An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Mon Dec 29 19:27:52 2014 +0000
Revision:
16:c35f905c3311
Parent:
15:944bbc29c4dd
Child:
17:ab3cec0c8bf4
Fix comment typo

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 5:a70c0bce770d 1 /* Copyright 2014 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 5:a70c0bce770d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 5:a70c0bce770d 20 // Pinscape Controller
mjr 5:a70c0bce770d 21 //
mjr 5:a70c0bce770d 22 // "Pinscape" is the name of my custom-built virtual pinball cabinet. I wrote this
mjr 5:a70c0bce770d 23 // software to perform a number of tasks that I needed for my cabinet. It runs on a
mjr 5:a70c0bce770d 24 // Freescale KL25Z microcontroller, which is a small and inexpensive device that
mjr 5:a70c0bce770d 25 // attaches to the host PC via USB and can interface with numerous types of external
mjr 5:a70c0bce770d 26 // hardware.
mjr 5:a70c0bce770d 27 //
mjr 5:a70c0bce770d 28 // I designed the software and hardware in this project especially for Pinscape, but
mjr 5:a70c0bce770d 29 // it uses standard interfaces in Windows and Visual Pinball, so it should be
mjr 5:a70c0bce770d 30 // readily usable in anyone else's VP-based cabinet. I've tried to document the
mjr 5:a70c0bce770d 31 // hardware in enough detail for anyone else to duplicate the entire project, and
mjr 5:a70c0bce770d 32 // the full software is open source.
mjr 5:a70c0bce770d 33 //
mjr 6:cc35eb643e8f 34 // The device appears to the host computer as a USB joystick. This works with the
mjr 6:cc35eb643e8f 35 // standard Windows joystick device drivers, so there's no need to install any
mjr 6:cc35eb643e8f 36 // software on the PC - Windows should recognize it as a joystick when you plug
mjr 6:cc35eb643e8f 37 // it in and shouldn't ask you to install anything. If you bring up the control
mjr 6:cc35eb643e8f 38 // panel for USB Game Controllers, this device will appear as "Pinscape Controller".
mjr 6:cc35eb643e8f 39 // *Don't* do any calibration with the Windows control panel or third-part
mjr 6:cc35eb643e8f 40 // calibration tools. The device calibrates itself automatically for the
mjr 6:cc35eb643e8f 41 // accelerometer data, and has its own special calibration procedure for the
mjr 6:cc35eb643e8f 42 // plunger (see below).
mjr 6:cc35eb643e8f 43 //
mjr 5:a70c0bce770d 44 // The controller provides the following functions. It should be possible to use
mjr 5:a70c0bce770d 45 // any subet of the features without using all of them. External hardware for any
mjr 5:a70c0bce770d 46 // particular function can simply be omitted if that feature isn't needed.
mjr 5:a70c0bce770d 47 //
mjr 5:a70c0bce770d 48 // - Nudge sensing via the KL25Z's on-board accelerometer. Nudge accelerations are
mjr 5:a70c0bce770d 49 // processed into a physics model of a rolling ball, and changes to the ball's
mjr 5:a70c0bce770d 50 // motion are sent to the host computer via the joystick interface. This is designed
mjr 5:a70c0bce770d 51 // especially to work with Visuall Pinball's nudge handling to produce realistic
mjr 5:a70c0bce770d 52 // on-screen results in VP. By doing some physics modeling right on the device,
mjr 5:a70c0bce770d 53 // rather than sending raw accelerometer data to VP, we can produce better results
mjr 5:a70c0bce770d 54 // using our awareness of the real physical parameters of a pinball cabinet.
mjr 5:a70c0bce770d 55 // VP's nudge handling has to be more generic, so it can't make the same sorts
mjr 5:a70c0bce770d 56 // of assumptions that we can about the dynamics of a real cabinet.
mjr 5:a70c0bce770d 57 //
mjr 5:a70c0bce770d 58 // The nudge data reports are compatible with the built-in Windows USB joystick
mjr 5:a70c0bce770d 59 // drivers and with VP's own joystick input scheme, so the nudge sensing is almost
mjr 5:a70c0bce770d 60 // plug-and-play. There are no Windiows drivers to install, and the only VP work
mjr 5:a70c0bce770d 61 // needed is to customize a few global preference settings.
mjr 5:a70c0bce770d 62 //
mjr 5:a70c0bce770d 63 // - Plunger position sensing via an attached TAOS TSL 1410R CCD linear array sensor.
mjr 5:a70c0bce770d 64 // The sensor must be wired to a particular set of I/O ports on the KL25Z, and must
mjr 5:a70c0bce770d 65 // be positioned adjacent to the plunger with proper lighting. The physical and
mjr 5:a70c0bce770d 66 // electronic installation details are desribed in the project documentation. We read
mjr 5:a70c0bce770d 67 // the CCD to determine how far back the plunger is pulled, and report this to Visual
mjr 5:a70c0bce770d 68 // Pinball via the joystick interface. As with the nudge data, this is all nearly
mjr 5:a70c0bce770d 69 // plug-and-play, in that it works with the default Windows USB drivers and works
mjr 5:a70c0bce770d 70 // with the existing VP handling for analog plunger input. A few VP settings are
mjr 5:a70c0bce770d 71 // needed to tell VP to allow the plunger.
mjr 5:a70c0bce770d 72 //
mjr 6:cc35eb643e8f 73 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 74 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 75 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 76 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 6:cc35eb643e8f 77 // sensor or the mechanical plunger, since their alignment might change slightly
mjr 6:cc35eb643e8f 78 // when you put everything back together.) To calibrate, you have to attach a
mjr 6:cc35eb643e8f 79 // momentary switch (e.g., a push-button switch) between one of the KL25Z ground
mjr 6:cc35eb643e8f 80 // pins (e.g., jumper J9 pin 12) and PTE29 (J10 pin 9). Press and hold the
mjr 6:cc35eb643e8f 81 // button for about two seconds - the LED on the KL25Z wlil flash blue while
mjr 6:cc35eb643e8f 82 // you hold the button, and will turn solid blue when you've held it down long
mjr 6:cc35eb643e8f 83 // enough to enter calibration mode. This mode will last about 15 seconds.
mjr 6:cc35eb643e8f 84 // Simply pull the plunger all the way back, hold it for a few moments, and
mjr 6:cc35eb643e8f 85 // gradually return it to the starting position. *Don't* release it - we want
mjr 6:cc35eb643e8f 86 // to measure the maximum retracted position and the rest position, but NOT
mjr 6:cc35eb643e8f 87 // the maximum forward position when the outer barrel spring is compressed.
mjr 6:cc35eb643e8f 88 // After about 15 seconds, the device will save the new calibration settings
mjr 6:cc35eb643e8f 89 // to its flash memory, and the LED will return to the regular "heartbeat"
mjr 6:cc35eb643e8f 90 // flashes. If this is the first time you calibrated, you should observe the
mjr 6:cc35eb643e8f 91 // color of the flashes change from yellow/green to blue/green to indicate
mjr 6:cc35eb643e8f 92 // that the plunger has been calibrated.
mjr 6:cc35eb643e8f 93 //
mjr 6:cc35eb643e8f 94 // Note that while Visual Pinball itself has good native support for analog
mjr 6:cc35eb643e8f 95 // plungers, most of the VP tables in circulation don't implement the necessary
mjr 6:cc35eb643e8f 96 // scripting features to make this work properly. Therefore, you'll have to do
mjr 6:cc35eb643e8f 97 // a little scripting work for each table you download to add the required code
mjr 6:cc35eb643e8f 98 // to that individual table. The work has to be customized for each table, so
mjr 6:cc35eb643e8f 99 // I haven't been able to automate this process, but I have tried to reduce it
mjr 6:cc35eb643e8f 100 // to a relatively simple recipe that I've documented separately.
mjr 5:a70c0bce770d 101 //
mjr 5:a70c0bce770d 102 // - In addition to the CCD sensor, a button should be attached (also described in
mjr 5:a70c0bce770d 103 // the project documentation) to activate calibration mode for the plunger. When
mjr 5:a70c0bce770d 104 // calibration mode is activated, the software reads the plunger position for about
mjr 5:a70c0bce770d 105 // 10 seconds when to note the limits of travel, and uses these limits to ensure
mjr 5:a70c0bce770d 106 // accurate reports to VP that properly report the actual position of the physical
mjr 5:a70c0bce770d 107 // plunger. The calibration is stored in non-volatile memory on the KL25Z, so it's
mjr 5:a70c0bce770d 108 // only necessary to calibrate once - the calibration will survive power cycling
mjr 5:a70c0bce770d 109 // and reboots of the PC. It's only necessary to recalibrate if the CCD sensor or
mjr 5:a70c0bce770d 110 // the plunger are removed and reinstalled, since the relative alignment of the
mjr 5:a70c0bce770d 111 // parts could cahnge slightly when reinstalling.
mjr 5:a70c0bce770d 112 //
mjr 13:72dda449c3c0 113 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 13:72dda449c3c0 114 // for buttons and switches. The software reports these as joystick buttons when
mjr 13:72dda449c3c0 115 // it sends reports to the PC. These can be used to wire physical pinball-style
mjr 13:72dda449c3c0 116 // buttons in the cabinet (e.g., flipper buttons, the Start button) and miscellaneous
mjr 13:72dda449c3c0 117 // switches (such as a tilt bob) to the PC. Visual Pinball can use joystick buttons
mjr 13:72dda449c3c0 118 // for input - you just have to assign a VP function to each button using VP's
mjr 13:72dda449c3c0 119 // keyboard options dialog. To wire a button physically, connect one terminal of
mjr 13:72dda449c3c0 120 // the button switch to the KL25Z ground, and connect the other terminal to the
mjr 13:72dda449c3c0 121 // the GPIO port you wish to assign to the button. See the buttonMap[] array
mjr 13:72dda449c3c0 122 // below for the available GPIO ports and their assigned joystick button numbers.
mjr 13:72dda449c3c0 123 // If you're not using a GPIO port, you can just leave it unconnected - the digital
mjr 13:72dda449c3c0 124 // inputs have built-in pull-up resistors, so an unconnected port is the same as
mjr 13:72dda449c3c0 125 // an open switch (an "off" state for the button).
mjr 13:72dda449c3c0 126 //
mjr 5:a70c0bce770d 127 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 128 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 129 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 5:a70c0bce770d 130 // of ports. (The KL25Z can only provide 6 PWM ports. Intensity level settings on
mjr 5:a70c0bce770d 131 // other ports is ignored, so non-PWM ports can only be used for simple on/off
mjr 5:a70c0bce770d 132 // devices such as contactors and solenoids.) The KL25Z can only supply 4mA on its
mjr 5:a70c0bce770d 133 // output ports, so external hardware is required to take advantage of the LedWiz
mjr 5:a70c0bce770d 134 // emulation. Many different hardware designs are possible, but there's a simple
mjr 5:a70c0bce770d 135 // reference design in the documentation that uses a Darlington array IC to
mjr 5:a70c0bce770d 136 // increase the output from each port to 500mA (the same level as the LedWiz),
mjr 5:a70c0bce770d 137 // plus an extended design that adds an optocoupler and MOSFET to provide very
mjr 5:a70c0bce770d 138 // high power handling, up to about 45A or 150W, with voltages up to 100V.
mjr 5:a70c0bce770d 139 // That will handle just about any DC device directly (wtihout relays or other
mjr 5:a70c0bce770d 140 // amplifiers), and switches fast enough to support PWM devices.
mjr 5:a70c0bce770d 141 //
mjr 5:a70c0bce770d 142 // The device can report any desired LedWiz unit number to the host, which makes
mjr 5:a70c0bce770d 143 // it possible to use the LedWiz emulation on a machine that also has one or more
mjr 5:a70c0bce770d 144 // actual LedWiz devices intalled. The LedWiz design allows for up to 16 units
mjr 5:a70c0bce770d 145 // to be installed in one machine - each one is invidually addressable by its
mjr 5:a70c0bce770d 146 // distinct unit number.
mjr 5:a70c0bce770d 147 //
mjr 5:a70c0bce770d 148 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 149 // build any of the external port hardware (or attach anything to the output
mjr 5:a70c0bce770d 150 // ports at all) if the LedWiz features aren't needed. Most people won't have
mjr 5:a70c0bce770d 151 // any use for the LedWiz features. I built them mostly as a learning exercise,
mjr 5:a70c0bce770d 152 // but with a slight practical need for a handful of extra ports (I'm using the
mjr 5:a70c0bce770d 153 // cutting-edge 10-contactor setup, so my real LedWiz is full!).
mjr 6:cc35eb643e8f 154 //
mjr 6:cc35eb643e8f 155 // The on-board LED on the KL25Z flashes to indicate the current device status:
mjr 6:cc35eb643e8f 156 //
mjr 6:cc35eb643e8f 157 // two short red flashes = the device is powered but hasn't successfully
mjr 6:cc35eb643e8f 158 // connected to the host via USB (either it's not physically connected
mjr 6:cc35eb643e8f 159 // to the USB port, or there was a problem with the software handshake
mjr 6:cc35eb643e8f 160 // with the USB device driver on the computer)
mjr 6:cc35eb643e8f 161 //
mjr 6:cc35eb643e8f 162 // short red flash = the host computer is in sleep/suspend mode
mjr 6:cc35eb643e8f 163 //
mjr 6:cc35eb643e8f 164 // long red/green = the LedWiz unti number has been changed, so a reset
mjr 6:cc35eb643e8f 165 // is needed. You can simply unplug the device and plug it back in,
mjr 6:cc35eb643e8f 166 // or presss and hold the reset button on the device for a few seconds.
mjr 6:cc35eb643e8f 167 //
mjr 6:cc35eb643e8f 168 // long yellow/green = everything's working, but the plunger hasn't
mjr 6:cc35eb643e8f 169 // been calibrated; follow the calibration procedure described above.
mjr 6:cc35eb643e8f 170 // This flash mode won't appear if the CCD has been disabled. Note
mjr 6:cc35eb643e8f 171 // that the device can't tell whether a CCD is physically attached,
mjr 6:cc35eb643e8f 172 // so you should use the config command to disable the CCD software
mjr 6:cc35eb643e8f 173 // features if you won't be attaching a CCD.
mjr 6:cc35eb643e8f 174 //
mjr 6:cc35eb643e8f 175 // alternating blue/green = everything's working
mjr 6:cc35eb643e8f 176 //
mjr 6:cc35eb643e8f 177 // Software configuration: you can change option settings by sending special
mjr 6:cc35eb643e8f 178 // USB commands from the PC. I've provided a Windows program for this purpose;
mjr 6:cc35eb643e8f 179 // refer to the documentation for details. For reference, here's the format
mjr 6:cc35eb643e8f 180 // of the USB command for option changes:
mjr 6:cc35eb643e8f 181 //
mjr 6:cc35eb643e8f 182 // length of report = 8 bytes
mjr 6:cc35eb643e8f 183 // byte 0 = 65 (0x41)
mjr 6:cc35eb643e8f 184 // byte 1 = 1 (0x01)
mjr 6:cc35eb643e8f 185 // byte 2 = new LedWiz unit number, 0x01 to 0x0f
mjr 6:cc35eb643e8f 186 // byte 3 = feature enable bit mask:
mjr 6:cc35eb643e8f 187 // 0x01 = enable CCD (default = on)
mjr 9:fd65b0a94720 188 //
mjr 9:fd65b0a94720 189 // Plunger calibration mode: the host can activate plunger calibration mode
mjr 9:fd65b0a94720 190 // by sending this packet. This has the same effect as pressing and holding
mjr 9:fd65b0a94720 191 // the plunger calibration button for two seconds, to allow activating this
mjr 9:fd65b0a94720 192 // mode without attaching a physical button.
