An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Wed Oct 21 21:53:07 2015 +0000
Revision:
33:d832bcab089e
Parent:
32:cbff13b98441
Child:
34:6b981a2afab7
With expansion board 5940 "power enable" output; saving this feature, which is to be removed.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 17:ab3cec0c8bf4 1 // Pinscape Controller Configuration
mjr 17:ab3cec0c8bf4 2 //
mjr 17:ab3cec0c8bf4 3 // To customize your private configuration, simply open this file in the
mjr 17:ab3cec0c8bf4 4 // mbed on-line IDE, make your changes, save the file, and click the Compile
mjr 17:ab3cec0c8bf4 5 // button at the top of the window. That will generate a customized .bin
mjr 17:ab3cec0c8bf4 6 // file that you can download onto your KL25Z board.
mjr 17:ab3cec0c8bf4 7
mjr 25:e22b88bd783a 8 #ifndef CONFIG_H
mjr 25:e22b88bd783a 9 #define CONFIG_H
mjr 17:ab3cec0c8bf4 10
mjr 33:d832bcab089e 11 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 12 //
mjr 33:d832bcab089e 13 // Expansion Board. If you're using the expansion board, un-comment the
mjr 33:d832bcab089e 14 // line below. This will select all of the correct defaults for the board.
mjr 33:d832bcab089e 15 //
mjr 33:d832bcab089e 16 // The expansion board settings are mostly automatic, so you shouldn't have
mjr 33:d832bcab089e 17 // to change much else. However, you should still look at and adjust the
mjr 33:d832bcab089e 18 // following as needed:
mjr 33:d832bcab089e 19 // - TV power on delay time
mjr 33:d832bcab089e 20 // - Plunger sensor settings, if you're using a plunger
mjr 33:d832bcab089e 21 //
mjr 33:d832bcab089e 22 //#define EXPANSION_BOARD
mjr 33:d832bcab089e 23
mjr 33:d832bcab089e 24
mjr 17:ab3cec0c8bf4 25 // --------------------------------------------------------------------------
mjr 21:5048e16cc9ef 26 //
mjr 21:5048e16cc9ef 27 // Enable/disable joystick functions.
mjr 21:5048e16cc9ef 28 //
mjr 21:5048e16cc9ef 29 // This controls whether or not we send joystick reports to the PC with the
mjr 21:5048e16cc9ef 30 // plunger and accelerometer readings. By default, this is enabled. If
mjr 21:5048e16cc9ef 31 // you want to use two or more physical KL25Z Pinscape controllers in your
mjr 21:5048e16cc9ef 32 // system (e.g., if you want to increase the number of output ports
mjr 21:5048e16cc9ef 33 // available by using two or more KL25Z's), you should disable the joystick
mjr 21:5048e16cc9ef 34 // features on the second (and third+) controller. It's not useful to have
mjr 21:5048e16cc9ef 35 // more than one board reporting the accelerometer readings to the host -
mjr 21:5048e16cc9ef 36 // doing so will just add USB overhead. This setting lets you turn off the
mjr 21:5048e16cc9ef 37 // reports for the secondary controllers, turning the secondary boards into
mjr 21:5048e16cc9ef 38 // output-only devices.
mjr 21:5048e16cc9ef 39 //
mjr 21:5048e16cc9ef 40 // Note that you can't use button inputs on a controller that has the
mjr 21:5048e16cc9ef 41 // joystick features disabled, because the buttons are handled via the
mjr 21:5048e16cc9ef 42 // joystick reports. Wire all of your buttons to the primary KL25Z that
mjr 21:5048e16cc9ef 43 // has the joystick features enabled.
mjr 21:5048e16cc9ef 44 //
mjr 21:5048e16cc9ef 45 // To disable the joystick features, just comment out the next line (add
mjr 21:5048e16cc9ef 46 // two slashes at the beginning of the line).
mjr 21:5048e16cc9ef 47 //
mjr 21:5048e16cc9ef 48 #define ENABLE_JOYSTICK
mjr 21:5048e16cc9ef 49
mjr 21:5048e16cc9ef 50
mjr 33:d832bcab089e 51 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 52 //
mjr 33:d832bcab089e 53 // USB device vendor ID and product ID. These values identify the device
mjr 33:d832bcab089e 54 // to the host software on the PC. By default, we use the same settings as
mjr 33:d832bcab089e 55 // a real LedWiz so that host software will recognize us as an LedWiz.
mjr 33:d832bcab089e 56 //
mjr 33:d832bcab089e 57 // The standard settings *should* work without conflicts, even if you have
mjr 33:d832bcab089e 58 // a real LedWiz. My reference system is 64-bit Windows 7 with a real LedWiz
mjr 33:d832bcab089e 59 // on unit #1 and a Pinscape controller on unit #8 (the default), and the
mjr 33:d832bcab089e 60 // two coexist happily in my system. The LedWiz is designed specifically
mjr 33:d832bcab089e 61 // to allow multiple units in one system, using the unit number value
mjr 33:d832bcab089e 62 // (see below) to distinguish multiple units, so there should be no conflict
mjr 33:d832bcab089e 63 // between Pinscape and any real LedWiz devices you have.
mjr 33:d832bcab089e 64 //
mjr 33:d832bcab089e 65 // However, even though conflicts *shouldn't* happen, I've had one report
mjr 33:d832bcab089e 66 // from a user who experienced a Windows USB driver conflict that they could
mjr 33:d832bcab089e 67 // only resolve by changing the vendor ID. The real underlying cause is
mjr 33:d832bcab089e 68 // still a mystery, but whatever was going on, changing the vendor ID fixed
mjr 33:d832bcab089e 69 // it. If you run into a similar problem, you can try the same fix as a
mjr 33:d832bcab089e 70 // last resort. Before doing that, though, you should try changing the
mjr 33:d832bcab089e 71 // Pinscape unit number first - it's possible that your real LedWiz is using
mjr 33:d832bcab089e 72 // unit #8, which is our default setting.
mjr 33:d832bcab089e 73 //
mjr 33:d832bcab089e 74 // If you must change the vendor ID for any reason, you'll sacrifice LedWiz
mjr 33:d832bcab089e 75 // compatibility, which means that old programs like Future Pinball that use
mjr 33:d832bcab089e 76 // the LedWiz interface directly won't be able to access the LedWiz output
mjr 33:d832bcab089e 77 // controller features. However, all is not lost. All of the other functions
mjr 33:d832bcab089e 78 // (plunger, nudge, and key input) use the joystick interface, which will
mjr 33:d832bcab089e 79 // work regardless of the ID values. In addition, DOF R3 recognizes the
mjr 33:d832bcab089e 80 // "emergency fallback" ID below, so if you use that, *all* functions
mjr 33:d832bcab089e 81 // including the output controller will work in any DOF R3-enabled software,
mjr 33:d832bcab089e 82 // including Visual Pinball and PinballX. So the only loss will be that
mjr 33:d832bcab089e 83 // old LedWiz-only software won't be able to control the outputs.
mjr 33:d832bcab089e 84 //
mjr 33:d832bcab089e 85 // The "emergency fallback" ID below is officially registerd with
mjr 33:d832bcab089e 86 // http://pid.codes, a registry for open-source USB projects, which should
mjr 33:d832bcab089e 87 // all but guarantee that this alternative ID shouldn't conflict with
mjr 33:d832bcab089e 88 // any other devices in your system.
mjr 25:e22b88bd783a 89
mjr 25:e22b88bd783a 90
mjr 33:d832bcab089e 91 // STANDARD ID SETTINGS. These provide full, transparent LedWiz compatibility.
mjr 33:d832bcab089e 92 const uint16_t USB_VENDOR_ID = 0xFAFA; // LedWiz vendor ID = FAFA
mjr 33:d832bcab089e 93 const uint16_t USB_PRODUCT_ID = 0x00F0; // LedWiz start of product ID range = 00F0
mjr 33:d832bcab089e 94
mjr 33:d832bcab089e 95
mjr 33:d832bcab089e 96 // EMERGENCY FALLBACK ID SETTINGS. These settings are not LedWiz-compatible,
mjr 33:d832bcab089e 97 // so older LedWiz-only software won't be able to access the output controller
mjr 33:d832bcab089e 98 // features. However, DOF R3 recognizes these IDs, so DOF-aware software (Visual
mjr 33:d832bcab089e 99 // Pinball, PinballX) will have full access to all features.
mjr 33:d832bcab089e 100 //
mjr 33:d832bcab089e 101 //const uint16_t USB_VENDOR_ID = 0x1209; // DOF R3-compatible vendor ID = 1209
mjr 33:d832bcab089e 102 //const uint16_t USB_PRODUCT_ID = 0xEAEA; // DOF R3-compatible product ID = EAEA
mjr 33:d832bcab089e 103
mjr 33:d832bcab089e 104
mjr 33:d832bcab089e 105 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 106 //
mjr 33:d832bcab089e 107 // LedWiz unit number.
mjr 17:ab3cec0c8bf4 108 //
mjr 21:5048e16cc9ef 109 // Each LedWiz device has a unit number, from 1 to 16. This lets you install
mjr 17:ab3cec0c8bf4 110 // more than one LedWiz in your system: as long as each one has a different
mjr 17:ab3cec0c8bf4 111 // unit number, the software on the PC can tell them apart and route commands
mjr 17:ab3cec0c8bf4 112 // to the right device.
mjr 17:ab3cec0c8bf4 113 //
mjr 33:d832bcab089e 114 // A real LedWiz has its unit number set at the factory. If you don't tell
mjr 33:d832bcab089e 115 // them otherwise when placing your order, they will set it to unit #1. Most
mjr 33:d832bcab089e 116 // real LedWiz units therefore are set to unit #1. There's no provision on
mjr 33:d832bcab089e 117 // a real LedWiz for users to change the unit number after it leaves the
mjr 33:d832bcab089e 118 // factory.
