An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Fri Oct 20 06:21:40 2017 +0000
Revision:
91:ae9be42652bf
Parent:
90:aa4e571da8e8
Child:
92:f264fbaa1be5
Add plunger reverse orientation filter

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 82:4f6209cb5c33 262
mjr 2:c174f9ee414a 263
mjr 21:5048e16cc9ef 264 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 265 #include "config.h"
mjr 17:ab3cec0c8bf4 266
mjr 76:7f5912b6340e 267 // forward declarations
mjr 76:7f5912b6340e 268 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 269
mjr 53:9b2611964afc 270 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 273 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 274 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 275 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 276 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 277 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 278 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 279 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 280 // interface.
mjr 53:9b2611964afc 281 //
mjr 53:9b2611964afc 282 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 283 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 284 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 285 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 286 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 287 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 288 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 289 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 292 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 293 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 294 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 295 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 296 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 297 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 298 //
mjr 53:9b2611964afc 299 const char *getOpenSDAID()
mjr 53:9b2611964afc 300 {
mjr 53:9b2611964afc 301 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 302 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 303 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 304
mjr 53:9b2611964afc 305 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 306 }
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 309 //
mjr 53:9b2611964afc 310 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 311 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 312 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 313 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 314 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 315 // want from this.
mjr 53:9b2611964afc 316 //
mjr 53:9b2611964afc 317 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 318 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 319 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 320 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 321 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 322 // macros.
mjr 53:9b2611964afc 323 //
mjr 53:9b2611964afc 324 const char *getBuildID()
mjr 53:9b2611964afc 325 {
mjr 53:9b2611964afc 326 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 327 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 328 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 329
mjr 53:9b2611964afc 330 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 331 }
mjr 53:9b2611964afc 332
mjr 74:822a92bc11d2 333 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 334 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 335 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 336 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 337 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 338 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 339 Timer mainLoopTimer;
mjr 76:7f5912b6340e 340 #endif
mjr 76:7f5912b6340e 341
mjr 53:9b2611964afc 342
mjr 5:a70c0bce770d 343 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 344 //
mjr 38:091e511ce8a0 345 // Forward declarations
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 void setNightMode(bool on);
mjr 38:091e511ce8a0 348 void toggleNightMode();
mjr 38:091e511ce8a0 349
mjr 38:091e511ce8a0 350 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 351 // utilities
mjr 17:ab3cec0c8bf4 352
mjr 77:0b96f6867312 353 // int/float point square of a number
mjr 77:0b96f6867312 354 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 355 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 356
mjr 26:cb71c4af2912 357 // floating point rounding
mjr 26:cb71c4af2912 358 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 359
mjr 17:ab3cec0c8bf4 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 40:cc0d9814522b 363 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 364 // the running state.
mjr 40:cc0d9814522b 365 //
mjr 77:0b96f6867312 366 class ExtTimer: public Timer
mjr 40:cc0d9814522b 367 {
mjr 40:cc0d9814522b 368 public:
mjr 77:0b96f6867312 369 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 370
mjr 40:cc0d9814522b 371 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 372 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 373
mjr 40:cc0d9814522b 374 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 private:
mjr 40:cc0d9814522b 377 bool running;
mjr 40:cc0d9814522b 378 };
mjr 40:cc0d9814522b 379
mjr 53:9b2611964afc 380
mjr 53:9b2611964afc 381 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 382 //
mjr 33:d832bcab089e 383 // USB product version number
mjr 5:a70c0bce770d 384 //
mjr 47:df7a88cd249c 385 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 386
mjr 33:d832bcab089e 387 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 388 //
mjr 6:cc35eb643e8f 389 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 #define JOYMAX 4096
mjr 6:cc35eb643e8f 392
mjr 9:fd65b0a94720 393
mjr 17:ab3cec0c8bf4 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 //
mjr 40:cc0d9814522b 396 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 397 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 398 //
mjr 35:e959ffba78fd 399
mjr 35:e959ffba78fd 400 // unsigned 16-bit integer
mjr 35:e959ffba78fd 401 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 402 {
mjr 35:e959ffba78fd 403 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 404 }
mjr 40:cc0d9814522b 405 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 406 {