mjr 9:fd65b0a94720 193 //
mjr 9:fd65b0a94720 194 // length = 8 bytes
mjr 9:fd65b0a94720 195 // byte 0 = 65 (0x41)
mjr 9:fd65b0a94720 196 // byte 1 = 2 (0x02)
mjr 9:fd65b0a94720 197 //
mjr 10:976666ffa4ef 198 // Exposure reports: the host can request a report of the full set of pixel
mjr 10:976666ffa4ef 199 // values for the next frame by sending this special packet:
mjr 10:976666ffa4ef 200 //
mjr 10:976666ffa4ef 201 // length = 8 bytes
mjr 10:976666ffa4ef 202 // byte 0 = 65 (0x41)
mjr 10:976666ffa4ef 203 // byte 1 = 3 (0x03)
mjr 10:976666ffa4ef 204 //
mjr 10:976666ffa4ef 205 // We'll respond with a series of special reports giving the exposure status.
mjr 10:976666ffa4ef 206 // Each report has the following structure:
mjr 10:976666ffa4ef 207 //
mjr 10:976666ffa4ef 208 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 10:976666ffa4ef 209 // example, 0x04 0x80 indicates index 4. This is the
mjr 10:976666ffa4ef 210 // starting pixel number in the report. The first report
mjr 10:976666ffa4ef 211 // will be 0x00 0x80 to indicate pixel #0.
mjr 10:976666ffa4ef 212 // bytes 2:3 = 16-bit unsigned int brightness level of pixel at index
mjr 10:976666ffa4ef 213 // bytes 4:5 = brightness of pixel at index+1
mjr 10:976666ffa4ef 214 // etc for the rest of the packet
mjr 10:976666ffa4ef 215 //
mjr 10:976666ffa4ef 216 // This still has the form of a joystick packet at the USB level, but
mjr 10:976666ffa4ef 217 // can be differentiated by the host via the status bits. It would have
mjr 10:976666ffa4ef 218 // been cleaner to use a different Report ID at the USB level, but this
mjr 10:976666ffa4ef 219 // would have necessitated a different container structure in the report
mjr 10:976666ffa4ef 220 // descriptor, which would have broken LedWiz compatibility. Given that
mjr 10:976666ffa4ef 221 // constraint, we have to re-use the joystick report type, making for
mjr 10:976666ffa4ef 222 // this somewhat kludgey approach.
mjr 6:cc35eb643e8f 223
mjr 0:5acbbe3f4cf4 224 #include "mbed.h"
mjr 6:cc35eb643e8f 225 #include "math.h"
mjr 0:5acbbe3f4cf4 226 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 227 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 228 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 229 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 230 #include "crc32.h"
mjr 2:c174f9ee414a 231
mjr 5:a70c0bce770d 232
mjr 5:a70c0bce770d 233 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 234 //
mjr 5:a70c0bce770d 235 // Configuration details
mjr 5:a70c0bce770d 236 //
mjr 2:c174f9ee414a 237
mjr 5:a70c0bce770d 238 // Our USB device vendor ID, product ID, and version.
mjr 5:a70c0bce770d 239 // We use the vendor ID for the LedWiz, so that the PC-side software can
mjr 5:a70c0bce770d 240 // identify us as capable of performing LedWiz commands. The LedWiz uses
mjr 5:a70c0bce770d 241 // a product ID value from 0xF0 to 0xFF; the last four bits identify the
mjr 5:a70c0bce770d 242 // unit number (e.g., product ID 0xF7 means unit #7). This allows multiple
mjr 5:a70c0bce770d 243 // LedWiz units to be installed in a single PC; the software on the PC side
mjr 5:a70c0bce770d 244 // uses the unit number to route commands to the devices attached to each
mjr 5:a70c0bce770d 245 // unit. On the real LedWiz, the unit number must be set in the firmware
mjr 5:a70c0bce770d 246 // at the factory; it's not configurable by the end user. Most LedWiz's
mjr 5:a70c0bce770d 247 // ship with the unit number set to 0, but the vendor will set different
mjr 5:a70c0bce770d 248 // unit numbers if requested at the time of purchase. So if you have a
mjr 5:a70c0bce770d 249 // single LedWiz already installed in your cabinet, and you didn't ask for
mjr 5:a70c0bce770d 250 // a non-default unit number, your existing LedWiz will be unit 0.
mjr 5:a70c0bce770d 251 //
mjr 5:a70c0bce770d 252 // We use unit #7 by default. There doesn't seem to be a requirement that
mjr 5:a70c0bce770d 253 // unit numbers be contiguous (DirectOutput Framework and other software
mjr 5:a70c0bce770d 254 // seem happy to have units 0 and 7 installed, without 1-6 existing).
mjr 5:a70c0bce770d 255 // Marking this unit as #7 should work for almost everybody out of the box;
mjr 5:a70c0bce770d 256 // the most common case seems to be to have a single LedWiz installed, and
mjr 5:a70c0bce770d 257 // it's probably extremely rare to more than two.
mjr 6:cc35eb643e8f 258 //
mjr 6:cc35eb643e8f 259 // Note that the USB_PRODUCT_ID value set here omits the unit number. We
mjr 6:cc35eb643e8f 260 // take the unit number from the saved configuration. We provide a
mjr 6:cc35eb643e8f 261 // configuration command that can be sent via the USB connection to change
mjr 6:cc35eb643e8f 262 // the unit number, so that users can select the unit number without having
mjr 6:cc35eb643e8f 263 // to install a different version of the software. We'll combine the base
mjr 6:cc35eb643e8f 264 // product ID here with the unit number to get the actual product ID that
mjr 6:cc35eb643e8f 265 // we send to the USB controller.
mjr 5:a70c0bce770d 266 const uint16_t USB_VENDOR_ID = 0xFAFA;
mjr 6:cc35eb643e8f 267 const uint16_t USB_PRODUCT_ID = 0x00F0;
mjr 6:cc35eb643e8f 268 const uint16_t USB_VERSION_NO = 0x0006;
mjr 6:cc35eb643e8f 269 const uint8_t DEFAULT_LEDWIZ_UNIT_NUMBER = 0x07;
mjr 0:5acbbe3f4cf4 270
mjr 9:fd65b0a94720 271 // Number of pixels we read from the sensor on each frame. This can be
mjr 9:fd65b0a94720 272 // less than the physical pixel count if desired; we'll read every nth
mjr 9:fd65b0a94720 273 // piexl if so. E.g., with a 1280-pixel physical sensor, if npix is 320,
mjr 9:fd65b0a94720 274 // we'll read every 4th pixel. It takes time to read each pixel, so the
mjr 9:fd65b0a94720 275 // fewer pixels we read, the higher the refresh rate we can achieve.
mjr 9:fd65b0a94720 276 // It's therefore better not to read more pixels than we have to.
mjr 9:fd65b0a94720 277 //
mjr 9:fd65b0a94720 278 // VP seems to have an internal resolution in the 8-bit range, so there's
mjr 9:fd65b0a94720 279 // no apparent benefit to reading more than 128-256 pixels when using VP.
mjr 9:fd65b0a94720 280 // Empirically, 160 pixels seems about right. The overall travel of a
mjr 9:fd65b0a94720 281 // standard pinball plunger is about 3", so 160 pixels gives us resolution
mjr 9:fd65b0a94720 282 // of about 1/50". This seems to take full advantage of VP's modeling
mjr 9:fd65b0a94720 283 // ability, and is probably also more precise than a human player's
mjr 9:fd65b0a94720 284 // perception of the plunger position.
mjr 9:fd65b0a94720 285 const int npix = 160;
mjr 9:fd65b0a94720 286
mjr 4:02c7cd7b2183 287 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 4:02c7cd7b2183 288 DigitalOut ledR(LED1), ledG(LED2), ledB(LED3);
mjr 0:5acbbe3f4cf4 289
mjr 1:d913e0afb2ac 290 // calibration button - switch input and LED output
mjr 1:d913e0afb2ac 291 DigitalIn calBtn(PTE29);
mjr 1:d913e0afb2ac 292 DigitalOut calBtnLed(PTE23);
mjr 0:5acbbe3f4cf4 293
mjr 11:bd9da7088e6e 294 // Joystick button input pin assignments. You can wire up to
mjr 11:bd9da7088e6e 295 // 32 GPIO ports to buttons (equipped with momentary switches).
mjr 11:bd9da7088e6e 296 // Connect each switch between the desired GPIO port and ground
mjr 11:bd9da7088e6e 297 // (J9 pin 12 or 14). When the button is pressed, we'll tell the
mjr 13:72dda449c3c0 298 // host PC that the corresponding joystick button is pressed. We
mjr 11:bd9da7088e6e 299 // debounce the keystrokes in software, so you can simply wire
mjr 11:bd9da7088e6e 300 // directly to pushbuttons with no additional external hardware.
mjr 11:bd9da7088e6e 301 //
mjr 11:bd9da7088e6e 302 // Note that we assign 24 buttons by default, even though the USB
mjr 11:bd9da7088e6e 303 // joystick interface can handle up to 32 buttons. VP itself only
mjr 11:bd9da7088e6e 304 // allows mapping of up to 24 buttons in the preferences dialog
mjr 11:bd9da7088e6e 305 // (although it can recognize 32 buttons internally). If you want
mjr 11:bd9da7088e6e 306 // more buttons, you can reassign pins that are assigned by default
mjr 11:bd9da7088e6e 307 // as LedWiz outputs. To reassign a pin, find the pin you wish to
mjr 11:bd9da7088e6e 308 // reassign in the LedWizPortMap array below, and change the pin name
mjr 11:bd9da7088e6e 309 // there to NC (for Not Connected). You can then change one of the
mjr 11:bd9da7088e6e 310 // "NC" entries below to the reallocated pin name. The limit is 32
mjr 11:bd9da7088e6e 311 // buttons total.
mjr 11:bd9da7088e6e 312 //
mjr 11:bd9da7088e6e 313 // Note: PTD1 (pin J2-12) should NOT be assigned as a button input,
mjr 11:bd9da7088e6e 314 // as this pin is physically connected on the KL25Z to the on-board
mjr 11:bd9da7088e6e 315 // indicator LED's blue segment. This precludes any other use of
mjr 11:bd9da7088e6e 316 // the pin.
mjr 11:bd9da7088e6e 317 PinName buttonMap[] = {
mjr 11:bd9da7088e6e 318 PTC2, // J10 pin 10, joystick button 1
mjr 11:bd9da7088e6e 319 PTB3, // J10 pin 8, joystick button 2
mjr 11:bd9da7088e6e 320 PTB2, // J10 pin 6, joystick button 3
mjr 11:bd9da7088e6e 321 PTB1, // J10 pin 4, joystick button 4
mjr 11:bd9da7088e6e 322
mjr 11:bd9da7088e6e 323 PTE30, // J10 pin 11, joystick button 5
mjr 11:bd9da7088e6e 324 PTE22, // J10 pin 5, joystick button 6
mjr 11:bd9da7088e6e 325
mjr 11:bd9da7088e6e 326 PTE5, // J9 pin 15, joystick button 7
mjr 11:bd9da7088e6e 327 PTE4, // J9 pin 13, joystick button 8
mjr 11:bd9da7088e6e 328 PTE3, // J9 pin 11, joystick button 9
mjr 11:bd9da7088e6e 329 PTE2, // J9 pin 9, joystick button 10
mjr 11:bd9da7088e6e 330 PTB11, // J9 pin 7, joystick button 11
mjr 11:bd9da7088e6e 331 PTB10, // J9 pin 5, joystick button 12
mjr 11:bd9da7088e6e 332 PTB9, // J9 pin 3, joystick button 13
mjr 11:bd9da7088e6e 333 PTB8, // J9 pin 1, joystick button 14
mjr 11:bd9da7088e6e 334
mjr 11:bd9da7088e6e 335 PTC12, // J2 pin 1, joystick button 15
mjr 11:bd9da7088e6e 336 PTC13, // J2 pin 3, joystick button 16
mjr 11:bd9da7088e6e 337 PTC16, // J2 pin 5, joystick button 17
mjr 11:bd9da7088e6e 338 PTC17, // J2 pin 7, joystick button 18
mjr 11:bd9da7088e6e 339 PTA16, // J2 pin 9, joystick button 19
mjr 11:bd9da7088e6e 340 PTA17, // J2 pin 11, joystick button 20
mjr 11:bd9da7088e6e 341 PTE31, // J2 pin 13, joystick button 21
mjr 11:bd9da7088e6e 342 PTD6, // J2 pin 17, joystick button 22
mjr 11:bd9da7088e6e 343 PTD7, // J2 pin 19, joystick button 23
mjr 11:bd9da7088e6e 344
mjr 11:bd9da7088e6e 345 PTE1, // J2 pin 20, joystick button 24
mjr 11:bd9da7088e6e 346
mjr 11:bd9da7088e6e 347 NC, // not used, joystick button 25
mjr 11:bd9da7088e6e 348 NC, // not used, joystick button 26
mjr 11:bd9da7088e6e 349 NC, // not used, joystick button 27
mjr 11:bd9da7088e6e 350 NC, // not used, joystick button 28
mjr 11:bd9da7088e6e 351 NC, // not used, joystick button 29
mjr 11:bd9da7088e6e 352 NC, // not used, joystick button 30
mjr 11:bd9da7088e6e 353 NC, // not used, joystick button 31
mjr 11:bd9da7088e6e 354 NC // not used, joystick button 32
mjr 11:bd9da7088e6e 355 };
mjr 11:bd9da7088e6e 356
mjr 11:bd9da7088e6e 357 // LED-Wiz emulation output pin assignments.
mjr 6:cc35eb643e8f 358 //
mjr 6:cc35eb643e8f 359 // The LED-Wiz protocol allows setting individual intensity levels
mjr 6:cc35eb643e8f 360 // on all outputs, with 48 levels of intensity. This can be used
mjr 6:cc35eb643e8f 361 // to control lamp brightness and motor speeds, among other things.
mjr 6:cc35eb643e8f 362 // Unfortunately, the KL25Z only has 10 PWM channels, so while we
mjr 6:cc35eb643e8f 363 // can support the full complement of 32 outputs, we can only provide
mjr 6:cc35eb643e8f 364 // PWM dimming/speed control on 10 of them. The remaining outputs
mjr 6:cc35eb643e8f 365 // can only be switched fully on and fully off - we can't support
mjr 6:cc35eb643e8f 366 // dimming on these, so they'll ignore any intensity level setting
mjr 6:cc35eb643e8f 367 // requested by the host. Use these for devices that don't have any
mjr 6:cc35eb643e8f 368 // use for intensity settings anyway, such as contactors and knockers.
mjr 6:cc35eb643e8f 369 //
mjr 11:bd9da7088e6e 370 // Ports with pins assigned as "NC" are not connected. That is,
mjr 11:bd9da7088e6e 371 // there's no physical pin for that LedWiz port number. You can
mjr 11:bd9da7088e6e 372 // send LedWiz commands to turn NC ports on and off, but doing so
mjr 11:bd9da7088e6e 373 // will have no effect. The reason we leave some ports unassigned
mjr 11:bd9da7088e6e 374 // is that we don't have enough physical GPIO pins to fill out the
mjr 11:bd9da7088e6e 375 // full LedWiz complement of 32 ports. Many pins are already taken
mjr 11:bd9da7088e6e 376 // for other purposes, such as button inputs or the plunger CCD
mjr 11:bd9da7088e6e 377 // interface.