mjr 21:5048e16cc9ef 119 //
mjr 33:d832bcab089e 120 // For our *emulated* LedWiz, we default to unit #8 if we're the primary
mjr 33:d832bcab089e 121 // Pinscape controller in the system, or unit #9 if we're set up as the
mjr 33:d832bcab089e 122 // secondary controller with the joystick functions turned off.
mjr 17:ab3cec0c8bf4 123 //
mjr 21:5048e16cc9ef 124 // The reason we start at unit #8 is that we want to avoid conflicting with
mjr 33:d832bcab089e 125 // any real LedWiz devices in your system. Most real LedWiz devices are
mjr 33:d832bcab089e 126 // set up as unit #1, and in the rare cases where people have two of them,
mjr 33:d832bcab089e 127 // the second one is usually unit #2.
mjr 17:ab3cec0c8bf4 128 //
mjr 21:5048e16cc9ef 129 // Note 1: the unit number here is the *user visible* unit number that
mjr 21:5048e16cc9ef 130 // you use on the PC side. It's the number you specify in your DOF
mjr 21:5048e16cc9ef 131 // configuration and so forth. Internally, the USB reports subtract
mjr 21:5048e16cc9ef 132 // one from this number - e.g., nominal unit #1 shows up as 0 in the USB
mjr 21:5048e16cc9ef 133 // reports. If you're trying to puzzle out why all of the USB reports
mjr 21:5048e16cc9ef 134 // are all off by one from the unit number you select here, that's why.
mjr 17:ab3cec0c8bf4 135 //
mjr 17:ab3cec0c8bf4 136 // Note 2: the DOF Configtool (google it) knows about the Pinscape
mjr 29:582472d0bc57 137 // controller. There it's referred to as simply "KL25Z" rather than
mjr 29:582472d0bc57 138 // Pinscape Controller, but that's what they're talking about. The DOF
mjr 29:582472d0bc57 139 // tool knows that it uses #8 as its default unit number, so it names the
mjr 29:582472d0bc57 140 // .ini file for this controller xxx8.ini. If you change the unit number
mjr 29:582472d0bc57 141 // here, remember to rename the DOF-generated .ini file to match, by
mjr 29:582472d0bc57 142 // changing the "8" at the end of the filename to the new number you set
mjr 29:582472d0bc57 143 // here.
mjr 21:5048e16cc9ef 144 const uint8_t DEFAULT_LEDWIZ_UNIT_NUMBER =
mjr 21:5048e16cc9ef 145 #ifdef ENABLE_JOYSTICK
mjr 30:6e9902f06f48 146 0x08; // joystick enabled - assume we're the primary KL25Z, so use unit #8
mjr 21:5048e16cc9ef 147 #else
mjr 21:5048e16cc9ef 148 0x09; // joystick disabled - assume we're a secondary, output-only KL25Z, so use #9
mjr 21:5048e16cc9ef 149 #endif
mjr 17:ab3cec0c8bf4 150
mjr 33:d832bcab089e 151
mjr 33:d832bcab089e 152 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 153 //
mjr 33:d832bcab089e 154 // Accelerometer orientation. The accelerometer feature lets Visual Pinball
mjr 33:d832bcab089e 155 // (and other pinball software) sense nudges to the cabinet, and simulate
mjr 33:d832bcab089e 156 // the effect on the ball's trajectory during play. We report the direction
mjr 33:d832bcab089e 157 // of the accelerometer readings as well as the strength, so it's important
mjr 33:d832bcab089e 158 // for VP and the KL25Z to agree on the physical orientation of the
mjr 33:d832bcab089e 159 // accelerometer relative to the cabinet. The accelerometer on the KL25Z
mjr 33:d832bcab089e 160 // is always mounted the same way on the board, but we still have to know
mjr 33:d832bcab089e 161 // which way you mount the board in your cabinet. We assume as default
mjr 33:d832bcab089e 162 // orientation where the KL25Z is mounted flat on the bottom of your
mjr 33:d832bcab089e 163 // cabinet with the USB ports pointing forward, toward the coin door. If
mjr 33:d832bcab089e 164 // it's more convenient for you to mount the board in a different direction,
mjr 33:d832bcab089e 165 // you simply need to select the matching direction here. Comment out the
mjr 33:d832bcab089e 166 // ORIENTATION_PORTS_AT_FRONT line and un-comment the line that matches
mjr 33:d832bcab089e 167 // your board's orientation.
mjr 33:d832bcab089e 168
mjr 33:d832bcab089e 169 #define ORIENTATION_PORTS_AT_FRONT // USB ports pointing toward front of cabinet
mjr 33:d832bcab089e 170 // #define ORIENTATION_PORTS_AT_LEFT // USB ports pointing toward left side of cab
mjr 33:d832bcab089e 171 // #define ORIENTATION_PORTS_AT_RIGHT // USB ports pointing toward right side of cab
mjr 33:d832bcab089e 172 // #define ORIENTATION_PORTS_AT_REAR // USB ports pointing toward back of cabinet
mjr 33:d832bcab089e 173
mjr 33:d832bcab089e 174
mjr 33:d832bcab089e 175
mjr 17:ab3cec0c8bf4 176 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 177 //
mjr 17:ab3cec0c8bf4 178 // Plunger CCD sensor.
mjr 17:ab3cec0c8bf4 179 //
mjr 17:ab3cec0c8bf4 180 // If you're NOT using the CCD sensor, comment out the next line (by adding
mjr 17:ab3cec0c8bf4 181 // two slashes at the start of the line).
mjr 17:ab3cec0c8bf4 182
mjr 24:e902bc7cdc1e 183 #define ENABLE_CCD_SENSOR
mjr 17:ab3cec0c8bf4 184
mjr 25:e22b88bd783a 185 // Physical pixel count for your sensor. This software has been tested with
mjr 25:e22b88bd783a 186 // TAOS TSL1410R (1280 pixels) and TSL1412R (1536 pixels) sensors. It might
mjr 25:e22b88bd783a 187 // work with other similar sensors as well, but you'll probably have to make
mjr 25:e22b88bd783a 188 // some changes to the software interface to the sensor if you're using any
mjr 25:e22b88bd783a 189 // sensor outside of the TAOS TSL14xxR series.
mjr 25:e22b88bd783a 190 //
mjr 25:e22b88bd783a 191 // If you're not using a CCD sensor, you can ignore this.
mjr 25:e22b88bd783a 192 const int CCD_NPIXELS = 1280;
mjr 25:e22b88bd783a 193
mjr 25:e22b88bd783a 194 // Number of pixels from the CCD to sample on each high-res scan. We don't
mjr 25:e22b88bd783a 195 // sample every pixel from the sensor on each scan, because (a) we don't
mjr 25:e22b88bd783a 196 // have to, and (b) we don't want to. We don't have to sample all of the
mjr 25:e22b88bd783a 197 // pixels because these sensors have much finer resolution than we need to
mjr 25:e22b88bd783a 198 // get good results. On a typical pinball cabinet setup with a 1920x1080
mjr 25:e22b88bd783a 199 // HD TV display, the on-screen plunger travel distance is about 165 pixels,
mjr 25:e22b88bd783a 200 // so that's all the pixels we need to sample for pixel-accurate animation.
mjr 25:e22b88bd783a 201 // Even so, we still *could* sample at higher resolution, but we don't *want*
mjr 25:e22b88bd783a 202 // to sample more pixels than we have to, because reading each pixel takes
mjr 25:e22b88bd783a 203 // time. The limiting factor for read speed is the sampling time for the ADC
mjr 25:e22b88bd783a 204 // (analog to digital converter); it needs about 20us per sample to get an
mjr 25:e22b88bd783a 205 // accurate voltage reading. We want to animate the on-screen plunger in
mjr 25:e22b88bd783a 206 // real time, with minimal lag, so it's important that we complete each scan
mjr 25:e22b88bd783a 207 // as quickly as possible. The fewer pixels we sample, the faster we
mjr 25:e22b88bd783a 208 // complete each scan.
mjr 25:e22b88bd783a 209 //
mjr 25:e22b88bd783a 210 // Happily, the time needed to read the approximately 165 pixels required
mjr 25:e22b88bd783a 211 // for pixel-accurate positioning on the display is short enough that we can
mjr 33:d832bcab089e 212 // complete a scan within the cycle time for USB reports. Visual Pinball
mjr 33:d832bcab089e 213 // only polls for input at about 10ms intervals, so there's no benefit
mjr 33:d832bcab089e 214 // to going much faster than this. The sensor timing is such that we can
mjr 33:d832bcab089e 215 // read about 165 pixels in well under 10ms. So that's really the sweet
mjr 33:d832bcab089e 216 // spot for our scans.
mjr 25:e22b88bd783a 217 //
mjr 25:e22b88bd783a 218 // Note that we distribute the sampled pixels evenly across the full range
mjr 25:e22b88bd783a 219 // of the sensor's pixels. That is, we read every nth pixel, and skip the
mjr 25:e22b88bd783a 220 // ones in between. That means that the sample count here has to be an even
mjr 25:e22b88bd783a 221 // divisor of the physical pixel count. Empirically, reading every 8th
mjr 25:e22b88bd783a 222 // pixel gives us good results on both the TSL1410R and TSL1412R, so you
mjr 25:e22b88bd783a 223 // shouldn't need to change this if you're using one of those sensors. If
mjr 25:e22b88bd783a 224 // you're using a different sensor, you should be sure to adjust this so that
mjr 25:e22b88bd783a 225 // it works out to an integer result with no remainder.
