An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Thu Dec 14 00:20:20 2017 +0000
Revision:
92:f264fbaa1be5
Parent:
91:ae9be42652bf
Child:
93:177832c29041
Adjustable joystick report timing

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 82:4f6209cb5c33 262
mjr 2:c174f9ee414a 263
mjr 21:5048e16cc9ef 264 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 265 #include "config.h"
mjr 17:ab3cec0c8bf4 266
mjr 76:7f5912b6340e 267 // forward declarations
mjr 76:7f5912b6340e 268 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 269
mjr 53:9b2611964afc 270 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 273 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 274 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 275 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 276 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 277 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 278 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 279 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 280 // interface.
mjr 53:9b2611964afc 281 //
mjr 53:9b2611964afc 282 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 283 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 284 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 285 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 286 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 287 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 288 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 289 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 292 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 293 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 294 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 295 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 296 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 297 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 298 //
mjr 53:9b2611964afc 299 const char *getOpenSDAID()
mjr 53:9b2611964afc 300 {
mjr 53:9b2611964afc 301 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 302 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 303 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 304
mjr 53:9b2611964afc 305 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 306 }
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 309 //
mjr 53:9b2611964afc 310 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 311 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 312 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 313 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 314 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 315 // want from this.
mjr 53:9b2611964afc 316 //
mjr 53:9b2611964afc 317 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 318 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 319 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 320 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 321 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 322 // macros.
mjr 53:9b2611964afc 323 //
mjr 53:9b2611964afc 324 const char *getBuildID()
mjr 53:9b2611964afc 325 {
mjr 53:9b2611964afc 326 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 327 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 328 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 329
mjr 53:9b2611964afc 330 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 331 }
mjr 53:9b2611964afc 332
mjr 74:822a92bc11d2 333 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 334 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 335 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 336 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 337 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 338 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 339 Timer mainLoopTimer;
mjr 76:7f5912b6340e 340 #endif
mjr 76:7f5912b6340e 341
mjr 53:9b2611964afc 342
mjr 5:a70c0bce770d 343 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 344 //
mjr 38:091e511ce8a0 345 // Forward declarations
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 void setNightMode(bool on);
mjr 38:091e511ce8a0 348 void toggleNightMode();
mjr 38:091e511ce8a0 349
mjr 38:091e511ce8a0 350 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 351 // utilities
mjr 17:ab3cec0c8bf4 352
mjr 77:0b96f6867312 353 // int/float point square of a number
mjr 77:0b96f6867312 354 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 355 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 356
mjr 26:cb71c4af2912 357 // floating point rounding
mjr 26:cb71c4af2912 358 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 359
mjr 17:ab3cec0c8bf4 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 40:cc0d9814522b 363 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 364 // the running state.
mjr 40:cc0d9814522b 365 //
mjr 77:0b96f6867312 366 class ExtTimer: public Timer
mjr 40:cc0d9814522b 367 {
mjr 40:cc0d9814522b 368 public:
mjr 77:0b96f6867312 369 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 370
mjr 40:cc0d9814522b 371 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 372 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 373
mjr 40:cc0d9814522b 374 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 private:
mjr 40:cc0d9814522b 377 bool running;
mjr 40:cc0d9814522b 378 };
mjr 40:cc0d9814522b 379
mjr 53:9b2611964afc 380
mjr 53:9b2611964afc 381 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 382 //
mjr 33:d832bcab089e 383 // USB product version number
mjr 5:a70c0bce770d 384 //
mjr 47:df7a88cd249c 385 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 386
mjr 33:d832bcab089e 387 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 388 //
mjr 6:cc35eb643e8f 389 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 #define JOYMAX 4096
mjr 6:cc35eb643e8f 392
mjr 9:fd65b0a94720 393
mjr 17:ab3cec0c8bf4 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 //
mjr 40:cc0d9814522b 396 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 397 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 398 //
mjr 35:e959ffba78fd 399
mjr 35:e959ffba78fd 400 // unsigned 16-bit integer
mjr 35:e959ffba78fd 401 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 402 {
mjr 35:e959ffba78fd 403 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 404 }
mjr 40:cc0d9814522b 405 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 406 {
mjr 40:cc0d9814522b 407 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 408 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 409 }
mjr 35:e959ffba78fd 410
mjr 35:e959ffba78fd 411 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 412 {
mjr 35:e959ffba78fd 413 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 414 }
mjr 40:cc0d9814522b 415 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 416 {
mjr 40:cc0d9814522b 417 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 418 }
mjr 35:e959ffba78fd 419
mjr 35:e959ffba78fd 420 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 423 }
mjr 40:cc0d9814522b 424 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 425 {
mjr 40:cc0d9814522b 426 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 427 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 428 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 429 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 430 }
mjr 35:e959ffba78fd 431
mjr 35:e959ffba78fd 432 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 433 {
mjr 35:e959ffba78fd 434 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 435 }
mjr 35:e959ffba78fd 436
mjr 53:9b2611964afc 437 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 438 //
mjr 53:9b2611964afc 439 // The internal mbed PinName format is
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 444 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 445 //
mjr 53:9b2611964afc 446 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 447 // pin name fits in 8 bits:
mjr 53:9b2611964afc 448 //
mjr 53:9b2611964afc 449 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 456 {
mjr 53:9b2611964afc 457 if (c == 0xFF)
mjr 53:9b2611964afc 458 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 459 else
mjr 53:9b2611964afc 460 return PinName(
mjr 53:9b2611964afc 461 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 462 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 463 }
mjr 40:cc0d9814522b 464 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 465 {
mjr 53:9b2611964afc 466 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 467 }
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469
mjr 35:e959ffba78fd 470 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 471 //
mjr 38:091e511ce8a0 472 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 473 //
mjr 38:091e511ce8a0 474 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 475 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 476 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 477 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 478 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 479 // SPI capability.
mjr 38:091e511ce8a0 480 //
mjr 38:091e511ce8a0 481 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 482
mjr 73:4e8ce0b18915 483 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 484 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 485 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 486 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 487
mjr 38:091e511ce8a0 488 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 489 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 490 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 491 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 492 {
mjr 73:4e8ce0b18915 493 // remember the new state
mjr 73:4e8ce0b18915 494 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 495
mjr 73:4e8ce0b18915 496 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 497 // applying it to the blue LED
mjr 73:4e8ce0b18915 498 if (diagLEDState == 0)
mjr 77:0b96f6867312 499 {
mjr 77:0b96f6867312 500 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 501 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 502 }
mjr 73:4e8ce0b18915 503
mjr 73:4e8ce0b18915 504 // set the new state
mjr 38:091e511ce8a0 505 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 506 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 507 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 508 }
mjr 38:091e511ce8a0 509
mjr 73:4e8ce0b18915 510 // update the LEDs with the current state
mjr 73:4e8ce0b18915 511 void diagLED(void)
mjr 73:4e8ce0b18915 512 {
mjr 73:4e8ce0b18915 513 diagLED(
mjr 73:4e8ce0b18915 514 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 515 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 516 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 517 }
mjr 73:4e8ce0b18915 518
mjr 38:091e511ce8a0 519 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 520 // an on-board LED segment
mjr 38:091e511ce8a0 521 struct LedSeg
mjr 38:091e511ce8a0 522 {
mjr 38:091e511ce8a0 523 bool r, g, b;
mjr 38:091e511ce8a0 524 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 525
mjr 38:091e511ce8a0 526 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 527 {
mjr 38:091e511ce8a0 528 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 529 // our on-board LED segments
mjr 38:091e511ce8a0 530 int t = pc.typ;
mjr 38:091e511ce8a0 531 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 532 {
mjr 38:091e511ce8a0 533 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 534 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 535 if (pin == LED1)
mjr 38:091e511ce8a0 536 r = true;
mjr 38:091e511ce8a0 537 else if (pin == LED2)
mjr 38:091e511ce8a0 538 g = true;
mjr 38:091e511ce8a0 539 else if (pin == LED3)
mjr 38:091e511ce8a0 540 b = true;
mjr 38:091e511ce8a0 541 }
mjr 38:091e511ce8a0 542 }
mjr 38:091e511ce8a0 543 };
mjr 38:091e511ce8a0 544
mjr 38:091e511ce8a0 545 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 546 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 547 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 548 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 549 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 550 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 551 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 552 {
mjr 38:091e511ce8a0 553 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 554 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 555 LedSeg l;
mjr 38:091e511ce8a0 556 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 557 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 558
mjr 38:091e511ce8a0 559 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 560 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 561 // LedWiz use.
mjr 38:091e511ce8a0 562 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 563 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 564 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 565 }
mjr 38:091e511ce8a0 566
mjr 38:091e511ce8a0 567
mjr 38:091e511ce8a0 568 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 569 //
mjr 76:7f5912b6340e 570 // LedWiz emulation
mjr 76:7f5912b6340e 571 //
mjr 76:7f5912b6340e 572
mjr 76:7f5912b6340e 573 // LedWiz output states.
mjr 76:7f5912b6340e 574 //
mjr 76:7f5912b6340e 575 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 576 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 577 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 578 // The two axes are independent.