mjr 11:bd9da7088e6e 378 //
mjr 6:cc35eb643e8f 379 // The mapping between physical output pins on the KL25Z and the
mjr 6:cc35eb643e8f 380 // assigned LED-Wiz port numbers is essentially arbitrary - you can
mjr 6:cc35eb643e8f 381 // customize this by changing the entries in the array below if you
mjr 6:cc35eb643e8f 382 // wish to rearrange the pins for any reason. Be aware that some
mjr 6:cc35eb643e8f 383 // of the physical outputs are already used for other purposes
mjr 6:cc35eb643e8f 384 // (e.g., some of the GPIO pins on header J10 are used for the
mjr 6:cc35eb643e8f 385 // CCD sensor - but you can of course reassign those as well by
mjr 6:cc35eb643e8f 386 // changing the corresponding declarations elsewhere in this module).
mjr 6:cc35eb643e8f 387 // The assignments we make here have two main objectives: first,
mjr 6:cc35eb643e8f 388 // to group the outputs on headers J1 and J2 (to facilitate neater
mjr 6:cc35eb643e8f 389 // wiring by keeping the output pins together physically), and
mjr 6:cc35eb643e8f 390 // second, to make the physical pin layout match the LED-Wiz port
mjr 6:cc35eb643e8f 391 // numbering order to the extent possible. There's one big wrench
mjr 6:cc35eb643e8f 392 // in the works, though, which is the limited number and discontiguous
mjr 6:cc35eb643e8f 393 // placement of the KL25Z PWM-capable output pins. This prevents
mjr 6:cc35eb643e8f 394 // us from doing the most obvious sequential ordering of the pins,
mjr 6:cc35eb643e8f 395 // so we end up with the outputs arranged into several blocks.
mjr 6:cc35eb643e8f 396 // Hopefully this isn't too confusing; for more detailed rationale,
mjr 6:cc35eb643e8f 397 // read on...
mjr 6:cc35eb643e8f 398 //
mjr 6:cc35eb643e8f 399 // With the LED-Wiz, the host software configuration usually
mjr 6:cc35eb643e8f 400 // assumes that each RGB LED is hooked up to three consecutive ports
mjr 6:cc35eb643e8f 401 // (for the red, green, and blue components, which need to be
mjr 6:cc35eb643e8f 402 // physically wired to separate outputs to allow each color to be
mjr 6:cc35eb643e8f 403 // controlled independently). To facilitate this, we arrange the
mjr 6:cc35eb643e8f 404 // PWM-enabled outputs so that they're grouped together in the
mjr 6:cc35eb643e8f 405 // port numbering scheme. Unfortunately, these outputs aren't
mjr 6:cc35eb643e8f 406 // together in a single group in the physical pin layout, so to
mjr 6:cc35eb643e8f 407 // group them logically in the LED-Wiz port numbering scheme, we
mjr 6:cc35eb643e8f 408 // have to break up the overall numbering scheme into several blocks.
mjr 6:cc35eb643e8f 409 // So our port numbering goes sequentially down each column of
mjr 6:cc35eb643e8f 410 // header pins, but there are several break points where we have
mjr 6:cc35eb643e8f 411 // to interrupt the obvious sequence to keep the PWM pins grouped
mjr 6:cc35eb643e8f 412 // logically.
mjr 6:cc35eb643e8f 413 //
mjr 6:cc35eb643e8f 414 // In the list below, "pin J1-2" refers to pin 2 on header J1 on
mjr 6:cc35eb643e8f 415 // the KL25Z, using the standard pin numbering in the KL25Z
mjr 6:cc35eb643e8f 416 // documentation - this is the physical pin that the port controls.
mjr 6:cc35eb643e8f 417 // "LW port 1" means LED-Wiz port 1 - this is the LED-Wiz port
mjr 6:cc35eb643e8f 418 // number that you use on the PC side (in the DirectOutput config
mjr 6:cc35eb643e8f 419 // file, for example) to address the port. PWM-capable ports are
mjr 6:cc35eb643e8f 420 // marked as such - we group the PWM-capable ports into the first
mjr 6:cc35eb643e8f 421 // 10 LED-Wiz port numbers.
mjr 11:bd9da7088e6e 422 //
mjr 11:bd9da7088e6e 423 // If you wish to reallocate a pin in the array below to some other
mjr 11:bd9da7088e6e 424 // use, such as a button input port, simply change the pin name in
mjr 11:bd9da7088e6e 425 // the entry to NC (for Not Connected). This will disable the given
mjr 11:bd9da7088e6e 426 // logical LedWiz port number and free up the physical pin.
mjr 11:bd9da7088e6e 427 //
mjr 11:bd9da7088e6e 428 // If you wish to reallocate a pin currently assigned to the button
mjr 11:bd9da7088e6e 429 // input array, simply change the entry for the pin in the buttonMap[]
mjr 11:bd9da7088e6e 430 // array above to NC (for "not connected"), and plug the pin name into
mjr 11:bd9da7088e6e 431 // a slot of your choice in the array below.
mjr 11:bd9da7088e6e 432 //
mjr 11:bd9da7088e6e 433 // Note: PTD1 (pin J2-12) should NOT be assigned as an LedWiz output,
mjr 11:bd9da7088e6e 434 // as this pin is physically connected on the KL25Z to the on-board
mjr 11:bd9da7088e6e 435 // indicator LED's blue segment. This precludes any other use of
mjr 11:bd9da7088e6e 436 // the pin.
mjr 6:cc35eb643e8f 437 //
mjr 6:cc35eb643e8f 438 struct {
mjr 6:cc35eb643e8f 439 PinName pin;
mjr 6:cc35eb643e8f 440 bool isPWM;
mjr 6:cc35eb643e8f 441 } ledWizPortMap[32] = {
mjr 6:cc35eb643e8f 442 { PTA1, true }, // pin J1-2, LW port 1 (PWM capable - TPM 2.0 = channel 9)
mjr 6:cc35eb643e8f 443 { PTA2, true }, // pin J1-4, LW port 2 (PWM capable - TPM 2.1 = channel 10)
mjr 6:cc35eb643e8f 444 { PTD4, true }, // pin J1-6, LW port 3 (PWM capable - TPM 0.4 = channel 5)
mjr 6:cc35eb643e8f 445 { PTA12, true }, // pin J1-8, LW port 4 (PWM capable - TPM 1.0 = channel 7)
mjr 6:cc35eb643e8f 446 { PTA4, true }, // pin J1-10, LW port 5 (PWM capable - TPM 0.1 = channel 2)
mjr 6:cc35eb643e8f 447 { PTA5, true }, // pin J1-12, LW port 6 (PWM capable - TPM 0.2 = channel 3)
mjr 6:cc35eb643e8f 448 { PTA13, true }, // pin J2-2, LW port 7 (PWM capable - TPM 1.1 = channel 13)
mjr 6:cc35eb643e8f 449 { PTD5, true }, // pin J2-4, LW port 8 (PWM capable - TPM 0.5 = channel 6)
mjr 6:cc35eb643e8f 450 { PTD0, true }, // pin J2-6, LW port 9 (PWM capable - TPM 0.0 = channel 1)
mjr 6:cc35eb643e8f 451 { PTD3, true }, // pin J2-10, LW port 10 (PWM capable - TPM 0.3 = channel 4)
mjr 16:c35f905c3311 452 { PTD2, false }, // pin J2-8, LW port 11
mjr 9:fd65b0a94720 453 { PTC8, false }, // pin J1-14, LW port 12
mjr 9:fd65b0a94720 454 { PTC9, false }, // pin J1-16, LW port 13
mjr 9:fd65b0a94720 455 { PTC7, false }, // pin J1-1, LW port 14
mjr 9:fd65b0a94720 456 { PTC0, false }, // pin J1-3, LW port 15
mjr 9:fd65b0a94720 457 { PTC3, false }, // pin J1-5, LW port 16
mjr 9:fd65b0a94720 458 { PTC4, false }, // pin J1-7, LW port 17
mjr 9:fd65b0a94720 459 { PTC5, false }, // pin J1-9, LW port 18
mjr 9:fd65b0a94720 460 { PTC6, false }, // pin J1-11, LW port 19
mjr 9:fd65b0a94720 461 { PTC10, false }, // pin J1-13, LW port 20
mjr 9:fd65b0a94720 462 { PTC11, false }, // pin J1-15, LW port 21
mjr 11:bd9da7088e6e 463 { PTE0, false }, // pin J2-18, LW port 22
mjr 11:bd9da7088e6e 464 { NC, false }, // Not used, LW port 23
mjr 11:bd9da7088e6e 465 { NC, false }, // Not used, LW port 24
mjr 11:bd9da7088e6e 466 { NC, false }, // Not used, LW port 25
mjr 11:bd9da7088e6e 467 { NC, false }, // Not used, LW port 26
mjr 11:bd9da7088e6e 468 { NC, false }, // Not used, LW port 27
mjr 11:bd9da7088e6e 469 { NC, false }, // Not used, LW port 28
mjr 11:bd9da7088e6e 470 { NC, false }, // Not used, LW port 29
mjr 11:bd9da7088e6e 471 { NC, false }, // Not used, LW port 30
mjr 11:bd9da7088e6e 472 { NC, false }, // Not used, LW port 31
mjr 11:bd9da7088e6e 473 { NC, false } // Not used, LW port 32
mjr 6:cc35eb643e8f 474 };
mjr 6:cc35eb643e8f 475
mjr 6:cc35eb643e8f 476
mjr 5:a70c0bce770d 477 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 5:a70c0bce770d 478 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 5:a70c0bce770d 479
mjr 5:a70c0bce770d 480 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 5:a70c0bce770d 481 #define MMA8451_SCL_PIN PTE25
mjr 5:a70c0bce770d 482 #define MMA8451_SDA_PIN PTE24
mjr 5:a70c0bce770d 483
mjr 5:a70c0bce770d 484 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 5:a70c0bce770d 485 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 5:a70c0bce770d 486 // wired on this board to the MMA8451 interrupt controller.
mjr 5:a70c0bce770d 487 #define MMA8451_INT_PIN PTA15
mjr 5:a70c0bce770d 488
mjr 6:cc35eb643e8f 489 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 6:cc35eb643e8f 490 #define JOYMAX 4096
mjr 6:cc35eb643e8f 491
mjr 5:a70c0bce770d 492
mjr 5:a70c0bce770d 493 // ---------------------------------------------------------------------------
mjr 9:fd65b0a94720 494 // utilities
mjr 9:fd65b0a94720 495
mjr 9:fd65b0a94720 496 // number of elements in an array
mjr 9:fd65b0a94720 497 #define countof(x) (sizeof(x)/sizeof((x)[0]))
mjr 9:fd65b0a94720 498
mjr 9:fd65b0a94720 499 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 500 //
mjr 5:a70c0bce770d 501 // LedWiz emulation
mjr 5:a70c0bce770d 502 //
mjr 5:a70c0bce770d 503
mjr 0:5acbbe3f4cf4 504 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 505
mjr 6:cc35eb643e8f 506 // LedWiz output pin interface. We create a cover class to virtualize
mjr 6:cc35eb643e8f 507 // digital vs PWM outputs and give them a common interface. The KL25Z
mjr 6:cc35eb643e8f 508 // unfortunately doesn't have enough hardware PWM channels to support
mjr 6:cc35eb643e8f 509 // PWM on all 32 LedWiz outputs, so we provide as many PWM channels as
mjr 6:cc35eb643e8f 510 // we can (10), and fill out the rest of the outputs with plain digital
mjr 6:cc35eb643e8f 511 // outs.
mjr 6:cc35eb643e8f 512 class LwOut
mjr 6:cc35eb643e8f 513 {
mjr 6:cc35eb643e8f 514 public:
mjr 6:cc35eb643e8f 515 virtual void set(float val) = 0;
mjr 6:cc35eb643e8f 516 };
mjr 6:cc35eb643e8f 517 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 518 {
mjr 6:cc35eb643e8f 519 public:
mjr 13:72dda449c3c0 520 LwPwmOut(PinName pin) : p(pin) { prv = -1; }
mjr 13:72dda449c3c0 521 virtual void set(float val)
mjr 13:72dda449c3c0 522 {
mjr 13:72dda449c3c0 523 if (val != prv)
mjr 13:72dda449c3c0 524 p.write(prv = val);
mjr 13:72dda449c3c0 525 }
mjr 6:cc35eb643e8f 526 PwmOut p;
mjr 13:72dda449c3c0 527 float prv;
mjr 6:cc35eb643e8f 528 };
mjr 6:cc35eb643e8f 529 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 530 {
mjr 6:cc35eb643e8f 531 public:
mjr 13:72dda449c3c0 532 LwDigOut(PinName pin) : p(pin) { prv = -1; }
mjr 13:72dda449c3c0 533 virtual void set(float val)
mjr 13:72dda449c3c0 534 {
mjr 13:72dda449c3c0 535 if (val != prv)
mjr 13:72dda449c3c0 536 p.write((prv = val) == 0.0 ? 0 : 1);
mjr 13:72dda449c3c0 537 }
mjr 6:cc35eb643e8f 538 DigitalOut p;
mjr 13:72dda449c3c0 539 float prv;
mjr 6:cc35eb643e8f 540 };
mjr 11:bd9da7088e6e 541 class LwUnusedOut: public LwOut
mjr 11:bd9da7088e6e 542 {
mjr 11:bd9da7088e6e 543 public:
mjr 11:bd9da7088e6e 544 LwUnusedOut() { }
mjr 11:bd9da7088e6e 545 virtual void set(float val) { }
mjr 11:bd9da7088e6e 546 };
mjr 6:cc35eb643e8f 547
mjr 6:cc35eb643e8f 548 // output pin array
mjr 6:cc35eb643e8f 549 static LwOut *lwPin[32];
mjr 6:cc35eb643e8f 550
mjr 6:cc35eb643e8f 551 // initialize the output pin array
mjr 6:cc35eb643e8f 552 void initLwOut()
mjr 6:cc35eb643e8f 553 {
mjr 9:fd65b0a94720 554 for (int i = 0 ; i < countof(lwPin) ; ++i)
mjr 6:cc35eb643e8f 555 {
mjr 11:bd9da7088e6e 556 PinName p = (i < countof(ledWizPortMap) ? ledWizPortMap[i].pin : NC);
mjr 11:bd9da7088e6e 557 if (p == NC)
mjr 11:bd9da7088e6e 558 lwPin[i] = new LwUnusedOut();
mjr 11:bd9da7088e6e 559 else if (ledWizPortMap[i].isPWM)
mjr 11:bd9da7088e6e 560 lwPin[i] = new LwPwmOut(p);
mjr 11:bd9da7088e6e 561 else
mjr 11:bd9da7088e6e 562 lwPin[i] = new LwDigOut(p);
mjr 6:cc35eb643e8f 563 }
mjr 6:cc35eb643e8f 564 }
mjr 6:cc35eb643e8f 565
mjr 0:5acbbe3f4cf4 566 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 567 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 568
mjr 0:5acbbe3f4cf4 569 // profile (brightness/blink) state for each LedWiz output
mjr 1:d913e0afb2ac 570 static uint8_t wizVal[32] = {
mjr 13:72dda449c3c0 571 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 572 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 573 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 574 48, 48, 48, 48, 48, 48, 48, 48
mjr 0:5acbbe3f4cf4 575 };
mjr 0:5acbbe3f4cf4 576
mjr 1:d913e0afb2ac 577 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 578 {
mjr 13:72dda449c3c0 579 if (wizOn[idx])
mjr 13:72dda449c3c0 580 {
mjr 0:5acbbe3f4cf4 581 // on - map profile brightness state to PWM level
mjr 1:d913e0afb2ac 582 uint8_t val = wizVal[idx];
mjr 13:72dda449c3c0 583 if (val <= 48)
mjr 13:72dda449c3c0 584 {
mjr 15:944bbc29c4dd 585 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 15:944bbc29c4dd 586 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 15:944bbc29c4dd 587 // Note that on the actual LedWiz, level 48 is actually about
mjr 15:944bbc29c4dd 588 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 15:944bbc29c4dd 589 // the true 100% level. (In the documentation, level 49 is
mjr 15:944bbc29c4dd 590 // simply not a valid setting.) Even so, we treat level 48 as
mjr 15:944bbc29c4dd 591 // 100% on to match the documentation. This won't be perfectly
mjr 15:944bbc29c4dd 592 // ocmpatible with the actual LedWiz, but it makes for such a
mjr 15:944bbc29c4dd 593 // small difference in brightness (if the output device is an
mjr 15:944bbc29c4dd 594 // LED, say) that no one should notice. It seems better to
mjr 15:944bbc29c4dd 595 // err in this direction, because while the difference in
mjr 15:944bbc29c4dd 596 // brightness when attached to an LED won't be noticeable, the
mjr 15:944bbc29c4dd 597 // difference in duty cycle when attached to something like a
mjr 15:944bbc29c4dd 598 // contactor *can* be noticeable - anything less than 100%
mjr 15:944bbc29c4dd 599 // can cause a contactor or relay to chatter. There's almost
mjr 15:944bbc29c4dd 600 // never a situation where you'd want values other than 0% and
mjr 15:944bbc29c4dd 601 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 15:944bbc29c4dd 602 // makes us work properly with software that's expecting the
mjr 15:944bbc29c4dd 603 // documented LedWiz behavior and therefore uses level 48 to
mjr 15:944bbc29c4dd 604 // turn a contactor or relay fully on.