mjr 25:e22b88bd783a 226 //
mjr 25:e22b88bd783a 227 const int CCD_NPIXELS_SAMPLED = CCD_NPIXELS / 8;
mjr 25:e22b88bd783a 228
mjr 17:ab3cec0c8bf4 229 // The KL25Z pins that the CCD sensor is physically attached to:
mjr 17:ab3cec0c8bf4 230 //
mjr 17:ab3cec0c8bf4 231 // CCD_SI_PIN = the SI (sensor data input) pin
mjr 17:ab3cec0c8bf4 232 // CCD_CLOCK_PIN = the sensor clock pin
mjr 17:ab3cec0c8bf4 233 // CCD_SO_PIN = the SO (sensor data output) pin
mjr 17:ab3cec0c8bf4 234 //
mjr 17:ab3cec0c8bf4 235 // The SI an Clock pins are DigitalOut pins, so these can be set to just
mjr 17:ab3cec0c8bf4 236 // about any gpio pins that aren't used for something else. The SO pin must
mjr 17:ab3cec0c8bf4 237 // be an AnalogIn capable pin - only a few of the KL25Z gpio pins qualify,
mjr 17:ab3cec0c8bf4 238 // so check the pinout diagram to find suitable candidates if you need to
mjr 17:ab3cec0c8bf4 239 // change this. Note that some of the gpio pins shown in the mbed pinout
mjr 17:ab3cec0c8bf4 240 // diagrams are committed to other uses by the mbed software or by the KL25Z
mjr 17:ab3cec0c8bf4 241 // wiring itself, so if you do change these, be sure that the new pins you
mjr 17:ab3cec0c8bf4 242 // select are really available.
mjr 17:ab3cec0c8bf4 243
mjr 17:ab3cec0c8bf4 244 const PinName CCD_SI_PIN = PTE20;
mjr 17:ab3cec0c8bf4 245 const PinName CCD_CLOCK_PIN = PTE21;
mjr 17:ab3cec0c8bf4 246 const PinName CCD_SO_PIN = PTB0;
mjr 17:ab3cec0c8bf4 247
mjr 17:ab3cec0c8bf4 248 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 249 //
mjr 17:ab3cec0c8bf4 250 // Plunger potentiometer sensor.
mjr 17:ab3cec0c8bf4 251 //
mjr 23:14f8c5004cd0 252 // If you're using a potentiometer as the plunger sensor, un-comment the
mjr 23:14f8c5004cd0 253 // next line (by removing the two slashes at the start of the line), and
mjr 23:14f8c5004cd0 254 // also comment out the ENABLE_CCD_SENSOR line above.
mjr 17:ab3cec0c8bf4 255
mjr 24:e902bc7cdc1e 256 //#define ENABLE_POT_SENSOR
mjr 17:ab3cec0c8bf4 257
mjr 23:14f8c5004cd0 258 // The KL25Z pin that your potentiometer is attached to. The potentiometer
mjr 23:14f8c5004cd0 259 // requires wiring three connectins:
mjr 23:14f8c5004cd0 260 //
mjr 23:14f8c5004cd0 261 // - Wire the fixed resistance end of the potentiometer nearest the KNOB
mjr 23:14f8c5004cd0 262 // end of the plunger to the 3.3V output from the KL25Z
mjr 23:14f8c5004cd0 263 //
mjr 23:14f8c5004cd0 264 // - Wire the other fixed resistance end to KL25Z Ground
mjr 23:14f8c5004cd0 265 //
mjr 23:14f8c5004cd0 266 // - Wire the potentiometer wiper (the variable output terminal) to the
mjr 23:14f8c5004cd0 267 // KL25Z pin identified below.
mjr 23:14f8c5004cd0 268 //
mjr 23:14f8c5004cd0 269 // Note that you can change the pin selection below, but if you do, the new
mjr 23:14f8c5004cd0 270 // pin must be AnalogIn capable. Only a few of the KL25Z pins qualify. Refer
mjr 23:14f8c5004cd0 271 // to the KL25Z pinout diagram to find another AnalogIn pin if you need to
mjr 23:14f8c5004cd0 272 // change this for any reason. Note that the default is to use the same analog
mjr 23:14f8c5004cd0 273 // input that the CCD sensor would use if it were enabled, which is why you
mjr 23:14f8c5004cd0 274 // have to be sure to disable the CCD support in the software if you're using
mjr 23:14f8c5004cd0 275 // a potentiometer as the sensor.
mjr 17:ab3cec0c8bf4 276
mjr 17:ab3cec0c8bf4 277 const PinName POT_PIN = PTB0;
mjr 17:ab3cec0c8bf4 278
mjr 17:ab3cec0c8bf4 279 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 280 //
mjr 17:ab3cec0c8bf4 281 // Plunger calibration button and indicator light.
mjr 17:ab3cec0c8bf4 282 //
mjr 17:ab3cec0c8bf4 283 // These specify the pin names of the plunger calibration button connections.
mjr 17:ab3cec0c8bf4 284 // If you're not using these, you can set these to NC. (You can even use the
mjr 17:ab3cec0c8bf4 285 // button but not the LED; set the LED to NC if you're only using the button.)
mjr 17:ab3cec0c8bf4 286 //
mjr 17:ab3cec0c8bf4 287 // If you're using the button, wire one terminal of a momentary switch or
mjr 17:ab3cec0c8bf4 288 // pushbutton to the input pin you select, and wire the other terminal to the
mjr 17:ab3cec0c8bf4 289 // KL25Z ground. Push and hold the button for a few seconds to enter plunger
mjr 17:ab3cec0c8bf4 290 // calibration mode.
mjr 17:ab3cec0c8bf4 291 //
mjr 17:ab3cec0c8bf4 292 // If you're using the LED, you'll need to build a little transistor power
mjr 17:ab3cec0c8bf4 293 // booster circuit to power the LED, as described in the build guide. The
mjr 17:ab3cec0c8bf4 294 // LED gives you visual confirmation that the you've triggered calibration
mjr 17:ab3cec0c8bf4 295 // mode and lets you know when the mode times out. Note that the LED on
mjr 17:ab3cec0c8bf4 296 // board the KL25Z also changes color to indicate the same information, so
mjr 17:ab3cec0c8bf4 297 // if the KL25Z is positioned so that you can see it while you're doing the
mjr 17:ab3cec0c8bf4 298 // calibration, you don't really need a separate button LED. But the
mjr 17:ab3cec0c8bf4 299 // separate LED is spiffy, especially if it's embedded in the pushbutton.
mjr 17:ab3cec0c8bf4 300 //
mjr 17:ab3cec0c8bf4 301 // Note that you can skip the pushbutton altogether and trigger calibration
mjr 17:ab3cec0c8bf4 302 // from the Windows control software. But again, the button is spiffier.
mjr 17:ab3cec0c8bf4 303
mjr 17:ab3cec0c8bf4 304 // calibration button input
mjr 17:ab3cec0c8bf4 305 const PinName CAL_BUTTON_PIN = PTE29;
mjr 17:ab3cec0c8bf4 306
mjr 17:ab3cec0c8bf4 307 // calibration button indicator LED
mjr 17:ab3cec0c8bf4 308 const PinName CAL_BUTTON_LED = PTE23;
mjr 17:ab3cec0c8bf4 309
mjr 17:ab3cec0c8bf4 310
mjr 33:d832bcab089e 311 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 312 //
mjr 33:d832bcab089e 313 // TV Power-On Timer. This section lets you set up a delayed relay timer
mjr 33:d832bcab089e 314 // for turning on your TV monitor(s) shortly after you turn on power to the
mjr 33:d832bcab089e 315 // system. This requires some external circuitry, which is built in to the
mjr 33:d832bcab089e 316 // expansion board, or which you can build yourself - refer to the Build
mjr 33:d832bcab089e 317 // Guide for the circuit plan.
mjr 33:d832bcab089e 318 //
mjr 33:d832bcab089e 319 // If you're using this feature, un-comment the next line, and make any
mjr 33:d832bcab089e 320 // changes to the port assignments below. The default port assignments are
mjr 33:d832bcab089e 321 // suitable for the expansion board. Note that the TV timer is enabled
mjr 33:d832bcab089e 322 // automatically if you're using the expansion board, since it's built in.
mjr 33:d832bcab089e 323 //#define ENABLE_TV_TIMER
mjr 33:d832bcab089e 324
mjr 33:d832bcab089e 325 #if defined(ENABLE_TV_TIMER) || defined(EXPANSION_BOARD)
mjr 33:d832bcab089e 326 # define PSU2_STATUS_SENSE PTD2 // Digital In pin to read latch status
mjr 33:d832bcab089e 327 # define PSU2_STATUS_SET PTE0 // Digital Out pin to set latch
mjr 33:d832bcab089e 328 # define TV_RELAY_PIN PTD3 // Digital Out pin to control TV switch relay
mjr 33:d832bcab089e 329
mjr 33:d832bcab089e 330 // Amount of time (in seconds) to wait after system power-up before
mjr 33:d832bcab089e 331 // pulsing the TV ON switch relay. Adjust as needed for your TV(s).
mjr 33:d832bcab089e 332 // Most monitors won't respond to any buttons for the first few seconds
mjr 33:d832bcab089e 333 // after they're plugged in, so we need to wait long enough to make sure
mjr 33:d832bcab089e 334 // the TVs are ready to receive input before pressing the button.
mjr 33:d832bcab089e 335 #define TV_DELAY_TIME 7.0
mjr 33:d832bcab089e 336
mjr 33:d832bcab089e 337 #endif
mjr 33:d832bcab089e 338
mjr 33:d832bcab089e 339
mjr 17:ab3cec0c8bf4 340 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 341 //
mjr 17:ab3cec0c8bf4 342 // Pseudo "Launch Ball" button.
