An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Mon Feb 03 21:27:55 2020 +0000
Revision:
106:e9e3b46132c1
Parent:
101:755f44622abc
Child:
107:8f3c7aeae7e0
Check diagnostic LEDs against all configured pins (not just output ports)

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 99:8139b0c274f4 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 100:1ff35c07217c 262 #include "rotarySensor.h"
mjr 100:1ff35c07217c 263 #include "tcd1103Sensor.h"
mjr 82:4f6209cb5c33 264
mjr 2:c174f9ee414a 265
mjr 21:5048e16cc9ef 266 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 267 #include "config.h"
mjr 17:ab3cec0c8bf4 268
mjr 53:9b2611964afc 269
mjr 53:9b2611964afc 270 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 273 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 274 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 275 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 276 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 277 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 278 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 279 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 280 // interface.
mjr 53:9b2611964afc 281 //
mjr 53:9b2611964afc 282 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 283 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 284 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 285 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 286 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 287 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 288 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 289 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 292 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 293 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 294 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 295 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 296 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 297 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 298 //
mjr 53:9b2611964afc 299 const char *getOpenSDAID()
mjr 53:9b2611964afc 300 {
mjr 53:9b2611964afc 301 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 302 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 303 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 304
mjr 53:9b2611964afc 305 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 306 }
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 309 //
mjr 53:9b2611964afc 310 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 311 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 312 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 313 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 314 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 315 // want from this.
mjr 53:9b2611964afc 316 //
mjr 53:9b2611964afc 317 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 318 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 319 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 320 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 321 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 322 // macros.
mjr 53:9b2611964afc 323 //
mjr 53:9b2611964afc 324 const char *getBuildID()
mjr 53:9b2611964afc 325 {
mjr 53:9b2611964afc 326 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 327 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 328 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 329
mjr 53:9b2611964afc 330 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 331 }
mjr 53:9b2611964afc 332
mjr 74:822a92bc11d2 333 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 334 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 335 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 336 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 337 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 338 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 339 Timer mainLoopTimer;
mjr 76:7f5912b6340e 340 #endif
mjr 76:7f5912b6340e 341
mjr 53:9b2611964afc 342
mjr 5:a70c0bce770d 343 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 344 //
mjr 38:091e511ce8a0 345 // Forward declarations
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 void setNightMode(bool on);
mjr 38:091e511ce8a0 348 void toggleNightMode();
mjr 38:091e511ce8a0 349
mjr 38:091e511ce8a0 350 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 351 // utilities
mjr 17:ab3cec0c8bf4 352
mjr 77:0b96f6867312 353 // int/float point square of a number
mjr 77:0b96f6867312 354 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 355 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 356
mjr 26:cb71c4af2912 357 // floating point rounding
mjr 26:cb71c4af2912 358 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 359
mjr 17:ab3cec0c8bf4 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 40:cc0d9814522b 363 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 364 // the running state.
mjr 40:cc0d9814522b 365 //
mjr 77:0b96f6867312 366 class ExtTimer: public Timer
mjr 40:cc0d9814522b 367 {
mjr 40:cc0d9814522b 368 public:
mjr 77:0b96f6867312 369 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 370
mjr 40:cc0d9814522b 371 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 372 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 373
mjr 40:cc0d9814522b 374 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 private:
mjr 40:cc0d9814522b 377 bool running;
mjr 40:cc0d9814522b 378 };
mjr 40:cc0d9814522b 379
mjr 53:9b2611964afc 380
mjr 53:9b2611964afc 381 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 382 //
mjr 33:d832bcab089e 383 // USB product version number
mjr 5:a70c0bce770d 384 //
mjr 47:df7a88cd249c 385 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 386
mjr 33:d832bcab089e 387 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 388 //
mjr 6:cc35eb643e8f 389 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 #define JOYMAX 4096
mjr 6:cc35eb643e8f 392
mjr 9:fd65b0a94720 393
mjr 17:ab3cec0c8bf4 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 //
mjr 40:cc0d9814522b 396 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 397 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 398 //
mjr 35:e959ffba78fd 399
mjr 35:e959ffba78fd 400 // unsigned 16-bit integer
mjr 35:e959ffba78fd 401 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 402 {
mjr 35:e959ffba78fd 403 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 404 }
mjr 40:cc0d9814522b 405 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 406 {
mjr 40:cc0d9814522b 407 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 408 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 409 }
mjr 35:e959ffba78fd 410
mjr 35:e959ffba78fd 411 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 412 {
mjr 35:e959ffba78fd 413 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 414 }
mjr 40:cc0d9814522b 415 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 416 {
mjr 40:cc0d9814522b 417 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 418 }
mjr 35:e959ffba78fd 419
mjr 35:e959ffba78fd 420 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 423 }
mjr 40:cc0d9814522b 424 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 425 {
mjr 40:cc0d9814522b 426 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 427 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 428 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 429 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 430 }
mjr 35:e959ffba78fd 431
mjr 35:e959ffba78fd 432 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 433 {
mjr 35:e959ffba78fd 434 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 435 }
mjr 35:e959ffba78fd 436
mjr 53:9b2611964afc 437 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 438 //
mjr 53:9b2611964afc 439 // The internal mbed PinName format is
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 444 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 445 //
mjr 53:9b2611964afc 446 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 447 // pin name fits in 8 bits:
mjr 53:9b2611964afc 448 //
mjr 53:9b2611964afc 449 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 456 {
mjr 53:9b2611964afc 457 if (c == 0xFF)
mjr 53:9b2611964afc 458 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 459 else
mjr 53:9b2611964afc 460 return PinName(
mjr 53:9b2611964afc 461 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 462 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 463 }
mjr 40:cc0d9814522b 464 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 465 {
mjr 53:9b2611964afc 466 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 467 }
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469
mjr 35:e959ffba78fd 470 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 471 //
mjr 38:091e511ce8a0 472 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 473 //
mjr 38:091e511ce8a0 474 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 475 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 476 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 477 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 478 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 479 // SPI capability.
mjr 38:091e511ce8a0 480 //
mjr 38:091e511ce8a0 481 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 482
mjr 73:4e8ce0b18915 483 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 484 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 485 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 486 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 487
mjr 38:091e511ce8a0 488 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 489 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 490 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 491 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 492 {
mjr 73:4e8ce0b18915 493 // remember the new state
mjr 73:4e8ce0b18915 494 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 495
mjr 73:4e8ce0b18915 496 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 497 // applying it to the blue LED
mjr 73:4e8ce0b18915 498 if (diagLEDState == 0)
mjr 77:0b96f6867312 499 {
mjr 77:0b96f6867312 500 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 501 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 502 }
mjr 73:4e8ce0b18915 503
mjr 73:4e8ce0b18915 504 // set the new state
mjr 38:091e511ce8a0 505 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 506 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 507 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 508 }
mjr 38:091e511ce8a0 509
mjr 73:4e8ce0b18915 510 // update the LEDs with the current state
mjr 73:4e8ce0b18915 511 void diagLED(void)
mjr 73:4e8ce0b18915 512 {
mjr 73:4e8ce0b18915 513 diagLED(
mjr 73:4e8ce0b18915 514 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 515 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 516 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 517 }
mjr 73:4e8ce0b18915 518
mjr 106:e9e3b46132c1 519 // check an output port or pin assignment to see if it conflicts with
mjr 38:091e511ce8a0 520 // an on-board LED segment
mjr 38:091e511ce8a0 521 struct LedSeg
mjr 38:091e511ce8a0 522 {
mjr 38:091e511ce8a0 523 bool r, g, b;
mjr 38:091e511ce8a0 524 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 525
mjr 106:e9e3b46132c1 526 // check an output port to see if it conflicts with one of the LED ports
mjr 38:091e511ce8a0 527 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 528 {
mjr 38:091e511ce8a0 529 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 530 // our on-board LED segments
mjr 38:091e511ce8a0 531 int t = pc.typ;
mjr 38:091e511ce8a0 532 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 106:e9e3b46132c1 533 check(pc.pin);
mjr 106:e9e3b46132c1 534 }
mjr 106:e9e3b46132c1 535
mjr 106:e9e3b46132c1 536 // check a pin to see if it conflicts with one of the diagnostic LED ports
mjr 106:e9e3b46132c1 537 void check(uint8_t pinId)
mjr 106:e9e3b46132c1 538 {
mjr 106:e9e3b46132c1 539 PinName pin = wirePinName(pinId);
mjr 106:e9e3b46132c1 540 if (pin == LED1)
mjr 106:e9e3b46132c1 541 r = true;
mjr 106:e9e3b46132c1 542 else if (pin == LED2)
mjr 106:e9e3b46132c1 543 g = true;
mjr 106:e9e3b46132c1 544 else if (pin == LED3)
mjr 106:e9e3b46132c1 545 b = true;
mjr 38:091e511ce8a0 546 }
mjr 38:091e511ce8a0 547 };
mjr 38:091e511ce8a0 548
mjr 38:091e511ce8a0 549 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 550 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 551 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 552 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 553 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 554 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 555 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 556 {
mjr 38:091e511ce8a0 557 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 558 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 559 LedSeg l;
mjr 38:091e511ce8a0 560 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 561 l.check(cfg.outPort[i]);
mjr 106:e9e3b46132c1 562
mjr 106:e9e3b46132c1 563 // check the button inputs
mjr 106:e9e3b46132c1 564 for (int i = 0 ; i < countof(cfg.button) ; ++i)
mjr 106:e9e3b46132c1 565 l.check(cfg.button[i].pin);
mjr 106:e9e3b46132c1 566
mjr 106:e9e3b46132c1 567 // check plunger inputs
mjr 106:e9e3b46132c1 568 if (cfg.plunger.enabled && cfg.plunger.sensorType != PlungerType_None)
mjr 106:e9e3b46132c1 569 {
mjr 106:e9e3b46132c1 570 for (int i = 0 ; i < countof(cfg.plunger.sensorPin) ; ++i)
mjr 106:e9e3b46132c1 571 l.check(cfg.plunger.sensorPin[i]);
mjr 106:e9e3b46132c1 572 }
mjr 106:e9e3b46132c1 573
mjr 106:e9e3b46132c1 574 // check the TV ON pin assignments
mjr 106:e9e3b46132c1 575 l.check(cfg.TVON.statusPin);
mjr 106:e9e3b46132c1 576 l.check(cfg.TVON.latchPin);
mjr 106:e9e3b46132c1 577 l.check(cfg.TVON.relayPin);
mjr 106:e9e3b46132c1 578
mjr 106:e9e3b46132c1 579 // check the TLC5940 pins
mjr 106:e9e3b46132c1 580 if (cfg.tlc5940.nchips != 0)
mjr 106:e9e3b46132c1 581 {
mjr 106:e9e3b46132c1 582 l.check(cfg.tlc5940.sin);
mjr 106:e9e3b46132c1 583 l.check(cfg.tlc5940.sclk);
mjr 106:e9e3b46132c1 584 l.check(cfg.tlc5940.xlat);
mjr 106:e9e3b46132c1 585 l.check(cfg.tlc5940.blank);
mjr 106:e9e3b46132c1 586 l.check(cfg.tlc5940.gsclk);
mjr 106:e9e3b46132c1 587 }
mjr 106:e9e3b46132c1 588
mjr 106:e9e3b46132c1 589 // check 74HC595 pin assignments
mjr 106:e9e3b46132c1 590 if (cfg.hc595.nchips != 0)
mjr 106:e9e3b46132c1 591 {
mjr 106:e9e3b46132c1 592 l.check(cfg.hc595.sin);
mjr 106:e9e3b46132c1 593 l.check(cfg.hc595.sclk);
mjr 106:e9e3b46132c1 594 l.check(cfg.hc595.latch);
mjr 106:e9e3b46132c1 595 l.check(cfg.hc595.ena);
mjr 106:e9e3b46132c1 596 }
mjr 106:e9e3b46132c1 597
mjr 106:e9e3b46132c1 598 // check TLC59116 pin assignments
mjr 106:e9e3b46132c1 599 if (cfg.tlc59116.chipMask != 0)
mjr 106:e9e3b46132c1 600 {
mjr 106:e9e3b46132c1 601 l.check(cfg.tlc59116.sda);
mjr 106:e9e3b46132c1 602 l.check(cfg.tlc59116.scl);
mjr 106:e9e3b46132c1 603 l.check(cfg.tlc59116.reset);
mjr 106:e9e3b46132c1 604 }
mjr 106:e9e3b46132c1 605
mjr 106:e9e3b46132c1 606 // check the IR remove control hardware
mjr 106:e9e3b46132c1 607 l.check(cfg.IR.sensor);
mjr 106:e9e3b46132c1 608 l.check(cfg.IR.emitter);
mjr 106:e9e3b46132c1 609
mjr 106:e9e3b46132c1 610 // We now know which segments are taken for other uses and which
mjr 38:091e511ce8a0 611 // are free. Create diagnostic ports for the ones not claimed for
mjr 106:e9e3b46132c1 612 // other purposes.
