjr 70:9f58735a1732 3713 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 3714 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 3715 uint8_t typ, val;
mjr 77:0b96f6867312 3716 if (useShift)
mjr 66:2e3583fbd2f4 3717 {
mjr 77:0b96f6867312 3718 typ = bc->typ2;
mjr 77:0b96f6867312 3719 val = bc->val2;
mjr 66:2e3583fbd2f4 3720 }
mjr 77:0b96f6867312 3721 else
mjr 77:0b96f6867312 3722 {
mjr 77:0b96f6867312 3723 typ = bc->typ;
mjr 77:0b96f6867312 3724 val = bc->val;
mjr 77:0b96f6867312 3725 }
mjr 77:0b96f6867312 3726
mjr 70:9f58735a1732 3727 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 3728 // the keyboard or joystick event.
mjr 77:0b96f6867312 3729 ks.addKey(typ, val);
mjr 18:5e890ebd0023 3730 }
mjr 11:bd9da7088e6e 3731 }
mjr 77:0b96f6867312 3732
mjr 77:0b96f6867312 3733 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 3734 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 3735 // the IR key.
mjr 77:0b96f6867312 3736 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 3737 {
mjr 77:0b96f6867312 3738 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 3739 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 3740 }
mjr 77:0b96f6867312 3741
mjr 77:0b96f6867312 3742 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 3743 // key state variables to reflect the new state.
mjr 77:0b96f6867312 3744
mjr 77:0b96f6867312 3745 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 3746 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 3747 jsButtons = ks.js;
mjr 77:0b96f6867312 3748
mjr 77:0b96f6867312 3749 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 3750 // something changes)
mjr 77:0b96f6867312 3751 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 3752 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 3753 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 3754 {
mjr 35:e959ffba78fd 3755 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3756 kbState.changed = true;
mjr 77:0b96f6867312 3757 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 3758 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 3759 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 3760 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 3761 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 3762 }
mjr 35:e959ffba78fd 3763 else {
mjr 35:e959ffba78fd 3764 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 3765 kbState.nkeys = 6;
mjr 35:e959ffba78fd 3766 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 3767 }
mjr 35:e959ffba78fd 3768 }
mjr 35:e959ffba78fd 3769
mjr 77:0b96f6867312 3770 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 3771 // something changes)
mjr 77:0b96f6867312 3772 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 3773 {
mjr 77:0b96f6867312 3774 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3775 mediaState.changed = true;
mjr 77:0b96f6867312 3776 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 3777 }
mjr 11:bd9da7088e6e 3778 }
mjr 11:bd9da7088e6e 3779
mjr 73:4e8ce0b18915 3780 // Send a button status report
mjr 73:4e8ce0b18915 3781 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 3782 {
mjr 73:4e8ce0b18915 3783 // start with all buttons off
mjr 73:4e8ce0b18915 3784 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 3785 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 3786
mjr 73:4e8ce0b18915 3787 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 3788 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 3789 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 3790 {
mjr 73:4e8ce0b18915 3791 // get the physical state
mjr 73:4e8ce0b18915 3792 int b = bs->physState;
mjr 73:4e8ce0b18915 3793
mjr 73:4e8ce0b18915 3794 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 3795 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 3796 int si = idx / 8;
mjr 73:4e8ce0b18915 3797 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 3798 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3799 }
mjr 73:4e8ce0b18915 3800
mjr 73:4e8ce0b18915 3801 // send the report
mjr 73:4e8ce0b18915 3802 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3803 }
mjr 73:4e8ce0b18915 3804
mjr 5:a70c0bce770d 3805 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3806 //
mjr 5:a70c0bce770d 3807 // Customization joystick subbclass
mjr 5:a70c0bce770d 3808 //
mjr 5:a70c0bce770d 3809
mjr 5:a70c0bce770d 3810 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3811 {
mjr 5:a70c0bce770d 3812 public:
mjr 35:e959ffba78fd 3813 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 90:aa4e571da8e8 3814 bool waitForConnect, bool enableJoystick, int axisFormat, bool useKB)
mjr 90:aa4e571da8e8 3815 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, axisFormat, useKB)
mjr 5:a70c0bce770d 3816 {
mjr 54:fd77a6b2f76c 3817 sleeping_ = false;
mjr 54:fd77a6b2f76c 3818 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3819 timer_.start();
mjr 54:fd77a6b2f76c 3820 }
mjr 54:fd77a6b2f76c 3821
mjr 54:fd77a6b2f76c 3822 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3823 void diagFlash()
mjr 54:fd77a6b2f76c 3824 {
mjr 54:fd77a6b2f76c 3825 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3826 {
mjr 54:fd77a6b2f76c 3827 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3828 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3829 {
mjr 54:fd77a6b2f76c 3830 // short red flash
mjr 54:fd77a6b2f76c 3831 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3832 wait_us(50000);
mjr 54:fd77a6b2f76c 3833 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3834 wait_us(50000);
mjr 54:fd77a6b2f76c 3835 }
mjr 54:fd77a6b2f76c 3836 }
mjr 5:a70c0bce770d 3837 }
mjr 5:a70c0bce770d 3838
mjr 5:a70c0bce770d 3839 // are we connected?
mjr 5:a70c0bce770d 3840 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3841
mjr 54:fd77a6b2f76c 3842 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3843 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3844 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3845 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3846 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3847
mjr 54:fd77a6b2f76c 3848 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3849 //
mjr 54:fd77a6b2f76c 3850 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3851 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3852 // other way.
mjr 54:fd77a6b2f76c 3853 //
mjr 54:fd77a6b2f76c 3854 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3855 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3856 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3857 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3858 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3859 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3860 //
mjr 54:fd77a6b2f76c 3861 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3862 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3863 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3864 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3865 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3866 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3867 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3868 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3869 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3870 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3871 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3872 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3873 // is effectively dead.
mjr 54:fd77a6b2f76c 3874 //
mjr 54:fd77a6b2f76c 3875 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3876 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3877 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3878 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3879 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3880 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3881 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3882 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3883 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3884 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3885 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3886 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3887 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3888 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3889 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3890 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3891 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3892 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3893 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3894 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3895 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3896 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3897 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3898 // a disconnect.
mjr 54:fd77a6b2f76c 3899 //
mjr 54:fd77a6b2f76c 3900 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3901 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3902 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3903 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3904 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3905 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3906 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3907 //
mjr 54:fd77a6b2f76c 3908 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3909 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3910 //
mjr 54:fd77a6b2f76c 3911 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3912 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3913 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3914 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3915 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3916 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3917 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3918 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3919 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3920 // reliable in practice.
mjr 54:fd77a6b2f76c 3921 //
mjr 54:fd77a6b2f76c 3922 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3923 //
mjr 54:fd77a6b2f76c 3924 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3925 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3926 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3927 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3928 // return.
mjr 54:fd77a6b2f76c 3929 //
mjr 54:fd77a6b2f76c 3930 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3931 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3932 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3933 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3934 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3935 //
mjr 54:fd77a6b2f76c 3936 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3937 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3938 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3939 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3940 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3941 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3942 //
mjr 54:fd77a6b2f76c 3943 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3944 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3945 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3946 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3947 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3948 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3949 // freezes over.
mjr 54:fd77a6b2f76c 3950 //
mjr 54:fd77a6b2f76c 3951 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3952 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3953 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3954 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3955 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3956 void recoverConnection()
mjr 54:fd77a6b2f76c 3957 {
mjr 54:fd77a6b2f76c 3958 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3959 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3960 {
mjr 54:fd77a6b2f76c 3961 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3962 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 3963 {
mjr 54:fd77a6b2f76c 3964 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 3965 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 3966 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 3967 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 3968 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 3969 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 3970 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 3971 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 3972 __disable_irq();
mjr 54:fd77a6b2f76c 3973 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 3974 {
mjr 54:fd77a6b2f76c 3975 connect(false);
mjr 54:fd77a6b2f76c 3976 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3977 done = true;
mjr 54:fd77a6b2f76c 3978 }
mjr 54:fd77a6b2f76c 3979 __enable_irq();
mjr 54:fd77a6b2f76c 3980 }
mjr 54:fd77a6b2f76c 3981 }
mjr 54:fd77a6b2f76c 3982 }
mjr 5:a70c0bce770d 3983
mjr 5:a70c0bce770d 3984 protected:
mjr 54:fd77a6b2f76c 3985 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 3986 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 3987 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 3988 //
mjr 54:fd77a6b2f76c 3989 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 3990 //
mjr 54:fd77a6b2f76c 3991 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 3992 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 3993 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 3994 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 3995 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 3996 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 3997 {
mjr 54:fd77a6b2f76c 3998 // note the new state
mjr 54:fd77a6b2f76c 3999 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 4000
mjr 54:fd77a6b2f76c 4001 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 4002 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 4003 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 4004 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 4005 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 4006 {
mjr 54:fd77a6b2f76c 4007 disconnect();
mjr 54:fd77a6b2f76c 4008 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 4009 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 4010 }
mjr 54:fd77a6b2f76c 4011 }
mjr 54:fd77a6b2f76c 4012
mjr 54:fd77a6b2f76c 4013 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 4014 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 4015
mjr 54:fd77a6b2f76c 4016 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 4017 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 4018
mjr 54:fd77a6b2f76c 4019 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 4020 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 4021
mjr 54:fd77a6b2f76c 4022 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 4023 Timer timer_;
mjr 5:a70c0bce770d 4024 };
mjr 5:a70c0bce770d 4025
mjr 5:a70c0bce770d 4026 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 4027 //
mjr 5:a70c0bce770d 4028 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 4029 //
mjr 5:a70c0bce770d 4030
mjr 5:a70c0bce770d 4031 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 4032 //
mjr 5:a70c0bce770d 4033 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 4034 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 4035 // automatic calibration.
mjr 5:a70c0bce770d 4036 //
mjr 77:0b96f6867312 4037 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 4038 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 4039 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 4040 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 4041 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 4042 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 4043 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 4044 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 4045 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 4046 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 4047 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 4048 //
mjr 77:0b96f6867312 4049 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 4050 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 4051 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 4052 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 4053 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 4054 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 4055 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 4056 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 4057 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 4058 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 4059 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 4060 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 4061 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 4062 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 4063 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 4064 // rather than change it across the board.
mjr 5:a70c0bce770d 4065 //
mjr 6:cc35eb643e8f 4066 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 4067 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 4068 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 4069 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 4070 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 4071 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 4072 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 4073 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 4074 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 4075 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 4076 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 4077 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 4078 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 4079 // of nudging, say).
mjr 5:a70c0bce770d 4080 //
mjr 5:a70c0bce770d 4081
mjr 17:ab3cec0c8bf4 4082 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 4083 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 4084
mjr 17:ab3cec0c8bf4 4085 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 4086 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 4087 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 4088
mjr 17:ab3cec0c8bf4 4089 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 4090 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 4091 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 4092 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 4093
mjr 17:ab3cec0c8bf4 4094
mjr 6:cc35eb643e8f 4095 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 4096 struct AccHist
mjr 5:a70c0bce770d 4097 {
mjr 77:0b96f6867312 4098 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 4099 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 4100 {
mjr 6:cc35eb643e8f 4101 // save the raw position
mjr 6:cc35eb643e8f 4102 this->x = x;
mjr 6:cc35eb643e8f 4103 this->y = y;
mjr 77:0b96f6867312 4104 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 4105 }
mjr 6:cc35eb643e8f 4106
mjr 6:cc35eb643e8f 4107 // reading for this entry
mjr 77:0b96f6867312 4108 int x, y;
mjr 77:0b96f6867312 4109
mjr 77:0b96f6867312 4110 // (distance from previous entry) squared
mjr 77:0b96f6867312 4111 int dsq;
mjr 5:a70c0bce770d 4112
mjr 6:cc35eb643e8f 4113 // total and count of samples averaged over this period
mjr 77:0b96f6867312 4114 int xtot, ytot;
mjr 6:cc35eb643e8f 4115 int cnt;
mjr 6:cc35eb643e8f 4116
mjr 77:0b96f6867312 4117 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 4118 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 4119 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 4120 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 4121
mjr 77:0b96f6867312 4122 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 4123 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 4124 };
mjr 5:a70c0bce770d 4125
mjr 5:a70c0bce770d 4126 // accelerometer wrapper class
mjr 3:3514575d4f86 4127 class Accel
mjr 3:3514575d4f86 4128 {
mjr 3:3514575d4f86 4129 public:
mjr 78:1e00b3fa11af 4130 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin,
mjr 78:1e00b3fa11af 4131 int range, int autoCenterMode)
mjr 77:0b96f6867312 4132 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 4133 {
mjr 5:a70c0bce770d 4134 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 4135 irqPin_ = irqPin;
mjr 77:0b96f6867312 4136
mjr 77:0b96f6867312 4137 // remember the range
mjr 77:0b96f6867312 4138 range_ = range;
mjr 78:1e00b3fa11af 4139
mjr 78:1e00b3fa11af 4140 // set the auto-centering mode
mjr 78:1e00b3fa11af 4141 setAutoCenterMode(autoCenterMode);
mjr 78:1e00b3fa11af 4142
mjr 78:1e00b3fa11af 4143 // no manual centering request has been received
mjr 78:1e00b3fa11af 4144 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 4145
mjr 5:a70c0bce770d 4146 // reset and initialize
mjr 5:a70c0bce770d 4147 reset();
mjr 5:a70c0bce770d 4148 }
mjr 5:a70c0bce770d 4149
mjr 78:1e00b3fa11af 4150 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 4151 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 4152 // as soon as we have enough data.
mjr 78:1e00b3fa11af 4153 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 4154
mjr 78:1e00b3fa11af 4155 // set the auto-centering mode
mjr 78:1e00b3fa11af 4156 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 4157 {
mjr 78:1e00b3fa11af 4158 // remember the mode
mjr 78:1e00b3fa11af 4159 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 4160
mjr 78:1e00b3fa11af 4161 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 4162 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 4163 if (mode == 0)
mjr 78:1e00b3fa11af 4164 {
mjr 78:1e00b3fa11af 4165 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 4166 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 4167 }
mjr 78:1e00b3fa11af 4168 else if (mode <= 60)
mjr 78:1e00b3fa11af 4169 {
mjr 78:1e00b3fa11af 4170 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 4171 // interval is 1/5 of this
mjr 78:1e00b3fa11af 4172 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 4173 }
mjr 78:1e00b3fa11af 4174 else
mjr 78:1e00b3fa11af 4175 {
mjr 78:1e00b3fa11af 4176 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 4177 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 4178 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 4179 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 4180 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 4181 // includes recent data.
mjr 78:1e00b3fa11af 4182 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 4183 }
mjr 78:1e00b3fa11af 4184 }
mjr 78:1e00b3fa11af 4185
mjr 5:a70c0bce770d 4186 void reset()
mjr 5:a70c0bce770d 4187 {
mjr 6:cc35eb643e8f 4188 // clear the center point
mjr 77:0b96f6867312 4189 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 4190
mjr 77:0b96f6867312 4191 // start the auto-centering timer
mjr 5:a70c0bce770d 4192 tCenter_.start();
mjr 5:a70c0bce770d 4193 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 4194
mjr 5:a70c0bce770d 4195 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 4196 mma_.init();
mjr 77:0b96f6867312 4197
mjr 77:0b96f6867312 4198 // set the range
mjr 77:0b96f6867312 4199 mma_.setRange(
mjr 77:0b96f6867312 4200 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 4201 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 4202 2);
mjr 6:cc35eb643e8f 4203
mjr 77:0b96f6867312 4204 // set the average accumulators to zero
mjr 77:0b96f6867312 4205 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 4206 nSum_ = 0;
mjr 3:3514575d4f86 4207
mjr 3:3514575d4f86 4208 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 4209 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 4210 }
mjr 3:3514575d4f86 4211
mjr 77:0b96f6867312 4212 void poll()
mjr 76:7f5912b6340e 4213 {
mjr 77:0b96f6867312 4214 // read samples until we clear the FIFO
mjr 77:0b96f6867312 4215 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 4216 {
mjr 77:0b96f6867312 4217 int x, y, z;
mjr 77:0b96f6867312 4218 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 4219
mjr 77:0b96f6867312 4220 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 4221 xSum_ += (x - cx_);
mjr 77:0b96f6867312 4222 ySum_ += (y - cy_);
mjr 77:0b96f6867312 4223 ++nSum_;
mjr 77:0b96f6867312 4224
mjr 77:0b96f6867312 4225 // store the updates
mjr 77:0b96f6867312 4226 ax_ = x;
mjr 77:0b96f6867312 4227 ay_ = y;
mjr 77:0b96f6867312 4228 az_ = z;
mjr 77:0b96f6867312 4229 }
mjr 76:7f5912b6340e 4230 }
mjr 77:0b96f6867312 4231
mjr 9:fd65b0a94720 4232 void get(int &x, int &y)
mjr 3:3514575d4f86 4233 {
mjr 77:0b96f6867312 4234 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 4235 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 4236 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 4237 int nSum = nSum_;
mjr 6:cc35eb643e8f 4238
mjr 77:0b96f6867312 4239 // reset the average accumulators for the next run
mjr 77:0b96f6867312 4240 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 4241 nSum_ = 0;
mjr 77:0b96f6867312 4242
mjr 77:0b96f6867312 4243 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 4244 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 4245 p->addAvg(ax, ay);
mjr 77:0b96f6867312 4246
mjr 78:1e00b3fa11af 4247 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 4248 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 4249 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 4250 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 4251 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 4252 {
mjr 77:0b96f6867312 4253 // add the latest raw sample to the history list
mjr 77:0b96f6867312 4254 AccHist *prv = p;
mjr 77:0b96f6867312 4255 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 4256 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 4257 iAccPrv_ = 0;
mjr 77:0b96f6867312 4258 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 4259 p->set(ax, ay, prv);
mjr 77:0b96f6867312 4260
mjr 78:1e00b3fa11af 4261 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 4262 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 4263 {
mjr 78:1e00b3fa11af 4264 // Center if:
mjr 78:1e00b3fa11af 4265 //
mjr 78:1e00b3fa11af 4266 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 4267 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 4268 //
mjr 78:1e00b3fa11af 4269 // - A manual centering request is pending
mjr 78:1e00b3fa11af 4270 //
mjr 77:0b96f6867312 4271 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 4272 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 4273 if (manualCenterRequest_
mjr 78:1e00b3fa11af 4274 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 4275 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 4276 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 4277 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 4278 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 4279 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 4280 {
mjr 77:0b96f6867312 4281 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 4282 // the samples over the rest period
mjr 77:0b96f6867312 4283 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 4284 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 4285
mjr 78:1e00b3fa11af 4286 // clear any pending manual centering request
mjr 78:1e00b3fa11af 4287 manualCenterRequest_ = false;
mjr 77:0b96f6867312 4288 }
mjr 77:0b96f6867312 4289 }
mjr 77:0b96f6867312 4290 else
mjr 77:0b96f6867312 4291 {
mjr 77:0b96f6867312 4292 // not enough samples yet; just up the count
mjr 77:0b96f6867312 4293 ++nAccPrv_;
mjr 77:0b96f6867312 4294 }
mjr 6:cc35eb643e8f 4295
mjr 77:0b96f6867312 4296 // clear the new item's running totals
mjr 77:0b96f6867312 4297 p->clearAvg();
mjr 5:a70c0bce770d 4298
mjr 77:0b96f6867312 4299 // reset the timer
mjr 77:0b96f6867312 4300 tCenter_.reset();
mjr 77:0b96f6867312 4301 }
mjr 5:a70c0bce770d 4302
mjr 77:0b96f6867312 4303 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 4304 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 4305 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 4306
mjr 6:cc35eb643e8f 4307 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 4308 if (x != 0 || y != 0)
mjr 77:0b96f6867312 4309 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 4310 #endif
mjr 77:0b96f6867312 4311 }
mjr 29:582472d0bc57 4312
mjr 3:3514575d4f86 4313 private:
mjr 6:cc35eb643e8f 4314 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 4315 int rawToReport(int v)
mjr 5:a70c0bce770d 4316 {
mjr 77:0b96f6867312 4317 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 4318 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 4319 // so their scale is 2^13.
