An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Mon Jan 11 21:08:36 2016 +0000
Revision:
39:b3815a1c3802
Parent:
38:091e511ce8a0
Child:
40:cc0d9814522b
USB fixes; accelerometer auto un-sticking with watchdog timer.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 /* Copyright 2014, 2015 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 5:a70c0bce770d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 38:091e511ce8a0 23 // This project implements an I/O controller for virtual pinball cabinets. Its
mjr 38:091e511ce8a0 24 // function is to connect Windows pinball software, such as Visual Pinball, with
mjr 38:091e511ce8a0 25 // physical devices in the cabinet: buttons, sensors, and feedback devices that
mjr 38:091e511ce8a0 26 // create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 38:091e511ce8a0 28 // The software can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 38:091e511ce8a0 42 // - Plunger position sensing, with mulitple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 38:091e511ce8a0 55 // Note VP has built-in support for plunger devices like this one, but some VP
mjr 38:091e511ce8a0 56 // tables can't use it without some additional scripting work. The Build Guide has
mjr 38:091e511ce8a0 57 // advice on adjusting tables to add plunger support when necessary.
mjr 5:a70c0bce770d 58 //
mjr 6:cc35eb643e8f 59 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 60 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 61 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 62 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 63 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 64 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 65 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 66 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 67 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 68 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 69 //
mjr 17:ab3cec0c8bf4 70 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 71 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 72 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 73 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 74 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 75 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 76 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 77 //
mjr 13:72dda449c3c0 78 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 38:091e511ce8a0 79 // for buttons and switches. You can wire each input to a physical pinball-style
mjr 38:091e511ce8a0 80 // button or switch, such as flipper buttons, Start buttons, coin chute switches,
mjr 38:091e511ce8a0 81 // tilt bobs, and service buttons. Each button can be configured to be reported
mjr 38:091e511ce8a0 82 // to the PC as a joystick button or as a keyboard key (you can select which key
mjr 38:091e511ce8a0 83 // is used for each button).
mjr 13:72dda449c3c0 84 //
mjr 5:a70c0bce770d 85 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 86 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 87 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 5:a70c0bce770d 88 // of ports. (The KL25Z can only provide 6 PWM ports. Intensity level settings on
mjr 5:a70c0bce770d 89 // other ports is ignored, so non-PWM ports can only be used for simple on/off
mjr 5:a70c0bce770d 90 // devices such as contactors and solenoids.) The KL25Z can only supply 4mA on its
mjr 5:a70c0bce770d 91 // output ports, so external hardware is required to take advantage of the LedWiz
mjr 5:a70c0bce770d 92 // emulation. Many different hardware designs are possible, but there's a simple
mjr 5:a70c0bce770d 93 // reference design in the documentation that uses a Darlington array IC to
mjr 5:a70c0bce770d 94 // increase the output from each port to 500mA (the same level as the LedWiz),
mjr 5:a70c0bce770d 95 // plus an extended design that adds an optocoupler and MOSFET to provide very
mjr 5:a70c0bce770d 96 // high power handling, up to about 45A or 150W, with voltages up to 100V.
mjr 5:a70c0bce770d 97 // That will handle just about any DC device directly (wtihout relays or other
mjr 5:a70c0bce770d 98 // amplifiers), and switches fast enough to support PWM devices.
mjr 5:a70c0bce770d 99 //
mjr 5:a70c0bce770d 100 // The device can report any desired LedWiz unit number to the host, which makes
mjr 5:a70c0bce770d 101 // it possible to use the LedWiz emulation on a machine that also has one or more
mjr 5:a70c0bce770d 102 // actual LedWiz devices intalled. The LedWiz design allows for up to 16 units
mjr 5:a70c0bce770d 103 // to be installed in one machine - each one is invidually addressable by its
mjr 5:a70c0bce770d 104 // distinct unit number.
mjr 5:a70c0bce770d 105 //
mjr 5:a70c0bce770d 106 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 107 // build any of the external port hardware (or attach anything to the output
mjr 5:a70c0bce770d 108 // ports at all) if the LedWiz features aren't needed. Most people won't have
mjr 5:a70c0bce770d 109 // any use for the LedWiz features. I built them mostly as a learning exercise,
mjr 5:a70c0bce770d 110 // but with a slight practical need for a handful of extra ports (I'm using the
mjr 5:a70c0bce770d 111 // cutting-edge 10-contactor setup, so my real LedWiz is full!).
mjr 6:cc35eb643e8f 112 //
mjr 26:cb71c4af2912 113 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 114 // external PWM controller chips for controlling device outputs, instead of using
mjr 26:cb71c4af2912 115 // the limited LedWiz emulation through the on-board GPIO ports as described above.
mjr 26:cb71c4af2912 116 // The software can control a set of daisy-chained TLC5940 chips, which provide
mjr 26:cb71c4af2912 117 // 16 PWM outputs per chip. Two of these chips give you the full complement
mjr 26:cb71c4af2912 118 // of 32 output ports of an actual LedWiz, and four give you 64 ports, which
mjr 33:d832bcab089e 119 // should be plenty for nearly any virtual pinball project. A private, extended
mjr 33:d832bcab089e 120 // version of the LedWiz protocol lets the host control the extra outputs, up to
mjr 33:d832bcab089e 121 // 128 outputs per KL25Z (8 TLC5940s). To take advantage of the extra outputs
mjr 33:d832bcab089e 122 // on the PC side, you need software that knows about the protocol extensions,
mjr 33:d832bcab089e 123 // which means you need the latest version of DirectOutput Framework (DOF). VP
mjr 33:d832bcab089e 124 // uses DOF for its output, so VP will be able to use the added ports without any
mjr 33:d832bcab089e 125 // extra work on your part. Older software (e.g., Future Pinball) that doesn't
mjr 33:d832bcab089e 126 // use DOF will still be able to use the LedWiz-compatible protocol, so it'll be
mjr 33:d832bcab089e 127 // able to control your first 32 ports (numbered 1-32 in the LedWiz scheme), but
mjr 33:d832bcab089e 128 // older software won't be able to address higher-numbered ports. That shouldn't
mjr 33:d832bcab089e 129 // be a problem because older software wouldn't know what to do with the extra
mjr 33:d832bcab089e 130 // devices anyway - FP, for example, is limited to a pre-defined set of outputs.
mjr 33:d832bcab089e 131 // As long as you put the most common devices on the first 32 outputs, and use
mjr 33:d832bcab089e 132 // higher numbered ports for the less common devices that older software can't
mjr 33:d832bcab089e 133 // use anyway, you'll get maximum functionality out of software new and old.
mjr 26:cb71c4af2912 134 //
mjr 38:091e511ce8a0 135 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 136 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 137 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 138 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 139 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 140 //
mjr 38:091e511ce8a0 141 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 142 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 143 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 144 // To use this feature, you have to build some external circuitry to allow the
mjr 38:091e511ce8a0 145 // software to sense the power supply status, and you have to run wires to your
mjr 38:091e511ce8a0 146 // TV's on/off button, which requires opening the case on your TV. The Build
mjr 38:091e511ce8a0 147 // Guide has details on the necessary circuitry and connections to the TV.
mjr 38:091e511ce8a0 148 //
mjr 35:e959ffba78fd 149 //
mjr 35:e959ffba78fd 150 //
mjr 33:d832bcab089e 151 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 152 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 153 //
mjr 6:cc35eb643e8f 154 // two short red flashes = the device is powered but hasn't successfully
mjr 6:cc35eb643e8f 155 // connected to the host via USB (either it's not physically connected
mjr 6:cc35eb643e8f 156 // to the USB port, or there was a problem with the software handshake
mjr 6:cc35eb643e8f 157 // with the USB device driver on the computer)
mjr 6:cc35eb643e8f 158 //
mjr 6:cc35eb643e8f 159 // short red flash = the host computer is in sleep/suspend mode
mjr 6:cc35eb643e8f 160 //
mjr 38:091e511ce8a0 161 // long red/yellow = USB connection problem. The device still has a USB
mjr 38:091e511ce8a0 162 // connection to the host, but data transmissions are failing. This
mjr 38:091e511ce8a0 163 // condition shouldn't ever occur; if it does, it probably indicates
mjr 38:091e511ce8a0 164 // a bug in the device's USB software. This display is provided to
mjr 38:091e511ce8a0 165 // flag any occurrences for investigation. You'll probably need to
mjr 38:091e511ce8a0 166 // manually reset the device if this occurs.
mjr 38:091e511ce8a0 167 //
mjr 6:cc35eb643e8f 168 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 169 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 170 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 171 // no plunger sensor configured.
mjr 6:cc35eb643e8f 172 //
mjr 38:091e511ce8a0 173 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 174 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 175 //
mjr 10:976666ffa4ef 176 //
mjr 35:e959ffba78fd 177 // USB PROTOCOL: please refer to USBProtocol.h for details on the USB
mjr 35:e959ffba78fd 178 // message protocol.
mjr 33:d832bcab089e 179
mjr 33:d832bcab089e 180
mjr 0:5acbbe3f4cf4 181 #include "mbed.h"
mjr 6:cc35eb643e8f 182 #include "math.h"
mjr 0:5acbbe3f4cf4 183 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 184 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 185 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 186 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 187 #include "crc32.h"
mjr 26:cb71c4af2912 188 #include "TLC5940.h"
mjr 34:6b981a2afab7 189 #include "74HC595.h"
mjr 35:e959ffba78fd 190 #include "nvm.h"
mjr 35:e959ffba78fd 191 #include "plunger.h"
mjr 35:e959ffba78fd 192 #include "ccdSensor.h"
mjr 35:e959ffba78fd 193 #include "potSensor.h"
mjr 35:e959ffba78fd 194 #include "nullSensor.h"
mjr 2:c174f9ee414a 195
mjr 21:5048e16cc9ef 196 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 197 #include "config.h"
mjr 17:ab3cec0c8bf4 198
mjr 5:a70c0bce770d 199
mjr 5:a70c0bce770d 200 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 201 //
mjr 38:091e511ce8a0 202 // Forward declarations
mjr 38:091e511ce8a0 203 //
mjr 38:091e511ce8a0 204 void setNightMode(bool on);
mjr 38:091e511ce8a0 205 void toggleNightMode();
mjr 38:091e511ce8a0 206
mjr 38:091e511ce8a0 207 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 208 // utilities
mjr 17:ab3cec0c8bf4 209
mjr 17:ab3cec0c8bf4 210 // number of elements in an array
mjr 17:ab3cec0c8bf4 211 #define countof(x) (sizeof(x)/sizeof((x)[0]))
mjr 17:ab3cec0c8bf4 212
mjr 26:cb71c4af2912 213 // floating point square of a number
mjr 26:cb71c4af2912 214 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 215
mjr 26:cb71c4af2912 216 // floating point rounding
mjr 26:cb71c4af2912 217 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 218
mjr 17:ab3cec0c8bf4 219
mjr 33:d832bcab089e 220 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 221 //
mjr 33:d832bcab089e 222 // USB product version number
mjr 5:a70c0bce770d 223 //
mjr 35:e959ffba78fd 224 const uint16_t USB_VERSION_NO = 0x0008;
mjr 33:d832bcab089e 225
mjr 33:d832bcab089e 226 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 227 //
mjr 6:cc35eb643e8f 228 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 229 //
mjr 6:cc35eb643e8f 230 #define JOYMAX 4096
mjr 6:cc35eb643e8f 231
mjr 9:fd65b0a94720 232
mjr 17:ab3cec0c8bf4 233 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 234 //
mjr 35:e959ffba78fd 235 // Wire protocol value translations. These translate byte values from
mjr 35:e959ffba78fd 236 // the USB protocol to local native format.
mjr 35:e959ffba78fd 237 //
mjr 35:e959ffba78fd 238
mjr 35:e959ffba78fd 239 // unsigned 16-bit integer
mjr 35:e959ffba78fd 240 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 241 {
mjr 35:e959ffba78fd 242 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 243 }
mjr 35:e959ffba78fd 244
mjr 35:e959ffba78fd 245 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 246 {
mjr 35:e959ffba78fd 247 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 248 }
mjr 35:e959ffba78fd 249
mjr 35:e959ffba78fd 250 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 251 {
mjr 35:e959ffba78fd 252 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 253 }
mjr 35:e959ffba78fd 254
mjr 35:e959ffba78fd 255 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 256 {
mjr 35:e959ffba78fd 257 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 258 }
mjr 35:e959ffba78fd 259
mjr 35:e959ffba78fd 260 inline PinName wirePinName(int c)
mjr 35:e959ffba78fd 261 {
mjr 35:e959ffba78fd 262 static const PinName p[] = {
mjr 38:091e511ce8a0 263 NC, PTA1, PTA2, PTA4, PTA5, PTA12, PTA13, PTA16, PTA17, PTB0, // 0-9
mjr 38:091e511ce8a0 264 PTB1, PTB2, PTB3, PTB8, PTB9, PTB10, PTB11, PTB18, PTB19, PTC0, // 10-19
mjr 38:091e511ce8a0 265 PTC1, PTC2, PTC3, PTC4, PTC5, PTC6, PTC7, PTC8, PTC9, PTC10, // 20-29
mjr 38:091e511ce8a0 266 PTC11, PTC12, PTC13, PTC16, PTC17, PTD0, PTD1, PTD2, PTD3, PTD4, // 30-39
mjr 38:091e511ce8a0 267 PTD5, PTD6, PTD7, PTE0, PTE1, PTE2, PTE3, PTE4, PTE5, PTE20, // 40-49
mjr 38:091e511ce8a0 268 PTE21, PTE22, PTE23, PTE29, PTE30, PTE31 // 50-55
mjr 35:e959ffba78fd 269 };
mjr 35:e959ffba78fd 270 return (c < countof(p) ? p[c] : NC);
mjr 35:e959ffba78fd 271 }
mjr 35:e959ffba78fd 272
mjr 35:e959ffba78fd 273
mjr 35:e959ffba78fd 274 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 275 //
mjr 38:091e511ce8a0 276 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 277 //
mjr 38:091e511ce8a0 278 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 279 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 280 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 281 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 282 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 283 // SPI capability.
mjr 38:091e511ce8a0 284 //
mjr 38:091e511ce8a0 285 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 286
mjr 38:091e511ce8a0 287 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 288 // on, and -1 is no change (leaves the current setting intact).
mjr 38:091e511ce8a0 289 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 290 {
mjr 38:091e511ce8a0 291 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 292 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 293 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 294 }
mjr 38:091e511ce8a0 295
mjr 38:091e511ce8a0 296 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 297 // an on-board LED segment
mjr 38:091e511ce8a0 298 struct LedSeg
mjr 38:091e511ce8a0 299 {
mjr 38:091e511ce8a0 300 bool r, g, b;
mjr 38:091e511ce8a0 301 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 302
mjr 38:091e511ce8a0 303 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 304 {
mjr 38:091e511ce8a0 305 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 306 // our on-board LED segments
mjr 38:091e511ce8a0 307 int t = pc.typ;
mjr 38:091e511ce8a0 308 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 309 {
mjr 38:091e511ce8a0 310 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 311 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 312 if (pin == LED1)
mjr 38:091e511ce8a0 313 r = true;
mjr 38:091e511ce8a0 314 else if (pin == LED2)
mjr 38:091e511ce8a0 315 g = true;
mjr 38:091e511ce8a0 316 else if (pin == LED3)
mjr 38:091e511ce8a0 317 b = true;
mjr 38:091e511ce8a0 318 }
mjr 38:091e511ce8a0 319 }
mjr 38:091e511ce8a0 320 };
mjr 38:091e511ce8a0 321
mjr 38:091e511ce8a0 322 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 323 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 324 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 325 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 326 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 327 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 328 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 329 {
mjr 38:091e511ce8a0 330 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 331 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 332 LedSeg l;
mjr 38:091e511ce8a0 333 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 334 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 335
mjr 38:091e511ce8a0 336 // check the special ports
mjr 38:091e511ce8a0 337 for (int i = 0 ; i < countof(cfg.specialPort) ; ++i)
mjr 38:091e511ce8a0 338 l.check(cfg.specialPort[i]);
mjr 38:091e511ce8a0 339
mjr 38:091e511ce8a0 340 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 341 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 342 // LedWiz use.
mjr 38:091e511ce8a0 343 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 344 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 345 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 346 }
mjr 38:091e511ce8a0 347
mjr 38:091e511ce8a0 348
mjr 38:091e511ce8a0 349 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 350 //
mjr 29:582472d0bc57 351 // LedWiz emulation, and enhanced TLC5940 output controller
mjr 5:a70c0bce770d 352 //
mjr 26:cb71c4af2912 353 // There are two modes for this feature. The default mode uses the on-board
mjr 26:cb71c4af2912 354 // GPIO ports to implement device outputs - each LedWiz software port is
mjr 26:cb71c4af2912 355 // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10
mjr 26:cb71c4af2912 356 // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the
mjr 26:cb71c4af2912 357 // rest are strictly on/off. The KL25Z also has a limited number of GPIO
mjr 26:cb71c4af2912 358 // ports overall - not enough for the full complement of 32 LedWiz ports
mjr 26:cb71c4af2912 359 // and 24 VP joystick inputs, so it's necessary to trade one against the
mjr 26:cb71c4af2912 360 // other if both features are to be used.
mjr 26:cb71c4af2912 361 //
mjr 26:cb71c4af2912 362 // The alternative, enhanced mode uses external TLC5940 PWM controller
mjr 26:cb71c4af2912 363 // chips to control device outputs. In this mode, each LedWiz software
mjr 26:cb71c4af2912 364 // port is mapped to an output on one of the external TLC5940 chips.
mjr 26:cb71c4af2912 365 // Two 5940s is enough for the full set of 32 LedWiz ports, and we can
mjr 26:cb71c4af2912 366 // support even more chips for even more outputs (although doing so requires
mjr 26:cb71c4af2912 367 // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired
mjr 26:cb71c4af2912 368 // for 32 outputs). Every port in this mode has full PWM support.
mjr 26:cb71c4af2912 369 //
mjr 5:a70c0bce770d 370
mjr 29:582472d0bc57 371
mjr 26:cb71c4af2912 372 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 373 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 374 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 375 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 376 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 377
mjr 26:cb71c4af2912 378 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 379 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 380 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 381 class LwOut
mjr 6:cc35eb643e8f 382 {
mjr 6:cc35eb643e8f 383 public:
mjr 26:cb71c4af2912 384 // Set the output intensity. 'val' is 0.0 for fully off, 1.0 for
mjr 26:cb71c4af2912 385 // fully on, and fractional values for intermediate intensities.
mjr 6:cc35eb643e8f 386 virtual void set(float val) = 0;
mjr 6:cc35eb643e8f 387 };
mjr 26:cb71c4af2912 388
mjr 35:e959ffba78fd 389 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 390 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 391 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 392 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 393 // numbering.
mjr 35:e959ffba78fd 394 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 395 {
mjr 33:d832bcab089e 396 public:
mjr 35:e959ffba78fd 397 LwVirtualOut() { }
mjr 33:d832bcab089e 398 virtual void set(float val) { }
mjr 33:d832bcab089e 399 };
mjr 26:cb71c4af2912 400
mjr 34:6b981a2afab7 401 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 402 // on top of the physical pin interface. This simply inverts the value of
mjr 34:6b981a2afab7 403 // the output value, so that 1.0 means fully off and 0.0 means fully on.