mjr 40:cc0d9814522b 407 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 408 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 409 }
mjr 35:e959ffba78fd 410
mjr 35:e959ffba78fd 411 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 412 {
mjr 35:e959ffba78fd 413 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 414 }
mjr 40:cc0d9814522b 415 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 416 {
mjr 40:cc0d9814522b 417 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 418 }
mjr 35:e959ffba78fd 419
mjr 35:e959ffba78fd 420 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 423 }
mjr 40:cc0d9814522b 424 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 425 {
mjr 40:cc0d9814522b 426 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 427 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 428 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 429 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 430 }
mjr 35:e959ffba78fd 431
mjr 35:e959ffba78fd 432 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 433 {
mjr 35:e959ffba78fd 434 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 435 }
mjr 35:e959ffba78fd 436
mjr 53:9b2611964afc 437 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 438 //
mjr 53:9b2611964afc 439 // The internal mbed PinName format is
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 444 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 445 //
mjr 53:9b2611964afc 446 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 447 // pin name fits in 8 bits:
mjr 53:9b2611964afc 448 //
mjr 53:9b2611964afc 449 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 456 {
mjr 53:9b2611964afc 457 if (c == 0xFF)
mjr 53:9b2611964afc 458 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 459 else
mjr 53:9b2611964afc 460 return PinName(
mjr 53:9b2611964afc 461 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 462 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 463 }
mjr 40:cc0d9814522b 464 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 465 {
mjr 53:9b2611964afc 466 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 467 }
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469
mjr 35:e959ffba78fd 470 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 471 //
mjr 38:091e511ce8a0 472 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 473 //
mjr 38:091e511ce8a0 474 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 475 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 476 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 477 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 478 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 479 // SPI capability.
mjr 38:091e511ce8a0 480 //
mjr 38:091e511ce8a0 481 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 482
mjr 73:4e8ce0b18915 483 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 484 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 485 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 486 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 487
mjr 38:091e511ce8a0 488 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 489 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 490 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 491 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 492 {
mjr 73:4e8ce0b18915 493 // remember the new state
mjr 73:4e8ce0b18915 494 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 495
mjr 73:4e8ce0b18915 496 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 497 // applying it to the blue LED
mjr 73:4e8ce0b18915 498 if (diagLEDState == 0)
mjr 77:0b96f6867312 499 {
mjr 77:0b96f6867312 500 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 501 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 502 }
mjr 73:4e8ce0b18915 503
mjr 73:4e8ce0b18915 504 // set the new state
mjr 38:091e511ce8a0 505 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 506 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 507 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 508 }
mjr 38:091e511ce8a0 509
mjr 73:4e8ce0b18915 510 // update the LEDs with the current state
mjr 73:4e8ce0b18915 511 void diagLED(void)
mjr 73:4e8ce0b18915 512 {
mjr 73:4e8ce0b18915 513 diagLED(
mjr 73:4e8ce0b18915 514 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 515 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 516 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 517 }
mjr 73:4e8ce0b18915 518
mjr 38:091e511ce8a0 519 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 520 // an on-board LED segment
mjr 38:091e511ce8a0 521 struct LedSeg
mjr 38:091e511ce8a0 522 {
mjr 38:091e511ce8a0 523 bool r, g, b;
mjr 38:091e511ce8a0 524 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 525
mjr 38:091e511ce8a0 526 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 527 {
mjr 38:091e511ce8a0 528 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 529 // our on-board LED segments
mjr 38:091e511ce8a0 530 int t = pc.typ;
mjr 38:091e511ce8a0 531 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 532 {
mjr 38:091e511ce8a0 533 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 534 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 535 if (pin == LED1)
mjr 38:091e511ce8a0 536 r = true;
mjr 38:091e511ce8a0 537 else if (pin == LED2)
mjr 38:091e511ce8a0 538 g = true;
mjr 38:091e511ce8a0 539 else if (pin == LED3)
mjr 38:091e511ce8a0 540 b = true;
mjr 38:091e511ce8a0 541 }
mjr 38:091e511ce8a0 542 }
mjr 38:091e511ce8a0 543 };
mjr 38:091e511ce8a0 544
mjr 38:091e511ce8a0 545 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 546 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 547 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 548 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 549 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 550 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 551 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 552 {
mjr 38:091e511ce8a0 553 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 554 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 555 LedSeg l;
mjr 38:091e511ce8a0 556 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 557 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 558
mjr 38:091e511ce8a0 559 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 560 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 561 // LedWiz use.