mjr 77:0b96f6867312 4320 //
mjr 77:0b96f6867312 4321 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 4322 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 4323 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 4324 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 4325 int i = v*JOYMAX;
mjr 77:0b96f6867312 4326 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 4327
mjr 6:cc35eb643e8f 4328 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 4329 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 4330 static const int filter[] = {
mjr 6:cc35eb643e8f 4331 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 4332 0,
mjr 6:cc35eb643e8f 4333 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 4334 };
mjr 6:cc35eb643e8f 4335 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 4336 }
mjr 5:a70c0bce770d 4337
mjr 3:3514575d4f86 4338 // underlying accelerometer object
mjr 3:3514575d4f86 4339 MMA8451Q mma_;
mjr 3:3514575d4f86 4340
mjr 77:0b96f6867312 4341 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 4342 // scale -8192..+8191
mjr 77:0b96f6867312 4343 int ax_, ay_, az_;
mjr 77:0b96f6867312 4344
mjr 77:0b96f6867312 4345 // running sum of readings since last get()
mjr 77:0b96f6867312 4346 int xSum_, ySum_;
mjr 77:0b96f6867312 4347
mjr 77:0b96f6867312 4348 // number of readings since last get()
mjr 77:0b96f6867312 4349 int nSum_;
mjr 6:cc35eb643e8f 4350
mjr 6:cc35eb643e8f 4351 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 4352 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 4353 // at rest.
mjr 77:0b96f6867312 4354 int cx_, cy_;
mjr 77:0b96f6867312 4355
mjr 77:0b96f6867312 4356 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 4357 uint8_t range_;
mjr 78:1e00b3fa11af 4358
mjr 78:1e00b3fa11af 4359 // auto-center mode:
mjr 78:1e00b3fa11af 4360 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 4361 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 4362 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 4363 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 4364
mjr 78:1e00b3fa11af 4365 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 4366 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 4367
mjr 78:1e00b3fa11af 4368 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 4369 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 4370
mjr 77:0b96f6867312 4371 // atuo-centering timer
mjr 5:a70c0bce770d 4372 Timer tCenter_;
mjr 6:cc35eb643e8f 4373
mjr 6:cc35eb643e8f 4374 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 4375 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 4376 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 4377 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 4378 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 4379 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 4380 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 4381 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 4382 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 4383 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 4384 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 4385 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 4386 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 4387 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 4388 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 4389
mjr 5:a70c0bce770d 4390 // interurupt pin name
mjr 5:a70c0bce770d 4391 PinName irqPin_;
mjr 3:3514575d4f86 4392 };
mjr 3:3514575d4f86 4393
mjr 5:a70c0bce770d 4394 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 4395 //
mjr 14:df700b22ca08 4396 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 4397 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 4398 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 4399 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 4400 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 4401 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 4402 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 4403 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 4404 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 4405 //
mjr 14:df700b22ca08 4406 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 4407 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 4408 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 4409 //
mjr 5:a70c0bce770d 4410 void clear_i2c()
mjr 5:a70c0bce770d 4411 {
mjr 38:091e511ce8a0 4412 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 4413 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 4414 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 4415
mjr 5:a70c0bce770d 4416 // clock the SCL 9 times
mjr 5:a70c0bce770d 4417 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 4418 {
mjr 5:a70c0bce770d 4419 scl = 1;
mjr 5:a70c0bce770d 4420 wait_us(20);
mjr 5:a70c0bce770d 4421 scl = 0;
mjr 5:a70c0bce770d 4422 wait_us(20);
mjr 5:a70c0bce770d 4423 }
mjr 5:a70c0bce770d 4424 }
mjr 76:7f5912b6340e 4425
mjr 76:7f5912b6340e 4426
mjr 14:df700b22ca08 4427 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 4428 //
mjr 33:d832bcab089e 4429 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 4430 // for a given interval before allowing an update.
mjr 33:d832bcab089e 4431 //
mjr 33:d832bcab089e 4432 class Debouncer
mjr 33:d832bcab089e 4433 {
mjr 33:d832bcab089e 4434 public:
mjr 33:d832bcab089e 4435 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 4436 {
mjr 33:d832bcab089e 4437 t.start();
mjr 33:d832bcab089e 4438 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 4439 this->tmin = tmin;
mjr 33:d832bcab089e 4440 }
mjr 33:d832bcab089e 4441
mjr 33:d832bcab089e 4442 // Get the current stable value
mjr 33:d832bcab089e 4443 bool val() const { return stable; }
mjr 33:d832bcab089e 4444
mjr 33:d832bcab089e 4445 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 4446 // input device.
mjr 33:d832bcab089e 4447 void sampleIn(bool val)
mjr 33:d832bcab089e 4448 {
mjr 33:d832bcab089e 4449 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 4450 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 4451 // on the sample reader.
mjr 33:d832bcab089e 4452 if (val != prv)
mjr 33:d832bcab089e 4453 {
mjr 33:d832bcab089e 4454 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 4455 t.reset();
mjr 33:d832bcab089e 4456
mjr 33:d832bcab089e 4457 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 4458 prv = val;
mjr 33:d832bcab089e 4459 }
mjr 33:d832bcab089e 4460 else if (val != stable)
mjr 33:d832bcab089e 4461 {
mjr 33:d832bcab089e 4462 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 4463 // and different from the stable value. This means that
mjr 33:d832bcab089e 4464 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 4465 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 4466 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 4467 if (t.read() > tmin)
mjr 33:d832bcab089e 4468 stable = val;
mjr 33:d832bcab089e 4469 }
mjr 33:d832bcab089e 4470 }
mjr 33:d832bcab089e 4471
mjr 33:d832bcab089e 4472 private:
mjr 33:d832bcab089e 4473 // current stable value
mjr 33:d832bcab089e 4474 bool stable;
mjr 33:d832bcab089e 4475
mjr 33:d832bcab089e 4476 // last raw sample value
mjr 33:d832bcab089e 4477 bool prv;
mjr 33:d832bcab089e 4478
mjr 33:d832bcab089e 4479 // elapsed time since last raw input change
mjr 33:d832bcab089e 4480 Timer t;
mjr 33:d832bcab089e 4481
mjr 33:d832bcab089e 4482 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 4483 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 4484 float tmin;
mjr 33:d832bcab089e 4485 };
mjr 33:d832bcab089e 4486
mjr 33:d832bcab089e 4487
mjr 33:d832bcab089e 4488 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 4489 //
mjr 33:d832bcab089e 4490 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 4491 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 4492 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 4493 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 4494 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 4495 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 4496 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 4497 //
mjr 33:d832bcab089e 4498 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 4499 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 4500 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 4501 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 4502 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 4503 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 4504 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 4505 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 4506 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 4507 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 4508 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 4509 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 4510 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 4511 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 4512 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 4513 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 4514 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 4515 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 4516 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 4517 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 4518 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 4519 //
mjr 40:cc0d9814522b 4520 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 4521 // of tricky but likely scenarios:
mjr 33:d832bcab089e 4522 //
mjr 33:d832bcab089e 4523 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 4524 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 4525 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 4526 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 4527 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 4528 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 4529 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 4530 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 4531 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 4532 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 4533 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 4534 //
mjr 33:d832bcab089e 4535 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 4536 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 4537 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 4538 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 4539 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 4540 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 4541 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 4542 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 4543 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 4544 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 4545 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 4546 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 4547 // first check.
mjr 33:d832bcab089e 4548 //
mjr 33:d832bcab089e 4549 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 4550 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 4551 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 4552 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 4553 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 4554 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 4555 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 4556 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 4557 //
mjr 33:d832bcab089e 4558
mjr 77:0b96f6867312 4559 // Current PSU2 power state:
mjr 33:d832bcab089e 4560 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 4561 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 4562 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 4563 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 4564 // 5 -> TV relay on
mjr 77:0b96f6867312 4565 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 4566 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 4567
mjr 73:4e8ce0b18915 4568 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 4569 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 4570 // separate state for each:
mjr 73:4e8ce0b18915 4571 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 4572 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 4573 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 4574 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 4575 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 4576
mjr 79:682ae3171a08 4577 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 4578 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 4579
mjr 77:0b96f6867312 4580 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 4581 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 4582 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 4583 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 4584 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 4585 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 4586 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 4587 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 4588 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 4589 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 4590 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 4591
mjr 77:0b96f6867312 4592 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 4593 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 4594
mjr 35:e959ffba78fd 4595 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 4596 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 4597 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 4598
mjr 73:4e8ce0b18915 4599 // Apply the current TV relay state
mjr 73:4e8ce0b18915 4600 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 4601 {
mjr 73:4e8ce0b18915 4602 // update the state
mjr 73:4e8ce0b18915 4603 if (state)
mjr 73:4e8ce0b18915 4604 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 4605 else
mjr 73:4e8ce0b18915 4606 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 4607
mjr 73:4e8ce0b18915 4608 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 4609 if (tv_relay != 0)
mjr 73:4e8ce0b18915 4610 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 4611 }
mjr 35:e959ffba78fd 4612
mjr 86:e30a1f60f783 4613 // Does the current power status allow a reboot? We shouldn't reboot
mjr 86:e30a1f60f783 4614 // in certain power states, because some states are purely internal:
mjr 86:e30a1f60f783 4615 // we can't get enough information from the external power sensor to
mjr 86:e30a1f60f783 4616 // return to the same state later. Code that performs discretionary
mjr 86:e30a1f60f783 4617 // reboots should always check here first, and delay any reboot until
mjr 86:e30a1f60f783 4618 // we say it's okay.
mjr 86:e30a1f60f783 4619 static inline bool powerStatusAllowsReboot()
mjr 86:e30a1f60f783 4620 {
mjr 86:e30a1f60f783 4621 // The only safe state for rebooting is state 1, idle/default.
mjr 86:e30a1f60f783 4622 // In other states, we can't reboot, because the external sensor
mjr 86:e30a1f60f783 4623 // and latch circuit doesn't give us enough information to return
mjr 86:e30a1f60f783 4624 // to the same state later.
mjr 86:e30a1f60f783 4625 return psu2_state == 1;
mjr 86:e30a1f60f783 4626 }
mjr 86:e30a1f60f783 4627
mjr 77:0b96f6867312 4628 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 4629 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 4630 // functions.
mjr 77:0b96f6867312 4631 Timer powerStatusTimer;
mjr 77:0b96f6867312 4632 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 4633 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 4634 {
mjr 79:682ae3171a08 4635 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 4636 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 4637 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 4638 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 4639 {
mjr 79:682ae3171a08 4640 // turn off the relay and disable the timer
mjr 79:682ae3171a08 4641 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 4642 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 4643 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4644 }
mjr 79:682ae3171a08 4645
mjr 77:0b96f6867312 4646 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 4647 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 4648 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 4649 // skip this whole routine.
mjr 77:0b96f6867312 4650 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 4651 return;
mjr 77:0b96f6867312 4652
mjr 77:0b96f6867312 4653 // reset the update timer for next time
mjr 77:0b96f6867312 4654 powerStatusTimer.reset();
mjr 77:0b96f6867312 4655
mjr 77:0b96f6867312 4656 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 4657 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 4658 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 4659 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 4660 static Timer tv_timer;
mjr 35:e959ffba78fd 4661
mjr 33:d832bcab089e 4662 // Check our internal state
mjr 33:d832bcab089e 4663 switch (psu2_state)
mjr 33:d832bcab089e 4664 {
mjr 33:d832bcab089e 4665 case 1:
mjr 33:d832bcab089e 4666 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 4667 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 4668 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 4669 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 4670 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 4671 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 4672 {
mjr 33:d832bcab089e 4673 // switch to OFF state
mjr 33:d832bcab089e 4674 psu2_state = 2;
mjr 33:d832bcab089e 4675
mjr 33:d832bcab089e 4676 // try setting the latch
mjr 35:e959ffba78fd 4677 psu2_status_set->write(1);
mjr 33:d832bcab089e 4678 }
mjr 77:0b96f6867312 4679 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4680 break;
mjr 33:d832bcab089e 4681
mjr 33:d832bcab089e 4682 case 2:
mjr 33:d832bcab089e 4683 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 4684 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 4685 psu2_status_set->write(0);
mjr 33:d832bcab089e 4686 psu2_state = 3;
mjr 77:0b96f6867312 4687 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4688 break;
mjr 33:d832bcab089e 4689
mjr 33:d832bcab089e 4690 case 3:
mjr 33:d832bcab089e 4691 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 4692 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 4693 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 4694 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 4695 if (psu2_status_sense->read())
mjr 33:d832bcab089e 4696 {
mjr 33:d832bcab089e 4697 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 4698 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 4699 tv_timer.reset();
mjr 33:d832bcab089e 4700 tv_timer.start();
mjr 33:d832bcab089e 4701 psu2_state = 4;
mjr 73:4e8ce0b18915 4702
mjr 73:4e8ce0b18915 4703 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 4704 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4705 }
mjr 33:d832bcab089e 4706 else
mjr 33:d832bcab089e 4707 {
mjr 33:d832bcab089e 4708 // The latch didn't stick, so PSU2 was still off at
mjr 87:8d35c74403af 4709 // our last check. Return to idle state.
mjr 87:8d35c74403af 4710 psu2_state = 1;
mjr 33:d832bcab089e 4711 }
mjr 33:d832bcab089e 4712 break;
mjr 33:d832bcab089e 4713
mjr 33:d832bcab089e 4714 case 4:
mjr 77:0b96f6867312 4715 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 4716 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 4717 // off again before the countdown finished.
mjr 77:0b96f6867312 4718 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 4719 {
mjr 77:0b96f6867312 4720 // power is off - start a new check cycle
mjr 77:0b96f6867312 4721 psu2_status_set->write(1);
mjr 77:0b96f6867312 4722 psu2_state = 2;
mjr 77:0b96f6867312 4723 break;
mjr 77:0b96f6867312 4724 }
mjr 77:0b96f6867312 4725
mjr 77:0b96f6867312 4726 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 4727 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 4728
mjr 77:0b96f6867312 4729 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 4730 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 4731 {
mjr 33:d832bcab089e 4732 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 4733 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 4734 psu2_state = 5;
mjr 77:0b96f6867312 4735
mjr 77:0b96f6867312 4736 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 4737 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4738 }
mjr 33:d832bcab089e 4739 break;
mjr 33:d832bcab089e 4740
mjr 33:d832bcab089e 4741 case 5:
mjr 33:d832bcab089e 4742 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 4743 // it's now time to turn it off.
mjr 73:4e8ce0b18915 4744 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 4745
mjr 77:0b96f6867312 4746 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 4747 psu2_state = 6;
mjr 77:0b96f6867312 4748 tvon_ir_state = 0;
mjr 77:0b96f6867312 4749
mjr 77:0b96f6867312 4750 // diagnostic LEDs off for now
mjr 77:0b96f6867312 4751 powerTimerDiagState = 0;
mjr 77:0b96f6867312 4752 break;
mjr 77:0b96f6867312 4753
mjr 77:0b96f6867312 4754 case 6:
mjr 77:0b96f6867312 4755 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 4756 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 4757 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 4758 psu2_state = 1;
mjr 77:0b96f6867312 4759 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 4760
mjr 77:0b96f6867312 4761 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 4762 if (ir_tx != 0)
mjr 77:0b96f6867312 4763 {
mjr 77:0b96f6867312 4764 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 4765 if (ir_tx->isSending())
mjr 77:0b96f6867312 4766 {
mjr 77:0b96f6867312 4767 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 4768 // state 6.
mjr 77:0b96f6867312 4769 psu2_state = 6;
mjr 77:0b96f6867312 4770 powerTimerDiagState = 4;
mjr 77:0b96f6867312 4771 break;
mjr 77:0b96f6867312 4772 }
mjr 77:0b96f6867312 4773
mjr 77:0b96f6867312 4774 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 4775 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 4776 // number.
mjr 77:0b96f6867312 4777 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 4778 {
mjr 77:0b96f6867312 4779 // is this a TV ON command?
mjr 77:0b96f6867312 4780 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 4781 {
mjr 77:0b96f6867312 4782 // It's a TV ON command - check if it's the one we're
mjr 77:0b96f6867312 4783 // looking for.
mjr 77:0b96f6867312 4784 if (n == tvon_ir_state)
mjr 77:0b96f6867312 4785 {
mjr 77:0b96f6867312 4786 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 4787 // pushing its virtual button.
mjr 77:0b96f6867312 4788 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 4789 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 4790
mjr 77:0b96f6867312 4791 // Pushing the button starts transmission, and once
mjr 88:98bce687e6c0 4792 // started, the transmission runs to completion even
mjr 88:98bce687e6c0 4793 // if the button is no longer pushed. So we can
mjr 88:98bce687e6c0 4794 // immediately un-push the button, since we only need
mjr 88:98bce687e6c0 4795 // to send the code once.
mjr 77:0b96f6867312 4796 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 4797
mjr 77:0b96f6867312 4798 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 4799 // await the end of this transmission and move on to
mjr 77:0b96f6867312 4800 // the next one.
mjr 77:0b96f6867312 4801 psu2_state = 6;
mjr 77:0b96f6867312 4802 tvon_ir_state++;
mjr 77:0b96f6867312 4803 break;
mjr 77:0b96f6867312 4804 }
mjr 77:0b96f6867312 4805
mjr 77:0b96f6867312 4806 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 4807 ++n;
mjr 77:0b96f6867312 4808 }
mjr 77:0b96f6867312 4809 }
mjr 77:0b96f6867312 4810 }
mjr 33:d832bcab089e 4811 break;
mjr 33:d832bcab089e 4812 }
mjr 77:0b96f6867312 4813
mjr 77:0b96f6867312 4814 // update the diagnostic LEDs
mjr 77:0b96f6867312 4815 diagLED();
mjr 33:d832bcab089e 4816 }
mjr 33:d832bcab089e 4817
mjr 77:0b96f6867312 4818 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4819 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4820 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4821 // are configured as NC.