mjr 17:ab3cec0c8bf4 343 //
mjr 17:ab3cec0c8bf4 344 // Zeb of zebsboards.com came up with a clever scheme for his plunger kit
mjr 17:ab3cec0c8bf4 345 // that lets the plunger simulate a Launch Ball button for tables where
mjr 17:ab3cec0c8bf4 346 // the original used a Launch button instead of a plunger (e.g., Medieval
mjr 17:ab3cec0c8bf4 347 // Madness, T2, or Star Trek: The Next Generation). The scheme uses an
mjr 17:ab3cec0c8bf4 348 // LedWiz output to tell us when such a table is loaded. On the DOF
mjr 17:ab3cec0c8bf4 349 // Configtool site, this is called "ZB Launch Ball". When this LedWiz
mjr 17:ab3cec0c8bf4 350 // output is ON, it tells us that the table will ignore the analog plunger
mjr 17:ab3cec0c8bf4 351 // because it doesn't have a plunger object, so the analog plunger should
mjr 17:ab3cec0c8bf4 352 // send a Launch Ball button press signal when the user releases the plunger.
mjr 17:ab3cec0c8bf4 353 //
mjr 17:ab3cec0c8bf4 354 // If you wish to use this feature, you need to do two things:
mjr 17:ab3cec0c8bf4 355 //
mjr 17:ab3cec0c8bf4 356 // First, adjust the two lines below to set the LedWiz output and joystick
mjr 17:ab3cec0c8bf4 357 // button you wish to use for this feature. The defaults below should be
mjr 17:ab3cec0c8bf4 358 // fine for most people, but if you're using the Pinscape controller for
mjr 17:ab3cec0c8bf4 359 // your physical button wiring, you should set the launch button to match
mjr 17:ab3cec0c8bf4 360 // where you physically wired your actual Launch Ball button. Likewise,
mjr 17:ab3cec0c8bf4 361 // change the LedWiz port if you're using the one below for some actual
mjr 17:ab3cec0c8bf4 362 // hardware output. This is a virtual port that won't control any hardware;
mjr 17:ab3cec0c8bf4 363 // it's just for signaling the plunger that we're in "button mode". Note
mjr 17:ab3cec0c8bf4 364 // that the numbering for the both the LedWiz port and joystick button
mjr 17:ab3cec0c8bf4 365 // start at 1 to match the DOF Configtool and VP dialog numbering.
mjr 17:ab3cec0c8bf4 366 //
mjr 17:ab3cec0c8bf4 367 // Second, in the DOF Configtool, make sure you have a Pinscape controller
mjr 17:ab3cec0c8bf4 368 // in your cabinet configuration, then go to your Port Assignments and set
mjr 17:ab3cec0c8bf4 369 // the port defined below to "ZB Launch Ball".
mjr 17:ab3cec0c8bf4 370 //
mjr 17:ab3cec0c8bf4 371 // Third, open the Visual Pinball editor, open the Preferences | Keys
mjr 17:ab3cec0c8bf4 372 // dialog, and find the Plunger item. Open the drop-down list under that
mjr 17:ab3cec0c8bf4 373 // item and select the button number defined below.
mjr 17:ab3cec0c8bf4 374 //
mjr 21:5048e16cc9ef 375 // To disable this feature, just set ZBLaunchBallPort to 0 here.
mjr 17:ab3cec0c8bf4 376
mjr 17:ab3cec0c8bf4 377 const int ZBLaunchBallPort = 32;
mjr 17:ab3cec0c8bf4 378 const int LaunchBallButton = 24;
mjr 17:ab3cec0c8bf4 379
mjr 18:5e890ebd0023 380 // Distance necessary to push the plunger to activate the simulated
mjr 18:5e890ebd0023 381 // launch ball button, in inches. A standard pinball plunger can be
mjr 18:5e890ebd0023 382 // pushed forward about 1/2". However, the barrel spring is very
mjr 18:5e890ebd0023 383 // stiff, and anything more than about 1/8" requires quite a bit
mjr 18:5e890ebd0023 384 // of force. Ideally the force required should be about the same as
mjr 18:5e890ebd0023 385 // for any ordinary pushbutton.
mjr 18:5e890ebd0023 386 //
mjr 18:5e890ebd0023 387 // On my cabinet, empirically, a distance around 2mm (.08") seems
mjr 18:5e890ebd0023 388 // to work pretty well. It's far enough that it doesn't trigger
mjr 18:5e890ebd0023 389 // spuriously, but short enough that it responds to a reasonably
mjr 18:5e890ebd0023 390 // light push.
mjr 18:5e890ebd0023 391 //
mjr 18:5e890ebd0023 392 // You might need to adjust this up or down to get the right feel.
mjr 18:5e890ebd0023 393 // Alternatively, if you don't like the "push" gesture at all and
mjr 18:5e890ebd0023 394 // would prefer to only make the plunger respond to a pull-and-release
mjr 18:5e890ebd0023 395 // motion, simply set this to, say, 2.0 - it's impossible to push a
mjr 18:5e890ebd0023 396 // plunger forward that far, so that will effectively turn off the
mjr 18:5e890ebd0023 397 // push mode.
mjr 18:5e890ebd0023 398 const float LaunchBallPushDistance = .08;
mjr 18:5e890ebd0023 399
mjr 29:582472d0bc57 400
mjr 29:582472d0bc57 401 // --------------------------------------------------------------------------
mjr 29:582472d0bc57 402 //
mjr 29:582472d0bc57 403 // TLC5940 PWM controller chip setup - Enhanced LedWiz emulation
mjr 29:582472d0bc57 404 //
mjr 29:582472d0bc57 405 // By default, the Pinscape Controller software can provide limited LedWiz
mjr 29:582472d0bc57 406 // emulation through the KL25Z's on-board GPIO ports. This lets you hook
mjr 29:582472d0bc57 407 // up external devices, such as LED flashers or solenoids, to the KL25Z
mjr 29:582472d0bc57 408 // outputs (using external circuitry to boost power - KL25Z GPIO ports
mjr 29:582472d0bc57 409 // are limited to a meager 4mA per port). This capability is limited by
mjr 29:582472d0bc57 410 // the number of available GPIO ports on the KL25Z, and even smaller limit
mjr 29:582472d0bc57 411 // of 10 PWM-capable GPIO ports.
mjr 29:582472d0bc57 412 //
mjr 29:582472d0bc57 413 // As an alternative, the controller software lets you use external PWM
mjr 29:582472d0bc57 414 // controller chips to control essentially unlimited channels with full
mjr 29:582472d0bc57 415 // PWM control on all channels. This requires building external circuitry
mjr 29:582472d0bc57 416 // using TLC5940 chips. Each TLC5940 chip provides 16 full PWM channels,
mjr 29:582472d0bc57 417 // and you can daisy-chain multiple TLC5940 chips together to set up 32,
mjr 29:582472d0bc57 418 // 48, 64, or more channels.
mjr 29:582472d0bc57 419 //
mjr 29:582472d0bc57 420 // If you do add TLC5940 circuits to your controller hardware, use this
mjr 29:582472d0bc57 421 // section to configure the connection to the KL25Z.
mjr 29:582472d0bc57 422 //
mjr 33:d832bcab089e 423 // Note that when using the TLC5940, you can still also use some GPIO
mjr 33:d832bcab089e 424 // pins for outputs as normal. See ledWizPinMap[] for
mjr 29:582472d0bc57 425
mjr 29:582472d0bc57 426 // Number of TLC5940 chips you're using. For a full LedWiz-compatible
mjr 33:d832bcab089e 427 // setup, you need two of these chips, for 32 outputs. The software
mjr 33:d832bcab089e 428 // will handle up to 8. The expansion board uses 4 of these chips; if
mjr 33:d832bcab089e 429 // you're not using the expansion board, we assume you're not using
mjr 33:d832bcab089e 430 // any of them.
mjr 33:d832bcab089e 431 #ifdef EXPANSION_BOARD
mjr 33:d832bcab089e 432 # define TLC5940_NCHIPS 4
mjr 33:d832bcab089e 433 #else
mjr 33:d832bcab089e 434 # define TLC5940_NCHIPS 0 // change this if you're using TLC5940's without the expansion board
mjr 33:d832bcab089e 435 #endif
mjr 29:582472d0bc57 436
mjr 29:582472d0bc57 437 // If you're using TLC5940s, change any of these as needed to match the
mjr 29:582472d0bc57 438 // GPIO pins that you connected to the TLC5940 control pins. Note that
mjr 29:582472d0bc57 439 // SIN and SCLK *must* be connected to the KL25Z SPI0 MOSI and SCLK
mjr 29:582472d0bc57 440 // outputs, respectively, which effectively limits them to the default
mjr 33:d832bcab089e 441 // selections, and that the GSCLK pin must be PWM-capable. These defaults
mjr 33:d832bcab089e 442 // all match the expansion board wiring.
mjr 29:582472d0bc57 443 #define TLC5940_SIN PTC6 // Must connect to SPI0 MOSI -> PTC6 or PTD2
mjr 29:582472d0bc57 444 #define TLC5940_SCLK PTC5 // Must connect to SPI0 SCLK -> PTC5 or PTD1; however, PTD1 isn't
mjr 29:582472d0bc57 445 // recommended because it's hard-wired to the on-board blue LED
mjr 29:582472d0bc57 446 #define TLC5940_XLAT PTC10 // Any GPIO pin can be used
mjr 33:d832bcab089e 447 #define TLC5940_BLANK PTC7 // Any GPIO pin can be used
mjr 33:d832bcab089e 448 #define TLC5940_GSCLK PTA1 // Must be a PWM-capable pin
mjr 25:e22b88bd783a 449
mjr 33:d832bcab089e 450 // TLC5940 output power enable pin. This is a GPIO pin that controls
mjr 33:d832bcab089e 451 // a high-side transistor switch that controls power to the optos and
mjr 33:d832bcab089e 452 // LEDs connected to the TLC5940 outputs. This is a precaution against
mjr 33:d832bcab089e 453 // powering the chip's output pins before Vcc is powered. Vcc comes
mjr 33:d832bcab089e 454 // from the KL25Z, so when our program is running, we know for certain
mjr 33:d832bcab089e 455 // that Vcc is up. This means that we can simply enable this pin any
mjr 33:d832bcab089e 456 // time after entering our main(). Un-comment this line if using this
mjr 33:d832bcab089e 457 // circuit.
