An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R


This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.


  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.


The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Fri Mar 01 23:53:59 2019 +0000
Modified flipper logic timing; add Minimum Time Output port flag (proposed changes only; may be replaced collectively by a new Chime Logic type)

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 17:ab3cec0c8bf4 1 // Pinscape Controller Configuration
mjr 17:ab3cec0c8bf4 2 //
mjr 87:8d35c74403af 3 // !!! ATTENTION !!!
mjr 87:8d35c74403af 4 // If you've come here on advice in a forum to change a GPIO setting or
mjr 87:8d35c74403af 5 // to #define a macro to enable the expansion boards, >>>STOP NOW<<<. The
mjr 87:8d35c74403af 6 // advice you found is out of date and no longer applies. You don't need
mjr 87:8d35c74403af 7 // to edit this file or recompile the firmware, and you shouldn't. Instead,
mjr 87:8d35c74403af 8 // use the standard firmware, and set options using the Pinscape Config Tool
mjr 87:8d35c74403af 9 // on your Windows PC. All options that were formerly configurable by
mjr 87:8d35c74403af 10 // editing this file can be selected with the Config Tool. That's much
mjr 87:8d35c74403af 11 // cleaner and easier than editing the source code, and it eliminates the
mjr 87:8d35c74403af 12 // problem of re-synchronizing a private copy of the source code with future
mjr 87:8d35c74403af 13 // updates. With the config tool, you only need the standard firmware build,
mjr 87:8d35c74403af 14 // so future updates are a simple matter of downloading the latest version.
mjr 35:e959ffba78fd 15 //
mjr 35:e959ffba78fd 16 //
mjr 87:8d35c74403af 17 // IN THE PAST (but NOT NOW - see above), configuration was handled mostly
mjr 87:8d35c74403af 18 // with #defines and #ifdefs. To customize the setup, you had to create a
mjr 87:8d35c74403af 19 // private forked copy of the source code, edit the constants defined in
mjr 87:8d35c74403af 20 // config.h, and compile a custom binary. That's no longer necessary because
mjr 87:8d35c74403af 21 // the config tool lets you set all configurable options dynamically. Of
mjr 87:8d35c74403af 22 // course, you're still free to create a custom version if you want to add
mjr 87:8d35c74403af 23 // entirely new features or make changes that go beyond the configurable
mjr 87:8d35c74403af 24 // options.
mjr 35:e959ffba78fd 25 //
mjr 87:8d35c74403af 26 #ifndef CONFIG_H
mjr 87:8d35c74403af 27 #define CONFIG_H
mjr 35:e959ffba78fd 28
mjr 90:aa4e571da8e8 29 #include "USBJoystick.h"
mjr 90:aa4e571da8e8 30
mjr 87:8d35c74403af 31
mjr 87:8d35c74403af 32 // TEST SETTINGS - FOR DEBUGGING PURPOSES ONLY. The macros below select
mjr 87:8d35c74403af 33 // special option combinations for debugging purposes.
mjr 55:4db125cd11a0 34 //
mjr 87:8d35c74403af 35 // IMPORTANT! If you're trying to create a custom configuration because
mjr 87:8d35c74403af 36 // you have a pin conflict or because you're using the expansion boards,
mjr 87:8d35c74403af 37 // DON'T modify this file, DON'T use these macros, and DON'T recompile
mjr 87:8d35c74403af 38 // the firmware. Use the Config Tool on your Windows PC instead.
mjr 55:4db125cd11a0 39 #define STANDARD_CONFIG 1 // standard settings, based on v1 base settings
mjr 55:4db125cd11a0 40 #define TEST_CONFIG_EXPAN 0 // configuration for the expansion boards
mjr 80:94dc2946871b 41 #define TEST_KEEP_PRINTF 0 // for debugging purposes, keep printf() enabled
mjr 55:4db125cd11a0 42 // by leaving the SDA UART GPIO pins unallocated
mjr 48:058ace2aed1d 43
mjr 35:e959ffba78fd 44 // Plunger type codes
mjr 35:e959ffba78fd 45 // NOTE! These values are part of the external USB interface. New
mjr 35:e959ffba78fd 46 // values can be added, but the meaning of an existing assigned number
mjr 35:e959ffba78fd 47 // should remain fixed to keep the PC-side config tool compatible across
mjr 35:e959ffba78fd 48 // versions.
mjr 35:e959ffba78fd 49 const int PlungerType_None = 0; // no plunger
mjr 82:4f6209cb5c33 50 const int PlungerType_TSL1410R = 1; // TSL1410R linear image sensor (1280x1 pixels, 400dpi), serial mode, edge detection
mjr 82:4f6209cb5c33 51 const int PlungerType_TSL1412S = 3; // TSL1412S linear image sensor (1536x1 pixels, 400dpi), serial mode, edge detection
mjr 35:e959ffba78fd 52 const int PlungerType_Pot = 5; // potentionmeter
mjr 35:e959ffba78fd 53 const int PlungerType_OptQuad = 6; // AEDR8300 optical quadrature sensor
mjr 35:e959ffba78fd 54 const int PlungerType_MagQuad = 7; // AS5304 magnetic quadrature sensor
mjr 82:4f6209cb5c33 55 const int PlungerType_TSL1401CL = 8; // TSL1401CL linear image sensor (128x1 pixels, 400dpi), bar code sensing
mjr 82:4f6209cb5c33 56 const int PlungerType_VL6180X = 9; // VL6180X time-of-flight distance sensor
mjr 82:4f6209cb5c33 57
mjr 82:4f6209cb5c33 58 // Plunger auto-zero flags
mjr 82:4f6209cb5c33 59 const int PlungerAutoZeroEnabled = 0x01; // auto-zeroing enabled
mjr 21:5048e16cc9ef 60
mjr 35:e959ffba78fd 61 // Accelerometer orientation codes
mjr 35:e959ffba78fd 62 // These values are part of the external USB interface
mjr 35:e959ffba78fd 63 const int OrientationFront = 0; // USB ports pointed toward front of cabinet
mjr 35:e959ffba78fd 64 const int OrientationLeft = 1; // ports pointed toward left side of cabinet
mjr 35:e959ffba78fd 65 const int OrientationRight = 2; // ports pointed toward right side of cabinet
mjr 35:e959ffba78fd 66 const int OrientationRear = 3; // ports pointed toward back of cabinet
mjr 25:e22b88bd783a 67
mjr 77:0b96f6867312 68 // Accelerometer dynamic range codes
mjr 77:0b96f6867312 69 const int AccelRange1G = 0; // +/-1G
mjr 77:0b96f6867312 70 const int AccelRange2G = 1; // +/-2G
mjr 77:0b96f6867312 71 const int AccelRange4G = 2; // +/-4G
mjr 77:0b96f6867312 72 const int AccelRange8G = 3; // +/-8G
mjr 77:0b96f6867312 73
mjr 35:e959ffba78fd 74 // input button types
mjr 53:9b2611964afc 75 const int BtnTypeNone = 0; // unused
mjr 35:e959ffba78fd 76 const int BtnTypeJoystick = 1; // joystick button
mjr 53:9b2611964afc 77 const int BtnTypeKey = 2; // keyboard key
mjr 67:c39e66c4e000 78 const int BtnTypeMedia = 3; // media control key
mjr 38:091e511ce8a0 79
mjr 38:091e511ce8a0 80 // input button flags
mjr 38:091e511ce8a0 81 const uint8_t BtnFlagPulse = 0x01; // pulse mode - reports each change in the physical switch state
mjr 38:091e511ce8a0 82 // as a brief press of the logical button/keyboard key
mjr 40:cc0d9814522b 83
mjr 40:cc0d9814522b 84 // button setup structure
mjr 40:cc0d9814522b 85 struct ButtonCfg
mjr 40:cc0d9814522b 86 {
mjr 66:2e3583fbd2f4 87 // physical GPIO pin - a Wire-to-PinName mapping index
mjr 66:2e3583fbd2f4 88 uint8_t pin;
mjr 66:2e3583fbd2f4 89
mjr 66:2e3583fbd2f4 90 // Key type and value reported to the PC
mjr 40:cc0d9814522b 91 uint8_t typ; // key type reported to PC - a BtnTypeXxx value
mjr 53:9b2611964afc 92 uint8_t val; // key value reported - meaning depends on 'typ' value:
mjr 53:9b2611964afc 93 // none -> no PC input reports (val is unused)
mjr 53:9b2611964afc 94 // joystick -> val is joystick button number (1..32)
mjr 53:9b2611964afc 95 // keyboard -> val is USB scan code
mjr 77:0b96f6867312 96 uint8_t IRCommand; // IR command to send when the button is pressed, as
mjr 77:0b96f6867312 97 // an IR command slot number: 1..MAX_IR_CODES, or 0
mjr 77:0b96f6867312 98 // if no IR command is to be sent
mjr 66:2e3583fbd2f4 99
mjr 66:2e3583fbd2f4 100 // Shifted key type and value. These used when the button is pressed
mjr 66:2e3583fbd2f4 101 // while the Local Shift Button is being held down. We send the key
mjr 66:2e3583fbd2f4 102 // code given here instead of the regular typ/val code in this case.
mjr 66:2e3583fbd2f4 103 // If typ2 is BtnTypeNone, we use the regular typ/val code whether or
mjr 66:2e3583fbd2f4 104 // not the shift button is being held.