mjr 34:6b981a2afab7 404 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 405 {
mjr 34:6b981a2afab7 406 public:
mjr 34:6b981a2afab7 407 LwInvertedOut(LwOut *o) : out(o) { }
mjr 34:6b981a2afab7 408 virtual void set(float val) { out->set(1.0 - val); }
mjr 34:6b981a2afab7 409
mjr 34:6b981a2afab7 410 private:
mjr 34:6b981a2afab7 411 LwOut *out;
mjr 34:6b981a2afab7 412 };
mjr 34:6b981a2afab7 413
mjr 26:cb71c4af2912 414
mjr 35:e959ffba78fd 415 //
mjr 35:e959ffba78fd 416 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 417 // assignments set in config.h.
mjr 33:d832bcab089e 418 //
mjr 35:e959ffba78fd 419 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 420 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 423 {
mjr 35:e959ffba78fd 424 tlc5940 = new TLC5940(cfg.tlc5940.sclk, cfg.tlc5940.sin, cfg.tlc5940.gsclk,
mjr 35:e959ffba78fd 425 cfg.tlc5940.blank, cfg.tlc5940.xlat, cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 426 }
mjr 35:e959ffba78fd 427 }
mjr 26:cb71c4af2912 428
mjr 26:cb71c4af2912 429 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 430 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 431 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 432 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 433 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 434 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 435 {
mjr 26:cb71c4af2912 436 public:
mjr 26:cb71c4af2912 437 Lw5940Out(int idx) : idx(idx) { prv = -1; }
mjr 26:cb71c4af2912 438 virtual void set(float val)
mjr 26:cb71c4af2912 439 {
mjr 26:cb71c4af2912 440 if (val != prv)
mjr 38:091e511ce8a0 441 tlc5940->set(idx, (int)((prv = val) * 4095.0f));
mjr 26:cb71c4af2912 442 }
mjr 26:cb71c4af2912 443 int idx;
mjr 26:cb71c4af2912 444 float prv;
mjr 26:cb71c4af2912 445 };
mjr 26:cb71c4af2912 446
mjr 33:d832bcab089e 447
mjr 34:6b981a2afab7 448 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 449 // config.h.
mjr 35:e959ffba78fd 450 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 451
mjr 35:e959ffba78fd 452 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 453 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 454 {
mjr 35:e959ffba78fd 455 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 456 {
mjr 35:e959ffba78fd 457 hc595 = new HC595(cfg.hc595.nchips, cfg.hc595.sin, cfg.hc595.sclk, cfg.hc595.latch, cfg.hc595.ena);
mjr 35:e959ffba78fd 458 hc595->init();
mjr 35:e959ffba78fd 459 hc595->update();
mjr 35:e959ffba78fd 460 }
mjr 35:e959ffba78fd 461 }
mjr 34:6b981a2afab7 462
mjr 34:6b981a2afab7 463 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 464 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 465 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 466 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 467 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 468 class Lw595Out: public LwOut
mjr 33:d832bcab089e 469 {
mjr 33:d832bcab089e 470 public:
mjr 34:6b981a2afab7 471 Lw595Out(int idx) : idx(idx) { prv = -1; }
mjr 34:6b981a2afab7 472 virtual void set(float val)
mjr 34:6b981a2afab7 473 {
mjr 34:6b981a2afab7 474 if (val != prv)
mjr 35:e959ffba78fd 475 hc595->set(idx, (prv = val) == 0.0 ? 0 : 1);
mjr 34:6b981a2afab7 476 }
mjr 34:6b981a2afab7 477 int idx;
mjr 34:6b981a2afab7 478 float prv;
mjr 33:d832bcab089e 479 };
mjr 33:d832bcab089e 480
mjr 26:cb71c4af2912 481
mjr 26:cb71c4af2912 482 //
mjr 26:cb71c4af2912 483 // Default LedWiz mode - using on-board GPIO ports. In this mode, we
mjr 26:cb71c4af2912 484 // assign a KL25Z GPIO port to each LedWiz output. We have to use a
mjr 26:cb71c4af2912 485 // mix of PWM-capable and Digital-Only ports in this configuration,
mjr 26:cb71c4af2912 486 // since the KL25Z hardware only has 10 PWM channels, which isn't
mjr 26:cb71c4af2912 487 // enough to fill out the full complement of 32 LedWiz outputs.
mjr 26:cb71c4af2912 488 //
mjr 26:cb71c4af2912 489
mjr 26:cb71c4af2912 490 // LwOut class for a PWM-capable GPIO port
mjr 6:cc35eb643e8f 491 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 492 {
mjr 6:cc35eb643e8f 493 public:
mjr 13:72dda449c3c0 494 LwPwmOut(PinName pin) : p(pin) { prv = -1; }
mjr 13:72dda449c3c0 495 virtual void set(float val)
mjr 13:72dda449c3c0 496 {
mjr 13:72dda449c3c0 497 if (val != prv)
mjr 13:72dda449c3c0 498 p.write(prv = val);
mjr 13:72dda449c3c0 499 }
mjr 6:cc35eb643e8f 500 PwmOut p;
mjr 13:72dda449c3c0 501 float prv;
mjr 6:cc35eb643e8f 502 };
mjr 26:cb71c4af2912 503
mjr 26:cb71c4af2912 504 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 505 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 506 {
mjr 6:cc35eb643e8f 507 public:
mjr 13:72dda449c3c0 508 LwDigOut(PinName pin) : p(pin) { prv = -1; }
mjr 13:72dda449c3c0 509 virtual void set(float val)
mjr 13:72dda449c3c0 510 {
mjr 13:72dda449c3c0 511 if (val != prv)
mjr 13:72dda449c3c0 512 p.write((prv = val) == 0.0 ? 0 : 1);
mjr 13:72dda449c3c0 513 }
mjr 6:cc35eb643e8f 514 DigitalOut p;
mjr 13:72dda449c3c0 515 float prv;
mjr 6:cc35eb643e8f 516 };
mjr 26:cb71c4af2912 517
mjr 29:582472d0bc57 518 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 519 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 520 // port n (0-based).
mjr 35:e959ffba78fd 521 //
mjr 35:e959ffba78fd 522 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 523 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 524 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 525 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 526 // 74HC595 ports).
mjr 33:d832bcab089e 527 static int numOutputs;
mjr 33:d832bcab089e 528 static LwOut **lwPin;
mjr 33:d832bcab089e 529
mjr 38:091e511ce8a0 530 // Special output ports:
mjr 38:091e511ce8a0 531 //
mjr 38:091e511ce8a0 532 // [0] = Night Mode indicator light
mjr 38:091e511ce8a0 533 //
mjr 38:091e511ce8a0 534 static LwOut *specialPin[1];
mjr 38:091e511ce8a0 535
mjr 38:091e511ce8a0 536
mjr 35:e959ffba78fd 537 // Number of LedWiz emulation outputs. This is the number of ports
mjr 35:e959ffba78fd 538 // accessible through the standard (non-extended) LedWiz protocol
mjr 35:e959ffba78fd 539 // messages. The protocol has a fixed set of 32 outputs, but we
mjr 35:e959ffba78fd 540 // might have fewer actual outputs. This is therefore set to the
mjr 35:e959ffba78fd 541 // lower of 32 or the actual number of outputs.
mjr 35:e959ffba78fd 542 static int numLwOutputs;
mjr 35:e959ffba78fd 543
mjr 33:d832bcab089e 544 // Current absolute brightness level for an output. This is a float
mjr 38:091e511ce8a0 545 // value from 0.0 for fully off to 1.0 for fully on. This is used
mjr 38:091e511ce8a0 546 // for all extended ports (33 and above), and for any LedWiz port
mjr 38:091e511ce8a0 547 // with wizVal == 255.
mjr 33:d832bcab089e 548 static float *outLevel;
mjr 6:cc35eb643e8f 549
mjr 38:091e511ce8a0 550 // Day/night mode override for an output. For each output, this is
mjr 38:091e511ce8a0 551 // set to 1 if the output is enabled and 0 if the output is disabled
mjr 38:091e511ce8a0 552 // by a global mode control, such as Night Mode (currently Night Mode
mjr 38:091e511ce8a0 553 // is the only such global mode, but the idea could be extended to
mjr 38:091e511ce8a0 554 // other similar controls if other needs emerge). To get the final
mjr 38:091e511ce8a0 555 // output level for each output, we simply multiply the outLevel value
mjr 38:091e511ce8a0 556 // for the port by this override vlaue.
mjr 38:091e511ce8a0 557 static uint8_t *modeLevel;
mjr 38:091e511ce8a0 558
mjr 38:091e511ce8a0 559 // create a single output pin
mjr 38:091e511ce8a0 560 LwOut *createLwPin(LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 561 {
mjr 38:091e511ce8a0 562 // get this item's values
mjr 38:091e511ce8a0 563 int typ = pc.typ;
mjr 38:091e511ce8a0 564 int pin = pc.pin;
mjr 38:091e511ce8a0 565 int flags = pc.flags;
mjr 38:091e511ce8a0 566 int activeLow = flags & PortFlagActiveLow;
mjr 38:091e511ce8a0 567
mjr 38:091e511ce8a0 568 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 569 LwOut *lwp;
mjr 38:091e511ce8a0 570 switch (typ)
mjr 38:091e511ce8a0 571 {
mjr 38:091e511ce8a0 572 case PortTypeGPIOPWM:
mjr 38:091e511ce8a0 573 // PWM GPIO port
mjr 38:091e511ce8a0 574 lwp = new LwPwmOut(wirePinName(pin));
mjr 38:091e511ce8a0 575 break;
mjr 38:091e511ce8a0 576
mjr 38:091e511ce8a0 577 case PortTypeGPIODig:
mjr 38:091e511ce8a0 578 // Digital GPIO port
mjr 38:091e511ce8a0 579 lwp = new LwDigOut(wirePinName(pin));
mjr 38:091e511ce8a0 580 break;
mjr 38:091e511ce8a0 581
mjr 38:091e511ce8a0 582 case PortTypeTLC5940:
mjr 38:091e511ce8a0 583 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 584 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 585 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 38:091e511ce8a0 586 lwp = new Lw5940Out(pin);
mjr 38:091e511ce8a0 587 else
mjr 38:091e511ce8a0 588 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 589 break;
mjr 38:091e511ce8a0 590
mjr 38:091e511ce8a0 591 case PortType74HC595:
mjr 38:091e511ce8a0 592 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 593 // output number, create a virtual port)
mjr 38:091e511ce8a0 594 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 595 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 596 else
mjr 38:091e511ce8a0 597 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 598 break;
mjr 38:091e511ce8a0 599
mjr 38:091e511ce8a0 600 case PortTypeVirtual:
mjr 38:091e511ce8a0 601 default:
mjr 38:091e511ce8a0 602 // virtual or unknown
mjr 38:091e511ce8a0 603 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 604 break;
mjr 38:091e511ce8a0 605 }
mjr 38:091e511ce8a0 606
mjr 38:091e511ce8a0 607 // if it's Active Low, layer on an inverter
mjr 38:091e511ce8a0 608 if (activeLow)
mjr 38:091e511ce8a0 609 lwp = new LwInvertedOut(lwp);
mjr 38:091e511ce8a0 610
mjr 38:091e511ce8a0 611 // turn it off initially
mjr 38:091e511ce8a0 612 lwp->set(0);
mjr 38:091e511ce8a0 613
mjr 38:091e511ce8a0 614 // return the pin
mjr 38:091e511ce8a0 615 return lwp;
mjr 38:091e511ce8a0 616 }
mjr 38:091e511ce8a0 617
mjr 6:cc35eb643e8f 618 // initialize the output pin array
mjr 35:e959ffba78fd 619 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 620 {
mjr 35:e959ffba78fd 621 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 622 // total number of ports.
mjr 35:e959ffba78fd 623 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 624 int i;
mjr 35:e959ffba78fd 625 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 626 {
mjr 35:e959ffba78fd 627 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 628 {
mjr 35:e959ffba78fd 629 numOutputs = i;
mjr 34:6b981a2afab7 630 break;
mjr 34:6b981a2afab7 631 }
mjr 33:d832bcab089e 632 }
mjr 33:d832bcab089e 633
mjr 35:e959ffba78fd 634 // the real LedWiz protocol can access at most 32 ports, or the
mjr 35:e959ffba78fd 635 // actual number of outputs, whichever is lower
mjr 35:e959ffba78fd 636 numLwOutputs = (numOutputs < 32 ? numOutputs : 32);
mjr 35:e959ffba78fd 637
mjr 33:d832bcab089e 638 // allocate the pin array
mjr 33:d832bcab089e 639 lwPin = new LwOut*[numOutputs];
mjr 33:d832bcab089e 640
mjr 38:091e511ce8a0 641 // Allocate the current brightness array. For these, allocate at
mjr 38:091e511ce8a0 642 // least 32, so that we have enough for all LedWiz messages, but
mjr 38:091e511ce8a0 643 // allocate the full set of actual ports if we have more than the
mjr 38:091e511ce8a0 644 // LedWiz complement.
mjr 38:091e511ce8a0 645 int minOuts = numOutputs < 32 ? 32 : numOutputs;
mjr 38:091e511ce8a0 646 outLevel = new float[minOuts];
mjr 38:091e511ce8a0 647
mjr 38:091e511ce8a0 648 // Allocate the mode override array
mjr 38:091e511ce8a0 649 modeLevel = new uint8_t[minOuts];
mjr 38:091e511ce8a0 650
mjr 38:091e511ce8a0 651 // start with all modeLevel values set to ON
mjr 38:091e511ce8a0 652 memset(modeLevel, 1, minOuts);
mjr 33:d832bcab089e 653
mjr 35:e959ffba78fd 654 // create the pin interface object for each port
mjr 35:e959ffba78fd 655 for (i = 0 ; i < numOutputs ; ++i)
mjr 38:091e511ce8a0 656 lwPin[i] = createLwPin(cfg.outPort[i], cfg);
mjr 34:6b981a2afab7 657
mjr 38:091e511ce8a0 658 // create the pin interface for each special port
mjr 38:091e511ce8a0 659 for (i = 0 ; i < countof(cfg.specialPort) ; ++i)
mjr 38:091e511ce8a0 660 specialPin[i] = createLwPin(cfg.specialPort[i], cfg);
mjr 6:cc35eb643e8f 661 }
mjr 6:cc35eb643e8f 662
mjr 29:582472d0bc57 663 // LedWiz output states.
mjr 29:582472d0bc57 664 //
mjr 29:582472d0bc57 665 // The LedWiz protocol has two separate control axes for each output.
mjr 29:582472d0bc57 666 // One axis is its on/off state; the other is its "profile" state, which
mjr 29:582472d0bc57 667 // is either a fixed brightness or a blinking pattern for the light.
mjr 29:582472d0bc57 668 // The two axes are independent.
mjr 29:582472d0bc57 669 //
mjr 29:582472d0bc57 670 // Note that the LedWiz protocol can only address 32 outputs, so the
mjr 29:582472d0bc57 671 // wizOn and wizVal arrays have fixed sizes of 32 elements no matter
mjr 29:582472d0bc57 672 // how many physical outputs we're using.
mjr 29:582472d0bc57 673
mjr 0:5acbbe3f4cf4 674 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 675 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 676
mjr 29:582472d0bc57 677 // Profile (brightness/blink) state for each LedWiz output. If the
mjr 29:582472d0bc57 678 // output was last updated through an LedWiz protocol message, it
mjr 29:582472d0bc57 679 // will have one of these values:
mjr 29:582472d0bc57 680 //
mjr 29:582472d0bc57 681 // 0-48 = fixed brightness 0% to 100%
mjr 29:582472d0bc57 682 // 129 = ramp up / ramp down
mjr 29:582472d0bc57 683 // 130 = flash on / off
mjr 29:582472d0bc57 684 // 131 = on / ramp down
mjr 29:582472d0bc57 685 // 132 = ramp up / on
mjr 29:582472d0bc57 686 //
mjr 29:582472d0bc57 687 // Special value 255: If the output was updated through the
mjr 29:582472d0bc57 688 // extended protocol, we'll set the wizVal entry to 255, which has
mjr 29:582472d0bc57 689 // no meaning in the LedWiz protocol. This tells us that the value
mjr 29:582472d0bc57 690 // in outLevel[] was set directly from the extended protocol, so it
mjr 29:582472d0bc57 691 // shouldn't be derived from wizVal[].
mjr 29:582472d0bc57 692 //
mjr 1:d913e0afb2ac 693 static uint8_t wizVal[32] = {
mjr 13:72dda449c3c0 694 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 695 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 696 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 697 48, 48, 48, 48, 48, 48, 48, 48
mjr 0:5acbbe3f4cf4 698 };
mjr 0:5acbbe3f4cf4 699
mjr 29:582472d0bc57 700 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 29:582472d0bc57 701 // rate for lights in blinking states.
mjr 29:582472d0bc57 702 static uint8_t wizSpeed = 2;
mjr 29:582472d0bc57 703
mjr 29:582472d0bc57 704 // Current LedWiz flash cycle counter.
mjr 29:582472d0bc57 705 static uint8_t wizFlashCounter = 0;
mjr 29:582472d0bc57 706
mjr 29:582472d0bc57 707 // Get the current brightness level for an LedWiz output.
mjr 1:d913e0afb2ac 708 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 709 {
mjr 29:582472d0bc57 710 // if the output was last set with an extended protocol message,
mjr 29:582472d0bc57 711 // use the value set there, ignoring the output's LedWiz state
mjr 29:582472d0bc57 712 if (wizVal[idx] == 255)
mjr 29:582472d0bc57 713 return outLevel[idx];
mjr 29:582472d0bc57 714
mjr 29:582472d0bc57 715 // if it's off, show at zero intensity
mjr 29:582472d0bc57 716 if (!wizOn[idx])
mjr 29:582472d0bc57 717 return 0;
mjr 29:582472d0bc57 718
mjr 29:582472d0bc57 719 // check the state
mjr 29:582472d0bc57 720 uint8_t val = wizVal[idx];
mjr 29:582472d0bc57 721 if (val <= 48)
mjr 29:582472d0bc57 722 {
mjr 29:582472d0bc57 723 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 29:582472d0bc57 724 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 29:582472d0bc57 725 // Note that on the actual LedWiz, level 48 is actually about
mjr 29:582472d0bc57 726 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 29:582472d0bc57 727 // the true 100% level. (In the documentation, level 49 is
mjr 29:582472d0bc57 728 // simply not a valid setting.) Even so, we treat level 48 as
mjr 29:582472d0bc57 729 // 100% on to match the documentation. This won't be perfectly
mjr 29:582472d0bc57 730 // ocmpatible with the actual LedWiz, but it makes for such a
mjr 29:582472d0bc57 731 // small difference in brightness (if the output device is an
mjr 29:582472d0bc57 732 // LED, say) that no one should notice. It seems better to
mjr 29:582472d0bc57 733 // err in this direction, because while the difference in
mjr 29:582472d0bc57 734 // brightness when attached to an LED won't be noticeable, the
mjr 29:582472d0bc57 735 // difference in duty cycle when attached to something like a
mjr 29:582472d0bc57 736 // contactor *can* be noticeable - anything less than 100%
mjr 29:582472d0bc57 737 // can cause a contactor or relay to chatter. There's almost
mjr 29:582472d0bc57 738 // never a situation where you'd want values other than 0% and
mjr 29:582472d0bc57 739 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 29:582472d0bc57 740 // makes us work properly with software that's expecting the
mjr 29:582472d0bc57 741 // documented LedWiz behavior and therefore uses level 48 to
mjr 29:582472d0bc57 742 // turn a contactor or relay fully on.