mjr 13:72dda449c3c0 605 return val/48.0;
mjr 13:72dda449c3c0 606 }
mjr 13:72dda449c3c0 607 else if (val == 49)
mjr 13:72dda449c3c0 608 {
mjr 15:944bbc29c4dd 609 // 49 is undefined in the LedWiz documentation, but actually
mjr 15:944bbc29c4dd 610 // means 100% on. The documentation says that levels 1-48 are
mjr 15:944bbc29c4dd 611 // the full PWM range, but empirically it appears that the real
mjr 15:944bbc29c4dd 612 // range implemented in the firmware is 1-49. Some software on
mjr 15:944bbc29c4dd 613 // the PC side (notably DOF) is aware of this and uses level 49
mjr 15:944bbc29c4dd 614 // to mean "100% on". To ensure compatibility with existing
mjr 15:944bbc29c4dd 615 // PC-side software, we need to recognize level 49.
mjr 13:72dda449c3c0 616 return 1.0;
mjr 13:72dda449c3c0 617 }
mjr 0:5acbbe3f4cf4 618 else if (val >= 129 && val <= 132)
mjr 13:72dda449c3c0 619 {
mjr 13:72dda449c3c0 620 // Values of 129-132 select different flashing modes. We don't
mjr 13:72dda449c3c0 621 // support any of these. Instead, simply treat them as fully on.
mjr 13:72dda449c3c0 622 // Note that DOF doesn't ever use modes 129-132, as it implements
mjr 13:72dda449c3c0 623 // all flashing modes itself on the host side, so this limitation
mjr 13:72dda449c3c0 624 // won't have any effect on DOF users. You can observe it using
mjr 13:72dda449c3c0 625 // LedBlinky, though.
mjr 13:72dda449c3c0 626 return 1.0;
mjr 13:72dda449c3c0 627 }
mjr 0:5acbbe3f4cf4 628 else
mjr 13:72dda449c3c0 629 {
mjr 13:72dda449c3c0 630 // Other values are undefined in the LedWiz documentation. Hosts
mjr 13:72dda449c3c0 631 // *should* never send undefined values, since whatever behavior an
mjr 13:72dda449c3c0 632 // LedWiz unit exhibits in response is accidental and could change
mjr 13:72dda449c3c0 633 // in a future version. We'll treat all undefined values as equivalent
mjr 13:72dda449c3c0 634 // to 48 (fully on).
mjr 13:72dda449c3c0 635 //
mjr 13:72dda449c3c0 636 // NB: the 49 and 129-132 cases are broken out above for the sake
mjr 13:72dda449c3c0 637 // of documentation. We end up using 1.0 as the return value for
mjr 13:72dda449c3c0 638 // everything outside of the defined 0-48 range, so we could collapse
mjr 13:72dda449c3c0 639 // this whole thing to a single 'else' branch, but I wanted to call
mjr 13:72dda449c3c0 640 // out the specific reasons for handling the settings above as we do.
mjr 0:5acbbe3f4cf4 641 return 1.0;
mjr 13:72dda449c3c0 642 }
mjr 0:5acbbe3f4cf4 643 }
mjr 13:72dda449c3c0 644 else
mjr 13:72dda449c3c0 645 {
mjr 13:72dda449c3c0 646 // off - show at 0 intensity
mjr 13:72dda449c3c0 647 return 0.0;
mjr 0:5acbbe3f4cf4 648 }
mjr 0:5acbbe3f4cf4 649 }
mjr 0:5acbbe3f4cf4 650
mjr 1:d913e0afb2ac 651 static void updateWizOuts()
mjr 1:d913e0afb2ac 652 {
mjr 6:cc35eb643e8f 653 for (int i = 0 ; i < 32 ; ++i)
mjr 6:cc35eb643e8f 654 lwPin[i]->set(wizState(i));
mjr 1:d913e0afb2ac 655 }
mjr 1:d913e0afb2ac 656
mjr 11:bd9da7088e6e 657
mjr 11:bd9da7088e6e 658 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 659 //
mjr 11:bd9da7088e6e 660 // Button input
mjr 11:bd9da7088e6e 661 //
mjr 11:bd9da7088e6e 662
mjr 11:bd9da7088e6e 663 // button input map array
mjr 11:bd9da7088e6e 664 DigitalIn *buttonDigIn[32];
mjr 11:bd9da7088e6e 665
mjr 12:669df364a565 666 // timer for button reports
mjr 12:669df364a565 667 static Timer buttonTimer;
mjr 12:669df364a565 668
mjr 11:bd9da7088e6e 669 // initialize the button inputs
mjr 11:bd9da7088e6e 670 void initButtons()
mjr 11:bd9da7088e6e 671 {
mjr 11:bd9da7088e6e 672 // create the digital inputs
mjr 11:bd9da7088e6e 673 for (int i = 0 ; i < countof(buttonDigIn) ; ++i)
mjr 11:bd9da7088e6e 674 {
mjr 11:bd9da7088e6e 675 if (i < countof(buttonMap) && buttonMap[i] != NC)
mjr 11:bd9da7088e6e 676 buttonDigIn[i] = new DigitalIn(buttonMap[i]);
mjr 11:bd9da7088e6e 677 else
mjr 11:bd9da7088e6e 678 buttonDigIn[i] = 0;
mjr 11:bd9da7088e6e 679 }
mjr 12:669df364a565 680
mjr 12:669df364a565 681 // start the button timer
mjr 12:669df364a565 682 buttonTimer.start();
mjr 11:bd9da7088e6e 683 }
mjr 11:bd9da7088e6e 684
mjr 11:bd9da7088e6e 685
mjr 11:bd9da7088e6e 686 // read the raw button input state
mjr 11:bd9da7088e6e 687 uint32_t readButtonsRaw()
mjr 11:bd9da7088e6e 688 {
mjr 11:bd9da7088e6e 689 // start with all buttons off
mjr 11:bd9da7088e6e 690 uint32_t buttons = 0;
mjr 11:bd9da7088e6e 691
mjr 11:bd9da7088e6e 692 // scan the button list
mjr 11:bd9da7088e6e 693 uint32_t bit = 1;
mjr 11:bd9da7088e6e 694 for (int i = 0 ; i < countof(buttonDigIn) ; ++i, bit <<= 1)
mjr 11:bd9da7088e6e 695 {
mjr 11:bd9da7088e6e 696 if (buttonDigIn[i] != 0 && !buttonDigIn[i]->read())
mjr 11:bd9da7088e6e 697 buttons |= bit;
mjr 11:bd9da7088e6e 698 }
mjr 11:bd9da7088e6e 699
mjr 11:bd9da7088e6e 700 // return the button list
mjr 11:bd9da7088e6e 701 return buttons;
mjr 11:bd9da7088e6e 702 }
mjr 11:bd9da7088e6e 703
mjr 11:bd9da7088e6e 704 // Read buttons with debouncing. We keep a circular buffer
mjr 11:bd9da7088e6e 705 // of recent input readings. We'll AND together the status of
mjr 11:bd9da7088e6e 706 // each button over the past 50ms. A button that has been on
mjr 11:bd9da7088e6e 707 // continuously for 50ms will be reported as ON. All others
mjr 11:bd9da7088e6e 708 // will be reported as OFF.
mjr 11:bd9da7088e6e 709 uint32_t readButtonsDebounced()
mjr 11:bd9da7088e6e 710 {
mjr 11:bd9da7088e6e 711 struct reading {
mjr 11:bd9da7088e6e 712 int dt; // time since previous reading
mjr 11:bd9da7088e6e 713 uint32_t b; // button state at this reading
mjr 11:bd9da7088e6e 714 };
mjr 11:bd9da7088e6e 715 static reading readings[8]; // circular buffer of readings
mjr 11:bd9da7088e6e 716 static int ri = 0; // reading buffer index (next write position)
mjr 11:bd9da7088e6e 717
mjr 11:bd9da7088e6e 718 // get the write pointer
mjr 11:bd9da7088e6e 719 reading *r = &readings[ri];
mjr 11:bd9da7088e6e 720
mjr 11:bd9da7088e6e 721 // figure the time since the last reading, and read the raw button state
mjr 12:669df364a565 722 r->dt = buttonTimer.read_ms();
mjr 11:bd9da7088e6e 723 uint32_t b = r->b = readButtonsRaw();
mjr 11:bd9da7088e6e 724
mjr 11:bd9da7088e6e 725 // start timing the next interval
mjr 12:669df364a565 726 buttonTimer.reset();
mjr 11:bd9da7088e6e 727
mjr 14:df700b22ca08 728 // AND together readings over 25ms
mjr 11:bd9da7088e6e 729 int ms = 0;
mjr 14:df700b22ca08 730 for (int i = 1 ; i < countof(readings) && ms < 25 ; ++i)
mjr 11:bd9da7088e6e 731 {
mjr 11:bd9da7088e6e 732 // find the next prior reading, wrapping in the circular buffer
mjr 11:bd9da7088e6e 733 int j = ri - i;
mjr 11:bd9da7088e6e 734 if (j < 0)
mjr 11:bd9da7088e6e 735 j = countof(readings) - 1;
mjr 11:bd9da7088e6e 736
mjr 11:bd9da7088e6e 737 reading *rj = &readings[j];
mjr 11:bd9da7088e6e 738
mjr 11:bd9da7088e6e 739 // AND the buttons for this reading
mjr 11:bd9da7088e6e 740 b &= rj->b;
mjr 11:bd9da7088e6e 741
mjr 11:bd9da7088e6e 742 // count the time
mjr 11:bd9da7088e6e 743 ms += rj->dt;
mjr 11:bd9da7088e6e 744 }
mjr 11:bd9da7088e6e 745
mjr 11:bd9da7088e6e 746 // advance the write position for next time
mjr 11:bd9da7088e6e 747 ri += 1;
mjr 12:669df364a565 748 if (ri >= countof(readings))
mjr 11:bd9da7088e6e 749 ri = 0;
mjr 11:bd9da7088e6e 750
mjr 11:bd9da7088e6e 751 // return the debounced result
mjr 11:bd9da7088e6e 752 return b;
mjr 11:bd9da7088e6e 753 }
mjr 11:bd9da7088e6e 754
mjr 5:a70c0bce770d 755 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 756 //
mjr 5:a70c0bce770d 757 // Non-volatile memory (NVM)
mjr 5:a70c0bce770d 758 //
mjr 0:5acbbe3f4cf4 759
mjr 5:a70c0bce770d 760 // Structure defining our NVM storage layout. We store a small
mjr 2:c174f9ee414a 761 // amount of persistent data in flash memory to retain calibration
mjr 5:a70c0bce770d 762 // data when powered off.
mjr 2:c174f9ee414a 763 struct NVM
mjr 2:c174f9ee414a 764 {
mjr 2:c174f9ee414a 765 // checksum - we use this to determine if the flash record
mjr 6:cc35eb643e8f 766 // has been properly initialized
mjr 2:c174f9ee414a 767 uint32_t checksum;
mjr 2:c174f9ee414a 768
mjr 2:c174f9ee414a 769 // signature value
mjr 2:c174f9ee414a 770 static const uint32_t SIGNATURE = 0x4D4A522A;
mjr 6:cc35eb643e8f 771 static const uint16_t VERSION = 0x0003;
mjr 6:cc35eb643e8f 772
mjr 6:cc35eb643e8f 773 // Is the data structure valid? We test the signature and
mjr 6:cc35eb643e8f 774 // checksum to determine if we've been properly stored.
mjr 6:cc35eb643e8f 775 int valid() const
mjr 6:cc35eb643e8f 776 {
mjr 6:cc35eb643e8f 777 return (d.sig == SIGNATURE
mjr 6:cc35eb643e8f 778 && d.vsn == VERSION
mjr 6:cc35eb643e8f 779 && d.sz == sizeof(NVM)
mjr 6:cc35eb643e8f 780 && checksum == CRC32(&d, sizeof(d)));
mjr 6:cc35eb643e8f 781 }
mjr 6:cc35eb643e8f 782
mjr 6:cc35eb643e8f 783 // save to non-volatile memory
mjr 6:cc35eb643e8f 784 void save(FreescaleIAP &iap, int addr)
mjr 6:cc35eb643e8f 785 {
mjr 6:cc35eb643e8f 786 // update the checksum and structure size
mjr 6:cc35eb643e8f 787 checksum = CRC32(&d, sizeof(d));
mjr 6:cc35eb643e8f 788 d.sz = sizeof(NVM);
mjr 6:cc35eb643e8f 789
mjr 6:cc35eb643e8f 790 // erase the sector
mjr 6:cc35eb643e8f 791 iap.erase_sector(addr);
mjr 6:cc35eb643e8f 792
mjr 6:cc35eb643e8f 793 // save the data
mjr 6:cc35eb643e8f 794 iap.program_flash(addr, this, sizeof(*this));
mjr 6:cc35eb643e8f 795 }
mjr 2:c174f9ee414a 796
mjr 9:fd65b0a94720 797 // reset calibration data for calibration mode
mjr 9:fd65b0a94720 798 void resetPlunger()
mjr 9:fd65b0a94720 799 {
mjr 9:fd65b0a94720 800 // set extremes for the calibration data
mjr 9:fd65b0a94720 801 d.plungerMax = 0;
mjr 9:fd65b0a94720 802 d.plungerZero = npix;
mjr 9:fd65b0a94720 803 d.plungerMin = npix;
mjr 9:fd65b0a94720 804 }
mjr 9:fd65b0a94720 805
mjr 2:c174f9ee414a 806 // stored data (excluding the checksum)
mjr 2:c174f9ee414a 807 struct
mjr 2:c174f9ee414a 808 {
mjr 6:cc35eb643e8f 809 // Signature, structure version, and structure size - further verification
mjr 6:cc35eb643e8f 810 // that we have valid initialized data. The size is a simple proxy for a
mjr 6:cc35eb643e8f 811 // structure version, as the most common type of change to the structure as
mjr 6:cc35eb643e8f 812 // the software evolves will be the addition of new elements. We also
mjr 6:cc35eb643e8f 813 // provide an explicit version number that we can update manually if we
mjr 6:cc35eb643e8f 814 // make any changes that don't affect the structure size but would affect
mjr 6:cc35eb643e8f 815 // compatibility with a saved record (e.g., swapping two existing elements).