mjr 66:2e3583fbd2f4 105 uint8_t typ2; // shifted key type
mjr 66:2e3583fbd2f4 106 uint8_t val2; // shifted key value
mjr 77:0b96f6867312 107 uint8_t IRCommand2; // IR command to send when shifted button is pressed
mjr 66:2e3583fbd2f4 108
mjr 66:2e3583fbd2f4 109 // key flags - a bitwise combination of BtnFlagXxx values
mjr 66:2e3583fbd2f4 110 uint8_t flags;
mjr 40:cc0d9814522b 111
mjr 40:cc0d9814522b 112 void set(uint8_t pin, uint8_t typ, uint8_t val, uint8_t flags = 0)
mjr 40:cc0d9814522b 113 {
mjr 40:cc0d9814522b 114 this->pin = pin;
mjr 40:cc0d9814522b 115 this->typ = typ;
mjr 40:cc0d9814522b 116 this->val = val;
mjr 77:0b96f6867312 117 this->IRCommand = 0;
mjr 40:cc0d9814522b 118 this->flags = flags;
mjr 77:0b96f6867312 119 this->typ2 = 0;
mjr 77:0b96f6867312 120 this->val2 = 0;
mjr 77:0b96f6867312 121 this->IRCommand2 = 0;
mjr 40:cc0d9814522b 122 }
mjr 40:cc0d9814522b 123
mjr 40:cc0d9814522b 124 } __attribute__((packed));
mjr 40:cc0d9814522b 125
mjr 33:d832bcab089e 126
mjr 65:739875521aae 127 // maximum number of input button mappings in configuration
mjr 65:739875521aae 128 const int MAX_BUTTONS = 48;
mjr 65:739875521aae 129
mjr 65:739875521aae 130 // extra slots for virtual buttons (ZB Launch Ball)
mjr 89:c43cd923401c 131 const int VIRTUAL_BUTTONS = 1; // total number of buttons
mjr 89:c43cd923401c 132 const int ZBL_BUTTON_CFG = MAX_BUTTONS; // index of ZB Launch Ball slot
mjr 33:d832bcab089e 133
mjr 35:e959ffba78fd 134 // LedWiz output port type codes
mjr 35:e959ffba78fd 135 // These values are part of the external USB interface
mjr 89:c43cd923401c 136 const int PortTypeDisabled = 0; // port is disabled - not visible to LedWiz/DOF host
mjr 89:c43cd923401c 137 const int PortTypeGPIOPWM = 1; // GPIO port, PWM enabled
mjr 89:c43cd923401c 138 const int PortTypeGPIODig = 2; // GPIO port, digital out
mjr 89:c43cd923401c 139 const int PortTypeTLC5940 = 3; // TLC5940 port
mjr 89:c43cd923401c 140 const int PortType74HC595 = 4; // 74HC595 port
mjr 89:c43cd923401c 141 const int PortTypeVirtual = 5; // Virtual port - visible to host software, but not connected
mjr 89:c43cd923401c 142 // to a physical output
mjr 89:c43cd923401c 143 const int PortTypeTLC59116 = 6; // TLC59116 port
mjr 17:ab3cec0c8bf4 144
mjr 35:e959ffba78fd 145 // LedWiz output port flag bits
mjr 89:c43cd923401c 146 const uint8_t PortFlagActiveLow = 0x01; // physical output is active-low
mjr 89:c43cd923401c 147 const uint8_t PortFlagNoisemaker = 0x02; // noisemaker device - disable when night mode is engaged
mjr 89:c43cd923401c 148 const uint8_t PortFlagGamma = 0x04; // apply gamma correction to this output
mjr 89:c43cd923401c 149 const uint8_t PortFlagFlipperLogic = 0x08; // enable Flipper Logic on the port (timed power limitation)
mjr 98:4df3c0f7e707 150 const uint8_t PortFlagMinOnTime = 0x10; // enable Minimum On Time on this port
mjr 35:e959ffba78fd 151
mjr 35:e959ffba78fd 152 // maximum number of output ports
mjr 48:058ace2aed1d 153 const int MAX_OUT_PORTS = 128;
mjr 33:d832bcab089e 154
mjr 38:091e511ce8a0 155 // port configuration data
mjr 38:091e511ce8a0 156 struct LedWizPortCfg
mjr 38:091e511ce8a0 157 {
mjr 89:c43cd923401c 158 // port type: a PortTypeXxx value
mjr 89:c43cd923401c 159 uint8_t typ;
mjr 40:cc0d9814522b 160
mjr 89:c43cd923401c 161 // physical output pin:
mjr 89:c43cd923401c 162 //
mjr 89:c43cd923401c 163 // - for a GPIO port, this is an index in the
mjr 89:c43cd923401c 164 // USB-to-PinName mapping list
mjr 89:c43cd923401c 165 //
mjr 89:c43cd923401c 166 // - for a TLC5940 or 74HC595 port, it's the output
mjr 89:c43cd923401c 167 // number in the overall daisy chain, starting
mjr 89:c43cd923401c 168 // from 0 for OUT0 on the first chip in the chain
mjr 89:c43cd923401c 169 //
mjr 89:c43cd923401c 170 // - for a TLC59116, the high 4 bits are the chip
mjr 89:c43cd923401c 171 // address (the low 4 bits of the address only),
mjr 89:c43cd923401c 172 // and the low 4 bits are the output number on
mjr 89:c43cd923401c 173 // the chip
mjr 89:c43cd923401c 174 //
mjr 89:c43cd923401c 175 // - for inactive and virtual ports, this is unused
mjr 89:c43cd923401c 176 //
mjr 89:c43cd923401c 177 uint8_t pin;
mjr 89:c43cd923401c 178
mjr 89:c43cd923401c 179 // flags: a combination of PortFlagXxx values
mjr 89:c43cd923401c 180 uint8_t flags;
mjr 89:c43cd923401c 181
mjr 89:c43cd923401c 182 // flipper logic properties:
mjr 89:c43cd923401c 183 //
mjr 98:4df3c0f7e707 184 // - high 4 bits (0xF0) give full-power time
mjr 89:c43cd923401c 185 //
mjr 89:c43cd923401c 186 // - low 4 bits (0x0F) give reduced power level (used
mjr 89:c43cd923401c 187 // after full-power time expires), in 6.66% units
mjr 89:c43cd923401c 188 //
mjr 89:c43cd923401c 189 uint8_t flipperLogic;
mjr 89:c43cd923401c 190
mjr 98:4df3c0f7e707 191 // Minimum On Time/reserved
mjr 98:4df3c0f7e707 192 //
mjr 98:4df3c0f7e707 193 // - high 4 bits (0xF) are reserved
mjr 98:4df3c0f7e707 194 // - low 4 bits (0x0F) give minimum on time
mjr 98:4df3c0f7e707 195 uint8_t minOnTime;
mjr 98:4df3c0f7e707 196
mjr 98:4df3c0f7e707 197 void set(uint8_t typ, uint8_t pin, uint8_t flags = 0, uint8_t flipperLogic = 0, uint8_t minOnTime = 0)
mjr 40:cc0d9814522b 198 {
mjr 40:cc0d9814522b 199 this->typ = typ;
mjr 40:cc0d9814522b 200 this->pin = pin;
mjr 40:cc0d9814522b 201 this->flags = flags;
mjr 89:c43cd923401c 202 this->flipperLogic = flipperLogic;
mjr 98:4df3c0f7e707 203 this->minOnTime = minOnTime;
mjr 40:cc0d9814522b 204 }
mjr 40:cc0d9814522b 205
mjr 77:0b96f6867312 206 } __attribute__ ((packed));
mjr 77:0b96f6867312 207
mjr 77:0b96f6867312 208 // IR command configuration flags
mjr 77:0b96f6867312 209 const uint8_t IRFlagTVON = 0x01; // send command at TV ON time
mjr 77:0b96f6867312 210 const uint8_t IRFlagDittos = 0x02; // use "ditto" codes on send
mjr 77:0b96f6867312 211
mjr 77:0b96f6867312 212 // IR command configuration data
mjr 77:0b96f6867312 213 struct IRCommandCfg
mjr 77:0b96f6867312 214 {
mjr 77:0b96f6867312 215 uint8_t flags; // flags: a combination of IRFlagXxx values
mjr 77:0b96f6867312 216 uint8_t keytype; // key type to send when IR command is received
mjr 77:0b96f6867312 217 uint8_t keycode; // key code to send when IR command is received
mjr 77:0b96f6867312 218 uint8_t protocol; // IR protocol ID (see IRRemote/IRProtocolID.h)
mjr 77:0b96f6867312 219 struct
mjr 77:0b96f6867312 220 {
mjr 77:0b96f6867312 221 uint32_t lo; // low 32 bits of code
mjr 77:0b96f6867312 222 uint32_t hi; // high 32 bits of code
mjr 77:0b96f6867312 223 } code; // 64-bit command code (protocol-specific; see IRProtocols.h)
mjr 77:0b96f6867312 224 } __attribute__ ((packed));
mjr 77:0b96f6867312 225
mjr 77:0b96f6867312 226 // Maximum number of IR commands
mjr 77:0b96f6867312 227 const int MAX_IR_CODES = 16;
mjr 38:091e511ce8a0 228
mjr 38:091e511ce8a0 229
mjr 53:9b2611964afc 230 // Convert a physical pin name to a wire pin name
mjr 53:9b2611964afc 231 #define PINNAME_TO_WIRE(p) \
mjr 53:9b2611964afc 232 uint8_t((p) == NC ? 0xFF : \
mjr 53:9b2611964afc 233 (((p) & 0xF000 ) >> (PORT_SHIFT - 5)) | (((p) & 0xFF) >> 2))
mjr 53:9b2611964afc 234
mjr 35:e959ffba78fd 235 struct Config
mjr 35:e959ffba78fd 236 {
mjr 35:e959ffba78fd 237 // set all values to factory defaults
mjr 35:e959ffba78fd 238 void setFactoryDefaults()
mjr 35:e959ffba78fd 239 {
mjr 35:e959ffba78fd 240 // By default, pretend to be LedWiz unit #8. This can be from 1 to 16. Real
mjr 35:e959ffba78fd 241 // LedWiz units have their unit number set at the factory, and the vast majority
mjr 35:e959ffba78fd 242 // are set up as unit #1, since that's the default for anyone who doesn't ask
mjr 35:e959ffba78fd 243 // for a different setting. It seems rare for anyone to use more than one unit
mjr 35:e959ffba78fd 244 // in a pin cab, but for the few who do, the others will probably be numbered
mjr 35:e959ffba78fd 245 // sequentially as #2, #3, etc. It seems safe to assume that no one out there
mjr 48:058ace2aed1d 246 // has a unit #8, so we'll use that as our default. This can be changed from
mjr 48:058ace2aed1d 247 // the config tool, but for the sake of convenience, it's better to pick a
mjr 48:058ace2aed1d 248 // default that most people won't have to change.