mjr 38:091e511ce8a0 743 return val/48.0f;
mjr 29:582472d0bc57 744 }
mjr 29:582472d0bc57 745 else if (val == 49)
mjr 13:72dda449c3c0 746 {
mjr 29:582472d0bc57 747 // 49 is undefined in the LedWiz documentation, but actually
mjr 29:582472d0bc57 748 // means 100% on. The documentation says that levels 1-48 are
mjr 29:582472d0bc57 749 // the full PWM range, but empirically it appears that the real
mjr 29:582472d0bc57 750 // range implemented in the firmware is 1-49. Some software on
mjr 29:582472d0bc57 751 // the PC side (notably DOF) is aware of this and uses level 49
mjr 29:582472d0bc57 752 // to mean "100% on". To ensure compatibility with existing
mjr 29:582472d0bc57 753 // PC-side software, we need to recognize level 49.
mjr 38:091e511ce8a0 754 return 1.0f;
mjr 29:582472d0bc57 755 }
mjr 29:582472d0bc57 756 else if (val == 129)
mjr 29:582472d0bc57 757 {
mjr 29:582472d0bc57 758 // 129 = ramp up / ramp down
mjr 30:6e9902f06f48 759 return wizFlashCounter < 128
mjr 38:091e511ce8a0 760 ? wizFlashCounter/128.0f
mjr 38:091e511ce8a0 761 : (256 - wizFlashCounter)/128.0f;
mjr 29:582472d0bc57 762 }
mjr 29:582472d0bc57 763 else if (val == 130)
mjr 29:582472d0bc57 764 {
mjr 29:582472d0bc57 765 // 130 = flash on / off
mjr 38:091e511ce8a0 766 return wizFlashCounter < 128 ? 1.0f : 0.0f;
mjr 29:582472d0bc57 767 }
mjr 29:582472d0bc57 768 else if (val == 131)
mjr 29:582472d0bc57 769 {
mjr 29:582472d0bc57 770 // 131 = on / ramp down
mjr 38:091e511ce8a0 771 return wizFlashCounter < 128 ? 1.0f : (255 - wizFlashCounter)/128.0f;
mjr 0:5acbbe3f4cf4 772 }
mjr 29:582472d0bc57 773 else if (val == 132)
mjr 29:582472d0bc57 774 {
mjr 29:582472d0bc57 775 // 132 = ramp up / on
mjr 38:091e511ce8a0 776 return wizFlashCounter < 128 ? wizFlashCounter/128.0f : 1.0f;
mjr 29:582472d0bc57 777 }
mjr 29:582472d0bc57 778 else
mjr 13:72dda449c3c0 779 {
mjr 29:582472d0bc57 780 // Other values are undefined in the LedWiz documentation. Hosts
mjr 29:582472d0bc57 781 // *should* never send undefined values, since whatever behavior an
mjr 29:582472d0bc57 782 // LedWiz unit exhibits in response is accidental and could change
mjr 29:582472d0bc57 783 // in a future version. We'll treat all undefined values as equivalent
mjr 29:582472d0bc57 784 // to 48 (fully on).
mjr 38:091e511ce8a0 785 return 1.0f;
mjr 0:5acbbe3f4cf4 786 }
mjr 0:5acbbe3f4cf4 787 }
mjr 0:5acbbe3f4cf4 788
mjr 29:582472d0bc57 789 // LedWiz flash timer pulse. This fires periodically to update
mjr 29:582472d0bc57 790 // LedWiz flashing outputs. At the slowest pulse speed set via
mjr 29:582472d0bc57 791 // the SBA command, each waveform cycle has 256 steps, so we
mjr 29:582472d0bc57 792 // choose the pulse time base so that the slowest cycle completes
mjr 29:582472d0bc57 793 // in 2 seconds. This seems to roughly match the real LedWiz
mjr 29:582472d0bc57 794 // behavior. We run the pulse timer at the same rate regardless
mjr 29:582472d0bc57 795 // of the pulse speed; at higher pulse speeds, we simply use
mjr 29:582472d0bc57 796 // larger steps through the cycle on each interrupt. Running
mjr 29:582472d0bc57 797 // every 1/127 of a second = 8ms seems to be a pretty light load.
mjr 29:582472d0bc57 798 Timeout wizPulseTimer;
mjr 38:091e511ce8a0 799 #define WIZ_PULSE_TIME_BASE (1.0f/127.0f)
mjr 29:582472d0bc57 800 static void wizPulse()
mjr 29:582472d0bc57 801 {
mjr 29:582472d0bc57 802 // increase the counter by the speed increment, and wrap at 256
mjr 29:582472d0bc57 803 wizFlashCounter += wizSpeed;
mjr 29:582472d0bc57 804 wizFlashCounter &= 0xff;
mjr 29:582472d0bc57 805
mjr 29:582472d0bc57 806 // if we have any flashing lights, update them
mjr 29:582472d0bc57 807 int ena = false;
mjr 35:e959ffba78fd 808 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 809 {
mjr 29:582472d0bc57 810 if (wizOn[i])
mjr 29:582472d0bc57 811 {
mjr 29:582472d0bc57 812 uint8_t s = wizVal[i];
mjr 29:582472d0bc57 813 if (s >= 129 && s <= 132)
mjr 29:582472d0bc57 814 {
mjr 38:091e511ce8a0 815 lwPin[i]->set(wizState(i) * modeLevel[i]);
mjr 29:582472d0bc57 816 ena = true;
mjr 29:582472d0bc57 817 }
mjr 29:582472d0bc57 818 }
mjr 29:582472d0bc57 819 }
mjr 29:582472d0bc57 820
mjr 29:582472d0bc57 821 // Set up the next timer pulse only if we found anything flashing.
mjr 29:582472d0bc57 822 // To minimize overhead from this feature, we only enable the interrupt
mjr 29:582472d0bc57 823 // when we need it. This eliminates any performance penalty to other
mjr 29:582472d0bc57 824 // features when the host software doesn't care about the flashing
mjr 29:582472d0bc57 825 // modes. For example, DOF never uses these modes, so there's no
mjr 29:582472d0bc57 826 // need for them when running Visual Pinball.
mjr 29:582472d0bc57 827 if (ena)
mjr 29:582472d0bc57 828 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 29:582472d0bc57 829 }
mjr 29:582472d0bc57 830
mjr 29:582472d0bc57 831 // Update the physical outputs connected to the LedWiz ports. This is
mjr 29:582472d0bc57 832 // called after any update from an LedWiz protocol message.
mjr 1:d913e0afb2ac 833 static void updateWizOuts()
mjr 1:d913e0afb2ac 834 {
mjr 29:582472d0bc57 835 // update each output
mjr 29:582472d0bc57 836 int pulse = false;
mjr 35:e959ffba78fd 837 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 838 {
mjr 29:582472d0bc57 839 pulse |= (wizVal[i] >= 129 && wizVal[i] <= 132);
mjr 38:091e511ce8a0 840 lwPin[i]->set(wizState(i) * modeLevel[i]);
mjr 29:582472d0bc57 841 }
mjr 29:582472d0bc57 842
mjr 29:582472d0bc57 843 // if any outputs are set to flashing mode, and the pulse timer
mjr 29:582472d0bc57 844 // isn't running, turn it on
mjr 29:582472d0bc57 845 if (pulse)
mjr 29:582472d0bc57 846 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 34:6b981a2afab7 847
mjr 34:6b981a2afab7 848 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 849 if (hc595 != 0)
mjr 35:e959ffba78fd 850 hc595->update();
mjr 1:d913e0afb2ac 851 }
mjr 38:091e511ce8a0 852
mjr 38:091e511ce8a0 853 // Update all physical outputs. This is called after a change to a global
mjr 38:091e511ce8a0 854 // setting that affects all outputs, such as engaging or canceling Night Mode.
mjr 38:091e511ce8a0 855 static void updateAllOuts()
mjr 38:091e511ce8a0 856 {
mjr 38:091e511ce8a0 857 // uddate each LedWiz output
mjr 38:091e511ce8a0 858 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 38:091e511ce8a0 859 lwPin[i]->set(wizState(i) * modeLevel[i]);
mjr 34:6b981a2afab7 860
mjr 38:091e511ce8a0 861 // update each extended output
mjr 38:091e511ce8a0 862 for (int i = 33 ; i < numOutputs ; ++i)
mjr 38:091e511ce8a0 863 lwPin[i]->set(outLevel[i] * modeLevel[i]);
mjr 38:091e511ce8a0 864
mjr 38:091e511ce8a0 865 // flush 74HC595 changes, if necessary
mjr 38:091e511ce8a0 866 if (hc595 != 0)
mjr 38:091e511ce8a0 867 hc595->update();
mjr 38:091e511ce8a0 868 }
mjr 38:091e511ce8a0 869
mjr 11:bd9da7088e6e 870 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 871 //
mjr 11:bd9da7088e6e 872 // Button input
mjr 11:bd9da7088e6e 873 //
mjr 11:bd9da7088e6e 874
mjr 18:5e890ebd0023 875 // button state
mjr 18:5e890ebd0023 876 struct ButtonState
mjr 18:5e890ebd0023 877 {
mjr 38:091e511ce8a0 878 ButtonState()
mjr 38:091e511ce8a0 879 {
mjr 38:091e511ce8a0 880 di = NULL;
mjr 38:091e511ce8a0 881 on = 0;
mjr 38:091e511ce8a0 882 pressed = prev = 0;
mjr 38:091e511ce8a0 883 dbstate = 0;
mjr 38:091e511ce8a0 884 js = 0;
mjr 38:091e511ce8a0 885 keymod = 0;
mjr 38:091e511ce8a0 886 keycode = 0;
mjr 38:091e511ce8a0 887 special = 0;
mjr 38:091e511ce8a0 888 pulseState = 0;
mjr 38:091e511ce8a0 889 pulseTime = 0.0f;
mjr 38:091e511ce8a0 890 }
mjr 35:e959ffba78fd 891
mjr 35:e959ffba78fd 892 // DigitalIn for the button
mjr 35:e959ffba78fd 893 DigitalIn *di;
mjr 38:091e511ce8a0 894
mjr 38:091e511ce8a0 895 // current PHYSICAL on/off state, after debouncing
mjr 38:091e511ce8a0 896 uint8_t on;
mjr 18:5e890ebd0023 897
mjr 38:091e511ce8a0 898 // current LOGICAL on/off state as reported to the host.
mjr 38:091e511ce8a0 899 uint8_t pressed;
mjr 38:091e511ce8a0 900
mjr 38:091e511ce8a0 901 // previous logical on/off state, when keys were last processed for USB
mjr 38:091e511ce8a0 902 // reports and local effects
mjr 38:091e511ce8a0 903 uint8_t prev;
mjr 38:091e511ce8a0 904
mjr 38:091e511ce8a0 905 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 906 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 907 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 908 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 909 // a parameter that determines how long we wait for transients to settle).
mjr 38:091e511ce8a0 910 uint8_t dbstate;
mjr 35:e959ffba78fd 911
mjr 35:e959ffba78fd 912 // joystick button mask for the button, if mapped as a joystick button
mjr 35:e959ffba78fd 913 uint32_t js;
mjr 35:e959ffba78fd 914
mjr 35:e959ffba78fd 915 // keyboard modifier bits and scan code for the button, if mapped as a keyboard key
mjr 35:e959ffba78fd 916 uint8_t keymod;
mjr 35:e959ffba78fd 917 uint8_t keycode;
mjr 35:e959ffba78fd 918
mjr 35:e959ffba78fd 919 // media control key code
mjr 35:e959ffba78fd 920 uint8_t mediakey;
mjr 35:e959ffba78fd 921
mjr 38:091e511ce8a0 922 // special key code
mjr 38:091e511ce8a0 923 uint8_t special;
mjr 38:091e511ce8a0 924
mjr 38:091e511ce8a0 925 // Pulse mode: a button in pulse mode transmits a brief logical button press and
mjr 38:091e511ce8a0 926 // release each time the attached physical switch changes state. This is useful
mjr 38:091e511ce8a0 927 // for cases where the host expects a key press for each change in the state of
mjr 38:091e511ce8a0 928 // the physical switch. The canonical example is the Coin Door switch in VPinMAME,
mjr 38:091e511ce8a0 929 // which requires pressing the END key to toggle the open/closed state. This
mjr 38:091e511ce8a0 930 // software design isn't easily implemented in a physical coin door, though -
mjr 38:091e511ce8a0 931 // the easiest way to sense a physical coin door's state is with a simple on/off
mjr 38:091e511ce8a0 932 // switch. Pulse mode bridges that divide by converting a physical switch state
mjr 38:091e511ce8a0 933 // to on/off toggle key reports to the host.
mjr 38:091e511ce8a0 934 //
mjr 38:091e511ce8a0 935 // Pulse state:
mjr 38:091e511ce8a0 936 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 937 // 1 -> off
mjr 38:091e511ce8a0 938 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 939 // 3 -> on
mjr 38:091e511ce8a0 940 // 4 -> transitioning on-off
mjr 38:091e511ce8a0 941 //
mjr 38:091e511ce8a0 942 // Each state change sticks for a minimum period; when the timer expires,
mjr 38:091e511ce8a0 943 // if the underlying physical switch is in a different state, we switch
mjr 38:091e511ce8a0 944 // to the next state and restart the timer. pulseTime is the amount of
mjr 38:091e511ce8a0 945 // time remaining before we can make another state transition. The state
mjr 38:091e511ce8a0 946 // transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...; this
mjr 38:091e511ce8a0 947 // guarantees that the parity of the pulse count always matches the
mjr 38:091e511ce8a0 948 // current physical switch state when the latter is stable, which makes
mjr 38:091e511ce8a0 949 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 38:091e511ce8a0 950 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 38:091e511ce8a0 951 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 38:091e511ce8a0 952 // This software system can't be fooled that way.)
mjr 38:091e511ce8a0 953 uint8_t pulseState;
mjr 38:091e511ce8a0 954 float pulseTime;
mjr 38:091e511ce8a0 955
mjr 35:e959ffba78fd 956 } buttonState[MAX_BUTTONS];
mjr 18:5e890ebd0023 957
mjr 38:091e511ce8a0 958
mjr 38:091e511ce8a0 959 // Button data
mjr 38:091e511ce8a0 960 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 961
mjr 38:091e511ce8a0 962 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 963 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 964 // modifier keys.
mjr 38:091e511ce8a0 965 struct
mjr 38:091e511ce8a0 966 {
mjr 38:091e511ce8a0 967 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 968 int nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 969 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 970 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 971 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 972
mjr 38:091e511ce8a0 973 // Media key state
mjr 38:091e511ce8a0 974 struct
mjr 38:091e511ce8a0 975 {
mjr 38:091e511ce8a0 976 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 977 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 978 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 979
mjr 38:091e511ce8a0 980 // button scan interrupt ticker
mjr 38:091e511ce8a0 981 Ticker buttonTicker;
mjr 38:091e511ce8a0 982
mjr 38:091e511ce8a0 983 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 984 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 985 void scanButtons()
mjr 38:091e511ce8a0 986 {
mjr 38:091e511ce8a0 987 // scan all button input pins
mjr 38:091e511ce8a0 988 ButtonState *bs = buttonState;
mjr 38:091e511ce8a0 989 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 38:091e511ce8a0 990 {
mjr 38:091e511ce8a0 991 // if it's connected, check its physical state
mjr 38:091e511ce8a0 992 if (bs->di != NULL)
mjr 38:091e511ce8a0 993 {
mjr 38:091e511ce8a0 994 // Shift the new state into the debounce history. Note that
mjr 38:091e511ce8a0 995 // the physical pin inputs are active low (0V/GND = ON), so invert
mjr 38:091e511ce8a0 996 // the reading by XOR'ing the low bit with 1. And of course we
mjr 38:091e511ce8a0 997 // only want the low bit (since the history is effectively a bit
mjr 38:091e511ce8a0 998 // vector), so mask the whole thing with 0x01 as well.
mjr 38:091e511ce8a0 999 uint8_t db = bs->dbstate;
mjr 38:091e511ce8a0 1000 db <<= 1;
mjr 38:091e511ce8a0 1001 db |= (bs->di->read() & 0x01) ^ 0x01;
mjr 38:091e511ce8a0 1002 bs->dbstate = db;
mjr 38:091e511ce8a0 1003
mjr 38:091e511ce8a0 1004 // if we have all 0's or 1's in the history for the required
mjr 38:091e511ce8a0 1005 // debounce period, the key state is stable - check for a change
mjr 38:091e511ce8a0 1006 // to the last stable state
mjr 38:091e511ce8a0 1007 const uint8_t stable = 0x1F; // 00011111b -> 5 stable readings
mjr 38:091e511ce8a0 1008 db &= stable;
mjr 38:091e511ce8a0 1009 if (db == 0 || db == stable)
mjr 38:091e511ce8a0 1010 bs->on = db;
mjr 38:091e511ce8a0 1011 }
mjr 38:091e511ce8a0 1012 }
mjr 38:091e511ce8a0 1013 }
mjr 38:091e511ce8a0 1014
mjr 38:091e511ce8a0 1015 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 1016 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 1017 // in the physical button state.