mjr 76:7f5912b6340e 579 //
mjr 76:7f5912b6340e 580 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 581 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 582 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 583 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 584 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 585 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 586 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 587 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 588
mjr 76:7f5912b6340e 589 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 590 static uint8_t *wizOn;
mjr 76:7f5912b6340e 591
mjr 76:7f5912b6340e 592 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 593 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 594 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 595 //
mjr 76:7f5912b6340e 596 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 597 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 598 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 599 // 130 = flash on / off
mjr 76:7f5912b6340e 600 // 131 = on / ramp down
mjr 76:7f5912b6340e 601 // 132 = ramp up / on
mjr 5:a70c0bce770d 602 //
mjr 76:7f5912b6340e 603 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 604 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 605 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 606 static uint8_t *wizVal;
mjr 76:7f5912b6340e 607
mjr 76:7f5912b6340e 608 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 609 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 610 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 611 // by the extended protocol:
mjr 76:7f5912b6340e 612 //
mjr 76:7f5912b6340e 613 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 614 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 615 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 616 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 617 // if the brightness is non-zero.
mjr 76:7f5912b6340e 618 //
mjr 76:7f5912b6340e 619 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 620 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 621 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 622 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 623 // 0..255 range.
mjr 26:cb71c4af2912 624 //
mjr 76:7f5912b6340e 625 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 626 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 627 // level.
mjr 26:cb71c4af2912 628 //
mjr 76:7f5912b6340e 629 static uint8_t *outLevel;
mjr 76:7f5912b6340e 630
mjr 76:7f5912b6340e 631
mjr 76:7f5912b6340e 632 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 633 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 634 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 635 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 636 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 637 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 638 //
mjr 76:7f5912b6340e 639 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 640 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 641 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 642 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 643 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 644 // at the maximum size.
mjr 76:7f5912b6340e 645 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 646 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 647
mjr 26:cb71c4af2912 648 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 649 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 650 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 651 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 652 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 653
mjr 76:7f5912b6340e 654
mjr 76:7f5912b6340e 655 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 656 //
mjr 76:7f5912b6340e 657 // Output Ports
mjr 76:7f5912b6340e 658 //
mjr 76:7f5912b6340e 659 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 660 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 661 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 662 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 663 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 664 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 665 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 666 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 667 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 668 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 669 // you have to ration pins among features.
mjr 76:7f5912b6340e 670 //
mjr 87:8d35c74403af 671 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 672 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 673 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 674 //
mjr 87:8d35c74403af 675 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 676 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 677 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 678 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 679 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 680 //
mjr 87:8d35c74403af 681 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 682 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 683 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 684 //
mjr 87:8d35c74403af 685 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 686 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 687 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 688 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 689 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 690 // for the chime board outputs.
mjr 76:7f5912b6340e 691 //
mjr 76:7f5912b6340e 692 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 693 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 694 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 695 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 696 //
mjr 76:7f5912b6340e 697 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 698 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 699 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 700 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 701 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 702 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 703 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 704 // of physical devices they're connected to.
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706
mjr 26:cb71c4af2912 707 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 708 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 709 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 710 class LwOut
mjr 6:cc35eb643e8f 711 {
mjr 6:cc35eb643e8f 712 public:
mjr 40:cc0d9814522b 713 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 714 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 715 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 716 };
mjr 26:cb71c4af2912 717
mjr 35:e959ffba78fd 718 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 719 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 720 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 721 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 722 // numbering.
mjr 35:e959ffba78fd 723 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 724 {
mjr 33:d832bcab089e 725 public:
mjr 35:e959ffba78fd 726 LwVirtualOut() { }
mjr 40:cc0d9814522b 727 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 728 };
mjr 26:cb71c4af2912 729
mjr 34:6b981a2afab7 730 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 731 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 732 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 733 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 734 {
mjr 34:6b981a2afab7 735 public:
mjr 34:6b981a2afab7 736 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 737 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 738
mjr 34:6b981a2afab7 739 private:
mjr 53:9b2611964afc 740 // underlying physical output
mjr 34:6b981a2afab7 741 LwOut *out;
mjr 34:6b981a2afab7 742 };
mjr 34:6b981a2afab7 743
mjr 53:9b2611964afc 744 // Global ZB Launch Ball state
mjr 53:9b2611964afc 745 bool zbLaunchOn = false;
mjr 53:9b2611964afc 746
mjr 53:9b2611964afc 747 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 748 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 749 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 750 {
mjr 53:9b2611964afc 751 public:
mjr 53:9b2611964afc 752 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 753 virtual void set(uint8_t val)
mjr 53:9b2611964afc 754 {
mjr 53:9b2611964afc 755 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 756 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 757
mjr 53:9b2611964afc 758 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 759 out->set(val);
mjr 53:9b2611964afc 760 }
mjr 53:9b2611964afc 761
mjr 53:9b2611964afc 762 private:
mjr 53:9b2611964afc 763 // underlying physical or virtual output
mjr 53:9b2611964afc 764 LwOut *out;
mjr 53:9b2611964afc 765 };
mjr 53:9b2611964afc 766
mjr 53:9b2611964afc 767
mjr 40:cc0d9814522b 768 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 769 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 770 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 771 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 772 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 773 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 774 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 775 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 776 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 777 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 778 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 779 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 780 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 781 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 782 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 783 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 784 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 785 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 786 };
mjr 40:cc0d9814522b 787
mjr 40:cc0d9814522b 788 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 789 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 790 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 791 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 792 {
mjr 40:cc0d9814522b 793 public:
mjr 40:cc0d9814522b 794 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 795 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 796
mjr 40:cc0d9814522b 797 private:
mjr 40:cc0d9814522b 798 LwOut *out;
mjr 40:cc0d9814522b 799 };
mjr 40:cc0d9814522b 800
mjr 77:0b96f6867312 801 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 802 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 803 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 804 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 805
mjr 40:cc0d9814522b 806 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 807 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 808 // mode is engaged.
mjr 40:cc0d9814522b 809 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 810 {
mjr 40:cc0d9814522b 811 public:
mjr 40:cc0d9814522b 812 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 813 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 814
mjr 53:9b2611964afc 815 private:
mjr 53:9b2611964afc 816 LwOut *out;
mjr 53:9b2611964afc 817 };
mjr 53:9b2611964afc 818
mjr 53:9b2611964afc 819 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 820 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 821 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 822 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 823 {
mjr 53:9b2611964afc 824 public:
mjr 53:9b2611964afc 825 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 826 virtual void set(uint8_t)
mjr 53:9b2611964afc 827 {
mjr 53:9b2611964afc 828 // ignore the host value and simply show the current
mjr 53:9b2611964afc 829 // night mode setting
mjr 53:9b2611964afc 830 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 831 }
mjr 40:cc0d9814522b 832
mjr 40:cc0d9814522b 833 private:
mjr 40:cc0d9814522b 834 LwOut *out;
mjr 40:cc0d9814522b 835 };
mjr 40:cc0d9814522b 836
mjr 26:cb71c4af2912 837
mjr 89:c43cd923401c 838 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 839 // top of a physical pin output.
mjr 89:c43cd923401c 840 //
mjr 89:c43cd923401c 841 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 842 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 843 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 844 // level is ON.
mjr 89:c43cd923401c 845 //
mjr 89:c43cd923401c 846 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 847 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 848 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 849 //
mjr 89:c43cd923401c 850 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 851 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 852 // power and start a timer.
mjr 89:c43cd923401c 853 //
mjr 89:c43cd923401c 854 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 855 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 856 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 857 //
mjr 89:c43cd923401c 858 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 859 {
mjr 89:c43cd923401c 860 public:
mjr 89:c43cd923401c 861 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 862 // the configuration.
mjr 89:c43cd923401c 863 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 864 : out(o), params(params)
mjr 89:c43cd923401c 865 {
mjr 89:c43cd923401c 866 // initially OFF
mjr 89:c43cd923401c 867 state = 0;
mjr 89:c43cd923401c 868 }
mjr 89:c43cd923401c 869
mjr 89:c43cd923401c 870 virtual void set(uint8_t level)
mjr 89:c43cd923401c 871 {
mjr 89:c43cd923401c 872 // remebmber the new nominal level set by the client
mjr 89:c43cd923401c 873 val = level;
mjr 89:c43cd923401c 874
mjr 89:c43cd923401c 875 // update the physical output according to our current timing state
mjr 89:c43cd923401c 876 switch (state)
mjr 89:c43cd923401c 877 {
mjr 89:c43cd923401c 878 case 0:
mjr 89:c43cd923401c 879 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 880 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 881 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 882 // off, so there's no change.
mjr 89:c43cd923401c 883 if (level != 0)
mjr 89:c43cd923401c 884 {
mjr 89:c43cd923401c 885 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 886 state = 1;
mjr 89:c43cd923401c 887
mjr 89:c43cd923401c 888 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 889 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 890 // requested
mjr 89:c43cd923401c 891 out->set(level);
mjr 89:c43cd923401c 892
mjr 89:c43cd923401c 893 // add myself to the pending timer list
mjr 89:c43cd923401c 894 pending[nPending++] = this;
mjr 89:c43cd923401c 895
mjr 89:c43cd923401c 896 // note the starting time
mjr 89:c43cd923401c 897 t0 = timer.read_us();
mjr 89:c43cd923401c 898 }
mjr 89:c43cd923401c 899 break;
mjr 89:c43cd923401c 900
mjr 89:c43cd923401c 901 case 1:
mjr 89:c43cd923401c 902 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 903 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 904 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 905 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 906 out->set(level);
mjr 89:c43cd923401c 907 if (level == 0)
mjr 89:c43cd923401c 908 {
mjr 89:c43cd923401c 909 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 910 // so we need to remove it from the list.