mjr 77:0b96f6867312 4822 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4823 {
mjr 55:4db125cd11a0 4824 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4825 // time is nonzero
mjr 77:0b96f6867312 4826 powerStatusTimer.reset();
mjr 77:0b96f6867312 4827 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4828 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4829 {
mjr 77:0b96f6867312 4830 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4831 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4832 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4833
mjr 77:0b96f6867312 4834 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4835 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4836 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4837
mjr 77:0b96f6867312 4838 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4839 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4840 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4841 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4842
mjr 77:0b96f6867312 4843 // Start the TV timer
mjr 77:0b96f6867312 4844 powerStatusTimer.start();
mjr 35:e959ffba78fd 4845 }
mjr 35:e959ffba78fd 4846 }
mjr 35:e959ffba78fd 4847
mjr 73:4e8ce0b18915 4848 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4849 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4850 //
mjr 73:4e8ce0b18915 4851 // Mode:
mjr 73:4e8ce0b18915 4852 // 0 = turn relay off
mjr 73:4e8ce0b18915 4853 // 1 = turn relay on
mjr 73:4e8ce0b18915 4854 // 2 = pulse relay
mjr 73:4e8ce0b18915 4855 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4856 {
mjr 73:4e8ce0b18915 4857 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4858 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4859 return;
mjr 73:4e8ce0b18915 4860
mjr 73:4e8ce0b18915 4861 switch (mode)
mjr 73:4e8ce0b18915 4862 {
mjr 73:4e8ce0b18915 4863 case 0:
mjr 73:4e8ce0b18915 4864 // relay off
mjr 73:4e8ce0b18915 4865 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4866 break;
mjr 73:4e8ce0b18915 4867
mjr 73:4e8ce0b18915 4868 case 1:
mjr 73:4e8ce0b18915 4869 // relay on
mjr 73:4e8ce0b18915 4870 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4871 break;
mjr 73:4e8ce0b18915 4872
mjr 73:4e8ce0b18915 4873 case 2:
mjr 79:682ae3171a08 4874 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 4875 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 4876 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4877 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 4878 break;
mjr 73:4e8ce0b18915 4879 }
mjr 73:4e8ce0b18915 4880 }
mjr 73:4e8ce0b18915 4881
mjr 73:4e8ce0b18915 4882
mjr 35:e959ffba78fd 4883 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4884 //
mjr 35:e959ffba78fd 4885 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4886 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4887 //
mjr 35:e959ffba78fd 4888 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4889 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4890 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4891 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4892 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4893 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4894 //
mjr 35:e959ffba78fd 4895 NVM nvm;
mjr 35:e959ffba78fd 4896
mjr 86:e30a1f60f783 4897 // Save Config followup time, in seconds. After a successful save,
mjr 86:e30a1f60f783 4898 // we leave the success flag on in the status for this interval. At
mjr 86:e30a1f60f783 4899 // the end of the interval, we reboot the device if requested.
mjr 86:e30a1f60f783 4900 uint8_t saveConfigFollowupTime;
mjr 86:e30a1f60f783 4901
mjr 86:e30a1f60f783 4902 // is a reboot pending at the end of the config save followup interval?
mjr 86:e30a1f60f783 4903 uint8_t saveConfigRebootPending;
mjr 77:0b96f6867312 4904
mjr 79:682ae3171a08 4905 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 4906 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 4907
mjr 86:e30a1f60f783 4908 // Timer for configuration change followup timer
mjr 86:e30a1f60f783 4909 ExtTimer saveConfigFollowupTimer;
mjr 86:e30a1f60f783 4910
mjr 86:e30a1f60f783 4911
mjr 35:e959ffba78fd 4912 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4913 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4914
mjr 35:e959ffba78fd 4915 // flash memory controller interface
mjr 35:e959ffba78fd 4916 FreescaleIAP iap;
mjr 35:e959ffba78fd 4917
mjr 79:682ae3171a08 4918 // figure the flash address for the config data
mjr 79:682ae3171a08 4919 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 4920 {
mjr 79:682ae3171a08 4921 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 4922 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 4923
mjr 79:682ae3171a08 4924 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 4925 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 4926
mjr 79:682ae3171a08 4927 // locate it at the top of memory
mjr 79:682ae3171a08 4928 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 4929
mjr 79:682ae3171a08 4930 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 4931 return (const NVM *)addr;
mjr 35:e959ffba78fd 4932 }
mjr 35:e959ffba78fd 4933
mjr 76:7f5912b6340e 4934 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4935 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4936 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4937 // in either case.
mjr 76:7f5912b6340e 4938 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4939 {
mjr 35:e959ffba78fd 4940 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4941 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4942 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4943 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4944 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4945 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4946 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4947 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4948 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4949 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4950 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4951 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4952 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4953 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4954 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4955 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4956
mjr 35:e959ffba78fd 4957 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 4958 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4959
mjr 35:e959ffba78fd 4960 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 4961 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 4962 if (nvm_valid)
mjr 35:e959ffba78fd 4963 {
mjr 35:e959ffba78fd 4964 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 4965 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 4966 }
mjr 35:e959ffba78fd 4967 else
mjr 35:e959ffba78fd 4968 {
mjr 76:7f5912b6340e 4969 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 4970 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 4971 }
mjr 76:7f5912b6340e 4972
mjr 76:7f5912b6340e 4973 // tell the caller what happened
mjr 76:7f5912b6340e 4974 return nvm_valid;
mjr 35:e959ffba78fd 4975 }
mjr 35:e959ffba78fd 4976
mjr 86:e30a1f60f783 4977 // Save the config. Returns true on success, false on failure.
mjr 86:e30a1f60f783 4978 // 'tFollowup' is the follow-up time in seconds. If the write is
mjr 86:e30a1f60f783 4979 // successful, we'll turn on the success flag in the status reports
mjr 86:e30a1f60f783 4980 // and leave it on for this interval. If 'reboot' is true, we'll
mjr 86:e30a1f60f783 4981 // also schedule a reboot at the end of the followup interval.
mjr 86:e30a1f60f783 4982 bool saveConfigToFlash(int tFollowup, bool reboot)
mjr 33:d832bcab089e 4983 {
mjr 76:7f5912b6340e 4984 // get the config block location in the flash memory
mjr 77:0b96f6867312 4985 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 4986
mjr 101:755f44622abc 4987 // save the data
mjr 101:755f44622abc 4988 bool ok = nvm.save(iap, addr);
mjr 101:755f44622abc 4989
mjr 101:755f44622abc 4990 // if the save succeeded, do post-save work
mjr 101:755f44622abc 4991 if (ok)
mjr 86:e30a1f60f783 4992 {
mjr 86:e30a1f60f783 4993 // success - report the successful save in the status flags
mjr 86:e30a1f60f783 4994 saveConfigSucceededFlag = 0x40;
mjr 86:e30a1f60f783 4995
mjr 86:e30a1f60f783 4996 // start the followup timer
mjr 87:8d35c74403af 4997 saveConfigFollowupTime = tFollowup;
mjr 87:8d35c74403af 4998 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 4999 saveConfigFollowupTimer.start();
mjr 86:e30a1f60f783 5000
mjr 86:e30a1f60f783 5001 // if a reboot is pending, flag it
mjr 86:e30a1f60f783 5002 saveConfigRebootPending = reboot;
mjr 86:e30a1f60f783 5003 }
mjr 101:755f44622abc 5004
mjr 101:755f44622abc 5005 // return the success indication
mjr 101:755f44622abc 5006 return ok;
mjr 76:7f5912b6340e 5007 }
mjr 76:7f5912b6340e 5008
mjr 76:7f5912b6340e 5009 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 5010 //
mjr 76:7f5912b6340e 5011 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 5012 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 5013 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 5014 // downloading it to the device.
mjr 76:7f5912b6340e 5015 //
mjr 100:1ff35c07217c 5016 // Ideally, we'd use the host-loaded memory for all configuration updates
mjr 100:1ff35c07217c 5017 // from the host - that is, any time the host wants to update config settings,
mjr 100:1ff35c07217c 5018 // such as via user input in the config tool. In the past, I wanted to do
mjr 100:1ff35c07217c 5019 // it this way because it seemed to be unreliable to write flash memory via
mjr 100:1ff35c07217c 5020 // the device. But that turned out to be due to a bug in the mbed Ticker
mjr 100:1ff35c07217c 5021 // code (of all things!), which we've fixed - since then, flash writing on
mjr 100:1ff35c07217c 5022 // the device has been bulletproof. Even so, doing host-to-device flash
mjr 100:1ff35c07217c 5023 // writing for config updates would be nice just for the sake of speed, as
mjr 100:1ff35c07217c 5024 // the alternative is that we send the variables one at a time by USB, which
mjr 100:1ff35c07217c 5025 // takes noticeable time when reprogramming the whole config set. But
mjr 100:1ff35c07217c 5026 // there's no way to accomplish a single-sector flash write via OpenSDA; you
mjr 100:1ff35c07217c 5027 // can only rewrite the entire flash memory as a unit.
mjr 100:1ff35c07217c 5028 //
mjr 100:1ff35c07217c 5029 // We can at least use this approach to do a fast configuration restore
mjr 100:1ff35c07217c 5030 // when downloading new firmware. In that case, we're rewriting all of
mjr 100:1ff35c07217c 5031 // flash memory anyway, so we might as well include the config data.
mjr 76:7f5912b6340e 5032 //
mjr 76:7f5912b6340e 5033 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 5034 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 5035 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 5036 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 5037 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 5038 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 5039 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 5040 //
mjr 76:7f5912b6340e 5041 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 5042 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 5043 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 5044 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 5045 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 5046 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 5047 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 5048 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 5049 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 5050 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 5051
mjr 76:7f5912b6340e 5052 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 5053 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 5054 {
mjr 76:7f5912b6340e 5055 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 5056 // 32-byte signature header
mjr 76:7f5912b6340e 5057 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 5058 };
mjr 76:7f5912b6340e 5059
mjr 76:7f5912b6340e 5060 // forward reference to config var store function
mjr 76:7f5912b6340e 5061 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 5062
mjr 76:7f5912b6340e 5063 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 5064 // configuration object.
mjr 76:7f5912b6340e 5065 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 5066 {
mjr 76:7f5912b6340e 5067 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 5068 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 5069 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 5070 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 5071 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 5072 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 5073 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 5074 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 5075 {
mjr 76:7f5912b6340e 5076 // load this variable
mjr 76:7f5912b6340e 5077 configVarSet(p);
mjr 76:7f5912b6340e 5078 }
mjr 35:e959ffba78fd 5079 }
mjr 35:e959ffba78fd 5080
mjr 35:e959ffba78fd 5081 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5082 //
mjr 55:4db125cd11a0 5083 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 5084 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 5085 //
mjr 55:4db125cd11a0 5086 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 5087 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 5088 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 101:755f44622abc 5089 uint8_t tReportPlungerStat; // timestamp of most recent plunger status request
mjr 55:4db125cd11a0 5090
mjr 55:4db125cd11a0 5091
mjr 55:4db125cd11a0 5092 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 5093 //
mjr 40:cc0d9814522b 5094 // Night mode setting updates
mjr 40:cc0d9814522b 5095 //
mjr 38:091e511ce8a0 5096
mjr 38:091e511ce8a0 5097 // Turn night mode on or off
mjr 38:091e511ce8a0 5098 static void setNightMode(bool on)
mjr 38:091e511ce8a0 5099 {
mjr 77:0b96f6867312 5100 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 5101 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 5102 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 5103 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 5104
mjr 40:cc0d9814522b 5105 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 5106 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 5107 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 5108 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 5109
mjr 76:7f5912b6340e 5110 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 5111 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 5112 // mode change.
mjr 76:7f5912b6340e 5113 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 5114 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 5115
mjr 76:7f5912b6340e 5116 // update 74HC595 outputs
mjr 76:7f5912b6340e 5117 if (hc595 != 0)
mjr 76:7f5912b6340e 5118 hc595->update();
mjr 38:091e511ce8a0 5119 }
mjr 38:091e511ce8a0 5120
mjr 38:091e511ce8a0 5121 // Toggle night mode
mjr 38:091e511ce8a0 5122 static void toggleNightMode()
mjr 38:091e511ce8a0 5123 {
mjr 53:9b2611964afc 5124 setNightMode(!nightMode);
mjr 38:091e511ce8a0 5125 }
mjr 38:091e511ce8a0 5126
mjr 38:091e511ce8a0 5127
mjr 38:091e511ce8a0 5128 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5129 //
mjr 35:e959ffba78fd 5130 // Plunger Sensor
mjr 35:e959ffba78fd 5131 //
mjr 35:e959ffba78fd 5132
mjr 35:e959ffba78fd 5133 // the plunger sensor interface object
mjr 35:e959ffba78fd 5134 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 5135
mjr 76:7f5912b6340e 5136
mjr 35:e959ffba78fd 5137 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 5138 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 5139 void createPlunger()
mjr 35:e959ffba78fd 5140 {
mjr 35:e959ffba78fd 5141 // create the new sensor object according to the type
mjr 35:e959ffba78fd 5142 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 5143 {
mjr 82:4f6209cb5c33 5144 case PlungerType_TSL1410R:
mjr 82:4f6209cb5c33 5145 // TSL1410R, shadow edge detector
mjr 35:e959ffba78fd 5146 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 5147 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 5148 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 5149 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5150 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 5151 break;
mjr 35:e959ffba78fd 5152
mjr 82:4f6209cb5c33 5153 case PlungerType_TSL1412S:
mjr 82:4f6209cb5c33 5154 // TSL1412S, shadow edge detector
mjr 82:4f6209cb5c33 5155 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 5156 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 5157 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 5158 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5159 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 5160 break;
mjr 35:e959ffba78fd 5161
mjr 35:e959ffba78fd 5162 case PlungerType_Pot:
mjr 82:4f6209cb5c33 5163 // Potentiometer (or any other sensor with a linear analog voltage
mjr 82:4f6209cb5c33 5164 // reading as the proxy for the position)
mjr 82:4f6209cb5c33 5165 // pins are: AO (analog in)
mjr 53:9b2611964afc 5166 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 5167 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 5168 break;
mjr 82:4f6209cb5c33 5169
mjr 82:4f6209cb5c33 5170 case PlungerType_OptQuad:
mjr 82:4f6209cb5c33 5171 // Optical quadrature sensor, AEDR8300-K or similar. The -K is
mjr 82:4f6209cb5c33 5172 // designed for a 75 LPI scale, which translates to 300 pulses/inch.
mjr 82:4f6209cb5c33 5173 // Pins are: CHA, CHB (quadrature pulse inputs).
mjr 82:4f6209cb5c33 5174 plungerSensor = new PlungerSensorQuad(
mjr 82:4f6209cb5c33 5175 300,
mjr 82:4f6209cb5c33 5176 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5177 wirePinName(cfg.plunger.sensorPin[1]));
mjr 82:4f6209cb5c33 5178 break;
mjr 82:4f6209cb5c33 5179
mjr 82:4f6209cb5c33 5180 case PlungerType_TSL1401CL:
mjr 82:4f6209cb5c33 5181 // TSL1401CL, absolute position encoder with bar code scale
mjr 82:4f6209cb5c33 5182 // pins are: SI, CLOCK, AO
mjr 82:4f6209cb5c33 5183 plungerSensor = new PlungerSensorTSL1401CL(
mjr 82:4f6209cb5c33 5184 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5185 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5186 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 5187 break;
mjr 82:4f6209cb5c33 5188
mjr 82:4f6209cb5c33 5189 case PlungerType_VL6180X:
mjr 82:4f6209cb5c33 5190 // VL6180X time-of-flight IR distance sensor
mjr 82:4f6209cb5c33 5191 // pins are: SDL, SCL, GPIO0/CE
mjr 82:4f6209cb5c33 5192 plungerSensor = new PlungerSensorVL6180X(
mjr 82:4f6209cb5c33 5193 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5194 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5195 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 5196 break;
mjr 82:4f6209cb5c33 5197
mjr 100:1ff35c07217c 5198 case PlungerType_AEAT6012:
mjr 100:1ff35c07217c 5199 // Broadcom AEAT-6012-A06 magnetic rotary encoder
mjr 100:1ff35c07217c 5200 // pins are: CS (chip select, dig out), CLK (dig out), DO (data, dig in)
mjr 100:1ff35c07217c 5201 plungerSensor = new PlungerSensorAEAT601X<12>(
mjr 100:1ff35c07217c 5202 wirePinName(cfg.plunger.sensorPin[0]),
mjr 100:1ff35c07217c 5203 wirePinName(cfg.plunger.sensorPin[1]),
mjr 100:1ff35c07217c 5204 wirePinName(cfg.plunger.sensorPin[2]));
mjr 100:1ff35c07217c 5205 break;
mjr 100:1ff35c07217c 5206
mjr 100:1ff35c07217c 5207 case PlungerType_TCD1103:
mjr 100:1ff35c07217c 5208 // Toshiba TCD1103GFG linear CCD, optical edge detection, with
mjr 100:1ff35c07217c 5209 // inverted logic gates.
mjr 100:1ff35c07217c 5210 //
mjr 100:1ff35c07217c 5211 // Pins are: fM (master clock, PWM), OS (sample data, analog in),
mjr 100:1ff35c07217c 5212 // ICG (integration clear gate, dig out), SH (shift gate, dig out)
mjr 100:1ff35c07217c 5213 plungerSensor = new PlungerSensorTCD1103<true>(
mjr 100:1ff35c07217c 5214 wirePinName(cfg.plunger.sensorPin[0]),
mjr 100:1ff35c07217c 5215 wirePinName(cfg.plunger.sensorPin[1]),
mjr 100:1ff35c07217c 5216 wirePinName(cfg.plunger.sensorPin[2]),
mjr 100:1ff35c07217c 5217 wirePinName(cfg.plunger.sensorPin[3]));
mjr 100:1ff35c07217c 5218 break;
mjr 100:1ff35c07217c 5219
mjr 35:e959ffba78fd 5220 case PlungerType_None:
mjr 35:e959ffba78fd 5221 default:
mjr 35:e959ffba78fd 5222 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 5223 break;
mjr 35:e959ffba78fd 5224 }
mjr 100:1ff35c07217c 5225
mjr 100:1ff35c07217c 5226 // initialize the plunger from the saved configuration
mjr 100:1ff35c07217c 5227 plungerSensor->restoreCalibration(cfg);
mjr 86:e30a1f60f783 5228
mjr 87:8d35c74403af 5229 // initialize the config variables affecting the plunger
mjr 87:8d35c74403af 5230 plungerSensor->onConfigChange(19, cfg);
mjr 87:8d35c74403af 5231 plungerSensor->onConfigChange(20, cfg);
mjr 33:d832bcab089e 5232 }
mjr 33:d832bcab089e 5233
mjr 52:8298b2a73eb2 5234 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 5235 bool plungerCalMode;
mjr 52:8298b2a73eb2 5236
mjr 48:058ace2aed1d 5237 // Plunger reader
mjr 51:57eb311faafa 5238 //
mjr 51:57eb311faafa 5239 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 5240 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 5241 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 5242 //
mjr 51:57eb311faafa 5243 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 5244 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 5245 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 5246 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 5247 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 5248 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 5249 // firing motion.
mjr 51:57eb311faafa 5250 //
mjr 51:57eb311faafa 5251 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 5252 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 5253 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 5254 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 5255 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 5256 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 5257 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 5258 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 5259 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 5260 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 5261 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 5262 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 5263 // a classic digital aliasing effect.