mjr 33:d832bcab089e 458 // #define TLC5940_PWRENA PTC11 // Any GPIO pin can be used
mjr 33:d832bcab089e 459 #ifdef EXPANSION_BOARD
mjr 33:d832bcab089e 460 # define TLC5940_PWRENA PTC11
mjr 33:d832bcab089e 461 #endif
mjr 17:ab3cec0c8bf4 462
mjr 29:582472d0bc57 463 #endif // CONFIG_H - end of include-once section (code below this point can be multiply included)
mjr 29:582472d0bc57 464
mjr 29:582472d0bc57 465
mjr 29:582472d0bc57 466 #ifdef DECL_EXTERNS // this section defines global variables, only if this macro is set
mjr 29:582472d0bc57 467
mjr 17:ab3cec0c8bf4 468 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 469 //
mjr 17:ab3cec0c8bf4 470
mjr 17:ab3cec0c8bf4 471 // Joystick button input pin assignments.
mjr 17:ab3cec0c8bf4 472 //
mjr 17:ab3cec0c8bf4 473 // You can wire up to 32 GPIO ports to buttons (equipped with
mjr 17:ab3cec0c8bf4 474 // momentary switches). Connect each switch between the desired
mjr 17:ab3cec0c8bf4 475 // GPIO port and ground (J9 pin 12 or 14). When the button is pressed,
mjr 17:ab3cec0c8bf4 476 // we'll tell the host PC that the corresponding joystick button is
mjr 17:ab3cec0c8bf4 477 // pressed. We debounce the keystrokes in software, so you can simply
mjr 17:ab3cec0c8bf4 478 // wire directly to pushbuttons with no additional external hardware.
mjr 17:ab3cec0c8bf4 479 //
mjr 17:ab3cec0c8bf4 480 // Note that we assign 24 buttons by default, even though the USB
mjr 17:ab3cec0c8bf4 481 // joystick interface can handle up to 32 buttons. VP itself only
mjr 17:ab3cec0c8bf4 482 // allows mapping of up to 24 buttons in the preferences dialog
mjr 17:ab3cec0c8bf4 483 // (although it can recognize 32 buttons internally). If you want
mjr 17:ab3cec0c8bf4 484 // more buttons, you can reassign pins that are assigned by default
mjr 17:ab3cec0c8bf4 485 // as LedWiz outputs. To reassign a pin, find the pin you wish to
mjr 17:ab3cec0c8bf4 486 // reassign in the LedWizPortMap array below, and change the pin name
mjr 17:ab3cec0c8bf4 487 // there to NC (for Not Connected). You can then change one of the
mjr 17:ab3cec0c8bf4 488 // "NC" entries below to the reallocated pin name. The limit is 32
mjr 17:ab3cec0c8bf4 489 // buttons total.
mjr 17:ab3cec0c8bf4 490 //
mjr 26:cb71c4af2912 491 // (If you're using TLC5940 chips to control outputs, ALL of the
mjr 26:cb71c4af2912 492 // LedWiz mapped ports can be reassigned as keys, except, of course,
mjr 26:cb71c4af2912 493 // those taken over for the 5940 interface.)
mjr 26:cb71c4af2912 494 //
mjr 17:ab3cec0c8bf4 495 // Note: PTD1 (pin J2-12) should NOT be assigned as a button input,
mjr 17:ab3cec0c8bf4 496 // as this pin is physically connected on the KL25Z to the on-board
mjr 17:ab3cec0c8bf4 497 // indicator LED's blue segment. This precludes any other use of
mjr 17:ab3cec0c8bf4 498 // the pin.
mjr 17:ab3cec0c8bf4 499 PinName buttonMap[] = {
mjr 17:ab3cec0c8bf4 500 PTC2, // J10 pin 10, joystick button 1
mjr 17:ab3cec0c8bf4 501 PTB3, // J10 pin 8, joystick button 2
mjr 17:ab3cec0c8bf4 502 PTB2, // J10 pin 6, joystick button 3
mjr 17:ab3cec0c8bf4 503 PTB1, // J10 pin 4, joystick button 4
mjr 17:ab3cec0c8bf4 504
mjr 17:ab3cec0c8bf4 505 PTE30, // J10 pin 11, joystick button 5
mjr 17:ab3cec0c8bf4 506 PTE22, // J10 pin 5, joystick button 6
mjr 17:ab3cec0c8bf4 507
mjr 17:ab3cec0c8bf4 508 PTE5, // J9 pin 15, joystick button 7
mjr 17:ab3cec0c8bf4 509 PTE4, // J9 pin 13, joystick button 8
mjr 17:ab3cec0c8bf4 510 PTE3, // J9 pin 11, joystick button 9
mjr 17:ab3cec0c8bf4 511 PTE2, // J9 pin 9, joystick button 10
mjr 17:ab3cec0c8bf4 512 PTB11, // J9 pin 7, joystick button 11
mjr 17:ab3cec0c8bf4 513 PTB10, // J9 pin 5, joystick button 12
mjr 17:ab3cec0c8bf4 514 PTB9, // J9 pin 3, joystick button 13
mjr 17:ab3cec0c8bf4 515 PTB8, // J9 pin 1, joystick button 14
mjr 17:ab3cec0c8bf4 516
mjr 17:ab3cec0c8bf4 517 PTC12, // J2 pin 1, joystick button 15
mjr 17:ab3cec0c8bf4 518 PTC13, // J2 pin 3, joystick button 16
mjr 17:ab3cec0c8bf4 519 PTC16, // J2 pin 5, joystick button 17
mjr 17:ab3cec0c8bf4 520 PTC17, // J2 pin 7, joystick button 18
mjr 17:ab3cec0c8bf4 521 PTA16, // J2 pin 9, joystick button 19
mjr 17:ab3cec0c8bf4 522 PTA17, // J2 pin 11, joystick button 20
mjr 17:ab3cec0c8bf4 523 PTE31, // J2 pin 13, joystick button 21
mjr 17:ab3cec0c8bf4 524 PTD6, // J2 pin 17, joystick button 22
mjr 17:ab3cec0c8bf4 525 PTD7, // J2 pin 19, joystick button 23
mjr 17:ab3cec0c8bf4 526
mjr 17:ab3cec0c8bf4 527 PTE1, // J2 pin 20, joystick button 24
mjr 17:ab3cec0c8bf4 528
mjr 17:ab3cec0c8bf4 529 NC, // not used, joystick button 25
mjr 17:ab3cec0c8bf4 530 NC, // not used, joystick button 26
mjr 17:ab3cec0c8bf4 531 NC, // not used, joystick button 27
mjr 17:ab3cec0c8bf4 532 NC, // not used, joystick button 28
mjr 17:ab3cec0c8bf4 533 NC, // not used, joystick button 29
mjr 17:ab3cec0c8bf4 534 NC, // not used, joystick button 30
mjr 17:ab3cec0c8bf4 535 NC, // not used, joystick button 31
mjr 17:ab3cec0c8bf4 536 NC // not used, joystick button 32
mjr 17:ab3cec0c8bf4 537 };
mjr 17:ab3cec0c8bf4 538
mjr 17:ab3cec0c8bf4 539 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 540 //
mjr 33:d832bcab089e 541 // LED-Wiz emulation output pin assignments
mjr 17:ab3cec0c8bf4 542 //
mjr 33:d832bcab089e 543 // This sets the mapping from logical LedWiz port numbers, as used
mjr 33:d832bcab089e 544 // in the software on the PC side, to physical hardware pins on the
mjr 33:d832bcab089e 545 // KL25Z and/or the TLC5940 controllers.
mjr 26:cb71c4af2912 546 //
mjr 33:d832bcab089e 547 // The LedWiz protocol lets the PC software set a "brightness" level
mjr 33:d832bcab089e 548 // for each output. This is used to control the intensity of LEDs
mjr 33:d832bcab089e 549 // and other lights, and can also control motor speeds. To implement
mjr 33:d832bcab089e 550 // the intensity level in hardware, we use PWM, or pulse width
mjr 33:d832bcab089e 551 // modulation, which switches the output on and off very rapidly
mjr 33:d832bcab089e 552 // to give the effect of a reduced voltage. Unfortunately, the KL25Z
mjr 33:d832bcab089e 553 // hardware is limited to 10 channels of PWM control for its GPIO
mjr 33:d832bcab089e 554 // outputs, so it's impossible to implement the LedWiz's full set
mjr 33:d832bcab089e 555 // of 32 adjustable outputs using only GPIO ports. However, you can
mjr 33:d832bcab089e 556 // create 10 adjustable ports and fill out the rest with "digital"
mjr 33:d832bcab089e 557 // GPIO pins, which are simple on/off switches. The intensity level
mjr 33:d832bcab089e 558 // of a digital port can't be adjusted - it's either fully on or
mjr 33:d832bcab089e 559 // fully off - but this is fine for devices that don't have
mjr 33:d832bcab089e 560 // different intensity settings anyway, such as replay knockers
mjr 33:d832bcab089e 561 // and flipper solenoids.
mjr 17:ab3cec0c8bf4 562 //
mjr 33:d832bcab089e 563 // In the mapping list below, you can decide how to dole out the
mjr 33:d832bcab089e 564 // PWM-capable and digital-only GPIO pins. To make it easier to
mjr 33:d832bcab089e 565 // remember which is which, the default mapping below groups all
mjr 33:d832bcab089e 566 // of the PWM-capable ports together in the first 10 logical LedWiz
mjr 33:d832bcab089e 567 // port numbers. Unfortunately, these ports aren't *physically*
mjr 33:d832bcab089e 568 // together on the KL25Z pin headers, so this layout may be simple
mjr 33:d832bcab089e 569 // in terms of the LedWiz numbering, but it's a little jumbled
mjr 33:d832bcab089e 570 // in the physical layout.t
mjr 33:d832bcab089e 571 //
mjr 33:d832bcab089e 572 // "NC" in the pin name slot means "not connected". This means
mjr 33:d832bcab089e 573 // that there's no physical output for this LedWiz port number.