mjr 38:091e511ce8a0 1018 Timer buttonTimer;
mjr 12:669df364a565 1019
mjr 11:bd9da7088e6e 1020 // initialize the button inputs
mjr 35:e959ffba78fd 1021 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 1022 {
mjr 35:e959ffba78fd 1023 // presume we'll find no keyboard keys
mjr 35:e959ffba78fd 1024 kbKeys = false;
mjr 35:e959ffba78fd 1025
mjr 11:bd9da7088e6e 1026 // create the digital inputs
mjr 35:e959ffba78fd 1027 ButtonState *bs = buttonState;
mjr 35:e959ffba78fd 1028 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 11:bd9da7088e6e 1029 {
mjr 35:e959ffba78fd 1030 PinName pin = wirePinName(cfg.button[i].pin);
mjr 35:e959ffba78fd 1031 if (pin != NC)
mjr 35:e959ffba78fd 1032 {
mjr 35:e959ffba78fd 1033 // set up the GPIO input pin for this button
mjr 35:e959ffba78fd 1034 bs->di = new DigitalIn(pin);
mjr 35:e959ffba78fd 1035
mjr 38:091e511ce8a0 1036 // if it's a pulse mode button, set the initial pulse state to Off
mjr 38:091e511ce8a0 1037 if (cfg.button[i].flags & BtnFlagPulse)
mjr 38:091e511ce8a0 1038 bs->pulseState = 1;
mjr 38:091e511ce8a0 1039
mjr 35:e959ffba78fd 1040 // note if it's a keyboard key of some kind (including media keys)
mjr 35:e959ffba78fd 1041 uint8_t val = cfg.button[i].val;
mjr 35:e959ffba78fd 1042 switch (cfg.button[i].typ)
mjr 35:e959ffba78fd 1043 {
mjr 35:e959ffba78fd 1044 case BtnTypeJoystick:
mjr 35:e959ffba78fd 1045 // joystick button - get the button bit mask
mjr 35:e959ffba78fd 1046 bs->js = 1 << val;
mjr 35:e959ffba78fd 1047 break;
mjr 35:e959ffba78fd 1048
mjr 35:e959ffba78fd 1049 case BtnTypeKey:
mjr 35:e959ffba78fd 1050 // regular keyboard key - note the scan code
mjr 35:e959ffba78fd 1051 bs->keycode = val;
mjr 35:e959ffba78fd 1052 kbKeys = true;
mjr 35:e959ffba78fd 1053 break;
mjr 35:e959ffba78fd 1054
mjr 35:e959ffba78fd 1055 case BtnTypeModKey:
mjr 35:e959ffba78fd 1056 // keyboard mod key - note the modifier mask
mjr 35:e959ffba78fd 1057 bs->keymod = val;
mjr 35:e959ffba78fd 1058 kbKeys = true;
mjr 35:e959ffba78fd 1059 break;
mjr 35:e959ffba78fd 1060
mjr 35:e959ffba78fd 1061 case BtnTypeMedia:
mjr 35:e959ffba78fd 1062 // media key - note the code
mjr 35:e959ffba78fd 1063 bs->mediakey = val;
mjr 35:e959ffba78fd 1064 kbKeys = true;
mjr 35:e959ffba78fd 1065 break;
mjr 39:b3815a1c3802 1066
mjr 39:b3815a1c3802 1067 case BtnTypeSpecial:
mjr 39:b3815a1c3802 1068 // special key
mjr 39:b3815a1c3802 1069 bs->special = val;
mjr 39:b3815a1c3802 1070 break;
mjr 35:e959ffba78fd 1071 }
mjr 35:e959ffba78fd 1072 }
mjr 11:bd9da7088e6e 1073 }
mjr 12:669df364a565 1074
mjr 38:091e511ce8a0 1075 // start the button scan thread
mjr 38:091e511ce8a0 1076 buttonTicker.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 1077
mjr 38:091e511ce8a0 1078 // start the button state transition timer
mjr 12:669df364a565 1079 buttonTimer.start();
mjr 11:bd9da7088e6e 1080 }
mjr 11:bd9da7088e6e 1081
mjr 38:091e511ce8a0 1082 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 1083 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 1084 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 1085 // mapped to special device functions (e.g., Night Mode).
mjr 38:091e511ce8a0 1086 void processButtons()
mjr 35:e959ffba78fd 1087 {
mjr 35:e959ffba78fd 1088 // start with an empty list of USB key codes
mjr 35:e959ffba78fd 1089 uint8_t modkeys = 0;
mjr 35:e959ffba78fd 1090 uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 };
mjr 35:e959ffba78fd 1091 int nkeys = 0;
mjr 11:bd9da7088e6e 1092
mjr 35:e959ffba78fd 1093 // clear the joystick buttons
mjr 36:b9747461331e 1094 uint32_t newjs = 0;
mjr 35:e959ffba78fd 1095
mjr 35:e959ffba78fd 1096 // start with no media keys pressed
mjr 35:e959ffba78fd 1097 uint8_t mediakeys = 0;
mjr 38:091e511ce8a0 1098
mjr 38:091e511ce8a0 1099 // calculate the time since the last run
mjr 35:e959ffba78fd 1100 float dt = buttonTimer.read();
mjr 18:5e890ebd0023 1101 buttonTimer.reset();
mjr 38:091e511ce8a0 1102
mjr 11:bd9da7088e6e 1103 // scan the button list
mjr 18:5e890ebd0023 1104 ButtonState *bs = buttonState;
mjr 35:e959ffba78fd 1105 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 11:bd9da7088e6e 1106 {
mjr 38:091e511ce8a0 1107 // if it's a pulse-mode switch, get the virtual pressed state
mjr 38:091e511ce8a0 1108 if (bs->pulseState != 0)
mjr 18:5e890ebd0023 1109 {
mjr 38:091e511ce8a0 1110 // deduct the time to the next state change
mjr 38:091e511ce8a0 1111 bs->pulseTime -= dt;
mjr 38:091e511ce8a0 1112 if (bs->pulseTime < 0)
mjr 38:091e511ce8a0 1113 bs->pulseTime = 0;
mjr 38:091e511ce8a0 1114
mjr 38:091e511ce8a0 1115 // if the timer has expired, check for state changes
mjr 38:091e511ce8a0 1116 if (bs->pulseTime == 0)
mjr 18:5e890ebd0023 1117 {
mjr 38:091e511ce8a0 1118 const float pulseLength = 0.2;
mjr 38:091e511ce8a0 1119 switch (bs->pulseState)
mjr 18:5e890ebd0023 1120 {
mjr 38:091e511ce8a0 1121 case 1:
mjr 38:091e511ce8a0 1122 // off - if the physical switch is now on, start a button pulse
mjr 38:091e511ce8a0 1123 if (bs->on) {
mjr 38:091e511ce8a0 1124 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1125 bs->pulseState = 2;
mjr 38:091e511ce8a0 1126 bs->pressed = 1;
mjr 38:091e511ce8a0 1127 }
mjr 38:091e511ce8a0 1128 break;
mjr 18:5e890ebd0023 1129
mjr 38:091e511ce8a0 1130 case 2:
mjr 38:091e511ce8a0 1131 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 1132 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 1133 // change in state in the logical button
mjr 38:091e511ce8a0 1134 bs->pulseState = 3;
mjr 38:091e511ce8a0 1135 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1136 bs->pressed = 0;
mjr 38:091e511ce8a0 1137 break;
mjr 38:091e511ce8a0 1138
mjr 38:091e511ce8a0 1139 case 3:
mjr 38:091e511ce8a0 1140 // on - if the physical switch is now off, start a button pulse
mjr 38:091e511ce8a0 1141 if (!bs->on) {
mjr 38:091e511ce8a0 1142 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1143 bs->pulseState = 4;
mjr 38:091e511ce8a0 1144 bs->pressed = 1;
mjr 38:091e511ce8a0 1145 }
mjr 38:091e511ce8a0 1146 break;
mjr 38:091e511ce8a0 1147
mjr 38:091e511ce8a0 1148 case 4:
mjr 38:091e511ce8a0 1149 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 1150 bs->pulseState = 1;
mjr 38:091e511ce8a0 1151 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1152 bs->pressed = 0;
mjr 38:091e511ce8a0 1153 break;
mjr 18:5e890ebd0023 1154 }
mjr 18:5e890ebd0023 1155 }
mjr 38:091e511ce8a0 1156 }
mjr 38:091e511ce8a0 1157 else
mjr 38:091e511ce8a0 1158 {
mjr 38:091e511ce8a0 1159 // not a pulse switch - the logical state is the same as the physical state
mjr 38:091e511ce8a0 1160 bs->pressed = bs->on;
mjr 38:091e511ce8a0 1161 }
mjr 35:e959ffba78fd 1162
mjr 38:091e511ce8a0 1163 // carry out any edge effects from buttons changing states
mjr 38:091e511ce8a0 1164 if (bs->pressed != bs->prev)
mjr 38:091e511ce8a0 1165 {
mjr 38:091e511ce8a0 1166 // check for special key transitions
mjr 38:091e511ce8a0 1167 switch (bs->special)
mjr 35:e959ffba78fd 1168 {
mjr 38:091e511ce8a0 1169 case 1:
mjr 38:091e511ce8a0 1170 // night mode momentary switch - when the button transitions from
mjr 38:091e511ce8a0 1171 // OFF to ON, invert night mode
mjr 38:091e511ce8a0 1172 if (bs->pressed)
mjr 38:091e511ce8a0 1173 toggleNightMode();
mjr 38:091e511ce8a0 1174 break;
mjr 35:e959ffba78fd 1175
mjr 38:091e511ce8a0 1176 case 2:
mjr 38:091e511ce8a0 1177 // night mode toggle switch - when the button changes state, change
mjr 38:091e511ce8a0 1178 // night mode to match the new state
mjr 38:091e511ce8a0 1179 setNightMode(bs->pressed);
mjr 38:091e511ce8a0 1180 break;
mjr 35:e959ffba78fd 1181 }
mjr 38:091e511ce8a0 1182
mjr 38:091e511ce8a0 1183 // remember the new state for comparison on the next run
mjr 38:091e511ce8a0 1184 bs->prev = bs->pressed;
mjr 38:091e511ce8a0 1185 }
mjr 38:091e511ce8a0 1186
mjr 38:091e511ce8a0 1187 // if it's pressed, add it to the appropriate key state list
mjr 38:091e511ce8a0 1188 if (bs->pressed)
mjr 38:091e511ce8a0 1189 {
mjr 38:091e511ce8a0 1190 // OR in the joystick button bit, mod key bits, and media key bits
mjr 38:091e511ce8a0 1191 newjs |= bs->js;
mjr 38:091e511ce8a0 1192 modkeys |= bs->keymod;
mjr 38:091e511ce8a0 1193 mediakeys |= bs->mediakey;
mjr 38:091e511ce8a0 1194
mjr 38:091e511ce8a0 1195 // if it has a keyboard key, add the scan code to the active list
mjr 38:091e511ce8a0 1196 if (bs->keycode != 0 && nkeys < 7)
mjr 38:091e511ce8a0 1197 keys[nkeys++] = bs->keycode;
mjr 18:5e890ebd0023 1198 }
mjr 11:bd9da7088e6e 1199 }
mjr 36:b9747461331e 1200
mjr 36:b9747461331e 1201 // check for joystick button changes
mjr 36:b9747461331e 1202 if (jsButtons != newjs)
mjr 36:b9747461331e 1203 jsButtons = newjs;
mjr 11:bd9da7088e6e 1204
mjr 35:e959ffba78fd 1205 // Check for changes to the keyboard keys
mjr 35:e959ffba78fd 1206 if (kbState.data[0] != modkeys
mjr 35:e959ffba78fd 1207 || kbState.nkeys != nkeys
mjr 35:e959ffba78fd 1208 || memcmp(keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 1209 {
mjr 35:e959ffba78fd 1210 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 1211 kbState.changed = true;
mjr 35:e959ffba78fd 1212 kbState.data[0] = modkeys;
mjr 35:e959ffba78fd 1213 if (nkeys <= 6) {
mjr 35:e959ffba78fd 1214 // 6 or fewer simultaneous keys - report the key codes
mjr 35:e959ffba78fd 1215 kbState.nkeys = nkeys;
mjr 35:e959ffba78fd 1216 memcpy(&kbState.data[2], keys, 6);
mjr 35:e959ffba78fd 1217 }
mjr 35:e959ffba78fd 1218 else {
mjr 35:e959ffba78fd 1219 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 1220 kbState.nkeys = 6;
mjr 35:e959ffba78fd 1221 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 1222 }
mjr 35:e959ffba78fd 1223 }
mjr 35:e959ffba78fd 1224
mjr 35:e959ffba78fd 1225 // Check for changes to media keys
mjr 35:e959ffba78fd 1226 if (mediaState.data != mediakeys)
mjr 35:e959ffba78fd 1227 {
mjr 35:e959ffba78fd 1228 mediaState.changed = true;
mjr 35:e959ffba78fd 1229 mediaState.data = mediakeys;
mjr 35:e959ffba78fd 1230 }
mjr 11:bd9da7088e6e 1231 }
mjr 11:bd9da7088e6e 1232
mjr 5:a70c0bce770d 1233 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1234 //
mjr 5:a70c0bce770d 1235 // Customization joystick subbclass
mjr 5:a70c0bce770d 1236 //
mjr 5:a70c0bce770d 1237
mjr 5:a70c0bce770d 1238 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 1239 {
mjr 5:a70c0bce770d 1240 public:
mjr 35:e959ffba78fd 1241 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 1242 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 1243 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 1244 {
mjr 5:a70c0bce770d 1245 suspended_ = false;
mjr 5:a70c0bce770d 1246 }
mjr 5:a70c0bce770d 1247
mjr 5:a70c0bce770d 1248 // are we connected?
mjr 5:a70c0bce770d 1249 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 1250
mjr 5:a70c0bce770d 1251 // Are we in suspend mode?
mjr 5:a70c0bce770d 1252 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 1253
mjr 5:a70c0bce770d 1254 protected:
mjr 5:a70c0bce770d 1255 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 1256 { suspended_ = suspended; }
mjr 5:a70c0bce770d 1257
mjr 5:a70c0bce770d 1258 // are we suspended?
mjr 5:a70c0bce770d 1259 int suspended_;
mjr 5:a70c0bce770d 1260 };
mjr 5:a70c0bce770d 1261
mjr 5:a70c0bce770d 1262 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1263 //
mjr 5:a70c0bce770d 1264 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 1265 //
mjr 5:a70c0bce770d 1266
mjr 5:a70c0bce770d 1267 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 1268 //
mjr 5:a70c0bce770d 1269 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 1270 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 1271 // automatic calibration.
mjr 5:a70c0bce770d 1272 //
mjr 5:a70c0bce770d 1273 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 1274 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 1275 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 1276 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 1277 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 1278 // every sample.
mjr 5:a70c0bce770d 1279 //
mjr 6:cc35eb643e8f 1280 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 1281 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 1282 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 1283 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 1284 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 1285 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 1286 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 1287 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 1288 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 1289 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 1290 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 1291 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 1292 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 1293 // of nudging, say).
mjr 5:a70c0bce770d 1294 //
mjr 5:a70c0bce770d 1295
mjr 17:ab3cec0c8bf4 1296 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 1297 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 1298
mjr 17:ab3cec0c8bf4 1299 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 1300 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 1301 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 1302
mjr 17:ab3cec0c8bf4 1303 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 1304 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 1305 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 1306 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 1307
mjr 17:ab3cec0c8bf4 1308
mjr 6:cc35eb643e8f 1309 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 1310 struct AccHist
mjr 5:a70c0bce770d 1311 {
mjr 6:cc35eb643e8f 1312 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 1313 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 1314 {
mjr 6:cc35eb643e8f 1315 // save the raw position
mjr 6:cc35eb643e8f 1316 this->x = x;
mjr 6:cc35eb643e8f 1317 this->y = y;
mjr 6:cc35eb643e8f 1318 this->d = distance(prv);
mjr 6:cc35eb643e8f 1319 }
mjr 6:cc35eb643e8f 1320
mjr 6:cc35eb643e8f 1321 // reading for this entry
mjr 5:a70c0bce770d 1322 float x, y;
mjr 5:a70c0bce770d 1323
mjr 6:cc35eb643e8f 1324 // distance from previous entry
mjr 6:cc35eb643e8f 1325 float d;
mjr 5:a70c0bce770d 1326
mjr 6:cc35eb643e8f 1327 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 1328 float xtot, ytot;
mjr 6:cc35eb643e8f 1329 int cnt;
mjr 6:cc35eb643e8f 1330
mjr 6:cc35eb643e8f 1331 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 1332 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 1333 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 1334 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 1335
mjr 6:cc35eb643e8f 1336 float distance(AccHist *p)
mjr 6:cc35eb643e8f 1337 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 1338 };
mjr 5:a70c0bce770d 1339
mjr 5:a70c0bce770d 1340 // accelerometer wrapper class
mjr 3:3514575d4f86 1341 class Accel
mjr 3:3514575d4f86 1342 {
mjr 3:3514575d4f86 1343 public:
mjr 3:3514575d4f86 1344 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 1345 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 1346 {
mjr 5:a70c0bce770d 1347 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 1348 irqPin_ = irqPin;
mjr 5:a70c0bce770d 1349
mjr 5:a70c0bce770d 1350 // reset and initialize
mjr 5:a70c0bce770d 1351 reset();
mjr 5:a70c0bce770d 1352 }
mjr 5:a70c0bce770d 1353
mjr 5:a70c0bce770d 1354 void reset()
mjr 5:a70c0bce770d 1355 {
mjr 6:cc35eb643e8f 1356 // clear the center point
mjr 6:cc35eb643e8f 1357 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 1358
mjr 6:cc35eb643e8f 1359 // start the calibration timer
mjr 5:a70c0bce770d 1360 tCenter_.start();
mjr 5:a70c0bce770d 1361 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 1362
mjr 5:a70c0bce770d 1363 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 1364 mma_.init();
mjr 6:cc35eb643e8f 1365
mjr 6:cc35eb643e8f 1366 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 1367 vx_ = vy_ = 0;
mjr 3:3514575d4f86 1368
mjr 6:cc35eb643e8f 1369 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 1370 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 1371 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 1372
mjr 3:3514575d4f86 1373 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 1374 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 1375
mjr 3:3514575d4f86 1376 // start our timers
mjr 3:3514575d4f86 1377 tGet_.start();
mjr 3:3514575d4f86 1378 tInt_.start();
mjr 3:3514575d4f86 1379 }
mjr 3:3514575d4f86 1380
mjr 9:fd65b0a94720 1381 void get(int &x, int &y)
mjr 3:3514575d4f86 1382 {
mjr 3:3514575d4f86 1383 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 1384 __disable_irq();
mjr 3:3514575d4f86 1385
mjr 3:3514575d4f86 1386 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 1387 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 1388 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 1389
mjr 6:cc35eb643e8f 1390 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 1391 vx_ = vy_ = 0;
mjr 3:3514575d4f86 1392
mjr 3:3514575d4f86 1393 // get the time since the last get() sample
mjr 38:091e511ce8a0 1394 float dt = tGet_.read_us()/1.0e6f;
mjr 3:3514575d4f86 1395 tGet_.reset();
mjr 3:3514575d4f86 1396
mjr 3:3514575d4f86 1397 // done manipulating the shared data
mjr 3:3514575d4f86 1398 __enable_irq();
mjr 3:3514575d4f86 1399
mjr 6:cc35eb643e8f 1400 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 1401 vx /= dt;
mjr 6:cc35eb643e8f 1402 vy /= dt;
mjr 6:cc35eb643e8f 1403
mjr 6:cc35eb643e8f 1404 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 1405 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 1406 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 1407
mjr 5:a70c0bce770d 1408 // check for auto-centering every so often
mjr 5:a70c0bce770d 1409 if (tCenter_.read_ms() > 1000)
mjr 5:a70c0bce770d 1410 {
mjr 5:a70c0bce770d 1411 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 1412 AccHist *prv = p;
mjr 5:a70c0bce770d 1413 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 1414 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 1415 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 1416
mjr 5:a70c0bce770d 1417 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 1418 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 1419 {
mjr 5:a70c0bce770d 1420 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 1421 static const float accTol = .01;
mjr 6:cc35eb643e8f 1422 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 1423 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 1424 && p0[1].d < accTol
mjr 6:cc35eb643e8f 1425 && p0[2].d < accTol
mjr 6:cc35eb643e8f 1426 && p0[3].d < accTol
mjr 6:cc35eb643e8f 1427 && p0[4].d < accTol)
mjr 5:a70c0bce770d 1428 {
mjr 6:cc35eb643e8f 1429 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 1430 // the samples over the rest period
mjr 6:cc35eb643e8f 1431 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 1432 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 1433 }
mjr 5:a70c0bce770d 1434 }
mjr 5:a70c0bce770d 1435 else
mjr 5:a70c0bce770d 1436 {
mjr 5:a70c0bce770d 1437 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 1438 ++nAccPrv_;
mjr 5:a70c0bce770d 1439 }
mjr 6:cc35eb643e8f 1440
mjr 6:cc35eb643e8f 1441 // clear the new item's running totals
mjr 6:cc35eb643e8f 1442 p->clearAvg();
mjr 5:a70c0bce770d 1443
mjr 5:a70c0bce770d 1444 // reset the timer
mjr 5:a70c0bce770d 1445 tCenter_.reset();
mjr 39:b3815a1c3802 1446
mjr 39:b3815a1c3802 1447 // If we haven't seen an interrupt in a while, do an explicit read to
mjr 39:b3815a1c3802 1448 // "unstick" the device. The device can become stuck - which is to say,
mjr 39:b3815a1c3802 1449 // it will stop delivering data-ready interrupts - if we fail to service
mjr 39:b3815a1c3802 1450 // one data-ready interrupt before the next one occurs. Reading a sample
mjr 39:b3815a1c3802 1451 // will clear up this overrun condition and allow normal interrupt
mjr 39:b3815a1c3802 1452 // generation to continue.