mjr 54:fd77a6b2f76c 249 usbVendorID = 0xFAFA; // LedWiz vendor code
mjr 48:058ace2aed1d 250 usbProductID = 0x00F7; // LedWiz product code for unit #8
mjr 61:3c7e6e9ec355 251
mjr 55:4db125cd11a0 252 // Set the default Pinscape unit number to #1. This is a separate identifier
mjr 55:4db125cd11a0 253 // from the LedWiz ID, so you don't have to worry about making this different
mjr 55:4db125cd11a0 254 // from your LedWiz units. Each Pinscape unit should have a unique value for
mjr 55:4db125cd11a0 255 // this ID, though.
mjr 55:4db125cd11a0 256 //
mjr 55:4db125cd11a0 257 // Note that Pinscape unit #1 corresponds to DOF Pinscape #51, PS 2 -> DOF 52,
mjr 55:4db125cd11a0 258 // and so on - just add 50 to get the DOF ID.
mjr 55:4db125cd11a0 259 psUnitNo = 1;
mjr 35:e959ffba78fd 260
mjr 51:57eb311faafa 261 // set a disconnect reboot timeout of 10 seconds by default
mjr 55:4db125cd11a0 262 disconnectRebootTimeout = 10;
mjr 51:57eb311faafa 263
mjr 35:e959ffba78fd 264 // enable joystick reports
mjr 35:e959ffba78fd 265 joystickEnabled = true;
mjr 35:e959ffba78fd 266
mjr 90:aa4e571da8e8 267 // use the XYZ axis format
mjr 90:aa4e571da8e8 268 joystickAxisFormat = USBJoystick::AXIS_FORMAT_XYZ;
mjr 90:aa4e571da8e8 269
mjr 92:f264fbaa1be5 270 // send reports every 8.33ms by default (120 Hz, 2X the typical video
mjr 92:f264fbaa1be5 271 // refresh rate)
mjr 92:f264fbaa1be5 272 jsReportInterval_us = 8333;
mjr 92:f264fbaa1be5 273
mjr 35:e959ffba78fd 274 // assume standard orientation, with USB ports toward front of cabinet
mjr 78:1e00b3fa11af 275 accel.orientation = OrientationFront;
mjr 78:1e00b3fa11af 276
mjr 78:1e00b3fa11af 277 // default dynamic range +/-1G
mjr 78:1e00b3fa11af 278 accel.range = AccelRange1G;
mjr 78:1e00b3fa11af 279
mjr 78:1e00b3fa11af 280 // default auto-centering time
mjr 78:1e00b3fa11af 281 accel.autoCenterTime = 0;
mjr 92:f264fbaa1be5 282
mjr 92:f264fbaa1be5 283 // take a new accelerometer reading on every other joystick report
mjr 92:f264fbaa1be5 284 accel.stutter = 2;
mjr 25:e22b88bd783a 285
mjr 52:8298b2a73eb2 286 // assume a basic setup with no expansion boards
mjr 53:9b2611964afc 287 expan.typ = 0;
mjr 53:9b2611964afc 288 expan.vsn = 0;
mjr 53:9b2611964afc 289 memset(expan.ext, 0, sizeof(expan.ext));
mjr 52:8298b2a73eb2 290
mjr 35:e959ffba78fd 291 // assume no plunger is attached
mjr 77:0b96f6867312 292 plunger.enabled = 0x00;
mjr 35:e959ffba78fd 293 plunger.sensorType = PlungerType_None;
mjr 35:e959ffba78fd 294
mjr 91:ae9be42652bf 295 // no jitter filter
mjr 91:ae9be42652bf 296 plunger.jitterWindow = 0;
mjr 91:ae9be42652bf 297
mjr 91:ae9be42652bf 298 // normal orientation
mjr 91:ae9be42652bf 299 plunger.reverseOrientation = false;
mjr 91:ae9be42652bf 300
mjr 55:4db125cd11a0 301 #if TEST_CONFIG_EXPAN || STANDARD_CONFIG
mjr 77:0b96f6867312 302 plunger.enabled = 0x01;
mjr 82:4f6209cb5c33 303 plunger.sensorType = PlungerType_TSL1410R;
mjr 53:9b2611964afc 304 plunger.sensorPin[0] = PINNAME_TO_WIRE(PTE20); // SI
mjr 53:9b2611964afc 305 plunger.sensorPin[1] = PINNAME_TO_WIRE(PTE21); // SCLK
mjr 53:9b2611964afc 306 plunger.sensorPin[2] = PINNAME_TO_WIRE(PTB0); // AO1 = PTB0 = ADC0_SE8
mjr 53:9b2611964afc 307 plunger.sensorPin[3] = PINNAME_TO_WIRE(PTE22); // AO2 (parallel mode) = PTE22 = ADC0_SE3
mjr 43:7a6364d82a41 308 #endif
mjr 43:7a6364d82a41 309
mjr 48:058ace2aed1d 310 // default plunger calibration button settings
mjr 55:4db125cd11a0 311 = 0x03; // 0x01 = enable button, 0x02 = enable indicator lamp
mjr 55:4db125cd11a0 312 = PINNAME_TO_WIRE(PTE29); // button input (DigitalIn port)
mjr 55:4db125cd11a0 313 = PINNAME_TO_WIRE(PTE23); // button output (DigitalOut port)
mjr 35:e959ffba78fd 314
mjr 44:b5ac89b9cd5d 315 // set the default plunger calibration
mjr 44:b5ac89b9cd5d 316;
mjr 35:e959ffba78fd 317
mjr 35:e959ffba78fd 318 // disable the ZB Launch Ball by default
mjr 53:9b2611964afc 319 plunger.zbLaunchBall.port = 0; // 0 = disabled
mjr 65:739875521aae 320 plunger.zbLaunchBall.keytype = BtnTypeKey; // keyboard key
mjr 61:3c7e6e9ec355 321 plunger.zbLaunchBall.keycode = 0x28; // USB keyboard scan code for Enter key
mjr 61:3c7e6e9ec355 322 plunger.zbLaunchBall.pushDistance = 63; // 63/1000 in == .063" == about 1/16"
mjr 35:e959ffba78fd 323
mjr 35:e959ffba78fd 324 // assume no TV ON switch
mjr 53:9b2611964afc 325 TVON.statusPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 326 TVON.latchPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 327 TVON.relayPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 328 TVON.delayTime = 700; // 7 seconds
mjr 55:4db125cd11a0 329
mjr 55:4db125cd11a0 330 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 331 // expansion board TV ON wiring
mjr 53:9b2611964afc 332 TVON.statusPin = PINNAME_TO_WIRE(PTD2);
mjr 53:9b2611964afc 333 TVON.latchPin = PINNAME_TO_WIRE(PTE0);
mjr 53:9b2611964afc 334 TVON.relayPin = PINNAME_TO_WIRE(PTD3);
mjr 53:9b2611964afc 335 TVON.delayTime = 700; // 7 seconds
mjr 38:091e511ce8a0 336 #endif
mjr 53:9b2611964afc 337
mjr 53:9b2611964afc 338 // assume no night mode switch or indicator lamp
mjr 53:9b2611964afc 339 nightMode.btn = 0;
mjr 53:9b2611964afc 340 nightMode.flags = 0;
mjr 53:9b2611964afc 341 nightMode.port = 0;
mjr 35:e959ffba78fd 342
mjr 35:e959ffba78fd 343 // assume no TLC5940 chips
mjr 35:e959ffba78fd 344 tlc5940.nchips = 0;
mjr 55:4db125cd11a0 345
mjr 55:4db125cd11a0 346 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 347 // for expansion board testing purposes, assume the common setup
mjr 55:4db125cd11a0 348 // with one main board and one power board
mjr 48:058ace2aed1d 349 tlc5940.nchips = 4;
mjr 38:091e511ce8a0 350 #endif
mjr 38:091e511ce8a0 351
mjr 55:4db125cd11a0 352 // Default TLC5940 pin assignments. Note that it's harmless to set
mjr 55:4db125cd11a0 353 // these to valid pins even if no TLC5940 chips are actually present,
mjr 55:4db125cd11a0 354 // since the main program won't allocate the connections if 'nchips'
mjr 55:4db125cd11a0 355 // is zero. This means that the pins are free to be used for other
mjr 55:4db125cd11a0 356 // purposes (such as output ports) if not using TLC5940 chips.