mjr 33:d832bcab089e 574 // The device will still accept commands that control the port,
mjr 33:d832bcab089e 575 // but these will just be silently ignored, since there's no pin
mjr 33:d832bcab089e 576 // to turn on or off for these ports. The reason we leave some
mjr 33:d832bcab089e 577 // ports unconnected is that we don't have enough physical GPIO
mjr 33:d832bcab089e 578 // pins to fill out the full LedWiz complement of 32 ports. Many
mjr 33:d832bcab089e 579 // pins are already taken for other purposes, such as button
mjr 33:d832bcab089e 580 // inputs or the plunger CCD interface.
mjr 17:ab3cec0c8bf4 581 //
mjr 17:ab3cec0c8bf4 582 // The mapping between physical output pins on the KL25Z and the
mjr 33:d832bcab089e 583 // assigned LED-Wiz port numbers is essentially arbitrary. You can
mjr 17:ab3cec0c8bf4 584 // customize this by changing the entries in the array below if you
mjr 17:ab3cec0c8bf4 585 // wish to rearrange the pins for any reason. Be aware that some
mjr 17:ab3cec0c8bf4 586 // of the physical outputs are already used for other purposes
mjr 17:ab3cec0c8bf4 587 // (e.g., some of the GPIO pins on header J10 are used for the
mjr 17:ab3cec0c8bf4 588 // CCD sensor - but you can of course reassign those as well by
mjr 33:d832bcab089e 589 // changing the corresponding declarations elsewhere in this file).
mjr 17:ab3cec0c8bf4 590 // The assignments we make here have two main objectives: first,
mjr 17:ab3cec0c8bf4 591 // to group the outputs on headers J1 and J2 (to facilitate neater
mjr 17:ab3cec0c8bf4 592 // wiring by keeping the output pins together physically), and
mjr 17:ab3cec0c8bf4 593 // second, to make the physical pin layout match the LED-Wiz port
mjr 17:ab3cec0c8bf4 594 // numbering order to the extent possible. There's one big wrench
mjr 17:ab3cec0c8bf4 595 // in the works, though, which is the limited number and discontiguous
mjr 17:ab3cec0c8bf4 596 // placement of the KL25Z PWM-capable output pins. This prevents
mjr 17:ab3cec0c8bf4 597 // us from doing the most obvious sequential ordering of the pins,
mjr 17:ab3cec0c8bf4 598 // so we end up with the outputs arranged into several blocks.
mjr 17:ab3cec0c8bf4 599 // Hopefully this isn't too confusing; for more detailed rationale,
mjr 17:ab3cec0c8bf4 600 // read on...
mjr 17:ab3cec0c8bf4 601 //
mjr 17:ab3cec0c8bf4 602 // With the LED-Wiz, the host software configuration usually
mjr 17:ab3cec0c8bf4 603 // assumes that each RGB LED is hooked up to three consecutive ports
mjr 17:ab3cec0c8bf4 604 // (for the red, green, and blue components, which need to be
mjr 17:ab3cec0c8bf4 605 // physically wired to separate outputs to allow each color to be
mjr 17:ab3cec0c8bf4 606 // controlled independently). To facilitate this, we arrange the
mjr 17:ab3cec0c8bf4 607 // PWM-enabled outputs so that they're grouped together in the
mjr 17:ab3cec0c8bf4 608 // port numbering scheme. Unfortunately, these outputs aren't
mjr 17:ab3cec0c8bf4 609 // together in a single group in the physical pin layout, so to
mjr 17:ab3cec0c8bf4 610 // group them logically in the LED-Wiz port numbering scheme, we
mjr 17:ab3cec0c8bf4 611 // have to break up the overall numbering scheme into several blocks.
mjr 17:ab3cec0c8bf4 612 // So our port numbering goes sequentially down each column of
mjr 17:ab3cec0c8bf4 613 // header pins, but there are several break points where we have
mjr 17:ab3cec0c8bf4 614 // to interrupt the obvious sequence to keep the PWM pins grouped
mjr 17:ab3cec0c8bf4 615 // logically.
mjr 17:ab3cec0c8bf4 616 //
mjr 17:ab3cec0c8bf4 617 // In the list below, "pin J1-2" refers to pin 2 on header J1 on
mjr 17:ab3cec0c8bf4 618 // the KL25Z, using the standard pin numbering in the KL25Z
mjr 17:ab3cec0c8bf4 619 // documentation - this is the physical pin that the port controls.
mjr 17:ab3cec0c8bf4 620 // "LW port 1" means LED-Wiz port 1 - this is the LED-Wiz port
mjr 17:ab3cec0c8bf4 621 // number that you use on the PC side (in the DirectOutput config
mjr 17:ab3cec0c8bf4 622 // file, for example) to address the port. PWM-capable ports are
mjr 17:ab3cec0c8bf4 623 // marked as such - we group the PWM-capable ports into the first
mjr 17:ab3cec0c8bf4 624 // 10 LED-Wiz port numbers.
mjr 17:ab3cec0c8bf4 625 //
mjr 17:ab3cec0c8bf4 626 // If you wish to reallocate a pin in the array below to some other
mjr 17:ab3cec0c8bf4 627 // use, such as a button input port, simply change the pin name in
mjr 17:ab3cec0c8bf4 628 // the entry to NC (for Not Connected). This will disable the given
mjr 17:ab3cec0c8bf4 629 // logical LedWiz port number and free up the physical pin.
mjr 17:ab3cec0c8bf4 630 //
mjr 17:ab3cec0c8bf4 631 // If you wish to reallocate a pin currently assigned to the button
mjr 17:ab3cec0c8bf4 632 // input array, simply change the entry for the pin in the buttonMap[]
mjr 17:ab3cec0c8bf4 633 // array above to NC (for "not connected"), and plug the pin name into
mjr 17:ab3cec0c8bf4 634 // a slot of your choice in the array below.
mjr 17:ab3cec0c8bf4 635 //
mjr 33:d832bcab089e 636 // Note: Don't assign PTD1 (pin J2-12) as an LedWiz output. That pin
mjr 33:d832bcab089e 637 // is hard-wired on the KL25Z to the on-board indicator LED's blue segment,
mjr 33:d832bcab089e 638 // which pretty much precludes any other use of the pin.
mjr 33:d832bcab089e 639 //
mjr 33:d832bcab089e 640 // ACTIVE-LOW PORTS: By default, when a logical port is turned on in
mjr 33:d832bcab089e 641 // the software, we set the physical GPIO voltage to "high" (3.3V), and
mjr 33:d832bcab089e 642 // set it "low" (0V) when the logical port is off. This is the right
mjr 33:d832bcab089e 643 // scheme for the booster circuit described in the build guide. Some
mjr 33:d832bcab089e 644 // third-party booster circuits want the opposite voltage scheme, where
mjr 33:d832bcab089e 645 // logical "on" is represented by 0V on the port and logical "off" is
mjr 33:d832bcab089e 646 // represented by 3.3V. If you're using an "active low" booster like
mjr 33:d832bcab089e 647 // that, set the PORT_ACTIVE_LOW flag in the array below for each
mjr 33:d832bcab089e 648 // affected port.
mjr 33:d832bcab089e 649 //
mjr 33:d832bcab089e 650 // TLC5940 PORTS: To assign an LedWiz output port number to a particular
mjr 33:d832bcab089e 651 // output on a TLC5940, set tlcPortNum to the non-zero port number,
mjr 33:d832bcab089e 652 // starting at 1 for the first output on the first chip, 16 for the
mjr 33:d832bcab089e 653 // last output on the first chip, 17 for the first output on the second
mjr 33:d832bcab089e 654 // chip, and so on. TLC ports are inherently PWM-capable only, so it's
mjr 33:d832bcab089e 655 // not necessary to set the PORT_IS_PWM flag for those.
mjr 33:d832bcab089e 656 //
mjr 33:d832bcab089e 657
mjr 33:d832bcab089e 658 // ledWizPortMap 'flags' bits - combine these with '|'
mjr 33:d832bcab089e 659 const int PORT_IS_PWM = 0x0001; // this port is PWM-capable
mjr 33:d832bcab089e 660 const int PORT_ACTIVE_LOW = 0x0002; // use LOW voltage (0V) when port is ON
mjr 33:d832bcab089e 661
mjr 17:ab3cec0c8bf4 662 struct {
mjr 33:d832bcab089e 663 PinName pin; // the GPIO pin assigned to this output; NC if not connected or a TLC5940 port
mjr 33:d832bcab089e 664 int flags; // flags - a combination of PORT_xxx flag bits (see above)
mjr 33:d832bcab089e 665 int tlcPortNum; // for TLC5940 ports, the TLC output number (1 to number of chips*16); otherwise 0
mjr 33:d832bcab089e 666 } ledWizPortMap[] = {
mjr 33:d832bcab089e 667
mjr 33:d832bcab089e 668 #if TLC5940_NCHIPS == 0
mjr 33:d832bcab089e 669
mjr 33:d832bcab089e 670 // *** BASIC MODE - GPIO OUTPUTS ONLY ***
mjr 33:d832bcab089e 671 // This is the basic mapping, using entirely GPIO pins, for when you're
mjr 33:d832bcab089e 672 // not using external TLC5940 chips. We provide 22 physical outputs, 10
mjr 33:d832bcab089e 673 // of which are PWM capable.
mjr 33:d832bcab089e 674 //
mjr 33:d832bcab089e 675 // Important! Note that the "isPWM" setting isn't just something we get to
mjr 33:d832bcab089e 676 // choose. It's a feature of the KL25Z hardware. Some pins are PWM capable
mjr 33:d832bcab089e 677 // and some aren't, and there's nothing we can do about that in the software.