mjr 38:091e511ce8a0 562 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 563 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 564 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 565 }
mjr 38:091e511ce8a0 566
mjr 38:091e511ce8a0 567
mjr 38:091e511ce8a0 568 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 569 //
mjr 76:7f5912b6340e 570 // LedWiz emulation
mjr 76:7f5912b6340e 571 //
mjr 76:7f5912b6340e 572
mjr 76:7f5912b6340e 573 // LedWiz output states.
mjr 76:7f5912b6340e 574 //
mjr 76:7f5912b6340e 575 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 576 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 577 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 578 // The two axes are independent.
mjr 76:7f5912b6340e 579 //
mjr 76:7f5912b6340e 580 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 581 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 582 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 583 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 584 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 585 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 586 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 587 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 588
mjr 76:7f5912b6340e 589 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 590 static uint8_t *wizOn;
mjr 76:7f5912b6340e 591
mjr 76:7f5912b6340e 592 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 593 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 594 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 595 //
mjr 76:7f5912b6340e 596 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 597 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 598 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 599 // 130 = flash on / off
mjr 76:7f5912b6340e 600 // 131 = on / ramp down
mjr 76:7f5912b6340e 601 // 132 = ramp up / on
mjr 5:a70c0bce770d 602 //
mjr 76:7f5912b6340e 603 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 604 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 605 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 606 static uint8_t *wizVal;
mjr 76:7f5912b6340e 607
mjr 76:7f5912b6340e 608 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 609 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 610 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 611 // by the extended protocol:
mjr 76:7f5912b6340e 612 //
mjr 76:7f5912b6340e 613 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 614 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 615 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 616 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 617 // if the brightness is non-zero.
mjr 76:7f5912b6340e 618 //
mjr 76:7f5912b6340e 619 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 620 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 621 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 622 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 623 // 0..255 range.
mjr 26:cb71c4af2912 624 //
mjr 76:7f5912b6340e 625 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 626 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 627 // level.
mjr 26:cb71c4af2912 628 //
mjr 76:7f5912b6340e 629 static uint8_t *outLevel;
mjr 76:7f5912b6340e 630
mjr 76:7f5912b6340e 631
mjr 76:7f5912b6340e 632 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 633 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 634 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 635 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 636 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 637 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 638 //
mjr 76:7f5912b6340e 639 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 640 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 641 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 642 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 643 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 644 // at the maximum size.
mjr 76:7f5912b6340e 645 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 646 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 647
mjr 26:cb71c4af2912 648 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 649 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 650 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 651 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 652 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 653
mjr 76:7f5912b6340e 654
mjr 76:7f5912b6340e 655 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 656 //
mjr 76:7f5912b6340e 657 // Output Ports
mjr 76:7f5912b6340e 658 //
mjr 76:7f5912b6340e 659 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 660 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 661 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 662 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 663 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 664 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 665 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 666 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 667 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 668 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 669 // you have to ration pins among features.
mjr 76:7f5912b6340e 670 //
mjr 87:8d35c74403af 671 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 672 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 673 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 674 //
mjr 87:8d35c74403af 675 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 676 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 677 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 678 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 679 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 680 //
mjr 87:8d35c74403af 681 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 682 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 683 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 684 //
mjr 87:8d35c74403af 685 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 686 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 687 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 688 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 689 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 690 // for the chime board outputs.
mjr 76:7f5912b6340e 691 //
mjr 76:7f5912b6340e 692 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 693 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 694 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 695 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 696 //
mjr 76:7f5912b6340e 697 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 698 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 699 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 700 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 701 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 702 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 703 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 704 // of physical devices they're connected to.
