An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Wed Feb 03 22:57:25 2016 +0000
Revision:
40:cc0d9814522b
Parent:
39:b3815a1c3802
Child:
43:7a6364d82a41
Gamma correction option for outputs; work in progress on new config program

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 /* Copyright 2014, 2015 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 5:a70c0bce770d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 38:091e511ce8a0 23 // This project implements an I/O controller for virtual pinball cabinets. Its
mjr 38:091e511ce8a0 24 // function is to connect Windows pinball software, such as Visual Pinball, with
mjr 38:091e511ce8a0 25 // physical devices in the cabinet: buttons, sensors, and feedback devices that
mjr 38:091e511ce8a0 26 // create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 38:091e511ce8a0 28 // The software can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 38:091e511ce8a0 42 // - Plunger position sensing, with mulitple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 38:091e511ce8a0 55 // Note VP has built-in support for plunger devices like this one, but some VP
mjr 38:091e511ce8a0 56 // tables can't use it without some additional scripting work. The Build Guide has
mjr 38:091e511ce8a0 57 // advice on adjusting tables to add plunger support when necessary.
mjr 5:a70c0bce770d 58 //
mjr 6:cc35eb643e8f 59 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 60 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 61 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 62 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 63 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 64 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 65 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 66 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 67 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 68 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 69 //
mjr 17:ab3cec0c8bf4 70 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 71 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 72 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 73 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 74 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 75 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 76 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 77 //
mjr 13:72dda449c3c0 78 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 38:091e511ce8a0 79 // for buttons and switches. You can wire each input to a physical pinball-style
mjr 38:091e511ce8a0 80 // button or switch, such as flipper buttons, Start buttons, coin chute switches,
mjr 38:091e511ce8a0 81 // tilt bobs, and service buttons. Each button can be configured to be reported
mjr 38:091e511ce8a0 82 // to the PC as a joystick button or as a keyboard key (you can select which key
mjr 38:091e511ce8a0 83 // is used for each button).
mjr 13:72dda449c3c0 84 //
mjr 5:a70c0bce770d 85 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 86 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 87 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 40:cc0d9814522b 88 // of ports. The KL25Z hardware is limited to 10 PWM ports. Ports beyond the
mjr 40:cc0d9814522b 89 // 10 PWM ports are simple digital on/off ports. Intensity level settings on
mjr 40:cc0d9814522b 90 // digital ports is ignored, so such ports can only be used for devices such as
mjr 40:cc0d9814522b 91 // contactors and solenoids that don't need differeing intensities.
mjr 5:a70c0bce770d 92 //
mjr 40:cc0d9814522b 93 // Note that the KL25Z can only supply or sink 4mA on its output ports, so external
mjr 40:cc0d9814522b 94 // amplifier hardware is required to use the LedWiz emulation. Many different
mjr 40:cc0d9814522b 95 // hardware designs are possible, but there's a simple reference design in the
mjr 40:cc0d9814522b 96 // documentation that uses a Darlington array IC to increase the output from
mjr 40:cc0d9814522b 97 // each port to 500mA (the same level as the LedWiz), plus an extended design
mjr 40:cc0d9814522b 98 // that adds an optocoupler and MOSFET to provide very high power handling, up
mjr 40:cc0d9814522b 99 // to about 45A or 150W, with voltages up to 100V. That will handle just about
mjr 40:cc0d9814522b 100 // any DC device directly (wtihout relays or other amplifiers), and switches fast
mjr 40:cc0d9814522b 101 // enough to support PWM devices. For example, you can use it to drive a motor at
mjr 40:cc0d9814522b 102 // different speeds via the PWM intensity.
mjr 40:cc0d9814522b 103 //
mjr 40:cc0d9814522b 104 // The Controller device can report any desired LedWiz unit number to the host,
mjr 40:cc0d9814522b 105 // which makes it possible for one or more Pinscape Controller units to coexist
mjr 40:cc0d9814522b 106 // with one more more real LedWiz units in the same machine. The LedWiz design
mjr 40:cc0d9814522b 107 // allows for up to 16 units to be installed in one machine. Each device needs
mjr 40:cc0d9814522b 108 // to have a distinct LedWiz Unit Number, which allows software on the PC to
mjr 40:cc0d9814522b 109 // address each device independently.
mjr 5:a70c0bce770d 110 //
mjr 5:a70c0bce770d 111 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 112 // build any of the external port hardware (or attach anything to the output
mjr 40:cc0d9814522b 113 // ports at all) if the LedWiz features aren't needed.
mjr 6:cc35eb643e8f 114 //
mjr 26:cb71c4af2912 115 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 116 // external PWM controller chips for controlling device outputs, instead of using
mjr 26:cb71c4af2912 117 // the limited LedWiz emulation through the on-board GPIO ports as described above.
mjr 26:cb71c4af2912 118 // The software can control a set of daisy-chained TLC5940 chips, which provide
mjr 26:cb71c4af2912 119 // 16 PWM outputs per chip. Two of these chips give you the full complement
mjr 26:cb71c4af2912 120 // of 32 output ports of an actual LedWiz, and four give you 64 ports, which
mjr 33:d832bcab089e 121 // should be plenty for nearly any virtual pinball project. A private, extended
mjr 33:d832bcab089e 122 // version of the LedWiz protocol lets the host control the extra outputs, up to
mjr 33:d832bcab089e 123 // 128 outputs per KL25Z (8 TLC5940s). To take advantage of the extra outputs
mjr 33:d832bcab089e 124 // on the PC side, you need software that knows about the protocol extensions,
mjr 33:d832bcab089e 125 // which means you need the latest version of DirectOutput Framework (DOF). VP
mjr 33:d832bcab089e 126 // uses DOF for its output, so VP will be able to use the added ports without any
mjr 33:d832bcab089e 127 // extra work on your part. Older software (e.g., Future Pinball) that doesn't
mjr 33:d832bcab089e 128 // use DOF will still be able to use the LedWiz-compatible protocol, so it'll be
mjr 33:d832bcab089e 129 // able to control your first 32 ports (numbered 1-32 in the LedWiz scheme), but
mjr 33:d832bcab089e 130 // older software won't be able to address higher-numbered ports. That shouldn't
mjr 33:d832bcab089e 131 // be a problem because older software wouldn't know what to do with the extra
mjr 33:d832bcab089e 132 // devices anyway - FP, for example, is limited to a pre-defined set of outputs.
mjr 33:d832bcab089e 133 // As long as you put the most common devices on the first 32 outputs, and use
mjr 33:d832bcab089e 134 // higher numbered ports for the less common devices that older software can't
mjr 33:d832bcab089e 135 // use anyway, you'll get maximum functionality out of software new and old.
mjr 26:cb71c4af2912 136 //
mjr 38:091e511ce8a0 137 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 138 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 139 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 140 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 141 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 142 //
mjr 38:091e511ce8a0 143 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 144 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 145 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 146 // To use this feature, you have to build some external circuitry to allow the
mjr 38:091e511ce8a0 147 // software to sense the power supply status, and you have to run wires to your
mjr 38:091e511ce8a0 148 // TV's on/off button, which requires opening the case on your TV. The Build
mjr 38:091e511ce8a0 149 // Guide has details on the necessary circuitry and connections to the TV.
mjr 38:091e511ce8a0 150 //
mjr 35:e959ffba78fd 151 //
mjr 35:e959ffba78fd 152 //
mjr 33:d832bcab089e 153 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 154 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 155 //
mjr 6:cc35eb643e8f 156 // two short red flashes = the device is powered but hasn't successfully
mjr 6:cc35eb643e8f 157 // connected to the host via USB (either it's not physically connected
mjr 6:cc35eb643e8f 158 // to the USB port, or there was a problem with the software handshake
mjr 6:cc35eb643e8f 159 // with the USB device driver on the computer)
mjr 6:cc35eb643e8f 160 //
mjr 6:cc35eb643e8f 161 // short red flash = the host computer is in sleep/suspend mode
mjr 6:cc35eb643e8f 162 //
mjr 38:091e511ce8a0 163 // long red/yellow = USB connection problem. The device still has a USB
mjr 38:091e511ce8a0 164 // connection to the host, but data transmissions are failing. This
mjr 38:091e511ce8a0 165 // condition shouldn't ever occur; if it does, it probably indicates
mjr 38:091e511ce8a0 166 // a bug in the device's USB software. This display is provided to
mjr 38:091e511ce8a0 167 // flag any occurrences for investigation. You'll probably need to
mjr 38:091e511ce8a0 168 // manually reset the device if this occurs.
mjr 38:091e511ce8a0 169 //
mjr 6:cc35eb643e8f 170 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 171 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 172 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 173 // no plunger sensor configured.
mjr 6:cc35eb643e8f 174 //
mjr 38:091e511ce8a0 175 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 176 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 177 //
mjr 10:976666ffa4ef 178 //
mjr 35:e959ffba78fd 179 // USB PROTOCOL: please refer to USBProtocol.h for details on the USB
mjr 35:e959ffba78fd 180 // message protocol.
mjr 33:d832bcab089e 181
mjr 33:d832bcab089e 182
mjr 0:5acbbe3f4cf4 183 #include "mbed.h"
mjr 6:cc35eb643e8f 184 #include "math.h"
mjr 0:5acbbe3f4cf4 185 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 186 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 187 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 188 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 189 #include "crc32.h"
mjr 26:cb71c4af2912 190 #include "TLC5940.h"
mjr 34:6b981a2afab7 191 #include "74HC595.h"
mjr 35:e959ffba78fd 192 #include "nvm.h"
mjr 35:e959ffba78fd 193 #include "plunger.h"
mjr 35:e959ffba78fd 194 #include "ccdSensor.h"
mjr 35:e959ffba78fd 195 #include "potSensor.h"
mjr 35:e959ffba78fd 196 #include "nullSensor.h"
mjr 2:c174f9ee414a 197
mjr 21:5048e16cc9ef 198 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 199 #include "config.h"
mjr 17:ab3cec0c8bf4 200
mjr 5:a70c0bce770d 201
mjr 5:a70c0bce770d 202 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 203 //
mjr 38:091e511ce8a0 204 // Forward declarations
mjr 38:091e511ce8a0 205 //
mjr 38:091e511ce8a0 206 void setNightMode(bool on);
mjr 38:091e511ce8a0 207 void toggleNightMode();
mjr 38:091e511ce8a0 208
mjr 38:091e511ce8a0 209 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 210 // utilities
mjr 17:ab3cec0c8bf4 211
mjr 17:ab3cec0c8bf4 212 // number of elements in an array
mjr 17:ab3cec0c8bf4 213 #define countof(x) (sizeof(x)/sizeof((x)[0]))
mjr 17:ab3cec0c8bf4 214
mjr 26:cb71c4af2912 215 // floating point square of a number
mjr 26:cb71c4af2912 216 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 217
mjr 26:cb71c4af2912 218 // floating point rounding
mjr 26:cb71c4af2912 219 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 220
mjr 17:ab3cec0c8bf4 221
mjr 33:d832bcab089e 222 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 223 //
mjr 40:cc0d9814522b 224 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 225 // the running state.
mjr 40:cc0d9814522b 226 //
mjr 40:cc0d9814522b 227 class Timer2: public Timer
mjr 40:cc0d9814522b 228 {
mjr 40:cc0d9814522b 229 public:
mjr 40:cc0d9814522b 230 Timer2() : running(false) { }
mjr 40:cc0d9814522b 231
mjr 40:cc0d9814522b 232 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 233 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 234
mjr 40:cc0d9814522b 235 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 236
mjr 40:cc0d9814522b 237 private:
mjr 40:cc0d9814522b 238 bool running;
mjr 40:cc0d9814522b 239 };
mjr 40:cc0d9814522b 240
mjr 40:cc0d9814522b 241 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 242 //
mjr 33:d832bcab089e 243 // USB product version number
mjr 5:a70c0bce770d 244 //
mjr 40:cc0d9814522b 245 const uint16_t USB_VERSION_NO = 0x0009;
mjr 33:d832bcab089e 246
mjr 33:d832bcab089e 247 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 248 //
mjr 6:cc35eb643e8f 249 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 250 //
mjr 6:cc35eb643e8f 251 #define JOYMAX 4096
mjr 6:cc35eb643e8f 252
mjr 9:fd65b0a94720 253
mjr 17:ab3cec0c8bf4 254 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 255 //
mjr 40:cc0d9814522b 256 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 257 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 258 //
mjr 35:e959ffba78fd 259
mjr 35:e959ffba78fd 260 // unsigned 16-bit integer
mjr 35:e959ffba78fd 261 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 262 {
mjr 35:e959ffba78fd 263 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 264 }
mjr 40:cc0d9814522b 265 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 266 {
mjr 40:cc0d9814522b 267 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 268 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 269 }
mjr 35:e959ffba78fd 270
mjr 35:e959ffba78fd 271 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 272 {
mjr 35:e959ffba78fd 273 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 274 }
mjr 40:cc0d9814522b 275 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 276 {
mjr 40:cc0d9814522b 277 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 278 }
mjr 35:e959ffba78fd 279
mjr 35:e959ffba78fd 280 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 281 {
mjr 35:e959ffba78fd 282 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 283 }
mjr 40:cc0d9814522b 284 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 285 {
mjr 40:cc0d9814522b 286 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 287 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 288 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 289 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 290 }
mjr 35:e959ffba78fd 291
mjr 35:e959ffba78fd 292 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 293 {
mjr 35:e959ffba78fd 294 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 295 }
mjr 35:e959ffba78fd 296
mjr 40:cc0d9814522b 297 static const PinName pinNameMap[] = {
mjr 40:cc0d9814522b 298 NC, PTA1, PTA2, PTA4, PTA5, PTA12, PTA13, PTA16, PTA17, PTB0, // 0-9
mjr 40:cc0d9814522b 299 PTB1, PTB2, PTB3, PTB8, PTB9, PTB10, PTB11, PTB18, PTB19, PTC0, // 10-19
mjr 40:cc0d9814522b 300 PTC1, PTC2, PTC3, PTC4, PTC5, PTC6, PTC7, PTC8, PTC9, PTC10, // 20-29
mjr 40:cc0d9814522b 301 PTC11, PTC12, PTC13, PTC16, PTC17, PTD0, PTD1, PTD2, PTD3, PTD4, // 30-39
mjr 40:cc0d9814522b 302 PTD5, PTD6, PTD7, PTE0, PTE1, PTE2, PTE3, PTE4, PTE5, PTE20, // 40-49
mjr 40:cc0d9814522b 303 PTE21, PTE22, PTE23, PTE29, PTE30, PTE31 // 50-55
mjr 40:cc0d9814522b 304 };
mjr 35:e959ffba78fd 305 inline PinName wirePinName(int c)
mjr 35:e959ffba78fd 306 {
mjr 40:cc0d9814522b 307 return (c < countof(pinNameMap) ? pinNameMap[c] : NC);
mjr 40:cc0d9814522b 308 }
mjr 40:cc0d9814522b 309 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 310 {
mjr 40:cc0d9814522b 311 b[0] = 0; // presume invalid -> NC
mjr 40:cc0d9814522b 312 for (int i = 0 ; i < countof(pinNameMap) ; ++i)
mjr 40:cc0d9814522b 313 {
mjr 40:cc0d9814522b 314 if (pinNameMap[i] == n)
mjr 40:cc0d9814522b 315 {
mjr 40:cc0d9814522b 316 b[0] = i;
mjr 40:cc0d9814522b 317 return;
mjr 40:cc0d9814522b 318 }
mjr 40:cc0d9814522b 319 }
mjr 35:e959ffba78fd 320 }
mjr 35:e959ffba78fd 321
mjr 35:e959ffba78fd 322
mjr 35:e959ffba78fd 323 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 324 //
mjr 38:091e511ce8a0 325 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 326 //
mjr 38:091e511ce8a0 327 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 328 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 329 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 330 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 331 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 332 // SPI capability.
mjr 38:091e511ce8a0 333 //
mjr 38:091e511ce8a0 334 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 335
mjr 38:091e511ce8a0 336 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 337 // on, and -1 is no change (leaves the current setting intact).
mjr 38:091e511ce8a0 338 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 339 {
mjr 38:091e511ce8a0 340 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 341 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 342 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 343 }
mjr 38:091e511ce8a0 344
mjr 38:091e511ce8a0 345 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 346 // an on-board LED segment
mjr 38:091e511ce8a0 347 struct LedSeg
mjr 38:091e511ce8a0 348 {
mjr 38:091e511ce8a0 349 bool r, g, b;
mjr 38:091e511ce8a0 350 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 351
mjr 38:091e511ce8a0 352 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 353 {
mjr 38:091e511ce8a0 354 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 355 // our on-board LED segments
mjr 38:091e511ce8a0 356 int t = pc.typ;
mjr 38:091e511ce8a0 357 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 358 {
mjr 38:091e511ce8a0 359 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 360 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 361 if (pin == LED1)
mjr 38:091e511ce8a0 362 r = true;
mjr 38:091e511ce8a0 363 else if (pin == LED2)
mjr 38:091e511ce8a0 364 g = true;
mjr 38:091e511ce8a0 365 else if (pin == LED3)
mjr 38:091e511ce8a0 366 b = true;
mjr 38:091e511ce8a0 367 }
mjr 38:091e511ce8a0 368 }
mjr 38:091e511ce8a0 369 };
mjr 38:091e511ce8a0 370
mjr 38:091e511ce8a0 371 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 372 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 373 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 374 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 375 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 376 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 377 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 378 {
mjr 38:091e511ce8a0 379 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 380 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 381 LedSeg l;
mjr 38:091e511ce8a0 382 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 383 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 384
mjr 38:091e511ce8a0 385 // check the special ports
mjr 38:091e511ce8a0 386 for (int i = 0 ; i < countof(cfg.specialPort) ; ++i)
mjr 38:091e511ce8a0 387 l.check(cfg.specialPort[i]);
mjr 38:091e511ce8a0 388
mjr 38:091e511ce8a0 389 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 390 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 391 // LedWiz use.