mjr 39:b3815a1c3802 1453 //
mjr 39:b3815a1c3802 1454 // Note that this stuck condition *shouldn't* ever occur - if it does,
mjr 39:b3815a1c3802 1455 // it means that we're spending a long period with interrupts disabled
mjr 39:b3815a1c3802 1456 // (either in a critical section or in another interrupt handler), which
mjr 39:b3815a1c3802 1457 // will likely cause other worse problems beyond the sticky accelerometer.
mjr 39:b3815a1c3802 1458 // Even so, it's easy to detect and correct, so we'll do so for the sake
mjr 39:b3815a1c3802 1459 // of making the system more fault-tolerant.
mjr 39:b3815a1c3802 1460 if (tInt_.read() > 1.0f)
mjr 39:b3815a1c3802 1461 {
mjr 39:b3815a1c3802 1462 printf("unwedging the accelerometer\r\n");
mjr 39:b3815a1c3802 1463 float x, y, z;
mjr 39:b3815a1c3802 1464 mma_.getAccXYZ(x, y, z);
mjr 39:b3815a1c3802 1465 }
mjr 5:a70c0bce770d 1466 }
mjr 5:a70c0bce770d 1467
mjr 6:cc35eb643e8f 1468 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 1469 x = rawToReport(vx);
mjr 6:cc35eb643e8f 1470 y = rawToReport(vy);
mjr 5:a70c0bce770d 1471
mjr 6:cc35eb643e8f 1472 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1473 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1474 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 1475 #endif
mjr 3:3514575d4f86 1476 }
mjr 29:582472d0bc57 1477
mjr 3:3514575d4f86 1478 private:
mjr 6:cc35eb643e8f 1479 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 1480 int rawToReport(float v)
mjr 5:a70c0bce770d 1481 {
mjr 6:cc35eb643e8f 1482 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 1483 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 1484
mjr 6:cc35eb643e8f 1485 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 1486 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 1487 static const int filter[] = {
mjr 6:cc35eb643e8f 1488 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 1489 0,
mjr 6:cc35eb643e8f 1490 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 1491 };
mjr 6:cc35eb643e8f 1492 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 1493 }
mjr 5:a70c0bce770d 1494
mjr 3:3514575d4f86 1495 // interrupt handler
mjr 3:3514575d4f86 1496 void isr()
mjr 3:3514575d4f86 1497 {
mjr 3:3514575d4f86 1498 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 1499 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 1500 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 1501 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 1502 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 1503 float x, y, z;
mjr 5:a70c0bce770d 1504 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 1505
mjr 3:3514575d4f86 1506 // calculate the time since the last interrupt
mjr 39:b3815a1c3802 1507 float dt = tInt_.read();
mjr 3:3514575d4f86 1508 tInt_.reset();
mjr 6:cc35eb643e8f 1509
mjr 6:cc35eb643e8f 1510 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 1511 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 1512 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 1513
mjr 6:cc35eb643e8f 1514 // store the updates
mjr 6:cc35eb643e8f 1515 ax_ = x;
mjr 6:cc35eb643e8f 1516 ay_ = y;
mjr 6:cc35eb643e8f 1517 az_ = z;
mjr 3:3514575d4f86 1518 }
mjr 3:3514575d4f86 1519
mjr 3:3514575d4f86 1520 // underlying accelerometer object
mjr 3:3514575d4f86 1521 MMA8451Q mma_;
mjr 3:3514575d4f86 1522
mjr 5:a70c0bce770d 1523 // last raw acceleration readings
mjr 6:cc35eb643e8f 1524 float ax_, ay_, az_;
mjr 5:a70c0bce770d 1525
mjr 6:cc35eb643e8f 1526 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 1527 float vx_, vy_;
mjr 6:cc35eb643e8f 1528
mjr 3:3514575d4f86 1529 // timer for measuring time between get() samples
mjr 3:3514575d4f86 1530 Timer tGet_;
mjr 3:3514575d4f86 1531
mjr 3:3514575d4f86 1532 // timer for measuring time between interrupts
mjr 3:3514575d4f86 1533 Timer tInt_;
mjr 5:a70c0bce770d 1534
mjr 6:cc35eb643e8f 1535 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 1536 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 1537 // at rest.
mjr 6:cc35eb643e8f 1538 float cx_, cy_;
mjr 5:a70c0bce770d 1539
mjr 5:a70c0bce770d 1540 // timer for atuo-centering
mjr 5:a70c0bce770d 1541 Timer tCenter_;
mjr 6:cc35eb643e8f 1542
mjr 6:cc35eb643e8f 1543 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 1544 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 1545 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 1546 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 1547 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 1548 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 1549 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 1550 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 1551 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 1552 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 1553 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 1554 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 1555 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 1556 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 1557 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 1558
mjr 5:a70c0bce770d 1559 // interurupt pin name
mjr 5:a70c0bce770d 1560 PinName irqPin_;
mjr 5:a70c0bce770d 1561
mjr 5:a70c0bce770d 1562 // interrupt router
mjr 5:a70c0bce770d 1563 InterruptIn intIn_;
mjr 3:3514575d4f86 1564 };
mjr 3:3514575d4f86 1565
mjr 5:a70c0bce770d 1566
mjr 5:a70c0bce770d 1567 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1568 //
mjr 14:df700b22ca08 1569 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 1570 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 1571 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 1572 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 1573 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 1574 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 1575 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 1576 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 1577 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 1578 //
mjr 14:df700b22ca08 1579 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 1580 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 1581 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 1582 //
mjr 5:a70c0bce770d 1583 void clear_i2c()
mjr 5:a70c0bce770d 1584 {
mjr 38:091e511ce8a0 1585 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 1586 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 1587 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 1588
mjr 5:a70c0bce770d 1589 // clock the SCL 9 times
mjr 5:a70c0bce770d 1590 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 1591 {
mjr 5:a70c0bce770d 1592 scl = 1;
mjr 5:a70c0bce770d 1593 wait_us(20);
mjr 5:a70c0bce770d 1594 scl = 0;
mjr 5:a70c0bce770d 1595 wait_us(20);
mjr 5:a70c0bce770d 1596 }
mjr 5:a70c0bce770d 1597 }
mjr 14:df700b22ca08 1598
mjr 14:df700b22ca08 1599 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 1600 //
mjr 33:d832bcab089e 1601 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 1602 // for a given interval before allowing an update.
mjr 33:d832bcab089e 1603 //
mjr 33:d832bcab089e 1604 class Debouncer
mjr 33:d832bcab089e 1605 {
mjr 33:d832bcab089e 1606 public:
mjr 33:d832bcab089e 1607 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 1608 {
mjr 33:d832bcab089e 1609 t.start();
mjr 33:d832bcab089e 1610 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 1611 this->tmin = tmin;
mjr 33:d832bcab089e 1612 }
mjr 33:d832bcab089e 1613
mjr 33:d832bcab089e 1614 // Get the current stable value
mjr 33:d832bcab089e 1615 bool val() const { return stable; }
mjr 33:d832bcab089e 1616
mjr 33:d832bcab089e 1617 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 1618 // input device.
mjr 33:d832bcab089e 1619 void sampleIn(bool val)
mjr 33:d832bcab089e 1620 {
mjr 33:d832bcab089e 1621 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 1622 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 1623 // on the sample reader.
mjr 33:d832bcab089e 1624 if (val != prv)
mjr 33:d832bcab089e 1625 {
mjr 33:d832bcab089e 1626 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 1627 t.reset();
mjr 33:d832bcab089e 1628
mjr 33:d832bcab089e 1629 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 1630 prv = val;
mjr 33:d832bcab089e 1631 }
mjr 33:d832bcab089e 1632 else if (val != stable)
mjr 33:d832bcab089e 1633 {
mjr 33:d832bcab089e 1634 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 1635 // and different from the stable value. This means that
mjr 33:d832bcab089e 1636 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 1637 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 1638 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 1639 if (t.read() > tmin)
mjr 33:d832bcab089e 1640 stable = val;
mjr 33:d832bcab089e 1641 }
mjr 33:d832bcab089e 1642 }
mjr 33:d832bcab089e 1643
mjr 33:d832bcab089e 1644 private:
mjr 33:d832bcab089e 1645 // current stable value
mjr 33:d832bcab089e 1646 bool stable;
mjr 33:d832bcab089e 1647
mjr 33:d832bcab089e 1648 // last raw sample value
mjr 33:d832bcab089e 1649 bool prv;
mjr 33:d832bcab089e 1650
mjr 33:d832bcab089e 1651 // elapsed time since last raw input change
mjr 33:d832bcab089e 1652 Timer t;
mjr 33:d832bcab089e 1653
mjr 33:d832bcab089e 1654 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 1655 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 1656 float tmin;
mjr 33:d832bcab089e 1657 };
mjr 33:d832bcab089e 1658
mjr 33:d832bcab089e 1659
mjr 33:d832bcab089e 1660 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 1661 //
mjr 33:d832bcab089e 1662 // Turn off all outputs and restore everything to the default LedWiz
mjr 33:d832bcab089e 1663 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 33:d832bcab089e 1664 // brightness) and switch state Off, sets all extended outputs (#33
mjr 33:d832bcab089e 1665 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 33:d832bcab089e 1666 // This effectively restores the power-on conditions.
mjr 33:d832bcab089e 1667 //
mjr 33:d832bcab089e 1668 void allOutputsOff()
mjr 33:d832bcab089e 1669 {
mjr 33:d832bcab089e 1670 // reset all LedWiz outputs to OFF/48
mjr 35:e959ffba78fd 1671 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 33:d832bcab089e 1672 {
mjr 33:d832bcab089e 1673 outLevel[i] = 0;
mjr 33:d832bcab089e 1674 wizOn[i] = 0;
mjr 33:d832bcab089e 1675 wizVal[i] = 48;
mjr 33:d832bcab089e 1676 lwPin[i]->set(0);
mjr 33:d832bcab089e 1677 }
mjr 33:d832bcab089e 1678
mjr 33:d832bcab089e 1679 // reset all extended outputs (ports >32) to full off (brightness 0)
mjr 33:d832bcab089e 1680 for (int i = 32 ; i < numOutputs ; ++i)
mjr 33:d832bcab089e 1681 {
mjr 33:d832bcab089e 1682 outLevel[i] = 0;
mjr 33:d832bcab089e 1683 lwPin[i]->set(0);
mjr 33:d832bcab089e 1684 }
mjr 33:d832bcab089e 1685
mjr 33:d832bcab089e 1686 // restore default LedWiz flash rate
mjr 33:d832bcab089e 1687 wizSpeed = 2;
mjr 34:6b981a2afab7 1688
mjr 34:6b981a2afab7 1689 // flush changes to hc595, if applicable
mjr 35:e959ffba78fd 1690 if (hc595 != 0)
mjr 35:e959ffba78fd 1691 hc595->update();
mjr 33:d832bcab089e 1692 }
mjr 33:d832bcab089e 1693
mjr 33:d832bcab089e 1694 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 1695 //
mjr 33:d832bcab089e 1696 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 1697 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 1698 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 1699 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 1700 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 1701 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 1702 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 1703 //
mjr 33:d832bcab089e 1704 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 1705 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 1706 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 1707 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 1708 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 1709 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 1710 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 1711 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 1712 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 1713 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 1714 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 1715 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 1716 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 1717 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 1718 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 1719 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 1720 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 1721 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 1722 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 1723 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 1724 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 1725 //
mjr 33:d832bcab089e 1726 // This scheme might seem a little convoluted, but it neatly handles
mjr 33:d832bcab089e 1727 // all of the different cases that can occur:
mjr 33:d832bcab089e 1728 //
mjr 33:d832bcab089e 1729 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 33:d832bcab089e 1730 // so that the PC goes into "Soft Off" mode (ACPI state S5, in Windows
mjr 33:d832bcab089e 1731 // parlance) when the user turns off the cabinet. In this state, the
mjr 33:d832bcab089e 1732 // motherboard supplies power to USB devices, so the KL25Z continues
mjr 33:d832bcab089e 1733 // running without interruption. The latch system lets us monitor
mjr 33:d832bcab089e 1734 // the power state even when we're never rebooted, since the latch
mjr 33:d832bcab089e 1735 // will turn off when PSU2 is off regardless of what the KL25Z is doing.
mjr 33:d832bcab089e 1736 //
mjr 33:d832bcab089e 1737 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 1738 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 1739 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 1740 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 1741 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 1742 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 1743 // will power up before or after PSU2, so it's not good enough to
mjr 33:d832bcab089e 1744 // observe the *current* state of PSU2 when we first check - if PSU2
mjr 33:d832bcab089e 1745 // were to come on first, checking the current state alone would fool
mjr 33:d832bcab089e 1746 // us into thinking that no action is required, because we would never
mjr 33:d832bcab089e 1747 // have known that PSU2 was ever off. The latch handles this case by
mjr 33:d832bcab089e 1748 // letting us see that PSU2 *was* off before we checked.
mjr 33:d832bcab089e 1749 //
mjr 33:d832bcab089e 1750 // - If the KL25Z is rebooted while the main system is running, or the
mjr 33:d832bcab089e 1751 // KL25Z is unplugged and plugged back in, we will correctly leave the
mjr 33:d832bcab089e 1752 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 1753 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 1754 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 1755 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 1756 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 1757 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 1758 //
mjr 33:d832bcab089e 1759 //
mjr 33:d832bcab089e 1760
mjr 33:d832bcab089e 1761 // Current PSU2 state:
mjr 33:d832bcab089e 1762 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 1763 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 1764 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 1765 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 1766 // 5 -> TV relay on
mjr 33:d832bcab089e 1767 //
mjr 33:d832bcab089e 1768 int psu2_state = 1;
mjr 35:e959ffba78fd 1769
mjr 35:e959ffba78fd 1770 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 1771 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 1772 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 1773
mjr 35:e959ffba78fd 1774 // TV ON switch relay control
mjr 35:e959ffba78fd 1775 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 1776
mjr 35:e959ffba78fd 1777 // Timer interrupt
mjr 35:e959ffba78fd 1778 Ticker tv_ticker;
mjr 35:e959ffba78fd 1779 float tv_delay_time;
mjr 33:d832bcab089e 1780 void TVTimerInt()
mjr 33:d832bcab089e 1781 {
mjr 35:e959ffba78fd 1782 // time since last state change
mjr 35:e959ffba78fd 1783 static Timer tv_timer;
mjr 35:e959ffba78fd 1784
mjr 33:d832bcab089e 1785 // Check our internal state
mjr 33:d832bcab089e 1786 switch (psu2_state)
mjr 33:d832bcab089e 1787 {
mjr 33:d832bcab089e 1788 case 1:
mjr 33:d832bcab089e 1789 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 1790 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 1791 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 1792 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 1793 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 1794 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 1795 {
mjr 33:d832bcab089e 1796 // switch to OFF state
mjr 33:d832bcab089e 1797 psu2_state = 2;
mjr 33:d832bcab089e 1798
mjr 33:d832bcab089e 1799 // try setting the latch
mjr 35:e959ffba78fd 1800 psu2_status_set->write(1);
mjr 33:d832bcab089e 1801 }
mjr 33:d832bcab089e 1802 break;
mjr 33:d832bcab089e 1803
mjr 33:d832bcab089e 1804 case 2:
mjr 33:d832bcab089e 1805 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 1806 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 1807 psu2_status_set->write(0);
mjr 33:d832bcab089e 1808 psu2_state = 3;
mjr 33:d832bcab089e 1809 break;
mjr 33:d832bcab089e 1810
mjr 33:d832bcab089e 1811 case 3:
mjr 33:d832bcab089e 1812 // CHECK state: we pulsed SET, and we're now ready to see
mjr 33:d832bcab089e 1813 // if that stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 1814 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 1815 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 1816 if (psu2_status_sense->read())
mjr 33:d832bcab089e 1817 {
mjr 33:d832bcab089e 1818 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 1819 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 1820 tv_timer.reset();
mjr 33:d832bcab089e 1821 tv_timer.start();
mjr 33:d832bcab089e 1822 psu2_state = 4;
mjr 33:d832bcab089e 1823 }
mjr 33:d832bcab089e 1824 else
mjr 33:d832bcab089e 1825 {
mjr 33:d832bcab089e 1826 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 1827 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 1828 // was turned on since the last check.
mjr 35:e959ffba78fd 1829 psu2_status_set->write(1);
mjr 33:d832bcab089e 1830 psu2_state = 2;
mjr 33:d832bcab089e 1831 }
mjr 33:d832bcab089e 1832 break;
mjr 33:d832bcab089e 1833
mjr 33:d832bcab089e 1834 case 4:
mjr 33:d832bcab089e 1835 // TV timer countdown in progress. If we've reached the
mjr 33:d832bcab089e 1836 // delay time, pulse the relay.
mjr 35:e959ffba78fd 1837 if (tv_timer.read() >= tv_delay_time)
mjr 33:d832bcab089e 1838 {
mjr 33:d832bcab089e 1839 // turn on the relay for one timer interval
mjr 35:e959ffba78fd 1840 tv_relay->write(1);
mjr 33:d832bcab089e 1841 psu2_state = 5;
mjr 33:d832bcab089e 1842 }
mjr 33:d832bcab089e 1843 break;
mjr 33:d832bcab089e 1844
mjr 33:d832bcab089e 1845 case 5:
mjr 33:d832bcab089e 1846 // TV timer relay on. We pulse this for one interval, so
mjr 33:d832bcab089e 1847 // it's now time to turn it off and return to the default state.