mjr 89:c43cd923401c 911 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 912 {
mjr 89:c43cd923401c 913 // is this us?
mjr 89:c43cd923401c 914 if (pending[i] == this)
mjr 89:c43cd923401c 915 {
mjr 89:c43cd923401c 916 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 917 // last list entry
mjr 89:c43cd923401c 918 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 919
mjr 89:c43cd923401c 920 // no need to look any further
mjr 89:c43cd923401c 921 break;
mjr 89:c43cd923401c 922 }
mjr 89:c43cd923401c 923 }
mjr 89:c43cd923401c 924
mjr 89:c43cd923401c 925 // switch to state 0 (off)
mjr 89:c43cd923401c 926 state = 0;
mjr 89:c43cd923401c 927 }
mjr 89:c43cd923401c 928 break;
mjr 89:c43cd923401c 929
mjr 89:c43cd923401c 930 case 2:
mjr 89:c43cd923401c 931 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 932 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 933 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 934 // as the upper bound.
mjr 89:c43cd923401c 935 if (level == 0)
mjr 89:c43cd923401c 936 {
mjr 89:c43cd923401c 937 // switching off - turn off the physical output
mjr 89:c43cd923401c 938 out->set(0);
mjr 89:c43cd923401c 939
mjr 89:c43cd923401c 940 // go to state 0 (off)
mjr 89:c43cd923401c 941 state = 0;
mjr 89:c43cd923401c 942 }
mjr 89:c43cd923401c 943 else
mjr 89:c43cd923401c 944 {
mjr 89:c43cd923401c 945 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 946 // lower of the requested power and the hold power
mjr 89:c43cd923401c 947 uint8_t hold = holdPower();
mjr 89:c43cd923401c 948 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 949 }
mjr 89:c43cd923401c 950 break;
mjr 89:c43cd923401c 951 }
mjr 89:c43cd923401c 952 }
mjr 89:c43cd923401c 953
mjr 89:c43cd923401c 954 // Class initialization
mjr 89:c43cd923401c 955 static void classInit(Config &cfg)
mjr 89:c43cd923401c 956 {
mjr 89:c43cd923401c 957 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 958 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 959 // all of these outputs.
mjr 89:c43cd923401c 960 int n = 0;
mjr 89:c43cd923401c 961 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 962 {
mjr 89:c43cd923401c 963 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 964 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 965 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 966 ++n;
mjr 89:c43cd923401c 967 }
mjr 89:c43cd923401c 968
mjr 89:c43cd923401c 969 // allocate space for the pending timer list
mjr 89:c43cd923401c 970 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 971
mjr 89:c43cd923401c 972 // there's nothing in the pending list yet
mjr 89:c43cd923401c 973 nPending = 0;
mjr 89:c43cd923401c 974
mjr 89:c43cd923401c 975 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 976 // use it to figure elapsed times.
mjr 89:c43cd923401c 977 timer.start();
mjr 89:c43cd923401c 978 }
mjr 89:c43cd923401c 979
mjr 89:c43cd923401c 980 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 981 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 982 static void poll()
mjr 89:c43cd923401c 983 {
mjr 89:c43cd923401c 984 // note the current time
mjr 89:c43cd923401c 985 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 986
mjr 89:c43cd923401c 987 // go through the timer list
mjr 89:c43cd923401c 988 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 989 {
mjr 89:c43cd923401c 990 // get the port
mjr 89:c43cd923401c 991 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 992
mjr 89:c43cd923401c 993 // assume we'll keep it
mjr 89:c43cd923401c 994 bool remove = false;
mjr 89:c43cd923401c 995
mjr 89:c43cd923401c 996 // check if the port is still on
mjr 89:c43cd923401c 997 if (port->state != 0)
mjr 89:c43cd923401c 998 {
mjr 89:c43cd923401c 999 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1000 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1001 {
mjr 89:c43cd923401c 1002 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1003 port->state = 2;
mjr 89:c43cd923401c 1004
mjr 89:c43cd923401c 1005 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1006 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1007 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1008 uint8_t val = port->val;
mjr 89:c43cd923401c 1009 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1010
mjr 89:c43cd923401c 1011 // we're done with the timer
mjr 89:c43cd923401c 1012 remove = true;
mjr 89:c43cd923401c 1013 }
mjr 89:c43cd923401c 1014 }
mjr 89:c43cd923401c 1015 else
mjr 89:c43cd923401c 1016 {
mjr 89:c43cd923401c 1017 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1018 // it from the timer list
mjr 89:c43cd923401c 1019 remove = true;
mjr 89:c43cd923401c 1020 }
mjr 89:c43cd923401c 1021
mjr 89:c43cd923401c 1022 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1023 if (remove)
mjr 89:c43cd923401c 1024 {
mjr 89:c43cd923401c 1025 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1026 // the last entry in the list.
mjr 89:c43cd923401c 1027 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1028
mjr 89:c43cd923401c 1029 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1030 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1031 }
mjr 89:c43cd923401c 1032 else
mjr 89:c43cd923401c 1033 {
mjr 89:c43cd923401c 1034 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1035 ++i;
mjr 89:c43cd923401c 1036 }
mjr 89:c43cd923401c 1037 }
mjr 89:c43cd923401c 1038 }
mjr 89:c43cd923401c 1039
mjr 89:c43cd923401c 1040 protected:
mjr 89:c43cd923401c 1041 // underlying physical output
mjr 89:c43cd923401c 1042 LwOut *out;
mjr 89:c43cd923401c 1043
mjr 89:c43cd923401c 1044 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1045 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1046 uint32_t t0;
mjr 89:c43cd923401c 1047
mjr 89:c43cd923401c 1048 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1049 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1050 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1051 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1052 // if it's lower.
mjr 89:c43cd923401c 1053 uint8_t val;
mjr 89:c43cd923401c 1054
mjr 89:c43cd923401c 1055 // Current port state:
mjr 89:c43cd923401c 1056 //
mjr 89:c43cd923401c 1057 // 0 = off
mjr 89:c43cd923401c 1058 // 1 = on at initial full power
mjr 89:c43cd923401c 1059 // 2 = on at hold power
mjr 89:c43cd923401c 1060 uint8_t state;
mjr 89:c43cd923401c 1061
mjr 89:c43cd923401c 1062 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1063 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1064 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1065 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1066 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1067 uint8_t params;
mjr 89:c43cd923401c 1068
mjr 89:c43cd923401c 1069 // Figure the initial full-power time in microseconds
mjr 89:c43cd923401c 1070 inline uint32_t fullPowerTime_us() const { return ((params >> 4) + 1)*50000; }
mjr 89:c43cd923401c 1071
mjr 89:c43cd923401c 1072 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1073 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1074
mjr 89:c43cd923401c 1075 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1076 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1077 // (which runs continuously).
mjr 89:c43cd923401c 1078 static Timer timer;
mjr 89:c43cd923401c 1079
mjr 89:c43cd923401c 1080 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 89:c43cd923401c 1081 // transitions from OFF to ON, tis timer
mjr 89:c43cd923401c 1082 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1083 static uint8_t nPending;
mjr 89:c43cd923401c 1084 };
mjr 89:c43cd923401c 1085
mjr 89:c43cd923401c 1086 // Flipper Logic statics
mjr 89:c43cd923401c 1087 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1088 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1089 uint8_t LwFlipperLogicOut::nPending;
mjr 89:c43cd923401c 1090
mjr 35:e959ffba78fd 1091 //
mjr 35:e959ffba78fd 1092 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1093 // assignments set in config.h.
mjr 33:d832bcab089e 1094 //
mjr 35:e959ffba78fd 1095 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1096 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1097 {
mjr 35:e959ffba78fd 1098 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1099 {
mjr 53:9b2611964afc 1100 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1101 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1102 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1103 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1104 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1105 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1106 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1107 }
mjr 35:e959ffba78fd 1108 }
mjr 26:cb71c4af2912 1109
mjr 40:cc0d9814522b 1110 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1111 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1112 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1113 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1114 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1115 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1116 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1117 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1118 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1119 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1120 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1121 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1122 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1123 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1124 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1125 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1126 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1127 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1128 };
mjr 40:cc0d9814522b 1129
mjr 40:cc0d9814522b 1130 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1131 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1132 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1133 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1134 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1135 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1136 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1137 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1138 // are always 8 bits.