mjr 38:091e511ce8a0 392 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 393 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 394 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 395 }
mjr 38:091e511ce8a0 396
mjr 38:091e511ce8a0 397
mjr 38:091e511ce8a0 398 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 399 //
mjr 29:582472d0bc57 400 // LedWiz emulation, and enhanced TLC5940 output controller
mjr 5:a70c0bce770d 401 //
mjr 26:cb71c4af2912 402 // There are two modes for this feature. The default mode uses the on-board
mjr 26:cb71c4af2912 403 // GPIO ports to implement device outputs - each LedWiz software port is
mjr 26:cb71c4af2912 404 // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10
mjr 26:cb71c4af2912 405 // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the
mjr 26:cb71c4af2912 406 // rest are strictly on/off. The KL25Z also has a limited number of GPIO
mjr 26:cb71c4af2912 407 // ports overall - not enough for the full complement of 32 LedWiz ports
mjr 26:cb71c4af2912 408 // and 24 VP joystick inputs, so it's necessary to trade one against the
mjr 26:cb71c4af2912 409 // other if both features are to be used.
mjr 26:cb71c4af2912 410 //
mjr 26:cb71c4af2912 411 // The alternative, enhanced mode uses external TLC5940 PWM controller
mjr 26:cb71c4af2912 412 // chips to control device outputs. In this mode, each LedWiz software
mjr 26:cb71c4af2912 413 // port is mapped to an output on one of the external TLC5940 chips.
mjr 26:cb71c4af2912 414 // Two 5940s is enough for the full set of 32 LedWiz ports, and we can
mjr 26:cb71c4af2912 415 // support even more chips for even more outputs (although doing so requires
mjr 26:cb71c4af2912 416 // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired
mjr 26:cb71c4af2912 417 // for 32 outputs). Every port in this mode has full PWM support.
mjr 26:cb71c4af2912 418 //
mjr 5:a70c0bce770d 419
mjr 29:582472d0bc57 420
mjr 26:cb71c4af2912 421 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 422 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 423 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 424 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 425 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 426
mjr 26:cb71c4af2912 427 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 428 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 429 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 430 class LwOut
mjr 6:cc35eb643e8f 431 {
mjr 6:cc35eb643e8f 432 public:
mjr 40:cc0d9814522b 433 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 434 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 435 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 436 };
mjr 26:cb71c4af2912 437
mjr 35:e959ffba78fd 438 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 439 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 440 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 441 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 442 // numbering.
mjr 35:e959ffba78fd 443 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 444 {
mjr 33:d832bcab089e 445 public:
mjr 35:e959ffba78fd 446 LwVirtualOut() { }
mjr 40:cc0d9814522b 447 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 448 };
mjr 26:cb71c4af2912 449
mjr 34:6b981a2afab7 450 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 451 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 452 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 453 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 454 {
mjr 34:6b981a2afab7 455 public:
mjr 34:6b981a2afab7 456 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 457 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 458
mjr 34:6b981a2afab7 459 private:
mjr 34:6b981a2afab7 460 LwOut *out;
mjr 34:6b981a2afab7 461 };
mjr 34:6b981a2afab7 462
mjr 40:cc0d9814522b 463 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 464 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 465 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 466 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 467 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 468 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 469 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 470 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 471 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 472 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 473 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 474 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 475 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 476 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 477 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 478 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 479 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 480 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 481 };
mjr 40:cc0d9814522b 482
mjr 40:cc0d9814522b 483 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 484 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 485 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 486 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 487 {
mjr 40:cc0d9814522b 488 public:
mjr 40:cc0d9814522b 489 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 490 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 491
mjr 40:cc0d9814522b 492 private:
mjr 40:cc0d9814522b 493 LwOut *out;
mjr 40:cc0d9814522b 494 };
mjr 40:cc0d9814522b 495
mjr 40:cc0d9814522b 496 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 497 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 498 // mode is engaged.
mjr 40:cc0d9814522b 499 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 500 {
mjr 40:cc0d9814522b 501 public:
mjr 40:cc0d9814522b 502 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 503 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 504
mjr 40:cc0d9814522b 505 static bool nightMode;
mjr 40:cc0d9814522b 506
mjr 40:cc0d9814522b 507 private:
mjr 40:cc0d9814522b 508 LwOut *out;
mjr 40:cc0d9814522b 509 };
mjr 40:cc0d9814522b 510
mjr 40:cc0d9814522b 511 // global night mode flag
mjr 40:cc0d9814522b 512 bool LwNoisyOut::nightMode = false;
mjr 40:cc0d9814522b 513
mjr 26:cb71c4af2912 514
mjr 35:e959ffba78fd 515 //
mjr 35:e959ffba78fd 516 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 517 // assignments set in config.h.
mjr 33:d832bcab089e 518 //
mjr 35:e959ffba78fd 519 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 520 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 521 {
mjr 35:e959ffba78fd 522 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 523 {
mjr 35:e959ffba78fd 524 tlc5940 = new TLC5940(cfg.tlc5940.sclk, cfg.tlc5940.sin, cfg.tlc5940.gsclk,
mjr 35:e959ffba78fd 525 cfg.tlc5940.blank, cfg.tlc5940.xlat, cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 526 }
mjr 35:e959ffba78fd 527 }
mjr 26:cb71c4af2912 528
mjr 40:cc0d9814522b 529 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 530 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 531 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 532 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 533 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 534 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 535 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 536 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 537 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 538 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 539 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 540 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 541 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 542 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 543 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 544 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 545 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 546 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 547 };
mjr 40:cc0d9814522b 548
mjr 40:cc0d9814522b 549 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 550 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 551 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 552 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 553 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 554 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 555 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 556 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 557 // are always 8 bits.
mjr 40:cc0d9814522b 558 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 559 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 560 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 561 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 562 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 563 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 564 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 565 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 566 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 567 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 568 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 569 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 570 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 571 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 572 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 573 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 574 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 575 };
mjr 40:cc0d9814522b 576
mjr 40:cc0d9814522b 577
mjr 26:cb71c4af2912 578 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 579 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 580 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 581 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 582 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 583 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 584 {
mjr 26:cb71c4af2912 585 public:
mjr 40:cc0d9814522b 586 Lw5940Out(int idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 587 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 588 {
mjr 26:cb71c4af2912 589 if (val != prv)
mjr 40:cc0d9814522b 590 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 591 }
mjr 26:cb71c4af2912 592 int idx;
mjr 40:cc0d9814522b 593 uint8_t prv;
mjr 26:cb71c4af2912 594 };
mjr 26:cb71c4af2912 595
mjr 40:cc0d9814522b 596 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 597 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 598 {
mjr 40:cc0d9814522b 599 public:
mjr 40:cc0d9814522b 600 Lw5940GammaOut(int idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 601 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 602 {
mjr 40:cc0d9814522b 603 if (val != prv)
mjr 40:cc0d9814522b 604 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 605 }
mjr 40:cc0d9814522b 606 int idx;
mjr 40:cc0d9814522b 607 uint8_t prv;
mjr 40:cc0d9814522b 608 };
mjr 40:cc0d9814522b 609
mjr 40:cc0d9814522b 610
mjr 33:d832bcab089e 611
mjr 34:6b981a2afab7 612 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 613 // config.h.
mjr 35:e959ffba78fd 614 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 615
mjr 35:e959ffba78fd 616 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 617 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 618 {
mjr 35:e959ffba78fd 619 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 620 {
mjr 35:e959ffba78fd 621 hc595 = new HC595(cfg.hc595.nchips, cfg.hc595.sin, cfg.hc595.sclk, cfg.hc595.latch, cfg.hc595.ena);
mjr 35:e959ffba78fd 622 hc595->init();
mjr 35:e959ffba78fd 623 hc595->update();
mjr 35:e959ffba78fd 624 }
mjr 35:e959ffba78fd 625 }
mjr 34:6b981a2afab7 626
mjr 34:6b981a2afab7 627 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 628 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 629 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 630 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 631 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 632 class Lw595Out: public LwOut
mjr 33:d832bcab089e 633 {
mjr 33:d832bcab089e 634 public:
mjr 40:cc0d9814522b 635 Lw595Out(int idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 636 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 637 {
mjr 34:6b981a2afab7 638 if (val != prv)
mjr 40:cc0d9814522b 639 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 640 }
mjr 34:6b981a2afab7 641 int idx;
mjr 40:cc0d9814522b 642 uint8_t prv;
mjr 33:d832bcab089e 643 };
mjr 33:d832bcab089e 644
mjr 26:cb71c4af2912 645
mjr 40:cc0d9814522b 646
mjr 40:cc0d9814522b 647 // Conversion table - 8-bit DOF output level to PWM float level
mjr 40:cc0d9814522b 648 // (normalized to 0.0..1.0 scale)
mjr 40:cc0d9814522b 649 static const float pwm_level[] = {
mjr 40:cc0d9814522b 650 0.000000, 0.003922, 0.007843, 0.011765, 0.015686, 0.019608, 0.023529, 0.027451,
mjr 40:cc0d9814522b 651 0.031373, 0.035294, 0.039216, 0.043137, 0.047059, 0.050980, 0.054902, 0.058824,
mjr 40:cc0d9814522b 652 0.062745, 0.066667, 0.070588, 0.074510, 0.078431, 0.082353, 0.086275, 0.090196,
mjr 40:cc0d9814522b 653 0.094118, 0.098039, 0.101961, 0.105882, 0.109804, 0.113725, 0.117647, 0.121569,
mjr 40:cc0d9814522b 654 0.125490, 0.129412, 0.133333, 0.137255, 0.141176, 0.145098, 0.149020, 0.152941,
mjr 40:cc0d9814522b 655 0.156863, 0.160784, 0.164706, 0.168627, 0.172549, 0.176471, 0.180392, 0.184314,
mjr 40:cc0d9814522b 656 0.188235, 0.192157, 0.196078, 0.200000, 0.203922, 0.207843, 0.211765, 0.215686,
mjr 40:cc0d9814522b 657 0.219608, 0.223529, 0.227451, 0.231373, 0.235294, 0.239216, 0.243137, 0.247059,
mjr 40:cc0d9814522b 658 0.250980, 0.254902, 0.258824, 0.262745, 0.266667, 0.270588, 0.274510, 0.278431,
mjr 40:cc0d9814522b 659 0.282353, 0.286275, 0.290196, 0.294118, 0.298039, 0.301961, 0.305882, 0.309804,
mjr 40:cc0d9814522b 660 0.313725, 0.317647, 0.321569, 0.325490, 0.329412, 0.333333, 0.337255, 0.341176,
mjr 40:cc0d9814522b 661 0.345098, 0.349020, 0.352941, 0.356863, 0.360784, 0.364706, 0.368627, 0.372549,
mjr 40:cc0d9814522b 662 0.376471, 0.380392, 0.384314, 0.388235, 0.392157, 0.396078, 0.400000, 0.403922,
mjr 40:cc0d9814522b 663 0.407843, 0.411765, 0.415686, 0.419608, 0.423529, 0.427451, 0.431373, 0.435294,
mjr 40:cc0d9814522b 664 0.439216, 0.443137, 0.447059, 0.450980, 0.454902, 0.458824, 0.462745, 0.466667,
mjr 40:cc0d9814522b 665 0.470588, 0.474510, 0.478431, 0.482353, 0.486275, 0.490196, 0.494118, 0.498039,
mjr 40:cc0d9814522b 666 0.501961, 0.505882, 0.509804, 0.513725, 0.517647, 0.521569, 0.525490, 0.529412,
mjr 40:cc0d9814522b 667 0.533333, 0.537255, 0.541176, 0.545098, 0.549020, 0.552941, 0.556863, 0.560784,
mjr 40:cc0d9814522b 668 0.564706, 0.568627, 0.572549, 0.576471, 0.580392, 0.584314, 0.588235, 0.592157,
mjr 40:cc0d9814522b 669 0.596078, 0.600000, 0.603922, 0.607843, 0.611765, 0.615686, 0.619608, 0.623529,
mjr 40:cc0d9814522b 670 0.627451, 0.631373, 0.635294, 0.639216, 0.643137, 0.647059, 0.650980, 0.654902,
mjr 40:cc0d9814522b 671 0.658824, 0.662745, 0.666667, 0.670588, 0.674510, 0.678431, 0.682353, 0.686275,
mjr 40:cc0d9814522b 672 0.690196, 0.694118, 0.698039, 0.701961, 0.705882, 0.709804, 0.713725, 0.717647,
mjr 40:cc0d9814522b 673 0.721569, 0.725490, 0.729412, 0.733333, 0.737255, 0.741176, 0.745098, 0.749020,
mjr 40:cc0d9814522b 674 0.752941, 0.756863, 0.760784, 0.764706, 0.768627, 0.772549, 0.776471, 0.780392,
mjr 40:cc0d9814522b 675 0.784314, 0.788235, 0.792157, 0.796078, 0.800000, 0.803922, 0.807843, 0.811765,
mjr 40:cc0d9814522b 676 0.815686, 0.819608, 0.823529, 0.827451, 0.831373, 0.835294, 0.839216, 0.843137,
mjr 40:cc0d9814522b 677 0.847059, 0.850980, 0.854902, 0.858824, 0.862745, 0.866667, 0.870588, 0.874510,
mjr 40:cc0d9814522b 678 0.878431, 0.882353, 0.886275, 0.890196, 0.894118, 0.898039, 0.901961, 0.905882,
mjr 40:cc0d9814522b 679 0.909804, 0.913725, 0.917647, 0.921569, 0.925490, 0.929412, 0.933333, 0.937255,
mjr 40:cc0d9814522b 680 0.941176, 0.945098, 0.949020, 0.952941, 0.956863, 0.960784, 0.964706, 0.968627,
mjr 40:cc0d9814522b 681 0.972549, 0.976471, 0.980392, 0.984314, 0.988235, 0.992157, 0.996078, 1.000000
mjr 40:cc0d9814522b 682 };
mjr 26:cb71c4af2912 683
mjr 26:cb71c4af2912 684 // LwOut class for a PWM-capable GPIO port
mjr 6:cc35eb643e8f 685 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 686 {
mjr 6:cc35eb643e8f 687 public:
mjr 40:cc0d9814522b 688 LwPwmOut(PinName pin) : p(pin) { prv = 0; }
mjr 40:cc0d9814522b 689 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 690 {
mjr 13:72dda449c3c0 691 if (val != prv)
mjr 40:cc0d9814522b 692 p.write(pwm_level[prv = val]);
mjr 13:72dda449c3c0 693 }
mjr 6:cc35eb643e8f 694 PwmOut p;
mjr 40:cc0d9814522b 695 uint8_t prv;
mjr 6:cc35eb643e8f 696 };
mjr 26:cb71c4af2912 697
mjr 26:cb71c4af2912 698 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 699 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 700 {
mjr 6:cc35eb643e8f 701 public:
mjr 40:cc0d9814522b 702 LwDigOut(PinName pin) : p(pin) { prv = 0; }
mjr 40:cc0d9814522b 703 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 704 {
mjr 13:72dda449c3c0 705 if (val != prv)
mjr 40:cc0d9814522b 706 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 707 }
mjr 6:cc35eb643e8f 708 DigitalOut p;
mjr 40:cc0d9814522b 709 uint8_t prv;
mjr 6:cc35eb643e8f 710 };
mjr 26:cb71c4af2912 711
mjr 29:582472d0bc57 712 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 713 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 714 // port n (0-based).
mjr 35:e959ffba78fd 715 //
mjr 35:e959ffba78fd 716 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 717 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 718 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 719 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 720 // 74HC595 ports).
mjr 33:d832bcab089e 721 static int numOutputs;
mjr 33:d832bcab089e 722 static LwOut **lwPin;
mjr 33:d832bcab089e 723
mjr 38:091e511ce8a0 724 // Special output ports:
mjr 38:091e511ce8a0 725 //
mjr 38:091e511ce8a0 726 // [0] = Night Mode indicator light
mjr 38:091e511ce8a0 727 //
mjr 38:091e511ce8a0 728 static LwOut *specialPin[1];
mjr 40:cc0d9814522b 729 const int SPECIAL_PIN_NIGHTMODE = 0;
mjr 38:091e511ce8a0 730
mjr 38:091e511ce8a0 731
mjr 35:e959ffba78fd 732 // Number of LedWiz emulation outputs. This is the number of ports
mjr 35:e959ffba78fd 733 // accessible through the standard (non-extended) LedWiz protocol
mjr 35:e959ffba78fd 734 // messages. The protocol has a fixed set of 32 outputs, but we
mjr 35:e959ffba78fd 735 // might have fewer actual outputs. This is therefore set to the
mjr 35:e959ffba78fd 736 // lower of 32 or the actual number of outputs.
mjr 35:e959ffba78fd 737 static int numLwOutputs;
mjr 35:e959ffba78fd 738
mjr 40:cc0d9814522b 739 // Current absolute brightness level for an output. This is a DOF
mjr 40:cc0d9814522b 740 // brightness level value, from 0 for fully off to 255 for fully on.
mjr 40:cc0d9814522b 741 // This is used for all extended ports (33 and above), and for any
mjr 40:cc0d9814522b 742 // LedWiz port with wizVal == 255.