mjr 53:9b2611964afc 357 tlc5940.sin = PINNAME_TO_WIRE(PTC6);
mjr 53:9b2611964afc 358 tlc5940.sclk = PINNAME_TO_WIRE(PTC5);
mjr 53:9b2611964afc 359 tlc5940.xlat = PINNAME_TO_WIRE(PTC10);
mjr 59:94eb9265b6d7 360 tlc5940.blank = PINNAME_TO_WIRE(PTC7);
mjr 59:94eb9265b6d7 361 #if TEST_KEEP_PRINTF
mjr 59:94eb9265b6d7 362 tlc5940.gsclk = PINNAME_TO_WIRE(PTA13); // PTA1 is reserved for SDA printf()
mjr 59:94eb9265b6d7 363 #else
mjr 53:9b2611964afc 364 tlc5940.gsclk = PINNAME_TO_WIRE(PTA1);
mjr 59:94eb9265b6d7 365 #endif
mjr 35:e959ffba78fd 366
mjr 35:e959ffba78fd 367 // assume no 74HC595 chips
mjr 35:e959ffba78fd 368 hc595.nchips = 0;
mjr 55:4db125cd11a0 369
mjr 55:4db125cd11a0 370 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 371 // for expansion board testing purposes, assume one chime board
mjr 48:058ace2aed1d 372 hc595.nchips = 1;
mjr 40:cc0d9814522b 373 #endif
mjr 40:cc0d9814522b 374
mjr 55:4db125cd11a0 375 // Default 74HC595 pin assignments. As with the TLC5940 pins, it's
mjr 55:4db125cd11a0 376 // harmless to assign pins here even if no 74HC595 chips are used,
mjr 55:4db125cd11a0 377 // since the main program won't actually allocate the pins if 'nchips'
mjr 55:4db125cd11a0 378 // is zero.
mjr 53:9b2611964afc 379 hc595.sin = PINNAME_TO_WIRE(PTA5);
mjr 53:9b2611964afc 380 hc595.sclk = PINNAME_TO_WIRE(PTA4);
mjr 53:9b2611964afc 381 hc595.latch = PINNAME_TO_WIRE(PTA12);
mjr 53:9b2611964afc 382 hc595.ena = PINNAME_TO_WIRE(PTD4);
mjr 38:091e511ce8a0 383
mjr 87:8d35c74403af 384 // disable all TLC59116 chips by default
mjr 87:8d35c74403af 385 tlc59116.chipMask = 0;
mjr 87:8d35c74403af 386
mjr 87:8d35c74403af 387 // Default TLC59116 pin assignments
mjr 87:8d35c74403af 388 tlc59116.sda = PINNAME_TO_WIRE(PTC6);
mjr 87:8d35c74403af 389 tlc59116.scl = PINNAME_TO_WIRE(PTC5);
mjr 87:8d35c74403af 390 tlc59116.reset = PINNAME_TO_WIRE(PTC10);
mjr 77:0b96f6867312 391
mjr 77:0b96f6867312 392 // Default IR hardware pin assignments. On the expansion boards,
mjr 77:0b96f6867312 393 // the sensor is connected to PTA13, and the emitter LED is on PTC9.
mjr 77:0b96f6867312 394 #if TEST_CONFIG_EXPAN
mjr 77:0b96f6867312 395 IR.sensor = PINNAME_TO_WIRE(PTA13);
mjr 77:0b96f6867312 396 IR.emitter = PINNAME_TO_WIRE(PTC9);
mjr 77:0b96f6867312 397 #else
mjr 77:0b96f6867312 398 IR.sensor = PINNAME_TO_WIRE(NC);
mjr 77:0b96f6867312 399 IR.emitter = PINNAME_TO_WIRE(NC);
mjr 77:0b96f6867312 400 #endif
mjr 77:0b96f6867312 401
mjr 77:0b96f6867312 402 // clear out all IR slots
mjr 77:0b96f6867312 403 memset(IRCommand, 0, sizeof(IRCommand));
mjr 77:0b96f6867312 404 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 405 {
mjr 77:0b96f6867312 406 IRCommand[i].protocol = 0;
mjr 77:0b96f6867312 407 IRCommand[i].keytype = BtnTypeNone;
mjr 77:0b96f6867312 408 }
mjr 77:0b96f6867312 409
mjr 35:e959ffba78fd 410 // initially configure with no LedWiz output ports
mjr 35:e959ffba78fd 411 outPort[0].typ = PortTypeDisabled;
mjr 66:2e3583fbd2f4 412
mjr 66:2e3583fbd2f4 413 // initially configure with no shift key
mjr 78:1e00b3fa11af 414 shiftButton.idx = 0;
mjr 78:1e00b3fa11af 415 shiftButton.mode = 0;
mjr 53:9b2611964afc 416
mjr 35:e959ffba78fd 417 // initially configure with no input buttons
mjr 35:e959ffba78fd 418 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 53:9b2611964afc 419 button[i].set(PINNAME_TO_WIRE(NC), BtnTypeNone, 0);
mjr 38:091e511ce8a0 420
mjr 55:4db125cd11a0 421 #if STANDARD_CONFIG | TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 422 // For the standard configuration, assign 24 input ports to
mjr 55:4db125cd11a0 423 // joystick buttons 1-24. Assign the same GPIO pins used
mjr 55:4db125cd11a0 424 // in the original v1 default configuration. For expansion
mjr 55:4db125cd11a0 425 // board testing purposes, also assign the input ports, with
mjr 55:4db125cd11a0 426 // the noted differences.
mjr 38:091e511ce8a0 427 for (int i = 0 ; i < 24 ; ++i) {
mjr 55:4db125cd11a0 428 static const int bp[] = {
mjr 53:9b2611964afc 429 PINNAME_TO_WIRE(PTC2), // 1
mjr 53:9b2611964afc 430 PINNAME_TO_WIRE(PTB3), // 2
mjr 53:9b2611964afc 431 PINNAME_TO_WIRE(PTB2), // 3
mjr 53:9b2611964afc 432 PINNAME_TO_WIRE(PTB1), // 4
mjr 53:9b2611964afc 433 PINNAME_TO_WIRE(PTE30), // 5
mjr 48:058ace2aed1d 434 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 435 PINNAME_TO_WIRE(PTC11), // 6 - expansion boards use PTC11 for this, since PTE22
mjr 55:4db125cd11a0 436 // is reserved for a plunger connection
mjr 55:4db125cd11a0 437 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 438 PINNAME_TO_WIRE(PTE22), // 6 - original standalone setup uses PTE22
mjr 48:058ace2aed1d 439 #endif
mjr 53:9b2611964afc 440 PINNAME_TO_WIRE(PTE5), // 7
mjr 53:9b2611964afc 441 PINNAME_TO_WIRE(PTE4), // 8
mjr 53:9b2611964afc 442 PINNAME_TO_WIRE(PTE3), // 9
mjr 53:9b2611964afc 443 PINNAME_TO_WIRE(PTE2), // 10
mjr 53:9b2611964afc 444 PINNAME_TO_WIRE(PTB11), // 11
mjr 53:9b2611964afc 445 PINNAME_TO_WIRE(PTB10), // 12
mjr 53:9b2611964afc 446 PINNAME_TO_WIRE(PTB9), // 13
mjr 53:9b2611964afc 447 PINNAME_TO_WIRE(PTB8), // 14
mjr 53:9b2611964afc 448 PINNAME_TO_WIRE(PTC12), // 15
mjr 53:9b2611964afc 449 PINNAME_TO_WIRE(PTC13), // 16
mjr 53:9b2611964afc 450 PINNAME_TO_WIRE(PTC16), // 17
mjr 53:9b2611964afc 451 PINNAME_TO_WIRE(PTC17), // 18
mjr 53:9b2611964afc 452 PINNAME_TO_WIRE(PTA16), // 19
mjr 53:9b2611964afc 453 PINNAME_TO_WIRE(PTA17), // 20
mjr 53:9b2611964afc 454 PINNAME_TO_WIRE(PTE31), // 21
mjr 53:9b2611964afc 455 PINNAME_TO_WIRE(PTD6), // 22
mjr 53:9b2611964afc 456 PINNAME_TO_WIRE(PTD7), // 23
mjr 53:9b2611964afc 457 PINNAME_TO_WIRE(PTE1) // 24
mjr 40:cc0d9814522b 458 };
mjr 48:058ace2aed1d 459 button[i].set(bp[i],
mjr 48:058ace2aed1d 460 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 461 // For expansion board testing only, assign the inputs
mjr 55:4db125cd11a0 462 // to keyboard keys A, B, etc. This isn't useful; it's
mjr 55:4db125cd11a0 463 // just for testing purposes. Note that the USB key code
mjr 55:4db125cd11a0 464 // for "A" is 4, "B" is 5, and so on sequentially through
mjr 55:4db125cd11a0 465 // the alphabet.