mjr 35:e959ffba78fd 1848 tv_relay->write(0);
mjr 33:d832bcab089e 1849 psu2_state = 1;
mjr 33:d832bcab089e 1850 break;
mjr 33:d832bcab089e 1851 }
mjr 33:d832bcab089e 1852 }
mjr 33:d832bcab089e 1853
mjr 35:e959ffba78fd 1854 // Start the TV ON checker. If the status sense circuit is enabled in
mjr 35:e959ffba78fd 1855 // the configuration, we'll set up the pin connections and start the
mjr 35:e959ffba78fd 1856 // interrupt handler that periodically checks the status. Does nothing
mjr 35:e959ffba78fd 1857 // if any of the pins are configured as NC.
mjr 35:e959ffba78fd 1858 void startTVTimer(Config &cfg)
mjr 35:e959ffba78fd 1859 {
mjr 35:e959ffba78fd 1860 // only start the timer if the status sense circuit pins are configured
mjr 35:e959ffba78fd 1861 if (cfg.TVON.statusPin != NC && cfg.TVON.latchPin != NC && cfg.TVON.relayPin != NC)
mjr 35:e959ffba78fd 1862 {
mjr 35:e959ffba78fd 1863 psu2_status_sense = new DigitalIn(cfg.TVON.statusPin);
mjr 35:e959ffba78fd 1864 psu2_status_set = new DigitalOut(cfg.TVON.latchPin);
mjr 35:e959ffba78fd 1865 tv_relay = new DigitalOut(cfg.TVON.relayPin);
mjr 35:e959ffba78fd 1866 tv_delay_time = cfg.TVON.delayTime;
mjr 35:e959ffba78fd 1867
mjr 35:e959ffba78fd 1868 // Set up our time routine to run every 1/4 second.
mjr 35:e959ffba78fd 1869 tv_ticker.attach(&TVTimerInt, 0.25);
mjr 35:e959ffba78fd 1870 }
mjr 35:e959ffba78fd 1871 }
mjr 35:e959ffba78fd 1872
mjr 35:e959ffba78fd 1873 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 1874 //
mjr 35:e959ffba78fd 1875 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 1876 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 1877 //
mjr 35:e959ffba78fd 1878 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 1879 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 1880 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 1881 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 1882 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 1883 // again each time the firmware is updated.
mjr 35:e959ffba78fd 1884 //
mjr 35:e959ffba78fd 1885 NVM nvm;
mjr 35:e959ffba78fd 1886
mjr 35:e959ffba78fd 1887 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 1888 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 1889
mjr 35:e959ffba78fd 1890 // flash memory controller interface
mjr 35:e959ffba78fd 1891 FreescaleIAP iap;
mjr 35:e959ffba78fd 1892
mjr 35:e959ffba78fd 1893 // figure the flash address as a pointer along with the number of sectors
mjr 35:e959ffba78fd 1894 // required to store the structure
mjr 35:e959ffba78fd 1895 NVM *configFlashAddr(int &addr, int &numSectors)
mjr 35:e959ffba78fd 1896 {
mjr 35:e959ffba78fd 1897 // figure how many flash sectors we span, rounding up to whole sectors
mjr 35:e959ffba78fd 1898 numSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 35:e959ffba78fd 1899
mjr 35:e959ffba78fd 1900 // figure the address - this is the highest flash address where the
mjr 35:e959ffba78fd 1901 // structure will fit with the start aligned on a sector boundary
mjr 35:e959ffba78fd 1902 addr = iap.flash_size() - (numSectors * SECTOR_SIZE);
mjr 35:e959ffba78fd 1903
mjr 35:e959ffba78fd 1904 // return the address as a pointer
mjr 35:e959ffba78fd 1905 return (NVM *)addr;
mjr 35:e959ffba78fd 1906 }
mjr 35:e959ffba78fd 1907
mjr 35:e959ffba78fd 1908 // figure the flash address as a pointer
mjr 35:e959ffba78fd 1909 NVM *configFlashAddr()
mjr 35:e959ffba78fd 1910 {
mjr 35:e959ffba78fd 1911 int addr, numSectors;
mjr 35:e959ffba78fd 1912 return configFlashAddr(addr, numSectors);
mjr 35:e959ffba78fd 1913 }
mjr 35:e959ffba78fd 1914
mjr 35:e959ffba78fd 1915 // Load the config from flash
mjr 35:e959ffba78fd 1916 void loadConfigFromFlash()
mjr 35:e959ffba78fd 1917 {
mjr 35:e959ffba78fd 1918 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 1919 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 1920 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 1921 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 1922 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 1923 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 1924 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 1925 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 1926 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 1927 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 1928 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 1929 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 1930 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 1931 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 1932 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 1933 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 1934
mjr 35:e959ffba78fd 1935 // Figure how many sectors we need for our structure
mjr 35:e959ffba78fd 1936 NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 1937
mjr 35:e959ffba78fd 1938 // if the flash is valid, load it; otherwise initialize to defaults
mjr 35:e959ffba78fd 1939 if (flash->valid())
mjr 35:e959ffba78fd 1940 {
mjr 35:e959ffba78fd 1941 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 1942 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 1943 }
mjr 35:e959ffba78fd 1944 else
mjr 35:e959ffba78fd 1945 {
mjr 35:e959ffba78fd 1946 // flash is invalid - load factory settings nito RAM structure
mjr 35:e959ffba78fd 1947 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 1948 }
mjr 35:e959ffba78fd 1949 }
mjr 35:e959ffba78fd 1950
mjr 35:e959ffba78fd 1951 void saveConfigToFlash()
mjr 33:d832bcab089e 1952 {
mjr 35:e959ffba78fd 1953 int addr, sectors;
mjr 35:e959ffba78fd 1954 configFlashAddr(addr, sectors);
mjr 35:e959ffba78fd 1955 nvm.save(iap, addr);
mjr 35:e959ffba78fd 1956 }
mjr 35:e959ffba78fd 1957
mjr 35:e959ffba78fd 1958 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 1959 //
mjr 38:091e511ce8a0 1960 // NIGHT MODE flag. When night mode is on, we disable all outputs
mjr 38:091e511ce8a0 1961 // marked as "noisemakers" in the output configuration flags.
mjr 38:091e511ce8a0 1962 int nightMode;
mjr 38:091e511ce8a0 1963
mjr 38:091e511ce8a0 1964 // Update the global output mode settings
mjr 38:091e511ce8a0 1965 static void globalOutputModeChange()
mjr 38:091e511ce8a0 1966 {
mjr 38:091e511ce8a0 1967 // set the global modeLevel[]
mjr 38:091e511ce8a0 1968 for (int i = 0 ; i < numOutputs ; ++i)
mjr 38:091e511ce8a0 1969 {
mjr 38:091e511ce8a0 1970 // assume the port will be on
mjr 38:091e511ce8a0 1971 uint8_t f = 1;
mjr 38:091e511ce8a0 1972
mjr 38:091e511ce8a0 1973 // if night mode is in effect, and this is a noisemaker, disable it
mjr 38:091e511ce8a0 1974 if (nightMode && (cfg.outPort[i].flags & PortFlagNoisemaker) != 0)
mjr 38:091e511ce8a0 1975 f = 0;
mjr 38:091e511ce8a0 1976
mjr 38:091e511ce8a0 1977 // set the final output port override value
mjr 38:091e511ce8a0 1978 modeLevel[i] = f;
mjr 38:091e511ce8a0 1979 }
mjr 38:091e511ce8a0 1980
mjr 38:091e511ce8a0 1981 // update all outputs for the mode change
mjr 38:091e511ce8a0 1982 updateAllOuts();
mjr 38:091e511ce8a0 1983 }
mjr 38:091e511ce8a0 1984
mjr 38:091e511ce8a0 1985 // Turn night mode on or off
mjr 38:091e511ce8a0 1986 static void setNightMode(bool on)
mjr 38:091e511ce8a0 1987 {
mjr 38:091e511ce8a0 1988 nightMode = on;
mjr 38:091e511ce8a0 1989 globalOutputModeChange();
mjr 38:091e511ce8a0 1990 specialPin[0]->set(on ? 255.0 : 0.0);
mjr 38:091e511ce8a0 1991 }
mjr 38:091e511ce8a0 1992
mjr 38:091e511ce8a0 1993 // Toggle night mode
mjr 38:091e511ce8a0 1994 static void toggleNightMode()
mjr 38:091e511ce8a0 1995 {
mjr 38:091e511ce8a0 1996 setNightMode(!nightMode);
mjr 38:091e511ce8a0 1997 }
mjr 38:091e511ce8a0 1998
mjr 38:091e511ce8a0 1999
mjr 38:091e511ce8a0 2000 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 2001 //
mjr 35:e959ffba78fd 2002 // Plunger Sensor
mjr 35:e959ffba78fd 2003 //
mjr 35:e959ffba78fd 2004
mjr 35:e959ffba78fd 2005 // the plunger sensor interface object
mjr 35:e959ffba78fd 2006 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 2007
mjr 35:e959ffba78fd 2008 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 2009 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 2010 void createPlunger()
mjr 35:e959ffba78fd 2011 {
mjr 35:e959ffba78fd 2012 // delete any existing sensor object
mjr 35:e959ffba78fd 2013 if (plungerSensor != 0)
mjr 35:e959ffba78fd 2014 delete plungerSensor;
mjr 35:e959ffba78fd 2015
mjr 35:e959ffba78fd 2016 // create the new sensor object according to the type
mjr 35:e959ffba78fd 2017 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 2018 {
mjr 35:e959ffba78fd 2019 case PlungerType_TSL1410RS:
mjr 35:e959ffba78fd 2020 // pins are: SI, CLOCK, AO
mjr 35:e959ffba78fd 2021 plungerSensor = new PlungerSensorTSL1410R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], NC);
mjr 35:e959ffba78fd 2022 break;
mjr 35:e959ffba78fd 2023
mjr 35:e959ffba78fd 2024 case PlungerType_TSL1410RP:
mjr 35:e959ffba78fd 2025 // pins are: SI, CLOCK, AO1, AO2
mjr 35:e959ffba78fd 2026 plungerSensor = new PlungerSensorTSL1410R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], cfg.plunger.sensorPin[3]);
mjr 35:e959ffba78fd 2027 break;
mjr 35:e959ffba78fd 2028
mjr 35:e959ffba78fd 2029 case PlungerType_TSL1412RS:
mjr 35:e959ffba78fd 2030 // pins are: SI, CLOCK, AO1, AO2
mjr 35:e959ffba78fd 2031 plungerSensor = new PlungerSensorTSL1412R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], NC);
mjr 35:e959ffba78fd 2032 break;
mjr 35:e959ffba78fd 2033
mjr 35:e959ffba78fd 2034 case PlungerType_TSL1412RP:
mjr 35:e959ffba78fd 2035 // pins are: SI, CLOCK, AO1, AO2
mjr 35:e959ffba78fd 2036 plungerSensor = new PlungerSensorTSL1412R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], cfg.plunger.sensorPin[3]);
mjr 35:e959ffba78fd 2037 break;
mjr 35:e959ffba78fd 2038
mjr 35:e959ffba78fd 2039 case PlungerType_Pot:
mjr 35:e959ffba78fd 2040 // pins are: AO
mjr 35:e959ffba78fd 2041 plungerSensor = new PlungerSensorPot(cfg.plunger.sensorPin[0]);
mjr 35:e959ffba78fd 2042 break;
mjr 35:e959ffba78fd 2043
mjr 35:e959ffba78fd 2044 case PlungerType_None:
mjr 35:e959ffba78fd 2045 default:
mjr 35:e959ffba78fd 2046 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 2047 break;
mjr 35:e959ffba78fd 2048 }
mjr 33:d832bcab089e 2049 }
mjr 33:d832bcab089e 2050
mjr 35:e959ffba78fd 2051 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2052 //
mjr 35:e959ffba78fd 2053 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 2054 //
mjr 35:e959ffba78fd 2055 void reboot(USBJoystick &js)
mjr 35:e959ffba78fd 2056 {
mjr 35:e959ffba78fd 2057 // disconnect from USB
mjr 35:e959ffba78fd 2058 js.disconnect();
mjr 35:e959ffba78fd 2059
mjr 35:e959ffba78fd 2060 // wait a few seconds to make sure the host notices the disconnect
mjr 35:e959ffba78fd 2061 wait(5);
mjr 35:e959ffba78fd 2062
mjr 35:e959ffba78fd 2063 // reset the device
mjr 35:e959ffba78fd 2064 NVIC_SystemReset();
mjr 35:e959ffba78fd 2065 while (true) { }
mjr 35:e959ffba78fd 2066 }
mjr 35:e959ffba78fd 2067
mjr 35:e959ffba78fd 2068 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2069 //
mjr 35:e959ffba78fd 2070 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 2071 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 2072 //
mjr 35:e959ffba78fd 2073 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 2074 {
mjr 35:e959ffba78fd 2075 int tmp;
mjr 35:e959ffba78fd 2076 switch (cfg.orientation)
mjr 35:e959ffba78fd 2077 {
mjr 35:e959ffba78fd 2078 case OrientationFront:
mjr 35:e959ffba78fd 2079 tmp = x;
mjr 35:e959ffba78fd 2080 x = y;
mjr 35:e959ffba78fd 2081 y = tmp;
mjr 35:e959ffba78fd 2082 break;
mjr 35:e959ffba78fd 2083
mjr 35:e959ffba78fd 2084 case OrientationLeft:
mjr 35:e959ffba78fd 2085 x = -x;
mjr 35:e959ffba78fd 2086 break;
mjr 35:e959ffba78fd 2087
mjr 35:e959ffba78fd 2088 case OrientationRight:
mjr 35:e959ffba78fd 2089 y = -y;
mjr 35:e959ffba78fd 2090 break;
mjr 35:e959ffba78fd 2091
mjr 35:e959ffba78fd 2092 case OrientationRear:
mjr 35:e959ffba78fd 2093 tmp = -x;
mjr 35:e959ffba78fd 2094 x = -y;
mjr 35:e959ffba78fd 2095 y = tmp;
mjr 35:e959ffba78fd 2096 break;
mjr 35:e959ffba78fd 2097 }
mjr 35:e959ffba78fd 2098 }
mjr 35:e959ffba78fd 2099
mjr 35:e959ffba78fd 2100 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2101 //
mjr 35:e959ffba78fd 2102 // Device status. We report this on each update so that the host config
mjr 35:e959ffba78fd 2103 // tool can detect our current settings. This is a bit mask consisting
mjr 35:e959ffba78fd 2104 // of these bits:
mjr 35:e959ffba78fd 2105 // 0x0001 -> plunger sensor enabled
mjr 35:e959ffba78fd 2106 // 0x8000 -> RESERVED - must always be zero
mjr 35:e959ffba78fd 2107 //
mjr 35:e959ffba78fd 2108 // Note that the high bit (0x8000) must always be 0, since we use that
mjr 35:e959ffba78fd 2109 // to distinguish special request reply packets.
mjr 35:e959ffba78fd 2110 uint16_t statusFlags;
mjr 35:e959ffba78fd 2111
mjr 35:e959ffba78fd 2112 // flag: send a pixel dump after the next read
mjr 35:e959ffba78fd 2113 bool reportPix = false;
mjr 35:e959ffba78fd 2114
mjr 33:d832bcab089e 2115
mjr 35:e959ffba78fd 2116 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2117 //
mjr 35:e959ffba78fd 2118 // Calibration button state:
mjr 35:e959ffba78fd 2119 // 0 = not pushed
mjr 35:e959ffba78fd 2120 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 2121 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 2122 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 2123 int calBtnState = 0;
mjr 35:e959ffba78fd 2124
mjr 35:e959ffba78fd 2125 // calibration button debounce timer
mjr 35:e959ffba78fd 2126 Timer calBtnTimer;
mjr 35:e959ffba78fd 2127
mjr 35:e959ffba78fd 2128 // calibration button light state
mjr 35:e959ffba78fd 2129 int calBtnLit = false;
mjr 35:e959ffba78fd 2130
mjr 35:e959ffba78fd 2131
mjr 35:e959ffba78fd 2132 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2133 //
mjr 35:e959ffba78fd 2134 // Handle a configuration variable update. 'data' is the USB message we
mjr 35:e959ffba78fd 2135 // received from the host.