mjr 40:cc0d9814522b 743 static uint8_t *outLevel;
mjr 38:091e511ce8a0 744
mjr 38:091e511ce8a0 745 // create a single output pin
mjr 38:091e511ce8a0 746 LwOut *createLwPin(LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 747 {
mjr 38:091e511ce8a0 748 // get this item's values
mjr 38:091e511ce8a0 749 int typ = pc.typ;
mjr 38:091e511ce8a0 750 int pin = pc.pin;
mjr 38:091e511ce8a0 751 int flags = pc.flags;
mjr 40:cc0d9814522b 752 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 753 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 754 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 755
mjr 38:091e511ce8a0 756 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 757 LwOut *lwp;
mjr 38:091e511ce8a0 758 switch (typ)
mjr 38:091e511ce8a0 759 {
mjr 38:091e511ce8a0 760 case PortTypeGPIOPWM:
mjr 38:091e511ce8a0 761 // PWM GPIO port
mjr 38:091e511ce8a0 762 lwp = new LwPwmOut(wirePinName(pin));
mjr 38:091e511ce8a0 763 break;
mjr 38:091e511ce8a0 764
mjr 38:091e511ce8a0 765 case PortTypeGPIODig:
mjr 38:091e511ce8a0 766 // Digital GPIO port
mjr 38:091e511ce8a0 767 lwp = new LwDigOut(wirePinName(pin));
mjr 38:091e511ce8a0 768 break;
mjr 38:091e511ce8a0 769
mjr 38:091e511ce8a0 770 case PortTypeTLC5940:
mjr 38:091e511ce8a0 771 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 772 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 773 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 774 {
mjr 40:cc0d9814522b 775 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 776 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 777 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 778 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 779 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 780 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 781 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 782 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 783 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 784 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 785 // for this unlikely case.
mjr 40:cc0d9814522b 786 if (gamma && !activeLow)
mjr 40:cc0d9814522b 787 {
mjr 40:cc0d9814522b 788 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 789 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 790
mjr 40:cc0d9814522b 791 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 792 gamma = false;
mjr 40:cc0d9814522b 793 }
mjr 40:cc0d9814522b 794 else
mjr 40:cc0d9814522b 795 {
mjr 40:cc0d9814522b 796 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 797 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 798 }
mjr 40:cc0d9814522b 799 }
mjr 38:091e511ce8a0 800 else
mjr 40:cc0d9814522b 801 {
mjr 40:cc0d9814522b 802 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 803 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 804 }
mjr 38:091e511ce8a0 805 break;
mjr 38:091e511ce8a0 806
mjr 38:091e511ce8a0 807 case PortType74HC595:
mjr 38:091e511ce8a0 808 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 809 // output number, create a virtual port)
mjr 38:091e511ce8a0 810 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 811 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 812 else
mjr 38:091e511ce8a0 813 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 814 break;
mjr 38:091e511ce8a0 815
mjr 38:091e511ce8a0 816 case PortTypeVirtual:
mjr 38:091e511ce8a0 817 default:
mjr 38:091e511ce8a0 818 // virtual or unknown
mjr 38:091e511ce8a0 819 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 820 break;
mjr 38:091e511ce8a0 821 }
mjr 38:091e511ce8a0 822
mjr 40:cc0d9814522b 823 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 824 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 825 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 826 if (activeLow)
mjr 38:091e511ce8a0 827 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 828
mjr 40:cc0d9814522b 829 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 830 // needs to be
mjr 40:cc0d9814522b 831 if (noisy)
mjr 40:cc0d9814522b 832 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 833
mjr 40:cc0d9814522b 834 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 835 if (gamma)
mjr 40:cc0d9814522b 836 lwp = new LwGammaOut(lwp);
mjr 38:091e511ce8a0 837
mjr 38:091e511ce8a0 838 // turn it off initially
mjr 38:091e511ce8a0 839 lwp->set(0);
mjr 38:091e511ce8a0 840
mjr 38:091e511ce8a0 841 // return the pin
mjr 38:091e511ce8a0 842 return lwp;
mjr 38:091e511ce8a0 843 }
mjr 38:091e511ce8a0 844
mjr 6:cc35eb643e8f 845 // initialize the output pin array
mjr 35:e959ffba78fd 846 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 847 {
mjr 35:e959ffba78fd 848 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 849 // total number of ports.
mjr 35:e959ffba78fd 850 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 851 int i;
mjr 35:e959ffba78fd 852 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 853 {
mjr 35:e959ffba78fd 854 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 855 {
mjr 35:e959ffba78fd 856 numOutputs = i;
mjr 34:6b981a2afab7 857 break;
mjr 34:6b981a2afab7 858 }
mjr 33:d832bcab089e 859 }
mjr 33:d832bcab089e 860
mjr 35:e959ffba78fd 861 // the real LedWiz protocol can access at most 32 ports, or the
mjr 35:e959ffba78fd 862 // actual number of outputs, whichever is lower
mjr 35:e959ffba78fd 863 numLwOutputs = (numOutputs < 32 ? numOutputs : 32);
mjr 35:e959ffba78fd 864
mjr 33:d832bcab089e 865 // allocate the pin array
mjr 33:d832bcab089e 866 lwPin = new LwOut*[numOutputs];
mjr 33:d832bcab089e 867
mjr 38:091e511ce8a0 868 // Allocate the current brightness array. For these, allocate at
mjr 38:091e511ce8a0 869 // least 32, so that we have enough for all LedWiz messages, but
mjr 38:091e511ce8a0 870 // allocate the full set of actual ports if we have more than the
mjr 38:091e511ce8a0 871 // LedWiz complement.
mjr 38:091e511ce8a0 872 int minOuts = numOutputs < 32 ? 32 : numOutputs;
mjr 40:cc0d9814522b 873 outLevel = new uint8_t[minOuts];
mjr 33:d832bcab089e 874
mjr 35:e959ffba78fd 875 // create the pin interface object for each port
mjr 35:e959ffba78fd 876 for (i = 0 ; i < numOutputs ; ++i)
mjr 38:091e511ce8a0 877 lwPin[i] = createLwPin(cfg.outPort[i], cfg);
mjr 34:6b981a2afab7 878
mjr 38:091e511ce8a0 879 // create the pin interface for each special port
mjr 38:091e511ce8a0 880 for (i = 0 ; i < countof(cfg.specialPort) ; ++i)
mjr 38:091e511ce8a0 881 specialPin[i] = createLwPin(cfg.specialPort[i], cfg);
mjr 6:cc35eb643e8f 882 }
mjr 6:cc35eb643e8f 883
mjr 29:582472d0bc57 884 // LedWiz output states.
mjr 29:582472d0bc57 885 //
mjr 29:582472d0bc57 886 // The LedWiz protocol has two separate control axes for each output.
mjr 29:582472d0bc57 887 // One axis is its on/off state; the other is its "profile" state, which
mjr 29:582472d0bc57 888 // is either a fixed brightness or a blinking pattern for the light.
mjr 29:582472d0bc57 889 // The two axes are independent.
mjr 29:582472d0bc57 890 //
mjr 29:582472d0bc57 891 // Note that the LedWiz protocol can only address 32 outputs, so the
mjr 29:582472d0bc57 892 // wizOn and wizVal arrays have fixed sizes of 32 elements no matter
mjr 29:582472d0bc57 893 // how many physical outputs we're using.
mjr 29:582472d0bc57 894
mjr 0:5acbbe3f4cf4 895 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 896 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 897
mjr 40:cc0d9814522b 898 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 40:cc0d9814522b 899 // for each LedWiz output. If the output was last updated through an
mjr 40:cc0d9814522b 900 // LedWiz protocol message, it will have one of these values:
mjr 29:582472d0bc57 901 //
mjr 29:582472d0bc57 902 // 0-48 = fixed brightness 0% to 100%
mjr 40:cc0d9814522b 903 // 49 = fixed brightness 100% (equivalent to 48)
mjr 29:582472d0bc57 904 // 129 = ramp up / ramp down
mjr 29:582472d0bc57 905 // 130 = flash on / off
mjr 29:582472d0bc57 906 // 131 = on / ramp down
mjr 29:582472d0bc57 907 // 132 = ramp up / on
mjr 29:582472d0bc57 908 //
mjr 40:cc0d9814522b 909 // If the output was last updated through an extended protocol message,
mjr 40:cc0d9814522b 910 // it will have the special value 255. This means that we use the
mjr 40:cc0d9814522b 911 // outLevel[] value for the port instead of an LedWiz setting.
mjr 29:582472d0bc57 912 //
mjr 40:cc0d9814522b 913 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 40:cc0d9814522b 914 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 40:cc0d9814522b 915 // it, so we need to accept it for compatibility.)
mjr 1:d913e0afb2ac 916 static uint8_t wizVal[32] = {
mjr 13:72dda449c3c0 917 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 918 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 919 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 920 48, 48, 48, 48, 48, 48, 48, 48
mjr 0:5acbbe3f4cf4 921 };
mjr 0:5acbbe3f4cf4 922
mjr 29:582472d0bc57 923 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 29:582472d0bc57 924 // rate for lights in blinking states.
mjr 29:582472d0bc57 925 static uint8_t wizSpeed = 2;
mjr 29:582472d0bc57 926
mjr 40:cc0d9814522b 927 // Current LedWiz flash cycle counter. This runs from 0 to 255
mjr 40:cc0d9814522b 928 // during each cycle.
mjr 29:582472d0bc57 929 static uint8_t wizFlashCounter = 0;
mjr 29:582472d0bc57 930
mjr 40:cc0d9814522b 931 // translate an LedWiz brightness level (0-49) to a DOF brightness
mjr 40:cc0d9814522b 932 // level (0-255)
mjr 40:cc0d9814522b 933 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 934 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 935 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 936 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 937 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 938 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 939 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 940 255, 255
mjr 40:cc0d9814522b 941 };
mjr 40:cc0d9814522b 942
mjr 40:cc0d9814522b 943 // Translate an LedWiz output (ports 1-32) to a DOF brightness level.
mjr 40:cc0d9814522b 944 static uint8_t wizState(int idx)
mjr 0:5acbbe3f4cf4 945 {
mjr 29:582472d0bc57 946 // if the output was last set with an extended protocol message,
mjr 29:582472d0bc57 947 // use the value set there, ignoring the output's LedWiz state
mjr 29:582472d0bc57 948 if (wizVal[idx] == 255)
mjr 29:582472d0bc57 949 return outLevel[idx];
mjr 29:582472d0bc57 950
mjr 29:582472d0bc57 951 // if it's off, show at zero intensity
mjr 29:582472d0bc57 952 if (!wizOn[idx])
mjr 29:582472d0bc57 953 return 0;
mjr 29:582472d0bc57 954
mjr 29:582472d0bc57 955 // check the state
mjr 29:582472d0bc57 956 uint8_t val = wizVal[idx];
mjr 40:cc0d9814522b 957 if (val <= 49)
mjr 29:582472d0bc57 958 {
mjr 29:582472d0bc57 959 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 29:582472d0bc57 960 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 29:582472d0bc57 961 // Note that on the actual LedWiz, level 48 is actually about
mjr 29:582472d0bc57 962 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 29:582472d0bc57 963 // the true 100% level. (In the documentation, level 49 is
mjr 29:582472d0bc57 964 // simply not a valid setting.) Even so, we treat level 48 as
mjr 29:582472d0bc57 965 // 100% on to match the documentation. This won't be perfectly
mjr 29:582472d0bc57 966 // ocmpatible with the actual LedWiz, but it makes for such a
mjr 29:582472d0bc57 967 // small difference in brightness (if the output device is an
mjr 29:582472d0bc57 968 // LED, say) that no one should notice. It seems better to
mjr 29:582472d0bc57 969 // err in this direction, because while the difference in
mjr 29:582472d0bc57 970 // brightness when attached to an LED won't be noticeable, the
mjr 29:582472d0bc57 971 // difference in duty cycle when attached to something like a
mjr 29:582472d0bc57 972 // contactor *can* be noticeable - anything less than 100%
mjr 29:582472d0bc57 973 // can cause a contactor or relay to chatter. There's almost
mjr 29:582472d0bc57 974 // never a situation where you'd want values other than 0% and
mjr 29:582472d0bc57 975 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 29:582472d0bc57 976 // makes us work properly with software that's expecting the
mjr 29:582472d0bc57 977 // documented LedWiz behavior and therefore uses level 48 to
mjr 29:582472d0bc57 978 // turn a contactor or relay fully on.
mjr 40:cc0d9814522b 979 //
mjr 40:cc0d9814522b 980 // Note that value 49 is undefined in the LedWiz documentation,
mjr 40:cc0d9814522b 981 // but real LedWiz units treat it as 100%, equivalent to 48.
mjr 40:cc0d9814522b 982 // Some software on the PC side uses this, so we need to treat
mjr 40:cc0d9814522b 983 // it the same way for compatibility.
mjr 40:cc0d9814522b 984 return lw_to_dof[val];
mjr 29:582472d0bc57 985 }
mjr 29:582472d0bc57 986 else if (val == 129)
mjr 29:582472d0bc57 987 {
mjr 40:cc0d9814522b 988 // 129 = ramp up / ramp down
mjr 30:6e9902f06f48 989 return wizFlashCounter < 128
mjr 40:cc0d9814522b 990 ? wizFlashCounter*2 + 1
mjr 40:cc0d9814522b 991 : (255 - wizFlashCounter)*2;
mjr 29:582472d0bc57 992 }
mjr 29:582472d0bc57 993 else if (val == 130)
mjr 29:582472d0bc57 994 {
mjr 40:cc0d9814522b 995 // 130 = flash on / off
mjr 40:cc0d9814522b 996 return wizFlashCounter < 128 ? 255 : 0;
mjr 29:582472d0bc57 997 }
mjr 29:582472d0bc57 998 else if (val == 131)
mjr 29:582472d0bc57 999 {
mjr 40:cc0d9814522b 1000 // 131 = on / ramp down
mjr 40:cc0d9814522b 1001 return wizFlashCounter < 128 ? 255 : (255 - wizFlashCounter)*2;
mjr 0:5acbbe3f4cf4 1002 }
mjr 29:582472d0bc57 1003 else if (val == 132)
mjr 29:582472d0bc57 1004 {
mjr 40:cc0d9814522b 1005 // 132 = ramp up / on
mjr 40:cc0d9814522b 1006 return wizFlashCounter < 128 ? wizFlashCounter*2 : 255;
mjr 29:582472d0bc57 1007 }
mjr 29:582472d0bc57 1008 else
mjr 13:72dda449c3c0 1009 {
mjr 29:582472d0bc57 1010 // Other values are undefined in the LedWiz documentation. Hosts
mjr 29:582472d0bc57 1011 // *should* never send undefined values, since whatever behavior an
mjr 29:582472d0bc57 1012 // LedWiz unit exhibits in response is accidental and could change
mjr 29:582472d0bc57 1013 // in a future version. We'll treat all undefined values as equivalent
mjr 29:582472d0bc57 1014 // to 48 (fully on).
mjr 40:cc0d9814522b 1015 return 255;
mjr 0:5acbbe3f4cf4 1016 }
mjr 0:5acbbe3f4cf4 1017 }
mjr 0:5acbbe3f4cf4 1018
mjr 29:582472d0bc57 1019 // LedWiz flash timer pulse. This fires periodically to update
mjr 29:582472d0bc57 1020 // LedWiz flashing outputs. At the slowest pulse speed set via
mjr 29:582472d0bc57 1021 // the SBA command, each waveform cycle has 256 steps, so we
mjr 29:582472d0bc57 1022 // choose the pulse time base so that the slowest cycle completes
mjr 29:582472d0bc57 1023 // in 2 seconds. This seems to roughly match the real LedWiz
mjr 29:582472d0bc57 1024 // behavior. We run the pulse timer at the same rate regardless
mjr 29:582472d0bc57 1025 // of the pulse speed; at higher pulse speeds, we simply use
mjr 29:582472d0bc57 1026 // larger steps through the cycle on each interrupt. Running
mjr 29:582472d0bc57 1027 // every 1/127 of a second = 8ms seems to be a pretty light load.
mjr 29:582472d0bc57 1028 Timeout wizPulseTimer;
mjr 38:091e511ce8a0 1029 #define WIZ_PULSE_TIME_BASE (1.0f/127.0f)
mjr 29:582472d0bc57 1030 static void wizPulse()
mjr 29:582472d0bc57 1031 {
mjr 29:582472d0bc57 1032 // increase the counter by the speed increment, and wrap at 256
mjr 29:582472d0bc57 1033 wizFlashCounter += wizSpeed;
mjr 29:582472d0bc57 1034 wizFlashCounter &= 0xff;
mjr 29:582472d0bc57 1035
mjr 29:582472d0bc57 1036 // if we have any flashing lights, update them
mjr 29:582472d0bc57 1037 int ena = false;
mjr 35:e959ffba78fd 1038 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 1039 {
mjr 29:582472d0bc57 1040 if (wizOn[i])
mjr 29:582472d0bc57 1041 {
mjr 29:582472d0bc57 1042 uint8_t s = wizVal[i];
mjr 29:582472d0bc57 1043 if (s >= 129 && s <= 132)
mjr 29:582472d0bc57 1044 {
mjr 40:cc0d9814522b 1045 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1046 ena = true;
mjr 29:582472d0bc57 1047 }
mjr 29:582472d0bc57 1048 }
mjr 29:582472d0bc57 1049 }
mjr 29:582472d0bc57 1050
mjr 29:582472d0bc57 1051 // Set up the next timer pulse only if we found anything flashing.
mjr 29:582472d0bc57 1052 // To minimize overhead from this feature, we only enable the interrupt
mjr 29:582472d0bc57 1053 // when we need it. This eliminates any performance penalty to other
mjr 29:582472d0bc57 1054 // features when the host software doesn't care about the flashing
mjr 29:582472d0bc57 1055 // modes. For example, DOF never uses these modes, so there's no
mjr 29:582472d0bc57 1056 // need for them when running Visual Pinball.