mjr 2:c174f9ee414a 816 uint32_t sig;
mjr 2:c174f9ee414a 817 uint16_t vsn;
mjr 6:cc35eb643e8f 818 int sz;
mjr 2:c174f9ee414a 819
mjr 6:cc35eb643e8f 820 // has the plunger been manually calibrated?
mjr 6:cc35eb643e8f 821 int plungerCal;
mjr 6:cc35eb643e8f 822
mjr 2:c174f9ee414a 823 // plunger calibration min and max
mjr 2:c174f9ee414a 824 int plungerMin;
mjr 6:cc35eb643e8f 825 int plungerZero;
mjr 2:c174f9ee414a 826 int plungerMax;
mjr 6:cc35eb643e8f 827
mjr 6:cc35eb643e8f 828 // is the CCD enabled?
mjr 6:cc35eb643e8f 829 int ccdEnabled;
mjr 6:cc35eb643e8f 830
mjr 6:cc35eb643e8f 831 // LedWiz unit number
mjr 6:cc35eb643e8f 832 uint8_t ledWizUnitNo;
mjr 2:c174f9ee414a 833 } d;
mjr 2:c174f9ee414a 834 };
mjr 2:c174f9ee414a 835
mjr 5:a70c0bce770d 836
mjr 5:a70c0bce770d 837 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 838 //
mjr 5:a70c0bce770d 839 // Customization joystick subbclass
mjr 5:a70c0bce770d 840 //
mjr 5:a70c0bce770d 841
mjr 5:a70c0bce770d 842 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 843 {
mjr 5:a70c0bce770d 844 public:
mjr 5:a70c0bce770d 845 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release)
mjr 5:a70c0bce770d 846 : USBJoystick(vendor_id, product_id, product_release, true)
mjr 5:a70c0bce770d 847 {
mjr 5:a70c0bce770d 848 suspended_ = false;
mjr 5:a70c0bce770d 849 }
mjr 5:a70c0bce770d 850
mjr 5:a70c0bce770d 851 // are we connected?
mjr 5:a70c0bce770d 852 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 853
mjr 5:a70c0bce770d 854 // Are we in suspend mode?
mjr 5:a70c0bce770d 855 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 856
mjr 5:a70c0bce770d 857 protected:
mjr 5:a70c0bce770d 858 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 859 { suspended_ = suspended; }
mjr 5:a70c0bce770d 860
mjr 5:a70c0bce770d 861 // are we suspended?
mjr 5:a70c0bce770d 862 int suspended_;
mjr 5:a70c0bce770d 863 };
mjr 5:a70c0bce770d 864
mjr 5:a70c0bce770d 865 // ---------------------------------------------------------------------------
mjr 6:cc35eb643e8f 866 //
mjr 6:cc35eb643e8f 867 // Some simple math service routines
mjr 6:cc35eb643e8f 868 //
mjr 6:cc35eb643e8f 869
mjr 6:cc35eb643e8f 870 inline float square(float x) { return x*x; }
mjr 6:cc35eb643e8f 871 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 6:cc35eb643e8f 872
mjr 6:cc35eb643e8f 873 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 874 //
mjr 5:a70c0bce770d 875 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 876 //
mjr 5:a70c0bce770d 877
mjr 5:a70c0bce770d 878 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 879 //
mjr 5:a70c0bce770d 880 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 881 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 882 // automatic calibration.
mjr 5:a70c0bce770d 883 //
mjr 5:a70c0bce770d 884 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 885 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 886 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 887 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 888 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 889 // every sample.
mjr 5:a70c0bce770d 890 //
mjr 6:cc35eb643e8f 891 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 892 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 893 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 894 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 895 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 896 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 897 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 898 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 899 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 900 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 901 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 902 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 903 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 904 // of nudging, say).
mjr 5:a70c0bce770d 905 //
mjr 5:a70c0bce770d 906
mjr 6:cc35eb643e8f 907 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 908 struct AccHist
mjr 5:a70c0bce770d 909 {
mjr 6:cc35eb643e8f 910 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 911 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 912 {
mjr 6:cc35eb643e8f 913 // save the raw position
mjr 6:cc35eb643e8f 914 this->x = x;
mjr 6:cc35eb643e8f 915 this->y = y;
mjr 6:cc35eb643e8f 916 this->d = distance(prv);
mjr 6:cc35eb643e8f 917 }
mjr 6:cc35eb643e8f 918
mjr 6:cc35eb643e8f 919 // reading for this entry
mjr 5:a70c0bce770d 920 float x, y;
mjr 5:a70c0bce770d 921
mjr 6:cc35eb643e8f 922 // distance from previous entry
mjr 6:cc35eb643e8f 923 float d;
mjr 5:a70c0bce770d 924
mjr 6:cc35eb643e8f 925 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 926 float xtot, ytot;
mjr 6:cc35eb643e8f 927 int cnt;
mjr 6:cc35eb643e8f 928
mjr 6:cc35eb643e8f 929 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 930 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 931 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 932 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 933
mjr 6:cc35eb643e8f 934 float distance(AccHist *p)
mjr 6:cc35eb643e8f 935 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 936 };
mjr 5:a70c0bce770d 937
mjr 5:a70c0bce770d 938 // accelerometer wrapper class
mjr 3:3514575d4f86 939 class Accel
mjr 3:3514575d4f86 940 {
mjr 3:3514575d4f86 941 public:
mjr 3:3514575d4f86 942 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 943 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 944 {
mjr 5:a70c0bce770d 945 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 946 irqPin_ = irqPin;
mjr 5:a70c0bce770d 947
mjr 5:a70c0bce770d 948 // reset and initialize
mjr 5:a70c0bce770d 949 reset();
mjr 5:a70c0bce770d 950 }
mjr 5:a70c0bce770d 951
mjr 5:a70c0bce770d 952 void reset()
mjr 5:a70c0bce770d 953 {
mjr 6:cc35eb643e8f 954 // clear the center point
mjr 6:cc35eb643e8f 955 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 956
mjr 6:cc35eb643e8f 957 // start the calibration timer
mjr 5:a70c0bce770d 958 tCenter_.start();
mjr 5:a70c0bce770d 959 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 960
mjr 5:a70c0bce770d 961 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 962 mma_.init();
mjr 6:cc35eb643e8f 963
mjr 6:cc35eb643e8f 964 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 965 vx_ = vy_ = 0;
mjr 3:3514575d4f86 966
mjr 6:cc35eb643e8f 967 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 968 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 969 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 970
mjr 3:3514575d4f86 971 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 972 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 973
mjr 3:3514575d4f86 974 // start our timers
mjr 3:3514575d4f86 975 tGet_.start();
mjr 3:3514575d4f86 976 tInt_.start();
mjr 3:3514575d4f86 977 }
mjr 3:3514575d4f86 978
mjr 9:fd65b0a94720 979 void get(int &x, int &y)
mjr 3:3514575d4f86 980 {
mjr 3:3514575d4f86 981 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 982 __disable_irq();
mjr 3:3514575d4f86 983
mjr 3:3514575d4f86 984 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 985 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 986 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 987
mjr 6:cc35eb643e8f 988 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 989 vx_ = vy_ = 0;
mjr 3:3514575d4f86 990
mjr 3:3514575d4f86 991 // get the time since the last get() sample
mjr 3:3514575d4f86 992 float dt = tGet_.read_us()/1.0e6;
mjr 3:3514575d4f86 993 tGet_.reset();
mjr 3:3514575d4f86 994
mjr 3:3514575d4f86 995 // done manipulating the shared data
mjr 3:3514575d4f86 996 __enable_irq();
mjr 3:3514575d4f86 997
mjr 6:cc35eb643e8f 998 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 999 vx /= dt;
mjr 6:cc35eb643e8f 1000 vy /= dt;
mjr 6:cc35eb643e8f 1001
mjr 6:cc35eb643e8f 1002 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 1003 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 1004 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 1005
mjr 5:a70c0bce770d 1006 // check for auto-centering every so often
mjr 5:a70c0bce770d 1007 if (tCenter_.read_ms() > 1000)
mjr 5:a70c0bce770d 1008 {
mjr 5:a70c0bce770d 1009 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 1010 AccHist *prv = p;
mjr 5:a70c0bce770d 1011 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 1012 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 1013 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 1014
mjr 5:a70c0bce770d 1015 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 1016 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 1017 {
mjr 5:a70c0bce770d 1018 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 1019 static const float accTol = .01;
mjr 6:cc35eb643e8f 1020 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 1021 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 1022 && p0[1].d < accTol
mjr 6:cc35eb643e8f 1023 && p0[2].d < accTol
mjr 6:cc35eb643e8f 1024 && p0[3].d < accTol
mjr 6:cc35eb643e8f 1025 && p0[4].d < accTol)
mjr 5:a70c0bce770d 1026 {
mjr 6:cc35eb643e8f 1027 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 1028 // the samples over the rest period
mjr 6:cc35eb643e8f 1029 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 1030 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 1031 }
mjr 5:a70c0bce770d 1032 }
mjr 5:a70c0bce770d 1033 else
mjr 5:a70c0bce770d 1034 {
mjr 5:a70c0bce770d 1035 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 1036 ++nAccPrv_;
mjr 5:a70c0bce770d 1037 }
mjr 6:cc35eb643e8f 1038
mjr 6:cc35eb643e8f 1039 // clear the new item's running totals
mjr 6:cc35eb643e8f 1040 p->clearAvg();
mjr 5:a70c0bce770d 1041
mjr 5:a70c0bce770d 1042 // reset the timer
mjr 5:a70c0bce770d 1043 tCenter_.reset();
mjr 5:a70c0bce770d 1044 }
mjr 5:a70c0bce770d 1045
mjr 6:cc35eb643e8f 1046 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 1047 x = rawToReport(vx);
mjr 6:cc35eb643e8f 1048 y = rawToReport(vy);
mjr 5:a70c0bce770d 1049
mjr 6:cc35eb643e8f 1050 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1051 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1052 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 1053 #endif
mjr 3:3514575d4f86 1054 }
mjr 3:3514575d4f86 1055
mjr 3:3514575d4f86 1056 private:
mjr 6:cc35eb643e8f 1057 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 1058 int rawToReport(float v)
mjr 5:a70c0bce770d 1059 {
mjr 6:cc35eb643e8f 1060 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 1061 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 1062
mjr 6:cc35eb643e8f 1063 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 1064 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 1065 static const int filter[] = {
mjr 6:cc35eb643e8f 1066 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 1067 0,
mjr 6:cc35eb643e8f 1068 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 1069 };
mjr 6:cc35eb643e8f 1070 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 1071 }
mjr 5:a70c0bce770d 1072
mjr 3:3514575d4f86 1073 // interrupt handler
mjr 3:3514575d4f86 1074 void isr()
mjr 3:3514575d4f86 1075 {
mjr 3:3514575d4f86 1076 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 1077 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 1078 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 1079 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 1080 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 1081 float x, y, z;
mjr 5:a70c0bce770d 1082 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 1083
mjr 3:3514575d4f86 1084 // calculate the time since the last interrupt
mjr 3:3514575d4f86 1085 float dt = tInt_.read_us()/1.0e6;
mjr 3:3514575d4f86 1086 tInt_.reset();
mjr 6:cc35eb643e8f 1087
mjr 6:cc35eb643e8f 1088 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 1089 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 1090 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 1091
mjr 6:cc35eb643e8f 1092 // store the updates
mjr 6:cc35eb643e8f 1093 ax_ = x;
mjr 6:cc35eb643e8f 1094 ay_ = y;
mjr 6:cc35eb643e8f 1095 az_ = z;
mjr 3:3514575d4f86 1096 }
mjr 3:3514575d4f86 1097
mjr 3:3514575d4f86 1098 // underlying accelerometer object
mjr 3:3514575d4f86 1099 MMA8451Q mma_;
mjr 3:3514575d4f86 1100
mjr 5:a70c0bce770d 1101 // last raw acceleration readings
mjr 6:cc35eb643e8f 1102 float ax_, ay_, az_;
mjr 5:a70c0bce770d 1103
mjr 6:cc35eb643e8f 1104 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 1105 float vx_, vy_;
mjr 6:cc35eb643e8f 1106
mjr 3:3514575d4f86 1107 // timer for measuring time between get() samples
mjr 3:3514575d4f86 1108 Timer tGet_;
mjr 3:3514575d4f86 1109
mjr 3:3514575d4f86 1110 // timer for measuring time between interrupts
mjr 3:3514575d4f86 1111 Timer tInt_;
mjr 5:a70c0bce770d 1112
mjr 6:cc35eb643e8f 1113 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 1114 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 1115 // at rest.
mjr 6:cc35eb643e8f 1116 float cx_, cy_;
mjr 5:a70c0bce770d 1117
mjr 5:a70c0bce770d 1118 // timer for atuo-centering
mjr 5:a70c0bce770d 1119 Timer tCenter_;
mjr 6:cc35eb643e8f 1120
mjr 6:cc35eb643e8f 1121 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 1122 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 1123 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 1124 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 1125 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 1126 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 1127 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 1128 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 1129 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 1130 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 1131 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 1132 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 1133 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 1134 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 1135 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 1136
mjr 5:a70c0bce770d 1137 // interurupt pin name
mjr 5:a70c0bce770d 1138 PinName irqPin_;
mjr 5:a70c0bce770d 1139
mjr 5:a70c0bce770d 1140 // interrupt router
mjr 5:a70c0bce770d 1141 InterruptIn intIn_;
mjr 3:3514575d4f86 1142 };
mjr 3:3514575d4f86 1143
mjr 5:a70c0bce770d 1144
mjr 5:a70c0bce770d 1145 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1146 //
mjr 14:df700b22ca08 1147 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 1148 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 1149 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 1150 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 1151 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 1152 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 1153 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 1154 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 1155 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 1156 //
mjr 14:df700b22ca08 1157 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 1158 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 1159 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 1160 //
mjr 5:a70c0bce770d 1161 void clear_i2c()
mjr 5:a70c0bce770d 1162 {
mjr 5:a70c0bce770d 1163 // assume a general-purpose output pin to the I2C clock
mjr 5:a70c0bce770d 1164 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 1165 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 1166
mjr 5:a70c0bce770d 1167 // clock the SCL 9 times
mjr 5:a70c0bce770d 1168 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 1169 {
mjr 5:a70c0bce770d 1170 scl = 1;
mjr 5:a70c0bce770d 1171 wait_us(20);
mjr 5:a70c0bce770d 1172 scl = 0;
mjr 5:a70c0bce770d 1173 wait_us(20);
mjr 5:a70c0bce770d 1174 }
mjr 5:a70c0bce770d 1175 }
mjr 14:df700b22ca08 1176
mjr 14:df700b22ca08 1177 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 1178 //
mjr 14:df700b22ca08 1179 // CCD read interval callback. When reading the CCD, we'll call this
mjr 14:df700b22ca08 1180 // several times over the course of the read loop to refresh the button
mjr 14:df700b22ca08 1181 // states. This allows us to debounce the buttons while the long CCD
mjr 14:df700b22ca08 1182 // read cycle is taking place, so that we can reliably report button
mjr 14:df700b22ca08 1183 // states after each CCD read cycle. (The read cycle takes about 30ms,
mjr 14:df700b22ca08 1184 // which should be enough time to reliably debounce the buttons.)