mjr 55:4db125cd11a0 466 BtnTypeKey, i+4);
mjr 55:4db125cd11a0 467 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 468 // For the standard configuration, assign the input to
mjr 55:4db125cd11a0 469 // joystick buttons 1-24, as in the original v1 default
mjr 55:4db125cd11a0 470 // configuration.
mjr 55:4db125cd11a0 471 BtnTypeJoystick, i+1);
mjr 48:058ace2aed1d 472 #endif
mjr 48:058ace2aed1d 473
mjr 38:091e511ce8a0 474 }
mjr 38:091e511ce8a0 475 #endif
mjr 38:091e511ce8a0 476
mjr 55:4db125cd11a0 477 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 478 // For testing purposes, configure the basic complement of
mjr 55:4db125cd11a0 479 // expansion board ports. AS MENTIONED ABOVE, THIS IS PURELY FOR
mjr 55:4db125cd11a0 481 // BOARDS FOR ACTUAL DEPLOYMENT. It's much easier and cleaner
mjr 55:4db125cd11a0 482 // to use the unmodified standard build, and customize your
mjr 55:4db125cd11a0 483 // installation with the Pinscape Config Tool on Windows.
mjr 40:cc0d9814522b 484 //
mjr 55:4db125cd11a0 485 // For this testing setup, we'll configure one main board, one
mjr 55:4db125cd11a0 486 // power board, and one chime board. The *physical* ports on
mjr 55:4db125cd11a0 487 // the board are shown below. The logical (LedWiz/DOF) numbering
mjr 55:4db125cd11a0 488 // ISN'T sequential through the physical ports, because we want
mjr 55:4db125cd11a0 489 // to arrange the DOF ports so that the most important and most
mjr 55:4db125cd11a0 490 // common toys are assigned to ports 1-32. Those ports are
mjr 55:4db125cd11a0 491 // special because they're accessible to ALL software on the PC,
mjr 55:4db125cd11a0 492 // including older LedWiz-only software such as Future Pinball.
mjr 55:4db125cd11a0 493 // Ports above 32 are accessible only to modern DOF software,
mjr 55:4db125cd11a0 494 // like Visual Pinball and PinballX.
mjr 40:cc0d9814522b 495 //
mjr 40:cc0d9814522b 496 // Main board
mjr 40:cc0d9814522b 497 // TLC ports 0-15 -> flashers
mjr 40:cc0d9814522b 498 // TLC ports 16 -> strobe
mjr 40:cc0d9814522b 499 // TLC ports 17-31 -> flippers
mjr 40:cc0d9814522b 500 // Dig GPIO PTC8 -> knocker (timer-protected outputs)
mjr 40:cc0d9814522b 501 //
mjr 40:cc0d9814522b 502 // Power board:
mjr 40:cc0d9814522b 503 // TLC ports 32-63 -> general purpose outputs
mjr 40:cc0d9814522b 504 //
mjr 40:cc0d9814522b 505 // Chime board:
mjr 40:cc0d9814522b 506 // HC595 ports 0-7 -> timer-protected outputs
mjr 40:cc0d9814522b 507 //
mjr 38:091e511ce8a0 508 {
mjr 38:091e511ce8a0 509 int n = 0;
mjr 40:cc0d9814522b 510
mjr 40:cc0d9814522b 511 // 1-15 = flashers (TLC ports 0-15)
mjr 40:cc0d9814522b 512 // 16 = strobe (TLC port 15)
mjr 40:cc0d9814522b 513 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 514 outPort[n++].set(PortTypeTLC5940, i, PortFlagGamma);
mjr 40:cc0d9814522b 515
mjr 53:9b2611964afc 516 // 17 = knocker (PTC8)
mjr 53:9b2611964afc 517 outPort[n++].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8));
mjr 35:e959ffba78fd 518
mjr 40:cc0d9814522b 519 // 18-49 = power board outputs 1-32 (TLC ports 32-63)
mjr 40:cc0d9814522b 520 for (int i = 0 ; i < 32 ; ++i)
mjr 40:cc0d9814522b 521 outPort[n++].set(PortTypeTLC5940, i+32);
mjr 40:cc0d9814522b 522
mjr 40:cc0d9814522b 523 // 50-65 = flipper RGB (TLC ports 16-31)
mjr 40:cc0d9814522b 524 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 525 outPort[n++].set(PortTypeTLC5940, i+16, PortFlagGamma);
mjr 59:94eb9265b6d7 526
mjr 40:cc0d9814522b 527 // 66-73 = chime board ports 1-8 (74HC595 ports 0-7)
mjr 40:cc0d9814522b 528 for (int i = 0 ; i < 8 ; ++i)
mjr 40:cc0d9814522b 529 outPort[n++].set(PortType74HC595, i);
mjr 59:94eb9265b6d7 530
mjr 40:cc0d9814522b 531 // set Disabled to signify end of configured outputs
mjr 38:091e511ce8a0 532 outPort[n].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 533 }
mjr 38:091e511ce8a0 534 #endif
mjr 48:058ace2aed1d 535
mjr 55:4db125cd11a0 536 #if STANDARD_CONFIG
mjr 55:4db125cd11a0 537 //
mjr 55:4db125cd11a0 538 // For the standard build, set up the original complement
mjr 55:4db125cd11a0 539 // of 22 ports from the v1 default onfiguration.
mjr 55:4db125cd11a0 540 //
mjr 55:4db125cd11a0 541 // IMPORTANT! As mentioned above, don't edit this file to
mjr 55:4db125cd11a0 542 // customize this for your machine. Instead, use the unmodified
mjr 55:4db125cd11a0 543 // standard build, and customize your installation using the
mjr 55:4db125cd11a0 544 // Pinscape Config Tool on Windows.
mjr 55:4db125cd11a0 545 //
mjr 48:058ace2aed1d 546 #if TEST_KEEP_PRINTF
mjr 55:4db125cd11a0 547 outPort[ 0].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 1 = NC to keep debug printf (PTA1 is SDA UART)
mjr 55:4db125cd11a0 548 outPort[ 1].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 2 = NC to keep debug printf (PTA2 is SDA UART)
mjr 48:058ace2aed1d 549 #else
mjr 53:9b2611964afc 550 outPort[ 0].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA1)); // port 1 = PTA1
mjr 53:9b2611964afc 551 outPort[ 1].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA2)); // port 2 = PTA2
mjr 48:058ace2aed1d 552 #endif
mjr 53:9b2611964afc 553 outPort[ 2].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD4)); // port 3 = PTD4
mjr 53:9b2611964afc 554 outPort[ 3].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA12)); // port 4 = PTA12
mjr 53:9b2611964afc 555 outPort[ 4].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA4)); // port 5 = PTA4
mjr 53:9b2611964afc 556 outPort[ 5].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA5)); // port 6 = PTA5
mjr 53:9b2611964afc 557 outPort[ 6].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA13)); // port 7 = PTA13
mjr 53:9b2611964afc 558 outPort[ 7].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD5)); // port 8 = PTD5
mjr 53:9b2611964afc 559 outPort[ 8].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD0)); // port 9 = PTD0
mjr 53:9b2611964afc 560 outPort[ 9].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD3)); // port 10 = PTD3
mjr 53:9b2611964afc 561 outPort[10].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTD2)); // port 11 = PTD2
mjr 53:9b2611964afc 562 outPort[11].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8)); // port 12 = PTC8
mjr 53:9b2611964afc 563 outPort[12].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC9)); // port 13 = PTC9
mjr 53:9b2611964afc 564 outPort[13].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC7)); // port 14 = PTC7
mjr 53:9b2611964afc 565 outPort[14].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC0)); // port 15 = PTC0
mjr 53:9b2611964afc 566 outPort[15].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC3)); // port 16 = PTC3
mjr 53:9b2611964afc 567 outPort[16].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC4)); // port 17 = PTC4
mjr 53:9b2611964afc 568 outPort[17].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC5)); // port 18 = PTC5
mjr 53:9b2611964afc 569 outPort[18].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC6)); // port 19 = PTC6
mjr 53:9b2611964afc 570 outPort[19].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC10)); // port 20 = PTC10
mjr 53:9b2611964afc 571 outPort[20].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC11)); // port 21 = PTC11
mjr 53:9b2611964afc 572 outPort[21].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTE0)); // port 22 = PTE0
mjr 48:058ace2aed1d 573 #endif
mjr 35:e959ffba78fd 574 }
mjr 35:e959ffba78fd 575
mjr 35:e959ffba78fd 576 // --- USB DEVICE CONFIGURATION ---
mjr 35:e959ffba78fd 577
mjr 35:e959ffba78fd 578 // USB device identification - vendor ID and product ID. For LedLWiz
mjr 35:e959ffba78fd 579 // emulation, use vendor ID 0xFAFA and product ID 0x00EF + unit#, where
mjr 35:e959ffba78fd 580 // unit# is the nominal LedWiz unit number from 1 to 16. Alternatively,
mjr 35:e959ffba78fd 581 // if LedWiz emulation isn't desired or causes any driver conflicts on
mjr 35:e959ffba78fd 582 // the host, we have a private Pinscape assignment as vendor ID 0x1209
mjr 35:e959ffba78fd 583 // and product ID 0xEAEA (registered with, a registry
mjr 35:e959ffba78fd 584 // for open-source USB projects).