mjr 29:582472d0bc57 1057 if (ena)
mjr 29:582472d0bc57 1058 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 29:582472d0bc57 1059 }
mjr 29:582472d0bc57 1060
mjr 29:582472d0bc57 1061 // Update the physical outputs connected to the LedWiz ports. This is
mjr 29:582472d0bc57 1062 // called after any update from an LedWiz protocol message.
mjr 1:d913e0afb2ac 1063 static void updateWizOuts()
mjr 1:d913e0afb2ac 1064 {
mjr 29:582472d0bc57 1065 // update each output
mjr 29:582472d0bc57 1066 int pulse = false;
mjr 35:e959ffba78fd 1067 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 1068 {
mjr 29:582472d0bc57 1069 pulse |= (wizVal[i] >= 129 && wizVal[i] <= 132);
mjr 40:cc0d9814522b 1070 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1071 }
mjr 29:582472d0bc57 1072
mjr 29:582472d0bc57 1073 // if any outputs are set to flashing mode, and the pulse timer
mjr 29:582472d0bc57 1074 // isn't running, turn it on
mjr 29:582472d0bc57 1075 if (pulse)
mjr 29:582472d0bc57 1076 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 34:6b981a2afab7 1077
mjr 34:6b981a2afab7 1078 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1079 if (hc595 != 0)
mjr 35:e959ffba78fd 1080 hc595->update();
mjr 1:d913e0afb2ac 1081 }
mjr 38:091e511ce8a0 1082
mjr 38:091e511ce8a0 1083 // Update all physical outputs. This is called after a change to a global
mjr 38:091e511ce8a0 1084 // setting that affects all outputs, such as engaging or canceling Night Mode.
mjr 38:091e511ce8a0 1085 static void updateAllOuts()
mjr 38:091e511ce8a0 1086 {
mjr 38:091e511ce8a0 1087 // uddate each LedWiz output
mjr 38:091e511ce8a0 1088 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 40:cc0d9814522b 1089 lwPin[i]->set(wizState(i));
mjr 34:6b981a2afab7 1090
mjr 38:091e511ce8a0 1091 // update each extended output
mjr 38:091e511ce8a0 1092 for (int i = 33 ; i < numOutputs ; ++i)
mjr 40:cc0d9814522b 1093 lwPin[i]->set(outLevel[i]);
mjr 38:091e511ce8a0 1094
mjr 38:091e511ce8a0 1095 // flush 74HC595 changes, if necessary
mjr 38:091e511ce8a0 1096 if (hc595 != 0)
mjr 38:091e511ce8a0 1097 hc595->update();
mjr 38:091e511ce8a0 1098 }
mjr 38:091e511ce8a0 1099
mjr 11:bd9da7088e6e 1100 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 1101 //
mjr 11:bd9da7088e6e 1102 // Button input
mjr 11:bd9da7088e6e 1103 //
mjr 11:bd9da7088e6e 1104
mjr 18:5e890ebd0023 1105 // button state
mjr 18:5e890ebd0023 1106 struct ButtonState
mjr 18:5e890ebd0023 1107 {
mjr 38:091e511ce8a0 1108 ButtonState()
mjr 38:091e511ce8a0 1109 {
mjr 38:091e511ce8a0 1110 di = NULL;
mjr 38:091e511ce8a0 1111 on = 0;
mjr 38:091e511ce8a0 1112 pressed = prev = 0;
mjr 38:091e511ce8a0 1113 dbstate = 0;
mjr 38:091e511ce8a0 1114 js = 0;
mjr 38:091e511ce8a0 1115 keymod = 0;
mjr 38:091e511ce8a0 1116 keycode = 0;
mjr 38:091e511ce8a0 1117 special = 0;
mjr 38:091e511ce8a0 1118 pulseState = 0;
mjr 38:091e511ce8a0 1119 pulseTime = 0.0f;
mjr 38:091e511ce8a0 1120 }
mjr 35:e959ffba78fd 1121
mjr 35:e959ffba78fd 1122 // DigitalIn for the button
mjr 35:e959ffba78fd 1123 DigitalIn *di;
mjr 38:091e511ce8a0 1124
mjr 38:091e511ce8a0 1125 // current PHYSICAL on/off state, after debouncing
mjr 38:091e511ce8a0 1126 uint8_t on;
mjr 18:5e890ebd0023 1127
mjr 38:091e511ce8a0 1128 // current LOGICAL on/off state as reported to the host.
mjr 38:091e511ce8a0 1129 uint8_t pressed;
mjr 38:091e511ce8a0 1130
mjr 38:091e511ce8a0 1131 // previous logical on/off state, when keys were last processed for USB
mjr 38:091e511ce8a0 1132 // reports and local effects
mjr 38:091e511ce8a0 1133 uint8_t prev;
mjr 38:091e511ce8a0 1134
mjr 38:091e511ce8a0 1135 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 1136 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 1137 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 1138 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 1139 // a parameter that determines how long we wait for transients to settle).
mjr 38:091e511ce8a0 1140 uint8_t dbstate;
mjr 35:e959ffba78fd 1141
mjr 35:e959ffba78fd 1142 // joystick button mask for the button, if mapped as a joystick button
mjr 35:e959ffba78fd 1143 uint32_t js;
mjr 35:e959ffba78fd 1144
mjr 35:e959ffba78fd 1145 // keyboard modifier bits and scan code for the button, if mapped as a keyboard key
mjr 35:e959ffba78fd 1146 uint8_t keymod;
mjr 35:e959ffba78fd 1147 uint8_t keycode;
mjr 35:e959ffba78fd 1148
mjr 35:e959ffba78fd 1149 // media control key code
mjr 35:e959ffba78fd 1150 uint8_t mediakey;
mjr 35:e959ffba78fd 1151
mjr 38:091e511ce8a0 1152 // special key code
mjr 38:091e511ce8a0 1153 uint8_t special;
mjr 38:091e511ce8a0 1154
mjr 38:091e511ce8a0 1155 // Pulse mode: a button in pulse mode transmits a brief logical button press and
mjr 38:091e511ce8a0 1156 // release each time the attached physical switch changes state. This is useful
mjr 38:091e511ce8a0 1157 // for cases where the host expects a key press for each change in the state of
mjr 38:091e511ce8a0 1158 // the physical switch. The canonical example is the Coin Door switch in VPinMAME,
mjr 38:091e511ce8a0 1159 // which requires pressing the END key to toggle the open/closed state. This
mjr 38:091e511ce8a0 1160 // software design isn't easily implemented in a physical coin door, though -
mjr 38:091e511ce8a0 1161 // the easiest way to sense a physical coin door's state is with a simple on/off
mjr 38:091e511ce8a0 1162 // switch. Pulse mode bridges that divide by converting a physical switch state
mjr 38:091e511ce8a0 1163 // to on/off toggle key reports to the host.
mjr 38:091e511ce8a0 1164 //
mjr 38:091e511ce8a0 1165 // Pulse state:
mjr 38:091e511ce8a0 1166 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 1167 // 1 -> off
mjr 38:091e511ce8a0 1168 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 1169 // 3 -> on
mjr 38:091e511ce8a0 1170 // 4 -> transitioning on-off
mjr 38:091e511ce8a0 1171 //
mjr 38:091e511ce8a0 1172 // Each state change sticks for a minimum period; when the timer expires,
mjr 38:091e511ce8a0 1173 // if the underlying physical switch is in a different state, we switch
mjr 38:091e511ce8a0 1174 // to the next state and restart the timer. pulseTime is the amount of
mjr 38:091e511ce8a0 1175 // time remaining before we can make another state transition. The state
mjr 38:091e511ce8a0 1176 // transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...; this
mjr 38:091e511ce8a0 1177 // guarantees that the parity of the pulse count always matches the
mjr 38:091e511ce8a0 1178 // current physical switch state when the latter is stable, which makes
mjr 38:091e511ce8a0 1179 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 38:091e511ce8a0 1180 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 38:091e511ce8a0 1181 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 38:091e511ce8a0 1182 // This software system can't be fooled that way.)
mjr 38:091e511ce8a0 1183 uint8_t pulseState;
mjr 38:091e511ce8a0 1184 float pulseTime;
mjr 38:091e511ce8a0 1185
mjr 35:e959ffba78fd 1186 } buttonState[MAX_BUTTONS];
mjr 18:5e890ebd0023 1187
mjr 38:091e511ce8a0 1188
mjr 38:091e511ce8a0 1189 // Button data
mjr 38:091e511ce8a0 1190 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 1191
mjr 38:091e511ce8a0 1192 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 1193 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 1194 // modifier keys.
mjr 38:091e511ce8a0 1195 struct
mjr 38:091e511ce8a0 1196 {
mjr 38:091e511ce8a0 1197 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 1198 int nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 1199 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 1200 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 1201 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 1202
mjr 38:091e511ce8a0 1203 // Media key state
mjr 38:091e511ce8a0 1204 struct
mjr 38:091e511ce8a0 1205 {
mjr 38:091e511ce8a0 1206 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 1207 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 1208 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 1209
mjr 38:091e511ce8a0 1210 // button scan interrupt ticker
mjr 38:091e511ce8a0 1211 Ticker buttonTicker;
mjr 38:091e511ce8a0 1212
mjr 38:091e511ce8a0 1213 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 1214 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 1215 void scanButtons()
mjr 38:091e511ce8a0 1216 {
mjr 38:091e511ce8a0 1217 // scan all button input pins
mjr 38:091e511ce8a0 1218 ButtonState *bs = buttonState;
mjr 38:091e511ce8a0 1219 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 38:091e511ce8a0 1220 {
mjr 38:091e511ce8a0 1221 // if it's connected, check its physical state
mjr 38:091e511ce8a0 1222 if (bs->di != NULL)
mjr 38:091e511ce8a0 1223 {
mjr 38:091e511ce8a0 1224 // Shift the new state into the debounce history. Note that
mjr 38:091e511ce8a0 1225 // the physical pin inputs are active low (0V/GND = ON), so invert
mjr 38:091e511ce8a0 1226 // the reading by XOR'ing the low bit with 1. And of course we
mjr 38:091e511ce8a0 1227 // only want the low bit (since the history is effectively a bit
mjr 38:091e511ce8a0 1228 // vector), so mask the whole thing with 0x01 as well.
mjr 38:091e511ce8a0 1229 uint8_t db = bs->dbstate;
mjr 38:091e511ce8a0 1230 db <<= 1;
mjr 38:091e511ce8a0 1231 db |= (bs->di->read() & 0x01) ^ 0x01;
mjr 38:091e511ce8a0 1232 bs->dbstate = db;
mjr 38:091e511ce8a0 1233
mjr 38:091e511ce8a0 1234 // if we have all 0's or 1's in the history for the required
mjr 38:091e511ce8a0 1235 // debounce period, the key state is stable - check for a change
mjr 38:091e511ce8a0 1236 // to the last stable state
mjr 38:091e511ce8a0 1237 const uint8_t stable = 0x1F; // 00011111b -> 5 stable readings
mjr 38:091e511ce8a0 1238 db &= stable;
mjr 38:091e511ce8a0 1239 if (db == 0 || db == stable)
mjr 38:091e511ce8a0 1240 bs->on = db;
mjr 38:091e511ce8a0 1241 }
mjr 38:091e511ce8a0 1242 }
mjr 38:091e511ce8a0 1243 }
mjr 38:091e511ce8a0 1244
mjr 38:091e511ce8a0 1245 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 1246 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 1247 // in the physical button state.
mjr 38:091e511ce8a0 1248 Timer buttonTimer;
mjr 12:669df364a565 1249
mjr 11:bd9da7088e6e 1250 // initialize the button inputs
mjr 35:e959ffba78fd 1251 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 1252 {
mjr 35:e959ffba78fd 1253 // presume we'll find no keyboard keys
mjr 35:e959ffba78fd 1254 kbKeys = false;
mjr 35:e959ffba78fd 1255
mjr 11:bd9da7088e6e 1256 // create the digital inputs
mjr 35:e959ffba78fd 1257 ButtonState *bs = buttonState;
mjr 35:e959ffba78fd 1258 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 11:bd9da7088e6e 1259 {
mjr 35:e959ffba78fd 1260 PinName pin = wirePinName(cfg.button[i].pin);
mjr 35:e959ffba78fd 1261 if (pin != NC)
mjr 35:e959ffba78fd 1262 {
mjr 35:e959ffba78fd 1263 // set up the GPIO input pin for this button
mjr 35:e959ffba78fd 1264 bs->di = new DigitalIn(pin);
mjr 35:e959ffba78fd 1265
mjr 38:091e511ce8a0 1266 // if it's a pulse mode button, set the initial pulse state to Off
mjr 38:091e511ce8a0 1267 if (cfg.button[i].flags & BtnFlagPulse)
mjr 38:091e511ce8a0 1268 bs->pulseState = 1;
mjr 38:091e511ce8a0 1269
mjr 35:e959ffba78fd 1270 // note if it's a keyboard key of some kind (including media keys)
mjr 35:e959ffba78fd 1271 uint8_t val = cfg.button[i].val;
mjr 35:e959ffba78fd 1272 switch (cfg.button[i].typ)
mjr 35:e959ffba78fd 1273 {
mjr 35:e959ffba78fd 1274 case BtnTypeJoystick:
mjr 35:e959ffba78fd 1275 // joystick button - get the button bit mask
mjr 35:e959ffba78fd 1276 bs->js = 1 << val;
mjr 35:e959ffba78fd 1277 break;
mjr 35:e959ffba78fd 1278
mjr 35:e959ffba78fd 1279 case BtnTypeKey:
mjr 35:e959ffba78fd 1280 // regular keyboard key - note the scan code
mjr 35:e959ffba78fd 1281 bs->keycode = val;
mjr 35:e959ffba78fd 1282 kbKeys = true;
mjr 35:e959ffba78fd 1283 break;
mjr 35:e959ffba78fd 1284
mjr 35:e959ffba78fd 1285 case BtnTypeModKey:
mjr 35:e959ffba78fd 1286 // keyboard mod key - note the modifier mask
mjr 35:e959ffba78fd 1287 bs->keymod = val;
mjr 35:e959ffba78fd 1288 kbKeys = true;
mjr 35:e959ffba78fd 1289 break;
mjr 35:e959ffba78fd 1290
mjr 35:e959ffba78fd 1291 case BtnTypeMedia:
mjr 35:e959ffba78fd 1292 // media key - note the code
mjr 35:e959ffba78fd 1293 bs->mediakey = val;
mjr 35:e959ffba78fd 1294 kbKeys = true;
mjr 35:e959ffba78fd 1295 break;
mjr 39:b3815a1c3802 1296
mjr 39:b3815a1c3802 1297 case BtnTypeSpecial:
mjr 39:b3815a1c3802 1298 // special key
mjr 39:b3815a1c3802 1299 bs->special = val;
mjr 39:b3815a1c3802 1300 break;
mjr 35:e959ffba78fd 1301 }
mjr 35:e959ffba78fd 1302 }
mjr 11:bd9da7088e6e 1303 }
mjr 12:669df364a565 1304
mjr 38:091e511ce8a0 1305 // start the button scan thread
mjr 38:091e511ce8a0 1306 buttonTicker.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 1307
mjr 38:091e511ce8a0 1308 // start the button state transition timer
mjr 12:669df364a565 1309 buttonTimer.start();
mjr 11:bd9da7088e6e 1310 }
mjr 11:bd9da7088e6e 1311
mjr 38:091e511ce8a0 1312 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 1313 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 1314 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 1315 // mapped to special device functions (e.g., Night Mode).