mjr 51:57eb311faafa 5264 //
mjr 51:57eb311faafa 5265 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 5266 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 5267 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 5268 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 5269 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 5270 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 5271 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 5272 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 5273 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 5274 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 5275 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 5276 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 5277 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 5278 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 5279 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 5280 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 5281 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 5282 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 5283 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 5284 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 5285 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 5286 //
mjr 48:058ace2aed1d 5287 class PlungerReader
mjr 48:058ace2aed1d 5288 {
mjr 48:058ace2aed1d 5289 public:
mjr 48:058ace2aed1d 5290 PlungerReader()
mjr 48:058ace2aed1d 5291 {
mjr 48:058ace2aed1d 5292 // not in a firing event yet
mjr 48:058ace2aed1d 5293 firing = 0;
mjr 48:058ace2aed1d 5294 }
mjr 76:7f5912b6340e 5295
mjr 48:058ace2aed1d 5296 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 5297 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 5298 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 5299 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 5300 void read()
mjr 48:058ace2aed1d 5301 {
mjr 76:7f5912b6340e 5302 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 5303 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 5304 return;
mjr 76:7f5912b6340e 5305
mjr 48:058ace2aed1d 5306 // Read a sample from the sensor
mjr 48:058ace2aed1d 5307 PlungerReading r;
mjr 48:058ace2aed1d 5308 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 5309 {
mjr 53:9b2611964afc 5310 // check for calibration mode
mjr 53:9b2611964afc 5311 if (plungerCalMode)
mjr 53:9b2611964afc 5312 {
mjr 53:9b2611964afc 5313 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 5314 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 5315 // expand the envelope to include this new value.
mjr 53:9b2611964afc 5316 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 5317 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 5318 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 5319 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 5320
mjr 76:7f5912b6340e 5321 // update our cached calibration data
mjr 76:7f5912b6340e 5322 onUpdateCal();
mjr 50:40015764bbe6 5323
mjr 53:9b2611964afc 5324 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 5325 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 5326 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 5327 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 5328 if (calState == 0)
mjr 53:9b2611964afc 5329 {
mjr 53:9b2611964afc 5330 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 5331 {
mjr 53:9b2611964afc 5332 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 5333 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 5334 {
mjr 53:9b2611964afc 5335 // we've been at rest long enough - count it
mjr 53:9b2611964afc 5336 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 5337 calZeroPosN += 1;
mjr 53:9b2611964afc 5338
mjr 53:9b2611964afc 5339 // update the zero position from the new average
mjr 53:9b2611964afc 5340 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 5341 onUpdateCal();
mjr 53:9b2611964afc 5342
mjr 53:9b2611964afc 5343 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 5344 calState = 1;
mjr 53:9b2611964afc 5345 }
mjr 53:9b2611964afc 5346 }
mjr 53:9b2611964afc 5347 else
mjr 53:9b2611964afc 5348 {
mjr 53:9b2611964afc 5349 // we're not close to the last position - start again here
mjr 53:9b2611964afc 5350 calZeroStart = r;
mjr 53:9b2611964afc 5351 }
mjr 53:9b2611964afc 5352 }
mjr 53:9b2611964afc 5353
mjr 53:9b2611964afc 5354 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 5355 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 5356 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 5357 r.pos = int(
mjr 53:9b2611964afc 5358 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 5359 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 5360 }
mjr 53:9b2611964afc 5361 else
mjr 53:9b2611964afc 5362 {
mjr 53:9b2611964afc 5363 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 5364 // rescale to the joystick range.
mjr 76:7f5912b6340e 5365 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 5366
mjr 53:9b2611964afc 5367 // limit the result to the valid joystick range
mjr 53:9b2611964afc 5368 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 5369 r.pos = JOYMAX;
mjr 53:9b2611964afc 5370 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 5371 r.pos = -JOYMAX;
mjr 53:9b2611964afc 5372 }
mjr 50:40015764bbe6 5373
mjr 87:8d35c74403af 5374 // Look for a firing event - the user releasing the plunger and
mjr 87:8d35c74403af 5375 // allowing it to shoot forward at full speed. Wait at least 5ms
mjr 87:8d35c74403af 5376 // between samples for this, to help distinguish random motion
mjr 87:8d35c74403af 5377 // from the rapid motion of a firing event.
mjr 50:40015764bbe6 5378 //
mjr 87:8d35c74403af 5379 // There's a trade-off in the choice of minimum sampling interval.
mjr 87:8d35c74403af 5380 // The longer we wait, the more certain we can be of the trend.
mjr 87:8d35c74403af 5381 // But if we wait too long, the user will perceive a delay. We
mjr 87:8d35c74403af 5382 // also want to sample frequently enough to see the release motion
mjr 87:8d35c74403af 5383 // at intermediate steps along the way, so the sampling has to be
mjr 87:8d35c74403af 5384 // considerably faster than the whole travel time, which is about
mjr 87:8d35c74403af 5385 // 25-50ms.
mjr 87:8d35c74403af 5386 if (uint32_t(r.t - prv.t) < 5000UL)
mjr 87:8d35c74403af 5387 return;
mjr 87:8d35c74403af 5388
mjr 87:8d35c74403af 5389 // assume that we'll report this reading as-is
mjr 87:8d35c74403af 5390 z = r.pos;
mjr 87:8d35c74403af 5391
mjr 87:8d35c74403af 5392 // Firing event detection.
mjr 87:8d35c74403af 5393 //
mjr 87:8d35c74403af 5394 // A "firing event" is when the player releases the plunger from
mjr 87:8d35c74403af 5395 // a retracted position, allowing it to shoot forward under the
mjr 87:8d35c74403af 5396 // spring tension.
mjr 50:40015764bbe6 5397 //
mjr 87:8d35c74403af 5398 // We monitor the plunger motion for these events, and when they
mjr 87:8d35c74403af 5399 // occur, we report an "idealized" version of the motion to the
mjr 87:8d35c74403af 5400 // PC. The idealized version consists of a series of readings
mjr 87:8d35c74403af 5401 // frozen at the fully retracted position for the whole duration
mjr 87:8d35c74403af 5402 // of the forward travel, followed by a series of readings at the
mjr 87:8d35c74403af 5403 // fully forward position for long enough for the plunger to come
mjr 87:8d35c74403af 5404 // mostly to rest. The series of frozen readings aren't meant to
mjr 87:8d35c74403af 5405 // be perceptible to the player - we try to keep them short enough
mjr 87:8d35c74403af 5406 // that they're not apparent as delay. Instead, they're for the
mjr 87:8d35c74403af 5407 // PC client software's benefit. PC joystick clients use polling,
mjr 87:8d35c74403af 5408 // so they only see an unpredictable subset of the readings we
mjr 87:8d35c74403af 5409 // send. The only way to be sure that the client sees a particular
mjr 87:8d35c74403af 5410 // reading is to hold it for long enough that the client is sure to
mjr 87:8d35c74403af 5411 // poll within the hold interval. In the case of the plunger
mjr 87:8d35c74403af 5412 // firing motion, it's important that the client sees the *ends*
mjr 87:8d35c74403af 5413 // of the travel - the fully retracted starting position in
mjr 87:8d35c74403af 5414 // particular. If the PC client only polls for a sample while the
mjr 87:8d35c74403af 5415 // plunger is somewhere in the middle of the travel, the PC will
mjr 87:8d35c74403af 5416 // think that the firing motion *started* in that middle position,
mjr 87:8d35c74403af 5417 // so it won't be able to model the right amount of momentum when
mjr 87:8d35c74403af 5418 // the plunger hits the ball. We try to ensure that the PC sees
mjr 87:8d35c74403af 5419 // the right starting point by reporting the starting point for
mjr 87:8d35c74403af 5420 // extra time during the forward motion. By the same token, we
mjr 87:8d35c74403af 5421 // want the PC to know that the plunger has moved all the way
mjr 87:8d35c74403af 5422 // forward, rather than mistakenly thinking that it stopped
mjr 87:8d35c74403af 5423 // somewhere in the middle of the travel, so we freeze at the
mjr 87:8d35c74403af 5424 // forward position for a short time.
mjr 76:7f5912b6340e 5425 //
mjr 87:8d35c74403af 5426 // To detect a firing event, we look for forward motion that's
mjr 87:8d35c74403af 5427 // fast enough to be a firing event. To determine how fast is
mjr 87:8d35c74403af 5428 // fast enough, we use a simple model of the plunger motion where
mjr 87:8d35c74403af 5429 // the acceleration is constant. This is only an approximation,
mjr 87:8d35c74403af 5430 // as the spring force actually varies with spring's compression,
mjr 87:8d35c74403af 5431 // but it's close enough for our purposes here.
mjr 87:8d35c74403af 5432 //
mjr 87:8d35c74403af 5433 // Do calculations in fixed-point 2^48 scale with 64-bit ints.
mjr 87:8d35c74403af 5434 // acc2 = acceleration/2 for 50ms release time, units of unit
mjr 87:8d35c74403af 5435 // distances per microsecond squared, where the unit distance
mjr 87:8d35c74403af 5436 // is the overall travel from the starting retracted position
mjr 87:8d35c74403af 5437 // to the park position.
mjr 87:8d35c74403af 5438 const int32_t acc2 = 112590; // 2^48 scale
mjr 50:40015764bbe6 5439 switch (firing)
mjr 50:40015764bbe6 5440 {
mjr 50:40015764bbe6 5441 case 0:
mjr 87:8d35c74403af 5442 // Not in firing mode. If we're retracted a bit, and the
mjr 87:8d35c74403af 5443 // motion is forward at a fast enough rate to look like a
mjr 87:8d35c74403af 5444 // release, enter firing mode.
mjr 87:8d35c74403af 5445 if (r.pos > JOYMAX/6)
mjr 50:40015764bbe6 5446 {
mjr 87:8d35c74403af 5447 const uint32_t dt = uint32_t(r.t - prv.t);
mjr 87:8d35c74403af 5448 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5449 if (r.pos < prv.pos - int((prv.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5450 {
mjr 87:8d35c74403af 5451 // Tentatively enter firing mode. Use the prior reading
mjr 87:8d35c74403af 5452 // as the starting point, and freeze reports for now.
mjr 87:8d35c74403af 5453 firingMode(1);
mjr 87:8d35c74403af 5454 f0 = prv;
mjr 87:8d35c74403af 5455 z = f0.pos;
mjr 87:8d35c74403af 5456
mjr 87:8d35c74403af 5457 // if in calibration state 1 (at rest), switch to
mjr 87:8d35c74403af 5458 // state 2 (not at rest)
mjr 87:8d35c74403af 5459 if (calState == 1)
mjr 87:8d35c74403af 5460 calState = 2;
mjr 87:8d35c74403af 5461 }
mjr 50:40015764bbe6 5462 }
mjr 50:40015764bbe6 5463 break;
mjr 50:40015764bbe6 5464
mjr 50:40015764bbe6 5465 case 1:
mjr 87:8d35c74403af 5466 // Tentative firing mode: the plunger was moving forward
mjr 87:8d35c74403af 5467 // at last check. To stay in firing mode, the plunger has
mjr 87:8d35c74403af 5468 // to keep moving forward fast enough to look like it's
mjr 87:8d35c74403af 5469 // moving under spring force. To figure out how fast is
mjr 87:8d35c74403af 5470 // fast enough, we use a simple model where the acceleration
mjr 87:8d35c74403af 5471 // is constant over the whole travel distance and the total
mjr 87:8d35c74403af 5472 // travel time is 50ms. The acceleration actually varies
mjr 87:8d35c74403af 5473 // slightly since it comes from the spring force, which
mjr 87:8d35c74403af 5474 // is linear in the displacement; but the plunger spring is
mjr 87:8d35c74403af 5475 // fairly compressed even when the plunger is all the way
mjr 87:8d35c74403af 5476 // forward, so the difference in tension from one end of
mjr 87:8d35c74403af 5477 // the travel to the other is fairly small, so it's not too
mjr 87:8d35c74403af 5478 // far off to model it as constant. And the real travel
mjr 87:8d35c74403af 5479 // time obviously isn't a constant, but all we need for
mjr 87:8d35c74403af 5480 // that is an upper bound. So: we'll figure the time since
mjr 87:8d35c74403af 5481 // we entered firing mode, and figure the distance we should
mjr 87:8d35c74403af 5482 // have traveled to complete the trip within the maximum
mjr 87:8d35c74403af 5483 // time allowed. If we've moved far enough, we'll stay
mjr 87:8d35c74403af 5484 // in firing mode; if not, we'll exit firing mode. And if
mjr 87:8d35c74403af 5485 // we cross the finish line while still in firing mode,
mjr 87:8d35c74403af 5486 // we'll switch to the next phase of the firing event.
mjr 50:40015764bbe6 5487 if (r.pos <= 0)
mjr 50:40015764bbe6 5488 {
mjr 87:8d35c74403af 5489 // We crossed the park position. Switch to the second
mjr 87:8d35c74403af 5490 // phase of the firing event, where we hold the reported
mjr 87:8d35c74403af 5491 // position at the "bounce" position (where the plunger
mjr 87:8d35c74403af 5492 // is all the way forward, compressing the barrel spring).
mjr 87:8d35c74403af 5493 // We'll stick here long enough to ensure that the PC
mjr 87:8d35c74403af 5494 // client (Visual Pinball or whatever) sees the reading
mjr 87:8d35c74403af 5495 // and processes the release motion via the simulated
mjr 87:8d35c74403af 5496 // physics.
mjr 50:40015764bbe6 5497 firingMode(2);
mjr 53:9b2611964afc 5498
mjr 53:9b2611964afc 5499 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 5500 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 5501 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 5502 {
mjr 53:9b2611964afc 5503 // collect a new zero point for the average when we
mjr 53:9b2611964afc 5504 // come to rest
mjr 53:9b2611964afc 5505 calState = 0;
mjr 53:9b2611964afc 5506
mjr 87:8d35c74403af 5507 // collect average firing time statistics in millseconds,
mjr 87:8d35c74403af 5508 // if it's in range (20 to 255 ms)
mjr 87:8d35c74403af 5509 const int dt = uint32_t(r.t - f0.t)/1000UL;
mjr 87:8d35c74403af 5510 if (dt >= 15 && dt <= 255)
mjr 53:9b2611964afc 5511 {
mjr 53:9b2611964afc 5512 calRlsTimeSum += dt;
mjr 53:9b2611964afc 5513 calRlsTimeN += 1;
mjr 53:9b2611964afc 5514 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 5515 }
mjr 53:9b2611964afc 5516 }
mjr 87:8d35c74403af 5517
mjr 87:8d35c74403af 5518 // Figure the "bounce" position as forward of the park
mjr 87:8d35c74403af 5519 // position by 1/6 of the starting retraction distance.
mjr 87:8d35c74403af 5520 // This simulates the momentum of the plunger compressing
mjr 87:8d35c74403af 5521 // the barrel spring on the rebound. The barrel spring
mjr 87:8d35c74403af 5522 // can compress by about 1/6 of the maximum retraction
mjr 87:8d35c74403af 5523 // distance, so we'll simply treat its compression as
mjr 87:8d35c74403af 5524 // proportional to the retraction. (It might be more
mjr 87:8d35c74403af 5525 // realistic to use a slightly higher value here, maybe
mjr 87:8d35c74403af 5526 // 1/4 or 1/3 or the retraction distance, capping it at
mjr 87:8d35c74403af 5527 // a maximum of 1/6, because the real plunger probably
mjr 87:8d35c74403af 5528 // compresses the barrel spring by 100% with less than
mjr 87:8d35c74403af 5529 // 100% retraction. But that won't affect the physics
mjr 87:8d35c74403af 5530 // meaningfully, just the animation, and the effect is
mjr 87:8d35c74403af 5531 // small in any case.)
mjr 87:8d35c74403af 5532 z = f0.pos = -f0.pos / 6;
mjr 87:8d35c74403af 5533
mjr 87:8d35c74403af 5534 // reset the starting time for this phase
mjr 87:8d35c74403af 5535 f0.t = r.t;
mjr 50:40015764bbe6 5536 }
mjr 50:40015764bbe6 5537 else
mjr 50:40015764bbe6 5538 {
mjr 87:8d35c74403af 5539 // check for motion since the start of the firing event
mjr 87:8d35c74403af 5540 const uint32_t dt = uint32_t(r.t - f0.t);
mjr 87:8d35c74403af 5541 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5542 if (dt < 50000
mjr 87:8d35c74403af 5543 && r.pos < f0.pos - int((f0.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5544 {
mjr 87:8d35c74403af 5545 // It's moving fast enough to still be in a release
mjr 87:8d35c74403af 5546 // motion. Continue reporting the start position, and
mjr 87:8d35c74403af 5547 // stay in the first release phase.
mjr 87:8d35c74403af 5548 z = f0.pos;
mjr 87:8d35c74403af 5549 }
mjr 87:8d35c74403af 5550 else
mjr 87:8d35c74403af 5551 {
mjr 87:8d35c74403af 5552 // It's not moving fast enough to be a release
mjr 87:8d35c74403af 5553 // motion. Return to the default state.
mjr 87:8d35c74403af 5554 firingMode(0);
mjr 87:8d35c74403af 5555 calState = 1;
mjr 87:8d35c74403af 5556 }
mjr 50:40015764bbe6 5557 }
mjr 50:40015764bbe6 5558 break;
mjr 50:40015764bbe6 5559
mjr 50:40015764bbe6 5560 case 2:
mjr 87:8d35c74403af 5561 // Firing mode, holding at forward compression position.
mjr 87:8d35c74403af 5562 // Hold here for 25ms.
mjr 87:8d35c74403af 5563 if (uint32_t(r.t - f0.t) < 25000)
mjr 50:40015764bbe6 5564 {
mjr 87:8d35c74403af 5565 // stay here for now
mjr 87:8d35c74403af 5566 z = f0.pos;
mjr 50:40015764bbe6 5567 }
mjr 50:40015764bbe6 5568 else
mjr 50:40015764bbe6 5569 {
mjr 87:8d35c74403af 5570 // advance to the next phase, where we report the park
mjr 87:8d35c74403af 5571 // position until the plunger comes to rest
mjr 50:40015764bbe6 5572 firingMode(3);
mjr 50:40015764bbe6 5573 z = 0;
mjr 87:8d35c74403af 5574
mjr 87:8d35c74403af 5575 // remember when we started
mjr 87:8d35c74403af 5576 f0.t = r.t;
mjr 50:40015764bbe6 5577 }
mjr 50:40015764bbe6 5578 break;
mjr 50:40015764bbe6 5579
mjr 50:40015764bbe6 5580 case 3:
mjr 87:8d35c74403af 5581 // Firing event, holding at park position. Stay here for
mjr 87:8d35c74403af 5582 // a few moments so that the PC client can simulate the
mjr 87:8d35c74403af 5583 // full release motion, then return to real readings.
mjr 87:8d35c74403af 5584 if (uint32_t(r.t - f0.t) < 250000)
mjr 50:40015764bbe6 5585 {
mjr 87:8d35c74403af 5586 // stay here a while longer
mjr 87:8d35c74403af 5587 z = 0;
mjr 50:40015764bbe6 5588 }
mjr 50:40015764bbe6 5589 else
mjr 50:40015764bbe6 5590 {
mjr 87:8d35c74403af 5591 // it's been long enough - return to normal mode
mjr 87:8d35c74403af 5592 firingMode(0);
mjr 50:40015764bbe6 5593 }
mjr 50:40015764bbe6 5594 break;
mjr 50:40015764bbe6 5595 }
mjr 50:40015764bbe6 5596
mjr 82:4f6209cb5c33 5597 // Check for auto-zeroing, if enabled
mjr 82:4f6209cb5c33 5598 if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0)
mjr 82:4f6209cb5c33 5599 {
mjr 82:4f6209cb5c33 5600 // If we moved since the last reading, reset and restart the
mjr 82:4f6209cb5c33 5601 // auto-zero timer. Otherwise, if the timer has reached the
mjr 82:4f6209cb5c33 5602 // auto-zero timeout, it means we've been motionless for that
mjr 82:4f6209cb5c33 5603 // long, so auto-zero now.