mjr 40:cc0d9814522b 1139 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1140 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1141 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1142 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1143 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1144 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1145 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1146 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1147 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1148 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1149 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1150 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1151 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1152 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1153 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1154 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1155 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1156 };
mjr 40:cc0d9814522b 1157
mjr 26:cb71c4af2912 1158 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1159 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1160 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1161 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1162 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1163 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1164 {
mjr 26:cb71c4af2912 1165 public:
mjr 60:f38da020aa13 1166 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1167 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1168 {
mjr 26:cb71c4af2912 1169 if (val != prv)
mjr 40:cc0d9814522b 1170 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1171 }
mjr 60:f38da020aa13 1172 uint8_t idx;
mjr 40:cc0d9814522b 1173 uint8_t prv;
mjr 26:cb71c4af2912 1174 };
mjr 26:cb71c4af2912 1175
mjr 40:cc0d9814522b 1176 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1177 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1178 {
mjr 40:cc0d9814522b 1179 public:
mjr 60:f38da020aa13 1180 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1181 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1182 {
mjr 40:cc0d9814522b 1183 if (val != prv)
mjr 40:cc0d9814522b 1184 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1185 }
mjr 60:f38da020aa13 1186 uint8_t idx;
mjr 40:cc0d9814522b 1187 uint8_t prv;
mjr 40:cc0d9814522b 1188 };
mjr 40:cc0d9814522b 1189
mjr 87:8d35c74403af 1190 //
mjr 87:8d35c74403af 1191 // TLC59116 interface object
mjr 87:8d35c74403af 1192 //
mjr 87:8d35c74403af 1193 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1194 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1195 {
mjr 87:8d35c74403af 1196 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1197 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1198 {
mjr 87:8d35c74403af 1199 // set up the interface
mjr 87:8d35c74403af 1200 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1201 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1202 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1203 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1204
mjr 87:8d35c74403af 1205 // initialize the chips
mjr 87:8d35c74403af 1206 tlc59116->init();
mjr 87:8d35c74403af 1207 }
mjr 87:8d35c74403af 1208 }
mjr 87:8d35c74403af 1209
mjr 87:8d35c74403af 1210 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1211 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1212 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1213 // (0-15).
mjr 87:8d35c74403af 1214 //
mjr 87:8d35c74403af 1215 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1216 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1217 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1218 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1219 {
mjr 87:8d35c74403af 1220 public:
mjr 87:8d35c74403af 1221 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1222 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1223 {
mjr 87:8d35c74403af 1224 if (val != prv)
mjr 87:8d35c74403af 1225 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1226 }
mjr 87:8d35c74403af 1227
mjr 87:8d35c74403af 1228 protected:
mjr 87:8d35c74403af 1229 uint8_t addr;
mjr 87:8d35c74403af 1230 uint8_t port;
mjr 87:8d35c74403af 1231 uint8_t prv;
mjr 87:8d35c74403af 1232 };
mjr 87:8d35c74403af 1233
mjr 87:8d35c74403af 1234
mjr 87:8d35c74403af 1235 //
mjr 34:6b981a2afab7 1236 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1237 // config.h.
mjr 87:8d35c74403af 1238 //
mjr 35:e959ffba78fd 1239 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1240
mjr 35:e959ffba78fd 1241 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1242 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1243 {
mjr 35:e959ffba78fd 1244 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1245 {
mjr 53:9b2611964afc 1246 hc595 = new HC595(
mjr 53:9b2611964afc 1247 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1248 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1249 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1250 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1251 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1252 hc595->init();
mjr 35:e959ffba78fd 1253 hc595->update();
mjr 35:e959ffba78fd 1254 }
mjr 35:e959ffba78fd 1255 }
mjr 34:6b981a2afab7 1256
mjr 34:6b981a2afab7 1257 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1258 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1259 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1260 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1261 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1262 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1263 {
mjr 33:d832bcab089e 1264 public:
mjr 60:f38da020aa13 1265 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1266 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1267 {
mjr 34:6b981a2afab7 1268 if (val != prv)
mjr 40:cc0d9814522b 1269 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1270 }
mjr 60:f38da020aa13 1271 uint8_t idx;
mjr 40:cc0d9814522b 1272 uint8_t prv;
mjr 33:d832bcab089e 1273 };
mjr 33:d832bcab089e 1274
mjr 26:cb71c4af2912 1275
mjr 40:cc0d9814522b 1276
mjr 64:ef7ca92dff36 1277 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1278 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1279 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1280 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1281 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1282 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1283 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1284 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1285 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1286 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1287 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1288 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1289 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1290 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1291 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1292 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1293 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1294 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1295 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1296 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1297 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1298 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1299 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1300 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1301 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1302 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1303 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1304 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1305 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1306 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1307 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1308 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1309 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1310 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1311 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1312 };
mjr 26:cb71c4af2912 1313
mjr 64:ef7ca92dff36 1314
mjr 92:f264fbaa1be5 1315 // Conversion table for 8-bit DOF level to pulse width, with gamma correction
mjr 92:f264fbaa1be5 1316 // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0.
mjr 92:f264fbaa1be5 1317 // Note that we could use the layered gamma output on top of the regular
mjr 92:f264fbaa1be5 1318 // LwPwmOut class for this instead of a separate table, but we get much better
mjr 92:f264fbaa1be5 1319 // precision with a dedicated table, because we apply gamma correction to the
mjr 92:f264fbaa1be5 1320 // actual duty cycle values (as 'float') rather than the 8-bit DOF values.
mjr 64:ef7ca92dff36 1321 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1322 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1323 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1324 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1325 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1326 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1327 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1328 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1329 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1330 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1331 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1332 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1333 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1334 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1335 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1336 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1337 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1338 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1339 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1340 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1341 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1342 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1343 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1344 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1345 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1346 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1347 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1348 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1349 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1350 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1351 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1352 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1353 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1354 };
mjr 64:ef7ca92dff36 1355
mjr 77:0b96f6867312 1356 // Polled-update PWM output list
mjr 74:822a92bc11d2 1357 //
mjr 77:0b96f6867312 1358 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1359 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1360 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1361 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1362 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1363 //
mjr 92:f264fbaa1be5 1364 // The symptom of the problem, if it's not worked around somehow, is that
mjr 92:f264fbaa1be5 1365 // an output will get "stuck" due to a missed write. This is especially
mjr 92:f264fbaa1be5 1366 // noticeable during a series of updates such as a fade. If the last
mjr 92:f264fbaa1be5 1367 // couple of updates in a fade are lost, the output will get stuck at some
mjr 92:f264fbaa1be5 1368 // value above or below the desired final value. The stuck setting will
mjr 92:f264fbaa1be5 1369 // persist until the output is deliberately changed again later.
mjr 92:f264fbaa1be5 1370 //
mjr 92:f264fbaa1be5 1371 // Our solution: Simply repeat all PWM updates periodically. This way, any
mjr 92:f264fbaa1be5 1372 // lost write will *eventually* take hold on one of the repeats. Repeats of
mjr 92:f264fbaa1be5 1373 // the same value won't change anything and thus won't be noticeable. We do
mjr 92:f264fbaa1be5 1374 // these periodic updates during the main loop, which makes them very low
mjr 92:f264fbaa1be5 1375 // overhead (there's no interrupt overhead; we just do them when convenient
mjr 92:f264fbaa1be5 1376 // in the main loop), and also makes them very frequent. The frequency
mjr 92:f264fbaa1be5 1377 // is crucial because it ensures that updates will never be lost for long
mjr 92:f264fbaa1be5 1378 // enough to become noticeable.
mjr 92:f264fbaa1be5 1379 //
mjr 92:f264fbaa1be5 1380 // The mbed library has its own, different solution to this bug, but the
mjr 92:f264fbaa1be5 1381 // mbed solution isn't really a solution at all because it creates a separate
mjr 92:f264fbaa1be5 1382 // problem of its own. The mbed approach is reset the TPM "count" register
mjr 92:f264fbaa1be5 1383 // on every value register write. The count reset truncates the current
mjr 92:f264fbaa1be5 1384 // PWM cycle, which bypasses the hardware problem. Remember, the hardware
mjr 92:f264fbaa1be5 1385 // problem is that you can only write once per cycle; the mbed "solution" gets
mjr 92:f264fbaa1be5 1386 // around that by making sure the cycle ends immediately after the write.
mjr 92:f264fbaa1be5 1387 // The problem with this approach is that the truncated cycle causes visible
mjr 92:f264fbaa1be5 1388 // flicker if the output is connected to an LED. This is particularly
mjr 92:f264fbaa1be5 1389 // noticeable during fades, when we're updating the value register repeatedly
mjr 92:f264fbaa1be5 1390 // and rapidly: an attempt to fade from fully on to fully off causes rapid
mjr 92:f264fbaa1be5 1391 // fluttering and flashing rather than a smooth brightness fade. That's why
mjr 92:f264fbaa1be5 1392 // I had to come up with something different - the mbed solution just trades
mjr 92:f264fbaa1be5 1393 // one annoying bug for another that's just as bad.
mjr 92:f264fbaa1be5 1394 //
mjr 92:f264fbaa1be5 1395 // The hardware bug, by the way, is a case of good intentions gone bad.
mjr 92:f264fbaa1be5 1396 // The whole point of the staging register is to make things easier for
mjr 92:f264fbaa1be5 1397 // us software writers. In most PWM hardware, software has to coordinate
mjr 92:f264fbaa1be5 1398 // with the PWM duty cycle when updating registers to avoid a glitch that
mjr 92:f264fbaa1be5 1399 // you'd get by scribbling to the duty cycle register mid-cycle. The
mjr 92:f264fbaa1be5 1400 // staging register solves this by letting the software write an update at
mjr 92:f264fbaa1be5 1401 // any time, knowing that the hardware will apply the update at exactly the
mjr 92:f264fbaa1be5 1402 // end of the cycle, ensuring glitch-free updates. It's a great design,
mjr 92:f264fbaa1be5 1403 // except that it doesn't quite work. The problem is that they implemented
mjr 92:f264fbaa1be5 1404 // this clever staging register as a one-element FIFO that refuses any more
mjr 92:f264fbaa1be5 1405 // writes when full. That is, writing a value to the FIFO fills it; once
mjr 92:f264fbaa1be5 1406 // full, it ignores writes until it gets emptied out. How's it emptied out?