mjr 14:df700b22ca08 1185 //
mjr 14:df700b22ca08 1186 void ccdReadCB(void *)
mjr 14:df700b22ca08 1187 {
mjr 14:df700b22ca08 1188 // read the keyboard
mjr 14:df700b22ca08 1189 readButtonsDebounced();
mjr 14:df700b22ca08 1190 }
mjr 5:a70c0bce770d 1191
mjr 5:a70c0bce770d 1192 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1193 //
mjr 5:a70c0bce770d 1194 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 1195 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 1196 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 1197 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 1198 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 1199 // port outputs.
mjr 5:a70c0bce770d 1200 //
mjr 0:5acbbe3f4cf4 1201 int main(void)
mjr 0:5acbbe3f4cf4 1202 {
mjr 1:d913e0afb2ac 1203 // turn off our on-board indicator LED
mjr 4:02c7cd7b2183 1204 ledR = 1;
mjr 4:02c7cd7b2183 1205 ledG = 1;
mjr 4:02c7cd7b2183 1206 ledB = 1;
mjr 1:d913e0afb2ac 1207
mjr 6:cc35eb643e8f 1208 // initialize the LedWiz ports
mjr 6:cc35eb643e8f 1209 initLwOut();
mjr 6:cc35eb643e8f 1210
mjr 11:bd9da7088e6e 1211 // initialize the button input ports
mjr 11:bd9da7088e6e 1212 initButtons();
mjr 11:bd9da7088e6e 1213
mjr 6:cc35eb643e8f 1214 // we don't need a reset yet
mjr 6:cc35eb643e8f 1215 bool needReset = false;
mjr 6:cc35eb643e8f 1216
mjr 5:a70c0bce770d 1217 // clear the I2C bus for the accelerometer
mjr 5:a70c0bce770d 1218 clear_i2c();
mjr 5:a70c0bce770d 1219
mjr 2:c174f9ee414a 1220 // set up a flash memory controller
mjr 2:c174f9ee414a 1221 FreescaleIAP iap;
mjr 2:c174f9ee414a 1222
mjr 2:c174f9ee414a 1223 // use the last sector of flash for our non-volatile memory structure
mjr 2:c174f9ee414a 1224 int flash_addr = (iap.flash_size() - SECTOR_SIZE);
mjr 2:c174f9ee414a 1225 NVM *flash = (NVM *)flash_addr;
mjr 2:c174f9ee414a 1226 NVM cfg;
mjr 2:c174f9ee414a 1227
mjr 2:c174f9ee414a 1228 // check for valid flash
mjr 6:cc35eb643e8f 1229 bool flash_valid = flash->valid();
mjr 2:c174f9ee414a 1230
mjr 2:c174f9ee414a 1231 // if the flash is valid, load it; otherwise initialize to defaults
mjr 2:c174f9ee414a 1232 if (flash_valid) {
mjr 2:c174f9ee414a 1233 memcpy(&cfg, flash, sizeof(cfg));
mjr 6:cc35eb643e8f 1234 printf("Flash restored: plunger cal=%d, min=%d, zero=%d, max=%d\r\n",
mjr 6:cc35eb643e8f 1235 cfg.d.plungerCal, cfg.d.plungerMin, cfg.d.plungerZero, cfg.d.plungerMax);
mjr 2:c174f9ee414a 1236 }
mjr 2:c174f9ee414a 1237 else {
mjr 2:c174f9ee414a 1238 printf("Factory reset\r\n");
mjr 2:c174f9ee414a 1239 cfg.d.sig = cfg.SIGNATURE;
mjr 2:c174f9ee414a 1240 cfg.d.vsn = cfg.VERSION;
mjr 6:cc35eb643e8f 1241 cfg.d.plungerCal = 0;
mjr 6:cc35eb643e8f 1242 cfg.d.plungerZero = 0;
mjr 2:c174f9ee414a 1243 cfg.d.plungerMin = 0;
mjr 2:c174f9ee414a 1244 cfg.d.plungerMax = npix;
mjr 6:cc35eb643e8f 1245 cfg.d.ledWizUnitNo = DEFAULT_LEDWIZ_UNIT_NUMBER;
mjr 6:cc35eb643e8f 1246 cfg.d.ccdEnabled = true;
mjr 2:c174f9ee414a 1247 }
mjr 1:d913e0afb2ac 1248
mjr 6:cc35eb643e8f 1249 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 1250 // number from the saved configuration.
mjr 6:cc35eb643e8f 1251 MyUSBJoystick js(
mjr 6:cc35eb643e8f 1252 USB_VENDOR_ID,
mjr 6:cc35eb643e8f 1253 USB_PRODUCT_ID | cfg.d.ledWizUnitNo,
mjr 6:cc35eb643e8f 1254 USB_VERSION_NO);
mjr 6:cc35eb643e8f 1255
mjr 1:d913e0afb2ac 1256 // plunger calibration button debounce timer
mjr 1:d913e0afb2ac 1257 Timer calBtnTimer;
mjr 1:d913e0afb2ac 1258 calBtnTimer.start();
mjr 1:d913e0afb2ac 1259 int calBtnLit = false;
mjr 1:d913e0afb2ac 1260
mjr 1:d913e0afb2ac 1261 // Calibration button state:
mjr 1:d913e0afb2ac 1262 // 0 = not pushed
mjr 1:d913e0afb2ac 1263 // 1 = pushed, not yet debounced
mjr 1:d913e0afb2ac 1264 // 2 = pushed, debounced, waiting for hold time
mjr 1:d913e0afb2ac 1265 // 3 = pushed, hold time completed - in calibration mode
mjr 1:d913e0afb2ac 1266 int calBtnState = 0;
mjr 1:d913e0afb2ac 1267
mjr 1:d913e0afb2ac 1268 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 1269 Timer hbTimer;
mjr 1:d913e0afb2ac 1270 hbTimer.start();
mjr 1:d913e0afb2ac 1271 int hb = 0;
mjr 5:a70c0bce770d 1272 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 1273
mjr 1:d913e0afb2ac 1274 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 1275 Timer acTimer;
mjr 1:d913e0afb2ac 1276 acTimer.start();
mjr 1:d913e0afb2ac 1277
mjr 0:5acbbe3f4cf4 1278 // create the accelerometer object
mjr 5:a70c0bce770d 1279 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 0:5acbbe3f4cf4 1280
mjr 0:5acbbe3f4cf4 1281 // create the CCD array object
mjr 1:d913e0afb2ac 1282 TSL1410R ccd(PTE20, PTE21, PTB0);
mjr 2:c174f9ee414a 1283
mjr 1:d913e0afb2ac 1284 // last accelerometer report, in mouse coordinates
mjr 6:cc35eb643e8f 1285 int x = 0, y = 0, z = 0;
mjr 6:cc35eb643e8f 1286
mjr 6:cc35eb643e8f 1287 // previous two plunger readings, for "debouncing" the results (z0 is
mjr 6:cc35eb643e8f 1288 // the most recent, z1 is the one before that)
mjr 6:cc35eb643e8f 1289 int z0 = 0, z1 = 0, z2 = 0;
mjr 6:cc35eb643e8f 1290
mjr 6:cc35eb643e8f 1291 // Firing in progress: we set this when we detect the start of rapid
mjr 6:cc35eb643e8f 1292 // plunger movement from a retracted position towards the rest position.
mjr 6:cc35eb643e8f 1293 // The actual plunger spring return speed seems to be too slow for VP,
mjr 6:cc35eb643e8f 1294 // so when we detect the start of this motion, we immediately tell VP
mjr 6:cc35eb643e8f 1295 // to return the plunger to rest, then we monitor the real plunger
mjr 6:cc35eb643e8f 1296 // until it atcually stops.
mjr 9:fd65b0a94720 1297 int firing = 0;
mjr 2:c174f9ee414a 1298
mjr 2:c174f9ee414a 1299 // start the first CCD integration cycle
mjr 2:c174f9ee414a 1300 ccd.clear();
mjr 9:fd65b0a94720 1301
mjr 9:fd65b0a94720 1302 // Device status. We report this on each update so that the host config
mjr 9:fd65b0a94720 1303 // tool can detect our current settings. This is a bit mask consisting
mjr 9:fd65b0a94720 1304 // of these bits:
mjr 9:fd65b0a94720 1305 // 0x01 -> plunger sensor enabled
mjr 9:fd65b0a94720 1306 uint16_t statusFlags = (cfg.d.ccdEnabled ? 0x01 : 0x00);
mjr 10:976666ffa4ef 1307
mjr 10:976666ffa4ef 1308 // flag: send a pixel dump after the next read
mjr 10:976666ffa4ef 1309 bool reportPix = false;
mjr 1:d913e0afb2ac 1310
mjr 1:d913e0afb2ac 1311 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 1312 // host requests
mjr 0:5acbbe3f4cf4 1313 for (;;)
mjr 0:5acbbe3f4cf4 1314 {
mjr 0:5acbbe3f4cf4 1315 // Look for an incoming report. Continue processing input as
mjr 0:5acbbe3f4cf4 1316 // long as there's anything pending - this ensures that we
mjr 0:5acbbe3f4cf4 1317 // handle input in as timely a fashion as possible by deferring
mjr 0:5acbbe3f4cf4 1318 // output tasks as long as there's input to process.
mjr 0:5acbbe3f4cf4 1319 HID_REPORT report;
mjr 6:cc35eb643e8f 1320 while (js.readNB(&report))
mjr 0:5acbbe3f4cf4 1321 {
mjr 6:cc35eb643e8f 1322 // all Led-Wiz reports are 8 bytes exactly
mjr 6:cc35eb643e8f 1323 if (report.length == 8)
mjr 1:d913e0afb2ac 1324 {
mjr 6:cc35eb643e8f 1325 uint8_t *data = report.data;
mjr 6:cc35eb643e8f 1326 if (data[0] == 64)
mjr 0:5acbbe3f4cf4 1327 {
mjr 6:cc35eb643e8f 1328 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 6:cc35eb643e8f 1329 // for the outputs; 5th byte is the pulse speed (0-7)
mjr 6:cc35eb643e8f 1330 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 6:cc35eb643e8f 1331 // data[1], data[2], data[3], data[4], data[5]);
mjr 0:5acbbe3f4cf4 1332
mjr 6:cc35eb643e8f 1333 // update all on/off states
mjr 6:cc35eb643e8f 1334 for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1)
mjr 6:cc35eb643e8f 1335 {
mjr 6:cc35eb643e8f 1336 if (bit == 0x100) {
mjr 6:cc35eb643e8f 1337 bit = 1;
mjr 6:cc35eb643e8f 1338 ++ri;
mjr 6:cc35eb643e8f 1339 }
mjr 6:cc35eb643e8f 1340 wizOn[i] = ((data[ri] & bit) != 0);
mjr 6:cc35eb643e8f 1341 }
mjr 6:cc35eb643e8f 1342
mjr 6:cc35eb643e8f 1343 // update the physical outputs
mjr 1:d913e0afb2ac 1344 updateWizOuts();
mjr 6:cc35eb643e8f 1345
mjr 6:cc35eb643e8f 1346 // reset the PBA counter
mjr 6:cc35eb643e8f 1347 pbaIdx = 0;
mjr 6:cc35eb643e8f 1348 }
mjr 6:cc35eb643e8f 1349 else if (data[0] == 65)
mjr 6:cc35eb643e8f 1350 {
mjr 6:cc35eb643e8f 1351 // Private control message. This isn't an LedWiz message - it's
mjr 6:cc35eb643e8f 1352 // an extension for this device. 65 is an invalid PBA setting,
mjr 6:cc35eb643e8f 1353 // and isn't used for any other LedWiz message, so we appropriate
mjr 6:cc35eb643e8f 1354 // it for our own private use. The first byte specifies the
mjr 6:cc35eb643e8f 1355 // message type.
mjr 6:cc35eb643e8f 1356 if (data[1] == 1)
mjr 6:cc35eb643e8f 1357 {
mjr 9:fd65b0a94720 1358 // 1 = Set Configuration:
mjr 6:cc35eb643e8f 1359 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 6:cc35eb643e8f 1360 // data[3] = feature enable bit mask:
mjr 6:cc35eb643e8f 1361 // 0x01 = enable CCD
mjr 6:cc35eb643e8f 1362
mjr 6:cc35eb643e8f 1363 // we'll need a reset if the LedWiz unit number is changing
mjr 6:cc35eb643e8f 1364 uint8_t newUnitNo = data[2] & 0x0f;
mjr 6:cc35eb643e8f 1365 needReset |= (newUnitNo != cfg.d.ledWizUnitNo);
mjr 6:cc35eb643e8f 1366
mjr 6:cc35eb643e8f 1367 // set the configuration parameters from the message
mjr 6:cc35eb643e8f 1368 cfg.d.ledWizUnitNo = newUnitNo;
mjr 6:cc35eb643e8f 1369 cfg.d.ccdEnabled = data[3] & 0x01;
mjr 6:cc35eb643e8f 1370
mjr 9:fd65b0a94720 1371 // update the status flags
mjr 9:fd65b0a94720 1372 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 9:fd65b0a94720 1373
mjr 9:fd65b0a94720 1374 // if the ccd is no longer enabled, use 0 for z reports
mjr 9:fd65b0a94720 1375 if (!cfg.d.ccdEnabled)
mjr 9:fd65b0a94720 1376 z = 0;
mjr 9:fd65b0a94720 1377
mjr 6:cc35eb643e8f 1378 // save the configuration
mjr 6:cc35eb643e8f 1379 cfg.save(iap, flash_addr);
mjr 6:cc35eb643e8f 1380 }
mjr 9:fd65b0a94720 1381 else if (data[1] == 2)
mjr 9:fd65b0a94720 1382 {
mjr 9:fd65b0a94720 1383 // 2 = Calibrate plunger
mjr 9:fd65b0a94720 1384 // (No parameters)
mjr 9:fd65b0a94720 1385
mjr 9:fd65b0a94720 1386 // enter calibration mode
mjr 9:fd65b0a94720 1387 calBtnState = 3;
mjr 9:fd65b0a94720 1388 calBtnTimer.reset();
mjr 9:fd65b0a94720 1389 cfg.resetPlunger();
mjr 9:fd65b0a94720 1390 }
mjr 10:976666ffa4ef 1391 else if (data[1] == 3)
mjr 10:976666ffa4ef 1392 {
mjr 10:976666ffa4ef 1393 // 3 = pixel dump
mjr 10:976666ffa4ef 1394 // (No parameters)
mjr 10:976666ffa4ef 1395 reportPix = true;
mjr 10:976666ffa4ef 1396
mjr 10:976666ffa4ef 1397 // show purple until we finish sending the report
mjr 10:976666ffa4ef 1398 ledR = 0;
mjr 10:976666ffa4ef 1399 ledB = 0;
mjr 10:976666ffa4ef 1400 ledG = 1;
mjr 10:976666ffa4ef 1401 }
mjr 6:cc35eb643e8f 1402 }
mjr 6:cc35eb643e8f 1403 else
mjr 6:cc35eb643e8f 1404 {
mjr 6:cc35eb643e8f 1405 // LWZ-PBA - full state dump; each byte is one output
mjr 6:cc35eb643e8f 1406 // in the current bank. pbaIdx keeps track of the bank;
mjr 6:cc35eb643e8f 1407 // this is incremented implicitly by each PBA message.