mjr 33:d832bcab089e 678 // Refer to the KL25Z manual or schematics for the possible connections. Note
mjr 33:d832bcab089e 679 // that there are other PWM-capable pins besides the 10 shown below, BUT they
mjr 33:d832bcab089e 680 // all share TPM channels with the pins below. For example, TPM 2.0 can be
mjr 33:d832bcab089e 681 // connected to PTA1, PTB2, PTB18, PTE22 - but only one at a time. So if you
mjr 33:d832bcab089e 682 // want to use PTB2 as a PWM out, it means you CAN'T use PTA1 as a PWM out.
mjr 33:d832bcab089e 683 // We commented each PWM pin with its hardware channel number to help you keep
mjr 33:d832bcab089e 684 // track of available channels if you do need to rearrange any of these pins.
mjr 33:d832bcab089e 685
mjr 33:d832bcab089e 686 { PTA1, PORT_IS_PWM }, // pin J1-2, LW port 1 (PWM capable - TPM 2.0 = channel 9)
mjr 33:d832bcab089e 687 { PTA2, PORT_IS_PWM }, // pin J1-4, LW port 2 (PWM capable - TPM 2.1 = channel 10)
mjr 33:d832bcab089e 688 { PTD4, PORT_IS_PWM }, // pin J1-6, LW port 3 (PWM capable - TPM 0.4 = channel 5)
mjr 33:d832bcab089e 689 { PTA12, PORT_IS_PWM }, // pin J1-8, LW port 4 (PWM capable - TPM 1.0 = channel 7)
mjr 33:d832bcab089e 690 { PTA4, PORT_IS_PWM }, // pin J1-10, LW port 5 (PWM capable - TPM 0.1 = channel 2)
mjr 33:d832bcab089e 691 { PTA5, PORT_IS_PWM }, // pin J1-12, LW port 6 (PWM capable - TPM 0.2 = channel 3)
mjr 33:d832bcab089e 692 { PTA13, PORT_IS_PWM }, // pin J2-2, LW port 7 (PWM capable - TPM 1.1 = channel 13)
mjr 33:d832bcab089e 693 { PTD5, PORT_IS_PWM }, // pin J2-4, LW port 8 (PWM capable - TPM 0.5 = channel 6)
mjr 33:d832bcab089e 694 { PTD0, PORT_IS_PWM }, // pin J2-6, LW port 9 (PWM capable - TPM 0.0 = channel 1)
mjr 33:d832bcab089e 695 { PTD3, PORT_IS_PWM }, // pin J2-10, LW port 10 (PWM capable - TPM 0.3 = channel 4)
mjr 33:d832bcab089e 696 { PTD2, 0 }, // pin J2-8, LW port 11
mjr 33:d832bcab089e 697 { PTC8, 0 }, // pin J1-14, LW port 12
mjr 33:d832bcab089e 698 { PTC9, 0 }, // pin J1-16, LW port 13
mjr 33:d832bcab089e 699 { PTC7, 0 }, // pin J1-1, LW port 14
mjr 33:d832bcab089e 700 { PTC0, 0 }, // pin J1-3, LW port 15
mjr 33:d832bcab089e 701 { PTC3, 0 }, // pin J1-5, LW port 16
mjr 33:d832bcab089e 702 { PTC4, 0 }, // pin J1-7, LW port 17
mjr 33:d832bcab089e 703 { PTC5, 0 }, // pin J1-9, LW port 18
mjr 33:d832bcab089e 704 { PTC6, 0 }, // pin J1-11, LW port 19
mjr 33:d832bcab089e 705 { PTC10, 0 }, // pin J1-13, LW port 20
mjr 33:d832bcab089e 706 { PTC11, 0 }, // pin J1-15, LW port 21
mjr 33:d832bcab089e 707 { PTE0, 0 }, // pin J2-18, LW port 22
mjr 33:d832bcab089e 708 { NC, 0 }, // Not connected, LW port 23
mjr 33:d832bcab089e 709 { NC, 0 }, // Not connected, LW port 24
mjr 33:d832bcab089e 710 { NC, 0 }, // Not connected, LW port 25
mjr 33:d832bcab089e 711 { NC, 0 }, // Not connected, LW port 26
mjr 33:d832bcab089e 712 { NC, 0 }, // Not connected, LW port 27
mjr 33:d832bcab089e 713 { NC, 0 }, // Not connected, LW port 28
mjr 33:d832bcab089e 714 { NC, 0 }, // Not connected, LW port 29
mjr 33:d832bcab089e 715 { NC, 0 }, // Not connected, LW port 30
mjr 33:d832bcab089e 716 { NC, 0 }, // Not connected, LW port 31
mjr 33:d832bcab089e 717 { NC, 0 } // Not connected, LW port 32
mjr 33:d832bcab089e 718
mjr 33:d832bcab089e 719 #elif defined(EXPANSION_BOARD)
mjr 33:d832bcab089e 720
mjr 33:d832bcab089e 721 // *** EXPANSION BOARD MODE ***
mjr 33:d832bcab089e 722 //
mjr 33:d832bcab089e 723 // This mapping is for the expansion board, which uses four TLC5940
mjr 33:d832bcab089e 724 // chips to provide 64 outputs. The expansion board also uses
mjr 33:d832bcab089e 725 // one GPIO pin to provide a digital (non-PWM) output dedicated to
mjr 33:d832bcab089e 726 // the knocker circuit. That's on a digital pin because it's used
mjr 33:d832bcab089e 727 // to trigger an external timer circuit that limits the amount of
mjr 33:d832bcab089e 728 // time that the knocker coil can be continuously energized, to protect
mjr 33:d832bcab089e 729 // it against software faults on the PC that leave the port stuck on.
mjr 33:d832bcab089e 730 // (The knocker coil is unique among standard virtual cabinet output
mjr 33:d832bcab089e 731 // devices in this respect - it's the only device in common use that
mjr 33:d832bcab089e 732 // can be damaged if left on for too long. Other devices won't be
mjr 33:d832bcab089e 733 // damaged, so they don't require such elaborate precautions.)
mjr 33:d832bcab089e 734 //
mjr 33:d832bcab089e 735 // The specific device assignments in the last column are just
mjr 33:d832bcab089e 736 // recommendations - you can assign any port to any device with
mjr 33:d832bcab089e 737 // compatible power needs. The "General Purpose" ports are good to
mjr 33:d832bcab089e 738 // at least 5A, so you can use these for virtually anything. The
mjr 33:d832bcab089e 739 // "Button light" ports are good to about 1.5A, so these are most
mjr 33:d832bcab089e 740 // suitable for smaller loads like lamps, flashers, LEDs, etc. The
mjr 33:d832bcab089e 741 // flipper and magnasave ports will only provide 20mA, so these are
mjr 33:d832bcab089e 742 // only usable for small LEDs.
mjr 33:d832bcab089e 743
mjr 33:d832bcab089e 744 // The first 32 ports are LedWiz-compatible, so they're universally
mjr 33:d832bcab089e 745 // accessible, even to older non-DOF software. Attach the most common
mjr 33:d832bcab089e 746 // devices to these ports.
mjr 33:d832bcab089e 747 { NC, 0, 1 }, // TLC port 1, LW output 1 - Flasher 1 R
mjr 33:d832bcab089e 748 { NC, 0, 2 }, // TLC port 2, LW output 2 - Flasher 1 G
mjr 33:d832bcab089e 749 { NC, 0, 3 }, // TLC port 3, LW output 3 - Flasher 1 B
mjr 33:d832bcab089e 750 { NC, 0, 4 }, // TLC port 4, LW output 4 - Flasher 2 R
mjr 33:d832bcab089e 751 { NC, 0, 5 }, // TLC port 5, LW output 5 - Flasher 2 G
mjr 33:d832bcab089e 752 { NC, 0, 6 }, // TLC port 6, LW output 6 - Flasher 2 B
mjr 33:d832bcab089e 753 { NC, 0, 7 }, // TLC port 7, LW output 7 - Flasher 3 R
mjr 33:d832bcab089e 754 { NC, 0, 8 }, // TLC port 8, LW output 8 - Flasher 3 G
mjr 33:d832bcab089e 755 { NC, 0, 9 }, // TLC port 9, LW output 9 - Flasher 3 B
mjr 33:d832bcab089e 756 { NC, 0, 10 }, // TLC port 10, LW output 10 - Flasher 4 R
mjr 33:d832bcab089e 757 { NC, 0, 11 }, // TLC port 11, LW output 11 - Flasher 4 G
mjr 33:d832bcab089e 758 { NC, 0, 12 }, // TLC port 12, LW output 12 - Flasher 4 B
mjr 33:d832bcab089e 759 { NC, 0, 13 }, // TLC port 13, LW output 13 - Flasher 5 R
mjr 33:d832bcab089e 760 { NC, 0, 14 }, // TLC port 14, LW output 14 - Flasher 5 G
mjr 33:d832bcab089e 761 { NC, 0, 15 }, // TLC port 15, LW output 15 - Flasher 5 B
mjr 33:d832bcab089e 762 { NC, 0, 16 }, // TLC port 16, LW output 16 - Strobe/Button light
mjr 33:d832bcab089e 763 { NC, 0, 17 }, // TLC port 17, LW output 17 - Button light 1
mjr 33:d832bcab089e 764 { NC, 0, 18 }, // TLC port 18, LW output 18 - Button light 2
mjr 33:d832bcab089e 765 { NC, 0, 19 }, // TLC port 19, LW output 19 - Button light 3
mjr 33:d832bcab089e 766 { NC, 0, 20 }, // TLC port 20, LW output 20 - Button light 4
mjr 33:d832bcab089e 767 { PTC8, 0, 0 }, // PTC8, LW output 21 - Replay Knocker
mjr 33:d832bcab089e 768 { NC, 0, 21 }, // TLC port 21, LW output 22 - Contactor 1/General purpose
mjr 33:d832bcab089e 769 { NC, 0, 22 }, // TLC port 22, LW output 23 - Contactor 2/General purpose
mjr 33:d832bcab089e 770 { NC, 0, 23 }, // TLC port 23, LW output 24 - Contactor 3/General purpose
mjr 33:d832bcab089e 771 { NC, 0, 24 }, // TLC port 24, LW output 25 - Contactor 4/General purpose
mjr 33:d832bcab089e 772 { NC, 0, 25 }, // TLC port 25, LW output 26 - Contactor 5/General purpose
mjr 33:d832bcab089e 773 { NC, 0, 26 }, // TLC port 26, LW output 27 - Contactor 6/General purpose
mjr 33:d832bcab089e 774 { NC, 0, 27 }, // TLC port 27, LW output 28 - Contactor 7/General purpose
mjr 33:d832bcab089e 775 { NC, 0, 28 }, // TLC port 28, LW output 29 - Contactor 8/General purpose
mjr 33:d832bcab089e 776 { NC, 0, 29 }, // TLC port 29, LW output 30 - Contactor 9/General purpose
mjr 33:d832bcab089e 777 { NC, 0, 30 }, // TLC port 30, LW output 31 - Contactor 10/General purpose
mjr 33:d832bcab089e 778 { NC, 0, 31 }, // TLC port 31, LW output 32 - Shaker Motor/General purpose
mjr 33:d832bcab089e 779
mjr 33:d832bcab089e 780 // Ports 33+ are accessible only to DOF-based software. Older LedWiz-only
mjr 33:d832bcab089e 781 // software on the can't access these. Attach less common devices to these ports.