mjr 92:f264fbaa1be5 1407 // By the hardware moving the staged value to the real register. Sadly, they
mjr 92:f264fbaa1be5 1408 // didn't provide any way for the software to clear the register, and no way
mjr 92:f264fbaa1be5 1409 // to even tell that it's full. So we don't have glitches on write, but we're
mjr 92:f264fbaa1be5 1410 // back to the original problem that the software has to be aware of the PWM
mjr 92:f264fbaa1be5 1411 // cycle timing, because the only way for the software to know that a write
mjr 92:f264fbaa1be5 1412 // actually worked is to know that it's been at least one PWM cycle since the
mjr 92:f264fbaa1be5 1413 // last write. That largely defeats the whole purpose of the staging register,
mjr 92:f264fbaa1be5 1414 // since the whole point was to free software writers of these timing
mjr 92:f264fbaa1be5 1415 // considerations. It's still an improvement over no staging register at
mjr 92:f264fbaa1be5 1416 // all, since we at least don't have to worry about glitches, but it leaves
mjr 92:f264fbaa1be5 1417 // us with this somewhat similar hassle.
mjr 74:822a92bc11d2 1418 //
mjr 77:0b96f6867312 1419 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1420 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1421 // of polled items.
mjr 74:822a92bc11d2 1422 static int numPolledPwm;
mjr 74:822a92bc11d2 1423 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1424
mjr 74:822a92bc11d2 1425 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1426 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1427 {
mjr 6:cc35eb643e8f 1428 public:
mjr 43:7a6364d82a41 1429 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1430 {
mjr 77:0b96f6867312 1431 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1432 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1433 polledPwm[numPolledPwm++] = this;
mjr 77:0b96f6867312 1434
mjr 77:0b96f6867312 1435 // set the initial value
mjr 77:0b96f6867312 1436 set(initVal);
mjr 43:7a6364d82a41 1437 }
mjr 74:822a92bc11d2 1438
mjr 40:cc0d9814522b 1439 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1440 {
mjr 77:0b96f6867312 1441 // save the new value
mjr 74:822a92bc11d2 1442 this->val = val;
mjr 77:0b96f6867312 1443
mjr 77:0b96f6867312 1444 // commit it to the hardware
mjr 77:0b96f6867312 1445 commit();
mjr 13:72dda449c3c0 1446 }
mjr 74:822a92bc11d2 1447
mjr 74:822a92bc11d2 1448 // handle periodic update polling
mjr 74:822a92bc11d2 1449 void poll()
mjr 74:822a92bc11d2 1450 {
mjr 77:0b96f6867312 1451 commit();
mjr 74:822a92bc11d2 1452 }
mjr 74:822a92bc11d2 1453
mjr 74:822a92bc11d2 1454 protected:
mjr 77:0b96f6867312 1455 virtual void commit()
mjr 74:822a92bc11d2 1456 {
mjr 74:822a92bc11d2 1457 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1458 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1459 }
mjr 74:822a92bc11d2 1460
mjr 77:0b96f6867312 1461 NewPwmOut p;
mjr 77:0b96f6867312 1462 uint8_t val;
mjr 6:cc35eb643e8f 1463 };
mjr 26:cb71c4af2912 1464
mjr 74:822a92bc11d2 1465 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1466 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1467 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1468 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1469 {
mjr 64:ef7ca92dff36 1470 public:
mjr 64:ef7ca92dff36 1471 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1472 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1473 {
mjr 64:ef7ca92dff36 1474 }
mjr 74:822a92bc11d2 1475
mjr 74:822a92bc11d2 1476 protected:
mjr 77:0b96f6867312 1477 virtual void commit()
mjr 64:ef7ca92dff36 1478 {
mjr 74:822a92bc11d2 1479 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1480 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1481 }
mjr 64:ef7ca92dff36 1482 };
mjr 64:ef7ca92dff36 1483
mjr 74:822a92bc11d2 1484 // poll the PWM outputs
mjr 74:822a92bc11d2 1485 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1486 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1487 void pollPwmUpdates()
mjr 74:822a92bc11d2 1488 {
mjr 74:822a92bc11d2 1489 // if it's been at least 25ms since the last update, do another update
mjr 74:822a92bc11d2 1490 if (polledPwmTimer.read_us() >= 25000)
mjr 74:822a92bc11d2 1491 {
mjr 74:822a92bc11d2 1492 // time the run for statistics collection
mjr 74:822a92bc11d2 1493 IF_DIAG(
mjr 74:822a92bc11d2 1494 Timer t;
mjr 74:822a92bc11d2 1495 t.start();
mjr 74:822a92bc11d2 1496 )
mjr 74:822a92bc11d2 1497
mjr 74:822a92bc11d2 1498 // poll each output
mjr 74:822a92bc11d2 1499 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1500 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1501
mjr 74:822a92bc11d2 1502 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1503 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1504
mjr 74:822a92bc11d2 1505 // collect statistics
mjr 74:822a92bc11d2 1506 IF_DIAG(
mjr 76:7f5912b6340e 1507 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1508 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1509 )
mjr 74:822a92bc11d2 1510 }
mjr 74:822a92bc11d2 1511 }
mjr 64:ef7ca92dff36 1512
mjr 26:cb71c4af2912 1513 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1514 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1515 {
mjr 6:cc35eb643e8f 1516 public:
mjr 43:7a6364d82a41 1517 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1518 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1519 {
mjr 13:72dda449c3c0 1520 if (val != prv)
mjr 40:cc0d9814522b 1521 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1522 }
mjr 6:cc35eb643e8f 1523 DigitalOut p;
mjr 40:cc0d9814522b 1524 uint8_t prv;
mjr 6:cc35eb643e8f 1525 };
mjr 26:cb71c4af2912 1526
mjr 29:582472d0bc57 1527 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1528 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1529 // port n (0-based).
mjr 35:e959ffba78fd 1530 //
mjr 35:e959ffba78fd 1531 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1532 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1533 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1534 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1535 // 74HC595 ports).
mjr 33:d832bcab089e 1536 static int numOutputs;
mjr 33:d832bcab089e 1537 static LwOut **lwPin;
mjr 33:d832bcab089e 1538
mjr 38:091e511ce8a0 1539 // create a single output pin
mjr 53:9b2611964afc 1540 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1541 {
mjr 38:091e511ce8a0 1542 // get this item's values
mjr 38:091e511ce8a0 1543 int typ = pc.typ;
mjr 38:091e511ce8a0 1544 int pin = pc.pin;
mjr 38:091e511ce8a0 1545 int flags = pc.flags;
mjr 40:cc0d9814522b 1546 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1547 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1548 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 1549 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 89:c43cd923401c 1550
mjr 89:c43cd923401c 1551 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 1552 if (flipperLogic)
mjr 89:c43cd923401c 1553 gamma = false;
mjr 38:091e511ce8a0 1554
mjr 38:091e511ce8a0 1555 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1556 LwOut *lwp;
mjr 38:091e511ce8a0 1557 switch (typ)
mjr 38:091e511ce8a0 1558 {
mjr 38:091e511ce8a0 1559 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1560 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1561 if (pin != 0)
mjr 64:ef7ca92dff36 1562 {
mjr 64:ef7ca92dff36 1563 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1564 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1565 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1566 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1567 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1568 {
mjr 64:ef7ca92dff36 1569 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1570 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1571
mjr 64:ef7ca92dff36 1572 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1573 gamma = false;
mjr 64:ef7ca92dff36 1574 }
mjr 64:ef7ca92dff36 1575 else
mjr 64:ef7ca92dff36 1576 {
mjr 64:ef7ca92dff36 1577 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1578 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1579 }
mjr 64:ef7ca92dff36 1580 }
mjr 48:058ace2aed1d 1581 else
mjr 48:058ace2aed1d 1582 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1583 break;
mjr 38:091e511ce8a0 1584
mjr 38:091e511ce8a0 1585 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1586 // Digital GPIO port
mjr 48:058ace2aed1d 1587 if (pin != 0)
mjr 48:058ace2aed1d 1588 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1589 else
mjr 48:058ace2aed1d 1590 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1591 break;
mjr 38:091e511ce8a0 1592
mjr 38:091e511ce8a0 1593 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1594 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1595 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1596 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1597 {
mjr 40:cc0d9814522b 1598 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1599 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1600 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1601 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1602 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1603 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1604 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1605 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1606 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1607 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1608 // for this unlikely case.