mjr 35:e959ffba78fd 2136 //
mjr 35:e959ffba78fd 2137 void configVarMsg(uint8_t *data)
mjr 35:e959ffba78fd 2138 {
mjr 35:e959ffba78fd 2139 switch (data[1])
mjr 35:e959ffba78fd 2140 {
mjr 35:e959ffba78fd 2141 case 1:
mjr 35:e959ffba78fd 2142 // USB identification (Vendor ID, Product ID)
mjr 35:e959ffba78fd 2143 cfg.usbVendorID = wireUI16(data+2);
mjr 35:e959ffba78fd 2144 cfg.usbProductID = wireUI16(data+4);
mjr 35:e959ffba78fd 2145 break;
mjr 35:e959ffba78fd 2146
mjr 35:e959ffba78fd 2147 case 2:
mjr 35:e959ffba78fd 2148 // Pinscape Controller unit number - note that data[2] contains
mjr 35:e959ffba78fd 2149 // the nominal unit number, 1-16
mjr 35:e959ffba78fd 2150 if (data[2] >= 1 && data[2] <= 16)
mjr 35:e959ffba78fd 2151 cfg.psUnitNo = data[2];
mjr 35:e959ffba78fd 2152 break;
mjr 35:e959ffba78fd 2153
mjr 35:e959ffba78fd 2154 case 3:
mjr 35:e959ffba78fd 2155 // Enable/disable joystick
mjr 35:e959ffba78fd 2156 cfg.joystickEnabled = data[2];
mjr 35:e959ffba78fd 2157 break;
mjr 35:e959ffba78fd 2158
mjr 35:e959ffba78fd 2159 case 4:
mjr 35:e959ffba78fd 2160 // Accelerometer orientation
mjr 35:e959ffba78fd 2161 cfg.orientation = data[2];
mjr 35:e959ffba78fd 2162 break;
mjr 35:e959ffba78fd 2163
mjr 35:e959ffba78fd 2164 case 5:
mjr 35:e959ffba78fd 2165 // Plunger sensor type
mjr 35:e959ffba78fd 2166 cfg.plunger.sensorType = data[2];
mjr 35:e959ffba78fd 2167 break;
mjr 35:e959ffba78fd 2168
mjr 35:e959ffba78fd 2169 case 6:
mjr 35:e959ffba78fd 2170 // Set plunger pin assignments
mjr 35:e959ffba78fd 2171 cfg.plunger.sensorPin[0] = wirePinName(data[2]);
mjr 35:e959ffba78fd 2172 cfg.plunger.sensorPin[1] = wirePinName(data[3]);
mjr 35:e959ffba78fd 2173 cfg.plunger.sensorPin[2] = wirePinName(data[4]);
mjr 35:e959ffba78fd 2174 cfg.plunger.sensorPin[3] = wirePinName(data[5]);
mjr 35:e959ffba78fd 2175 break;
mjr 35:e959ffba78fd 2176
mjr 35:e959ffba78fd 2177 case 7:
mjr 35:e959ffba78fd 2178 // Plunger calibration button and indicator light pin assignments
mjr 35:e959ffba78fd 2179 cfg.plunger.cal.btn = wirePinName(data[2]);
mjr 35:e959ffba78fd 2180 cfg.plunger.cal.led = wirePinName(data[3]);
mjr 35:e959ffba78fd 2181 break;
mjr 35:e959ffba78fd 2182
mjr 35:e959ffba78fd 2183 case 8:
mjr 35:e959ffba78fd 2184 // ZB Launch Ball setup
mjr 35:e959ffba78fd 2185 cfg.plunger.zbLaunchBall.port = (int)(unsigned char)data[2];
mjr 35:e959ffba78fd 2186 cfg.plunger.zbLaunchBall.btn = (int)(unsigned char)data[3];
mjr 35:e959ffba78fd 2187 cfg.plunger.zbLaunchBall.pushDistance = (float)wireUI16(data+4) / 1000.0;
mjr 35:e959ffba78fd 2188 break;
mjr 35:e959ffba78fd 2189
mjr 35:e959ffba78fd 2190 case 9:
mjr 35:e959ffba78fd 2191 // TV ON setup
mjr 35:e959ffba78fd 2192 cfg.TVON.statusPin = wirePinName(data[2]);
mjr 35:e959ffba78fd 2193 cfg.TVON.latchPin = wirePinName(data[3]);
mjr 35:e959ffba78fd 2194 cfg.TVON.relayPin = wirePinName(data[4]);
mjr 35:e959ffba78fd 2195 cfg.TVON.delayTime = (float)wireUI16(data+5) / 100.0;
mjr 35:e959ffba78fd 2196 break;
mjr 35:e959ffba78fd 2197
mjr 35:e959ffba78fd 2198 case 10:
mjr 35:e959ffba78fd 2199 // TLC5940NT PWM controller chip setup
mjr 35:e959ffba78fd 2200 cfg.tlc5940.nchips = (int)(unsigned char)data[2];
mjr 35:e959ffba78fd 2201 cfg.tlc5940.sin = wirePinName(data[3]);
mjr 35:e959ffba78fd 2202 cfg.tlc5940.sclk = wirePinName(data[4]);
mjr 35:e959ffba78fd 2203 cfg.tlc5940.xlat = wirePinName(data[5]);
mjr 35:e959ffba78fd 2204 cfg.tlc5940.blank = wirePinName(data[6]);
mjr 35:e959ffba78fd 2205 cfg.tlc5940.gsclk = wirePinName(data[7]);
mjr 35:e959ffba78fd 2206 break;
mjr 35:e959ffba78fd 2207
mjr 35:e959ffba78fd 2208 case 11:
mjr 35:e959ffba78fd 2209 // 74HC595 shift register chip setup
mjr 35:e959ffba78fd 2210 cfg.hc595.nchips = (int)(unsigned char)data[2];
mjr 35:e959ffba78fd 2211 cfg.hc595.sin = wirePinName(data[3]);
mjr 35:e959ffba78fd 2212 cfg.hc595.sclk = wirePinName(data[4]);
mjr 35:e959ffba78fd 2213 cfg.hc595.latch = wirePinName(data[5]);
mjr 35:e959ffba78fd 2214 cfg.hc595.ena = wirePinName(data[6]);
mjr 35:e959ffba78fd 2215 break;
mjr 35:e959ffba78fd 2216
mjr 35:e959ffba78fd 2217 case 12:
mjr 35:e959ffba78fd 2218 // button setup
mjr 35:e959ffba78fd 2219 {
mjr 35:e959ffba78fd 2220 // get the button number
mjr 35:e959ffba78fd 2221 int idx = data[2];
mjr 35:e959ffba78fd 2222
mjr 35:e959ffba78fd 2223 // if it's in range, set the button data
mjr 35:e959ffba78fd 2224 if (idx > 0 && idx <= MAX_BUTTONS)
mjr 35:e959ffba78fd 2225 {
mjr 35:e959ffba78fd 2226 // adjust to an array index
mjr 35:e959ffba78fd 2227 --idx;
mjr 35:e959ffba78fd 2228
mjr 35:e959ffba78fd 2229 // set the values
mjr 35:e959ffba78fd 2230 cfg.button[idx].pin = data[3];
mjr 35:e959ffba78fd 2231 cfg.button[idx].typ = data[4];
mjr 35:e959ffba78fd 2232 cfg.button[idx].val = data[5];
mjr 38:091e511ce8a0 2233 cfg.button[idx].flags = data[6];
mjr 35:e959ffba78fd 2234 }
mjr 35:e959ffba78fd 2235 }
mjr 35:e959ffba78fd 2236 break;
mjr 35:e959ffba78fd 2237
mjr 35:e959ffba78fd 2238 case 13:
mjr 35:e959ffba78fd 2239 // LedWiz output port setup
mjr 35:e959ffba78fd 2240 {
mjr 35:e959ffba78fd 2241 // get the port number
mjr 35:e959ffba78fd 2242 int idx = data[2];
mjr 35:e959ffba78fd 2243
mjr 35:e959ffba78fd 2244 // if it's in range, set the port data
mjr 35:e959ffba78fd 2245 if (idx > 0 && idx <= MAX_OUT_PORTS)
mjr 35:e959ffba78fd 2246 {
mjr 35:e959ffba78fd 2247 // adjust to an array index
mjr 35:e959ffba78fd 2248 --idx;
mjr 35:e959ffba78fd 2249
mjr 35:e959ffba78fd 2250 // set the values
mjr 35:e959ffba78fd 2251 cfg.outPort[idx].typ = data[3];
mjr 35:e959ffba78fd 2252 cfg.outPort[idx].pin = data[4];
mjr 35:e959ffba78fd 2253 cfg.outPort[idx].flags = data[5];
mjr 35:e959ffba78fd 2254 }
mjr 38:091e511ce8a0 2255 else if (idx == 254)
mjr 38:091e511ce8a0 2256 {
mjr 38:091e511ce8a0 2257 // special ports
mjr 38:091e511ce8a0 2258 idx -= 254;
mjr 38:091e511ce8a0 2259 cfg.specialPort[idx].typ = data[3];
mjr 38:091e511ce8a0 2260 cfg.specialPort[idx].pin = data[4];
mjr 38:091e511ce8a0 2261 cfg.specialPort[idx].flags = data[5];
mjr 38:091e511ce8a0 2262 }
mjr 35:e959ffba78fd 2263 }
mjr 35:e959ffba78fd 2264 break;
mjr 38:091e511ce8a0 2265
mjr 38:091e511ce8a0 2266 case 14:
mjr 38:091e511ce8a0 2267 // engage/cancel Night Mode
mjr 38:091e511ce8a0 2268 setNightMode(data[2]);
mjr 38:091e511ce8a0 2269 break;
mjr 35:e959ffba78fd 2270 }
mjr 35:e959ffba78fd 2271 }
mjr 35:e959ffba78fd 2272
mjr 35:e959ffba78fd 2273 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2274 //
mjr 35:e959ffba78fd 2275 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 2276 // LedWiz protocol.
mjr 33:d832bcab089e 2277 //
mjr 39:b3815a1c3802 2278 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, int &z)
mjr 35:e959ffba78fd 2279 {
mjr 38:091e511ce8a0 2280 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 2281 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 2282 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 2283 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 2284 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 2285 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 2286 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 2287 // So our full protocol is as follows:
mjr 38:091e511ce8a0 2288 //
mjr 38:091e511ce8a0 2289 // first byte =
mjr 38:091e511ce8a0 2290 // 0-48 -> LWZ-PBA
mjr 38:091e511ce8a0 2291 // 64 -> LWZ SBA
mjr 38:091e511ce8a0 2292 // 65 -> private control message; second byte specifies subtype
mjr 38:091e511ce8a0 2293 // 129-132 -> LWZ-PBA
mjr 38:091e511ce8a0 2294 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 2295 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 2296 // other -> reserved for future use
mjr 38:091e511ce8a0 2297 //
mjr 39:b3815a1c3802 2298 uint8_t *data = lwm.data;
mjr 38:091e511ce8a0 2299 if (data[0] == 64)
mjr 35:e959ffba78fd 2300 {
mjr 38:091e511ce8a0 2301 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 38:091e511ce8a0 2302 // for the outputs; 5th byte is the pulse speed (1-7)
mjr 38:091e511ce8a0 2303 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 38:091e511ce8a0 2304 // data[1], data[2], data[3], data[4], data[5]);
mjr 38:091e511ce8a0 2305
mjr 38:091e511ce8a0 2306 // update all on/off states
mjr 38:091e511ce8a0 2307 for (int i = 0, bit = 1, ri = 1 ; i < numLwOutputs ; ++i, bit <<= 1)
mjr 35:e959ffba78fd 2308 {
mjr 38:091e511ce8a0 2309 // figure the on/off state bit for this output
mjr 38:091e511ce8a0 2310 if (bit == 0x100) {
mjr 38:091e511ce8a0 2311 bit = 1;
mjr 38:091e511ce8a0 2312 ++ri;
mjr 35:e959ffba78fd 2313 }
mjr 35:e959ffba78fd 2314
mjr 38:091e511ce8a0 2315 // set the on/off state
mjr 38:091e511ce8a0 2316 wizOn[i] = ((data[ri] & bit) != 0);
mjr 38:091e511ce8a0 2317
mjr 38:091e511ce8a0 2318 // If the wizVal setting is 255, it means that this
mjr 38:091e511ce8a0 2319 // output was last set to a brightness value with the
mjr 38:091e511ce8a0 2320 // extended protocol. Return it to LedWiz control by
mjr 38:091e511ce8a0 2321 // rescaling the brightness setting to the LedWiz range
mjr 38:091e511ce8a0 2322 // and updating wizVal with the result. If it's any
mjr 38:091e511ce8a0 2323 // other value, it was previously set by a PBA message,
mjr 38:091e511ce8a0 2324 // so simply retain the last setting - in the normal
mjr 38:091e511ce8a0 2325 // LedWiz protocol, the "profile" (brightness) and on/off
mjr 38:091e511ce8a0 2326 // states are independent, so an SBA just turns an output
mjr 38:091e511ce8a0 2327 // on or off but retains its last brightness level.
mjr 38:091e511ce8a0 2328 if (wizVal[i] == 255)
mjr 38:091e511ce8a0 2329 wizVal[i] = (uint8_t)round(outLevel[i]*48);
mjr 38:091e511ce8a0 2330 }
mjr 38:091e511ce8a0 2331
mjr 38:091e511ce8a0 2332 // set the flash speed - enforce the value range 1-7
mjr 38:091e511ce8a0 2333 wizSpeed = data[5];
mjr 38:091e511ce8a0 2334 if (wizSpeed < 1)
mjr 38:091e511ce8a0 2335 wizSpeed = 1;
mjr 38:091e511ce8a0 2336 else if (wizSpeed > 7)
mjr 38:091e511ce8a0 2337 wizSpeed = 7;
mjr 38:091e511ce8a0 2338
mjr 38:091e511ce8a0 2339 // update the physical outputs
mjr 38:091e511ce8a0 2340 updateWizOuts();
mjr 38:091e511ce8a0 2341 if (hc595 != 0)
mjr 38:091e511ce8a0 2342 hc595->update();
mjr 38:091e511ce8a0 2343
mjr 38:091e511ce8a0 2344 // reset the PBA counter
mjr 38:091e511ce8a0 2345 pbaIdx = 0;
mjr 38:091e511ce8a0 2346 }
mjr 38:091e511ce8a0 2347 else if (data[0] == 65)
mjr 38:091e511ce8a0 2348 {
mjr 38:091e511ce8a0 2349 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 2350 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 2351 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 2352 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 2353 // message type.
mjr 39:b3815a1c3802 2354 switch (data[1])
mjr 38:091e511ce8a0 2355 {
mjr 39:b3815a1c3802 2356 case 0:
mjr 39:b3815a1c3802 2357 // No Op
mjr 39:b3815a1c3802 2358 break;
mjr 39:b3815a1c3802 2359
mjr 39:b3815a1c3802 2360 case 1:
mjr 38:091e511ce8a0 2361 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 2362 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 2363 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 2364 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 2365 {
mjr 39:b3815a1c3802 2366
mjr 39:b3815a1c3802 2367 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 2368 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 2369 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 2370
mjr 39:b3815a1c3802 2371 // we'll need a reset if the LedWiz unit number is changing
mjr 39:b3815a1c3802 2372 bool needReset = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 2373
mjr 39:b3815a1c3802 2374 // set the configuration parameters from the message
mjr 39:b3815a1c3802 2375 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 2376 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 2377
mjr 39:b3815a1c3802 2378 // update the status flags
mjr 39:b3815a1c3802 2379 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 39:b3815a1c3802 2380
mjr 39:b3815a1c3802 2381 // if the plunger is no longer enabled, use 0 for z reports
mjr 39:b3815a1c3802 2382 if (!cfg.plunger.enabled)
mjr 39:b3815a1c3802 2383 z = 0;
mjr 39:b3815a1c3802 2384
mjr 39:b3815a1c3802 2385 // save the configuration
mjr 39:b3815a1c3802 2386 saveConfigToFlash();
mjr 39:b3815a1c3802 2387
mjr 39:b3815a1c3802 2388 // reboot if necessary
mjr 39:b3815a1c3802 2389 if (needReset)
mjr 39:b3815a1c3802 2390 reboot(js);
mjr 39:b3815a1c3802 2391 }
mjr 39:b3815a1c3802 2392 break;
mjr 38:091e511ce8a0 2393
mjr 39:b3815a1c3802 2394 case 2:
mjr 38:091e511ce8a0 2395 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 2396 // (No parameters)
mjr 38:091e511ce8a0 2397
mjr 38:091e511ce8a0 2398 // enter calibration mode
mjr 38:091e511ce8a0 2399 calBtnState = 3;
mjr 38:091e511ce8a0 2400 calBtnTimer.reset();
mjr 38:091e511ce8a0 2401 cfg.plunger.cal.reset(plungerSensor->npix);
mjr 39:b3815a1c3802 2402 break;
mjr 39:b3815a1c3802 2403
mjr 39:b3815a1c3802 2404 case 3:
mjr 38:091e511ce8a0 2405 // 3 = pixel dump
mjr 38:091e511ce8a0 2406 // (No parameters)
mjr 38:091e511ce8a0 2407 reportPix = true;
mjr 38:091e511ce8a0 2408
mjr 38:091e511ce8a0 2409 // show purple until we finish sending the report
mjr 38:091e511ce8a0 2410 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 2411 break;
mjr 39:b3815a1c3802 2412
mjr 39:b3815a1c3802 2413 case 4:
mjr 38:091e511ce8a0 2414 // 4 = hardware configuration query
mjr 38:091e511ce8a0 2415 // (No parameters)
mjr 38:091e511ce8a0 2416 js.reportConfig(
mjr 38:091e511ce8a0 2417 numOutputs,
mjr 38:091e511ce8a0 2418 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 38:091e511ce8a0 2419 cfg.plunger.cal.zero, cfg.plunger.cal.max);
mjr 39:b3815a1c3802 2420 break;
mjr 39:b3815a1c3802 2421
mjr 39:b3815a1c3802 2422 case 5:
mjr 38:091e511ce8a0 2423 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 2424 allOutputsOff();
mjr 39:b3815a1c3802 2425 break;
mjr 39:b3815a1c3802 2426
mjr 39:b3815a1c3802 2427 case 6:
mjr 38:091e511ce8a0 2428 // 6 = Save configuration to flash.
mjr 38:091e511ce8a0 2429 saveConfigToFlash();
mjr 38:091e511ce8a0 2430
mjr 38:091e511ce8a0 2431 // Reboot the microcontroller. Nearly all config changes
mjr 38:091e511ce8a0 2432 // require a reset, and a reset only takes a few seconds,
mjr 38:091e511ce8a0 2433 // so we don't bother tracking whether or not a reboot is
mjr 38:091e511ce8a0 2434 // really needed.
mjr 38:091e511ce8a0 2435 reboot(js);
mjr 39:b3815a1c3802 2436 break;
mjr 38:091e511ce8a0 2437 }
mjr 38:091e511ce8a0 2438 }
mjr 38:091e511ce8a0 2439 else if (data[0] == 66)
mjr 38:091e511ce8a0 2440 {
mjr 38:091e511ce8a0 2441 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 2442 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 2443 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 2444 // in a variable-dependent format.
mjr 38:091e511ce8a0 2445 configVarMsg(data);
mjr 38:091e511ce8a0 2446 }
mjr 38:091e511ce8a0 2447 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 2448 {
mjr 38:091e511ce8a0 2449 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 2450 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 2451 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 2452 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 2453 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 2454 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 2455 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 2456 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 2457 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 2458 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 2459 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 2460 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 2461 //
mjr 38:091e511ce8a0 2462 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 2463 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 2464 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 2465 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 2466 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 2467 // address those ports anyway.
mjr 38:091e511ce8a0 2468 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 2469 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 38:091e511ce8a0 2470 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 2471 {
mjr 38:091e511ce8a0 2472 // set the brightness level for the output
mjr 38:091e511ce8a0 2473 float b = data[i-i0+1]/255.0;
mjr 38:091e511ce8a0 2474 outLevel[i] = b;
mjr 38:091e511ce8a0 2475
mjr 38:091e511ce8a0 2476 // if it's in the basic LedWiz output set, set the LedWiz
mjr 38:091e511ce8a0 2477 // profile value to 255, which means "use outLevel"
mjr 38:091e511ce8a0 2478 if (i < 32)
mjr 38:091e511ce8a0 2479 wizVal[i] = 255;
mjr 38:091e511ce8a0 2480
mjr 38:091e511ce8a0 2481 // set the output
mjr 38:091e511ce8a0 2482 lwPin[i]->set(b * modeLevel[i]);
mjr 38:091e511ce8a0 2483 }
mjr 38:091e511ce8a0 2484
mjr 38:091e511ce8a0 2485 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 2486 if (hc595 != 0)
mjr 38:091e511ce8a0 2487 hc595->update();
mjr 38:091e511ce8a0 2488 }
mjr 38:091e511ce8a0 2489 else
mjr 38:091e511ce8a0 2490 {
mjr 38:091e511ce8a0 2491 // Everything else is LWZ-PBA. This is a full "profile"
mjr 38:091e511ce8a0 2492 // dump from the host for one bank of 8 outputs. Each
mjr 38:091e511ce8a0 2493 // byte sets one output in the current bank. The current
mjr 38:091e511ce8a0 2494 // bank is implied; the bank starts at 0 and is reset to 0
mjr 38:091e511ce8a0 2495 // by any LWZ-SBA message, and is incremented to the next
mjr 38:091e511ce8a0 2496 // bank by each LWZ-PBA message. Our variable pbaIdx keeps
mjr 38:091e511ce8a0 2497 // track of our notion of the current bank. There's no direct
mjr 38:091e511ce8a0 2498 // way for the host to select the bank; it just has to count
mjr 38:091e511ce8a0 2499 // on us staying in sync. In practice, the host will always
mjr 38:091e511ce8a0 2500 // send a full set of 4 PBA messages in a row to set all 32
mjr 38:091e511ce8a0 2501 // outputs.