mjr 38:091e511ce8a0 613 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 614 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 615 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 616 }
mjr 38:091e511ce8a0 617
mjr 38:091e511ce8a0 618
mjr 38:091e511ce8a0 619 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 620 //
mjr 76:7f5912b6340e 621 // LedWiz emulation
mjr 76:7f5912b6340e 622 //
mjr 76:7f5912b6340e 623
mjr 76:7f5912b6340e 624 // LedWiz output states.
mjr 76:7f5912b6340e 625 //
mjr 76:7f5912b6340e 626 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 627 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 628 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 629 // The two axes are independent.
mjr 76:7f5912b6340e 630 //
mjr 76:7f5912b6340e 631 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 632 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 633 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 634 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 635 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 636 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 637 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 638 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 639
mjr 76:7f5912b6340e 640 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 641 static uint8_t *wizOn;
mjr 76:7f5912b6340e 642
mjr 76:7f5912b6340e 643 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 644 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 645 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 646 //
mjr 76:7f5912b6340e 647 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 648 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 649 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 650 // 130 = flash on / off
mjr 76:7f5912b6340e 651 // 131 = on / ramp down
mjr 76:7f5912b6340e 652 // 132 = ramp up / on
mjr 5:a70c0bce770d 653 //
mjr 76:7f5912b6340e 654 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 655 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 656 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 657 static uint8_t *wizVal;
mjr 76:7f5912b6340e 658
mjr 76:7f5912b6340e 659 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 660 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 661 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 662 // by the extended protocol:
mjr 76:7f5912b6340e 663 //
mjr 76:7f5912b6340e 664 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 665 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 666 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 667 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 668 // if the brightness is non-zero.
mjr 76:7f5912b6340e 669 //
mjr 76:7f5912b6340e 670 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 671 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 672 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 673 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 674 // 0..255 range.
mjr 26:cb71c4af2912 675 //
mjr 76:7f5912b6340e 676 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 677 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 678 // level.
mjr 26:cb71c4af2912 679 //
mjr 76:7f5912b6340e 680 static uint8_t *outLevel;
mjr 76:7f5912b6340e 681
mjr 76:7f5912b6340e 682
mjr 76:7f5912b6340e 683 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 684 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 685 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 686 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 687 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 688 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 689 //
mjr 76:7f5912b6340e 690 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 691 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 692 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 693 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 694 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 695 // at the maximum size.
mjr 76:7f5912b6340e 696 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 697 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 698
mjr 26:cb71c4af2912 699 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 700 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 701 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 702 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 703 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 704
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 707 //
mjr 76:7f5912b6340e 708 // Output Ports
mjr 76:7f5912b6340e 709 //
mjr 76:7f5912b6340e 710 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 711 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 712 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 713 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 714 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 715 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 716 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 717 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 718 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 719 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 720 // you have to ration pins among features.
mjr 76:7f5912b6340e 721 //
mjr 87:8d35c74403af 722 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 723 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 724 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 725 //
mjr 87:8d35c74403af 726 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 727 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 728 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 729 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 730 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 731 //
mjr 87:8d35c74403af 732 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 733 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 734 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 735 //
mjr 87:8d35c74403af 736 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 737 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 738 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 739 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 740 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 741 // for the chime board outputs.
mjr 76:7f5912b6340e 742 //
mjr 76:7f5912b6340e 743 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 744 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 745 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 746 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 747 //
mjr 76:7f5912b6340e 748 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 749 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 750 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 751 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 752 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 753 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 754 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 755 // of physical devices they're connected to.
mjr 76:7f5912b6340e 756
mjr 76:7f5912b6340e 757
mjr 26:cb71c4af2912 758 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 759 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 760 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 761 class LwOut
mjr 6:cc35eb643e8f 762 {
mjr 6:cc35eb643e8f 763 public:
mjr 40:cc0d9814522b 764 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 765 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 766 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 767 };
mjr 26:cb71c4af2912 768
mjr 35:e959ffba78fd 769 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 770 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 771 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 772 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 773 // numbering.
mjr 35:e959ffba78fd 774 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 775 {
mjr 33:d832bcab089e 776 public:
mjr 35:e959ffba78fd 777 LwVirtualOut() { }
mjr 40:cc0d9814522b 778 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 779 };
mjr 26:cb71c4af2912 780
mjr 34:6b981a2afab7 781 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 782 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 783 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 784 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 785 {
mjr 34:6b981a2afab7 786 public:
mjr 34:6b981a2afab7 787 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 788 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 789
mjr 34:6b981a2afab7 790 private:
mjr 53:9b2611964afc 791 // underlying physical output
mjr 34:6b981a2afab7 792 LwOut *out;
mjr 34:6b981a2afab7 793 };
mjr 34:6b981a2afab7 794
mjr 53:9b2611964afc 795 // Global ZB Launch Ball state
mjr 53:9b2611964afc 796 bool zbLaunchOn = false;
mjr 53:9b2611964afc 797
mjr 53:9b2611964afc 798 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 799 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 800 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 801 {
mjr 53:9b2611964afc 802 public:
mjr 53:9b2611964afc 803 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 804 virtual void set(uint8_t val)
mjr 53:9b2611964afc 805 {
mjr 53:9b2611964afc 806 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 807 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 808
mjr 53:9b2611964afc 809 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 810 out->set(val);
mjr 53:9b2611964afc 811 }
mjr 53:9b2611964afc 812
mjr 53:9b2611964afc 813 private:
mjr 53:9b2611964afc 814 // underlying physical or virtual output
mjr 53:9b2611964afc 815 LwOut *out;
mjr 53:9b2611964afc 816 };
mjr 53:9b2611964afc 817
mjr 53:9b2611964afc 818
mjr 40:cc0d9814522b 819 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 820 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 821 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 822 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 823 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 824 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 825 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 826 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 827 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 828 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 829 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 830 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 831 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 832 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 833 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 834 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 835 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 836 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 837 };
mjr 40:cc0d9814522b 838
mjr 40:cc0d9814522b 839 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 840 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 841 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 842 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 843 {
mjr 40:cc0d9814522b 844 public:
mjr 40:cc0d9814522b 845 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 846 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 847
mjr 40:cc0d9814522b 848 private:
mjr 40:cc0d9814522b 849 LwOut *out;
mjr 40:cc0d9814522b 850 };
mjr 40:cc0d9814522b 851
mjr 77:0b96f6867312 852 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 853 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 854 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 855 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 856
mjr 40:cc0d9814522b 857 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 858 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 859 // mode is engaged.
mjr 40:cc0d9814522b 860 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 861 {
mjr 40:cc0d9814522b 862 public:
mjr 40:cc0d9814522b 863 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 864 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 865
mjr 53:9b2611964afc 866 private:
mjr 53:9b2611964afc 867 LwOut *out;
mjr 53:9b2611964afc 868 };
mjr 53:9b2611964afc 869
mjr 53:9b2611964afc 870 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 871 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 872 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 873 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 874 {
mjr 53:9b2611964afc 875 public:
mjr 53:9b2611964afc 876 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 877 virtual void set(uint8_t)
mjr 53:9b2611964afc 878 {
mjr 53:9b2611964afc 879 // ignore the host value and simply show the current
mjr 53:9b2611964afc 880 // night mode setting
mjr 53:9b2611964afc 881 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 882 }
mjr 40:cc0d9814522b 883
mjr 40:cc0d9814522b 884 private:
mjr 40:cc0d9814522b 885 LwOut *out;
mjr 40:cc0d9814522b 886 };
mjr 40:cc0d9814522b 887
mjr 26:cb71c4af2912 888
mjr 89:c43cd923401c 889 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 890 // top of a physical pin output.
mjr 89:c43cd923401c 891 //
mjr 89:c43cd923401c 892 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 893 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 894 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 895 // level is ON.
mjr 89:c43cd923401c 896 //
mjr 89:c43cd923401c 897 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 898 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 899 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 900 //
mjr 89:c43cd923401c 901 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 902 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 903 // power and start a timer.
mjr 89:c43cd923401c 904 //
mjr 89:c43cd923401c 905 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 906 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 907 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 908 //
mjr 89:c43cd923401c 909 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 910 {
mjr 89:c43cd923401c 911 public:
mjr 89:c43cd923401c 912 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 913 // the configuration.
mjr 89:c43cd923401c 914 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 915 : out(o), params(params)
mjr 89:c43cd923401c 916 {
mjr 89:c43cd923401c 917 // initially OFF
mjr 89:c43cd923401c 918 state = 0;
mjr 89:c43cd923401c 919 }
mjr 89:c43cd923401c 920
mjr 89:c43cd923401c 921 virtual void set(uint8_t level)
mjr 89:c43cd923401c 922 {
mjr 98:4df3c0f7e707 923 // remember the new nominal level set by the client
mjr 89:c43cd923401c 924 val = level;
mjr 89:c43cd923401c 925
mjr 89:c43cd923401c 926 // update the physical output according to our current timing state
mjr 89:c43cd923401c 927 switch (state)
mjr 89:c43cd923401c 928 {
mjr 89:c43cd923401c 929 case 0:
mjr 89:c43cd923401c 930 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 931 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 932 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 933 // off, so there's no change.
mjr 89:c43cd923401c 934 if (level != 0)
mjr 89:c43cd923401c 935 {
mjr 89:c43cd923401c 936 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 937 state = 1;
mjr 89:c43cd923401c 938
mjr 89:c43cd923401c 939 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 940 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 941 // requested
mjr 89:c43cd923401c 942 out->set(level);
mjr 89:c43cd923401c 943
mjr 89:c43cd923401c 944 // add myself to the pending timer list
mjr 89:c43cd923401c 945 pending[nPending++] = this;
mjr 89:c43cd923401c 946
mjr 89:c43cd923401c 947 // note the starting time
mjr 89:c43cd923401c 948 t0 = timer.read_us();
mjr 89:c43cd923401c 949 }
mjr 89:c43cd923401c 950 break;
mjr 89:c43cd923401c 951
mjr 89:c43cd923401c 952 case 1:
mjr 89:c43cd923401c 953 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 954 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 955 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 956 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 957 out->set(level);
mjr 89:c43cd923401c 958 if (level == 0)
mjr 89:c43cd923401c 959 {
mjr 89:c43cd923401c 960 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 961 // so we need to remove it from the list.
mjr 89:c43cd923401c 962 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 963 {
mjr 89:c43cd923401c 964 // is this us?