mjr 38:091e511ce8a0 1316 void processButtons()
mjr 35:e959ffba78fd 1317 {
mjr 35:e959ffba78fd 1318 // start with an empty list of USB key codes
mjr 35:e959ffba78fd 1319 uint8_t modkeys = 0;
mjr 35:e959ffba78fd 1320 uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 };
mjr 35:e959ffba78fd 1321 int nkeys = 0;
mjr 11:bd9da7088e6e 1322
mjr 35:e959ffba78fd 1323 // clear the joystick buttons
mjr 36:b9747461331e 1324 uint32_t newjs = 0;
mjr 35:e959ffba78fd 1325
mjr 35:e959ffba78fd 1326 // start with no media keys pressed
mjr 35:e959ffba78fd 1327 uint8_t mediakeys = 0;
mjr 38:091e511ce8a0 1328
mjr 38:091e511ce8a0 1329 // calculate the time since the last run
mjr 35:e959ffba78fd 1330 float dt = buttonTimer.read();
mjr 18:5e890ebd0023 1331 buttonTimer.reset();
mjr 38:091e511ce8a0 1332
mjr 11:bd9da7088e6e 1333 // scan the button list
mjr 18:5e890ebd0023 1334 ButtonState *bs = buttonState;
mjr 35:e959ffba78fd 1335 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 11:bd9da7088e6e 1336 {
mjr 38:091e511ce8a0 1337 // if it's a pulse-mode switch, get the virtual pressed state
mjr 38:091e511ce8a0 1338 if (bs->pulseState != 0)
mjr 18:5e890ebd0023 1339 {
mjr 38:091e511ce8a0 1340 // deduct the time to the next state change
mjr 38:091e511ce8a0 1341 bs->pulseTime -= dt;
mjr 38:091e511ce8a0 1342 if (bs->pulseTime < 0)
mjr 38:091e511ce8a0 1343 bs->pulseTime = 0;
mjr 38:091e511ce8a0 1344
mjr 38:091e511ce8a0 1345 // if the timer has expired, check for state changes
mjr 38:091e511ce8a0 1346 if (bs->pulseTime == 0)
mjr 18:5e890ebd0023 1347 {
mjr 38:091e511ce8a0 1348 const float pulseLength = 0.2;
mjr 38:091e511ce8a0 1349 switch (bs->pulseState)
mjr 18:5e890ebd0023 1350 {
mjr 38:091e511ce8a0 1351 case 1:
mjr 38:091e511ce8a0 1352 // off - if the physical switch is now on, start a button pulse
mjr 38:091e511ce8a0 1353 if (bs->on) {
mjr 38:091e511ce8a0 1354 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1355 bs->pulseState = 2;
mjr 38:091e511ce8a0 1356 bs->pressed = 1;
mjr 38:091e511ce8a0 1357 }
mjr 38:091e511ce8a0 1358 break;
mjr 18:5e890ebd0023 1359
mjr 38:091e511ce8a0 1360 case 2:
mjr 38:091e511ce8a0 1361 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 1362 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 1363 // change in state in the logical button
mjr 38:091e511ce8a0 1364 bs->pulseState = 3;
mjr 38:091e511ce8a0 1365 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1366 bs->pressed = 0;
mjr 38:091e511ce8a0 1367 break;
mjr 38:091e511ce8a0 1368
mjr 38:091e511ce8a0 1369 case 3:
mjr 38:091e511ce8a0 1370 // on - if the physical switch is now off, start a button pulse
mjr 38:091e511ce8a0 1371 if (!bs->on) {
mjr 38:091e511ce8a0 1372 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1373 bs->pulseState = 4;
mjr 38:091e511ce8a0 1374 bs->pressed = 1;
mjr 38:091e511ce8a0 1375 }
mjr 38:091e511ce8a0 1376 break;
mjr 38:091e511ce8a0 1377
mjr 38:091e511ce8a0 1378 case 4:
mjr 38:091e511ce8a0 1379 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 1380 bs->pulseState = 1;
mjr 38:091e511ce8a0 1381 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1382 bs->pressed = 0;
mjr 38:091e511ce8a0 1383 break;
mjr 18:5e890ebd0023 1384 }
mjr 18:5e890ebd0023 1385 }
mjr 38:091e511ce8a0 1386 }
mjr 38:091e511ce8a0 1387 else
mjr 38:091e511ce8a0 1388 {
mjr 38:091e511ce8a0 1389 // not a pulse switch - the logical state is the same as the physical state
mjr 38:091e511ce8a0 1390 bs->pressed = bs->on;
mjr 38:091e511ce8a0 1391 }
mjr 35:e959ffba78fd 1392
mjr 38:091e511ce8a0 1393 // carry out any edge effects from buttons changing states
mjr 38:091e511ce8a0 1394 if (bs->pressed != bs->prev)
mjr 38:091e511ce8a0 1395 {
mjr 38:091e511ce8a0 1396 // check for special key transitions
mjr 38:091e511ce8a0 1397 switch (bs->special)
mjr 35:e959ffba78fd 1398 {
mjr 38:091e511ce8a0 1399 case 1:
mjr 38:091e511ce8a0 1400 // night mode momentary switch - when the button transitions from
mjr 38:091e511ce8a0 1401 // OFF to ON, invert night mode
mjr 38:091e511ce8a0 1402 if (bs->pressed)
mjr 38:091e511ce8a0 1403 toggleNightMode();
mjr 38:091e511ce8a0 1404 break;
mjr 35:e959ffba78fd 1405
mjr 38:091e511ce8a0 1406 case 2:
mjr 38:091e511ce8a0 1407 // night mode toggle switch - when the button changes state, change
mjr 38:091e511ce8a0 1408 // night mode to match the new state
mjr 38:091e511ce8a0 1409 setNightMode(bs->pressed);
mjr 38:091e511ce8a0 1410 break;
mjr 35:e959ffba78fd 1411 }
mjr 38:091e511ce8a0 1412
mjr 38:091e511ce8a0 1413 // remember the new state for comparison on the next run
mjr 38:091e511ce8a0 1414 bs->prev = bs->pressed;
mjr 38:091e511ce8a0 1415 }
mjr 38:091e511ce8a0 1416
mjr 38:091e511ce8a0 1417 // if it's pressed, add it to the appropriate key state list
mjr 38:091e511ce8a0 1418 if (bs->pressed)
mjr 38:091e511ce8a0 1419 {
mjr 38:091e511ce8a0 1420 // OR in the joystick button bit, mod key bits, and media key bits
mjr 38:091e511ce8a0 1421 newjs |= bs->js;
mjr 38:091e511ce8a0 1422 modkeys |= bs->keymod;
mjr 38:091e511ce8a0 1423 mediakeys |= bs->mediakey;
mjr 38:091e511ce8a0 1424
mjr 38:091e511ce8a0 1425 // if it has a keyboard key, add the scan code to the active list
mjr 38:091e511ce8a0 1426 if (bs->keycode != 0 && nkeys < 7)
mjr 38:091e511ce8a0 1427 keys[nkeys++] = bs->keycode;
mjr 18:5e890ebd0023 1428 }
mjr 11:bd9da7088e6e 1429 }
mjr 36:b9747461331e 1430
mjr 36:b9747461331e 1431 // check for joystick button changes
mjr 36:b9747461331e 1432 if (jsButtons != newjs)
mjr 36:b9747461331e 1433 jsButtons = newjs;
mjr 11:bd9da7088e6e 1434
mjr 35:e959ffba78fd 1435 // Check for changes to the keyboard keys
mjr 35:e959ffba78fd 1436 if (kbState.data[0] != modkeys
mjr 35:e959ffba78fd 1437 || kbState.nkeys != nkeys
mjr 35:e959ffba78fd 1438 || memcmp(keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 1439 {
mjr 35:e959ffba78fd 1440 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 1441 kbState.changed = true;
mjr 35:e959ffba78fd 1442 kbState.data[0] = modkeys;
mjr 35:e959ffba78fd 1443 if (nkeys <= 6) {
mjr 35:e959ffba78fd 1444 // 6 or fewer simultaneous keys - report the key codes
mjr 35:e959ffba78fd 1445 kbState.nkeys = nkeys;
mjr 35:e959ffba78fd 1446 memcpy(&kbState.data[2], keys, 6);
mjr 35:e959ffba78fd 1447 }
mjr 35:e959ffba78fd 1448 else {
mjr 35:e959ffba78fd 1449 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 1450 kbState.nkeys = 6;
mjr 35:e959ffba78fd 1451 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 1452 }
mjr 35:e959ffba78fd 1453 }
mjr 35:e959ffba78fd 1454
mjr 35:e959ffba78fd 1455 // Check for changes to media keys
mjr 35:e959ffba78fd 1456 if (mediaState.data != mediakeys)
mjr 35:e959ffba78fd 1457 {
mjr 35:e959ffba78fd 1458 mediaState.changed = true;
mjr 35:e959ffba78fd 1459 mediaState.data = mediakeys;
mjr 35:e959ffba78fd 1460 }
mjr 11:bd9da7088e6e 1461 }
mjr 11:bd9da7088e6e 1462
mjr 5:a70c0bce770d 1463 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1464 //
mjr 5:a70c0bce770d 1465 // Customization joystick subbclass
mjr 5:a70c0bce770d 1466 //
mjr 5:a70c0bce770d 1467
mjr 5:a70c0bce770d 1468 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 1469 {
mjr 5:a70c0bce770d 1470 public:
mjr 35:e959ffba78fd 1471 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 1472 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 1473 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 1474 {
mjr 5:a70c0bce770d 1475 suspended_ = false;
mjr 5:a70c0bce770d 1476 }
mjr 5:a70c0bce770d 1477
mjr 5:a70c0bce770d 1478 // are we connected?
mjr 5:a70c0bce770d 1479 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 1480
mjr 5:a70c0bce770d 1481 // Are we in suspend mode?
mjr 5:a70c0bce770d 1482 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 1483
mjr 5:a70c0bce770d 1484 protected:
mjr 5:a70c0bce770d 1485 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 1486 { suspended_ = suspended; }
mjr 5:a70c0bce770d 1487
mjr 5:a70c0bce770d 1488 // are we suspended?
mjr 5:a70c0bce770d 1489 int suspended_;
mjr 5:a70c0bce770d 1490 };
mjr 5:a70c0bce770d 1491
mjr 5:a70c0bce770d 1492 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1493 //
mjr 5:a70c0bce770d 1494 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 1495 //
mjr 5:a70c0bce770d 1496
mjr 5:a70c0bce770d 1497 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 1498 //
mjr 5:a70c0bce770d 1499 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 1500 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 1501 // automatic calibration.
mjr 5:a70c0bce770d 1502 //
mjr 5:a70c0bce770d 1503 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 1504 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 1505 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 1506 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 1507 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 1508 // every sample.
mjr 5:a70c0bce770d 1509 //
mjr 6:cc35eb643e8f 1510 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 1511 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 1512 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 1513 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 1514 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 1515 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 1516 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 1517 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 1518 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 1519 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 1520 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 1521 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 1522 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 1523 // of nudging, say).
mjr 5:a70c0bce770d 1524 //
mjr 5:a70c0bce770d 1525
mjr 17:ab3cec0c8bf4 1526 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 1527 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 1528
mjr 17:ab3cec0c8bf4 1529 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 1530 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 1531 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 1532
mjr 17:ab3cec0c8bf4 1533 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 1534 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 1535 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 1536 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 1537
mjr 17:ab3cec0c8bf4 1538
mjr 6:cc35eb643e8f 1539 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 1540 struct AccHist
mjr 5:a70c0bce770d 1541 {
mjr 6:cc35eb643e8f 1542 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 1543 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 1544 {
mjr 6:cc35eb643e8f 1545 // save the raw position
mjr 6:cc35eb643e8f 1546 this->x = x;
mjr 6:cc35eb643e8f 1547 this->y = y;
mjr 6:cc35eb643e8f 1548 this->d = distance(prv);
mjr 6:cc35eb643e8f 1549 }
mjr 6:cc35eb643e8f 1550
mjr 6:cc35eb643e8f 1551 // reading for this entry
mjr 5:a70c0bce770d 1552 float x, y;
mjr 5:a70c0bce770d 1553
mjr 6:cc35eb643e8f 1554 // distance from previous entry
mjr 6:cc35eb643e8f 1555 float d;
mjr 5:a70c0bce770d 1556
mjr 6:cc35eb643e8f 1557 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 1558 float xtot, ytot;
mjr 6:cc35eb643e8f 1559 int cnt;
mjr 6:cc35eb643e8f 1560
mjr 6:cc35eb643e8f 1561 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 1562 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 1563 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 1564 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 1565
mjr 6:cc35eb643e8f 1566 float distance(AccHist *p)
mjr 6:cc35eb643e8f 1567 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 1568 };
mjr 5:a70c0bce770d 1569
mjr 5:a70c0bce770d 1570 // accelerometer wrapper class
mjr 3:3514575d4f86 1571 class Accel
mjr 3:3514575d4f86 1572 {
mjr 3:3514575d4f86 1573 public:
mjr 3:3514575d4f86 1574 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 1575 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 1576 {
mjr 5:a70c0bce770d 1577 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 1578 irqPin_ = irqPin;
mjr 5:a70c0bce770d 1579
mjr 5:a70c0bce770d 1580 // reset and initialize
mjr 5:a70c0bce770d 1581 reset();
mjr 5:a70c0bce770d 1582 }
mjr 5:a70c0bce770d 1583
mjr 5:a70c0bce770d 1584 void reset()
mjr 5:a70c0bce770d 1585 {
mjr 6:cc35eb643e8f 1586 // clear the center point
mjr 6:cc35eb643e8f 1587 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 1588
mjr 6:cc35eb643e8f 1589 // start the calibration timer
mjr 5:a70c0bce770d 1590 tCenter_.start();
mjr 5:a70c0bce770d 1591 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 1592
mjr 5:a70c0bce770d 1593 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 1594 mma_.init();
mjr 6:cc35eb643e8f 1595
mjr 6:cc35eb643e8f 1596 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 1597 vx_ = vy_ = 0;
mjr 3:3514575d4f86 1598
mjr 6:cc35eb643e8f 1599 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 1600 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 1601 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 1602
mjr 3:3514575d4f86 1603 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 1604 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 1605
mjr 3:3514575d4f86 1606 // start our timers
mjr 3:3514575d4f86 1607 tGet_.start();
mjr 3:3514575d4f86 1608 tInt_.start();
mjr 3:3514575d4f86 1609 }
mjr 3:3514575d4f86 1610
mjr 9:fd65b0a94720 1611 void get(int &x, int &y)
mjr 3:3514575d4f86 1612 {
mjr 3:3514575d4f86 1613 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 1614 __disable_irq();
mjr 3:3514575d4f86 1615
mjr 3:3514575d4f86 1616 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 1617 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 1618 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 1619
mjr 6:cc35eb643e8f 1620 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 1621 vx_ = vy_ = 0;
mjr 3:3514575d4f86 1622
mjr 3:3514575d4f86 1623 // get the time since the last get() sample
mjr 38:091e511ce8a0 1624 float dt = tGet_.read_us()/1.0e6f;
mjr 3:3514575d4f86 1625 tGet_.reset();
mjr 3:3514575d4f86 1626
mjr 3:3514575d4f86 1627 // done manipulating the shared data
mjr 3:3514575d4f86 1628 __enable_irq();
mjr 3:3514575d4f86 1629
mjr 6:cc35eb643e8f 1630 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 1631 vx /= dt;
mjr 6:cc35eb643e8f 1632 vy /= dt;
mjr 6:cc35eb643e8f 1633
mjr 6:cc35eb643e8f 1634 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 1635 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 1636 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 1637
mjr 5:a70c0bce770d 1638 // check for auto-centering every so often
mjr 5:a70c0bce770d 1639 if (tCenter_.read_ms() > 1000)
mjr 5:a70c0bce770d 1640 {
mjr 5:a70c0bce770d 1641 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 1642 AccHist *prv = p;
mjr 5:a70c0bce770d 1643 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 1644 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 1645 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 1646
mjr 5:a70c0bce770d 1647 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 1648 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 1649 {
mjr 5:a70c0bce770d 1650 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 1651 static const float accTol = .01;
mjr 6:cc35eb643e8f 1652 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 1653 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 1654 && p0[1].d < accTol
mjr 6:cc35eb643e8f 1655 && p0[2].d < accTol
mjr 6:cc35eb643e8f 1656 && p0[3].d < accTol
mjr 6:cc35eb643e8f 1657 && p0[4].d < accTol)
mjr 5:a70c0bce770d 1658 {
mjr 6:cc35eb643e8f 1659 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 1660 // the samples over the rest period
mjr 6:cc35eb643e8f 1661 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 1662 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 1663 }
mjr 5:a70c0bce770d 1664 }
mjr 5:a70c0bce770d 1665 else
mjr 5:a70c0bce770d 1666 {
mjr 5:a70c0bce770d 1667 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 1668 ++nAccPrv_;
mjr 5:a70c0bce770d 1669 }
mjr 6:cc35eb643e8f 1670
mjr 6:cc35eb643e8f 1671 // clear the new item's running totals
mjr 6:cc35eb643e8f 1672 p->clearAvg();
mjr 5:a70c0bce770d 1673
mjr 5:a70c0bce770d 1674 // reset the timer
mjr 5:a70c0bce770d 1675 tCenter_.reset();
mjr 39:b3815a1c3802 1676
mjr 39:b3815a1c3802 1677 // If we haven't seen an interrupt in a while, do an explicit read to
mjr 39:b3815a1c3802 1678 // "unstick" the device. The device can become stuck - which is to say,
mjr 39:b3815a1c3802 1679 // it will stop delivering data-ready interrupts - if we fail to service
mjr 39:b3815a1c3802 1680 // one data-ready interrupt before the next one occurs. Reading a sample
mjr 39:b3815a1c3802 1681 // will clear up this overrun condition and allow normal interrupt
mjr 39:b3815a1c3802 1682 // generation to continue.
mjr 39:b3815a1c3802 1683 //
mjr 39:b3815a1c3802 1684 // Note that this stuck condition *shouldn't* ever occur - if it does,
mjr 39:b3815a1c3802 1685 // it means that we're spending a long period with interrupts disabled
mjr 39:b3815a1c3802 1686 // (either in a critical section or in another interrupt handler), which
mjr 39:b3815a1c3802 1687 // will likely cause other worse problems beyond the sticky accelerometer.
mjr 39:b3815a1c3802 1688 // Even so, it's easy to detect and correct, so we'll do so for the sake
mjr 39:b3815a1c3802 1689 // of making the system more fault-tolerant.