mjr 40:cc0d9814522b 1609 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1610 {
mjr 40:cc0d9814522b 1611 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1612 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1613
mjr 40:cc0d9814522b 1614 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1615 gamma = false;
mjr 40:cc0d9814522b 1616 }
mjr 40:cc0d9814522b 1617 else
mjr 40:cc0d9814522b 1618 {
mjr 40:cc0d9814522b 1619 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1620 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1621 }
mjr 40:cc0d9814522b 1622 }
mjr 38:091e511ce8a0 1623 else
mjr 40:cc0d9814522b 1624 {
mjr 40:cc0d9814522b 1625 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1626 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1627 }
mjr 38:091e511ce8a0 1628 break;
mjr 38:091e511ce8a0 1629
mjr 38:091e511ce8a0 1630 case PortType74HC595:
mjr 87:8d35c74403af 1631 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 1632 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 1633 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1634 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1635 else
mjr 38:091e511ce8a0 1636 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1637 break;
mjr 87:8d35c74403af 1638
mjr 87:8d35c74403af 1639 case PortTypeTLC59116:
mjr 87:8d35c74403af 1640 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 1641 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 1642 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 1643 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 1644 if (tlc59116 != 0)
mjr 87:8d35c74403af 1645 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 1646 break;
mjr 38:091e511ce8a0 1647
mjr 38:091e511ce8a0 1648 case PortTypeVirtual:
mjr 43:7a6364d82a41 1649 case PortTypeDisabled:
mjr 38:091e511ce8a0 1650 default:
mjr 38:091e511ce8a0 1651 // virtual or unknown
mjr 38:091e511ce8a0 1652 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1653 break;
mjr 38:091e511ce8a0 1654 }
mjr 38:091e511ce8a0 1655
mjr 40:cc0d9814522b 1656 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1657 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1658 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1659 if (activeLow)
mjr 38:091e511ce8a0 1660 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1661
mjr 89:c43cd923401c 1662 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 1663 if (flipperLogic)
mjr 89:c43cd923401c 1664 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 1665
mjr 89:c43cd923401c 1666 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 1667 if (noisy)
mjr 40:cc0d9814522b 1668 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1669
mjr 40:cc0d9814522b 1670 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1671 if (gamma)
mjr 40:cc0d9814522b 1672 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1673
mjr 53:9b2611964afc 1674 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1675 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1676 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1677 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1678 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1679
mjr 53:9b2611964afc 1680 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1681 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1682 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1683
mjr 38:091e511ce8a0 1684 // turn it off initially
mjr 38:091e511ce8a0 1685 lwp->set(0);
mjr 38:091e511ce8a0 1686
mjr 38:091e511ce8a0 1687 // return the pin
mjr 38:091e511ce8a0 1688 return lwp;
mjr 38:091e511ce8a0 1689 }
mjr 38:091e511ce8a0 1690
mjr 6:cc35eb643e8f 1691 // initialize the output pin array
mjr 35:e959ffba78fd 1692 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1693 {
mjr 89:c43cd923401c 1694 // Initialize the Flipper Logic outputs
mjr 89:c43cd923401c 1695 LwFlipperLogicOut::classInit(cfg);
mjr 89:c43cd923401c 1696
mjr 35:e959ffba78fd 1697 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1698 // total number of ports.
mjr 35:e959ffba78fd 1699 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1700 int i;
mjr 35:e959ffba78fd 1701 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1702 {
mjr 35:e959ffba78fd 1703 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1704 {
mjr 35:e959ffba78fd 1705 numOutputs = i;
mjr 34:6b981a2afab7 1706 break;
mjr 34:6b981a2afab7 1707 }
mjr 33:d832bcab089e 1708 }
mjr 33:d832bcab089e 1709
mjr 73:4e8ce0b18915 1710 // allocate the pin array
mjr 73:4e8ce0b18915 1711 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1712
mjr 73:4e8ce0b18915 1713 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1714 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1715
mjr 73:4e8ce0b18915 1716 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1717 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1718 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1719
mjr 73:4e8ce0b18915 1720 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1721 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1722 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1723
mjr 73:4e8ce0b18915 1724 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1725 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1726 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1727
mjr 35:e959ffba78fd 1728 // create the pin interface object for each port
mjr 35:e959ffba78fd 1729 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1730 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1731 }
mjr 6:cc35eb643e8f 1732
mjr 76:7f5912b6340e 1733 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1734 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1735 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1736 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1737 // equivalent to 48.
mjr 40:cc0d9814522b 1738 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1739 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1740 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1741 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1742 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1743 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1744 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1745 255, 255
mjr 40:cc0d9814522b 1746 };
mjr 40:cc0d9814522b 1747
mjr 76:7f5912b6340e 1748 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1749 // level (1..48)
mjr 76:7f5912b6340e 1750 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1751 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1752 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1753 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1754 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1755 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1756 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1757 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1758 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1759 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1760 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1761 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1762 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1763 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1764 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1765 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1766 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1767 };
mjr 76:7f5912b6340e 1768
mjr 74:822a92bc11d2 1769 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1770 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1771 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1772 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1773 //
mjr 74:822a92bc11d2 1774 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1775 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1776 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1777 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1778 //
mjr 74:822a92bc11d2 1779 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1780 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1781 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1782 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1783 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1784 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1785 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1786 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1787 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1788 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1789 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1790 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1791 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1792 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1793 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1794 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1795 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1796 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1797 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1798 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1799
mjr 74:822a92bc11d2 1800 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1801 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1802 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1803 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1804 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1805 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1806 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1807 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1808 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1809 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1810 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1811 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1812 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1813 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1814 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1815 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1816 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1817
mjr 74:822a92bc11d2 1818 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1819 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1820 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1821 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1822 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1823 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1824 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1825 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1826 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1827 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1828 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1829 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1830 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1831 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1832 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1833 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1834 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1835
mjr 74:822a92bc11d2 1836 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1837 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1838 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1839 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1840 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1841 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1842 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1843 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1844 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1845 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1846 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1847 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1848 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1849 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1850 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1851 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1852 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1853 };
mjr 74:822a92bc11d2 1854
mjr 74:822a92bc11d2 1855 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1856 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1857 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1858
mjr 76:7f5912b6340e 1859 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1860 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1861
mjr 76:7f5912b6340e 1862 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1863 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1864 // outputs on each cycle.
mjr 29:582472d0bc57 1865 static void wizPulse()
mjr 29:582472d0bc57 1866 {
mjr 76:7f5912b6340e 1867 // current bank
mjr 76:7f5912b6340e 1868 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1869
mjr 76:7f5912b6340e 1870 // start a timer for statistics collection
mjr 76:7f5912b6340e 1871 IF_DIAG(
mjr 76:7f5912b6340e 1872 Timer t;
mjr 76:7f5912b6340e 1873 t.start();
mjr 76:7f5912b6340e 1874 )
mjr 76:7f5912b6340e 1875
mjr 76:7f5912b6340e 1876 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1877 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1878 //
mjr 76:7f5912b6340e 1879 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1880 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1881 //
mjr 76:7f5912b6340e 1882 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1883 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1884 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1885 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1886 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1887 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1888 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1889 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1890 // current cycle.
mjr 76:7f5912b6340e 1891 //
mjr 76:7f5912b6340e 1892 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1893 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1894 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1895 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1896 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1897 //
mjr 76:7f5912b6340e 1898 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1899 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1900 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1901 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1902 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1903 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1904 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1905 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1906 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1907 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1908 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1909 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1910 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1911 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1912 // bit counts.
mjr 76:7f5912b6340e 1913 //
mjr 76:7f5912b6340e 1914 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1915 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1916 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1917 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1918 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1919 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1920 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1921 // one division for another!
mjr 76:7f5912b6340e 1922 //
mjr 76:7f5912b6340e 1923 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1924 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1925 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1926 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1927 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1928 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1929 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1930 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1931 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1932 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1933 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1934 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1935 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1936 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1937 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1938 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1939 // remainder calculation anyway.
mjr 76:7f5912b6340e 1940 //
mjr 76:7f5912b6340e 1941 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1942 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1943 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1944 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1945 //
mjr 76:7f5912b6340e 1946 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1947 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1948 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1949 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1950 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1951 // the result, since we started with 32.
mjr 76:7f5912b6340e 1952 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1953 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1954 };
mjr 76:7f5912b6340e 1955 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1956
mjr 76:7f5912b6340e 1957 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1958 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1959 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1960 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1961 toPort = numOutputs;
mjr 76:7f5912b6340e 1962
mjr 76:7f5912b6340e 1963 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1964 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1965 {
mjr 76:7f5912b6340e 1966 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1967 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1968 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1969 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1970 if (wizOn[i])
mjr 29:582472d0bc57 1971 {
mjr 76:7f5912b6340e 1972 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 1973 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 1974 {
mjr 76:7f5912b6340e 1975 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 1976 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 1977 }
mjr 29:582472d0bc57 1978 }
mjr 76:7f5912b6340e 1979 }
mjr 76:7f5912b6340e 1980
mjr 34:6b981a2afab7 1981 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1982 if (hc595 != 0)
mjr 35:e959ffba78fd 1983 hc595->update();
mjr 76:7f5912b6340e 1984
mjr 76:7f5912b6340e 1985 // switch to the next bank
mjr 76:7f5912b6340e 1986 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 1987 wizPulseBank = 0;
mjr 76:7f5912b6340e 1988
mjr 76:7f5912b6340e 1989 // collect timing statistics
mjr 76:7f5912b6340e 1990 IF_DIAG(
mjr 76:7f5912b6340e 1991 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 1992 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 1993 )
mjr 1:d913e0afb2ac 1994 }
mjr 38:091e511ce8a0 1995
mjr 76:7f5912b6340e 1996 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 1997 static void updateLwPort(int port)
mjr 38:091e511ce8a0 1998 {
mjr 76:7f5912b6340e 1999 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 2000 if (wizOn[port])
mjr 76:7f5912b6340e 2001 {
mjr 76:7f5912b6340e 2002 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 2003 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 2004 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 2005 // it on the next cycle.