mjr 89:c43cd923401c 965 if (pending[i] == this)
mjr 89:c43cd923401c 966 {
mjr 89:c43cd923401c 967 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 968 // last list entry
mjr 89:c43cd923401c 969 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 970
mjr 89:c43cd923401c 971 // no need to look any further
mjr 89:c43cd923401c 972 break;
mjr 89:c43cd923401c 973 }
mjr 89:c43cd923401c 974 }
mjr 89:c43cd923401c 975
mjr 89:c43cd923401c 976 // switch to state 0 (off)
mjr 89:c43cd923401c 977 state = 0;
mjr 89:c43cd923401c 978 }
mjr 89:c43cd923401c 979 break;
mjr 89:c43cd923401c 980
mjr 89:c43cd923401c 981 case 2:
mjr 89:c43cd923401c 982 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 983 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 984 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 985 // as the upper bound.
mjr 89:c43cd923401c 986 if (level == 0)
mjr 89:c43cd923401c 987 {
mjr 89:c43cd923401c 988 // switching off - turn off the physical output
mjr 89:c43cd923401c 989 out->set(0);
mjr 89:c43cd923401c 990
mjr 89:c43cd923401c 991 // go to state 0 (off)
mjr 89:c43cd923401c 992 state = 0;
mjr 89:c43cd923401c 993 }
mjr 89:c43cd923401c 994 else
mjr 89:c43cd923401c 995 {
mjr 89:c43cd923401c 996 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 997 // lower of the requested power and the hold power
mjr 89:c43cd923401c 998 uint8_t hold = holdPower();
mjr 89:c43cd923401c 999 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 1000 }
mjr 89:c43cd923401c 1001 break;
mjr 89:c43cd923401c 1002 }
mjr 89:c43cd923401c 1003 }
mjr 89:c43cd923401c 1004
mjr 89:c43cd923401c 1005 // Class initialization
mjr 89:c43cd923401c 1006 static void classInit(Config &cfg)
mjr 89:c43cd923401c 1007 {
mjr 89:c43cd923401c 1008 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 1009 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 1010 // all of these outputs.
mjr 89:c43cd923401c 1011 int n = 0;
mjr 89:c43cd923401c 1012 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 1013 {
mjr 89:c43cd923401c 1014 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 1015 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 1016 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 1017 ++n;
mjr 89:c43cd923401c 1018 }
mjr 89:c43cd923401c 1019
mjr 89:c43cd923401c 1020 // allocate space for the pending timer list
mjr 89:c43cd923401c 1021 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 1022
mjr 89:c43cd923401c 1023 // there's nothing in the pending list yet
mjr 89:c43cd923401c 1024 nPending = 0;
mjr 89:c43cd923401c 1025
mjr 89:c43cd923401c 1026 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 1027 // use it to figure elapsed times.
mjr 89:c43cd923401c 1028 timer.start();
mjr 89:c43cd923401c 1029 }
mjr 89:c43cd923401c 1030
mjr 89:c43cd923401c 1031 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 1032 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 1033 static void poll()
mjr 89:c43cd923401c 1034 {
mjr 89:c43cd923401c 1035 // note the current time
mjr 89:c43cd923401c 1036 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 1037
mjr 89:c43cd923401c 1038 // go through the timer list
mjr 89:c43cd923401c 1039 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 1040 {
mjr 89:c43cd923401c 1041 // get the port
mjr 89:c43cd923401c 1042 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 1043
mjr 89:c43cd923401c 1044 // assume we'll keep it
mjr 89:c43cd923401c 1045 bool remove = false;
mjr 89:c43cd923401c 1046
mjr 89:c43cd923401c 1047 // check if the port is still on
mjr 89:c43cd923401c 1048 if (port->state != 0)
mjr 89:c43cd923401c 1049 {
mjr 89:c43cd923401c 1050 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1051 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1052 {
mjr 89:c43cd923401c 1053 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1054 port->state = 2;
mjr 89:c43cd923401c 1055
mjr 89:c43cd923401c 1056 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1057 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1058 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1059 uint8_t val = port->val;
mjr 89:c43cd923401c 1060 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1061
mjr 89:c43cd923401c 1062 // we're done with the timer
mjr 89:c43cd923401c 1063 remove = true;
mjr 89:c43cd923401c 1064 }
mjr 89:c43cd923401c 1065 }
mjr 89:c43cd923401c 1066 else
mjr 89:c43cd923401c 1067 {
mjr 89:c43cd923401c 1068 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1069 // it from the timer list
mjr 89:c43cd923401c 1070 remove = true;
mjr 89:c43cd923401c 1071 }
mjr 89:c43cd923401c 1072
mjr 89:c43cd923401c 1073 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1074 if (remove)
mjr 89:c43cd923401c 1075 {
mjr 89:c43cd923401c 1076 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1077 // the last entry in the list.
mjr 89:c43cd923401c 1078 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1079
mjr 89:c43cd923401c 1080 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1081 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1082 }
mjr 89:c43cd923401c 1083 else
mjr 89:c43cd923401c 1084 {
mjr 89:c43cd923401c 1085 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1086 ++i;
mjr 89:c43cd923401c 1087 }
mjr 89:c43cd923401c 1088 }
mjr 89:c43cd923401c 1089 }
mjr 89:c43cd923401c 1090
mjr 89:c43cd923401c 1091 protected:
mjr 89:c43cd923401c 1092 // underlying physical output
mjr 89:c43cd923401c 1093 LwOut *out;
mjr 89:c43cd923401c 1094
mjr 89:c43cd923401c 1095 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1096 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1097 uint32_t t0;
mjr 89:c43cd923401c 1098
mjr 89:c43cd923401c 1099 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1100 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1101 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1102 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1103 // if it's lower.
mjr 89:c43cd923401c 1104 uint8_t val;
mjr 89:c43cd923401c 1105
mjr 89:c43cd923401c 1106 // Current port state:
mjr 89:c43cd923401c 1107 //
mjr 89:c43cd923401c 1108 // 0 = off
mjr 89:c43cd923401c 1109 // 1 = on at initial full power
mjr 89:c43cd923401c 1110 // 2 = on at hold power
mjr 89:c43cd923401c 1111 uint8_t state;
mjr 89:c43cd923401c 1112
mjr 89:c43cd923401c 1113 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1114 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1115 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1116 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1117 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1118 uint8_t params;
mjr 89:c43cd923401c 1119
mjr 99:8139b0c274f4 1120 // Figure the initial full-power time in microseconds: 50ms * (1+N),
mjr 99:8139b0c274f4 1121 // where N is the high 4 bits of the parameter byte.
mjr 99:8139b0c274f4 1122 inline uint32_t fullPowerTime_us() const { return 50000*(1 + ((params >> 4) & 0x0F)); }
mjr 89:c43cd923401c 1123
mjr 89:c43cd923401c 1124 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1125 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1126
mjr 89:c43cd923401c 1127 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1128 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1129 // (which runs continuously).
mjr 89:c43cd923401c 1130 static Timer timer;
mjr 89:c43cd923401c 1131
mjr 89:c43cd923401c 1132 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 98:4df3c0f7e707 1133 // transitions from OFF to ON, we add it to this list. We scan the
mjr 98:4df3c0f7e707 1134 // list in our polling routine to find ports that have reached the
mjr 98:4df3c0f7e707 1135 // expiration of their initial full-power intervals.
mjr 89:c43cd923401c 1136 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1137 static uint8_t nPending;
mjr 89:c43cd923401c 1138 };
mjr 89:c43cd923401c 1139
mjr 89:c43cd923401c 1140 // Flipper Logic statics
mjr 89:c43cd923401c 1141 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1142 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1143 uint8_t LwFlipperLogicOut::nPending;
mjr 99:8139b0c274f4 1144
mjr 99:8139b0c274f4 1145 // Chime Logic. This is a filter output that we layer on a physical
mjr 99:8139b0c274f4 1146 // output to set a minimum and maximum ON time for the output.
mjr 99:8139b0c274f4 1147 class LwChimeLogicOut: public LwOut
mjr 98:4df3c0f7e707 1148 {
mjr 98:4df3c0f7e707 1149 public:
mjr 99:8139b0c274f4 1150 // Set up the output. 'params' encodes the minimum and maximum time.
mjr 99:8139b0c274f4 1151 LwChimeLogicOut(LwOut *o, uint8_t params)
mjr 99:8139b0c274f4 1152 : out(o), params(params)
mjr 98:4df3c0f7e707 1153 {
mjr 98:4df3c0f7e707 1154 // initially OFF
mjr 98:4df3c0f7e707 1155 state = 0;
mjr 98:4df3c0f7e707 1156 }
mjr 98:4df3c0f7e707 1157
mjr 98:4df3c0f7e707 1158 virtual void set(uint8_t level)
mjr 98:4df3c0f7e707 1159 {
mjr 98:4df3c0f7e707 1160 // update the physical output according to our current timing state
mjr 98:4df3c0f7e707 1161 switch (state)
mjr 98:4df3c0f7e707 1162 {
mjr 98:4df3c0f7e707 1163 case 0:
mjr 98:4df3c0f7e707 1164 // We're currently off. If the new level is non-zero, switch
mjr 98:4df3c0f7e707 1165 // to state 1 (initial minimum interval) and set the requested
mjr 98:4df3c0f7e707 1166 // level. If the new level is zero, we're switching from off to
mjr 98:4df3c0f7e707 1167 // off, so there's no change.
mjr 98:4df3c0f7e707 1168 if (level != 0)
mjr 98:4df3c0f7e707 1169 {
mjr 98:4df3c0f7e707 1170 // switch to state 1 (initial minimum interval, port is
mjr 98:4df3c0f7e707 1171 // logically on)
mjr 98:4df3c0f7e707 1172 state = 1;
mjr 98:4df3c0f7e707 1173
mjr 98:4df3c0f7e707 1174 // set the requested output level
mjr 98:4df3c0f7e707 1175 out->set(level);
mjr 98:4df3c0f7e707 1176
mjr 98:4df3c0f7e707 1177 // add myself to the pending timer list
mjr 98:4df3c0f7e707 1178 pending[nPending++] = this;
mjr 98:4df3c0f7e707 1179
mjr 98:4df3c0f7e707 1180 // note the starting time
mjr 98:4df3c0f7e707 1181 t0 = timer.read_us();
mjr 98:4df3c0f7e707 1182 }
mjr 98:4df3c0f7e707 1183 break;
mjr 98:4df3c0f7e707 1184
mjr 98:4df3c0f7e707 1185 case 1: // min ON interval, port on
mjr 98:4df3c0f7e707 1186 case 2: // min ON interval, port off
mjr 98:4df3c0f7e707 1187 // We're in the initial minimum ON interval. If the new power
mjr 98:4df3c0f7e707 1188 // level is non-zero, pass it through to the physical port, since
mjr 98:4df3c0f7e707 1189 // the client is allowed to change the power level during the
mjr 98:4df3c0f7e707 1190 // initial ON interval - they just can't turn it off entirely.
mjr 98:4df3c0f7e707 1191 // Set the state to 1 to indicate that the logical port is on.
mjr 98:4df3c0f7e707 1192 //
mjr 98:4df3c0f7e707 1193 // If the new level is zero, leave the underlying port at its
mjr 98:4df3c0f7e707 1194 // current power level, since we're not allowed to turn it off
mjr 98:4df3c0f7e707 1195 // during this period. Set the state to 2 to indicate that the
mjr 98:4df3c0f7e707 1196 // logical port is off even though the physical port has to stay
mjr 98:4df3c0f7e707 1197 // on for the remainder of the interval.