mjr 6:cc35eb643e8f 1408 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 6:cc35eb643e8f 1409 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 6:cc35eb643e8f 1410
mjr 6:cc35eb643e8f 1411 // update all output profile settings
mjr 6:cc35eb643e8f 1412 for (int i = 0 ; i < 8 ; ++i)
mjr 6:cc35eb643e8f 1413 wizVal[pbaIdx + i] = data[i];
mjr 6:cc35eb643e8f 1414
mjr 6:cc35eb643e8f 1415 // update the physical LED state if this is the last bank
mjr 6:cc35eb643e8f 1416 if (pbaIdx == 24)
mjr 13:72dda449c3c0 1417 {
mjr 6:cc35eb643e8f 1418 updateWizOuts();
mjr 13:72dda449c3c0 1419 pbaIdx = 0;
mjr 13:72dda449c3c0 1420 }
mjr 13:72dda449c3c0 1421 else
mjr 13:72dda449c3c0 1422 pbaIdx += 8;
mjr 6:cc35eb643e8f 1423 }
mjr 0:5acbbe3f4cf4 1424 }
mjr 0:5acbbe3f4cf4 1425 }
mjr 1:d913e0afb2ac 1426
mjr 1:d913e0afb2ac 1427 // check for plunger calibration
mjr 1:d913e0afb2ac 1428 if (!calBtn)
mjr 0:5acbbe3f4cf4 1429 {
mjr 1:d913e0afb2ac 1430 // check the state
mjr 1:d913e0afb2ac 1431 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1432 {
mjr 1:d913e0afb2ac 1433 case 0:
mjr 1:d913e0afb2ac 1434 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 1435 calBtnTimer.reset();
mjr 1:d913e0afb2ac 1436 calBtnState = 1;
mjr 1:d913e0afb2ac 1437 break;
mjr 1:d913e0afb2ac 1438
mjr 1:d913e0afb2ac 1439 case 1:
mjr 1:d913e0afb2ac 1440 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 1441 // passed, start the hold period
mjr 9:fd65b0a94720 1442 if (calBtnTimer.read_ms() > 50)
mjr 1:d913e0afb2ac 1443 calBtnState = 2;
mjr 1:d913e0afb2ac 1444 break;
mjr 1:d913e0afb2ac 1445
mjr 1:d913e0afb2ac 1446 case 2:
mjr 1:d913e0afb2ac 1447 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 1448 // for the entire hold period, move to calibration mode
mjr 9:fd65b0a94720 1449 if (calBtnTimer.read_ms() > 2050)
mjr 1:d913e0afb2ac 1450 {
mjr 1:d913e0afb2ac 1451 // enter calibration mode
mjr 1:d913e0afb2ac 1452 calBtnState = 3;
mjr 9:fd65b0a94720 1453 calBtnTimer.reset();
mjr 9:fd65b0a94720 1454 cfg.resetPlunger();
mjr 1:d913e0afb2ac 1455 }
mjr 1:d913e0afb2ac 1456 break;
mjr 2:c174f9ee414a 1457
mjr 2:c174f9ee414a 1458 case 3:
mjr 9:fd65b0a94720 1459 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 1460 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 1461 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 1462 break;
mjr 0:5acbbe3f4cf4 1463 }
mjr 0:5acbbe3f4cf4 1464 }
mjr 1:d913e0afb2ac 1465 else
mjr 1:d913e0afb2ac 1466 {
mjr 2:c174f9ee414a 1467 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 1468 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 1469 // and save the results to flash.
mjr 2:c174f9ee414a 1470 //
mjr 2:c174f9ee414a 1471 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 1472 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 1473 // mode, it simply cancels the attempt.
mjr 9:fd65b0a94720 1474 if (calBtnState == 3 && calBtnTimer.read_ms() > 15000)
mjr 2:c174f9ee414a 1475 {
mjr 2:c174f9ee414a 1476 // exit calibration mode
mjr 1:d913e0afb2ac 1477 calBtnState = 0;
mjr 2:c174f9ee414a 1478
mjr 6:cc35eb643e8f 1479 // save the updated configuration
mjr 6:cc35eb643e8f 1480 cfg.d.plungerCal = 1;
mjr 6:cc35eb643e8f 1481 cfg.save(iap, flash_addr);
mjr 2:c174f9ee414a 1482
mjr 2:c174f9ee414a 1483 // the flash state is now valid
mjr 2:c174f9ee414a 1484 flash_valid = true;
mjr 2:c174f9ee414a 1485 }
mjr 2:c174f9ee414a 1486 else if (calBtnState != 3)
mjr 2:c174f9ee414a 1487 {
mjr 2:c174f9ee414a 1488 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 1489 calBtnState = 0;
mjr 2:c174f9ee414a 1490 }
mjr 1:d913e0afb2ac 1491 }
mjr 1:d913e0afb2ac 1492
mjr 1:d913e0afb2ac 1493 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 1494 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 1495 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1496 {
mjr 1:d913e0afb2ac 1497 case 2:
mjr 1:d913e0afb2ac 1498 // in the hold period - flash the light
mjr 9:fd65b0a94720 1499 newCalBtnLit = ((calBtnTimer.read_ms()/250) & 1);
mjr 1:d913e0afb2ac 1500 break;
mjr 1:d913e0afb2ac 1501
mjr 1:d913e0afb2ac 1502 case 3:
mjr 1:d913e0afb2ac 1503 // calibration mode - show steady on
mjr 1:d913e0afb2ac 1504 newCalBtnLit = true;
mjr 1:d913e0afb2ac 1505 break;
mjr 1:d913e0afb2ac 1506
mjr 1:d913e0afb2ac 1507 default:
mjr 1:d913e0afb2ac 1508 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 1509 newCalBtnLit = false;
mjr 1:d913e0afb2ac 1510 break;
mjr 1:d913e0afb2ac 1511 }
mjr 3:3514575d4f86 1512
mjr 3:3514575d4f86 1513 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 1514 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 1515 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 1516 {
mjr 1:d913e0afb2ac 1517 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 1518 if (calBtnLit) {
mjr 2:c174f9ee414a 1519 calBtnLed = 1;
mjr 4:02c7cd7b2183 1520 ledR = 1;
mjr 4:02c7cd7b2183 1521 ledG = 1;
mjr 9:fd65b0a94720 1522 ledB = 0;
mjr 2:c174f9ee414a 1523 }
mjr 2:c174f9ee414a 1524 else {
mjr 2:c174f9ee414a 1525 calBtnLed = 0;
mjr 4:02c7cd7b2183 1526 ledR = 1;
mjr 4:02c7cd7b2183 1527 ledG = 1;
mjr 9:fd65b0a94720 1528 ledB = 1;
mjr 2:c174f9ee414a 1529 }
mjr 1:d913e0afb2ac 1530 }
mjr 1:d913e0afb2ac 1531
mjr 6:cc35eb643e8f 1532 // read the plunger sensor, if it's enabled
mjr 10:976666ffa4ef 1533 uint16_t pix[npix];
mjr 6:cc35eb643e8f 1534 if (cfg.d.ccdEnabled)
mjr 6:cc35eb643e8f 1535 {
mjr 6:cc35eb643e8f 1536 // start with the previous reading, in case we don't have a
mjr 6:cc35eb643e8f 1537 // clear result on this frame
mjr 6:cc35eb643e8f 1538 int znew = z;
mjr 2:c174f9ee414a 1539
mjr 6:cc35eb643e8f 1540 // read the array
mjr 14:df700b22ca08 1541 ccd.read(pix, npix, ccdReadCB, 0, 3);
mjr 6:cc35eb643e8f 1542
mjr 6:cc35eb643e8f 1543 // get the average brightness at each end of the sensor
mjr 6:cc35eb643e8f 1544 long avg1 = (long(pix[0]) + long(pix[1]) + long(pix[2]) + long(pix[3]) + long(pix[4]))/5;
mjr 6:cc35eb643e8f 1545 long avg2 = (long(pix[npix-1]) + long(pix[npix-2]) + long(pix[npix-3]) + long(pix[npix-4]) + long(pix[npix-5]))/5;
mjr 6:cc35eb643e8f 1546
mjr 6:cc35eb643e8f 1547 // figure the midpoint in the brightness; multiply by 3 so that we can
mjr 6:cc35eb643e8f 1548 // compare sums of three pixels at a time to smooth out noise
mjr 6:cc35eb643e8f 1549 long midpt = (avg1 + avg2)/2 * 3;
mjr 6:cc35eb643e8f 1550
mjr 6:cc35eb643e8f 1551 // Work from the bright end to the dark end. VP interprets the
mjr 6:cc35eb643e8f 1552 // Z axis value as the amount the plunger is pulled: zero is the
mjr 6:cc35eb643e8f 1553 // rest position, and the axis maximum is fully pulled. So we
mjr 6:cc35eb643e8f 1554 // essentially want to report how much of the sensor is lit,
mjr 6:cc35eb643e8f 1555 // since this increases as the plunger is pulled back.
mjr 6:cc35eb643e8f 1556 int si = 1, di = 1;
mjr 6:cc35eb643e8f 1557 if (avg1 < avg2)
mjr 6:cc35eb643e8f 1558 si = npix - 2, di = -1;
mjr 6:cc35eb643e8f 1559
mjr 6:cc35eb643e8f 1560 // If the bright end and dark end don't differ by enough, skip this
mjr 6:cc35eb643e8f 1561 // reading entirely - we must have an overexposed or underexposed frame.
mjr 6:cc35eb643e8f 1562 // Otherwise proceed with the scan.
mjr 6:cc35eb643e8f 1563 if (labs(avg1 - avg2) > 0x1000)
mjr 6:cc35eb643e8f 1564 {
mjr 6:cc35eb643e8f 1565 uint16_t *pixp = pix + si;
mjr 6:cc35eb643e8f 1566 for (int n = 1 ; n < npix - 1 ; ++n, pixp += di)
mjr 6:cc35eb643e8f 1567 {
mjr 6:cc35eb643e8f 1568 // if we've crossed the midpoint, report this position
mjr 6:cc35eb643e8f 1569 if (long(pixp[-1]) + long(pixp[0]) + long(pixp[1]) < midpt)
mjr 6:cc35eb643e8f 1570 {
mjr 6:cc35eb643e8f 1571 // note the new position
mjr 6:cc35eb643e8f 1572 int pos = n;
mjr 6:cc35eb643e8f 1573
mjr 6:cc35eb643e8f 1574 // Calibrate, or apply calibration, depending on the mode.
mjr 6:cc35eb643e8f 1575 // In either case, normalize to our range. VP appears to
mjr 6:cc35eb643e8f 1576 // ignore negative Z axis values.
mjr 6:cc35eb643e8f 1577 if (calBtnState == 3)
mjr 6:cc35eb643e8f 1578 {
mjr 6:cc35eb643e8f 1579 // calibrating - note if we're expanding the calibration envelope
mjr 6:cc35eb643e8f 1580 if (pos < cfg.d.plungerMin)
mjr 6:cc35eb643e8f 1581 cfg.d.plungerMin = pos;
mjr 6:cc35eb643e8f 1582 if (pos < cfg.d.plungerZero)
mjr 6:cc35eb643e8f 1583 cfg.d.plungerZero = pos;
mjr 6:cc35eb643e8f 1584 if (pos > cfg.d.plungerMax)
mjr 6:cc35eb643e8f 1585 cfg.d.plungerMax = pos;
mjr 6:cc35eb643e8f 1586
mjr 6:cc35eb643e8f 1587 // normalize to the full physical range while calibrating
mjr 6:cc35eb643e8f 1588 znew = int(round(float(pos)/npix * JOYMAX));
mjr 6:cc35eb643e8f 1589 }
mjr 6:cc35eb643e8f 1590 else
mjr 6:cc35eb643e8f 1591 {
mjr 6:cc35eb643e8f 1592 // Running normally - normalize to the calibration range. Note
mjr 6:cc35eb643e8f 1593 // that values below the zero point are allowed - the zero point
mjr 6:cc35eb643e8f 1594 // represents the park position, where the plunger sits when at
mjr 6:cc35eb643e8f 1595 // rest, but a mechanical plunger has a smmall amount of travel
mjr 6:cc35eb643e8f 1596 // in the "push" direction. We represent forward travel with
mjr 6:cc35eb643e8f 1597 // negative z values.
mjr 6:cc35eb643e8f 1598 if (pos > cfg.d.plungerMax)
mjr 6:cc35eb643e8f 1599 pos = cfg.d.plungerMax;
mjr 6:cc35eb643e8f 1600 znew = int(round(float(pos - cfg.d.plungerZero)
mjr 6:cc35eb643e8f 1601 / (cfg.d.plungerMax - cfg.d.plungerZero + 1) * JOYMAX));
mjr 6:cc35eb643e8f 1602 }
mjr 6:cc35eb643e8f 1603
mjr 6:cc35eb643e8f 1604 // done
mjr 6:cc35eb643e8f 1605 break;
mjr 6:cc35eb643e8f 1606 }
mjr 6:cc35eb643e8f 1607 }
mjr 6:cc35eb643e8f 1608 }
mjr 7:100a25f8bf56 1609
mjr 7:100a25f8bf56 1610 // Determine if the plunger is being fired - i.e., if the player
mjr 7:100a25f8bf56 1611 // has just released the plunger from a retracted position.
mjr 6:cc35eb643e8f 1612 //
mjr 7:100a25f8bf56 1613 // We treat firing as an event. That is, we tell VP when the
mjr 7:100a25f8bf56 1614 // plunger is fired, and then stop sending data until the firing
mjr 7:100a25f8bf56 1615 // is complete, allowing VP to carry out the firing motion using
mjr 7:100a25f8bf56 1616 // its internal model plunger rather than trying to track the
mjr 7:100a25f8bf56 1617 // intermediate positions of the mechanical plunger throughout
mjr 9:fd65b0a94720 1618 // the firing motion. This is essential because the firing
mjr 9:fd65b0a94720 1619 // motion is too fast for us to track - in the time it takes us
mjr 9:fd65b0a94720 1620 // to read one frame, the plunger can make it all the way to the
mjr 9:fd65b0a94720 1621 // zero position and bounce back halfway. Fortunately, the range
mjr 9:fd65b0a94720 1622 // of motions for the plunger is limited, so if we see any rapid
mjr 9:fd65b0a94720 1623 // change of position toward the rest position, it's reasonably
mjr 9:fd65b0a94720 1624 // safe to interpret it as a firing event.
mjr 9:fd65b0a94720 1625 //
mjr 9:fd65b0a94720 1626 // This isn't foolproof. The user can trick us by doing a
mjr 9:fd65b0a94720 1627 // controlled rapid forward push but stopping short of the rest
mjr 9:fd65b0a94720 1628 // position. We'll misinterpret that as a firing event. But
mjr 9:fd65b0a94720 1629 // that's not a natural motion that a user would make with a
mjr 9:fd65b0a94720 1630 // plunger, so it's probably an acceptable false positive.
mjr 9:fd65b0a94720 1631 //
mjr 9:fd65b0a94720 1632 // Possible future enhancement: we could add a second physical
mjr 9:fd65b0a94720 1633 // sensor that detects when the plunger reaches the zero position
mjr 9:fd65b0a94720 1634 // and asserts an interrupt. In the interrupt handler, set a
mjr 9:fd65b0a94720 1635 // flag indicating the zero position signal. On each scan of
mjr 9:fd65b0a94720 1636 // the CCD, also check that flag; if it's set, enter firing
mjr 9:fd65b0a94720 1637 // event mode just as we do now. The key here is that the
mjr 9:fd65b0a94720 1638 // secondary sensor would have to be something much faster
mjr 9:fd65b0a94720 1639 // than our CCD scan - it would have to react on, say, the
mjr 9:fd65b0a94720 1640 // millisecond time scale. A simple mechanical switch or a
mjr 9:fd65b0a94720 1641 // proximity sensor could work. This would let us detect
mjr 9:fd65b0a94720 1642 // with certainty when the plunger physically fires, eliminating
mjr 9:fd65b0a94720 1643 // the case where the use can fool us with motion that's fast
mjr 9:fd65b0a94720 1644 // enough to look like a release but doesn't actually reach the
mjr 9:fd65b0a94720 1645 // starting position.