mjr 82:4f6209cb5c33 5604 if (r.pos != prv.pos)
mjr 82:4f6209cb5c33 5605 {
mjr 82:4f6209cb5c33 5606 // movement detected - reset the timer
mjr 82:4f6209cb5c33 5607 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5608 autoZeroTimer.start();
mjr 82:4f6209cb5c33 5609 }
mjr 82:4f6209cb5c33 5610 else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL)
mjr 82:4f6209cb5c33 5611 {
mjr 82:4f6209cb5c33 5612 // auto-zero now
mjr 82:4f6209cb5c33 5613 plungerSensor->autoZero();
mjr 82:4f6209cb5c33 5614
mjr 82:4f6209cb5c33 5615 // stop the timer so that we don't keep repeating this
mjr 82:4f6209cb5c33 5616 // if the plunger stays still for a long time
mjr 82:4f6209cb5c33 5617 autoZeroTimer.stop();
mjr 82:4f6209cb5c33 5618 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5619 }
mjr 82:4f6209cb5c33 5620 }
mjr 82:4f6209cb5c33 5621
mjr 87:8d35c74403af 5622 // this new reading becomes the previous reading for next time
mjr 87:8d35c74403af 5623 prv = r;
mjr 48:058ace2aed1d 5624 }
mjr 48:058ace2aed1d 5625 }
mjr 48:058ace2aed1d 5626
mjr 48:058ace2aed1d 5627 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 5628 int16_t getPosition()
mjr 58:523fdcffbe6d 5629 {
mjr 86:e30a1f60f783 5630 // return the last reading
mjr 86:e30a1f60f783 5631 return z;
mjr 55:4db125cd11a0 5632 }
mjr 58:523fdcffbe6d 5633
mjr 48:058ace2aed1d 5634 // Set calibration mode on or off
mjr 52:8298b2a73eb2 5635 void setCalMode(bool f)
mjr 48:058ace2aed1d 5636 {
mjr 52:8298b2a73eb2 5637 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 5638 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 5639 {
mjr 52:8298b2a73eb2 5640 // reset the calibration in the configuration
mjr 48:058ace2aed1d 5641 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 5642
mjr 52:8298b2a73eb2 5643 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 5644 calState = 0;
mjr 52:8298b2a73eb2 5645 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 5646 calZeroPosN = 0;
mjr 52:8298b2a73eb2 5647 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 5648 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 5649
mjr 82:4f6209cb5c33 5650 // tell the plunger we're starting calibration
mjr 100:1ff35c07217c 5651 plungerSensor->beginCalibration(cfg);
mjr 82:4f6209cb5c33 5652
mjr 52:8298b2a73eb2 5653 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 5654 PlungerReading r;
mjr 52:8298b2a73eb2 5655 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 5656 {
mjr 52:8298b2a73eb2 5657 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 5658 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 5659 onUpdateCal();
mjr 52:8298b2a73eb2 5660
mjr 52:8298b2a73eb2 5661 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 5662 calZeroStart = r;
mjr 52:8298b2a73eb2 5663 }
mjr 52:8298b2a73eb2 5664 else
mjr 52:8298b2a73eb2 5665 {
mjr 52:8298b2a73eb2 5666 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 5667 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5668 onUpdateCal();
mjr 52:8298b2a73eb2 5669
mjr 52:8298b2a73eb2 5670 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 5671 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 5672 calZeroStart.t = 0;
mjr 53:9b2611964afc 5673 }
mjr 53:9b2611964afc 5674 }
mjr 53:9b2611964afc 5675 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 5676 {
mjr 53:9b2611964afc 5677 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 5678 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 5679 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 5680 // physically meaningless.
mjr 53:9b2611964afc 5681 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 5682 {
mjr 53:9b2611964afc 5683 // bad settings - reset to defaults
mjr 53:9b2611964afc 5684 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 5685 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 5686 }
mjr 100:1ff35c07217c 5687
mjr 100:1ff35c07217c 5688 // finalize the configuration in the plunger object
mjr 100:1ff35c07217c 5689 plungerSensor->endCalibration(cfg);
mjr 100:1ff35c07217c 5690
mjr 100:1ff35c07217c 5691 // update our internal cached information for the new calibration
mjr 100:1ff35c07217c 5692 onUpdateCal();
mjr 52:8298b2a73eb2 5693 }
mjr 52:8298b2a73eb2 5694
mjr 48:058ace2aed1d 5695 // remember the new mode
mjr 52:8298b2a73eb2 5696 plungerCalMode = f;
mjr 48:058ace2aed1d 5697 }
mjr 48:058ace2aed1d 5698
mjr 76:7f5912b6340e 5699 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 5700 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 5701 // cached inverse is calculated as
mjr 76:7f5912b6340e 5702 //
mjr 76:7f5912b6340e 5703 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 5704 //
mjr 76:7f5912b6340e 5705 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 5706 //
mjr 76:7f5912b6340e 5707 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 5708 //
mjr 76:7f5912b6340e 5709 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 5710 int invCalRange;
mjr 76:7f5912b6340e 5711
mjr 76:7f5912b6340e 5712 // apply the calibration range to a reading
mjr 76:7f5912b6340e 5713 inline int applyCal(int reading)
mjr 76:7f5912b6340e 5714 {
mjr 76:7f5912b6340e 5715 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 5716 }
mjr 76:7f5912b6340e 5717
mjr 76:7f5912b6340e 5718 void onUpdateCal()
mjr 76:7f5912b6340e 5719 {
mjr 76:7f5912b6340e 5720 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 5721 }
mjr 76:7f5912b6340e 5722
mjr 48:058ace2aed1d 5723 // is a firing event in progress?
mjr 53:9b2611964afc 5724 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 5725
mjr 48:058ace2aed1d 5726 private:
mjr 87:8d35c74403af 5727 // current reported joystick reading
mjr 87:8d35c74403af 5728 int z;
mjr 87:8d35c74403af 5729
mjr 87:8d35c74403af 5730 // previous reading
mjr 87:8d35c74403af 5731 PlungerReading prv;
mjr 87:8d35c74403af 5732
mjr 52:8298b2a73eb2 5733 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 5734 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 5735 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 5736 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5737 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5738 // 1 = at rest
mjr 52:8298b2a73eb2 5739 // 2 = retracting
mjr 52:8298b2a73eb2 5740 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5741 uint8_t calState;
mjr 52:8298b2a73eb2 5742
mjr 52:8298b2a73eb2 5743 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5744 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5745 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5746 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5747 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5748 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5749 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5750 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5751 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5752 long calZeroPosSum;
mjr 52:8298b2a73eb2 5753 int calZeroPosN;
mjr 52:8298b2a73eb2 5754
mjr 52:8298b2a73eb2 5755 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5756 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5757 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5758 int calRlsTimeN;
mjr 52:8298b2a73eb2 5759
mjr 85:3c28aee81cde 5760 // Auto-zeroing timer
mjr 85:3c28aee81cde 5761 Timer autoZeroTimer;
mjr 85:3c28aee81cde 5762
mjr 48:058ace2aed1d 5763 // set a firing mode
mjr 48:058ace2aed1d 5764 inline void firingMode(int m)
mjr 48:058ace2aed1d 5765 {
mjr 48:058ace2aed1d 5766 firing = m;
mjr 48:058ace2aed1d 5767 }
mjr 48:058ace2aed1d 5768
mjr 48:058ace2aed1d 5769 // Firing event state.
mjr 48:058ace2aed1d 5770 //
mjr 87:8d35c74403af 5771 // 0 - Default state: not in firing event. We report the true
mjr 87:8d35c74403af 5772 // instantaneous plunger position to the joystick interface.
mjr 48:058ace2aed1d 5773 //
mjr 87:8d35c74403af 5774 // 1 - Moving forward at release speed
mjr 48:058ace2aed1d 5775 //
mjr 87:8d35c74403af 5776 // 2 - Firing - reporting the bounce position
mjr 87:8d35c74403af 5777 //
mjr 87:8d35c74403af 5778 // 3 - Firing - reporting the park position
mjr 48:058ace2aed1d 5779 //
mjr 48:058ace2aed1d 5780 int firing;
mjr 48:058ace2aed1d 5781
mjr 87:8d35c74403af 5782 // Starting position for current firing mode phase
mjr 87:8d35c74403af 5783 PlungerReading f0;
mjr 48:058ace2aed1d 5784 };
mjr 48:058ace2aed1d 5785
mjr 48:058ace2aed1d 5786 // plunger reader singleton
mjr 48:058ace2aed1d 5787 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5788
mjr 48:058ace2aed1d 5789 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5790 //
mjr 48:058ace2aed1d 5791 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5792 //
mjr 48:058ace2aed1d 5793 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5794 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5795 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5796 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5797 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5798 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5799 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5800 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5801 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5802 //
mjr 48:058ace2aed1d 5803 // This feature has two configuration components:
mjr 48:058ace2aed1d 5804 //
mjr 48:058ace2aed1d 5805 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5806 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5807 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5808 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5809 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5810 // plunger/launch button connection.
mjr 48:058ace2aed1d 5811 //
mjr 48:058ace2aed1d 5812 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5813 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5814 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5815 // position.
mjr 48:058ace2aed1d 5816 //
mjr 48:058ace2aed1d 5817 class ZBLaunchBall
mjr 48:058ace2aed1d 5818 {
mjr 48:058ace2aed1d 5819 public:
mjr 48:058ace2aed1d 5820 ZBLaunchBall()
mjr 48:058ace2aed1d 5821 {
mjr 48:058ace2aed1d 5822 // start in the default state
mjr 48:058ace2aed1d 5823 lbState = 0;
mjr 53:9b2611964afc 5824 btnState = false;
mjr 48:058ace2aed1d 5825 }
mjr 48:058ace2aed1d 5826
mjr 48:058ace2aed1d 5827 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5828 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5829 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5830 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5831 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5832 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5833 void update()
mjr 48:058ace2aed1d 5834 {
mjr 53:9b2611964afc 5835 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5836 // plunger firing event
mjr 53:9b2611964afc 5837 if (zbLaunchOn)
mjr 48:058ace2aed1d 5838 {
mjr 53:9b2611964afc 5839 // note the new position
mjr 48:058ace2aed1d 5840 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5841
mjr 53:9b2611964afc 5842 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5843 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5844
mjr 53:9b2611964afc 5845 // check the state
mjr 48:058ace2aed1d 5846 switch (lbState)
mjr 48:058ace2aed1d 5847 {
mjr 48:058ace2aed1d 5848 case 0:
mjr 53:9b2611964afc 5849 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5850 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5851 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5852 // the button.
mjr 53:9b2611964afc 5853 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5854 {
mjr 53:9b2611964afc 5855 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5856 lbTimer.reset();
mjr 53:9b2611964afc 5857 lbTimer.start();
mjr 53:9b2611964afc 5858 setButton(true);
mjr 53:9b2611964afc 5859
mjr 53:9b2611964afc 5860 // switch to state 1
mjr 53:9b2611964afc 5861 lbState = 1;
mjr 53:9b2611964afc 5862 }
mjr 48:058ace2aed1d 5863 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5864 {
mjr 53:9b2611964afc 5865 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5866 // button as long as we're pushed forward
mjr 53:9b2611964afc 5867 setButton(true);
mjr 53:9b2611964afc 5868 }
mjr 53:9b2611964afc 5869 else
mjr 53:9b2611964afc 5870 {
mjr 53:9b2611964afc 5871 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5872 setButton(false);
mjr 53:9b2611964afc 5873 }
mjr 48:058ace2aed1d 5874 break;
mjr 48:058ace2aed1d 5875
mjr 48:058ace2aed1d 5876 case 1:
mjr 53:9b2611964afc 5877 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5878 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5879 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5880 {
mjr 53:9b2611964afc 5881 // timer expired - turn off the button
mjr 53:9b2611964afc 5882 setButton(false);
mjr 53:9b2611964afc 5883
mjr 53:9b2611964afc 5884 // switch to state 2
mjr 53:9b2611964afc 5885 lbState = 2;
mjr 53:9b2611964afc 5886 }
mjr 48:058ace2aed1d 5887 break;
mjr 48:058ace2aed1d 5888
mjr 48:058ace2aed1d 5889 case 2:
mjr 53:9b2611964afc 5890 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5891 // plunger launch event to end.
mjr 53:9b2611964afc 5892 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5893 {
mjr 53:9b2611964afc 5894 // firing event done - return to default state
mjr 53:9b2611964afc 5895 lbState = 0;
mjr 53:9b2611964afc 5896 }
mjr 48:058ace2aed1d 5897 break;
mjr 48:058ace2aed1d 5898 }
mjr 53:9b2611964afc 5899 }
mjr 53:9b2611964afc 5900 else
mjr 53:9b2611964afc 5901 {
mjr 53:9b2611964afc 5902 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5903 setButton(false);
mjr 48:058ace2aed1d 5904
mjr 53:9b2611964afc 5905 // return to the default state
mjr 53:9b2611964afc 5906 lbState = 0;
mjr 48:058ace2aed1d 5907 }
mjr 48:058ace2aed1d 5908 }
mjr 53:9b2611964afc 5909
mjr 53:9b2611964afc 5910 // Set the button state
mjr 53:9b2611964afc 5911 void setButton(bool on)
mjr 53:9b2611964afc 5912 {
mjr 53:9b2611964afc 5913 if (btnState != on)
mjr 53:9b2611964afc 5914 {
mjr 53:9b2611964afc 5915 // remember the new state
mjr 53:9b2611964afc 5916 btnState = on;
mjr 53:9b2611964afc 5917
mjr 53:9b2611964afc 5918 // update the virtual button state
mjr 65:739875521aae 5919 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5920 }
mjr 53:9b2611964afc 5921 }
mjr 53:9b2611964afc 5922
mjr 48:058ace2aed1d 5923 private:
mjr 48:058ace2aed1d 5924 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5925 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5926 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5927 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5928 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5929 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5930 //
mjr 48:058ace2aed1d 5931 // States:
mjr 48:058ace2aed1d 5932 // 0 = default
mjr 53:9b2611964afc 5933 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5934 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5935 // firing event to end)
mjr 53:9b2611964afc 5936 uint8_t lbState;
mjr 48:058ace2aed1d 5937
mjr 53:9b2611964afc 5938 // button state
mjr 53:9b2611964afc 5939 bool btnState;
mjr 48:058ace2aed1d 5940
mjr 48:058ace2aed1d 5941 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5942 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5943 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5944 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5945 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5946 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5947 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5948 Timer lbTimer;
mjr 48:058ace2aed1d 5949 };
mjr 48:058ace2aed1d 5950
mjr 35:e959ffba78fd 5951 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5952 //
mjr 35:e959ffba78fd 5953 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 5954 //
mjr 54:fd77a6b2f76c 5955 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 5956 {
mjr 35:e959ffba78fd 5957 // disconnect from USB
mjr 54:fd77a6b2f76c 5958 if (disconnect)
mjr 54:fd77a6b2f76c 5959 js.disconnect();
mjr 35:e959ffba78fd 5960
mjr 35:e959ffba78fd 5961 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 5962 wait_us(pause_us);
mjr 35:e959ffba78fd 5963
mjr 35:e959ffba78fd 5964 // reset the device
mjr 35:e959ffba78fd 5965 NVIC_SystemReset();
mjr 35:e959ffba78fd 5966 while (true) { }
mjr 35:e959ffba78fd 5967 }
mjr 35:e959ffba78fd 5968
mjr 35:e959ffba78fd 5969 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5970 //
mjr 35:e959ffba78fd 5971 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 5972 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 5973 //
mjr 35:e959ffba78fd 5974 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 5975 {
mjr 35:e959ffba78fd 5976 int tmp;
mjr 78:1e00b3fa11af 5977 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 5978 {
mjr 35:e959ffba78fd 5979 case OrientationFront:
mjr 35:e959ffba78fd 5980 tmp = x;
mjr 35:e959ffba78fd 5981 x = y;
mjr 35:e959ffba78fd 5982 y = tmp;
mjr 35:e959ffba78fd 5983 break;
mjr 35:e959ffba78fd 5984
mjr 35:e959ffba78fd 5985 case OrientationLeft:
mjr 35:e959ffba78fd 5986 x = -x;
mjr 35:e959ffba78fd 5987 break;
mjr 35:e959ffba78fd 5988
mjr 35:e959ffba78fd 5989 case OrientationRight:
mjr 35:e959ffba78fd 5990 y = -y;
mjr 35:e959ffba78fd 5991 break;
mjr 35:e959ffba78fd 5992
mjr 35:e959ffba78fd 5993 case OrientationRear:
mjr 35:e959ffba78fd 5994 tmp = -x;
mjr 35:e959ffba78fd 5995 x = -y;
mjr 35:e959ffba78fd 5996 y = tmp;
mjr 35:e959ffba78fd 5997 break;
mjr 35:e959ffba78fd 5998 }
mjr 35:e959ffba78fd 5999 }
mjr 35:e959ffba78fd 6000
mjr 35:e959ffba78fd 6001 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6002 //
mjr 35:e959ffba78fd 6003 // Calibration button state:
mjr 35:e959ffba78fd 6004 // 0 = not pushed
mjr 35:e959ffba78fd 6005 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 6006 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 6007 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 6008 int calBtnState = 0;
mjr 35:e959ffba78fd 6009
mjr 35:e959ffba78fd 6010 // calibration button debounce timer
mjr 35:e959ffba78fd 6011 Timer calBtnTimer;
mjr 35:e959ffba78fd 6012
mjr 35:e959ffba78fd 6013 // calibration button light state
mjr 35:e959ffba78fd 6014 int calBtnLit = false;
mjr 35:e959ffba78fd 6015
mjr 35:e959ffba78fd 6016
mjr 35:e959ffba78fd 6017 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6018 //
mjr 40:cc0d9814522b 6019 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 6020 //
mjr 40:cc0d9814522b 6021
mjr 40:cc0d9814522b 6022 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 6023 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 6024 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 91:ae9be42652bf 6025 #define v_byte_wo(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 6026 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 6027 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 6028 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 6029 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 6030 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 6031 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 6032 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 6033 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 6034
mjr 40:cc0d9814522b 6035 // redefine everything for the SET messages
mjr 40:cc0d9814522b 6036 #undef if_msg_valid
mjr 40:cc0d9814522b 6037 #undef v_byte
mjr 40:cc0d9814522b 6038 #undef v_ui16
mjr 77:0b96f6867312 6039 #undef v_ui32
mjr 40:cc0d9814522b 6040 #undef v_pin
mjr 53:9b2611964afc 6041 #undef v_byte_ro
mjr 91:ae9be42652bf 6042 #undef v_byte_wo
mjr 74:822a92bc11d2 6043 #undef v_ui32_ro
mjr 74:822a92bc11d2 6044 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 6045 #undef v_func
mjr 38:091e511ce8a0 6046
mjr 91:ae9be42652bf 6047 // Handle GET messages - read variable values and return in USB message data
mjr 40:cc0d9814522b 6048 #define if_msg_valid(test)
mjr 53:9b2611964afc 6049 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 6050 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 6051 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 6052 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 6053 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 6054 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 6055 #define VAR_MODE_SET 0 // we're in GET mode
mjr 91:ae9be42652bf 6056 #define v_byte_wo(var, ofs) // ignore write-only variables in GET mode
mjr 76:7f5912b6340e 6057 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 6058 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 6059
mjr 35:e959ffba78fd 6060
mjr 35:e959ffba78fd 6061 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6062 //
mjr 101:755f44622abc 6063 // Timer for timestamping input requests
mjr 101:755f44622abc 6064 //
mjr 101:755f44622abc 6065 Timer requestTimestamper;
mjr 101:755f44622abc 6066
mjr 101:755f44622abc 6067 // ---------------------------------------------------------------------------
mjr 101:755f44622abc 6068 //
mjr 35:e959ffba78fd 6069 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 6070 // LedWiz protocol.