mjr 98:4df3c0f7e707 1198 if (level != 0)
mjr 98:4df3c0f7e707 1199 {
mjr 98:4df3c0f7e707 1200 // client is leaving the port on - pass through the new
mjr 98:4df3c0f7e707 1201 // power level and set state 1 (logically on)
mjr 98:4df3c0f7e707 1202 out->set(level);
mjr 98:4df3c0f7e707 1203 state = 1;
mjr 98:4df3c0f7e707 1204 }
mjr 98:4df3c0f7e707 1205 else
mjr 98:4df3c0f7e707 1206 {
mjr 98:4df3c0f7e707 1207 // Client is turning off the port - leave the underlying port
mjr 98:4df3c0f7e707 1208 // on at its current level and set state 2 (logically off).
mjr 98:4df3c0f7e707 1209 // When the minimum ON time expires, the polling routine will
mjr 98:4df3c0f7e707 1210 // see that we're logically off and will pass that through to
mjr 98:4df3c0f7e707 1211 // the underlying physical port. Until then, though, we have
mjr 98:4df3c0f7e707 1212 // to leave the physical port on to satisfy the minimum ON
mjr 98:4df3c0f7e707 1213 // time requirement.
mjr 98:4df3c0f7e707 1214 state = 2;
mjr 98:4df3c0f7e707 1215 }
mjr 98:4df3c0f7e707 1216 break;
mjr 98:4df3c0f7e707 1217
mjr 98:4df3c0f7e707 1218 case 3:
mjr 99:8139b0c274f4 1219 // We're after the minimum ON interval and before the maximum
mjr 99:8139b0c274f4 1220 // ON time limit. We can set any new level, including fully off.
mjr 99:8139b0c274f4 1221 // Pass the new power level through to the port.
mjr 98:4df3c0f7e707 1222 out->set(level);
mjr 98:4df3c0f7e707 1223
mjr 98:4df3c0f7e707 1224 // if the port is now off, return to state 0 (OFF)
mjr 98:4df3c0f7e707 1225 if (level == 0)
mjr 99:8139b0c274f4 1226 {
mjr 99:8139b0c274f4 1227 // return to the OFF state
mjr 99:8139b0c274f4 1228 state = 0;
mjr 99:8139b0c274f4 1229
mjr 99:8139b0c274f4 1230 // If we have a timer pending, remove it. A timer will be
mjr 99:8139b0c274f4 1231 // pending if we have a non-infinite maximum on time for the
mjr 99:8139b0c274f4 1232 // port.
mjr 99:8139b0c274f4 1233 for (int i = 0 ; i < nPending ; ++i)
mjr 99:8139b0c274f4 1234 {
mjr 99:8139b0c274f4 1235 // is this us?
mjr 99:8139b0c274f4 1236 if (pending[i] == this)
mjr 99:8139b0c274f4 1237 {
mjr 99:8139b0c274f4 1238 // remove myself by replacing the slot with the
mjr 99:8139b0c274f4 1239 // last list entry
mjr 99:8139b0c274f4 1240 pending[i] = pending[--nPending];
mjr 99:8139b0c274f4 1241
mjr 99:8139b0c274f4 1242 // no need to look any further
mjr 99:8139b0c274f4 1243 break;
mjr 99:8139b0c274f4 1244 }
mjr 99:8139b0c274f4 1245 }
mjr 99:8139b0c274f4 1246 }
mjr 99:8139b0c274f4 1247 break;
mjr 99:8139b0c274f4 1248
mjr 99:8139b0c274f4 1249 case 4:
mjr 99:8139b0c274f4 1250 // We're after the maximum ON time. The physical port stays off
mjr 99:8139b0c274f4 1251 // during this interval, so we don't pass any changes through to
mjr 99:8139b0c274f4 1252 // the physical port. When the client sets the level to 0, we
mjr 99:8139b0c274f4 1253 // turn off the logical port and reset to state 0.
mjr 99:8139b0c274f4 1254 if (level == 0)
mjr 98:4df3c0f7e707 1255 state = 0;
mjr 98:4df3c0f7e707 1256 break;
mjr 98:4df3c0f7e707 1257 }
mjr 98:4df3c0f7e707 1258 }
mjr 98:4df3c0f7e707 1259
mjr 98:4df3c0f7e707 1260 // Class initialization
mjr 98:4df3c0f7e707 1261 static void classInit(Config &cfg)
mjr 98:4df3c0f7e707 1262 {
mjr 98:4df3c0f7e707 1263 // Count the Minimum On Time outputs in the configuration. We
mjr 98:4df3c0f7e707 1264 // need to allocate enough pending timer list space to accommodate
mjr 98:4df3c0f7e707 1265 // all of these outputs.
mjr 98:4df3c0f7e707 1266 int n = 0;
mjr 98:4df3c0f7e707 1267 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 98:4df3c0f7e707 1268 {
mjr 98:4df3c0f7e707 1269 // if this port is active and marked as Flipper Logic, count it
mjr 98:4df3c0f7e707 1270 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 99:8139b0c274f4 1271 && (cfg.outPort[i].flags & PortFlagChimeLogic) != 0)
mjr 98:4df3c0f7e707 1272 ++n;
mjr 98:4df3c0f7e707 1273 }
mjr 98:4df3c0f7e707 1274
mjr 98:4df3c0f7e707 1275 // allocate space for the pending timer list
mjr 99:8139b0c274f4 1276 pending = new LwChimeLogicOut*[n];
mjr 98:4df3c0f7e707 1277
mjr 98:4df3c0f7e707 1278 // there's nothing in the pending list yet
mjr 98:4df3c0f7e707 1279 nPending = 0;
mjr 98:4df3c0f7e707 1280
mjr 98:4df3c0f7e707 1281 // Start our shared timer. The epoch is arbitrary, since we only
mjr 98:4df3c0f7e707 1282 // use it to figure elapsed times.
mjr 98:4df3c0f7e707 1283 timer.start();
mjr 98:4df3c0f7e707 1284 }
mjr 98:4df3c0f7e707 1285
mjr 98:4df3c0f7e707 1286 // Check for ports with pending timers. The main routine should
mjr 98:4df3c0f7e707 1287 // call this on each iteration to process our state transitions.
mjr 98:4df3c0f7e707 1288 static void poll()
mjr 98:4df3c0f7e707 1289 {
mjr 98:4df3c0f7e707 1290 // note the current time
mjr 98:4df3c0f7e707 1291 uint32_t t = timer.read_us();
mjr 98:4df3c0f7e707 1292
mjr 98:4df3c0f7e707 1293 // go through the timer list
mjr 98:4df3c0f7e707 1294 for (int i = 0 ; i < nPending ; )
mjr 98:4df3c0f7e707 1295 {
mjr 98:4df3c0f7e707 1296 // get the port
mjr 99:8139b0c274f4 1297 LwChimeLogicOut *port = pending[i];
mjr 98:4df3c0f7e707 1298
mjr 98:4df3c0f7e707 1299 // assume we'll keep it
mjr 98:4df3c0f7e707 1300 bool remove = false;
mjr 98:4df3c0f7e707 1301
mjr 99:8139b0c274f4 1302 // check our state
mjr 99:8139b0c274f4 1303 switch (port->state)
mjr 98:4df3c0f7e707 1304 {
mjr 99:8139b0c274f4 1305 case 1: // initial minimum ON time, port logically on
mjr 99:8139b0c274f4 1306 case 2: // initial minimum ON time, port logically off
mjr 99:8139b0c274f4 1307 // check if the minimum ON time has elapsed
mjr 98:4df3c0f7e707 1308 if (uint32_t(t - port->t0) > port->minOnTime_us())
mjr 98:4df3c0f7e707 1309 {
mjr 98:4df3c0f7e707 1310 // This port has completed its initial ON interval, so
mjr 98:4df3c0f7e707 1311 // it advances to the next state.
mjr 98:4df3c0f7e707 1312 if (port->state == 1)
mjr 98:4df3c0f7e707 1313 {
mjr 99:8139b0c274f4 1314 // The port is logically on, so advance to state 3.
mjr 99:8139b0c274f4 1315 // The underlying port is already at its proper level,
mjr 99:8139b0c274f4 1316 // since we pass through non-zero power settings to the
mjr 99:8139b0c274f4 1317 // underlying port throughout the initial minimum time.
mjr 99:8139b0c274f4 1318 // The timer stays active into state 3.
mjr 98:4df3c0f7e707 1319 port->state = 3;
mjr 99:8139b0c274f4 1320
mjr 99:8139b0c274f4 1321 // Special case: maximum on time 0 means "infinite".
mjr 99:8139b0c274f4 1322 // There's no need for a timer in this case; we'll
mjr 99:8139b0c274f4 1323 // just stay in state 3 until the client turns the
mjr 99:8139b0c274f4 1324 // port off.
mjr 99:8139b0c274f4 1325 if (port->maxOnTime_us() == 0)
mjr 99:8139b0c274f4 1326 remove = true;
mjr 98:4df3c0f7e707 1327 }
mjr 98:4df3c0f7e707 1328 else
mjr 98:4df3c0f7e707 1329 {
mjr 98:4df3c0f7e707 1330 // The port was switched off by the client during the
mjr 98:4df3c0f7e707 1331 // minimum ON period. We haven't passed the OFF state
mjr 98:4df3c0f7e707 1332 // to the underlying port yet, because the port has to
mjr 98:4df3c0f7e707 1333 // stay on throughout the minimum ON period. So turn
mjr 98:4df3c0f7e707 1334 // the port off now.
mjr 98:4df3c0f7e707 1335 port->out->set(0);
mjr 98:4df3c0f7e707 1336
mjr 98:4df3c0f7e707 1337 // return to state 0 (OFF)
mjr 98:4df3c0f7e707 1338 port->state = 0;
mjr 99:8139b0c274f4 1339
mjr 99:8139b0c274f4 1340 // we're done with the timer
mjr 99:8139b0c274f4 1341 remove = true;
mjr 98:4df3c0f7e707 1342 }
mjr 99:8139b0c274f4 1343 }
mjr 99:8139b0c274f4 1344 break;
mjr 99:8139b0c274f4 1345
mjr 99:8139b0c274f4 1346 case 3: // between minimum ON time and maximum ON time
mjr 99:8139b0c274f4 1347 // check if the maximum ON time has expired
mjr 99:8139b0c274f4 1348 if (uint32_t(t - port->t0) > port->maxOnTime_us())
mjr 99:8139b0c274f4 1349 {
mjr 99:8139b0c274f4 1350 // The maximum ON time has expired. Turn off the physical
mjr 99:8139b0c274f4 1351 // port.
mjr 99:8139b0c274f4 1352 port->out->set(0);
mjr 98:4df3c0f7e707 1353
mjr 99:8139b0c274f4 1354 // Switch to state 4 (logically ON past maximum time)
mjr 99:8139b0c274f4 1355 port->state = 4;
mjr 99:8139b0c274f4 1356
mjr 99:8139b0c274f4 1357 // Remove the timer on this port. This port simply stays
mjr 99:8139b0c274f4 1358 // in state 4 until the client turns off the port.
mjr 98:4df3c0f7e707 1359 remove = true;
mjr 98:4df3c0f7e707 1360 }
mjr 99:8139b0c274f4 1361 break;
mjr 98:4df3c0f7e707 1362 }
mjr 98:4df3c0f7e707 1363
mjr 98:4df3c0f7e707 1364 // if desired, remove the port from the timer list
mjr 98:4df3c0f7e707 1365 if (remove)
mjr 98:4df3c0f7e707 1366 {
mjr 98:4df3c0f7e707 1367 // Remove the list entry by overwriting the slot with
mjr 98:4df3c0f7e707 1368 // the last entry in the list.