mjr 6:cc35eb643e8f 1646 //
mjr 7:100a25f8bf56 1647 // To detremine when a firing even occurs, we watch for rapid
mjr 7:100a25f8bf56 1648 // motion from a retracted position towards the rest position -
mjr 7:100a25f8bf56 1649 // that is, large position changes in the negative direction over
mjr 7:100a25f8bf56 1650 // a couple of consecutive readings. When we see a rapid move
mjr 7:100a25f8bf56 1651 // toward zero, we set our internal 'firing' flag, immediately
mjr 7:100a25f8bf56 1652 // report to VP that the plunger has returned to the zero
mjr 7:100a25f8bf56 1653 // position, and then suspend reports until the mechanical
mjr 7:100a25f8bf56 1654 // readings indicate that the plunger has come to rest (indicated
mjr 7:100a25f8bf56 1655 // by several readings in a row at roughly the same position).
mjr 9:fd65b0a94720 1656 //
mjr 9:fd65b0a94720 1657 // Tolerance for firing is 1/3 of the current pull distance, or
mjr 9:fd65b0a94720 1658 // about 1/2", whichever is greater. Making this value too small
mjr 9:fd65b0a94720 1659 // makes for too many false positives. Empirically, 1/4" is too
mjr 9:fd65b0a94720 1660 // twitchy, so set a floor at about 1/2". But we can be less
mjr 9:fd65b0a94720 1661 // sensitive the further back the plunger is pulled, since even
mjr 9:fd65b0a94720 1662 // a long pull will snap back quickly. Note that JOYMAX always
mjr 9:fd65b0a94720 1663 // corresponds to about 3", no matter how many pixels we're
mjr 9:fd65b0a94720 1664 // reading, since the physical sensor is about 3" long; so we
mjr 9:fd65b0a94720 1665 // factor out the pixel count calculate (approximate) physical
mjr 9:fd65b0a94720 1666 // distances based on the normalized axis range.
mjr 9:fd65b0a94720 1667 //
mjr 9:fd65b0a94720 1668 // Firing pattern: when firing, don't simply report a solid 0,
mjr 9:fd65b0a94720 1669 // but instead report a series of pseudo-bouces. This looks
mjr 9:fd65b0a94720 1670 // more realistic, beacause the real plunger is also bouncing
mjr 9:fd65b0a94720 1671 // around during this time. To get maximum firing power in
mjr 9:fd65b0a94720 1672 // the simulation, though, our pseudo-bounces are tiny cmopared
mjr 9:fd65b0a94720 1673 // to the real thing.
mjr 9:fd65b0a94720 1674 const int restTol = JOYMAX/24;
mjr 9:fd65b0a94720 1675 int fireTol = z/3 > JOYMAX/6 ? z/3 : JOYMAX/6;
mjr 9:fd65b0a94720 1676 static const int firePattern[] = {
mjr 9:fd65b0a94720 1677 -JOYMAX/12, -JOYMAX/12, -JOYMAX/12,
mjr 9:fd65b0a94720 1678 };
mjr 9:fd65b0a94720 1679 if (firing != 0)
mjr 6:cc35eb643e8f 1680 {
mjr 6:cc35eb643e8f 1681 // Firing in progress - we've already told VP to send its
mjr 6:cc35eb643e8f 1682 // model plunger all the way back to the rest position, so
mjr 6:cc35eb643e8f 1683 // send no further reports until the mechanical plunger
mjr 6:cc35eb643e8f 1684 // actually comes to rest somewhere.
mjr 6:cc35eb643e8f 1685 if (abs(z0 - z2) < restTol && abs(znew - z2) < restTol)
mjr 6:cc35eb643e8f 1686 {
mjr 6:cc35eb643e8f 1687 // the plunger is back at rest - firing is done
mjr 9:fd65b0a94720 1688 firing = 0;
mjr 6:cc35eb643e8f 1689
mjr 6:cc35eb643e8f 1690 // resume normal reporting
mjr 6:cc35eb643e8f 1691 z = z2;
mjr 6:cc35eb643e8f 1692 }
mjr 9:fd65b0a94720 1693 else if (firing < countof(firePattern))
mjr 9:fd65b0a94720 1694 {
mjr 9:fd65b0a94720 1695 // firing - report the next position in the pseudo-bounce
mjr 9:fd65b0a94720 1696 // pattern
mjr 9:fd65b0a94720 1697 z = firePattern[firing++];
mjr 9:fd65b0a94720 1698 }
mjr 9:fd65b0a94720 1699 else
mjr 9:fd65b0a94720 1700 {
mjr 9:fd65b0a94720 1701 // firing, out of pseudo-bounce items - just report the
mjr 9:fd65b0a94720 1702 // rest position
mjr 9:fd65b0a94720 1703 z = 0;
mjr 9:fd65b0a94720 1704 }
mjr 6:cc35eb643e8f 1705 }
mjr 6:cc35eb643e8f 1706 else if (z0 < z2 && z1 < z2 && znew < z2
mjr 6:cc35eb643e8f 1707 && (z0 < z2 - fireTol
mjr 6:cc35eb643e8f 1708 || z1 < z2 - fireTol
mjr 6:cc35eb643e8f 1709 || znew < z2 - fireTol))
mjr 6:cc35eb643e8f 1710 {
mjr 6:cc35eb643e8f 1711 // Big jumps toward rest position in last two readings -
mjr 6:cc35eb643e8f 1712 // firing has begun. Report an immediate return to the
mjr 6:cc35eb643e8f 1713 // rest position, and send no further reports until the
mjr 6:cc35eb643e8f 1714 // physical plunger has come to rest. This effectively
mjr 6:cc35eb643e8f 1715 // detaches VP's model plunger from the real world for
mjr 6:cc35eb643e8f 1716 // the duration of the spring return, letting VP evolve
mjr 6:cc35eb643e8f 1717 // its model without trying to synchronize with the
mjr 6:cc35eb643e8f 1718 // mechanical version. The release motion is too fast
mjr 6:cc35eb643e8f 1719 // for that to work well; we can't take samples quickly
mjr 6:cc35eb643e8f 1720 // enough to get prcise velocity or acceleration
mjr 6:cc35eb643e8f 1721 // readings. It's better to let VP figure the speed
mjr 6:cc35eb643e8f 1722 // and acceleration through modeling. Plus, that lets
mjr 6:cc35eb643e8f 1723 // each virtual table set the desired parameters for its
mjr 6:cc35eb643e8f 1724 // virtual plunger, rather than imposing the actual
mjr 6:cc35eb643e8f 1725 // mechanical charateristics of the physical plunger on
mjr 6:cc35eb643e8f 1726 // every table.
mjr 9:fd65b0a94720 1727 firing = 1;
mjr 9:fd65b0a94720 1728
mjr 9:fd65b0a94720 1729 // report the first firing pattern position
mjr 9:fd65b0a94720 1730 z = firePattern[0];
mjr 6:cc35eb643e8f 1731 }
mjr 6:cc35eb643e8f 1732 else
mjr 6:cc35eb643e8f 1733 {
mjr 6:cc35eb643e8f 1734 // everything normal; report the 3rd recent position on
mjr 6:cc35eb643e8f 1735 // tape delay
mjr 6:cc35eb643e8f 1736 z = z2;
mjr 6:cc35eb643e8f 1737 }
mjr 6:cc35eb643e8f 1738
mjr 6:cc35eb643e8f 1739 // shift in the new reading
mjr 6:cc35eb643e8f 1740 z2 = z1;
mjr 6:cc35eb643e8f 1741 z1 = z0;
mjr 6:cc35eb643e8f 1742 z0 = znew;
mjr 2:c174f9ee414a 1743 }
mjr 9:fd65b0a94720 1744 else
mjr 9:fd65b0a94720 1745 {
mjr 9:fd65b0a94720 1746 // plunger disabled - pause 10ms to throttle updates to a
mjr 9:fd65b0a94720 1747 // reasonable pace
mjr 9:fd65b0a94720 1748 wait_ms(10);
mjr 9:fd65b0a94720 1749 }
mjr 6:cc35eb643e8f 1750
mjr 1:d913e0afb2ac 1751 // read the accelerometer
mjr 9:fd65b0a94720 1752 int xa, ya;
mjr 9:fd65b0a94720 1753 accel.get(xa, ya);
mjr 1:d913e0afb2ac 1754
mjr 6:cc35eb643e8f 1755 // confine the results to our joystick axis range
mjr 6:cc35eb643e8f 1756 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 6:cc35eb643e8f 1757 if (xa > JOYMAX) xa = JOYMAX;
mjr 6:cc35eb643e8f 1758 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 6:cc35eb643e8f 1759 if (ya > JOYMAX) ya = JOYMAX;
mjr 1:d913e0afb2ac 1760
mjr 6:cc35eb643e8f 1761 // store the updated accelerometer coordinates
mjr 6:cc35eb643e8f 1762 x = xa;
mjr 6:cc35eb643e8f 1763 y = ya;
mjr 6:cc35eb643e8f 1764
mjr 11:bd9da7088e6e 1765 // update the buttons
mjr 11:bd9da7088e6e 1766 uint32_t buttons = readButtonsDebounced();
mjr 11:bd9da7088e6e 1767
mjr 8:c732e279ee29 1768 // Send the status report. Note that the nominal x and y axes
mjr 8:c732e279ee29 1769 // are reversed - this makes it more intuitive to set up in VP.
mjr 8:c732e279ee29 1770 // If we mount the Freesale card flat on the floor of the cabinet
mjr 8:c732e279ee29 1771 // with the USB connectors facing the front of the cabinet, this
mjr 8:c732e279ee29 1772 // arrangement of our nominal axes aligns with VP's standard
mjr 8:c732e279ee29 1773 // setting, so that we can configure VP with X Axis = X on the
mjr 8:c732e279ee29 1774 // joystick and Y Axis = Y on the joystick.
mjr 11:bd9da7088e6e 1775 js.update(y, x, z, buttons, statusFlags);
mjr 1:d913e0afb2ac 1776
mjr 10:976666ffa4ef 1777 // If we're in pixel dump mode, report all pixel exposure values
mjr 10:976666ffa4ef 1778 if (reportPix)
mjr 10:976666ffa4ef 1779 {
mjr 10:976666ffa4ef 1780 // we have satisfied this request
mjr 10:976666ffa4ef 1781 reportPix = false;
mjr 10:976666ffa4ef 1782
mjr 10:976666ffa4ef 1783 // send reports for all pixels
mjr 10:976666ffa4ef 1784 int idx = 0;
mjr 10:976666ffa4ef 1785 while (idx < npix)
mjr 10:976666ffa4ef 1786 js.updateExposure(idx, npix, pix);
mjr 10:976666ffa4ef 1787
mjr 10:976666ffa4ef 1788 // The pixel dump requires many USB reports, since each report
mjr 10:976666ffa4ef 1789 // can only send a few pixel values. An integration cycle has
mjr 10:976666ffa4ef 1790 // been running all this time, since each read starts a new
mjr 10:976666ffa4ef 1791 // cycle. Our timing is longer than usual on this round, so
mjr 10:976666ffa4ef 1792 // the integration won't be comparable to a normal cycle. Throw
mjr 10:976666ffa4ef 1793 // this one away by doing a read now, and throwing it away - that
mjr 10:976666ffa4ef 1794 // will get the timing of the *next* cycle roughly back to normal.
mjr 10:976666ffa4ef 1795 ccd.read(pix, npix);
mjr 10:976666ffa4ef 1796 }
mjr 10:976666ffa4ef 1797
mjr 6:cc35eb643e8f 1798 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1799 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1800 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 1801 #endif
mjr 6:cc35eb643e8f 1802
mjr 6:cc35eb643e8f 1803 // provide a visual status indication on the on-board LED
mjr 5:a70c0bce770d 1804 if (calBtnState < 2 && hbTimer.read_ms() > 1000)
mjr 1:d913e0afb2ac 1805 {
mjr 5:a70c0bce770d 1806 if (js.isSuspended() || !js.isConnected())
mjr 2:c174f9ee414a 1807 {
mjr 5:a70c0bce770d 1808 // suspended - turn off the LED
mjr 4:02c7cd7b2183 1809 ledR = 1;
mjr 4:02c7cd7b2183 1810 ledG = 1;
mjr 4:02c7cd7b2183 1811 ledB = 1;
mjr 5:a70c0bce770d 1812
mjr 5:a70c0bce770d 1813 // show a status flash every so often
mjr 5:a70c0bce770d 1814 if (hbcnt % 3 == 0)
mjr 5:a70c0bce770d 1815 {
mjr 6:cc35eb643e8f 1816 // disconnected = red/red flash; suspended = red
mjr 5:a70c0bce770d 1817 for (int n = js.isConnected() ? 1 : 2 ; n > 0 ; --n)
mjr 5:a70c0bce770d 1818 {
mjr 5:a70c0bce770d 1819 ledR = 0;
mjr 5:a70c0bce770d 1820 wait(0.05);
mjr 5:a70c0bce770d 1821 ledR = 1;
mjr 5:a70c0bce770d 1822 wait(0.25);
mjr 5:a70c0bce770d 1823 }
mjr 5:a70c0bce770d 1824 }
mjr 2:c174f9ee414a 1825 }
mjr 6:cc35eb643e8f 1826 else if (needReset)
mjr 2:c174f9ee414a 1827 {
mjr 6:cc35eb643e8f 1828 // connected, need to reset due to changes in config parameters -
mjr 6:cc35eb643e8f 1829 // flash red/green
mjr 6:cc35eb643e8f 1830 hb = !hb;
mjr 6:cc35eb643e8f 1831 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1832 ledG = (hb ? 1 : 0);
mjr 6:cc35eb643e8f 1833 ledB = 0;
mjr 6:cc35eb643e8f 1834 }
mjr 6:cc35eb643e8f 1835 else if (cfg.d.ccdEnabled && !cfg.d.plungerCal)
mjr 6:cc35eb643e8f 1836 {
mjr 6:cc35eb643e8f 1837 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 1838 hb = !hb;
mjr 6:cc35eb643e8f 1839 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1840 ledG = 0;
mjr 6:cc35eb643e8f 1841 ledB = 1;
mjr 6:cc35eb643e8f 1842 }
mjr 6:cc35eb643e8f 1843 else
mjr 6:cc35eb643e8f 1844 {
mjr 6:cc35eb643e8f 1845 // connected - flash blue/green
mjr 2:c174f9ee414a 1846 hb = !hb;
mjr 4:02c7cd7b2183 1847 ledR = 1;
mjr 4:02c7cd7b2183 1848 ledG = (hb ? 0 : 1);
mjr 4:02c7cd7b2183 1849 ledB = (hb ? 1 : 0);
mjr 2:c174f9ee414a 1850 }
mjr 1:d913e0afb2ac 1851
mjr 1:d913e0afb2ac 1852 // reset the heartbeat timer
mjr 1:d913e0afb2ac 1853 hbTimer.reset();
mjr 5:a70c0bce770d 1854 ++hbcnt;
mjr 1:d913e0afb2ac 1855 }
mjr 1:d913e0afb2ac 1856 }
mjr 0:5acbbe3f4cf4 1857 }