mjr 33:d832bcab089e 6071 //
mjr 78:1e00b3fa11af 6072 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 6073 {
mjr 38:091e511ce8a0 6074 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 6075 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 6076 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 6077 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 6078 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 6079 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 6080 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 6081 // So our full protocol is as follows:
mjr 38:091e511ce8a0 6082 //
mjr 38:091e511ce8a0 6083 // first byte =
mjr 74:822a92bc11d2 6084 // 0-48 -> PBA
mjr 74:822a92bc11d2 6085 // 64 -> SBA
mjr 38:091e511ce8a0 6086 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 6087 // 129-132 -> PBA
mjr 38:091e511ce8a0 6088 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 6089 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 6090 // other -> reserved for future use
mjr 38:091e511ce8a0 6091 //
mjr 39:b3815a1c3802 6092 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 6093 if (data[0] == 64)
mjr 35:e959ffba78fd 6094 {
mjr 74:822a92bc11d2 6095 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 6096 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 6097 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 6098 sba_sbx(0, data);
mjr 74:822a92bc11d2 6099
mjr 74:822a92bc11d2 6100 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 6101 pbaIdx = 0;
mjr 38:091e511ce8a0 6102 }
mjr 38:091e511ce8a0 6103 else if (data[0] == 65)
mjr 38:091e511ce8a0 6104 {
mjr 38:091e511ce8a0 6105 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 6106 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 6107 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 6108 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 6109 // message type.
mjr 39:b3815a1c3802 6110 switch (data[1])
mjr 38:091e511ce8a0 6111 {
mjr 39:b3815a1c3802 6112 case 0:
mjr 39:b3815a1c3802 6113 // No Op
mjr 39:b3815a1c3802 6114 break;
mjr 39:b3815a1c3802 6115
mjr 39:b3815a1c3802 6116 case 1:
mjr 38:091e511ce8a0 6117 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 6118 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 6119 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 6120 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 6121 {
mjr 39:b3815a1c3802 6122
mjr 39:b3815a1c3802 6123 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 6124 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 6125 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 6126
mjr 86:e30a1f60f783 6127 // we'll need a reboot if the LedWiz unit number is changing
mjr 86:e30a1f60f783 6128 bool reboot = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 6129
mjr 39:b3815a1c3802 6130 // set the configuration parameters from the message
mjr 39:b3815a1c3802 6131 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 6132 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 6133
mjr 77:0b96f6867312 6134 // set the flag to do the save
mjr 86:e30a1f60f783 6135 saveConfigToFlash(0, reboot);
mjr 39:b3815a1c3802 6136 }
mjr 39:b3815a1c3802 6137 break;
mjr 38:091e511ce8a0 6138
mjr 39:b3815a1c3802 6139 case 2:
mjr 38:091e511ce8a0 6140 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 6141 // (No parameters)
mjr 38:091e511ce8a0 6142
mjr 38:091e511ce8a0 6143 // enter calibration mode
mjr 38:091e511ce8a0 6144 calBtnState = 3;
mjr 52:8298b2a73eb2 6145 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 6146 calBtnTimer.reset();
mjr 39:b3815a1c3802 6147 break;
mjr 39:b3815a1c3802 6148
mjr 39:b3815a1c3802 6149 case 3:
mjr 52:8298b2a73eb2 6150 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 6151 // data[2] = flag bits
mjr 53:9b2611964afc 6152 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 6153 reportPlungerStat = true;
mjr 53:9b2611964afc 6154 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 6155 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 6156
mjr 101:755f44622abc 6157 // set the extra integration time in the sensor
mjr 101:755f44622abc 6158 plungerSensor->setExtraIntegrationTime(reportPlungerStatTime * 100);
mjr 101:755f44622abc 6159
mjr 101:755f44622abc 6160 // make a note of the request timestamp
mjr 101:755f44622abc 6161 tReportPlungerStat = requestTimestamper.read_us();
mjr 101:755f44622abc 6162
mjr 38:091e511ce8a0 6163 // show purple until we finish sending the report
mjr 38:091e511ce8a0 6164 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 6165 break;
mjr 39:b3815a1c3802 6166
mjr 39:b3815a1c3802 6167 case 4:
mjr 38:091e511ce8a0 6168 // 4 = hardware configuration query
mjr 38:091e511ce8a0 6169 // (No parameters)
mjr 38:091e511ce8a0 6170 js.reportConfig(
mjr 38:091e511ce8a0 6171 numOutputs,
mjr 38:091e511ce8a0 6172 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 6173 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 6174 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 6175 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 6176 true, // we support the new accelerometer settings
mjr 82:4f6209cb5c33 6177 true, // we support the "flash write ok" status bit in joystick reports
mjr 92:f264fbaa1be5 6178 true, // we support the configurable joystick report timing features
mjr 99:8139b0c274f4 6179 true, // chime logic is supported
mjr 79:682ae3171a08 6180 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 6181 break;
mjr 39:b3815a1c3802 6182
mjr 39:b3815a1c3802 6183 case 5:
mjr 38:091e511ce8a0 6184 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 6185 allOutputsOff();
mjr 39:b3815a1c3802 6186 break;
mjr 39:b3815a1c3802 6187
mjr 39:b3815a1c3802 6188 case 6:
mjr 85:3c28aee81cde 6189 // 6 = Save configuration to flash. Optionally reboot after the
mjr 85:3c28aee81cde 6190 // delay time in seconds given in data[2].
mjr 85:3c28aee81cde 6191 //
mjr 85:3c28aee81cde 6192 // data[2] = delay time in seconds
mjr 85:3c28aee81cde 6193 // data[3] = flags:
mjr 85:3c28aee81cde 6194 // 0x01 -> do not reboot
mjr 86:e30a1f60f783 6195 saveConfigToFlash(data[2], !(data[3] & 0x01));
mjr 39:b3815a1c3802 6196 break;
mjr 40:cc0d9814522b 6197
mjr 40:cc0d9814522b 6198 case 7:
mjr 40:cc0d9814522b 6199 // 7 = Device ID report
mjr 53:9b2611964afc 6200 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 6201 js.reportID(data[2]);
mjr 40:cc0d9814522b 6202 break;
mjr 40:cc0d9814522b 6203
mjr 40:cc0d9814522b 6204 case 8:
mjr 40:cc0d9814522b 6205 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 6206 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 6207 setNightMode(data[2]);
mjr 40:cc0d9814522b 6208 break;
mjr 52:8298b2a73eb2 6209
mjr 52:8298b2a73eb2 6210 case 9:
mjr 52:8298b2a73eb2 6211 // 9 = Config variable query.
mjr 52:8298b2a73eb2 6212 // data[2] = config var ID
mjr 52:8298b2a73eb2 6213 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 6214 {
mjr 53:9b2611964afc 6215 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 6216 // the rest of the buffer
mjr 52:8298b2a73eb2 6217 uint8_t reply[8];
mjr 52:8298b2a73eb2 6218 reply[1] = data[2];
mjr 52:8298b2a73eb2 6219 reply[2] = data[3];
mjr 53:9b2611964afc 6220 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 6221
mjr 52:8298b2a73eb2 6222 // query the value
mjr 52:8298b2a73eb2 6223 configVarGet(reply);
mjr 52:8298b2a73eb2 6224
mjr 52:8298b2a73eb2 6225 // send the reply
mjr 52:8298b2a73eb2 6226 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 6227 }
mjr 52:8298b2a73eb2 6228 break;
mjr 53:9b2611964afc 6229
mjr 53:9b2611964afc 6230 case 10:
mjr 53:9b2611964afc 6231 // 10 = Build ID query.
mjr 53:9b2611964afc 6232 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 6233 break;
mjr 73:4e8ce0b18915 6234
mjr 73:4e8ce0b18915 6235 case 11:
mjr 73:4e8ce0b18915 6236 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 6237 // data[2] = operation:
mjr 73:4e8ce0b18915 6238 // 0 = turn relay off
mjr 73:4e8ce0b18915 6239 // 1 = turn relay on
mjr 73:4e8ce0b18915 6240 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 6241 TVRelay(data[2]);
mjr 73:4e8ce0b18915 6242 break;
mjr 73:4e8ce0b18915 6243
mjr 73:4e8ce0b18915 6244 case 12:
mjr 77:0b96f6867312 6245 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 6246 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 6247 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 6248 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 6249 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 6250
mjr 77:0b96f6867312 6251 // enter IR learning mode
mjr 77:0b96f6867312 6252 IRLearningMode = 1;
mjr 77:0b96f6867312 6253
mjr 77:0b96f6867312 6254 // cancel any regular IR input in progress
mjr 77:0b96f6867312 6255 IRCommandIn = 0;
mjr 77:0b96f6867312 6256
mjr 77:0b96f6867312 6257 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 6258 IRTimer.reset();
mjr 73:4e8ce0b18915 6259 break;
mjr 73:4e8ce0b18915 6260
mjr 73:4e8ce0b18915 6261 case 13:
mjr 73:4e8ce0b18915 6262 // 13 = Send button status report
mjr 73:4e8ce0b18915 6263 reportButtonStatus(js);
mjr 73:4e8ce0b18915 6264 break;
mjr 78:1e00b3fa11af 6265
mjr 78:1e00b3fa11af 6266 case 14:
mjr 78:1e00b3fa11af 6267 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 6268 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 6269 break;
mjr 78:1e00b3fa11af 6270
mjr 78:1e00b3fa11af 6271 case 15:
mjr 78:1e00b3fa11af 6272 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 6273 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 6274 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 6275 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 6276 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 6277 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 6278 break;
mjr 78:1e00b3fa11af 6279
mjr 78:1e00b3fa11af 6280 case 16:
mjr 78:1e00b3fa11af 6281 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 6282 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 6283 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 6284 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 6285 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 6286 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 6287 break;
mjr 88:98bce687e6c0 6288
mjr 88:98bce687e6c0 6289 case 17:
mjr 88:98bce687e6c0 6290 // 17 = send pre-programmed IR command. This works just like
mjr 88:98bce687e6c0 6291 // sending an ad hoc command above, but we get the command data
mjr 88:98bce687e6c0 6292 // from an IR slot in the config rather than from the client.
mjr 88:98bce687e6c0 6293 // First make sure we have a valid slot number.
mjr 88:98bce687e6c0 6294 if (data[2] >= 1 && data[2] <= MAX_IR_CODES)
mjr 88:98bce687e6c0 6295 {
mjr 88:98bce687e6c0 6296 // get the IR command slot in the config
mjr 88:98bce687e6c0 6297 IRCommandCfg &cmd = cfg.IRCommand[data[2] - 1];
mjr 88:98bce687e6c0 6298
mjr 88:98bce687e6c0 6299 // copy the IR command data from the config
mjr 88:98bce687e6c0 6300 IRAdHocCmd.protocol = cmd.protocol;
mjr 88:98bce687e6c0 6301 IRAdHocCmd.dittos = (cmd.flags & IRFlagDittos) != 0;
mjr 88:98bce687e6c0 6302 IRAdHocCmd.code = (uint64_t(cmd.code.hi) << 32) | cmd.code.lo;
mjr 88:98bce687e6c0 6303
mjr 88:98bce687e6c0 6304 // mark the command as ready - this will trigger the polling
mjr 88:98bce687e6c0 6305 // routine to send the command as soon as the transmitter
mjr 88:98bce687e6c0 6306 // is free
mjr 88:98bce687e6c0 6307 IRAdHocCmd.ready = 1;
mjr 88:98bce687e6c0 6308 }
mjr 88:98bce687e6c0 6309 break;
mjr 38:091e511ce8a0 6310 }
mjr 38:091e511ce8a0 6311 }
mjr 38:091e511ce8a0 6312 else if (data[0] == 66)
mjr 38:091e511ce8a0 6313 {
mjr 38:091e511ce8a0 6314 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 6315 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 6316 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 6317 // in a variable-dependent format.
mjr 40:cc0d9814522b 6318 configVarSet(data);
mjr 86:e30a1f60f783 6319
mjr 87:8d35c74403af 6320 // notify the plunger, so that it can update relevant variables
mjr 87:8d35c74403af 6321 // dynamically
mjr 87:8d35c74403af 6322 plungerSensor->onConfigChange(data[1], cfg);
mjr 38:091e511ce8a0 6323 }
mjr 74:822a92bc11d2 6324 else if (data[0] == 67)
mjr 74:822a92bc11d2 6325 {
mjr 74:822a92bc11d2 6326 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 6327 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 6328 // to ports beyond the first 32.
mjr 74:822a92bc11d2 6329 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 6330 }
mjr 74:822a92bc11d2 6331 else if (data[0] == 68)
mjr 74:822a92bc11d2 6332 {
mjr 74:822a92bc11d2 6333 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 6334 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 6335 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 6336
mjr 74:822a92bc11d2 6337 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 6338 int portGroup = data[1];
mjr 74:822a92bc11d2 6339
mjr 74:822a92bc11d2 6340 // unpack the brightness values
mjr 74:822a92bc11d2 6341 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 6342 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 6343 uint8_t bri[8] = {
mjr 74:822a92bc11d2 6344 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 6345 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 6346 };
mjr 74:822a92bc11d2 6347
mjr 74:822a92bc11d2 6348 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 6349 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 6350 {
mjr 74:822a92bc11d2 6351 if (bri[i] >= 60)
mjr 74:822a92bc11d2 6352 bri[i] += 129-60;
mjr 74:822a92bc11d2 6353 }
mjr 74:822a92bc11d2 6354
mjr 74:822a92bc11d2 6355 // Carry out the PBA
mjr 74:822a92bc11d2 6356 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 6357 }
mjr 38:091e511ce8a0 6358 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 6359 {
mjr 38:091e511ce8a0 6360 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 6361 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 6362 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 6363 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 6364 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 6365 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 6366 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 6367 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 6368 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 6369 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 6370 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 6371 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 6372 //
mjr 38:091e511ce8a0 6373 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 6374 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 6375 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 6376 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 6377 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 6378 // address those ports anyway.
mjr 63:5cd1a5f3a41b 6379
mjr 63:5cd1a5f3a41b 6380 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 6381 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 6382 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 6383
mjr 63:5cd1a5f3a41b 6384 // update each port
mjr 38:091e511ce8a0 6385 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 6386 {
mjr 38:091e511ce8a0 6387 // set the brightness level for the output
mjr 40:cc0d9814522b 6388 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 6389 outLevel[i] = b;
mjr 38:091e511ce8a0 6390
mjr 74:822a92bc11d2 6391 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 6392 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 6393 // LedWiz mode on a future update
mjr 76:7f5912b6340e 6394 if (b != 0)
mjr 76:7f5912b6340e 6395 {
mjr 76:7f5912b6340e 6396 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 6397 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 6398 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 6399 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 6400 // forward unchanged.
mjr 76:7f5912b6340e 6401 wizOn[i] = 1;
mjr 76:7f5912b6340e 6402 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 6403 }
mjr 76:7f5912b6340e 6404 else
mjr 76:7f5912b6340e 6405 {
mjr 76:7f5912b6340e 6406 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 6407 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 6408 wizOn[i] = 0;
mjr 76:7f5912b6340e 6409 }
mjr 74:822a92bc11d2 6410
mjr 38:091e511ce8a0 6411 // set the output
mjr 40:cc0d9814522b 6412 lwPin[i]->set(b);
mjr 38:091e511ce8a0 6413 }
mjr 38:091e511ce8a0 6414
mjr 38:091e511ce8a0 6415 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 6416 if (hc595 != 0)
mjr 38:091e511ce8a0 6417 hc595->update();
mjr 38:091e511ce8a0 6418 }
mjr 38:091e511ce8a0 6419 else
mjr 38:091e511ce8a0 6420 {
mjr 74:822a92bc11d2 6421 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 6422 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 6423 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 6424 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 6425 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 6426 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 6427 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 6428 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 6429 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 6430 //
mjr 38:091e511ce8a0 6431 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 6432 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 6433 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 6434 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 6435 // protocol mode.
mjr 38:091e511ce8a0 6436 //
mjr 38:091e511ce8a0 6437 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 6438 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 6439
mjr 74:822a92bc11d2 6440 // carry out the PBA
mjr 74:822a92bc11d2 6441 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 6442
mjr 74:822a92bc11d2 6443 // update the PBX index state for the next message
mjr 74:822a92bc11d2 6444 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 6445 }
mjr 38:091e511ce8a0 6446 }
mjr 35:e959ffba78fd 6447
mjr 38:091e511ce8a0 6448 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 6449 //
mjr 5:a70c0bce770d 6450 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 6451 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 6452 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 6453 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 6454 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 6455 // port outputs.
mjr 5:a70c0bce770d 6456 //
mjr 0:5acbbe3f4cf4 6457 int main(void)
mjr 0:5acbbe3f4cf4 6458 {
mjr 60:f38da020aa13 6459 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 6460 printf("\r\nPinscape Controller starting\r\n");
mjr 94:0476b3e2b996 6461
mjr 98:4df3c0f7e707 6462 // Set the default PWM period to 0.5ms = 2 kHz. This will be used
mjr 98:4df3c0f7e707 6463 // for PWM channels on PWM units whose periods aren't changed
mjr 98:4df3c0f7e707 6464 // explicitly, so it'll apply to LW outputs assigned to GPIO pins.
mjr 98:4df3c0f7e707 6465 // The KL25Z only allows the period to be set at the TPM unit
mjr 94:0476b3e2b996 6466 // level, not per channel, so all channels on a given unit will
mjr 94:0476b3e2b996 6467 // necessarily use the same frequency. We (currently) have two
mjr 94:0476b3e2b996 6468 // subsystems that need specific PWM frequencies: TLC5940NT (which
mjr 94:0476b3e2b996 6469 // uses PWM to generate the grayscale clock signal) and IR remote
mjr 94:0476b3e2b996 6470 // (which uses PWM to generate the IR carrier signal). Since
mjr 94:0476b3e2b996 6471 // those require specific PWM frequencies, it's important to assign
mjr 94:0476b3e2b996 6472 // those to separate TPM units if both are in use simultaneously;
mjr 94:0476b3e2b996 6473 // the Config Tool includes checks to ensure that will happen when
mjr 94:0476b3e2b996 6474 // setting a config interactively. In addition, for the greatest
mjr 94:0476b3e2b996 6475 // flexibility, we take care NOT to assign explicit PWM frequencies
mjr 94:0476b3e2b996 6476 // to pins that don't require special frequences. That way, if a
mjr 94:0476b3e2b996 6477 // pin that doesn't need anything special happens to be sharing a
mjr 94:0476b3e2b996 6478 // TPM unit with a pin that does require a specific frequency, the
mjr 94:0476b3e2b996 6479 // two will co-exist peacefully on the TPM.