mjr 98:4df3c0f7e707 1369 pending[i] = pending[--nPending];
mjr 98:4df3c0f7e707 1370
mjr 98:4df3c0f7e707 1371 // Note that we don't increment the loop counter, since
mjr 98:4df3c0f7e707 1372 // we now need to revisit this same slot.
mjr 98:4df3c0f7e707 1373 }
mjr 98:4df3c0f7e707 1374 else
mjr 98:4df3c0f7e707 1375 {
mjr 98:4df3c0f7e707 1376 // we're keeping this item; move on to the next one
mjr 98:4df3c0f7e707 1377 ++i;
mjr 98:4df3c0f7e707 1378 }
mjr 98:4df3c0f7e707 1379 }
mjr 98:4df3c0f7e707 1380 }
mjr 98:4df3c0f7e707 1381
mjr 98:4df3c0f7e707 1382 protected:
mjr 98:4df3c0f7e707 1383 // underlying physical output
mjr 98:4df3c0f7e707 1384 LwOut *out;
mjr 98:4df3c0f7e707 1385
mjr 98:4df3c0f7e707 1386 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 98:4df3c0f7e707 1387 // to the current 'timer' timestamp when entering state 1.
mjr 98:4df3c0f7e707 1388 uint32_t t0;
mjr 98:4df3c0f7e707 1389
mjr 98:4df3c0f7e707 1390 // Current port state:
mjr 98:4df3c0f7e707 1391 //
mjr 98:4df3c0f7e707 1392 // 0 = off
mjr 99:8139b0c274f4 1393 // 1 = in initial minimum ON interval, logical port is on
mjr 99:8139b0c274f4 1394 // 2 = in initial minimum ON interval, logical port is off
mjr 99:8139b0c274f4 1395 // 3 = in interval between minimum and maximum ON times
mjr 99:8139b0c274f4 1396 // 4 = after the maximum ON interval
mjr 99:8139b0c274f4 1397 //
mjr 99:8139b0c274f4 1398 // The "logical" on/off state of the port is the state set by the
mjr 99:8139b0c274f4 1399 // client. The "physical" state is the state of the underlying port.
mjr 99:8139b0c274f4 1400 // The relationships between logical and physical port state, and the
mjr 99:8139b0c274f4 1401 // effects of updates by the client, are as follows:
mjr 99:8139b0c274f4 1402 //
mjr 99:8139b0c274f4 1403 // State | Logical | Physical | Client set on | Client set off
mjr 99:8139b0c274f4 1404 // -----------------------------------------------------------
mjr 99:8139b0c274f4 1405 // 0 | Off | Off | phys on, -> 1 | no effect
mjr 99:8139b0c274f4 1406 // 1 | On | On | no effect | -> 2
mjr 99:8139b0c274f4 1407 // 2 | Off | On | -> 1 | no effect
mjr 99:8139b0c274f4 1408 // 3 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1409 // 4 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1410 //
mjr 99:8139b0c274f4 1411 // The polling routine makes the following transitions when the current
mjr 99:8139b0c274f4 1412 // time limit expires:
mjr 99:8139b0c274f4 1413 //
mjr 99:8139b0c274f4 1414 // 1: at end of minimum ON, -> 3 (or 4 if max == infinity)
mjr 99:8139b0c274f4 1415 // 2: at end of minimum ON, port off, -> 0
mjr 99:8139b0c274f4 1416 // 3: at end of maximum ON, port off, -> 4
mjr 98:4df3c0f7e707 1417 //
mjr 98:4df3c0f7e707 1418 uint8_t state;
mjr 98:4df3c0f7e707 1419
mjr 99:8139b0c274f4 1420 // Configuration parameters byte. This encodes the minimum and maximum
mjr 99:8139b0c274f4 1421 // ON times.
mjr 99:8139b0c274f4 1422 uint8_t params;
mjr 98:4df3c0f7e707 1423
mjr 98:4df3c0f7e707 1424 // Timer. This is a shared timer for all of the minimum ON time ports.
mjr 98:4df3c0f7e707 1425 // When we transition from OFF to ON, we note the current time on this
mjr 98:4df3c0f7e707 1426 // timer to establish the start of our minimum ON period.
mjr 98:4df3c0f7e707 1427 static Timer timer;
mjr 98:4df3c0f7e707 1428
mjr 98:4df3c0f7e707 1429 // translaton table from timing parameter in config to minimum ON time
mjr 98:4df3c0f7e707 1430 static const uint32_t paramToTime_us[];
mjr 98:4df3c0f7e707 1431
mjr 99:8139b0c274f4 1432 // Figure the minimum ON time. The minimum ON time is given by the
mjr 99:8139b0c274f4 1433 // low-order 4 bits of the parameters byte, which serves as an index
mjr 99:8139b0c274f4 1434 // into our time table.
mjr 99:8139b0c274f4 1435 inline uint32_t minOnTime_us() const { return paramToTime_us[params & 0x0F]; }
mjr 99:8139b0c274f4 1436
mjr 99:8139b0c274f4 1437 // Figure the maximum ON time. The maximum time is the high 4 bits
mjr 99:8139b0c274f4 1438 // of the parameters byte. This is an index into our time table, but
mjr 99:8139b0c274f4 1439 // 0 has the special meaning "infinite".
mjr 99:8139b0c274f4 1440 inline uint32_t maxOnTime_us() const { return paramToTime_us[((params >> 4) & 0x0F)]; }
mjr 98:4df3c0f7e707 1441
mjr 98:4df3c0f7e707 1442 // Pending timer list. Whenever one of our ports transitions from OFF
mjr 98:4df3c0f7e707 1443 // to ON, we add it to this list. We scan this list in our polling
mjr 98:4df3c0f7e707 1444 // routine to find ports that have reached the ends of their initial
mjr 98:4df3c0f7e707 1445 // ON intervals.
mjr 99:8139b0c274f4 1446 static LwChimeLogicOut **pending;
mjr 98:4df3c0f7e707 1447 static uint8_t nPending;
mjr 98:4df3c0f7e707 1448 };
mjr 98:4df3c0f7e707 1449
mjr 98:4df3c0f7e707 1450 // Min Time Out statics
mjr 99:8139b0c274f4 1451 Timer LwChimeLogicOut::timer;
mjr 99:8139b0c274f4 1452 LwChimeLogicOut **LwChimeLogicOut::pending;
mjr 99:8139b0c274f4 1453 uint8_t LwChimeLogicOut::nPending;
mjr 99:8139b0c274f4 1454 const uint32_t LwChimeLogicOut::paramToTime_us[] = {
mjr 99:8139b0c274f4 1455 0, // for the max time, this means "infinite"
mjr 98:4df3c0f7e707 1456 1000,
mjr 98:4df3c0f7e707 1457 2000,
mjr 98:4df3c0f7e707 1458 5000,
mjr 98:4df3c0f7e707 1459 10000,
mjr 98:4df3c0f7e707 1460 20000,
mjr 98:4df3c0f7e707 1461 40000,
mjr 98:4df3c0f7e707 1462 80000,
mjr 98:4df3c0f7e707 1463 100000,
mjr 98:4df3c0f7e707 1464 200000,
mjr 98:4df3c0f7e707 1465 300000,
mjr 98:4df3c0f7e707 1466 400000,
mjr 98:4df3c0f7e707 1467 500000,
mjr 98:4df3c0f7e707 1468 600000,
mjr 98:4df3c0f7e707 1469 700000,
mjr 98:4df3c0f7e707 1470 800000
mjr 98:4df3c0f7e707 1471 };
mjr 89:c43cd923401c 1472
mjr 35:e959ffba78fd 1473 //
mjr 35:e959ffba78fd 1474 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1475 // assignments set in config.h.
mjr 33:d832bcab089e 1476 //
mjr 35:e959ffba78fd 1477 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1478 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1479 {
mjr 35:e959ffba78fd 1480 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1481 {
mjr 53:9b2611964afc 1482 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1483 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1484 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1485 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1486 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1487 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1488 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1489 }
mjr 35:e959ffba78fd 1490 }
mjr 26:cb71c4af2912 1491
mjr 40:cc0d9814522b 1492 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1493 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1494 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1495 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1496 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1497 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1498 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1499 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1500 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1501 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1502 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1503 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1504 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1505 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1506 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1507 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1508 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1509 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1510 };
mjr 40:cc0d9814522b 1511
mjr 40:cc0d9814522b 1512 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1513 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1514 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1515 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1516 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1517 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1518 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1519 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1520 // are always 8 bits.
mjr 40:cc0d9814522b 1521 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1522 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1523 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1524 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1525 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1526 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1527 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1528 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1529 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1530 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1531 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1532 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1533 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1534 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1535 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1536 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1537 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1538 };
mjr 40:cc0d9814522b 1539
mjr 26:cb71c4af2912 1540 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1541 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1542 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1543 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1544 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1545 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1546 {
mjr 26:cb71c4af2912 1547 public:
mjr 60:f38da020aa13 1548 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1549 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1550 {
mjr 26:cb71c4af2912 1551 if (val != prv)
mjr 40:cc0d9814522b 1552 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1553 }
mjr 60:f38da020aa13 1554 uint8_t idx;
mjr 40:cc0d9814522b 1555 uint8_t prv;
mjr 26:cb71c4af2912 1556 };
mjr 26:cb71c4af2912 1557
mjr 40:cc0d9814522b 1558 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1559 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1560 {
mjr 40:cc0d9814522b 1561 public:
mjr 60:f38da020aa13 1562 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1563 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1564 {
mjr 40:cc0d9814522b 1565 if (val != prv)
mjr 40:cc0d9814522b 1566 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1567 }
mjr 60:f38da020aa13 1568 uint8_t idx;
mjr 40:cc0d9814522b 1569 uint8_t prv;
mjr 40:cc0d9814522b 1570 };
mjr 40:cc0d9814522b 1571
mjr 87:8d35c74403af 1572 //
mjr 87:8d35c74403af 1573 // TLC59116 interface object
mjr 87:8d35c74403af 1574 //
mjr 87:8d35c74403af 1575 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1576 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1577 {
mjr 87:8d35c74403af 1578 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1579 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1580 {
mjr 87:8d35c74403af 1581 // set up the interface
mjr 87:8d35c74403af 1582 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1583 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1584 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1585 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1586
mjr 87:8d35c74403af 1587 // initialize the chips
mjr 87:8d35c74403af 1588 tlc59116->init();
mjr 87:8d35c74403af 1589 }
mjr 87:8d35c74403af 1590 }
mjr 87:8d35c74403af 1591
mjr 87:8d35c74403af 1592 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1593 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1594 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1595 // (0-15).
mjr 87:8d35c74403af 1596 //
mjr 87:8d35c74403af 1597 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1598 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1599 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1600 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1601 {
mjr 87:8d35c74403af 1602 public:
mjr 87:8d35c74403af 1603 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1604 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1605 {
mjr 87:8d35c74403af 1606 if (val != prv)
mjr 87:8d35c74403af 1607 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1608 }
mjr 87:8d35c74403af 1609
mjr 87:8d35c74403af 1610 protected:
mjr 87:8d35c74403af 1611 uint8_t addr;
mjr 87:8d35c74403af 1612 uint8_t port;
mjr 87:8d35c74403af 1613 uint8_t prv;
mjr 87:8d35c74403af 1614 };
mjr 87:8d35c74403af 1615
mjr 87:8d35c74403af 1616
mjr 87:8d35c74403af 1617 //
mjr 34:6b981a2afab7 1618 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1619 // config.h.