mjr 35:e959ffba78fd 585 uint16_t usbVendorID;
mjr 35:e959ffba78fd 586 uint16_t usbProductID;
mjr 35:e959ffba78fd 587
mjr 35:e959ffba78fd 588 // Pinscape Controller unit number. This is the nominal unit number,
mjr 35:e959ffba78fd 589 // from 1 to 16. We report this in the status query; DOF uses it to
mjr 53:9b2611964afc 590 // distinguish among Pinscape units. Note that this doesn't affect
mjr 35:e959ffba78fd 591 // the LedWiz unit numbering, which is implied by the USB Product ID.
mjr 35:e959ffba78fd 592 uint8_t psUnitNo;
mjr 35:e959ffba78fd 593
mjr 35:e959ffba78fd 594 // Are joystick reports enabled? Joystick reports can be turned off, to
mjr 35:e959ffba78fd 595 // use the device as purely an output controller.
mjr 77:0b96f6867312 596 uint8_t joystickEnabled;
mjr 35:e959ffba78fd 597
mjr 90:aa4e571da8e8 598 // Joystick axis report format, as a USBJoystick::AXIS_FORMAT_xxx value.
mjr 90:aa4e571da8e8 599 uint8_t joystickAxisFormat;
mjr 90:aa4e571da8e8 600
mjr 92:f264fbaa1be5 601 // Joystick report timing. This is the minimum time between joystick
mjr 92:f264fbaa1be5 602 // reports, in microseconds.
mjr 92:f264fbaa1be5 603 uint32_t jsReportInterval_us;
mjr 92:f264fbaa1be5 604
mjr 51:57eb311faafa 605 // Timeout for rebooting the KL25Z when the connection is lost. On some
mjr 51:57eb311faafa 606 // hosts, the mbed USB stack has problems reconnecting after an initial
mjr 51:57eb311faafa 607 // connection is dropped. As a workaround, we can automatically reboot
mjr 51:57eb311faafa 608 // the KL25Z when it detects that it's no longer connected, after the
mjr 51:57eb311faafa 609 // interval set here expires. The timeout is in seconds; setting this
mjr 51:57eb311faafa 610 // to 0 disables the automatic reboot.
mjr 51:57eb311faafa 611 uint8_t disconnectRebootTimeout;
mjr 35:e959ffba78fd 612
mjr 35:e959ffba78fd 613 // --- ACCELEROMETER ---
mjr 78:1e00b3fa11af 614 struct
mjr 78:1e00b3fa11af 615 {
mjr 78:1e00b3fa11af 616 // accelerometer orientation (OrientationXxx value)
mjr 78:1e00b3fa11af 617 uint8_t orientation;
mjr 35:e959ffba78fd 618
mjr 78:1e00b3fa11af 619 // dynamic range (AccelRangeXxx value)
mjr 78:1e00b3fa11af 620 uint8_t range;
mjr 77:0b96f6867312 621
mjr 78:1e00b3fa11af 622 // Auto-centering mode:
mjr 78:1e00b3fa11af 623 // 0 = auto-centering on, 5-second timer
mjr 78:1e00b3fa11af 624 // 1-60 = auto-centering on with the given timer in seconds
mjr 78:1e00b3fa11af 625 // 255 = auto-centering off
mjr 78:1e00b3fa11af 626 uint8_t autoCenterTime;
mjr 92:f264fbaa1be5 627
mjr 92:f264fbaa1be5 628 // Accelerometer report "stuttering". This is the number of times
mjr 92:f264fbaa1be5 629 // that each accelerometer reading is repeated in the joystick
mjr 92:f264fbaa1be5 630 // reports. If this is set to 1 (or 0), a new accelerometer reading
mjr 92:f264fbaa1be5 631 // is taken on every joystick report. If set to 2, a new reading
mjr 92:f264fbaa1be5 632 // is taken on every other report, and the previous reading is
mjr 92:f264fbaa1be5 633 // repeated on the alternating reports. If set to 3, we take a
mjr 92:f264fbaa1be5 634 // new reading on each third report, and so on. The purpose is
mjr 92:f264fbaa1be5 635 // to slow down accelerometer readings for the benefit of Visual
mjr 92:f264fbaa1be5 636 // Pinball, which will miss readings if taken faster than the
mjr 92:f264fbaa1be5 637 // video refresh rate, while sending joystick reports at a
mjr 92:f264fbaa1be5 638 // faster rate for lower button input latency.
mjr 92:f264fbaa1be5 639 uint8_t stutter;
mjr 78:1e00b3fa11af 640
mjr 78:1e00b3fa11af 641 } accel;
mjr 35:e959ffba78fd 642
mjr 35:e959ffba78fd 643
mjr 52:8298b2a73eb2 644 // --- EXPANSION BOARDS ---
mjr 52:8298b2a73eb2 645 struct
mjr 52:8298b2a73eb2 646 {
mjr 53:9b2611964afc 647 uint8_t typ; // expansion board set type:
mjr 53:9b2611964afc 648 // 1 -> Pinscape expansion boards
mjr 53:9b2611964afc 649 uint8_t vsn; // board set interface version
mjr 53:9b2611964afc 650 uint8_t ext[3]; // board set type-specific extended data
mjr 52:8298b2a73eb2 651
mjr 52:8298b2a73eb2 652 } expan;
mjr 52:8298b2a73eb2 653
mjr 52:8298b2a73eb2 654
mjr 35:e959ffba78fd 655 // --- PLUNGER CONFIGURATION ---
mjr 35:e959ffba78fd 656 struct
mjr 35:e959ffba78fd 657 {
mjr 77:0b96f6867312 658 // Plunger enabled/disabled. Note that we use the status flag
mjr 77:0b96f6867312 659 // bit 0x01 if enabled, 0x00 if disabled. This conveniently
mjr 77:0b96f6867312 660 // can be tested as though it's a bool, but should always be
mjr 77:0b96f6867312 661 // stored as 0x01 or 0x00 so that it can be OR'ed into the
mjr 77:0b96f6867312 662 // status report flag bits.
mjr 77:0b96f6867312 663 uint8_t enabled;
mjr 33:d832bcab089e 664
mjr 35:e959ffba78fd 665 // plunger sensor type
mjr 77:0b96f6867312 666 uint8_t sensorType;
mjr 35:e959ffba78fd 667
mjr 35:e959ffba78fd 668 // Plunger sensor pins. To accommodate a wide range of sensor types,
mjr 35:e959ffba78fd 669 // we keep a generic list of 4 pin assignments. The use of each pin
mjr 35:e959ffba78fd 670 // varies by sensor. The lists below are in order of the generic
mjr 35:e959ffba78fd 671 // pins; NC means that the pin isn't used by the sensor. Each pin's
mjr 35:e959ffba78fd 672 // GPIO usage is also listed. Certain usages limit which physical
mjr 35:e959ffba78fd 673 // pins can be assigned (e.g., AnalogIn or PwmOut).
mjr 35:e959ffba78fd 674 //
mjr 82:4f6209cb5c33 675 // TSL1410R/1412S/1401CL: SI (GPIO), CLK (GPIO), AO (AnalogIn), NC
mjr 35:e959ffba78fd 676 // Potentiometer: AO (AnalogIn), NC, NC, NC
mjr 35:e959ffba78fd 677 // AEDR8300: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 678 // AS5304: A (InterruptIn), B (InterruptIn), NC, NC
mjr 82:4f6209cb5c33 679 // VL6180X: SDA (GPIO), SCL (GPIO), GPIO0/CE (GPIO)
mjr 53:9b2611964afc 680 //
mjr 53:9b2611964afc 681 // Note! These are stored in uint8_t WIRE format, not PinName format.
mjr 53:9b2611964afc 682 uint8_t sensorPin[4];
mjr 35:e959ffba78fd 683
mjr 82:4f6209cb5c33 684 // Automatic zeroing. If enabled, we'll reset the plunger position to
mjr 82:4f6209cb5c33 685 // the park position after a period of inactivity. This only applies
mjr 82:4f6209cb5c33 686 // to certain sensor types; sensors that don't use it simply ignore it.
mjr 82:4f6209cb5c33 687 struct
mjr 82:4f6209cb5c33 688 {
mjr 82:4f6209cb5c33 689 uint8_t flags; // flags bits - combination of PlungerAutoZeroXxx flags
mjr 82:4f6209cb5c33 690 uint8_t t; // inactivity time in seconds
mjr 82:4f6209cb5c33 691 } autoZero;
mjr 82:4f6209cb5c33 692
mjr 85:3c28aee81cde 693 // Jitter filter. This is the size of the hysteresis window, in joystick
mjr 85:3c28aee81cde 694 // units (-4095..+4095). One joystick unit is approximately 1/10000" of
mjr 85:3c28aee81cde 695 // physical travel. Zero disables the jitter filter.
mjr 85:3c28aee81cde 696 uint16_t jitterWindow;
mjr 85:3c28aee81cde 697
mjr 91:ae9be42652bf 698 // Plunger sensor reverse orientation flags. This is a bit mask:
mjr 91:ae9be42652bf 699 //
mjr 91:ae9be42652bf 700 // 0x01 = Reverse orientation enabled. We invert the plunger sensor
mjr 91:ae9be42652bf 701 // readings, as though the sensor were physically flipped
mjr 91:ae9be42652bf 702 // around. This can be used to correct for installing the
mjr 91:ae9be42652bf 703 // sensor backwards without having to change the hardware.