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706
mjr 26:cb71c4af2912 707 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 708 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 709 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 710 class LwOut
mjr 6:cc35eb643e8f 711 {
mjr 6:cc35eb643e8f 712 public:
mjr 40:cc0d9814522b 713 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 714 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 715 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 716 };
mjr 26:cb71c4af2912 717
mjr 35:e959ffba78fd 718 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 719 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 720 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 721 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 722 // numbering.
mjr 35:e959ffba78fd 723 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 724 {
mjr 33:d832bcab089e 725 public:
mjr 35:e959ffba78fd 726 LwVirtualOut() { }
mjr 40:cc0d9814522b 727 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 728 };
mjr 26:cb71c4af2912 729
mjr 34:6b981a2afab7 730 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 731 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 732 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 733 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 734 {
mjr 34:6b981a2afab7 735 public:
mjr 34:6b981a2afab7 736 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 737 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 738
mjr 34:6b981a2afab7 739 private:
mjr 53:9b2611964afc 740 // underlying physical output
mjr 34:6b981a2afab7 741 LwOut *out;
mjr 34:6b981a2afab7 742 };
mjr 34:6b981a2afab7 743
mjr 53:9b2611964afc 744 // Global ZB Launch Ball state
mjr 53:9b2611964afc 745 bool zbLaunchOn = false;
mjr 53:9b2611964afc 746
mjr 53:9b2611964afc 747 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 748 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 749 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 750 {
mjr 53:9b2611964afc 751 public:
mjr 53:9b2611964afc 752 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 753 virtual void set(uint8_t val)
mjr 53:9b2611964afc 754 {
mjr 53:9b2611964afc 755 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 756 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 757
mjr 53:9b2611964afc 758 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 759 out->set(val);
mjr 53:9b2611964afc 760 }
mjr 53:9b2611964afc 761
mjr 53:9b2611964afc 762 private:
mjr 53:9b2611964afc 763 // underlying physical or virtual output
mjr 53:9b2611964afc 764 LwOut *out;
mjr 53:9b2611964afc 765 };
mjr 53:9b2611964afc 766
mjr 53:9b2611964afc 767
mjr 40:cc0d9814522b 768 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 769 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 770 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 771 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 772 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 773 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 774 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 775 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 776 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 777 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 778 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 779 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 780 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 781 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 782 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 783 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 784 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 785 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 786 };
mjr 40:cc0d9814522b 787
mjr 40:cc0d9814522b 788 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 789 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 790 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 791 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 792 {
mjr 40:cc0d9814522b 793 public:
mjr 40:cc0d9814522b 794 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 795 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 796
mjr 40:cc0d9814522b 797 private:
mjr 40:cc0d9814522b 798 LwOut *out;
mjr 40:cc0d9814522b 799 };
mjr 40:cc0d9814522b 800
mjr 77:0b96f6867312 801 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 802 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 803 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 804 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 805
mjr 40:cc0d9814522b 806 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 807 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 808 // mode is engaged.
mjr 40:cc0d9814522b 809 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 810 {
mjr 40:cc0d9814522b 811 public:
mjr 40:cc0d9814522b 812 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 813 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 814
mjr 53:9b2611964afc 815 private:
mjr 53:9b2611964afc 816 LwOut *out;
mjr 53:9b2611964afc 817 };
mjr 53:9b2611964afc 818
mjr 53:9b2611964afc 819 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 820 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 821 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 822 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 823 {
mjr 53:9b2611964afc 824 public:
mjr 53:9b2611964afc 825 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 826 virtual void set(uint8_t)
mjr 53:9b2611964afc 827 {
mjr 53:9b2611964afc 828 // ignore the host value and simply show the current
mjr 53:9b2611964afc 829 // night mode setting
mjr 53:9b2611964afc 830 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 831 }
mjr 40:cc0d9814522b 832
mjr 40:cc0d9814522b 833 private:
mjr 40:cc0d9814522b 834 LwOut *out;
mjr 40:cc0d9814522b 835 };
mjr 40:cc0d9814522b 836
mjr 26:cb71c4af2912 837
mjr 89:c43cd923401c 838 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 839 // top of a physical pin output.