mjr 87:8d35c74403af 1620 //
mjr 35:e959ffba78fd 1621 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1622
mjr 35:e959ffba78fd 1623 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1624 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1625 {
mjr 35:e959ffba78fd 1626 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1627 {
mjr 53:9b2611964afc 1628 hc595 = new HC595(
mjr 53:9b2611964afc 1629 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1630 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1631 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1632 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1633 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1634 hc595->init();
mjr 35:e959ffba78fd 1635 hc595->update();
mjr 35:e959ffba78fd 1636 }
mjr 35:e959ffba78fd 1637 }
mjr 34:6b981a2afab7 1638
mjr 34:6b981a2afab7 1639 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1640 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1641 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1642 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1643 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1644 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1645 {
mjr 33:d832bcab089e 1646 public:
mjr 60:f38da020aa13 1647 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1648 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1649 {
mjr 34:6b981a2afab7 1650 if (val != prv)
mjr 40:cc0d9814522b 1651 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1652 }
mjr 60:f38da020aa13 1653 uint8_t idx;
mjr 40:cc0d9814522b 1654 uint8_t prv;
mjr 33:d832bcab089e 1655 };
mjr 33:d832bcab089e 1656
mjr 26:cb71c4af2912 1657
mjr 40:cc0d9814522b 1658
mjr 64:ef7ca92dff36 1659 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1660 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1661 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1662 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1663 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1664 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1665 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1666 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1667 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1668 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1669 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1670 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1671 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1672 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1673 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1674 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1675 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1676 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1677 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1678 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1679 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1680 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1681 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1682 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1683 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1684 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1685 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1686 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1687 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1688 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1689 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1690 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1691 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1692 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1693 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1694 };
mjr 26:cb71c4af2912 1695
mjr 64:ef7ca92dff36 1696
mjr 92:f264fbaa1be5 1697 // Conversion table for 8-bit DOF level to pulse width, with gamma correction
mjr 92:f264fbaa1be5 1698 // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0.
mjr 92:f264fbaa1be5 1699 // Note that we could use the layered gamma output on top of the regular
mjr 92:f264fbaa1be5 1700 // LwPwmOut class for this instead of a separate table, but we get much better
mjr 92:f264fbaa1be5 1701 // precision with a dedicated table, because we apply gamma correction to the
mjr 92:f264fbaa1be5 1702 // actual duty cycle values (as 'float') rather than the 8-bit DOF values.
mjr 64:ef7ca92dff36 1703 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1704 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1705 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1706 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1707 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1708 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1709 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1710 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1711 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1712 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1713 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1714 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1715 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1716 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1717 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1718 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1719 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1720 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1721 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1722 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1723 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1724 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1725 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1726 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1727 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1728 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1729 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1730 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1731 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1732 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1733 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1734 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1735 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1736 };
mjr 64:ef7ca92dff36 1737
mjr 77:0b96f6867312 1738 // Polled-update PWM output list
mjr 74:822a92bc11d2 1739 //
mjr 77:0b96f6867312 1740 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1741 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1742 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1743 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1744 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1745 //
mjr 92:f264fbaa1be5 1746 // The symptom of the problem, if it's not worked around somehow, is that
mjr 92:f264fbaa1be5 1747 // an output will get "stuck" due to a missed write. This is especially
mjr 92:f264fbaa1be5 1748 // noticeable during a series of updates such as a fade. If the last
mjr 92:f264fbaa1be5 1749 // couple of updates in a fade are lost, the output will get stuck at some
mjr 92:f264fbaa1be5 1750 // value above or below the desired final value. The stuck setting will
mjr 92:f264fbaa1be5 1751 // persist until the output is deliberately changed again later.
mjr 92:f264fbaa1be5 1752 //
mjr 92:f264fbaa1be5 1753 // Our solution: Simply repeat all PWM updates periodically. This way, any
mjr 92:f264fbaa1be5 1754 // lost write will *eventually* take hold on one of the repeats. Repeats of
mjr 92:f264fbaa1be5 1755 // the same value won't change anything and thus won't be noticeable. We do
mjr 92:f264fbaa1be5 1756 // these periodic updates during the main loop, which makes them very low
mjr 92:f264fbaa1be5 1757 // overhead (there's no interrupt overhead; we just do them when convenient
mjr 92:f264fbaa1be5 1758 // in the main loop), and also makes them very frequent. The frequency
mjr 92:f264fbaa1be5 1759 // is crucial because it ensures that updates will never be lost for long
mjr 92:f264fbaa1be5 1760 // enough to become noticeable.
mjr 92:f264fbaa1be5 1761 //
mjr 92:f264fbaa1be5 1762 // The mbed library has its own, different solution to this bug, but the
mjr 92:f264fbaa1be5 1763 // mbed solution isn't really a solution at all because it creates a separate
mjr 100:1ff35c07217c 1764 // problem of its own. The mbed approach is to reset the TPM "count" register
mjr 92:f264fbaa1be5 1765 // on every value register write. The count reset truncates the current
mjr 92:f264fbaa1be5 1766 // PWM cycle, which bypasses the hardware problem. Remember, the hardware
mjr 92:f264fbaa1be5 1767 // problem is that you can only write once per cycle; the mbed "solution" gets
mjr 92:f264fbaa1be5 1768 // around that by making sure the cycle ends immediately after the write.
mjr 92:f264fbaa1be5 1769 // The problem with this approach is that the truncated cycle causes visible
mjr 92:f264fbaa1be5 1770 // flicker if the output is connected to an LED. This is particularly
mjr 92:f264fbaa1be5 1771 // noticeable during fades, when we're updating the value register repeatedly
mjr 92:f264fbaa1be5 1772 // and rapidly: an attempt to fade from fully on to fully off causes rapid
mjr 92:f264fbaa1be5 1773 // fluttering and flashing rather than a smooth brightness fade. That's why
mjr 92:f264fbaa1be5 1774 // I had to come up with something different - the mbed solution just trades
mjr 92:f264fbaa1be5 1775 // one annoying bug for another that's just as bad.
mjr 92:f264fbaa1be5 1776 //
mjr 92:f264fbaa1be5 1777 // The hardware bug, by the way, is a case of good intentions gone bad.
mjr 92:f264fbaa1be5 1778 // The whole point of the staging register is to make things easier for
mjr 92:f264fbaa1be5 1779 // us software writers. In most PWM hardware, software has to coordinate
mjr 92:f264fbaa1be5 1780 // with the PWM duty cycle when updating registers to avoid a glitch that
mjr 92:f264fbaa1be5 1781 // you'd get by scribbling to the duty cycle register mid-cycle. The
mjr 92:f264fbaa1be5 1782 // staging register solves this by letting the software write an update at
mjr 92:f264fbaa1be5 1783 // any time, knowing that the hardware will apply the update at exactly the
mjr 92:f264fbaa1be5 1784 // end of the cycle, ensuring glitch-free updates. It's a great design,
mjr 92:f264fbaa1be5 1785 // except that it doesn't quite work. The problem is that they implemented
mjr 92:f264fbaa1be5 1786 // this clever staging register as a one-element FIFO that refuses any more
mjr 92:f264fbaa1be5 1787 // writes when full. That is, writing a value to the FIFO fills it; once
mjr 92:f264fbaa1be5 1788 // full, it ignores writes until it gets emptied out. How's it emptied out?
mjr 92:f264fbaa1be5 1789 // By the hardware moving the staged value to the real register. Sadly, they
mjr 92:f264fbaa1be5 1790 // didn't provide any way for the software to clear the register, and no way
mjr 92:f264fbaa1be5 1791 // to even tell that it's full. So we don't have glitches on write, but we're
mjr 92:f264fbaa1be5 1792 // back to the original problem that the software has to be aware of the PWM
mjr 92:f264fbaa1be5 1793 // cycle timing, because the only way for the software to know that a write
mjr 92:f264fbaa1be5 1794 // actually worked is to know that it's been at least one PWM cycle since the
mjr 92:f264fbaa1be5 1795 // last write. That largely defeats the whole purpose of the staging register,
mjr 92:f264fbaa1be5 1796 // since the whole point was to free software writers of these timing
mjr 92:f264fbaa1be5 1797 // considerations. It's still an improvement over no staging register at
mjr 92:f264fbaa1be5 1798 // all, since we at least don't have to worry about glitches, but it leaves
mjr 92:f264fbaa1be5 1799 // us with this somewhat similar hassle.
mjr 74:822a92bc11d2 1800 //
mjr 77:0b96f6867312 1801 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1802 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1803 // of polled items.
mjr 74:822a92bc11d2 1804 static int numPolledPwm;
mjr 74:822a92bc11d2 1805 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1806
mjr 74:822a92bc11d2 1807 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1808 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1809 {
mjr 6:cc35eb643e8f 1810 public:
mjr 43:7a6364d82a41 1811 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1812 {
mjr 77:0b96f6867312 1813 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1814 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1815 polledPwm[numPolledPwm++] = this;
mjr 93:177832c29041 1816
mjr 94:0476b3e2b996 1817 // IMPORTANT: Do not set the PWM period (frequency) here explicitly.
mjr 94:0476b3e2b996 1818 // We instead want to accept the current setting for the TPM unit
mjr 94:0476b3e2b996 1819 // we're assigned to. The KL25Z hardware can only set the period at
mjr 94:0476b3e2b996 1820 // the TPM unit level, not per channel, so if we changed the frequency
mjr 94:0476b3e2b996 1821 // here, we'd change it for everything attached to our TPM unit. LW
mjr 94:0476b3e2b996 1822 // outputs don't care about frequency other than that it's fast enough
mjr 94:0476b3e2b996 1823 // that attached LEDs won't flicker. Some other PWM users (IR remote,
mjr 94:0476b3e2b996 1824 // TLC5940) DO care about exact frequencies, because they use the PWM
mjr 94:0476b3e2b996 1825 // as a signal generator rather than merely for brightness control.
mjr 94:0476b3e2b996 1826 // If we changed the frequency here, we could clobber one of those
mjr 94:0476b3e2b996 1827 // carefully chosen frequencies and break the other subsystem. So
mjr 94:0476b3e2b996 1828 // we need to be the "free variable" here and accept whatever setting
mjr 94:0476b3e2b996 1829 // is currently on our assigned unit. To minimize flicker, the main()
mjr 94:0476b3e2b996 1830 // entrypoint sets a default PWM rate of 1kHz on all channels. All
mjr 94:0476b3e2b996 1831 // of the other subsystems that might set specific frequencies will
mjr 94:0476b3e2b996 1832 // set much high frequencies, so that should only be good for us.
mjr 94:0476b3e2b996 1833
mjr 94:0476b3e2b996 1834 // set the initial brightness value
mjr 77:0b96f6867312 1835 set(initVal);
mjr 43:7a6364d82a41 1836 }
mjr 74:822a92bc11d2 1837
mjr 40:cc0d9814522b 1838 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1839 {
mjr 77:0b96f6867312 1840 // save the new value
mjr 74:822a92bc11d2 1841 this->val = val;
mjr 77:0b96f6867312 1842
mjr 77:0b96f6867312 1843 // commit it to the hardware
mjr 77:0b96f6867312 1844 commit();
mjr 13:72dda449c3c0 1845 }
mjr 74:822a92bc11d2 1846
mjr 74:822a92bc11d2 1847 // handle periodic update polling
mjr 74:822a92bc11d2 1848 void poll()
mjr 74:822a92bc11d2 1849 {
mjr 77:0b96f6867312 1850 commit();
mjr 74:822a92bc11d2 1851 }
mjr 74:822a92bc11d2 1852
mjr 74:822a92bc11d2 1853 protected:
mjr 77:0b96f6867312 1854 virtual void commit()
mjr 74:822a92bc11d2 1855 {
mjr 74:822a92bc11d2 1856 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1857 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1858 }
mjr 74:822a92bc11d2 1859
mjr 77:0b96f6867312 1860 NewPwmOut p;
mjr 77:0b96f6867312 1861 uint8_t val;
mjr 6:cc35eb643e8f 1862 };
mjr 26:cb71c4af2912 1863
mjr 74:822a92bc11d2 1864 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1865 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1866 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1867 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1868 {
mjr 64:ef7ca92dff36 1869 public:
mjr 64:ef7ca92dff36 1870 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1871 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1872 {
mjr 64:ef7ca92dff36 1873 }
mjr 74:822a92bc11d2 1874
mjr 74:822a92bc11d2 1875 protected:
mjr 77:0b96f6867312 1876 virtual void commit()
mjr 64:ef7ca92dff36 1877 {
mjr 74:822a92bc11d2 1878 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1879 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1880 }
mjr 64:ef7ca92dff36 1881 };
mjr 64:ef7ca92dff36 1882
mjr 74:822a92bc11d2 1883 // poll the PWM outputs
mjr 74:822a92bc11d2 1884 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1885 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1886 void pollPwmUpdates()
mjr 74:822a92bc11d2 1887 {
mjr 94:0476b3e2b996 1888 // If it's been long enough since the last update, do another update.