mjr 94:0476b3e2b996 6480 //
mjr 94:0476b3e2b996 6481 // We set this default first, before we create any PWM GPIOs, so
mjr 94:0476b3e2b996 6482 // that it will apply to all channels by default but won't override
mjr 94:0476b3e2b996 6483 // any channels that need specific frequences. Currently, the only
mjr 94:0476b3e2b996 6484 // frequency-agnostic PWM user is the LW outputs, so we can choose
mjr 94:0476b3e2b996 6485 // the default to be suitable for those. This is chosen to minimize
mjr 94:0476b3e2b996 6486 // flicker on attached LEDs.
mjr 94:0476b3e2b996 6487 NewPwmUnit::defaultPeriod = 0.0005f;
mjr 82:4f6209cb5c33 6488
mjr 76:7f5912b6340e 6489 // clear the I2C connection
mjr 35:e959ffba78fd 6490 clear_i2c();
mjr 82:4f6209cb5c33 6491
mjr 82:4f6209cb5c33 6492 // Elevate GPIO pin interrupt priorities, so that they can preempt
mjr 82:4f6209cb5c33 6493 // other interrupts. This is important for some external peripherals,
mjr 82:4f6209cb5c33 6494 // particularly the quadrature plunger sensors, which can generate
mjr 82:4f6209cb5c33 6495 // high-speed interrupts that need to be serviced quickly to keep
mjr 82:4f6209cb5c33 6496 // proper count of the quadrature position.
mjr 82:4f6209cb5c33 6497 FastInterruptIn::elevatePriority();
mjr 38:091e511ce8a0 6498
mjr 76:7f5912b6340e 6499 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 6500 // configuration data:
mjr 76:7f5912b6340e 6501 //
mjr 76:7f5912b6340e 6502 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 6503 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 6504 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 6505 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 6506 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 6507 // to store user settings updates.
mjr 76:7f5912b6340e 6508 //
mjr 76:7f5912b6340e 6509 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 6510 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 6511 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 6512 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 6513 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 6514 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 6515 // without a separate download of the config data.
mjr 76:7f5912b6340e 6516 //
mjr 76:7f5912b6340e 6517 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 6518 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 6519 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 6520 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 6521 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 6522 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 6523 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 6524 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 6525 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 6526 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 6527 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 6528 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 6529 loadHostLoadedConfig();
mjr 35:e959ffba78fd 6530
mjr 38:091e511ce8a0 6531 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 6532 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 6533
mjr 33:d832bcab089e 6534 // we're not connected/awake yet
mjr 33:d832bcab089e 6535 bool connected = false;
mjr 40:cc0d9814522b 6536 Timer connectChangeTimer;
mjr 33:d832bcab089e 6537
mjr 35:e959ffba78fd 6538 // create the plunger sensor interface
mjr 35:e959ffba78fd 6539 createPlunger();
mjr 76:7f5912b6340e 6540
mjr 76:7f5912b6340e 6541 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 6542 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 6543
mjr 60:f38da020aa13 6544 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 6545 init_tlc5940(cfg);
mjr 34:6b981a2afab7 6546
mjr 87:8d35c74403af 6547 // initialize the TLC5916 interface, if these chips are present
mjr 87:8d35c74403af 6548 init_tlc59116(cfg);
mjr 87:8d35c74403af 6549
mjr 60:f38da020aa13 6550 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 6551 init_hc595(cfg);
mjr 6:cc35eb643e8f 6552
mjr 54:fd77a6b2f76c 6553 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 6554 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 6555 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 6556 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 6557 initLwOut(cfg);
mjr 48:058ace2aed1d 6558
mjr 60:f38da020aa13 6559 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 6560 if (tlc5940 != 0)
mjr 35:e959ffba78fd 6561 tlc5940->start();
mjr 87:8d35c74403af 6562
mjr 77:0b96f6867312 6563 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 6564 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 6565 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 6566 // USB keyboard interface.
mjr 77:0b96f6867312 6567 bool kbKeys = false;
mjr 77:0b96f6867312 6568
mjr 77:0b96f6867312 6569 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 6570 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 6571
mjr 77:0b96f6867312 6572 // start the power status time, if applicable
mjr 77:0b96f6867312 6573 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 6574
mjr 35:e959ffba78fd 6575 // initialize the button input ports
mjr 35:e959ffba78fd 6576 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 6577
mjr 60:f38da020aa13 6578 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 6579 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 6580 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 6581 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 6582 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 6583 // to the joystick interface.
mjr 51:57eb311faafa 6584 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 90:aa4e571da8e8 6585 cfg.joystickEnabled, cfg.joystickAxisFormat, kbKeys);
mjr 51:57eb311faafa 6586
mjr 101:755f44622abc 6587 // start the request timestamp timer
mjr 101:755f44622abc 6588 requestTimestamper.start();
mjr 101:755f44622abc 6589
mjr 60:f38da020aa13 6590 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 6591 // flash pattern while waiting.
mjr 70:9f58735a1732 6592 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 6593 connTimeoutTimer.start();
mjr 70:9f58735a1732 6594 connFlashTimer.start();
mjr 51:57eb311faafa 6595 while (!js.configured())
mjr 51:57eb311faafa 6596 {
mjr 51:57eb311faafa 6597 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 6598 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6599 {
mjr 51:57eb311faafa 6600 // short yellow flash
mjr 51:57eb311faafa 6601 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 6602 wait_us(50000);
mjr 51:57eb311faafa 6603 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6604
mjr 51:57eb311faafa 6605 // reset the flash timer
mjr 70:9f58735a1732 6606 connFlashTimer.reset();
mjr 51:57eb311faafa 6607 }
mjr 70:9f58735a1732 6608
mjr 77:0b96f6867312 6609 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 6610 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 6611 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 6612 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 86:e30a1f60f783 6613 // Don't do this if we're in a non-recoverable PSU2 power state.
mjr 70:9f58735a1732 6614 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6615 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6616 && powerStatusAllowsReboot())
mjr 70:9f58735a1732 6617 reboot(js, false, 0);
mjr 77:0b96f6867312 6618
mjr 77:0b96f6867312 6619 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6620 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 6621 }
mjr 60:f38da020aa13 6622
mjr 60:f38da020aa13 6623 // we're now connected to the host
mjr 54:fd77a6b2f76c 6624 connected = true;
mjr 40:cc0d9814522b 6625
mjr 92:f264fbaa1be5 6626 // Set up a timer for keeping track of how long it's been since we
mjr 92:f264fbaa1be5 6627 // sent the last joystick report. We use this to determine when it's
mjr 92:f264fbaa1be5 6628 // time to send the next joystick report.
mjr 92:f264fbaa1be5 6629 //
mjr 92:f264fbaa1be5 6630 // We have to use a timer for two reasons. The first is that our main
mjr 92:f264fbaa1be5 6631 // loop runs too fast (about .25ms to 2.5ms per loop, depending on the
mjr 92:f264fbaa1be5 6632 // type of plunger sensor attached and other factors) for us to send
mjr 92:f264fbaa1be5 6633 // joystick reports on every iteration. We *could*, but the PC couldn't
mjr 92:f264fbaa1be5 6634 // digest them at that pace. So we need to slow down the reports to a
mjr 92:f264fbaa1be5 6635 // reasonable pace. The second is that VP has some complicated timing
mjr 92:f264fbaa1be5 6636 // issues of its own, so we not only need to slow down the reports from
mjr 92:f264fbaa1be5 6637 // our "natural" pace, but also time them to sync up with VP's input
mjr 92:f264fbaa1be5 6638 // sampling rate as best we can.
mjr 38:091e511ce8a0 6639 Timer jsReportTimer;
mjr 38:091e511ce8a0 6640 jsReportTimer.start();
mjr 38:091e511ce8a0 6641
mjr 92:f264fbaa1be5 6642 // Accelerometer sample "stutter" counter. Each time we send a joystick
mjr 92:f264fbaa1be5 6643 // report, we increment this counter, and check to see if it has reached
mjr 92:f264fbaa1be5 6644 // the threshold set in the configuration. If so, we take a new
mjr 92:f264fbaa1be5 6645 // accelerometer sample and send it with the new joystick report. It
mjr 92:f264fbaa1be5 6646 // not, we don't take a new sample, but simply repeat the last sample.
mjr 92:f264fbaa1be5 6647 //
mjr 92:f264fbaa1be5 6648 // This lets us send joystick reports more frequently than accelerometer
mjr 92:f264fbaa1be5 6649 // samples. The point is to let us slow down accelerometer reports to
mjr 92:f264fbaa1be5 6650 // a pace that matches VP's input sampling frequency, while still sending
mjr 92:f264fbaa1be5 6651 // joystick button updates more frequently, so that other programs that
mjr 92:f264fbaa1be5 6652 // can read input faster will see button changes with less latency.
mjr 92:f264fbaa1be5 6653 int jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6654
mjr 92:f264fbaa1be5 6655 // Last accelerometer report, in joystick units. We normally report the
mjr 92:f264fbaa1be5 6656 // acceleromter reading via the joystick X and Y axes, per the VP
mjr 92:f264fbaa1be5 6657 // convention. We can alternatively report in the RX and RY axes; this
mjr 92:f264fbaa1be5 6658 // can be set in the configuration.
mjr 92:f264fbaa1be5 6659 int x = 0, y = 0;
mjr 92:f264fbaa1be5 6660
mjr 60:f38da020aa13 6661 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 6662 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 6663 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 6664 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 6665 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 6666 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 6667 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 6668 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 6669 Timer jsOKTimer;
mjr 38:091e511ce8a0 6670 jsOKTimer.start();
mjr 35:e959ffba78fd 6671
mjr 55:4db125cd11a0 6672 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 6673 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 6674 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 6675 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 6676 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 6677
mjr 55:4db125cd11a0 6678 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 6679 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 6680 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 6681
mjr 55:4db125cd11a0 6682 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 6683 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 6684 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 6685
mjr 35:e959ffba78fd 6686 // initialize the calibration button
mjr 1:d913e0afb2ac 6687 calBtnTimer.start();
mjr 35:e959ffba78fd 6688 calBtnState = 0;
mjr 1:d913e0afb2ac 6689
mjr 1:d913e0afb2ac 6690 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 6691 Timer hbTimer;
mjr 1:d913e0afb2ac 6692 hbTimer.start();
mjr 1:d913e0afb2ac 6693 int hb = 0;
mjr 5:a70c0bce770d 6694 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 6695
mjr 1:d913e0afb2ac 6696 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 6697 Timer acTimer;
mjr 1:d913e0afb2ac 6698 acTimer.start();
mjr 1:d913e0afb2ac 6699
mjr 0:5acbbe3f4cf4 6700 // create the accelerometer object
mjr 77:0b96f6867312 6701 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 78:1e00b3fa11af 6702 MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime);
mjr 76:7f5912b6340e 6703
mjr 48:058ace2aed1d 6704 // initialize the plunger sensor
mjr 35:e959ffba78fd 6705 plungerSensor->init();
mjr 10:976666ffa4ef 6706
mjr 48:058ace2aed1d 6707 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 6708 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 6709
mjr 54:fd77a6b2f76c 6710 // enable the peripheral chips
mjr 54:fd77a6b2f76c 6711 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6712 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6713 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6714 hc595->enable(true);
mjr 87:8d35c74403af 6715 if (tlc59116 != 0)
mjr 87:8d35c74403af 6716 tlc59116->enable(true);
mjr 74:822a92bc11d2 6717
mjr 76:7f5912b6340e 6718 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 6719 wizCycleTimer.start();
mjr 74:822a92bc11d2 6720
mjr 74:822a92bc11d2 6721 // start the PWM update polling timer
mjr 74:822a92bc11d2 6722 polledPwmTimer.start();
mjr 43:7a6364d82a41 6723
mjr 1:d913e0afb2ac 6724 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 6725 // host requests
mjr 0:5acbbe3f4cf4 6726 for (;;)
mjr 0:5acbbe3f4cf4 6727 {
mjr 74:822a92bc11d2 6728 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 6729 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 96:68d5621ff49f 6730
mjr 48:058ace2aed1d 6731 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 6732 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 6733 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 6734 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 6735 LedWizMsg lwm;
mjr 48:058ace2aed1d 6736 Timer lwt;
mjr 48:058ace2aed1d 6737 lwt.start();
mjr 77:0b96f6867312 6738 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 6739 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 6740 {
mjr 78:1e00b3fa11af 6741 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 6742 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 6743 }
mjr 74:822a92bc11d2 6744
mjr 74:822a92bc11d2 6745 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 6746 IF_DIAG(
mjr 74:822a92bc11d2 6747 if (msgCount != 0)
mjr 74:822a92bc11d2 6748 {
mjr 76:7f5912b6340e 6749 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 6750 mainLoopMsgCount++;
mjr 74:822a92bc11d2 6751 }
mjr 74:822a92bc11d2 6752 )
mjr 74:822a92bc11d2 6753
mjr 77:0b96f6867312 6754 // process IR input
mjr 77:0b96f6867312 6755 process_IR(cfg, js);
mjr 77:0b96f6867312 6756
mjr 77:0b96f6867312 6757 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6758 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 6759
mjr 74:822a92bc11d2 6760 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 6761 wizPulse();
mjr 74:822a92bc11d2 6762
mjr 74:822a92bc11d2 6763 // update PWM outputs
mjr 74:822a92bc11d2 6764 pollPwmUpdates();
mjr 77:0b96f6867312 6765
mjr 99:8139b0c274f4 6766 // update Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 6767 LwFlipperLogicOut::poll();
mjr 99:8139b0c274f4 6768 LwChimeLogicOut::poll();
mjr 89:c43cd923401c 6769
mjr 77:0b96f6867312 6770 // poll the accelerometer
mjr 77:0b96f6867312 6771 accel.poll();
mjr 55:4db125cd11a0 6772
mjr 96:68d5621ff49f 6773 // Note the "effective" plunger enabled status. This has two
mjr 96:68d5621ff49f 6774 // components: the explicit "enabled" bit, and the plunger sensor
mjr 96:68d5621ff49f 6775 // type setting. For most purposes, a plunger type of NONE is
mjr 96:68d5621ff49f 6776 // equivalent to disabled. Set this to explicit 0x01 or 0x00
mjr 96:68d5621ff49f 6777 // so that we can OR the bit into status reports.
mjr 96:68d5621ff49f 6778 uint8_t effectivePlungerEnabled = (cfg.plunger.enabled
mjr 96:68d5621ff49f 6779 && cfg.plunger.sensorType != PlungerType_None) ? 0x01 : 0x00;
mjr 96:68d5621ff49f 6780
mjr 76:7f5912b6340e 6781 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 6782 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6783
mjr 55:4db125cd11a0 6784 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 6785 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6786 tlc5940->send();
mjr 87:8d35c74403af 6787
mjr 87:8d35c74403af 6788 // send TLC59116 data updates
mjr 87:8d35c74403af 6789 if (tlc59116 != 0)
mjr 87:8d35c74403af 6790 tlc59116->send();
mjr 1:d913e0afb2ac 6791
mjr 76:7f5912b6340e 6792 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 6793 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 6794
mjr 1:d913e0afb2ac 6795 // check for plunger calibration
mjr 17:ab3cec0c8bf4 6796 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 6797 {
mjr 1:d913e0afb2ac 6798 // check the state
mjr 1:d913e0afb2ac 6799 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6800 {
mjr 1:d913e0afb2ac 6801 case 0:
mjr 1:d913e0afb2ac 6802 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 6803 calBtnTimer.reset();
mjr 1:d913e0afb2ac 6804 calBtnState = 1;
mjr 1:d913e0afb2ac 6805 break;
mjr 1:d913e0afb2ac 6806
mjr 1:d913e0afb2ac 6807 case 1:
mjr 1:d913e0afb2ac 6808 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 6809 // passed, start the hold period
mjr 48:058ace2aed1d 6810 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 6811 calBtnState = 2;
mjr 1:d913e0afb2ac 6812 break;
mjr 1:d913e0afb2ac 6813
mjr 1:d913e0afb2ac 6814 case 2:
mjr 1:d913e0afb2ac 6815 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 6816 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 6817 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 6818 {
mjr 1:d913e0afb2ac 6819 // enter calibration mode
mjr 1:d913e0afb2ac 6820 calBtnState = 3;
mjr 9:fd65b0a94720 6821 calBtnTimer.reset();
mjr 35:e959ffba78fd 6822
mjr 44:b5ac89b9cd5d 6823 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 6824 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 6825 }
mjr 1:d913e0afb2ac 6826 break;
mjr 2:c174f9ee414a 6827
mjr 2:c174f9ee414a 6828 case 3:
mjr 9:fd65b0a94720 6829 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6830 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6831 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6832 break;
mjr 0:5acbbe3f4cf4 6833 }
mjr 0:5acbbe3f4cf4 6834 }
mjr 1:d913e0afb2ac 6835 else
mjr 1:d913e0afb2ac 6836 {
mjr 2:c174f9ee414a 6837 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6838 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6839 // and save the results to flash.