mjr 38:091e511ce8a0 2502 //
mjr 38:091e511ce8a0 2503 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 2504 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 2505 // wizVal[] entry for each output, and that takes precedence
mjr 38:091e511ce8a0 2506 // over the extended protocol settings.
mjr 38:091e511ce8a0 2507 //
mjr 38:091e511ce8a0 2508 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 2509 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 2510
mjr 38:091e511ce8a0 2511 // Update all output profile settings
mjr 38:091e511ce8a0 2512 for (int i = 0 ; i < 8 ; ++i)
mjr 38:091e511ce8a0 2513 wizVal[pbaIdx + i] = data[i];
mjr 38:091e511ce8a0 2514
mjr 38:091e511ce8a0 2515 // Update the physical LED state if this is the last bank.
mjr 38:091e511ce8a0 2516 // Note that hosts always send a full set of four PBA
mjr 38:091e511ce8a0 2517 // messages, so there's no need to do a physical update
mjr 38:091e511ce8a0 2518 // until we've received the last bank's PBA message.
mjr 38:091e511ce8a0 2519 if (pbaIdx == 24)
mjr 38:091e511ce8a0 2520 {
mjr 35:e959ffba78fd 2521 updateWizOuts();
mjr 35:e959ffba78fd 2522 if (hc595 != 0)
mjr 35:e959ffba78fd 2523 hc595->update();
mjr 35:e959ffba78fd 2524 pbaIdx = 0;
mjr 35:e959ffba78fd 2525 }
mjr 38:091e511ce8a0 2526 else
mjr 38:091e511ce8a0 2527 pbaIdx += 8;
mjr 38:091e511ce8a0 2528 }
mjr 38:091e511ce8a0 2529 }
mjr 35:e959ffba78fd 2530
mjr 33:d832bcab089e 2531
mjr 38:091e511ce8a0 2532 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 2533 //
mjr 38:091e511ce8a0 2534 // Pre-connection diagnostic flasher
mjr 38:091e511ce8a0 2535 //
mjr 38:091e511ce8a0 2536 void preConnectFlasher()
mjr 38:091e511ce8a0 2537 {
mjr 38:091e511ce8a0 2538 diagLED(1, 0, 0);
mjr 38:091e511ce8a0 2539 wait(0.05);
mjr 38:091e511ce8a0 2540 diagLED(0, 0, 0);
mjr 35:e959ffba78fd 2541 }
mjr 17:ab3cec0c8bf4 2542
mjr 17:ab3cec0c8bf4 2543 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 2544 //
mjr 5:a70c0bce770d 2545 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 2546 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 2547 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 2548 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 2549 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 2550 // port outputs.
mjr 5:a70c0bce770d 2551 //
mjr 0:5acbbe3f4cf4 2552 int main(void)
mjr 0:5acbbe3f4cf4 2553 {
mjr 39:b3815a1c3802 2554 printf("\r\nPinscape Controller starting\r\n");
mjr 39:b3815a1c3802 2555 // memory config debugging: {int *a = new int; printf("Stack=%lx, heap=%lx, free=%ld\r\n", (long)&a, (long)a, (long)&a - (long)a);}
mjr 1:d913e0afb2ac 2556
mjr 39:b3815a1c3802 2557 // clear the I2C bus (for the accelerometer)
mjr 35:e959ffba78fd 2558 clear_i2c();
mjr 38:091e511ce8a0 2559
mjr 35:e959ffba78fd 2560 // load the saved configuration
mjr 35:e959ffba78fd 2561 loadConfigFromFlash();
mjr 35:e959ffba78fd 2562
mjr 38:091e511ce8a0 2563 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 2564 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 2565
mjr 38:091e511ce8a0 2566 // set up the pre-connected ticker
mjr 38:091e511ce8a0 2567 Ticker preConnectTicker;
mjr 38:091e511ce8a0 2568 preConnectTicker.attach(preConnectFlasher, 3);
mjr 38:091e511ce8a0 2569
mjr 33:d832bcab089e 2570 // start the TV timer, if applicable
mjr 35:e959ffba78fd 2571 startTVTimer(cfg);
mjr 33:d832bcab089e 2572
mjr 33:d832bcab089e 2573 // we're not connected/awake yet
mjr 33:d832bcab089e 2574 bool connected = false;
mjr 33:d832bcab089e 2575 time_t connectChangeTime = time(0);
mjr 33:d832bcab089e 2576
mjr 35:e959ffba78fd 2577 // create the plunger sensor interface
mjr 35:e959ffba78fd 2578 createPlunger();
mjr 33:d832bcab089e 2579
mjr 35:e959ffba78fd 2580 // set up the TLC5940 interface and start the TLC5940 clock, if applicable
mjr 35:e959ffba78fd 2581 init_tlc5940(cfg);
mjr 34:6b981a2afab7 2582
mjr 34:6b981a2afab7 2583 // enable the 74HC595 chips, if present
mjr 35:e959ffba78fd 2584 init_hc595(cfg);
mjr 6:cc35eb643e8f 2585
mjr 38:091e511ce8a0 2586 // Initialize the LedWiz ports. Note that it's important to wait until
mjr 38:091e511ce8a0 2587 // after initializing the various off-board output port controller chip
mjr 38:091e511ce8a0 2588 // sybsystems (TLC5940, 74HC595), since pins attached to peripheral
mjr 38:091e511ce8a0 2589 // controllers will need to address their respective controller objects,
mjr 38:091e511ce8a0 2590 // which don't exit until we initialize those subsystems.
mjr 35:e959ffba78fd 2591 initLwOut(cfg);
mjr 2:c174f9ee414a 2592
mjr 35:e959ffba78fd 2593 // start the TLC5940 clock
mjr 35:e959ffba78fd 2594 if (tlc5940 != 0)
mjr 35:e959ffba78fd 2595 tlc5940->start();
mjr 35:e959ffba78fd 2596
mjr 35:e959ffba78fd 2597 // initialize the button input ports
mjr 35:e959ffba78fd 2598 bool kbKeys = false;
mjr 35:e959ffba78fd 2599 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 2600
mjr 6:cc35eb643e8f 2601 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 2602 // number from the saved configuration.
mjr 35:e959ffba78fd 2603 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, true, cfg.joystickEnabled, kbKeys);
mjr 38:091e511ce8a0 2604
mjr 38:091e511ce8a0 2605 // we're now connected - kill the pre-connect ticker
mjr 38:091e511ce8a0 2606 preConnectTicker.detach();
mjr 17:ab3cec0c8bf4 2607
mjr 38:091e511ce8a0 2608 // Last report timer for the joytick interface. We use the joystick timer
mjr 38:091e511ce8a0 2609 // to throttle the report rate, because VP doesn't benefit from reports any
mjr 38:091e511ce8a0 2610 // faster than about every 10ms.
mjr 38:091e511ce8a0 2611 Timer jsReportTimer;
mjr 38:091e511ce8a0 2612 jsReportTimer.start();
mjr 38:091e511ce8a0 2613
mjr 38:091e511ce8a0 2614 // Time since we successfully sent a USB report. This is a hacky workaround
mjr 38:091e511ce8a0 2615 // for sporadic problems in the USB stack that I haven't been able to figure
mjr 38:091e511ce8a0 2616 // out. If we go too long without successfully sending a USB report, we'll
mjr 38:091e511ce8a0 2617 // try resetting the connection.
mjr 38:091e511ce8a0 2618 Timer jsOKTimer;
mjr 38:091e511ce8a0 2619 jsOKTimer.start();
mjr 35:e959ffba78fd 2620
mjr 35:e959ffba78fd 2621 // set the initial status flags
mjr 35:e959ffba78fd 2622 statusFlags = (cfg.plunger.enabled ? 0x01 : 0x00);
mjr 17:ab3cec0c8bf4 2623
mjr 17:ab3cec0c8bf4 2624 // initialize the calibration buttons, if present
mjr 35:e959ffba78fd 2625 DigitalIn *calBtn = (cfg.plunger.cal.btn == NC ? 0 : new DigitalIn(cfg.plunger.cal.btn));
mjr 35:e959ffba78fd 2626 DigitalOut *calBtnLed = (cfg.plunger.cal.led == NC ? 0 : new DigitalOut(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 2627
mjr 35:e959ffba78fd 2628 // initialize the calibration button
mjr 1:d913e0afb2ac 2629 calBtnTimer.start();
mjr 35:e959ffba78fd 2630 calBtnState = 0;
mjr 1:d913e0afb2ac 2631
mjr 1:d913e0afb2ac 2632 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 2633 Timer hbTimer;
mjr 1:d913e0afb2ac 2634 hbTimer.start();
mjr 1:d913e0afb2ac 2635 int hb = 0;
mjr 5:a70c0bce770d 2636 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 2637
mjr 1:d913e0afb2ac 2638 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 2639 Timer acTimer;
mjr 1:d913e0afb2ac 2640 acTimer.start();
mjr 1:d913e0afb2ac 2641
mjr 0:5acbbe3f4cf4 2642 // create the accelerometer object
mjr 5:a70c0bce770d 2643 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 0:5acbbe3f4cf4 2644
mjr 17:ab3cec0c8bf4 2645 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 2646 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 2647 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 2648
mjr 17:ab3cec0c8bf4 2649 // last plunger report position, in 'npix' normalized pixel units
mjr 17:ab3cec0c8bf4 2650 int pos = 0;
mjr 17:ab3cec0c8bf4 2651
mjr 17:ab3cec0c8bf4 2652 // last plunger report, in joystick units (we report the plunger as the
mjr 17:ab3cec0c8bf4 2653 // "z" axis of the joystick, per the VP convention)
mjr 17:ab3cec0c8bf4 2654 int z = 0;
mjr 17:ab3cec0c8bf4 2655
mjr 17:ab3cec0c8bf4 2656 // most recent prior plunger readings, for tracking release events(z0 is
mjr 17:ab3cec0c8bf4 2657 // reading just before the last one we reported, z1 is the one before that,
mjr 17:ab3cec0c8bf4 2658 // z2 the next before that)
mjr 17:ab3cec0c8bf4 2659 int z0 = 0, z1 = 0, z2 = 0;
mjr 17:ab3cec0c8bf4 2660
mjr 17:ab3cec0c8bf4 2661 // Simulated "bounce" position when firing. We model the bounce off of
mjr 17:ab3cec0c8bf4 2662 // the barrel spring when the plunger is released as proportional to the
mjr 17:ab3cec0c8bf4 2663 // distance it was retracted just before being released.
mjr 17:ab3cec0c8bf4 2664 int zBounce = 0;
mjr 2:c174f9ee414a 2665
mjr 17:ab3cec0c8bf4 2666 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 17:ab3cec0c8bf4 2667 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 17:ab3cec0c8bf4 2668 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 17:ab3cec0c8bf4 2669 // back and releases the plunger, or simply pushes on the plunger from
mjr 17:ab3cec0c8bf4 2670 // the rest position. This allows the plunger to be used in lieu of a
mjr 17:ab3cec0c8bf4 2671 // physical Launch Ball button for tables that don't have plungers.
mjr 17:ab3cec0c8bf4 2672 //
mjr 17:ab3cec0c8bf4 2673 // States:
mjr 17:ab3cec0c8bf4 2674 // 0 = default
mjr 17:ab3cec0c8bf4 2675 // 1 = cocked (plunger has been pulled back about 1" from state 0)
mjr 17:ab3cec0c8bf4 2676 // 2 = uncocked (plunger is pulled back less than 1" from state 1)
mjr 21:5048e16cc9ef 2677 // 3 = launching, plunger is forward beyond park position
mjr 21:5048e16cc9ef 2678 // 4 = launching, plunger is behind park position
mjr 21:5048e16cc9ef 2679 // 5 = pressed and holding (plunger has been pressed forward beyond
mjr 21:5048e16cc9ef 2680 // the park position from state 0)
mjr 17:ab3cec0c8bf4 2681 int lbState = 0;
mjr 6:cc35eb643e8f 2682
mjr 35:e959ffba78fd 2683 // button bit for ZB launch ball button
mjr 35:e959ffba78fd 2684 const uint32_t lbButtonBit = (1 << (cfg.plunger.zbLaunchBall.btn - 1));
mjr 35:e959ffba78fd 2685
mjr 17:ab3cec0c8bf4 2686 // Time since last lbState transition. Some of the states are time-
mjr 17:ab3cec0c8bf4 2687 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 17:ab3cec0c8bf4 2688 // we remain in this state for more than a few milliseconds, since
mjr 17:ab3cec0c8bf4 2689 // it indicates that the plunger is being slowly returned to rest
mjr 17:ab3cec0c8bf4 2690 // rather than released. In the "launching" state, we need to release
mjr 17:ab3cec0c8bf4 2691 // the Launch Ball button after a moment, and we need to wait for
mjr 17:ab3cec0c8bf4 2692 // the plunger to come to rest before returning to state 0.
mjr 17:ab3cec0c8bf4 2693 Timer lbTimer;
mjr 17:ab3cec0c8bf4 2694 lbTimer.start();
mjr 17:ab3cec0c8bf4 2695
mjr 18:5e890ebd0023 2696 // Launch Ball simulated push timer. We start this when we simulate
mjr 18:5e890ebd0023 2697 // the button push, and turn off the simulated button when enough time
mjr 18:5e890ebd0023 2698 // has elapsed.
mjr 18:5e890ebd0023 2699 Timer lbBtnTimer;
mjr 18:5e890ebd0023 2700
mjr 17:ab3cec0c8bf4 2701 // Simulated button states. This is a vector of button states
mjr 17:ab3cec0c8bf4 2702 // for the simulated buttons. We combine this with the physical
mjr 17:ab3cec0c8bf4 2703 // button states on each USB joystick report, so we will report
mjr 17:ab3cec0c8bf4 2704 // a button as pressed if either the physical button is being pressed
mjr 17:ab3cec0c8bf4 2705 // or we're simulating a press on the button. This is used for the
mjr 17:ab3cec0c8bf4 2706 // simulated Launch Ball button.
mjr 17:ab3cec0c8bf4 2707 uint32_t simButtons = 0;
mjr 6:cc35eb643e8f 2708
mjr 6:cc35eb643e8f 2709 // Firing in progress: we set this when we detect the start of rapid
mjr 6:cc35eb643e8f 2710 // plunger movement from a retracted position towards the rest position.
mjr 17:ab3cec0c8bf4 2711 //
mjr 17:ab3cec0c8bf4 2712 // When we detect a firing event, we send VP a series of synthetic
mjr 17:ab3cec0c8bf4 2713 // reports simulating the idealized plunger motion. The actual physical
mjr 17:ab3cec0c8bf4 2714 // motion is much too fast to report to VP; in the time between two USB
mjr 17:ab3cec0c8bf4 2715 // reports, the plunger can shoot all the way forward, rebound off of
mjr 17:ab3cec0c8bf4 2716 // the barrel spring, bounce back part way, and bounce forward again,
mjr 17:ab3cec0c8bf4 2717 // or even do all of this more than once. This means that sampling the
mjr 17:ab3cec0c8bf4 2718 // physical motion at the USB report rate would create a misleading
mjr 17:ab3cec0c8bf4 2719 // picture of the plunger motion, since our samples would catch the
mjr 17:ab3cec0c8bf4 2720 // plunger at random points in this oscillating motion. From the
mjr 17:ab3cec0c8bf4 2721 // user's perspective, the physical action that occurred is simply that
mjr 17:ab3cec0c8bf4 2722 // the plunger was released from a particular distance, so it's this
mjr 17:ab3cec0c8bf4 2723 // high-level event that we want to convey to VP. To do this, we
mjr 17:ab3cec0c8bf4 2724 // synthesize a series of reports to convey an idealized version of
mjr 17:ab3cec0c8bf4 2725 // the release motion that's perfectly synchronized to the VP reports.
mjr 17:ab3cec0c8bf4 2726 // Essentially we pretend that our USB position samples are exactly
mjr 17:ab3cec0c8bf4 2727 // aligned in time with (1) the point of retraction just before the
mjr 17:ab3cec0c8bf4 2728 // user released the plunger, (2) the point of maximum forward motion
mjr 17:ab3cec0c8bf4 2729 // just after the user released the plunger (the point of maximum
mjr 17:ab3cec0c8bf4 2730 // compression as the plunger bounces off of the barrel spring), and
mjr 17:ab3cec0c8bf4 2731 // (3) the plunger coming to rest at the park position. This series
mjr 17:ab3cec0c8bf4 2732 // of reports is synthetic in the sense that it's not what we actually
mjr 17:ab3cec0c8bf4 2733 // see on the CCD at the times of these reports - the true plunger
mjr 17:ab3cec0c8bf4 2734 // position is oscillating at high speed during this period. But at
mjr 17:ab3cec0c8bf4 2735 // the same time it conveys a more faithful picture of the true physical
mjr 17:ab3cec0c8bf4 2736 // motion to VP, and allows VP to reproduce the true physical motion
mjr 17:ab3cec0c8bf4 2737 // more faithfully in its simulation model, by correcting for the
mjr 17:ab3cec0c8bf4 2738 // relatively low sampling rate in the communication path between the
mjr 17:ab3cec0c8bf4 2739 // real plunger and VP's model plunger.
mjr 17:ab3cec0c8bf4 2740 //
mjr 17:ab3cec0c8bf4 2741 // If 'firing' is non-zero, it's the index of our current report in
mjr 17:ab3cec0c8bf4 2742 // the synthetic firing report series.
mjr 9:fd65b0a94720 2743 int firing = 0;
mjr 2:c174f9ee414a 2744
mjr 2:c174f9ee414a 2745 // start the first CCD integration cycle
mjr 35:e959ffba78fd 2746 plungerSensor->init();
mjr 10:976666ffa4ef 2747
mjr 1:d913e0afb2ac 2748 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 2749 // host requests
mjr 0:5acbbe3f4cf4 2750 for (;;)
mjr 0:5acbbe3f4cf4 2751 {
mjr 39:b3815a1c3802 2752 // Process incoming reports on the joystick interface. This channel
mjr 39:b3815a1c3802 2753 // is used for LedWiz commands are our extended protocol commands.
mjr 39:b3815a1c3802 2754 LedWizMsg lwm;
mjr 39:b3815a1c3802 2755 while (js.readLedWizMsg(lwm))
mjr 39:b3815a1c3802 2756 handleInputMsg(lwm, js, z);
mjr 1:d913e0afb2ac 2757
mjr 1:d913e0afb2ac 2758 // check for plunger calibration
mjr 17:ab3cec0c8bf4 2759 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 2760 {
mjr 1:d913e0afb2ac 2761 // check the state
mjr 1:d913e0afb2ac 2762 switch (calBtnState)
mjr 0:5acbbe3f4cf4 2763 {
mjr 1:d913e0afb2ac 2764 case 0:
mjr 1:d913e0afb2ac 2765 // button not yet pushed - start debouncing
mjr