mjr 33:d832bcab089e 782 { NC, 0, 32 }, // TLC port 32, LW output 33 - Gear Motor/General purpose
mjr 33:d832bcab089e 783 { NC, 0, 33 }, // TLC port 33, LW output 34 - Fan/General purpose
mjr 33:d832bcab089e 784 { NC, 0, 34 }, // TLC port 34, LW output 35 - Beacon/General purpose
mjr 33:d832bcab089e 785 { NC, 0, 35 }, // TLC port 35, LW output 36 - Undercab RGB R/General purpose
mjr 33:d832bcab089e 786 { NC, 0, 36 }, // TLC port 36, LW output 37 - Undercab RGB G/General purpose
mjr 33:d832bcab089e 787 { NC, 0, 37 }, // TLC port 37, LW output 38 - Undercab RGB B/General purpose
mjr 33:d832bcab089e 788 { NC, 0, 38 }, // TLC port 38, LW output 39 - Bell/General purpose
mjr 33:d832bcab089e 789 { NC, 0, 39 }, // TLC port 39, LW output 40 - Chime 1/General purpose
mjr 33:d832bcab089e 790 { NC, 0, 40 }, // TLC port 40, LW output 41 - Chime 2/General purpose
mjr 33:d832bcab089e 791 { NC, 0, 41 }, // TLC port 41, LW output 42 - Chime 3/General purpose
mjr 33:d832bcab089e 792 { NC, 0, 42 }, // TLC port 42, LW output 43 - General purpose
mjr 33:d832bcab089e 793 { NC, 0, 43 }, // TLC port 43, LW output 44 - General purpose
mjr 33:d832bcab089e 794 { NC, 0, 44 }, // TLC port 44, LW output 45 - Button light 5
mjr 33:d832bcab089e 795 { NC, 0, 45 }, // TLC port 45, LW output 46 - Button light 6
mjr 33:d832bcab089e 796 { NC, 0, 46 }, // TLC port 46, LW output 47 - Button light 7
mjr 33:d832bcab089e 797 { NC, 0, 47 }, // TLC port 47, LW output 48 - Button light 8
mjr 33:d832bcab089e 798 { NC, 0, 49 }, // TLC port 49, LW output 49 - Flipper button RGB left R
mjr 33:d832bcab089e 799 { NC, 0, 50 }, // TLC port 50, LW output 50 - Flipper button RGB left G
mjr 33:d832bcab089e 800 { NC, 0, 51 }, // TLC port 51, LW output 51 - Flipper button RGB left B
mjr 33:d832bcab089e 801 { NC, 0, 52 }, // TLC port 52, LW output 52 - Flipper button RGB right R
mjr 33:d832bcab089e 802 { NC, 0, 53 }, // TLC port 53, LW output 53 - Flipper button RGB right G
mjr 33:d832bcab089e 803 { NC, 0, 54 }, // TLC port 54, LW output 54 - Flipper button RGB right B
mjr 33:d832bcab089e 804 { NC, 0, 55 }, // TLC port 55, LW output 55 - MagnaSave button RGB left R
mjr 33:d832bcab089e 805 { NC, 0, 56 }, // TLC port 56, LW output 56 - MagnaSave button RGB left G
mjr 33:d832bcab089e 806 { NC, 0, 57 }, // TLC port 57, LW output 57 - MagnaSave button RGB left B
mjr 33:d832bcab089e 807 { NC, 0, 58 }, // TLC port 58, LW output 58 - MagnaSave button RGB right R
mjr 33:d832bcab089e 808 { NC, 0, 59 }, // TLC port 59, LW output 59 - MagnaSave button RGB right G
mjr 33:d832bcab089e 809 { NC, 0, 60 } // TLC port 60, LW output 60 - MagnaSave button RGB right B
mjr 33:d832bcab089e 810
mjr 33:d832bcab089e 811 #else
mjr 33:d832bcab089e 812
mjr 33:d832bcab089e 813 // *** TLC5940 + GPIO OUTPUTS, Without the expansion board ***
mjr 33:d832bcab089e 814 //
mjr 33:d832bcab089e 815 // This is the mapping for the ehnanced mode, with one or more TLC5940
mjr 33:d832bcab089e 816 // chips connected. Each TLC5940 chip provides 16 PWM channels. We
mjr 33:d832bcab089e 817 // can supplement the TLC5940 outputs with GPIO pins to get even more
mjr 33:d832bcab089e 818 // physical outputs.
mjr 33:d832bcab089e 819 //
mjr 33:d832bcab089e 820 // Because we've already declared the number of TLC5940 chips earlier
mjr 33:d832bcab089e 821 // in this file, we don't actually have to map out all of the TLC5940
mjr 33:d832bcab089e 822 // ports here. The software will automatically assign all of the
mjr 33:d832bcab089e 823 // TLC5940 ports that aren't explicitly mentioned here to the next
mjr 33:d832bcab089e 824 // available LedWiz port numbers after the end of this array, assigning
mjr 33:d832bcab089e 825 // them sequentially in TLC5940 port order.
mjr 33:d832bcab089e 826 //
mjr 33:d832bcab089e 827 // In contrast to the basic mode arrangement, we're putting all of the
mjr 33:d832bcab089e 828 // NON PWM ports first in this mapping. The logic is that all of the
mjr 33:d832bcab089e 829 // TLC5940 ports are PWM-capable, and they'll all at the end of the list
mjr 33:d832bcab089e 830 // here, so by putting the PWM GPIO pins last here, we'll keep all of the
mjr 33:d832bcab089e 831 // PWM ports grouped in the final mapping.
mjr 33:d832bcab089e 832 //
mjr 33:d832bcab089e 833 // Note that the TLC5940 control wiring takes away several GPIO pins
mjr 33:d832bcab089e 834 // that we used as output ports in the basic mode. Further, because the
mjr 33:d832bcab089e 835 // TLC5940 makes ports so plentiful, we're intentionally omitting several
mjr 33:d832bcab089e 836 // more of the pins from the basic set, to make them available for other
mjr 33:d832bcab089e 837 // uses. To keep things more neatly grouped, we're only assigning J1 pins
mjr 33:d832bcab089e 838 // in this set. This leaves the following ports from the basic mode output
mjr 33:d832bcab089e 839 // set available for other users: PTA13, PTD0, PTD2, PTD3, PTD5, PTE0.
mjr 33:d832bcab089e 840
mjr 33:d832bcab089e 841 { PTC8, 0 }, // pin J1-14, LW port 1
mjr 33:d832bcab089e 842 { PTC9, 0 }, // pin J1-16, LW port 2
mjr 33:d832bcab089e 843 { PTC0, 0 }, // pin J1-3, LW port 3
mjr 33:d832bcab089e 844 { PTC3, 0 }, // pin J1-5, LW port 4
mjr 33:d832bcab089e 845 { PTC4, 0 }, // pin J1-7, LW port 5
mjr 33:d832bcab089e 846 { PTA2, PORT_IS_PWM }, // pin J1-4, LW port 6 (PWM capable - TPM 2.1 = channel 10)
mjr 33:d832bcab089e 847 { PTD4, PORT_IS_PWM }, // pin J1-6, LW port 7 (PWM capable - TPM 0.4 = channel 5)
mjr 33:d832bcab089e 848 { PTA12, PORT_IS_PWM }, // pin J1-8, LW port 8 (PWM capable - TPM 1.0 = channel 7)
mjr 33:d832bcab089e 849 { PTA4, PORT_IS_PWM }, // pin J1-10, LW port 9 (PWM capable - TPM 0.1 = channel 2)
mjr 33:d832bcab089e 850 { PTA5, PORT_IS_PWM } // pin J1-12, LW port 10 (PWM capable - TPM 0.2 = channel 3)
mjr 33:d832bcab089e 851
mjr 33:d832bcab089e 852 // TLC5940 ports start here!
mjr 33:d832bcab089e 853 // First chip port 0 -> LW port 12
mjr 33:d832bcab089e 854 // First chip port 1 -> LW port 13
mjr 33:d832bcab089e 855 // ... etc, filling out all chip ports sequentially ...
mjr 33:d832bcab089e 856
mjr 33:d832bcab089e 857 #endif // TLC5940_NCHIPS
mjr 17:ab3cec0c8bf4 858 };
mjr 17:ab3cec0c8bf4 859
mjr 21:5048e16cc9ef 860
mjr 25:e22b88bd783a 861 #endif // DECL_EXTERNS