mjr 91:ae9be42652bf 704 //
mjr 91:ae9be42652bf 705 // 0x80 = READ-ONLY feature flag. This always reads as set if the
mjr 91:ae9be42652bf 706 // feature is enabled. Note that the USB data exchanger always
mjr 91:ae9be42652bf 707 // sets the bit on read, so it's not necessary to actually
mjr 91:ae9be42652bf 708 // store it.
mjr 91:ae9be42652bf 709 //
mjr 91:ae9be42652bf 710 uint8_t reverseOrientation;
mjr 91:ae9be42652bf 711
mjr 87:8d35c74403af 712 // bar code sensor parameters
mjr 87:8d35c74403af 713 struct
mjr 87:8d35c74403af 714 {
mjr 87:8d35c74403af 715 uint16_t startPix; // starting pixel offset
mjr 87:8d35c74403af 716 } barCode;
mjr 87:8d35c74403af 717
mjr 53:9b2611964afc 718 // ZB LAUNCH BALL button setup.
mjr 35:e959ffba78fd 719 //
mjr 35:e959ffba78fd 720 // This configures the "ZB Launch Ball" feature in DOF, based on Zeb's (of
mjr 35:e959ffba78fd 721 // scheme for using a mechanical plunger as a Launch button.
mjr 35:e959ffba78fd 722 // Set the port to 0 to disable the feature.
mjr 35:e959ffba78fd 723 //
mjr 35:e959ffba78fd 724 // The port number is an LedWiz port number that we monitor for activation.
mjr 53:9b2611964afc 725 // This port isn't meant to be connected to a physical device, although it
mjr 53:9b2611964afc 726 // can be if desired. It's primarily to let the host tell the controller
mjr 53:9b2611964afc 727 // when the ZB Launch feature is active. The port numbering starts at 1;
mjr 53:9b2611964afc 728 // set this to zero to disable the feature.
mjr 35:e959ffba78fd 729 //
mjr 53:9b2611964afc 730 // The key type and code has the same meaning as for a button mapping. This
mjr 53:9b2611964afc 731 // sets the key input sent to the PC when the plunger triggers a launch when
mjr 53:9b2611964afc 732 // the mode is active. For example, set keytype=2 and keycode=0x28 to send
mjr 53:9b2611964afc 733 // the Enter key (which is the key almost all PC pinball software uses for
mjr 53:9b2611964afc 734 // plunger and Launch button input).
mjr 35:e959ffba78fd 735 //
mjr 40:cc0d9814522b 736 // The "push distance" is the distance, in 1/1000 inch units, for registering a
mjr 40:cc0d9814522b 737 // push on the plunger as a button push. If the player pushes the plunger
mjr 40:cc0d9814522b 738 // forward of the rest position by this amount, we'll treat it as pushing the
mjr 40:cc0d9814522b 739 // button, even if the player didn't pull back the plunger first. This lets
mjr 40:cc0d9814522b 740 // the player treat the plunger knob as a button for games where it's meaningful
mjr 35:e959ffba78fd 741 // to hold down the Launch button for specific intervals (e.g., "Championship
mjr 35:e959ffba78fd 742 // Pub").
mjr 35:e959ffba78fd 743 struct
mjr 35:e959ffba78fd 744 {
mjr 53:9b2611964afc 745 uint8_t port;
mjr 53:9b2611964afc 746 uint8_t keytype;
mjr 53:9b2611964afc 747 uint8_t keycode;
mjr 53:9b2611964afc 748 uint16_t pushDistance;
mjr 35:e959ffba78fd 749
mjr 35:e959ffba78fd 750 } zbLaunchBall;
mjr 35:e959ffba78fd 751
mjr 35:e959ffba78fd 752 // --- PLUNGER CALIBRATION ---
mjr 35:e959ffba78fd 753 struct
mjr 35:e959ffba78fd 754 {
mjr 35:e959ffba78fd 755 // has the plunger been calibrated?
mjr 53:9b2611964afc 756 bool calibrated;
mjr 55:4db125cd11a0 757
mjr 55:4db125cd11a0 758 // Feature enable mask:
mjr 55:4db125cd11a0 759 //
mjr 55:4db125cd11a0 760 // 0x01 = calibration button enabled
mjr 55:4db125cd11a0 761 // 0x02 = indicator light enabled
mjr 55:4db125cd11a0 762 uint8_t features;
mjr 35:e959ffba78fd 763
mjr 35:e959ffba78fd 764 // calibration button switch pin
mjr 53:9b2611964afc 765 uint8_t btn;
mjr 35:e959ffba78fd 766
mjr 35:e959ffba78fd 767 // calibration button indicator light pin
mjr 53:9b2611964afc 768 uint8_t led;
mjr 35:e959ffba78fd 769
mjr 48:058ace2aed1d 770 // Plunger calibration min, zero, and max. These are in terms of the
mjr 48:058ace2aed1d 771 // unsigned 16-bit scale (0x0000..0xffff) that we use for the raw sensor
mjr 48:058ace2aed1d 772 // readings.
mjr 48:058ace2aed1d 773 //
mjr 48:058ace2aed1d 774 // The zero point is the rest position (aka park position), where the
mjr 48:058ace2aed1d 775 // plunger is in equilibrium between the main spring and the barrel
mjr 48:058ace2aed1d 776 // spring. In the standard setup, the plunger can travel a small
mjr 48:058ace2aed1d 777 // distance forward of the rest position, because the barrel spring
mjr 48:058ace2aed1d 778 // can be compressed a bit. The minimum is the maximum forward point
mjr 48:058ace2aed1d 779 // where the barrel spring can't be compressed any further.
mjr 48:058ace2aed1d 780 uint16_t min;
mjr 48:058ace2aed1d 781 uint16_t zero;
mjr 48:058ace2aed1d 782 uint16_t max;
mjr 52:8298b2a73eb2 783
mjr 52:8298b2a73eb2 784 // Measured release time, in milliseconds.
mjr 52:8298b2a73eb2 785 uint8_t tRelease;
mjr 35:e959ffba78fd 786
mjr 44:b5ac89b9cd5d 787 // Reset the plunger calibration
mjr 44:b5ac89b9cd5d 788 void setDefaults()
mjr 35:e959ffba78fd 789 {
mjr 44:b5ac89b9cd5d 790 calibrated = false; // not calibrated
mjr 48:058ace2aed1d 791 min = 0; // assume we can go all the way forward...
mjr 48:058ace2aed1d 792 max = 0xffff; // ...and all the way back
mjr 48:058ace2aed1d 793 zero = max/6; // the rest position is usually around 1/2" back = 1/6 of total travel
mjr 52:8298b2a73eb2 794 tRelease = 65; // standard 65ms release time
mjr 44:b5ac89b9cd5d 795 }
mjr 44:b5ac89b9cd5d 796
mjr 44:b5ac89b9cd5d 797 // Begin calibration. This sets each limit to the worst
mjr 44:b5ac89b9cd5d 798 // case point - for example, we set the retracted position
mjr 44:b5ac89b9cd5d 799 // to all the way forward. Each actual reading that comes
mjr 44:b5ac89b9cd5d 800 // in is then checked against the current limit, and if it's
mjr 44:b5ac89b9cd5d 801 // outside of the limit, we reset the limit to the new reading.
mjr 44:b5ac89b9cd5d 802 void begin()
mjr 44:b5ac89b9cd5d 803 {
mjr 48:058ace2aed1d 804 min = 0; // we don't calibrate the maximum forward position, so keep this at zero
mjr 48:058ace2aed1d 805 zero = 0xffff; // set the zero position all the way back
mjr 48:058ace2aed1d 806 max = 0; // set the retracted position all the way forward
mjr 52:8298b2a73eb2 807 tRelease = 65; // revert to a default release time
mjr 35:e959ffba78fd 808 }
mjr 17:ab3cec0c8bf4 809
mjr 35:e959ffba78fd 810 } cal;
mjr 18:5e890ebd0023 811
mjr 35:e959ffba78fd 812 } plunger;
mjr 29:582472d0bc57 813
mjr 35:e959ffba78fd 814
mjr 35:e959ffba78fd 815 // --- TV ON SWITCH ---
mjr 35:e959ffba78fd 816 //
mjr 35:e959ffba78fd 817 // To use the TV ON switch feature, the special power sensing circuitry
mjr 35:e959ffba78fd 818 // implemented on the Expansion Board must be attached (or an equivalent
mjr 35:e959ffba78fd 819 // circuit, as described in the Build Guide). The circuitry lets us
mjr 35:e959ffba78fd 820 // detect power state changes on the secondary power supply.
mjr 35:e959ffba78fd 821 struct
mjr 35:e959ffba78fd 822 {
mjr 35:e959ffba78fd 823 // PSU2 power status sense (DigitalIn pin). This pin goes LOW when the
mjr 35:e959ffba78fd 824 // secondary power supply is turned off, and remains LOW until the LATCH
mjr 35:e959ffba78fd 825 // pin is raised high AND the secondary PSU is turned on. Once HIGH,
mjr 35:e959ffba78fd 826 // it remains HIGH as long as the secondary PSU is on.