mjr 76:7f5912b6340e 2006 int val = wizVal[port];
mjr 76:7f5912b6340e 2007 if (val <= 49)
mjr 76:7f5912b6340e 2008 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 2009 }
mjr 76:7f5912b6340e 2010 else
mjr 76:7f5912b6340e 2011 {
mjr 76:7f5912b6340e 2012 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 2013 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 2014 }
mjr 73:4e8ce0b18915 2015 }
mjr 73:4e8ce0b18915 2016
mjr 73:4e8ce0b18915 2017 // Turn off all outputs and restore everything to the default LedWiz
mjr 92:f264fbaa1be5 2018 // state. This sets all outputs to LedWiz profile value 48 (full
mjr 92:f264fbaa1be5 2019 // brightness) and switch state Off, and sets the LedWiz flash rate
mjr 92:f264fbaa1be5 2020 // to 2. This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2021 //
mjr 73:4e8ce0b18915 2022 void allOutputsOff()
mjr 73:4e8ce0b18915 2023 {
mjr 92:f264fbaa1be5 2024 // reset all outputs to OFF/48
mjr 73:4e8ce0b18915 2025 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2026 {
mjr 73:4e8ce0b18915 2027 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2028 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2029 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2030 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2031 }
mjr 73:4e8ce0b18915 2032
mjr 73:4e8ce0b18915 2033 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2034 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2035 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2036
mjr 73:4e8ce0b18915 2037 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2038 if (hc595 != 0)
mjr 38:091e511ce8a0 2039 hc595->update();
mjr 38:091e511ce8a0 2040 }
mjr 38:091e511ce8a0 2041
mjr 74:822a92bc11d2 2042 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2043 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2044 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2045 // address any port group.
mjr 74:822a92bc11d2 2046 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2047 {
mjr 76:7f5912b6340e 2048 // update all on/off states in the group
mjr 74:822a92bc11d2 2049 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2050 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2051 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2052 {
mjr 74:822a92bc11d2 2053 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2054 if (bit == 0x100) {
mjr 74:822a92bc11d2 2055 bit = 1;
mjr 74:822a92bc11d2 2056 ++imsg;
mjr 74:822a92bc11d2 2057 }
mjr 74:822a92bc11d2 2058
mjr 74:822a92bc11d2 2059 // set the on/off state
mjr 76:7f5912b6340e 2060 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2061
mjr 76:7f5912b6340e 2062 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2063 updateLwPort(port);
mjr 74:822a92bc11d2 2064 }
mjr 74:822a92bc11d2 2065
mjr 74:822a92bc11d2 2066 // set the flash speed for the port group
mjr 74:822a92bc11d2 2067 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2068 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2069
mjr 76:7f5912b6340e 2070 // update 74HC959 outputs
mjr 76:7f5912b6340e 2071 if (hc595 != 0)
mjr 76:7f5912b6340e 2072 hc595->update();
mjr 74:822a92bc11d2 2073 }
mjr 74:822a92bc11d2 2074
mjr 74:822a92bc11d2 2075 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2076 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2077 {
mjr 74:822a92bc11d2 2078 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2079 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2080 {
mjr 74:822a92bc11d2 2081 // get the value
mjr 74:822a92bc11d2 2082 uint8_t v = data[i];
mjr 74:822a92bc11d2 2083
mjr 74:822a92bc11d2 2084 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2085 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2086 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2087 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2088 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2089 // as such.
mjr 74:822a92bc11d2 2090 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2091 v = 48;
mjr 74:822a92bc11d2 2092
mjr 74:822a92bc11d2 2093 // store it
mjr 76:7f5912b6340e 2094 wizVal[port] = v;
mjr 76:7f5912b6340e 2095
mjr 76:7f5912b6340e 2096 // update the port
mjr 76:7f5912b6340e 2097 updateLwPort(port);
mjr 74:822a92bc11d2 2098 }
mjr 74:822a92bc11d2 2099
mjr 76:7f5912b6340e 2100 // update 74HC595 outputs
mjr 76:7f5912b6340e 2101 if (hc595 != 0)
mjr 76:7f5912b6340e 2102 hc595->update();
mjr 74:822a92bc11d2 2103 }
mjr 74:822a92bc11d2 2104
mjr 77:0b96f6867312 2105 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2106 //
mjr 77:0b96f6867312 2107 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2108 //
mjr 77:0b96f6867312 2109
mjr 77:0b96f6867312 2110 // receiver
mjr 77:0b96f6867312 2111 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2112
mjr 77:0b96f6867312 2113 // transmitter
mjr 77:0b96f6867312 2114 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2115
mjr 77:0b96f6867312 2116 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2117 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2118 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2119 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2120 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2121 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2122 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2123 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2124 // configuration slot n
mjr 77:0b96f6867312 2125 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2126
mjr 78:1e00b3fa11af 2127 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2128 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2129 // protocol.
mjr 78:1e00b3fa11af 2130 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2131
mjr 78:1e00b3fa11af 2132 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2133 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2134 // while waiting for the rest.
mjr 78:1e00b3fa11af 2135 static struct
mjr 78:1e00b3fa11af 2136 {
mjr 78:1e00b3fa11af 2137 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 2138 uint64_t code; // code
mjr 78:1e00b3fa11af 2139 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 2140 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 2141 } IRAdHocCmd;
mjr 88:98bce687e6c0 2142
mjr 77:0b96f6867312 2143
mjr 77:0b96f6867312 2144 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 2145 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 2146 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 2147 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 2148 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 2149 // amount of time.
mjr 77:0b96f6867312 2150 Timer IRTimer;
mjr 77:0b96f6867312 2151
mjr 77:0b96f6867312 2152 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 2153 // The states are:
mjr 77:0b96f6867312 2154 //
mjr 77:0b96f6867312 2155 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 2156 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 2157 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 2158 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 2159 //
mjr 77:0b96f6867312 2160 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 2161 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 2162 // received within a reasonable time.
mjr 77:0b96f6867312 2163 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 2164
mjr 77:0b96f6867312 2165 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 2166 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 2167 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 2168 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 2169 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 2170 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 2171 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 2172 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 2173 IRCommand learnedIRCode;
mjr 77:0b96f6867312 2174
mjr 78:1e00b3fa11af 2175 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 2176 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 2177 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 2178 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 2179 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 2180 // index; 0 represents no command.
mjr 77:0b96f6867312 2181 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 2182
mjr 77:0b96f6867312 2183 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 2184 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 2185 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 2186 // command we received.
mjr 77:0b96f6867312 2187 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 2188
mjr 77:0b96f6867312 2189 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 2190 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 2191 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 2192 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 2193 // distinct key press.
mjr 77:0b96f6867312 2194 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 2195
mjr 78:1e00b3fa11af 2196
mjr 77:0b96f6867312 2197 // initialize
mjr 77:0b96f6867312 2198 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 2199 {
mjr 77:0b96f6867312 2200 PinName pin;
mjr 77:0b96f6867312 2201
mjr 77:0b96f6867312 2202 // start the IR timer
mjr 77:0b96f6867312 2203 IRTimer.start();
mjr 77:0b96f6867312 2204
mjr 77:0b96f6867312 2205 // if there's a transmitter, set it up
mjr 77:0b96f6867312 2206 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 2207 {
mjr 77:0b96f6867312 2208 // no virtual buttons yet
mjr 77:0b96f6867312 2209 int nVirtualButtons = 0;
mjr 77:0b96f6867312 2210 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 2211
mjr 77:0b96f6867312 2212 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 2213 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2214 {
mjr 77:0b96f6867312 2215 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 2216 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 2217 }
mjr 77:0b96f6867312 2218
mjr 77:0b96f6867312 2219 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 2220 // real button inputs
mjr 77:0b96f6867312 2221 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 2222 {
mjr 77:0b96f6867312 2223 // get the button
mjr 77:0b96f6867312 2224 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 2225
mjr 77:0b96f6867312 2226 // check the unshifted button
mjr 77:0b96f6867312 2227 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 2228 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2229 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2230 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2231
mjr 77:0b96f6867312 2232 // check the shifted button
mjr 77:0b96f6867312 2233 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 2234 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2235 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2236 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2237 }
mjr 77:0b96f6867312 2238
mjr 77:0b96f6867312 2239 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 2240 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 2241 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 2242
mjr 77:0b96f6867312 2243 // create the transmitter
mjr 77:0b96f6867312 2244 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 2245
mjr 77:0b96f6867312 2246 // program the commands into the virtual button slots
mjr 77:0b96f6867312 2247 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2248 {
mjr 77:0b96f6867312 2249 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 2250 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 2251 if (vb != 0xFF)
mjr 77:0b96f6867312 2252 {
mjr 77:0b96f6867312 2253 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2254 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 2255 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 2256 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 2257 }
mjr 77:0b96f6867312 2258 }
mjr 77:0b96f6867312 2259 }
mjr 77:0b96f6867312 2260
mjr 77:0b96f6867312 2261 // if there's a receiver, set it up
mjr 77:0b96f6867312 2262 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 2263 {
mjr 77:0b96f6867312 2264 // create the receiver
mjr 77:0b96f6867312 2265 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 2266
mjr 77:0b96f6867312 2267 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 2268 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 2269 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 2270
mjr 77:0b96f6867312 2271 // enable it
mjr 77:0b96f6867312 2272 ir_rx->enable();
mjr 77:0b96f6867312 2273
mjr 77:0b96f6867312 2274 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 2275 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 2276 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 2277 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2278 {
mjr 77:0b96f6867312 2279 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2280 if (cb.protocol != 0
mjr 77:0b96f6867312 2281 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2282 {
mjr 77:0b96f6867312 2283 kbKeys = true;
mjr 77:0b96f6867312 2284 break;
mjr 77:0b96f6867312 2285 }
mjr 77:0b96f6867312 2286 }
mjr 77:0b96f6867312 2287 }
mjr 77:0b96f6867312 2288 }
mjr 77:0b96f6867312 2289
mjr 77:0b96f6867312 2290 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2291 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2292 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2293 {
mjr 77:0b96f6867312 2294 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2295 if (ir_tx != 0)
mjr 77:0b96f6867312 2296 {
mjr 77:0b96f6867312 2297 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2298 int slot = cmd - 1;
mjr 77:0b96f6867312 2299
mjr 77:0b96f6867312 2300 // press or release the virtual button
mjr 77:0b96f6867312 2301 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2302 }
mjr 77:0b96f6867312 2303 }
mjr 77:0b96f6867312 2304
mjr 78:1e00b3fa11af 2305 // Process IR input and output
mjr 77:0b96f6867312 2306 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2307 {
mjr 78:1e00b3fa11af 2308 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2309 if (ir_tx != 0)
mjr 77:0b96f6867312 2310 {
mjr 78:1e00b3fa11af 2311 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2312 // is ready to send, send it.