mjr 39:b3815a1c3802 1690 if (tInt_.read() > 1.0f)
mjr 39:b3815a1c3802 1691 {
mjr 39:b3815a1c3802 1692 printf("unwedging the accelerometer\r\n");
mjr 39:b3815a1c3802 1693 float x, y, z;
mjr 39:b3815a1c3802 1694 mma_.getAccXYZ(x, y, z);
mjr 39:b3815a1c3802 1695 }
mjr 5:a70c0bce770d 1696 }
mjr 5:a70c0bce770d 1697
mjr 6:cc35eb643e8f 1698 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 1699 x = rawToReport(vx);
mjr 6:cc35eb643e8f 1700 y = rawToReport(vy);
mjr 5:a70c0bce770d 1701
mjr 6:cc35eb643e8f 1702 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1703 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1704 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 1705 #endif
mjr 3:3514575d4f86 1706 }
mjr 29:582472d0bc57 1707
mjr 3:3514575d4f86 1708 private:
mjr 6:cc35eb643e8f 1709 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 1710 int rawToReport(float v)
mjr 5:a70c0bce770d 1711 {
mjr 6:cc35eb643e8f 1712 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 1713 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 1714
mjr 6:cc35eb643e8f 1715 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 1716 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 1717 static const int filter[] = {
mjr 6:cc35eb643e8f 1718 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 1719 0,
mjr 6:cc35eb643e8f 1720 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 1721 };
mjr 6:cc35eb643e8f 1722 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 1723 }
mjr 5:a70c0bce770d 1724
mjr 3:3514575d4f86 1725 // interrupt handler
mjr 3:3514575d4f86 1726 void isr()
mjr 3:3514575d4f86 1727 {
mjr 3:3514575d4f86 1728 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 1729 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 1730 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 1731 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 1732 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 1733 float x, y, z;
mjr 5:a70c0bce770d 1734 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 1735
mjr 3:3514575d4f86 1736 // calculate the time since the last interrupt
mjr 39:b3815a1c3802 1737 float dt = tInt_.read();
mjr 3:3514575d4f86 1738 tInt_.reset();
mjr 6:cc35eb643e8f 1739
mjr 6:cc35eb643e8f 1740 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 1741 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 1742 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 1743
mjr 6:cc35eb643e8f 1744 // store the updates
mjr 6:cc35eb643e8f 1745 ax_ = x;
mjr 6:cc35eb643e8f 1746 ay_ = y;
mjr 6:cc35eb643e8f 1747 az_ = z;
mjr 3:3514575d4f86 1748 }
mjr 3:3514575d4f86 1749
mjr 3:3514575d4f86 1750 // underlying accelerometer object
mjr 3:3514575d4f86 1751 MMA8451Q mma_;
mjr 3:3514575d4f86 1752
mjr 5:a70c0bce770d 1753 // last raw acceleration readings
mjr 6:cc35eb643e8f 1754 float ax_, ay_, az_;
mjr 5:a70c0bce770d 1755
mjr 6:cc35eb643e8f 1756 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 1757 float vx_, vy_;
mjr 6:cc35eb643e8f 1758
mjr 3:3514575d4f86 1759 // timer for measuring time between get() samples
mjr 3:3514575d4f86 1760 Timer tGet_;
mjr 3:3514575d4f86 1761
mjr 3:3514575d4f86 1762 // timer for measuring time between interrupts
mjr 3:3514575d4f86 1763 Timer tInt_;
mjr 5:a70c0bce770d 1764
mjr 6:cc35eb643e8f 1765 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 1766 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 1767 // at rest.
mjr 6:cc35eb643e8f 1768 float cx_, cy_;
mjr 5:a70c0bce770d 1769
mjr 5:a70c0bce770d 1770 // timer for atuo-centering
mjr 5:a70c0bce770d 1771 Timer tCenter_;
mjr 6:cc35eb643e8f 1772
mjr 6:cc35eb643e8f 1773 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 1774 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 1775 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 1776 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 1777 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 1778 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 1779 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 1780 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 1781 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 1782 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 1783 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 1784 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 1785 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 1786 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 1787 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 1788
mjr 5:a70c0bce770d 1789 // interurupt pin name
mjr 5:a70c0bce770d 1790 PinName irqPin_;
mjr 5:a70c0bce770d 1791
mjr 5:a70c0bce770d 1792 // interrupt router
mjr 5:a70c0bce770d 1793 InterruptIn intIn_;
mjr 3:3514575d4f86 1794 };
mjr 3:3514575d4f86 1795
mjr 5:a70c0bce770d 1796
mjr 5:a70c0bce770d 1797 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1798 //
mjr 14:df700b22ca08 1799 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 1800 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 1801 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 1802 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 1803 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 1804 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 1805 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 1806 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 1807 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 1808 //
mjr 14:df700b22ca08 1809 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 1810 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 1811 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 1812 //
mjr 5:a70c0bce770d 1813 void clear_i2c()
mjr 5:a70c0bce770d 1814 {
mjr 38:091e511ce8a0 1815 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 1816 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 1817 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 1818
mjr 5:a70c0bce770d 1819 // clock the SCL 9 times
mjr 5:a70c0bce770d 1820 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 1821 {
mjr 5:a70c0bce770d 1822 scl = 1;
mjr 5:a70c0bce770d 1823 wait_us(20);
mjr 5:a70c0bce770d 1824 scl = 0;
mjr 5:a70c0bce770d 1825 wait_us(20);
mjr 5:a70c0bce770d 1826 }
mjr 5:a70c0bce770d 1827 }
mjr 14:df700b22ca08 1828
mjr 14:df700b22ca08 1829 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 1830 //
mjr 33:d832bcab089e 1831 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 1832 // for a given interval before allowing an update.
mjr 33:d832bcab089e 1833 //
mjr 33:d832bcab089e 1834 class Debouncer
mjr 33:d832bcab089e 1835 {
mjr 33:d832bcab089e 1836 public:
mjr 33:d832bcab089e 1837 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 1838 {
mjr 33:d832bcab089e 1839 t.start();
mjr 33:d832bcab089e 1840 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 1841 this->tmin = tmin;
mjr 33:d832bcab089e 1842 }
mjr 33:d832bcab089e 1843
mjr 33:d832bcab089e 1844 // Get the current stable value
mjr 33:d832bcab089e 1845 bool val() const { return stable; }
mjr 33:d832bcab089e 1846
mjr 33:d832bcab089e 1847 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 1848 // input device.
mjr 33:d832bcab089e 1849 void sampleIn(bool val)
mjr 33:d832bcab089e 1850 {
mjr 33:d832bcab089e 1851 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 1852 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 1853 // on the sample reader.
mjr 33:d832bcab089e 1854 if (val != prv)
mjr 33:d832bcab089e 1855 {
mjr 33:d832bcab089e 1856 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 1857 t.reset();
mjr 33:d832bcab089e 1858
mjr 33:d832bcab089e 1859 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 1860 prv = val;
mjr 33:d832bcab089e 1861 }
mjr 33:d832bcab089e 1862 else if (val != stable)
mjr 33:d832bcab089e 1863 {
mjr 33:d832bcab089e 1864 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 1865 // and different from the stable value. This means that
mjr 33:d832bcab089e 1866 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 1867 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 1868 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 1869 if (t.read() > tmin)
mjr 33:d832bcab089e 1870 stable = val;
mjr 33:d832bcab089e 1871 }
mjr 33:d832bcab089e 1872 }
mjr 33:d832bcab089e 1873
mjr 33:d832bcab089e 1874 private:
mjr 33:d832bcab089e 1875 // current stable value
mjr 33:d832bcab089e 1876 bool stable;
mjr 33:d832bcab089e 1877
mjr 33:d832bcab089e 1878 // last raw sample value
mjr 33:d832bcab089e 1879 bool prv;
mjr 33:d832bcab089e 1880
mjr 33:d832bcab089e 1881 // elapsed time since last raw input change
mjr 33:d832bcab089e 1882 Timer t;
mjr 33:d832bcab089e 1883
mjr 33:d832bcab089e 1884 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 1885 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 1886 float tmin;
mjr 33:d832bcab089e 1887 };
mjr 33:d832bcab089e 1888
mjr 33:d832bcab089e 1889
mjr 33:d832bcab089e 1890 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 1891 //
mjr 33:d832bcab089e 1892 // Turn off all outputs and restore everything to the default LedWiz
mjr 33:d832bcab089e 1893 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 33:d832bcab089e 1894 // brightness) and switch state Off, sets all extended outputs (#33
mjr 33:d832bcab089e 1895 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 33:d832bcab089e 1896 // This effectively restores the power-on conditions.
mjr 33:d832bcab089e 1897 //
mjr 33:d832bcab089e 1898 void allOutputsOff()
mjr 33:d832bcab089e 1899 {
mjr 33:d832bcab089e 1900 // reset all LedWiz outputs to OFF/48
mjr 35:e959ffba78fd 1901 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 33:d832bcab089e 1902 {
mjr 33:d832bcab089e 1903 outLevel[i] = 0;
mjr 33:d832bcab089e 1904 wizOn[i] = 0;
mjr 33:d832bcab089e 1905 wizVal[i] = 48;
mjr 33:d832bcab089e 1906 lwPin[i]->set(0);
mjr 33:d832bcab089e 1907 }
mjr 33:d832bcab089e 1908
mjr 33:d832bcab089e 1909 // reset all extended outputs (ports >32) to full off (brightness 0)
mjr 40:cc0d9814522b 1910 for (int i = numLwOutputs ; i < numOutputs ; ++i)
mjr 33:d832bcab089e 1911 {
mjr 33:d832bcab089e 1912 outLevel[i] = 0;
mjr 33:d832bcab089e 1913 lwPin[i]->set(0);
mjr 33:d832bcab089e 1914 }
mjr 33:d832bcab089e 1915
mjr 33:d832bcab089e 1916 // restore default LedWiz flash rate
mjr 33:d832bcab089e 1917 wizSpeed = 2;
mjr 34:6b981a2afab7 1918
mjr 34:6b981a2afab7 1919 // flush changes to hc595, if applicable
mjr 35:e959ffba78fd 1920 if (hc595 != 0)
mjr 35:e959ffba78fd 1921 hc595->update();
mjr 33:d832bcab089e 1922 }
mjr 33:d832bcab089e 1923
mjr 33:d832bcab089e 1924 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 1925 //
mjr 33:d832bcab089e 1926 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 1927 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 1928 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 1929 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 1930 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 1931 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 1932 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 1933 //
mjr 33:d832bcab089e 1934 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 1935 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 1936 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 1937 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 1938 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 1939 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 1940 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 1941 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 1942 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 1943 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 1944 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 1945 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 1946 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 1947 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 1948 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 1949 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 1950 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 1951 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 1952 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 1953 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 1954 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 1955 //
mjr 40:cc0d9814522b 1956 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 1957 // of tricky but likely scenarios:
mjr 33:d832bcab089e 1958 //
mjr 33:d832bcab089e 1959 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 1960 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 1961 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 1962 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 1963 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 1964 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 1965 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 1966 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 1967 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 1968 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 1969 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 1970 //
mjr 33:d832bcab089e 1971 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 1972 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 1973 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 1974 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 1975 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 1976 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 1977 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 1978 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 1979 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 1980 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 1981 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 1982 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 1983 // first check.
mjr 33:d832bcab089e 1984 //
mjr 33:d832bcab089e 1985 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 1986 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 1987 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 1988 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 1989 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 1990 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 1991 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 1992 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 1993 //
mjr 33:d832bcab089e 1994
mjr 33:d832bcab089e 1995 // Current PSU2 state:
mjr 33:d832bcab089e 1996 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 1997 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 1998 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 1999 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 2000 // 5 -> TV relay on
mjr 33:d832bcab089e 2001 int psu2_state = 1;
mjr 35:e959ffba78fd 2002
mjr 35:e959ffba78fd 2003 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 2004 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 2005 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 2006
mjr 35:e959ffba78fd 2007 // TV ON switch relay control
mjr 35:e959ffba78fd 2008 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 2009
mjr 35:e959ffba78fd 2010 // Timer interrupt
mjr 35:e959ffba78fd 2011 Ticker tv_ticker;
mjr 35:e959ffba78fd 2012 float tv_delay_time;
mjr 33:d832bcab089e 2013 void TVTimerInt()
mjr 33:d832bcab089e 2014 {
mjr 35:e959ffba78fd 2015 // time since last state change
mjr 35:e959ffba78fd 2016 static Timer tv_timer;
mjr 35:e959ffba78fd 2017
mjr 33:d832bcab089e 2018 // Check our internal state
mjr 33:d832bcab089e 2019 switch (psu2_state)
mjr 33:d832bcab089e 2020 {
mjr 33:d832bcab089e 2021 case 1:
mjr 33:d832bcab089e 2022 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 2023 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 2024 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 2025 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 2026 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 2027 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 2028 {
mjr 33:d832bcab089e 2029 // switch to OFF state
mjr 33:d832bcab089e 2030 psu2_state = 2;
mjr 33:d832bcab089e 2031
mjr 33:d832bcab089e 2032 // try setting the latch
mjr 35:e959ffba78fd 2033 psu2_status_set->write(1);
mjr 33:d832bcab089e 2034 }
mjr 33:d832bcab089e 2035 break;
mjr 33:d832bcab089e 2036
mjr 33:d832bcab089e 2037 case 2:
mjr 33:d832bcab089e 2038 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 2039 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 2040 psu2_status_set->write(0);
mjr 33:d832bcab089e 2041 psu2_state = 3;
mjr 33:d832bcab089e 2042 break;
mjr 33:d832bcab089e 2043
mjr 33:d832bcab089e 2044 case 3:
mjr 33:d832bcab089e 2045 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 2046 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 2047 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 2048 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 2049 if (psu2_status_sense->read())
mjr 33:d832bcab089e 2050 {
mjr 33:d832bcab089e 2051 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 2052 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 2053 tv_timer.reset();
mjr 33:d832bcab089e 2054 tv_timer.start();
mjr 33:d832bcab089e 2055 psu2_state = 4;
mjr 33:d832bcab089e 2056 }
mjr 33:d832bcab089e 2057 else
mjr 33:d832bcab089e 2058 {
mjr 33:d832bcab089e 2059 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 2060 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 2061 // was turned on since the last check.
mjr 35:e959ffba78fd 2062 psu2_status_set->write(1);
mjr 33:d832bcab089e 2063 psu2_state = 2;
mjr 33:d832bcab089e 2064 }
mjr 33:d832bcab089e 2065 break;
mjr 33:d832bcab089e 2066
mjr 33:d832bcab089e 2067 case 4:
mjr 33:d832bcab089e 2068 // TV timer countdown in progress. If we've reached the
mjr 33:d832bcab089e 2069 // delay time, pulse the relay.
mjr 35:e959ffba78fd 2070 if (tv_timer.read() >= tv_delay_time)
mjr 33:d832bcab089e 2071 {
mjr 33:d832bcab089e 2072 // turn on the relay for one timer interval
mjr 35:e959ffba78fd 2073 tv_relay->write(1);
mjr 33:d832bcab089e 2074 psu2_state = 5;
mjr 33:d832bcab089e 2075 }
mjr 33:d832bcab089e 2076 break;
mjr 33:d832bcab089e 2077
mjr 33:d832bcab089e 2078 case 5:
mjr 33:d832bcab089e 2079 // TV timer relay on. We pulse this for one interval, so
mjr 33:d832bcab089e 2080 // it's now time to turn it off and return to the default state.
mjr 35:e959ffba78fd 2081 tv_relay->write(0);
mjr 33:d832bcab089e 2082 psu2_state = 1;
mjr 33:d832bcab089e 2083 break;
mjr 33:d832bcab089e 2084 }
mjr 33:d832bcab089e 2085 }
mjr 33:d832bcab089e 2086
mjr 35:e959ffba78fd 2087 // Start the TV ON checker. If the status sense circuit is enabled in
mjr 35:e959ffba78fd 2088 // the configuration, we'll set up the pin connections and start the
mjr 35:e959ffba78fd 2089 // interrupt handler that periodically checks the status. Does nothing
mjr 35:e959ffba78fd 2090 // if any of the pins are configured as NC.
mjr 35:e959ffba78fd 2091 void startTVTimer(Config &cfg)
mjr 35:e959ffba78fd 2092 {
mjr 35:e959ffba78fd 2093 // only start the timer if the status sense circuit pins are configured
mjr 35:e959ffba78fd 2094 if (cfg.TVON.statusPin != NC && cfg.TVON.latchPin != NC && cfg.TVON.relayPin != NC)
mjr 35:e959ffba78fd 2095 {
mjr 35:e959ffba78fd 2096 psu2_status_sense = new DigitalIn(cfg.TVON.statusPin);
mjr 35:e959ffba78fd 2097 psu2_status_set = new DigitalOut(cfg.TVON.latchPin);
mjr 35:e959ffba78fd 2098 tv_relay = new DigitalOut(cfg.TVON.relayPin);
mjr 40:cc0d9814522b 2099 tv_delay_time = cfg.TVON.delayTime/100.0;
mjr 35:e959ffba78fd 2100
mjr 35:e959ffba78fd 2101 // Set up our time routine to run every 1/4 second.
mjr 35:e959ffba78fd 2102 tv_ticker.attach(&TVTimerInt, 0.25);
mjr 35:e959ffba78fd 2103 }
mjr 35:e959ffba78fd 2104 }
mjr 35:e959ffba78fd 2105
mjr 35:e959ffba78fd 2106 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2107 //
mjr 35:e959ffba78fd 2108 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 2109 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 2110 //
mjr 35:e959ffba78fd 2111 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 2112 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 2113 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 2114 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 2115 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 2116 // again each time the firmware is updated.