mjr 53:9b2611964afc 827 uint8_t statusPin;
mjr 35:e959ffba78fd 828
mjr 35:e959ffba78fd 829 // PSU2 power status latch (DigitalOut pin)
mjr 53:9b2611964afc 830 uint8_t latchPin;
mjr 35:e959ffba78fd 831
mjr 35:e959ffba78fd 832 // TV ON relay pin (DigitalOut pin). This pin controls the TV switch
mjr 35:e959ffba78fd 833 // relay. Raising the pin HIGH turns the relay ON (energizes the coil).
mjr 53:9b2611964afc 834 uint8_t relayPin;
mjr 35:e959ffba78fd 835
mjr 40:cc0d9814522b 836 // TV ON delay time, in 1/100 second units. This is the interval between
mjr 40:cc0d9814522b 837 // sensing that the secondary power supply has turned on and pulsing the
mjr 40:cc0d9814522b 838 // TV ON switch relay.
mjr 40:cc0d9814522b 839 int delayTime;
mjr 35:e959ffba78fd 840
mjr 35:e959ffba78fd 841 } TVON;
mjr 35:e959ffba78fd 842
mjr 53:9b2611964afc 843 // --- Night Mode ---
mjr 53:9b2611964afc 844 struct
mjr 53:9b2611964afc 845 {
mjr 55:4db125cd11a0 846 uint8_t btn; // night mode button number (1..MAX_BUTTONS, 0 = no button)
mjr 53:9b2611964afc 847 uint8_t flags; // flags:
mjr 53:9b2611964afc 848 // 0x01 = on/off switch (if not set, it's a momentary button)
mjr 55:4db125cd11a0 849 uint8_t port; // indicator output port number (1..MAX_OUT_PORTS, 0 = no indicator)
mjr 53:9b2611964afc 850 } nightMode;
mjr 53:9b2611964afc 851
mjr 29:582472d0bc57 852
mjr 35:e959ffba78fd 853 // --- TLC5940NT PWM Controller Chip Setup ---
mjr 35:e959ffba78fd 854 struct
mjr 35:e959ffba78fd 855 {
mjr 35:e959ffba78fd 856 // number of TLC5940NT chips connected in daisy chain
mjr 87:8d35c74403af 857 uint8_t nchips;
mjr 35:e959ffba78fd 858
mjr 53:9b2611964afc 859 // pin connections (wire pin IDs)
mjr 53:9b2611964afc 860 uint8_t sin; // Serial data - must connect to SPIO MOSI -> PTC6 or PTD2
mjr 53:9b2611964afc 861 uint8_t sclk; // Serial clock - must connect to SPIO SCLK -> PTC5 or PTD1
mjr 35:e959ffba78fd 862 // (but don't use PTD1, since it's hard-wired to the on-board blue LED)
mjr 53:9b2611964afc 863 uint8_t xlat; // XLAT (latch) signal - connect to any GPIO pin
mjr 53:9b2611964afc 864 uint8_t blank; // BLANK signal - connect to any GPIO pin
mjr 53:9b2611964afc 865 uint8_t gsclk; // Grayscale clock - must connect to a PWM-out capable pin
mjr 29:582472d0bc57 866
mjr 35:e959ffba78fd 867 } tlc5940;
mjr 35:e959ffba78fd 868
mjr 35:e959ffba78fd 869
mjr 35:e959ffba78fd 870 // --- 74HC595 Shift Register Setup ---
mjr 35:e959ffba78fd 871 struct
mjr 35:e959ffba78fd 872 {
mjr 35:e959ffba78fd 873 // number of 74HC595 chips attached in daisy chain
mjr 87:8d35c74403af 874 uint8_t nchips;
mjr 35:e959ffba78fd 875
mjr 35:e959ffba78fd 876 // pin connections
mjr 53:9b2611964afc 877 uint8_t sin; // Serial data - use any GPIO pin
mjr 53:9b2611964afc 878 uint8_t sclk; // Serial clock - use any GPIO pin
mjr 53:9b2611964afc 879 uint8_t latch; // Latch - use any GPIO pin
mjr 53:9b2611964afc 880 uint8_t ena; // Enable signal - use any GPIO pin
mjr 35:e959ffba78fd 881
mjr 35:e959ffba78fd 882 } hc595;
mjr 77:0b96f6867312 883
mjr 87:8d35c74403af 884 // --- TLC59116 PWM Controller Chip Setup --
mjr 87:8d35c74403af 885 struct
mjr 87:8d35c74403af 886 {
mjr 87:8d35c74403af 887 // Chip mask. Each bit represents an enabled chip at the
mjr 87:8d35c74403af 888 // corresponding 4-bit address (i.e., bit 1<<addr represents
mjr 87:8d35c74403af 889 // the chip at 'addr').
mjr 87:8d35c74403af 890 uint16_t chipMask;
mjr 87:8d35c74403af 891
mjr 87:8d35c74403af 892 // pin connections
mjr 87:8d35c74403af 893 uint8_t sda; // I2C SDA
mjr 87:8d35c74403af 894 uint8_t scl; // I2C SCL
mjr 87:8d35c74403af 895 uint8_t reset; // !RESET (hardware reset line, active low)
mjr 87:8d35c74403af 896
mjr 87:8d35c74403af 897 } tlc59116;
mjr 87:8d35c74403af 898
mjr 77:0b96f6867312 899
mjr 77:0b96f6867312 900 // --- IR Remote Control Hardware Setup ---
mjr 77:0b96f6867312 901 struct
mjr 77:0b96f6867312 902 {
mjr 77:0b96f6867312 903 // sensor (receiver) GPIO input pin; must be interrupt-capable
mjr 77:0b96f6867312 904 uint8_t sensor;
mjr 77:0b96f6867312 905
mjr 77:0b96f6867312 906 // IR emitter LED GPIO output pin; must be PWM-capable
mjr 77:0b96f6867312 907 uint8_t emitter;
mjr 77:0b96f6867312 908 } IR;
mjr 77:0b96f6867312 909
mjr 77:0b96f6867312 910
mjr 35:e959ffba78fd 911 // --- Button Input Setup ---
mjr 65:739875521aae 912 ButtonCfg button[MAX_BUTTONS + VIRTUAL_BUTTONS] __attribute__((packed));
mjr 66:2e3583fbd2f4 913
mjr 78:1e00b3fa11af 914 // Shift button. This can be used to give each physical button a
mjr 78:1e00b3fa11af 915 // second meaning.
mjr 78:1e00b3fa11af 916 struct
mjr 78:1e00b3fa11af 917 {
mjr 78:1e00b3fa11af 918 // Shift button index, 1..MAX_BUTTONS. If this is zero, there's
mjr 78:1e00b3fa11af 919 // no shift button.
mjr 78:1e00b3fa11af 920 uint8_t idx;
mjr 78:1e00b3fa11af 921
mjr 78:1e00b3fa11af 922 // Shift button mode. If the shift button has a key mapping or
mjr 78:1e00b3fa11af 923 // IR command assigned, this determines what happens when the
mjr 78:1e00b3fa11af 924 // shift button is pressed in combination with another key.
mjr 78:1e00b3fa11af 925 //
mjr 78:1e00b3fa11af 926 // 0 = Shift OR Key mode. In this mode, when you initially press
mjr 78:1e00b3fa11af 927 // the shift button, nothing happens. Instead, we wait to see if
mjr 78:1e00b3fa11af 928 // any other buttons are pressed. If so, we use the shifted meaning
mjr 78:1e00b3fa11af 929 // of the other button, and we DON'T send the shift button's key or
mjr 78:1e00b3fa11af 930 // IR command at all.
mjr 78:1e00b3fa11af 931 //
mjr 78:1e00b3fa11af 932 // 1 = Shift AND Key mode. In this mode, the shift button acts like
mjr 78:1e00b3fa11af 933 // any other button: its assigned key is sent to the PC as soon as
mjr 78:1e00b3fa11af 934 // you press it. If you also press another button while the shift
mjr 78:1e00b3fa11af 935 // button is down, the shifted meaning of the other button is used.
mjr 78:1e00b3fa11af 936 //
mjr 78:1e00b3fa11af 937 // Mode 0, the "OR" mode, is the default. This allows a button with
mjr 78:1e00b3fa11af 938 // a key assignment to do double duty as the shift button without
mjr 78:1e00b3fa11af 939 // creating any confusing situations where the shift button's own
mjr 78:1e00b3fa11af 940 // key is also sent to the PC during shift usage.
mjr 78:1e00b3fa11af 941 uint8_t mode;
mjr 78:1e00b3fa11af 942
mjr 78:1e00b3fa11af 943 } shiftButton;
mjr 17:ab3cec0c8bf4 944
mjr 35:e959ffba78fd 945 // --- LedWiz Output Port Setup ---
mjr 77:0b96f6867312 946 LedWizPortCfg outPort[MAX_OUT_PORTS] __attribute__ ((packed)); // LedWiz & extended output ports
mjr 48:058ace2aed1d 947
mjr 77:0b96f6867312 948 // --- IR Command Slots ---
mjr 77:0b96f6867312 949 IRCommandCfg IRCommand[MAX_IR_CODES] __attribute__ ((packed));
mjr 17:ab3cec0c8bf4 950 };
mjr 17:ab3cec0c8bf4 951
mjr 35:e959ffba78fd 952 #endif