mjr 94:0476b3e2b996 1889 // Note that the time limit is fairly arbitrary: it has to be at least
mjr 94:0476b3e2b996 1890 // 1.5X the PWM period, so that we can be sure that at least one PWM
mjr 94:0476b3e2b996 1891 // period has elapsed since the last update, but there's no hard upper
mjr 94:0476b3e2b996 1892 // bound. Instead, it only has to be short enough that fades don't
mjr 94:0476b3e2b996 1893 // become noticeably chunky. The competing interest is that we don't
mjr 94:0476b3e2b996 1894 // want to do this more often than necessary to provide incremental
mjr 94:0476b3e2b996 1895 // benefit, because the polling adds overhead to the main loop and
mjr 94:0476b3e2b996 1896 // takes time away from other tasks we could be performing. The
mjr 94:0476b3e2b996 1897 // shortest time with practical benefit is probably around 50-60Hz,
mjr 94:0476b3e2b996 1898 // since that gives us "video rate" granularity in fades. Anything
mjr 94:0476b3e2b996 1899 // faster wouldn't probably make fades look any smoother to a human
mjr 94:0476b3e2b996 1900 // viewer.
mjr 94:0476b3e2b996 1901 if (polledPwmTimer.read_us() >= 15000)
mjr 74:822a92bc11d2 1902 {
mjr 74:822a92bc11d2 1903 // time the run for statistics collection
mjr 74:822a92bc11d2 1904 IF_DIAG(
mjr 74:822a92bc11d2 1905 Timer t;
mjr 74:822a92bc11d2 1906 t.start();
mjr 74:822a92bc11d2 1907 )
mjr 74:822a92bc11d2 1908
mjr 74:822a92bc11d2 1909 // poll each output
mjr 74:822a92bc11d2 1910 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1911 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1912
mjr 74:822a92bc11d2 1913 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1914 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1915
mjr 74:822a92bc11d2 1916 // collect statistics
mjr 74:822a92bc11d2 1917 IF_DIAG(
mjr 76:7f5912b6340e 1918 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1919 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1920 )
mjr 74:822a92bc11d2 1921 }
mjr 74:822a92bc11d2 1922 }
mjr 64:ef7ca92dff36 1923
mjr 26:cb71c4af2912 1924 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1925 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1926 {
mjr 6:cc35eb643e8f 1927 public:
mjr 43:7a6364d82a41 1928 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1929 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1930 {
mjr 13:72dda449c3c0 1931 if (val != prv)
mjr 40:cc0d9814522b 1932 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1933 }
mjr 6:cc35eb643e8f 1934 DigitalOut p;
mjr 40:cc0d9814522b 1935 uint8_t prv;
mjr 6:cc35eb643e8f 1936 };
mjr 26:cb71c4af2912 1937
mjr 29:582472d0bc57 1938 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1939 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1940 // port n (0-based).
mjr 35:e959ffba78fd 1941 //
mjr 35:e959ffba78fd 1942 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1943 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1944 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1945 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1946 // 74HC595 ports).
mjr 33:d832bcab089e 1947 static int numOutputs;
mjr 33:d832bcab089e 1948 static LwOut **lwPin;
mjr 33:d832bcab089e 1949
mjr 38:091e511ce8a0 1950 // create a single output pin
mjr 53:9b2611964afc 1951 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1952 {
mjr 38:091e511ce8a0 1953 // get this item's values
mjr 38:091e511ce8a0 1954 int typ = pc.typ;
mjr 38:091e511ce8a0 1955 int pin = pc.pin;
mjr 38:091e511ce8a0 1956 int flags = pc.flags;
mjr 40:cc0d9814522b 1957 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1958 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1959 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 1960 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 99:8139b0c274f4 1961 int chimeLogic = flags & PortFlagChimeLogic;
mjr 89:c43cd923401c 1962
mjr 89:c43cd923401c 1963 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 1964 if (flipperLogic)
mjr 89:c43cd923401c 1965 gamma = false;
mjr 38:091e511ce8a0 1966
mjr 38:091e511ce8a0 1967 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1968 LwOut *lwp;
mjr 38:091e511ce8a0 1969 switch (typ)
mjr 38:091e511ce8a0 1970 {
mjr 38:091e511ce8a0 1971 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1972 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1973 if (pin != 0)
mjr 64:ef7ca92dff36 1974 {
mjr 64:ef7ca92dff36 1975 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1976 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1977 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1978 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1979 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1980 {
mjr 64:ef7ca92dff36 1981 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1982 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1983
mjr 64:ef7ca92dff36 1984 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1985 gamma = false;
mjr 64:ef7ca92dff36 1986 }
mjr 64:ef7ca92dff36 1987 else
mjr 64:ef7ca92dff36 1988 {
mjr 64:ef7ca92dff36 1989 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1990 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1991 }
mjr 64:ef7ca92dff36 1992 }
mjr 48:058ace2aed1d 1993 else
mjr 48:058ace2aed1d 1994 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1995 break;
mjr 38:091e511ce8a0 1996
mjr 38:091e511ce8a0 1997 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1998 // Digital GPIO port
mjr 48:058ace2aed1d 1999 if (pin != 0)
mjr 48:058ace2aed1d 2000 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 2001 else
mjr 48:058ace2aed1d 2002 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2003 break;
mjr 38:091e511ce8a0 2004
mjr 38:091e511ce8a0 2005 case PortTypeTLC5940:
mjr 38:091e511ce8a0 2006 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 2007 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 2008 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 2009 {
mjr 40:cc0d9814522b 2010 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 2011 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 2012 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 2013 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 2014 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 2015 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 2016 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 2017 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 2018 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 2019 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 2020 // for this unlikely case.
mjr 40:cc0d9814522b 2021 if (gamma && !activeLow)
mjr 40:cc0d9814522b 2022 {
mjr 40:cc0d9814522b 2023 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 2024 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 2025
mjr 40:cc0d9814522b 2026 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 2027 gamma = false;
mjr 40:cc0d9814522b 2028 }
mjr 40:cc0d9814522b 2029 else
mjr 40:cc0d9814522b 2030 {
mjr 40:cc0d9814522b 2031 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 2032 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 2033 }
mjr 40:cc0d9814522b 2034 }
mjr 38:091e511ce8a0 2035 else
mjr 40:cc0d9814522b 2036 {
mjr 40:cc0d9814522b 2037 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 2038 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 2039 }
mjr 38:091e511ce8a0 2040 break;
mjr 38:091e511ce8a0 2041
mjr 38:091e511ce8a0 2042 case PortType74HC595:
mjr 87:8d35c74403af 2043 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 2044 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 2045 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 2046 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 2047 else
mjr 38:091e511ce8a0 2048 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2049 break;
mjr 87:8d35c74403af 2050
mjr 87:8d35c74403af 2051 case PortTypeTLC59116:
mjr 87:8d35c74403af 2052 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 2053 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 2054 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 2055 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 2056 if (tlc59116 != 0)
mjr 87:8d35c74403af 2057 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 2058 break;
mjr 38:091e511ce8a0 2059
mjr 38:091e511ce8a0 2060 case PortTypeVirtual:
mjr 43:7a6364d82a41 2061 case PortTypeDisabled:
mjr 38:091e511ce8a0 2062 default:
mjr 38:091e511ce8a0 2063 // virtual or unknown
mjr 38:091e511ce8a0 2064 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2065 break;
mjr 38:091e511ce8a0 2066 }
mjr 38:091e511ce8a0 2067
mjr 40:cc0d9814522b 2068 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 2069 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 2070 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 2071 if (activeLow)
mjr 38:091e511ce8a0 2072 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 2073
mjr 89:c43cd923401c 2074 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 2075 if (flipperLogic)
mjr 89:c43cd923401c 2076 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 2077
mjr 99:8139b0c274f4 2078 // Layer on Chime Logic if desired. Note that Chime Logic and
mjr 99:8139b0c274f4 2079 // Flipper Logic are mutually exclusive, and Flipper Logic takes
mjr 99:8139b0c274f4 2080 // precedence, so ignore the Chime Logic bit if both are set.
mjr 99:8139b0c274f4 2081 if (chimeLogic && !flipperLogic)
mjr 99:8139b0c274f4 2082 lwp = new LwChimeLogicOut(lwp, pc.flipperLogic);
mjr 98:4df3c0f7e707 2083
mjr 89:c43cd923401c 2084 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 2085 if (noisy)
mjr 40:cc0d9814522b 2086 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 2087
mjr 40:cc0d9814522b 2088 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 2089 if (gamma)
mjr 40:cc0d9814522b 2090 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 2091
mjr 53:9b2611964afc 2092 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 2093 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 2094 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 2095 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 2096 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 2097
mjr 53:9b2611964afc 2098 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 2099 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 2100 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 2101
mjr 38:091e511ce8a0 2102 // turn it off initially
mjr 38:091e511ce8a0 2103 lwp->set(0);
mjr 38:091e511ce8a0 2104
mjr 38:091e511ce8a0 2105 // return the pin
mjr 38:091e511ce8a0 2106 return lwp;
mjr 38:091e511ce8a0 2107 }
mjr 38:091e511ce8a0 2108
mjr 6:cc35eb643e8f 2109 // initialize the output pin array
mjr 35:e959ffba78fd 2110 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 2111 {
mjr 99:8139b0c274f4 2112 // Initialize the Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 2113 LwFlipperLogicOut::classInit(cfg);
mjr 99:8139b0c274f4 2114 LwChimeLogicOut::classInit(cfg);
mjr 89:c43cd923401c 2115
mjr 35:e959ffba78fd 2116 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 2117 // total number of ports.
mjr 35:e959ffba78fd 2118 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 2119 int i;
mjr 35:e959ffba78fd 2120 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 2121 {
mjr 35:e959ffba78fd 2122 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 2123 {
mjr 35:e959ffba78fd 2124 numOutputs = i;
mjr 34:6b981a2afab7 2125 break;
mjr 34:6b981a2afab7 2126 }
mjr 33:d832bcab089e 2127 }
mjr 33:d832bcab089e 2128
mjr 73:4e8ce0b18915 2129 // allocate the pin array
mjr 73:4e8ce0b18915 2130 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 2131
mjr 73:4e8ce0b18915 2132 // Allocate the current brightness array
mjr 73:4e8ce0b18915 2133 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 2134
mjr 73:4e8ce0b18915 2135 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 2136 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2137 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2138
mjr 73:4e8ce0b18915 2139 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 2140 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 2141 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 2142
mjr 73:4e8ce0b18915 2143 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 2144 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2145 wizSpeed[i] = 2;
mjr 33:d832bcab089e 2146
mjr 35:e959ffba78fd 2147 // create the pin interface object for each port
mjr 35:e959ffba78fd 2148 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 2149 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 2150 }
mjr 6:cc35eb643e8f 2151
mjr 76:7f5912b6340e 2152 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 2153 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 2154 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 2155 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 2156 // equivalent to 48.