mjr 35:e959ffba78fd 2117 //
mjr 35:e959ffba78fd 2118 NVM nvm;
mjr 35:e959ffba78fd 2119
mjr 35:e959ffba78fd 2120 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 2121 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 2122
mjr 35:e959ffba78fd 2123 // flash memory controller interface
mjr 35:e959ffba78fd 2124 FreescaleIAP iap;
mjr 35:e959ffba78fd 2125
mjr 35:e959ffba78fd 2126 // figure the flash address as a pointer along with the number of sectors
mjr 35:e959ffba78fd 2127 // required to store the structure
mjr 35:e959ffba78fd 2128 NVM *configFlashAddr(int &addr, int &numSectors)
mjr 35:e959ffba78fd 2129 {
mjr 35:e959ffba78fd 2130 // figure how many flash sectors we span, rounding up to whole sectors
mjr 35:e959ffba78fd 2131 numSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 35:e959ffba78fd 2132
mjr 35:e959ffba78fd 2133 // figure the address - this is the highest flash address where the
mjr 35:e959ffba78fd 2134 // structure will fit with the start aligned on a sector boundary
mjr 35:e959ffba78fd 2135 addr = iap.flash_size() - (numSectors * SECTOR_SIZE);
mjr 35:e959ffba78fd 2136
mjr 35:e959ffba78fd 2137 // return the address as a pointer
mjr 35:e959ffba78fd 2138 return (NVM *)addr;
mjr 35:e959ffba78fd 2139 }
mjr 35:e959ffba78fd 2140
mjr 35:e959ffba78fd 2141 // figure the flash address as a pointer
mjr 35:e959ffba78fd 2142 NVM *configFlashAddr()
mjr 35:e959ffba78fd 2143 {
mjr 35:e959ffba78fd 2144 int addr, numSectors;
mjr 35:e959ffba78fd 2145 return configFlashAddr(addr, numSectors);
mjr 35:e959ffba78fd 2146 }
mjr 35:e959ffba78fd 2147
mjr 35:e959ffba78fd 2148 // Load the config from flash
mjr 35:e959ffba78fd 2149 void loadConfigFromFlash()
mjr 35:e959ffba78fd 2150 {
mjr 35:e959ffba78fd 2151 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 2152 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 2153 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 2154 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 2155 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 2156 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 2157 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 2158 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 2159 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 2160 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 2161 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 2162 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 2163 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 2164 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 2165 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 2166 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 2167
mjr 35:e959ffba78fd 2168 // Figure how many sectors we need for our structure
mjr 35:e959ffba78fd 2169 NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 2170
mjr 35:e959ffba78fd 2171 // if the flash is valid, load it; otherwise initialize to defaults
mjr 35:e959ffba78fd 2172 if (flash->valid())
mjr 35:e959ffba78fd 2173 {
mjr 35:e959ffba78fd 2174 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 2175 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 2176 }
mjr 35:e959ffba78fd 2177 else
mjr 35:e959ffba78fd 2178 {
mjr 35:e959ffba78fd 2179 // flash is invalid - load factory settings nito RAM structure
mjr 35:e959ffba78fd 2180 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 2181 }
mjr 35:e959ffba78fd 2182 }
mjr 35:e959ffba78fd 2183
mjr 35:e959ffba78fd 2184 void saveConfigToFlash()
mjr 33:d832bcab089e 2185 {
mjr 35:e959ffba78fd 2186 int addr, sectors;
mjr 35:e959ffba78fd 2187 configFlashAddr(addr, sectors);
mjr 35:e959ffba78fd 2188 nvm.save(iap, addr);
mjr 35:e959ffba78fd 2189 }
mjr 35:e959ffba78fd 2190
mjr 35:e959ffba78fd 2191 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2192 //
mjr 40:cc0d9814522b 2193 // Night mode setting updates
mjr 40:cc0d9814522b 2194 //
mjr 38:091e511ce8a0 2195
mjr 38:091e511ce8a0 2196 // Turn night mode on or off
mjr 38:091e511ce8a0 2197 static void setNightMode(bool on)
mjr 38:091e511ce8a0 2198 {
mjr 40:cc0d9814522b 2199 // set the new night mode flag in the noisy output class
mjr 40:cc0d9814522b 2200 LwNoisyOut::nightMode = on;
mjr 40:cc0d9814522b 2201
mjr 40:cc0d9814522b 2202 // update the special output pin that shows the night mode state
mjr 40:cc0d9814522b 2203 specialPin[SPECIAL_PIN_NIGHTMODE]->set(on ? 255 : 0);
mjr 40:cc0d9814522b 2204
mjr 40:cc0d9814522b 2205 // update all outputs for the mode change
mjr 40:cc0d9814522b 2206 updateAllOuts();
mjr 38:091e511ce8a0 2207 }
mjr 38:091e511ce8a0 2208
mjr 38:091e511ce8a0 2209 // Toggle night mode
mjr 38:091e511ce8a0 2210 static void toggleNightMode()
mjr 38:091e511ce8a0 2211 {
mjr 40:cc0d9814522b 2212 setNightMode(!LwNoisyOut::nightMode);
mjr 38:091e511ce8a0 2213 }
mjr 38:091e511ce8a0 2214
mjr 38:091e511ce8a0 2215
mjr 38:091e511ce8a0 2216 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 2217 //
mjr 35:e959ffba78fd 2218 // Plunger Sensor
mjr 35:e959ffba78fd 2219 //
mjr 35:e959ffba78fd 2220
mjr 35:e959ffba78fd 2221 // the plunger sensor interface object
mjr 35:e959ffba78fd 2222 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 2223
mjr 35:e959ffba78fd 2224 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 2225 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 2226 void createPlunger()
mjr 35:e959ffba78fd 2227 {
mjr 35:e959ffba78fd 2228 // delete any existing sensor object
mjr 35:e959ffba78fd 2229 if (plungerSensor != 0)
mjr 35:e959ffba78fd 2230 delete plungerSensor;
mjr 35:e959ffba78fd 2231
mjr 35:e959ffba78fd 2232 // create the new sensor object according to the type
mjr 35:e959ffba78fd 2233 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 2234 {
mjr 35:e959ffba78fd 2235 case PlungerType_TSL1410RS:
mjr 35:e959ffba78fd 2236 // pins are: SI, CLOCK, AO
mjr 35:e959ffba78fd 2237 plungerSensor = new PlungerSensorTSL1410R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], NC);
mjr 35:e959ffba78fd 2238 break;
mjr 35:e959ffba78fd 2239
mjr 35:e959ffba78fd 2240 case PlungerType_TSL1410RP:
mjr 35:e959ffba78fd 2241 // pins are: SI, CLOCK, AO1, AO2
mjr 35:e959ffba78fd 2242 plungerSensor = new PlungerSensorTSL1410R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], cfg.plunger.sensorPin[3]);
mjr 35:e959ffba78fd 2243 break;
mjr 35:e959ffba78fd 2244
mjr 35:e959ffba78fd 2245 case PlungerType_TSL1412RS:
mjr 35:e959ffba78fd 2246 // pins are: SI, CLOCK, AO1, AO2
mjr 35:e959ffba78fd 2247 plungerSensor = new PlungerSensorTSL1412R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], NC);
mjr 35:e959ffba78fd 2248 break;
mjr 35:e959ffba78fd 2249
mjr 35:e959ffba78fd 2250 case PlungerType_TSL1412RP:
mjr 35:e959ffba78fd 2251 // pins are: SI, CLOCK, AO1, AO2
mjr 35:e959ffba78fd 2252 plungerSensor = new PlungerSensorTSL1412R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], cfg.plunger.sensorPin[3]);
mjr 35:e959ffba78fd 2253 break;
mjr 35:e959ffba78fd 2254
mjr 35:e959ffba78fd 2255 case PlungerType_Pot:
mjr 35:e959ffba78fd 2256 // pins are: AO
mjr 35:e959ffba78fd 2257 plungerSensor = new PlungerSensorPot(cfg.plunger.sensorPin[0]);
mjr 35:e959ffba78fd 2258 break;
mjr 35:e959ffba78fd 2259
mjr 35:e959ffba78fd 2260 case PlungerType_None:
mjr 35:e959ffba78fd 2261 default:
mjr 35:e959ffba78fd 2262 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 2263 break;
mjr 35:e959ffba78fd 2264 }
mjr 33:d832bcab089e 2265 }
mjr 33:d832bcab089e 2266
mjr 35:e959ffba78fd 2267 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2268 //
mjr 35:e959ffba78fd 2269 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 2270 //
mjr 35:e959ffba78fd 2271 void reboot(USBJoystick &js)
mjr 35:e959ffba78fd 2272 {
mjr 35:e959ffba78fd 2273 // disconnect from USB
mjr 35:e959ffba78fd 2274 js.disconnect();
mjr 35:e959ffba78fd 2275
mjr 35:e959ffba78fd 2276 // wait a few seconds to make sure the host notices the disconnect
mjr 35:e959ffba78fd 2277 wait(5);
mjr 35:e959ffba78fd 2278
mjr 35:e959ffba78fd 2279 // reset the device
mjr 35:e959ffba78fd 2280 NVIC_SystemReset();
mjr 35:e959ffba78fd 2281 while (true) { }
mjr 35:e959ffba78fd 2282 }
mjr 35:e959ffba78fd 2283
mjr 35:e959ffba78fd 2284 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2285 //
mjr 35:e959ffba78fd 2286 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 2287 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 2288 //
mjr 35:e959ffba78fd 2289 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 2290 {
mjr 35:e959ffba78fd 2291 int tmp;
mjr 35:e959ffba78fd 2292 switch (cfg.orientation)
mjr 35:e959ffba78fd 2293 {
mjr 35:e959ffba78fd 2294 case OrientationFront:
mjr 35:e959ffba78fd 2295 tmp = x;
mjr 35:e959ffba78fd 2296 x = y;
mjr 35:e959ffba78fd 2297 y = tmp;
mjr 35:e959ffba78fd 2298 break;
mjr 35:e959ffba78fd 2299
mjr 35:e959ffba78fd 2300 case OrientationLeft:
mjr 35:e959ffba78fd 2301 x = -x;
mjr 35:e959ffba78fd 2302 break;
mjr 35:e959ffba78fd 2303
mjr 35:e959ffba78fd 2304 case OrientationRight:
mjr 35:e959ffba78fd 2305 y = -y;
mjr 35:e959ffba78fd 2306 break;
mjr 35:e959ffba78fd 2307
mjr 35:e959ffba78fd 2308 case OrientationRear:
mjr 35:e959ffba78fd 2309 tmp = -x;
mjr 35:e959ffba78fd 2310 x = -y;
mjr 35:e959ffba78fd 2311 y = tmp;
mjr 35:e959ffba78fd 2312 break;
mjr 35:e959ffba78fd 2313 }
mjr 35:e959ffba78fd 2314 }
mjr 35:e959ffba78fd 2315
mjr 35:e959ffba78fd 2316 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2317 //
mjr 35:e959ffba78fd 2318 // Device status. We report this on each update so that the host config
mjr 35:e959ffba78fd 2319 // tool can detect our current settings. This is a bit mask consisting
mjr 35:e959ffba78fd 2320 // of these bits:
mjr 35:e959ffba78fd 2321 // 0x0001 -> plunger sensor enabled
mjr 35:e959ffba78fd 2322 // 0x8000 -> RESERVED - must always be zero
mjr 35:e959ffba78fd 2323 //
mjr 35:e959ffba78fd 2324 // Note that the high bit (0x8000) must always be 0, since we use that
mjr 35:e959ffba78fd 2325 // to distinguish special request reply packets.
mjr 35:e959ffba78fd 2326 uint16_t statusFlags;
mjr 35:e959ffba78fd 2327
mjr 35:e959ffba78fd 2328 // flag: send a pixel dump after the next read
mjr 35:e959ffba78fd 2329 bool reportPix = false;
mjr 35:e959ffba78fd 2330
mjr 33:d832bcab089e 2331
mjr 35:e959ffba78fd 2332 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2333 //
mjr 35:e959ffba78fd 2334 // Calibration button state:
mjr 35:e959ffba78fd 2335 // 0 = not pushed
mjr 35:e959ffba78fd 2336 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 2337 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 2338 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 2339 int calBtnState = 0;
mjr 35:e959ffba78fd 2340
mjr 35:e959ffba78fd 2341 // calibration button debounce timer
mjr 35:e959ffba78fd 2342 Timer calBtnTimer;
mjr 35:e959ffba78fd 2343
mjr 35:e959ffba78fd 2344 // calibration button light state
mjr 35:e959ffba78fd 2345 int calBtnLit = false;
mjr 35:e959ffba78fd 2346
mjr 35:e959ffba78fd 2347
mjr 35:e959ffba78fd 2348 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2349 //
mjr 40:cc0d9814522b 2350 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 2351 //
mjr 40:cc0d9814522b 2352
mjr 40:cc0d9814522b 2353 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 2354 #define if_msg_valid(test) if (test)
mjr 40:cc0d9814522b 2355 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 40:cc0d9814522b 2356 #define v_ui16(var, ofs) cfg.var = wireUI16(data+ofs)
mjr 40:cc0d9814522b 2357 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 40:cc0d9814522b 2358 #define v_func configVarSet
mjr 40:cc0d9814522b 2359 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 2360
mjr 40:cc0d9814522b 2361 // redefine everything for the SET messages
mjr 40:cc0d9814522b 2362 #undef if_msg_valid
mjr 40:cc0d9814522b 2363 #undef v_byte
mjr 40:cc0d9814522b 2364 #undef v_ui16
mjr 40:cc0d9814522b 2365 #undef v_pin
mjr 40:cc0d9814522b 2366 #undef v_func
mjr 38:091e511ce8a0 2367
mjr 40:cc0d9814522b 2368 // Handle GET messages - read variable values and return in USB message daa
mjr 40:cc0d9814522b 2369 #define if_msg_valid(test)
mjr 40:cc0d9814522b 2370 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 40:cc0d9814522b 2371 #define v_ui16(var, ofs) ui16Wire(data+ofs, cfg.var)
mjr 40:cc0d9814522b 2372 #define v_pin(var, ofs) pinNameWire(data+ofs, cfg.var)
mjr 40:cc0d9814522b 2373 #define v_func configVarGet
mjr 40:cc0d9814522b 2374 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 2375
mjr 35:e959ffba78fd 2376
mjr 35:e959ffba78fd 2377 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2378 //
mjr 35:e959ffba78fd 2379 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 2380 // LedWiz protocol.
mjr 33:d832bcab089e 2381 //
mjr 39:b3815a1c3802 2382 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, int &z)
mjr 35:e959ffba78fd 2383 {
mjr 38:091e511ce8a0 2384 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 2385 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 2386 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 2387 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 2388 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 2389 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 2390 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 2391 // So our full protocol is as follows:
mjr 38:091e511ce8a0 2392 //
mjr 38:091e511ce8a0 2393 // first byte =
mjr 38:091e511ce8a0 2394 // 0-48 -> LWZ-PBA
mjr 38:091e511ce8a0 2395 // 64 -> LWZ SBA
mjr 38:091e511ce8a0 2396 // 65 -> private control message; second byte specifies subtype
mjr 38:091e511ce8a0 2397 // 129-132 -> LWZ-PBA
mjr 38:091e511ce8a0 2398 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 2399 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 2400 // other -> reserved for future use
mjr 38:091e511ce8a0 2401 //
mjr 39:b3815a1c3802 2402 uint8_t *data = lwm.data;
mjr 38:091e511ce8a0 2403 if (data[0] == 64)
mjr 35:e959ffba78fd 2404 {
mjr 38:091e511ce8a0 2405 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 38:091e511ce8a0 2406 // for the outputs; 5th byte is the pulse speed (1-7)
mjr 38:091e511ce8a0 2407 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 38:091e511ce8a0 2408 // data[1], data[2], data[3], data[4], data[5]);
mjr 38:091e511ce8a0 2409
mjr 38:091e511ce8a0 2410 // update all on/off states
mjr 38:091e511ce8a0 2411 for (int i = 0, bit = 1, ri = 1 ; i < numLwOutputs ; ++i, bit <<= 1)
mjr 35:e959ffba78fd 2412 {
mjr 38:091e511ce8a0 2413 // figure the on/off state bit for this output
mjr 38:091e511ce8a0 2414 if (bit == 0x100) {
mjr 38:091e511ce8a0 2415 bit = 1;
mjr 38:091e511ce8a0 2416 ++ri;
mjr 35:e959ffba78fd 2417 }
mjr 35:e959ffba78fd 2418
mjr 38:091e511ce8a0 2419 // set the on/off state
mjr 38:091e511ce8a0 2420 wizOn[i] = ((data[ri] & bit) != 0);
mjr 38:091e511ce8a0 2421
mjr 38:091e511ce8a0 2422 // If the wizVal setting is 255, it means that this
mjr 38:091e511ce8a0 2423 // output was last set to a brightness value with the
mjr 38:091e511ce8a0 2424 // extended protocol. Return it to LedWiz control by
mjr 38:091e511ce8a0 2425 // rescaling the brightness setting to the LedWiz range
mjr 38:091e511ce8a0 2426 // and updating wizVal with the result. If it's any
mjr 38:091e511ce8a0 2427 // other value, it was previously set by a PBA message,
mjr 38:091e511ce8a0 2428 // so simply retain the last setting - in the normal
mjr 38:091e511ce8a0 2429 // LedWiz protocol, the "profile" (brightness) and on/off
mjr 38:091e511ce8a0 2430 // states are independent, so an SBA just turns an output
mjr 38:091e511ce8a0 2431 // on or off but retains its last brightness level.
mjr 38:091e511ce8a0 2432 if (wizVal[i] == 255)
mjr 40:cc0d9814522b 2433 wizVal[i] = (uint8_t)round(outLevel[i]/255.0 * 48.0);
mjr 38:091e511ce8a0 2434 }
mjr 38:091e511ce8a0 2435
mjr 38:091e511ce8a0 2436 // set the flash speed - enforce the value range 1-7
mjr 38:091e511ce8a0 2437 wizSpeed = data[5];
mjr 38:091e511ce8a0 2438 if (wizSpeed < 1)
mjr 38:091e511ce8a0 2439 wizSpeed = 1;
mjr 38:091e511ce8a0 2440 else if (wizSpeed > 7)
mjr 38:091e511ce8a0 2441 wizSpeed = 7;
mjr 38:091e511ce8a0 2442
mjr 38:091e511ce8a0 2443 // update the physical outputs
mjr 38:091e511ce8a0 2444 updateWizOuts();
mjr 38:091e511ce8a0 2445 if (hc595 != 0)
mjr 38:091e511ce8a0 2446 hc595->update();
mjr 38:091e511ce8a0 2447
mjr 38:091e511ce8a0 2448 // reset the PBA counter
mjr 38:091e511ce8a0 2449 pbaIdx = 0;
mjr 38:091e511ce8a0 2450 }
mjr 38:091e511ce8a0 2451 else if (data[0] == 65)
mjr 38:091e511ce8a0 2452 {
mjr 38:091e511ce8a0 2453 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 2454 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 2455 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 2456 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 2457 // message type.