mjr 2:c174f9ee414a 6840 //
mjr 2:c174f9ee414a 6841 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6842 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6843 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 6844 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6845 {
mjr 2:c174f9ee414a 6846 // exit calibration mode
mjr 1:d913e0afb2ac 6847 calBtnState = 0;
mjr 52:8298b2a73eb2 6848 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6849
mjr 6:cc35eb643e8f 6850 // save the updated configuration
mjr 35:e959ffba78fd 6851 cfg.plunger.cal.calibrated = 1;
mjr 86:e30a1f60f783 6852 saveConfigToFlash(0, false);
mjr 2:c174f9ee414a 6853 }
mjr 2:c174f9ee414a 6854 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6855 {
mjr 2:c174f9ee414a 6856 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6857 calBtnState = 0;
mjr 2:c174f9ee414a 6858 }
mjr 1:d913e0afb2ac 6859 }
mjr 1:d913e0afb2ac 6860
mjr 1:d913e0afb2ac 6861 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6862 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6863 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6864 {
mjr 1:d913e0afb2ac 6865 case 2:
mjr 1:d913e0afb2ac 6866 // in the hold period - flash the light
mjr 48:058ace2aed1d 6867 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6868 break;
mjr 1:d913e0afb2ac 6869
mjr 1:d913e0afb2ac 6870 case 3:
mjr 1:d913e0afb2ac 6871 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6872 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6873 break;
mjr 1:d913e0afb2ac 6874
mjr 1:d913e0afb2ac 6875 default:
mjr 1:d913e0afb2ac 6876 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6877 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6878 break;
mjr 1:d913e0afb2ac 6879 }
mjr 3:3514575d4f86 6880
mjr 3:3514575d4f86 6881 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6882 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6883 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6884 {
mjr 1:d913e0afb2ac 6885 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6886 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6887 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6888 calBtnLed->write(1);
mjr 38:091e511ce8a0 6889 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6890 }
mjr 2:c174f9ee414a 6891 else {
mjr 17:ab3cec0c8bf4 6892 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6893 calBtnLed->write(0);
mjr 38:091e511ce8a0 6894 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6895 }
mjr 1:d913e0afb2ac 6896 }
mjr 35:e959ffba78fd 6897
mjr 76:7f5912b6340e 6898 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6899 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6900
mjr 48:058ace2aed1d 6901 // read the plunger sensor
mjr 48:058ace2aed1d 6902 plungerReader.read();
mjr 48:058ace2aed1d 6903
mjr 76:7f5912b6340e 6904 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6905 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6906
mjr 53:9b2611964afc 6907 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6908 zbLaunchBall.update();
mjr 37:ed52738445fc 6909
mjr 76:7f5912b6340e 6910 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6911 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6912
mjr 53:9b2611964afc 6913 // process button updates
mjr 53:9b2611964afc 6914 processButtons(cfg);
mjr 53:9b2611964afc 6915
mjr 76:7f5912b6340e 6916 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6917 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6918
mjr 38:091e511ce8a0 6919 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6920 if (kbState.changed)
mjr 37:ed52738445fc 6921 {
mjr 38:091e511ce8a0 6922 // send a keyboard report
mjr 37:ed52738445fc 6923 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6924 kbState.changed = false;
mjr 37:ed52738445fc 6925 }
mjr 38:091e511ce8a0 6926
mjr 38:091e511ce8a0 6927 // likewise for the media controller
mjr 37:ed52738445fc 6928 if (mediaState.changed)
mjr 37:ed52738445fc 6929 {
mjr 38:091e511ce8a0 6930 // send a media report
mjr 37:ed52738445fc 6931 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6932 mediaState.changed = false;
mjr 37:ed52738445fc 6933 }
mjr 38:091e511ce8a0 6934
mjr 76:7f5912b6340e 6935 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6936 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6937
mjr 38:091e511ce8a0 6938 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6939 bool jsOK = false;
mjr 55:4db125cd11a0 6940
mjr 55:4db125cd11a0 6941 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6942 uint16_t statusFlags =
mjr 96:68d5621ff49f 6943 effectivePlungerEnabled // 0x01
mjr 77:0b96f6867312 6944 | nightMode // 0x02
mjr 79:682ae3171a08 6945 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 6946 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 6947 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6948 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6949
mjr 50:40015764bbe6 6950 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6951 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6952 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 6953 // More frequent reporting would only add USB I/O overhead.
mjr 92:f264fbaa1be5 6954 if (cfg.joystickEnabled && jsReportTimer.read_us() > cfg.jsReportInterval_us)
mjr 17:ab3cec0c8bf4 6955 {
mjr 92:f264fbaa1be5 6956 // Increment the "stutter" counter. If it has reached the
mjr 92:f264fbaa1be5 6957 // stutter threshold, read a new accelerometer sample. If
mjr 92:f264fbaa1be5 6958 // not, repeat the last sample.
mjr 92:f264fbaa1be5 6959 if (++jsAccelStutterCounter >= cfg.accel.stutter)
mjr 92:f264fbaa1be5 6960 {
mjr 92:f264fbaa1be5 6961 // read the accelerometer
mjr 92:f264fbaa1be5 6962 int xa, ya;
mjr 92:f264fbaa1be5 6963 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 6964
mjr 92:f264fbaa1be5 6965 // confine the results to our joystick axis range
mjr 92:f264fbaa1be5 6966 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 92:f264fbaa1be5 6967 if (xa > JOYMAX) xa = JOYMAX;
mjr 92:f264fbaa1be5 6968 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 92:f264fbaa1be5 6969 if (ya > JOYMAX) ya = JOYMAX;
mjr 92:f264fbaa1be5 6970
mjr 92:f264fbaa1be5 6971 // store the updated accelerometer coordinates
mjr 92:f264fbaa1be5 6972 x = xa;
mjr 92:f264fbaa1be5 6973 y = ya;
mjr 92:f264fbaa1be5 6974
mjr 95:8eca8acbb82c 6975 // rotate X and Y according to the device orientation in the cabinet
mjr 95:8eca8acbb82c 6976 accelRotate(x, y);
mjr 95:8eca8acbb82c 6977
mjr 92:f264fbaa1be5 6978 // reset the stutter counter
mjr 92:f264fbaa1be5 6979 jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6980 }
mjr 17:ab3cec0c8bf4 6981
mjr 48:058ace2aed1d 6982 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 6983 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 6984 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 6985 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 6986 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 6987 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 6988 // regular plunger inputs.
mjr 92:f264fbaa1be5 6989 int zActual = plungerReader.getPosition();
mjr 96:68d5621ff49f 6990 int zReported = (!effectivePlungerEnabled || zbLaunchOn ? 0 : zActual);
mjr 35:e959ffba78fd 6991
mjr 35:e959ffba78fd 6992 // send the joystick report
mjr 92:f264fbaa1be5 6993 jsOK = js.update(x, y, zReported, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 6994
mjr 17:ab3cec0c8bf4 6995 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 6996 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 6997 }
mjr 21:5048e16cc9ef 6998
mjr 52:8298b2a73eb2 6999 // If we're in sensor status mode, report all pixel exposure values
mjr 101:755f44622abc 7000 if (reportPlungerStat && plungerSensor->ready())
mjr 10:976666ffa4ef 7001 {
mjr 17:ab3cec0c8bf4 7002 // send the report
mjr 101:755f44622abc 7003 plungerSensor->sendStatusReport(js, reportPlungerStatFlags);
mjr 17:ab3cec0c8bf4 7004
mjr 10:976666ffa4ef 7005 // we have satisfied this request
mjr 52:8298b2a73eb2 7006 reportPlungerStat = false;
mjr 10:976666ffa4ef 7007 }
mjr 10:976666ffa4ef 7008
mjr 101:755f44622abc 7009 // Reset the plunger status report extra timer after enough time has
mjr 101:755f44622abc 7010 // elapsed to satisfy the request. We don't just do this immediately
mjr 101:755f44622abc 7011 // because of the complexities of the pixel frame buffer pipelines in
mjr 101:755f44622abc 7012 // most of the image sensors. The pipelines delay the effect of the
mjr 101:755f44622abc 7013 // exposure time request by a couple of frames, so we can't be sure
mjr 101:755f44622abc 7014 // exactly when they're applied - meaning we can't consider the
mjr 101:755f44622abc 7015 // delay time to be consumed after a fixed number of frames. Instead,
mjr 101:755f44622abc 7016 // we'll consider it consumed after a long enough time to be sure
mjr 101:755f44622abc 7017 // we've sent a few frames. The extra time value is meant to be an
mjr 101:755f44622abc 7018 // interactive tool for debugging, so it's not important to reset it
mjr 101:755f44622abc 7019 // immediately - the user will probably want to see the effect over
mjr 101:755f44622abc 7020 // many frames, so they're likely to keep sending requests with the
mjr 101:755f44622abc 7021 // time value over and over. They'll eventually shut down the frame
mjr 101:755f44622abc 7022 // viewer and return to normal operation, at which point the requests
mjr 101:755f44622abc 7023 // will stop. So we just have to clear things out after we haven't
mjr 101:755f44622abc 7024 // seen a request with extra time for a little while.
mjr 101:755f44622abc 7025 if (reportPlungerStatTime != 0
mjr 101:755f44622abc 7026 && static_cast<uint32_t>(requestTimestamper.read_us() - tReportPlungerStat) > 1000000)
mjr 101:755f44622abc 7027 {
mjr 101:755f44622abc 7028 reportPlungerStatTime = 0;
mjr 101:755f44622abc 7029 plungerSensor->setExtraIntegrationTime(0);
mjr 101:755f44622abc 7030 }
mjr 101:755f44622abc 7031
mjr 35:e959ffba78fd 7032 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 7033 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 7034 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 7035 {
mjr 55:4db125cd11a0 7036 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 7037 jsReportTimer.reset();
mjr 38:091e511ce8a0 7038 }
mjr 38:091e511ce8a0 7039
mjr 38:091e511ce8a0 7040 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 7041 if (jsOK)
mjr 38:091e511ce8a0 7042 {
mjr 38:091e511ce8a0 7043 jsOKTimer.reset();
mjr 38:091e511ce8a0 7044 jsOKTimer.start();
mjr 21:5048e16cc9ef 7045 }
mjr 21:5048e16cc9ef 7046
mjr 76:7f5912b6340e 7047 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 7048 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7049
mjr 6:cc35eb643e8f 7050 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 7051 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 7052 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 7053 #endif
mjr 6:cc35eb643e8f 7054
mjr 33:d832bcab089e 7055 // check for connection status changes
mjr 54:fd77a6b2f76c 7056 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 7057 if (newConnected != connected)
mjr 33:d832bcab089e 7058 {
mjr 54:fd77a6b2f76c 7059 // give it a moment to stabilize
mjr 40:cc0d9814522b 7060 connectChangeTimer.start();
mjr 55:4db125cd11a0 7061 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 7062 {
mjr 33:d832bcab089e 7063 // note the new status
mjr 33:d832bcab089e 7064 connected = newConnected;
mjr 40:cc0d9814522b 7065
mjr 40:cc0d9814522b 7066 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 7067 connectChangeTimer.stop();
mjr 40:cc0d9814522b 7068 connectChangeTimer.reset();
mjr 33:d832bcab089e 7069
mjr 54:fd77a6b2f76c 7070 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 7071 if (!connected)
mjr 40:cc0d9814522b 7072 {
mjr 54:fd77a6b2f76c 7073 // turn off all outputs
mjr 33:d832bcab089e 7074 allOutputsOff();
mjr 40:cc0d9814522b 7075
mjr 40:cc0d9814522b 7076 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 7077 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 7078 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 7079 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 7080 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 7081 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 7082 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 7083 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 7084 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 7085 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 7086 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 7087 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 7088 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 7089 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 7090 // the power first comes on.
mjr 40:cc0d9814522b 7091 if (tlc5940 != 0)
mjr 40:cc0d9814522b 7092 tlc5940->enable(false);
mjr 87:8d35c74403af 7093 if (tlc59116 != 0)
mjr 87:8d35c74403af 7094 tlc59116->enable(false);
mjr 40:cc0d9814522b 7095 if (hc595 != 0)
mjr 40:cc0d9814522b 7096 hc595->enable(false);
mjr 40:cc0d9814522b 7097 }
mjr 33:d832bcab089e 7098 }
mjr 33:d832bcab089e 7099 }
mjr 48:058ace2aed1d 7100
mjr 53:9b2611964afc 7101 // if we have a reboot timer pending, check for completion
mjr 86:e30a1f60f783 7102 if (saveConfigFollowupTimer.isRunning()
mjr 87:8d35c74403af 7103 && saveConfigFollowupTimer.read_us() > saveConfigFollowupTime*1000000UL)
mjr 85:3c28aee81cde 7104 {
mjr 85:3c28aee81cde 7105 // if a reboot is pending, execute it now
mjr 86:e30a1f60f783 7106 if (saveConfigRebootPending)
mjr 82:4f6209cb5c33 7107 {
mjr 86:e30a1f60f783 7108 // Only reboot if the PSU2 power state allows it. If it
mjr 86:e30a1f60f783 7109 // doesn't, suppress the reboot for now, but leave the boot
mjr 86:e30a1f60f783 7110 // flags set so that we keep checking on future rounds.
mjr 86:e30a1f60f783 7111 // That way we should eventually reboot when the power
mjr 86:e30a1f60f783 7112 // status allows it.
mjr 86:e30a1f60f783 7113 if (powerStatusAllowsReboot())
mjr 86:e30a1f60f783 7114 reboot(js);
mjr 82:4f6209cb5c33 7115 }
mjr 85:3c28aee81cde 7116 else
mjr 85:3c28aee81cde 7117 {
mjr 86:e30a1f60f783 7118 // No reboot required. Exit the timed post-save state.
mjr 86:e30a1f60f783 7119
mjr 86:e30a1f60f783 7120 // stop and reset the post-save timer
mjr 86:e30a1f60f783 7121 saveConfigFollowupTimer.stop();
mjr 86:e30a1f60f783 7122 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 7123
mjr 86:e30a1f60f783 7124 // clear the post-save success flag
mjr 86:e30a1f60f783 7125 saveConfigSucceededFlag = 0;
mjr 85:3c28aee81cde 7126 }
mjr 77:0b96f6867312 7127 }
mjr 86:e30a1f60f783 7128
mjr 48:058ace2aed1d 7129 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 7130 if (!connected)
mjr 48:058ace2aed1d 7131 {
mjr 54:fd77a6b2f76c 7132 // show USB HAL debug events
mjr 54:fd77a6b2f76c 7133 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 7134 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 7135
mjr 54:fd77a6b2f76c 7136 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 7137 js.diagFlash();
mjr 54:fd77a6b2f76c 7138
mjr 54:fd77a6b2f76c 7139 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 7140 diagLED(0, 0, 0);
mjr 51:57eb311faafa 7141
mjr 51:57eb311faafa 7142 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 7143 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 7144 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 7145
mjr 54:fd77a6b2f76c 7146 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 7147 Timer diagTimer;
mjr 54:fd77a6b2f76c 7148 diagTimer.reset();
mjr 54:fd77a6b2f76c 7149 diagTimer.start();
mjr 74:822a92bc11d2 7150
mjr 74:822a92bc11d2 7151 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 7152 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 7153
mjr 54:fd77a6b2f76c 7154 // loop until we get our connection back
mjr 54:fd77a6b2f76c 7155 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 7156 {
mjr 54:fd77a6b2f76c 7157 // try to recover the connection
mjr 54:fd77a6b2f76c 7158 js.recoverConnection();
mjr 54:fd77a6b2f76c 7159
mjr 99:8139b0c274f4 7160 // update Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 7161 LwFlipperLogicOut::poll();
mjr 99:8139b0c274f4 7162 LwChimeLogicOut::poll();
mjr 89:c43cd923401c 7163
mjr 55:4db125cd11a0 7164 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 7165 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7166 tlc5940->send();
mjr 87:8d35c74403af 7167
mjr 87:8d35c74403af 7168 // update TLC59116 outputs
mjr 87:8d35c74403af 7169 if (tlc59116 != 0)
mjr 87:8d35c74403af 7170 tlc59116->send();
mjr 55:4db125cd11a0 7171
mjr 54:fd77a6b2f76c 7172 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 7173 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 7174 {
mjr 54:fd77a6b2f76c 7175 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 7176 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 7177
mjr 54:fd77a6b2f76c 7178 // show diagnostic feedback
mjr 54:fd77a6b2f76c 7179 js.diagFlash();
mjr 51:57eb311faafa 7180
mjr 51:57eb311faafa 7181 // reset the flash timer
mjr 54:fd77a6b2f76c 7182 diagTimer.reset();
mjr 51:57eb311faafa 7183 }
mjr 51:57eb311faafa 7184
mjr 77:0b96f6867312 7185 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 7186 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 7187 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 7188 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 7189 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 7190 // reliable way to get Windows to notice us again after one
mjr 86:e30a1f60f783 7191 // of these events and make it reconnect. Only reboot if
mjr 86:e30a1f60f783 7192 // the PSU2 power status allows it - if not, skip it on this
mjr 86:e30a1f60f783 7193 // round and keep waiting.
mjr 51:57eb311faafa 7194 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 7195 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 7196 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 7197 reboot(js, false, 0);
mjr 77:0b96f6867312 7198
mjr 77:0b96f6867312 7199 // update the PSU2 power sensing status
mjr 77:0b96f6867312 7200 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 7201 }
mjr 54:fd77a6b2f76c 7202
mjr 74:822a92bc11d2 7203 // resume the main loop timer
mjr 74:822a92bc11d2 7204 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 7205
mjr 54:fd77a6b2f76c 7206 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 7207 connected = true;
mjr 54:fd77a6b2f76c 7208 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 7209
mjr 54:fd77a6b2f76c 7210 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 7211 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7212 tlc5940->enable(true);
mjr 87:8d35c74403af 7213 if (tlc59116 != 0)
mjr 87:8d35c74403af 7214 tlc59116->enable(true);
mjr 54:fd77a6b2f76c 7215 if (hc595 != 0)
mjr 54:fd77a6b2f76c 7216 {
mjr 55:4db125cd11a0 7217 hc595->enable(true);
mjr 54:fd77a6b2f76c 7218 hc595->update(true);
mjr 51:57eb311faafa 7219 }
mjr 48:058ace2aed1d 7220 }
mjr 43:7a6364d82a41 7221
mjr 6:cc35eb643e8f 7222 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 7223 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 7224 {
mjr 54:fd77a6b2f76c 7225 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 7226 {
mjr 39:b3815a1c3802 7227 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 7228 //
mjr 54:fd77a6b2f76c 7229 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 7230 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 7231 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 7232 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 7233 hb = !hb;
mjr 38:091e511ce8a0 7234 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 7235
mjr 54:fd77a6b2f76c 7236 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 7237 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 7238 // with the USB connection.
mjr 54:fd77a6b2f76c 7239 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 7240 {
mjr 54:fd77a6b2f76c 7241 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 7242 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 7243 // limit, keep running for now, and leave the OK timer running so
mjr 86:e30a1f60f783 7244 // that we can continue to monitor this. Only reboot if the PSU2
mjr 86:e30a1f60f783 7245 // power status allows it.
mjr 86:e30a1f60f783 7246 if (jsOKTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 7247 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 7248 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 7249 }
mjr 54:fd77a6b2f76c 7250 else
mjr 54:fd77a6b2f76c 7251 {
mjr 54:fd77a6b2f76c 7252 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 7253 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 7254 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 7255 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 7256 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 7257 }
mjr 38:091e511ce8a0 7258 }
mjr 73:4e8ce0b18915 7259 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 7260 {
mjr 73:4e8ce0b18915 7261 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 7262 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 7263 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 7264 }
mjr 96:68d5621ff49f 7265 else if (effectivePlungerEnabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 7266 {
mjr 6:cc35eb643e8f 7267 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 7268 hb = !hb;
mjr 38:091e511ce8a0 7269 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 7270 }
mjr 6:cc35eb643e8f 7271 else
mjr 6:cc35eb643e8f 7272 {
mjr 6:cc35eb643e8f 7273 // connected - flash blue/green
mjr 2:c174f9ee414a 7274 hb = !hb;
mjr 38:091e511ce8a0 7275 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 7276 }
mjr 1:d913e0afb2ac 7277
mjr 1:d913e0afb2ac 7278 // reset the heartbeat timer
mjr 1:d913e0afb2ac 7279 hbTimer.reset();
mjr 5:a70c0bce770d 7280 ++hbcnt;
mjr 1:d913e0afb2ac 7281 }
mjr 74:822a92bc11d2 7282
mjr 74:822a92bc11d2 7283 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 7284 IF_DIAG(
mjr 76:7f5912b6340e 7285 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 7286 mainLoopIterCount++;
mjr 74:822a92bc11d2 7287 )
mjr 1:d913e0afb2ac 7288 }
mjr 0:5acbbe3f4cf4 7289 }