mjr 40:cc0d9814522b 2157 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 2158 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 2159 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 2160 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 2161 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 2162 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 2163 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 2164 255, 255
mjr 40:cc0d9814522b 2165 };
mjr 40:cc0d9814522b 2166
mjr 76:7f5912b6340e 2167 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 2168 // level (1..48)
mjr 76:7f5912b6340e 2169 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 2170 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 2171 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 2172 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 2173 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 2174 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 2175 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 2176 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 2177 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 2178 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 2179 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 2180 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 2181 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 2182 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 2183 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 2184 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 2185 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 2186 };
mjr 76:7f5912b6340e 2187
mjr 74:822a92bc11d2 2188 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 2189 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 2190 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 2191 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 2192 //
mjr 74:822a92bc11d2 2193 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2194 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2195 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 2196 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 2197 //
mjr 74:822a92bc11d2 2198 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 2199 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 2200 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 2201 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2202 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 2203 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 2204 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 2205 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 2206 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 2207 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 2208 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 2209 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 2210 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2211 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2212 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2213 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2214 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2215 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2216 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2217 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2218
mjr 74:822a92bc11d2 2219 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2220 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2221 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2222 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2223 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2224 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2225 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2226 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2227 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2228 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2229 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2230 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2231 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2232 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2233 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2234 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2235 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2236
mjr 74:822a92bc11d2 2237 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 2238 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2239 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2240 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2241 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2242 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2243 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2244 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2245 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2246 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2247 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2248 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2249 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2250 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2251 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2252 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2253 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2254
mjr 74:822a92bc11d2 2255 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 2256 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 2257 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 2258 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 2259 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 2260 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 2261 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 2262 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 2263 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 2264 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2265 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2266 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2267 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2268 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2269 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2270 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2271 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 2272 };
mjr 74:822a92bc11d2 2273
mjr 74:822a92bc11d2 2274 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 2275 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 2276 Timer wizCycleTimer;
mjr 74:822a92bc11d2 2277
mjr 76:7f5912b6340e 2278 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 2279 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 2280
mjr 76:7f5912b6340e 2281 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 2282 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 2283 // outputs on each cycle.
mjr 29:582472d0bc57 2284 static void wizPulse()
mjr 29:582472d0bc57 2285 {
mjr 76:7f5912b6340e 2286 // current bank
mjr 76:7f5912b6340e 2287 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 2288
mjr 76:7f5912b6340e 2289 // start a timer for statistics collection
mjr 76:7f5912b6340e 2290 IF_DIAG(
mjr 76:7f5912b6340e 2291 Timer t;
mjr 76:7f5912b6340e 2292 t.start();
mjr 76:7f5912b6340e 2293 )
mjr 76:7f5912b6340e 2294
mjr 76:7f5912b6340e 2295 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 2296 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 2297 //
mjr 76:7f5912b6340e 2298 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 2299 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 2300 //
mjr 76:7f5912b6340e 2301 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 2302 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 2303 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 2304 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 2305 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 2306 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 2307 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 2308 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 2309 // current cycle.
mjr 76:7f5912b6340e 2310 //
mjr 76:7f5912b6340e 2311 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 2312 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 2313 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 2314 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 2315 // there by less-than-obvious means.
mjr 76:7f5912b6340e 2316 //
mjr 76:7f5912b6340e 2317 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 2318 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 2319 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 2320 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 2321 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 2322 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 2323 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 2324 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 2325 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 2326 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 2327 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 2328 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 2329 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 2330 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 2331 // bit counts.
mjr 76:7f5912b6340e 2332 //
mjr 76:7f5912b6340e 2333 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 2334 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 2335 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 2336 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 2337 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 2338 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 2339 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 2340 // one division for another!
mjr 76:7f5912b6340e 2341 //
mjr 76:7f5912b6340e 2342 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 2343 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 2344 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 2345 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 2346 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 2347 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 2348 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 2349 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 2350 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 2351 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 2352 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 2353 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 2354 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 2355 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 2356 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 2357 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 2358 // remainder calculation anyway.
mjr 76:7f5912b6340e 2359 //
mjr 76:7f5912b6340e 2360 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 2361 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 2362 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 2363 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 2364 //
mjr 76:7f5912b6340e 2365 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 2366 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 2367 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 2368 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 2369 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 2370 // the result, since we started with 32.
mjr 76:7f5912b6340e 2371 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 2372 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 2373 };
mjr 76:7f5912b6340e 2374 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 2375
mjr 76:7f5912b6340e 2376 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 2377 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 2378 int toPort = fromPort+32;
mjr 76:7f5912b6340e 2379 if (toPort > numOutputs)
mjr 76:7f5912b6340e 2380 toPort = numOutputs;
mjr 76:7f5912b6340e 2381
mjr 76:7f5912b6340e 2382 // update all outputs set to flashing values
mjr 76:7f5912b6340e 2383 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 2384 {
mjr 76:7f5912b6340e 2385 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 2386 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 2387 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 2388 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 2389 if (wizOn[i])
mjr 29:582472d0bc57 2390 {
mjr 76:7f5912b6340e 2391 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 2392 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 2393 {
mjr 76:7f5912b6340e 2394 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 2395 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 2396 }
mjr 29:582472d0bc57 2397 }
mjr 76:7f5912b6340e 2398 }
mjr 76:7f5912b6340e 2399
mjr 34:6b981a2afab7 2400 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 2401 if (hc595 != 0)
mjr 35:e959ffba78fd 2402 hc595->update();
mjr 76:7f5912b6340e 2403
mjr 76:7f5912b6340e 2404 // switch to the next bank
mjr 76:7f5912b6340e 2405 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 2406 wizPulseBank = 0;
mjr 76:7f5912b6340e 2407
mjr 76:7f5912b6340e 2408 // collect timing statistics
mjr 76:7f5912b6340e 2409 IF_DIAG(
mjr 76:7f5912b6340e 2410 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 2411 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 2412 )
mjr 1:d913e0afb2ac 2413 }
mjr 38:091e511ce8a0 2414
mjr 76:7f5912b6340e 2415 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 2416 static void updateLwPort(int port)
mjr 38:091e511ce8a0 2417 {
mjr 76:7f5912b6340e 2418 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 2419 if (wizOn[port])
mjr 76:7f5912b6340e 2420 {
mjr 76:7f5912b6340e 2421 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 2422 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 2423 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 2424 // it on the next cycle.
mjr 76:7f5912b6340e 2425 int val = wizVal[port];
mjr 76:7f5912b6340e 2426 if (val <= 49)
mjr 76:7f5912b6340e 2427 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 2428 }
mjr 76:7f5912b6340e 2429 else
mjr 76:7f5912b6340e 2430 {
mjr 76:7f5912b6340e 2431 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 2432 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 2433 }
mjr 73:4e8ce0b18915 2434 }
mjr 73:4e8ce0b18915 2435
mjr 73:4e8ce0b18915 2436 // Turn off all outputs and restore everything to the default LedWiz
mjr 92:f264fbaa1be5 2437 // state. This sets all outputs to LedWiz profile value 48 (full
mjr 92:f264fbaa1be5 2438 // brightness) and switch state Off, and sets the LedWiz flash rate
mjr 92:f264fbaa1be5 2439 // to 2. This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2440 //
mjr 73:4e8ce0b18915 2441 void allOutputsOff()
mjr 73:4e8ce0b18915 2442 {
mjr 92:f264fbaa1be5 2443 // reset all outputs to OFF/48
mjr 73:4e8ce0b18915 2444 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2445 {
mjr 73:4e8ce0b18915 2446 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2447 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2448 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2449 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2450 }
mjr 73:4e8ce0b18915 2451
mjr 73:4e8ce0b18915 2452 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2453 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2454 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2455
mjr 73:4e8ce0b18915 2456 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2457 if (hc595 != 0)
mjr 38:091e511ce8a0 2458 hc595->update();
mjr 38:091e511ce8a0 2459 }
mjr 38:091e511ce8a0 2460
mjr 74:822a92bc11d2 2461 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2462 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2463 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2464 // address any port group.
mjr 74:822a92bc11d2 2465 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2466 {
mjr 76:7f5912b6340e 2467 // update all on/off states in the group
mjr 74:822a92bc11d2 2468 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2469 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2470 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2471 {
mjr 74:822a92bc11d2 2472 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2473 if (bit == 0x100) {
mjr 74:822a92bc11d2 2474 bit = 1;
mjr 74:822a92bc11d2 2475 ++imsg;
mjr 74:822a92bc11d2 2476 }
mjr 74:822a92bc11d2 2477
mjr 74:822a92bc11d2 2478 // set the on/off state
mjr 76:7f5912b6340e 2479 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2480
mjr 76:7f5912b6340e 2481 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2482 updateLwPort(port);
mjr 74:822a92bc11d2 2483 }
mjr 74:822a92bc11d2 2484
mjr 74:822a92bc11d2 2485 // set the flash speed for the port group
mjr 74:822a92bc11d2 2486 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2487 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2488
mjr 76:7f5912b6340e 2489 // update 74HC959 outputs
mjr 76:7f5912b6340e 2490 if (hc595 != 0)
mjr 76:7f5912b6340e 2491 hc595->update();
mjr 74:822a92bc11d2 2492 }
mjr 74:822a92bc11d2 2493
mjr 74:822a92bc11d2 2494 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2495 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2496 {
mjr 74:822a92bc11d2 2497 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2498 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2499 {
mjr 74:822a92bc11d2 2500 // get the value
mjr 74:822a92bc11d2 2501 uint8_t v = data[i];
mjr 74:822a92bc11d2 2502
mjr 74:822a92bc11d2 2503 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2504 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2505 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2506 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2507 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2508 // as such.
mjr 74:822a92bc11d2 2509 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2510 v = 48;
mjr 74:822a92bc11d2 2511
mjr 74:822a92bc11d2 2512 // store it
mjr 76:7f5912b6340e 2513 wizVal[port] = v;
mjr 76:7f5912b6340e 2514
mjr 76:7f5912b6340e 2515 // update the port
mjr 76:7f5912b6340e 2516 updateLwPort(port);
mjr 74:822a92bc11d2 2517 }
mjr 74:822a92bc11d2 2518
mjr 76:7f5912b6340e 2519 // update 74HC595 outputs
mjr 76:7f5912b6340e 2520 if (hc595 != 0)
mjr 76:7f5912b6340e 2521 hc595->update();
mjr 74:822a92bc11d2 2522 }
mjr 74:822a92bc11d2 2523
mjr 77:0b96f6867312 2524 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2525 //
mjr 77:0b96f6867312 2526 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2527 //
mjr 77:0b96f6867312 2528
mjr 77:0b96f6867312 2529 // receiver
mjr 77:0b96f6867312 2530 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2531
mjr 77:0b96f6867312 2532 // transmitter
mjr 77:0b96f6867312 2533 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2534
mjr 77:0b96f6867312 2535 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2536 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2537 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2538 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2539 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2540 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2541 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2542 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2543 // configuration slot n
mjr 77:0b96f6867312 2544 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2545
mjr 78:1e00b3fa11af 2546 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2547 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2548 // protocol.
mjr 78:1e00b3fa11af 2549 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2550
mjr 78:1e00b3fa11af 2551 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2552 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2553 // while waiting for the rest.
mjr 78:1e00b3fa11af 2554 static struct
mjr 78:1e00b3fa11af 2555 {
mjr 78:1e00b3fa11af 2556 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af