mjr 39:b3815a1c3802 2458 switch (data[1])
mjr 38:091e511ce8a0 2459 {
mjr 39:b3815a1c3802 2460 case 0:
mjr 39:b3815a1c3802 2461 // No Op
mjr 39:b3815a1c3802 2462 break;
mjr 39:b3815a1c3802 2463
mjr 39:b3815a1c3802 2464 case 1:
mjr 38:091e511ce8a0 2465 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 2466 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 2467 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 2468 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 2469 {
mjr 39:b3815a1c3802 2470
mjr 39:b3815a1c3802 2471 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 2472 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 2473 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 2474
mjr 39:b3815a1c3802 2475 // we'll need a reset if the LedWiz unit number is changing
mjr 39:b3815a1c3802 2476 bool needReset = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 2477
mjr 39:b3815a1c3802 2478 // set the configuration parameters from the message
mjr 39:b3815a1c3802 2479 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 2480 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 2481
mjr 39:b3815a1c3802 2482 // update the status flags
mjr 39:b3815a1c3802 2483 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 39:b3815a1c3802 2484
mjr 39:b3815a1c3802 2485 // if the plunger is no longer enabled, use 0 for z reports
mjr 39:b3815a1c3802 2486 if (!cfg.plunger.enabled)
mjr 39:b3815a1c3802 2487 z = 0;
mjr 39:b3815a1c3802 2488
mjr 39:b3815a1c3802 2489 // save the configuration
mjr 39:b3815a1c3802 2490 saveConfigToFlash();
mjr 39:b3815a1c3802 2491
mjr 39:b3815a1c3802 2492 // reboot if necessary
mjr 39:b3815a1c3802 2493 if (needReset)
mjr 39:b3815a1c3802 2494 reboot(js);
mjr 39:b3815a1c3802 2495 }
mjr 39:b3815a1c3802 2496 break;
mjr 38:091e511ce8a0 2497
mjr 39:b3815a1c3802 2498 case 2:
mjr 38:091e511ce8a0 2499 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 2500 // (No parameters)
mjr 38:091e511ce8a0 2501
mjr 38:091e511ce8a0 2502 // enter calibration mode
mjr 38:091e511ce8a0 2503 calBtnState = 3;
mjr 38:091e511ce8a0 2504 calBtnTimer.reset();
mjr 38:091e511ce8a0 2505 cfg.plunger.cal.reset(plungerSensor->npix);
mjr 39:b3815a1c3802 2506 break;
mjr 39:b3815a1c3802 2507
mjr 39:b3815a1c3802 2508 case 3:
mjr 38:091e511ce8a0 2509 // 3 = pixel dump
mjr 38:091e511ce8a0 2510 // (No parameters)
mjr 38:091e511ce8a0 2511 reportPix = true;
mjr 38:091e511ce8a0 2512
mjr 38:091e511ce8a0 2513 // show purple until we finish sending the report
mjr 38:091e511ce8a0 2514 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 2515 break;
mjr 39:b3815a1c3802 2516
mjr 39:b3815a1c3802 2517 case 4:
mjr 38:091e511ce8a0 2518 // 4 = hardware configuration query
mjr 38:091e511ce8a0 2519 // (No parameters)
mjr 38:091e511ce8a0 2520 js.reportConfig(
mjr 38:091e511ce8a0 2521 numOutputs,
mjr 38:091e511ce8a0 2522 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 40:cc0d9814522b 2523 cfg.plunger.cal.zero, cfg.plunger.cal.max,
mjr 40:cc0d9814522b 2524 nvm.valid());
mjr 39:b3815a1c3802 2525 break;
mjr 39:b3815a1c3802 2526
mjr 39:b3815a1c3802 2527 case 5:
mjr 38:091e511ce8a0 2528 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 2529 allOutputsOff();
mjr 39:b3815a1c3802 2530 break;
mjr 39:b3815a1c3802 2531
mjr 39:b3815a1c3802 2532 case 6:
mjr 38:091e511ce8a0 2533 // 6 = Save configuration to flash.
mjr 38:091e511ce8a0 2534 saveConfigToFlash();
mjr 38:091e511ce8a0 2535
mjr 38:091e511ce8a0 2536 // Reboot the microcontroller. Nearly all config changes
mjr 38:091e511ce8a0 2537 // require a reset, and a reset only takes a few seconds,
mjr 38:091e511ce8a0 2538 // so we don't bother tracking whether or not a reboot is
mjr 38:091e511ce8a0 2539 // really needed.
mjr 38:091e511ce8a0 2540 reboot(js);
mjr 39:b3815a1c3802 2541 break;
mjr 40:cc0d9814522b 2542
mjr 40:cc0d9814522b 2543 case 7:
mjr 40:cc0d9814522b 2544 // 7 = Device ID report
mjr 40:cc0d9814522b 2545 // (No parameters)
mjr 40:cc0d9814522b 2546 js.reportID();
mjr 40:cc0d9814522b 2547 break;
mjr 40:cc0d9814522b 2548
mjr 40:cc0d9814522b 2549 case 8:
mjr 40:cc0d9814522b 2550 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 2551 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 2552 setNightMode(data[2]);
mjr 40:cc0d9814522b 2553 break;
mjr 38:091e511ce8a0 2554 }
mjr 38:091e511ce8a0 2555 }
mjr 38:091e511ce8a0 2556 else if (data[0] == 66)
mjr 38:091e511ce8a0 2557 {
mjr 38:091e511ce8a0 2558 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 2559 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 2560 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 2561 // in a variable-dependent format.
mjr 40:cc0d9814522b 2562 configVarSet(data);
mjr 38:091e511ce8a0 2563 }
mjr 38:091e511ce8a0 2564 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 2565 {
mjr 38:091e511ce8a0 2566 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 2567 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 2568 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 2569 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 2570 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 2571 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 2572 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 2573 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 2574 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 2575 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 2576 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 2577 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 2578 //
mjr 38:091e511ce8a0 2579 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 2580 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 2581 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 2582 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 2583 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 2584 // address those ports anyway.
mjr 38:091e511ce8a0 2585 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 2586 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 38:091e511ce8a0 2587 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 2588 {
mjr 38:091e511ce8a0 2589 // set the brightness level for the output
mjr 40:cc0d9814522b 2590 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 2591 outLevel[i] = b;
mjr 38:091e511ce8a0 2592
mjr 38:091e511ce8a0 2593 // if it's in the basic LedWiz output set, set the LedWiz
mjr 38:091e511ce8a0 2594 // profile value to 255, which means "use outLevel"
mjr 38:091e511ce8a0 2595 if (i < 32)
mjr 38:091e511ce8a0 2596 wizVal[i] = 255;
mjr 38:091e511ce8a0 2597
mjr 38:091e511ce8a0 2598 // set the output
mjr 40:cc0d9814522b 2599 lwPin[i]->set(b);
mjr 38:091e511ce8a0 2600 }
mjr 38:091e511ce8a0 2601
mjr 38:091e511ce8a0 2602 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 2603 if (hc595 != 0)
mjr 38:091e511ce8a0 2604 hc595->update();
mjr 38:091e511ce8a0 2605 }
mjr 38:091e511ce8a0 2606 else
mjr 38:091e511ce8a0 2607 {
mjr 38:091e511ce8a0 2608 // Everything else is LWZ-PBA. This is a full "profile"
mjr 38:091e511ce8a0 2609 // dump from the host for one bank of 8 outputs. Each
mjr 38:091e511ce8a0 2610 // byte sets one output in the current bank. The current
mjr 38:091e511ce8a0 2611 // bank is implied; the bank starts at 0 and is reset to 0
mjr 38:091e511ce8a0 2612 // by any LWZ-SBA message, and is incremented to the next
mjr 38:091e511ce8a0 2613 // bank by each LWZ-PBA message. Our variable pbaIdx keeps
mjr 38:091e511ce8a0 2614 // track of our notion of the current bank. There's no direct
mjr 38:091e511ce8a0 2615 // way for the host to select the bank; it just has to count
mjr 38:091e511ce8a0 2616 // on us staying in sync. In practice, the host will always
mjr 38:091e511ce8a0 2617 // send a full set of 4 PBA messages in a row to set all 32
mjr 38:091e511ce8a0 2618 // outputs.
mjr 38:091e511ce8a0 2619 //
mjr 38:091e511ce8a0 2620 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 2621 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 2622 // wizVal[] entry for each output, and that takes precedence
mjr 38:091e511ce8a0 2623 // over the extended protocol settings.
mjr 38:091e511ce8a0 2624 //
mjr 38:091e511ce8a0 2625 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 2626 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 2627
mjr 38:091e511ce8a0 2628 // Update all output profile settings
mjr 38:091e511ce8a0 2629 for (int i = 0 ; i < 8 ; ++i)
mjr 38:091e511ce8a0 2630 wizVal[pbaIdx + i] = data[i];
mjr 38:091e511ce8a0 2631
mjr 38:091e511ce8a0 2632 // Update the physical LED state if this is the last bank.
mjr 38:091e511ce8a0 2633 // Note that hosts always send a full set of four PBA
mjr 38:091e511ce8a0 2634 // messages, so there's no need to do a physical update
mjr 38:091e511ce8a0 2635 // until we've received the last bank's PBA message.
mjr 38:091e511ce8a0 2636 if (pbaIdx == 24)
mjr 38:091e511ce8a0 2637 {
mjr 35:e959ffba78fd 2638 updateWizOuts();
mjr 35:e959ffba78fd 2639 if (hc595 != 0)
mjr 35:e959ffba78fd 2640 hc595->update();
mjr 35:e959ffba78fd 2641 pbaIdx = 0;
mjr 35:e959ffba78fd 2642 }
mjr 38:091e511ce8a0 2643 else
mjr 38:091e511ce8a0 2644 pbaIdx += 8;
mjr 38:091e511ce8a0 2645 }
mjr 38:091e511ce8a0 2646 }
mjr 35:e959ffba78fd 2647
mjr 33:d832bcab089e 2648
mjr 38:091e511ce8a0 2649 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 2650 //
mjr 38:091e511ce8a0 2651 // Pre-connection diagnostic flasher
mjr 38:091e511ce8a0 2652 //
mjr 38:091e511ce8a0 2653 void preConnectFlasher()
mjr 38:091e511ce8a0 2654 {
mjr 38:091e511ce8a0 2655 diagLED(1, 0, 0);
mjr 38:091e511ce8a0 2656 wait(0.05);
mjr 38:091e511ce8a0 2657 diagLED(0, 0, 0);
mjr 35:e959ffba78fd 2658 }
mjr 17:ab3cec0c8bf4 2659
mjr 17:ab3cec0c8bf4 2660 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 2661 //
mjr 5:a70c0bce770d 2662 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 2663 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 2664 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 2665 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 2666 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 2667 // port outputs.
mjr 5:a70c0bce770d 2668 //
mjr 0:5acbbe3f4cf4 2669 int main(void)
mjr 0:5acbbe3f4cf4 2670 {
mjr 39:b3815a1c3802 2671 printf("\r\nPinscape Controller starting\r\n");
mjr 39:b3815a1c3802 2672 // memory config debugging: {int *a = new int; printf("Stack=%lx, heap=%lx, free=%ld\r\n", (long)&a, (long)a, (long)&a - (long)a);}
mjr 1:d913e0afb2ac 2673
mjr 39:b3815a1c3802 2674 // clear the I2C bus (for the accelerometer)
mjr 35:e959ffba78fd 2675 clear_i2c();
mjr 38:091e511ce8a0 2676
mjr 35:e959ffba78fd 2677 // load the saved configuration
mjr 35:e959ffba78fd 2678 loadConfigFromFlash();
mjr 35:e959ffba78fd 2679
mjr 38:091e511ce8a0 2680 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 2681 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 2682
mjr 38:091e511ce8a0 2683 // set up the pre-connected ticker
mjr 38:091e511ce8a0 2684 Ticker preConnectTicker;
mjr 38:091e511ce8a0 2685 preConnectTicker.attach(preConnectFlasher, 3);
mjr 38:091e511ce8a0 2686
mjr 33:d832bcab089e 2687 // we're not connected/awake yet
mjr 33:d832bcab089e 2688 bool connected = false;
mjr 40:cc0d9814522b 2689 Timer connectChangeTimer;
mjr 33:d832bcab089e 2690
mjr 35:e959ffba78fd 2691 // create the plunger sensor interface
mjr 35:e959ffba78fd 2692 createPlunger();
mjr 33:d832bcab089e 2693
mjr 35:e959ffba78fd 2694 // set up the TLC5940 interface and start the TLC5940 clock, if applicable
mjr 35:e959ffba78fd 2695 init_tlc5940(cfg);
mjr 34:6b981a2afab7 2696
mjr 34:6b981a2afab7 2697 // enable the 74HC595 chips, if present
mjr 35:e959ffba78fd 2698 init_hc595(cfg);
mjr 6:cc35eb643e8f 2699
mjr 38:091e511ce8a0 2700 // Initialize the LedWiz ports. Note that it's important to wait until
mjr 38:091e511ce8a0 2701 // after initializing the various off-board output port controller chip
mjr 38:091e511ce8a0 2702 // sybsystems (TLC5940, 74HC595), since pins attached to peripheral
mjr 38:091e511ce8a0 2703 // controllers will need to address their respective controller objects,
mjr 38:091e511ce8a0 2704 // which don't exit until we initialize those subsystems.
mjr 35:e959ffba78fd 2705 initLwOut(cfg);
mjr 2:c174f9ee414a 2706
mjr 35:e959ffba78fd 2707 // start the TLC5940 clock
mjr 35:e959ffba78fd 2708 if (tlc5940 != 0)
mjr 35:e959ffba78fd 2709 tlc5940->start();
mjr 35:e959ffba78fd 2710
mjr 40:cc0d9814522b 2711 // start the TV timer, if applicable
mjr 40:cc0d9814522b 2712 startTVTimer(cfg);
mjr 40:cc0d9814522b 2713
mjr 35:e959ffba78fd 2714 // initialize the button input ports
mjr 35:e959ffba78fd 2715 bool kbKeys = false;
mjr 35:e959ffba78fd 2716 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 2717
mjr 6:cc35eb643e8f 2718 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 2719 // number from the saved configuration.
mjr 35:e959ffba78fd 2720 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, true, cfg.joystickEnabled, kbKeys);
mjr 38:091e511ce8a0 2721
mjr 38:091e511ce8a0 2722 // we're now connected - kill the pre-connect ticker
mjr 38:091e511ce8a0 2723 preConnectTicker.detach();
mjr 40:cc0d9814522b 2724
mjr 38:091e511ce8a0 2725 // Last report timer for the joytick interface. We use the joystick timer
mjr 38:091e511ce8a0 2726 // to throttle the report rate, because VP doesn't benefit from reports any
mjr 38:091e511ce8a0 2727 // faster than about every 10ms.
mjr 38:091e511ce8a0 2728 Timer jsReportTimer;
mjr 38:091e511ce8a0 2729 jsReportTimer.start();
mjr 38:091e511ce8a0 2730
mjr 38:091e511ce8a0 2731 // Time since we successfully sent a USB report. This is a hacky workaround
mjr 38:091e511ce8a0 2732 // for sporadic problems in the USB stack that I haven't been able to figure
mjr 38:091e511ce8a0 2733 // out. If we go too long without successfully sending a USB report, we'll
mjr 38:091e511ce8a0 2734 // try resetting the connection.
mjr 38:091e511ce8a0 2735 Timer jsOKTimer;
mjr 38:091e511ce8a0 2736 jsOKTimer.start();
mjr 35:e959ffba78fd 2737
mjr 35:e959ffba78fd 2738 // set the initial status flags
mjr 35:e959ffba78fd 2739 statusFlags = (cfg.plunger.enabled ? 0x01 : 0x00);
mjr 17:ab3cec0c8bf4 2740
mjr 17:ab3cec0c8bf4 2741 // initialize the calibration buttons, if present
mjr 35:e959ffba78fd 2742 DigitalIn *calBtn = (cfg.plunger.cal.btn == NC ? 0 : new DigitalIn(cfg.plunger.cal.btn));
mjr 35:e959ffba78fd 2743 DigitalOut *calBtnLed = (cfg.plunger.cal.led == NC ? 0 : new DigitalOut(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 2744
mjr 35:e959ffba78fd 2745 // initialize the calibration button
mjr 1:d913e0afb2ac 2746 calBtnTimer.start();
mjr 35:e959ffba78fd 2747 calBtnState = 0;
mjr 1:d913e0afb2ac 2748
mjr 1:d913e0afb2ac 2749 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 2750 Timer hbTimer;
mjr 1:d913e0afb2ac 2751 hbTimer.start();
mjr 1:d913e0afb2ac 2752 int hb = 0;
mjr 5:a70c0bce770d 2753 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 2754
mjr 1:d913e0afb2ac 2755 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 2756 Timer acTimer;
mjr 1:d913e0afb2ac 2757 acTimer.start();
mjr 1:d913e0afb2ac 2758
mjr 0:5acbbe3f4cf4 2759 // create the accelerometer object
mjr 5:a70c0bce770d 2760 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 0:5acbbe3f4cf4 2761
mjr 17:ab3cec0c8bf4 2762 // last accelerometer report, in joystick units (we report the nudge
mjr