mjr 78:1e00b3fa11af 2313 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2314 {
mjr 78:1e00b3fa11af 2315 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2316 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2317 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2318 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2319
mjr 78:1e00b3fa11af 2320 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2321 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2322 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2323
mjr 78:1e00b3fa11af 2324 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2325 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2326 }
mjr 77:0b96f6867312 2327 }
mjr 78:1e00b3fa11af 2328
mjr 78:1e00b3fa11af 2329 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2330 if (ir_rx != 0)
mjr 77:0b96f6867312 2331 {
mjr 78:1e00b3fa11af 2332 // Time out any received command
mjr 78:1e00b3fa11af 2333 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2334 {
mjr 80:94dc2946871b 2335 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 2336 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 2337 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 2338 if (t > 200000)
mjr 78:1e00b3fa11af 2339 IRCommandIn = 0;
mjr 80:94dc2946871b 2340 else if (t > 50000)
mjr 78:1e00b3fa11af 2341 IRKeyGap = false;
mjr 78:1e00b3fa11af 2342 }
mjr 78:1e00b3fa11af 2343
mjr 78:1e00b3fa11af 2344 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2345 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2346 {
mjr 78:1e00b3fa11af 2347 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2348 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2349 // limit.
mjr 78:1e00b3fa11af 2350 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2351 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2352 int n;
mjr 78:1e00b3fa11af 2353 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2354
mjr 78:1e00b3fa11af 2355 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2356 if (n != 0)
mjr 78:1e00b3fa11af 2357 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2358
mjr 78:1e00b3fa11af 2359 // check for a command
mjr 78:1e00b3fa11af 2360 IRCommand c;
mjr 78:1e00b3fa11af 2361 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2362 {
mjr 78:1e00b3fa11af 2363 // check the current learning state
mjr 78:1e00b3fa11af 2364 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2365 {
mjr 78:1e00b3fa11af 2366 case 1:
mjr 78:1e00b3fa11af 2367 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2368 // This is it.
mjr 78:1e00b3fa11af 2369 learnedIRCode = c;
mjr 78:1e00b3fa11af 2370
mjr 78:1e00b3fa11af 2371 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2372 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2373 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2374 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2375 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2376 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2377 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2378 break;
mjr 78:1e00b3fa11af 2379
mjr 78:1e00b3fa11af 2380 case 2:
mjr 78:1e00b3fa11af 2381 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2382 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2383 //
mjr 78:1e00b3fa11af 2384 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2385 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2386 //
mjr 78:1e00b3fa11af 2387 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2388 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2389 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2390 // them.
mjr 78:1e00b3fa11af 2391 //
mjr 78:1e00b3fa11af 2392 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2393 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2394 // over.
mjr 78:1e00b3fa11af 2395 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2396 && c.hasDittos
mjr 78:1e00b3fa11af 2397 && c.ditto)
mjr 78:1e00b3fa11af 2398 {
mjr 78:1e00b3fa11af 2399 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2400 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2401 }
mjr 78:1e00b3fa11af 2402 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2403 && c.hasDittos
mjr 78:1e00b3fa11af 2404 && !c.ditto
mjr 78:1e00b3fa11af 2405 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2406 {
mjr 78:1e00b3fa11af 2407 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2408 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2409 // protocol supports them
mjr 78:1e00b3fa11af 2410 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2411 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2412 }
mjr 78:1e00b3fa11af 2413 else
mjr 78:1e00b3fa11af 2414 {
mjr 78:1e00b3fa11af 2415 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2416 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2417 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2418 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2419 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2420 }
mjr 78:1e00b3fa11af 2421 break;
mjr 78:1e00b3fa11af 2422 }
mjr 77:0b96f6867312 2423
mjr 78:1e00b3fa11af 2424 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2425 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2426 // learning mode.
mjr 78:1e00b3fa11af 2427 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2428 {
mjr 78:1e00b3fa11af 2429 // figure the flags:
mjr 78:1e00b3fa11af 2430 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2431 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2432 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2433 flags |= 0x02;
mjr 78:1e00b3fa11af 2434
mjr 78:1e00b3fa11af 2435 // report the code
mjr 78:1e00b3fa11af 2436 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2437
mjr 78:1e00b3fa11af 2438 // exit learning mode
mjr 78:1e00b3fa11af 2439 IRLearningMode = 0;
mjr 77:0b96f6867312 2440 }
mjr 77:0b96f6867312 2441 }
mjr 77:0b96f6867312 2442
mjr 78:1e00b3fa11af 2443 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2444 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2445 {
mjr 78:1e00b3fa11af 2446 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2447 // zero data elements
mjr 78:1e00b3fa11af 2448 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2449
mjr 78:1e00b3fa11af 2450
mjr 78:1e00b3fa11af 2451 // cancel learning mode
mjr 77:0b96f6867312 2452 IRLearningMode = 0;
mjr 77:0b96f6867312 2453 }
mjr 77:0b96f6867312 2454 }
mjr 78:1e00b3fa11af 2455 else
mjr 77:0b96f6867312 2456 {
mjr 78:1e00b3fa11af 2457 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2458 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2459 ir_rx->process();
mjr 78:1e00b3fa11af 2460
mjr 78:1e00b3fa11af 2461 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2462 // have been read.
mjr 78:1e00b3fa11af 2463 IRCommand c;
mjr 78:1e00b3fa11af 2464 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2465 {
mjr 78:1e00b3fa11af 2466 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2467 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2468 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2469 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2470 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2471 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2472 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2473 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2474 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2475 //
mjr 78:1e00b3fa11af 2476 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2477 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2478 // command.
mjr 78:1e00b3fa11af 2479 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2480 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2481 {
mjr 78:1e00b3fa11af 2482 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2483 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2484 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2485 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2486 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2487 if (c.ditto)
mjr 78:1e00b3fa11af 2488 {
mjr 78:1e00b3fa11af 2489 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2490 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2491 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2492 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2493 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2494 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2495 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2496 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2497 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2498 }
mjr 78:1e00b3fa11af 2499 else
mjr 78:1e00b3fa11af 2500 {
mjr 78:1e00b3fa11af 2501 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2502 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2503 // prior command.
mjr 78:1e00b3fa11af 2504 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2505 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2506 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2507
mjr 78:1e00b3fa11af 2508 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2509 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2510 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2511 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2512 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2513 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2514 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2515 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2516 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2517 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2518 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2519 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2520 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2521 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2522 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2523 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2524 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2525 autoRepeat =
mjr 78:1e00b3fa11af 2526 repeat
mjr 78:1e00b3fa11af 2527 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2528 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2529 }
mjr 78:1e00b3fa11af 2530 }
mjr 78:1e00b3fa11af 2531
mjr 78:1e00b3fa11af 2532 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2533 if (repeat)
mjr 78:1e00b3fa11af 2534 {
mjr 78:1e00b3fa11af 2535 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2536 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2537 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2538 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2539 // key press event.
mjr 78:1e00b3fa11af 2540 if (!autoRepeat)
mjr 78:1e00b3fa11af 2541 IRKeyGap = true;
mjr 78:1e00b3fa11af 2542
mjr 78:1e00b3fa11af 2543 // restart the key-up timer
mjr 78:1e00b3fa11af 2544 IRTimer.reset();
mjr 78:1e00b3fa11af 2545 }
mjr 78:1e00b3fa11af 2546 else if (c.ditto)
mjr 78:1e00b3fa11af 2547 {
mjr 78:1e00b3fa11af 2548 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2549 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2550 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2551 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2552 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2553 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2554 // a full command for a new key press.
mjr 78:1e00b3fa11af 2555 IRCommandIn = 0;
mjr 77:0b96f6867312 2556 }