mjr 89:c43cd923401c 840 //
mjr 89:c43cd923401c 841 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 842 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 843 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 844 // level is ON.
mjr 89:c43cd923401c 845 //
mjr 89:c43cd923401c 846 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 847 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 848 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 849 //
mjr 89:c43cd923401c 850 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 851 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 852 // power and start a timer.
mjr 89:c43cd923401c 853 //
mjr 89:c43cd923401c 854 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 855 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 856 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 857 //
mjr 89:c43cd923401c 858 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 859 {
mjr 89:c43cd923401c 860 public:
mjr 89:c43cd923401c 861 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 862 // the configuration.
mjr 89:c43cd923401c 863 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 864 : out(o), params(params)
mjr 89:c43cd923401c 865 {
mjr 89:c43cd923401c 866 // initially OFF
mjr 89:c43cd923401c 867 state = 0;
mjr 89:c43cd923401c 868 }
mjr 89:c43cd923401c 869
mjr 89:c43cd923401c 870 virtual void set(uint8_t level)
mjr 89:c43cd923401c 871 {
mjr 89:c43cd923401c 872 // remebmber the new nominal level set by the client
mjr 89:c43cd923401c 873 val = level;
mjr 89:c43cd923401c 874
mjr 89:c43cd923401c 875 // update the physical output according to our current timing state
mjr 89:c43cd923401c 876 switch (state)
mjr 89:c43cd923401c 877 {
mjr 89:c43cd923401c 878 case 0:
mjr 89:c43cd923401c 879 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 880 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 881 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 882 // off, so there's no change.
mjr 89:c43cd923401c 883 if (level != 0)
mjr 89:c43cd923401c 884 {
mjr 89:c43cd923401c 885 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 886 state = 1;
mjr 89:c43cd923401c 887
mjr 89:c43cd923401c 888 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 889 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 890 // requested
mjr 89:c43cd923401c 891 out->set(level);
mjr 89:c43cd923401c 892
mjr 89:c43cd923401c 893 // add myself to the pending timer list
mjr 89:c43cd923401c 894 pending[nPending++] = this;
mjr 89:c43cd923401c 895
mjr 89:c43cd923401c 896 // note the starting time
mjr 89:c43cd923401c 897 t0 = timer.read_us();
mjr 89:c43cd923401c 898 }
mjr 89:c43cd923401c 899 break;
mjr 89:c43cd923401c 900
mjr 89:c43cd923401c 901 case 1:
mjr 89:c43cd923401c 902 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 903 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 904 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 905 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 906 out->set(level);
mjr 89:c43cd923401c 907 if (level == 0)
mjr 89:c43cd923401c 908 {
mjr 89:c43cd923401c 909 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 910 // so we need to remove it from the list.
mjr 89:c43cd923401c 911 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 912 {
mjr 89:c43cd923401c 913 // is this us?
mjr 89:c43cd923401c 914 if (pending[i] == this)
mjr 89:c43cd923401c 915 {
mjr 89:c43cd923401c 916 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 917 // last list entry
mjr 89:c43cd923401c 918 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 919
mjr 89:c43cd923401c 920 // no need to look any further
mjr 89:c43cd923401c 921 break;
mjr 89:c43cd923401c 922 }
mjr 89:c43cd923401c 923 }
mjr 89:c43cd923401c 924
mjr 89:c43cd923401c 925 // switch to state 0 (off)
mjr 89:c43cd923401c 926 state = 0;
mjr 89:c43cd923401c 927 }
mjr 89:c43cd923401c 928 break;
mjr 89:c43cd923401c 929
mjr 89:c43cd923401c 930 case 2:
mjr 89:c43cd923401c 931 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 932 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 933 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 934 // as the upper bound.
mjr 89:c43cd923401c 935 if (level == 0)
mjr 89:c43cd923401c 936 {
mjr 89:c43cd923401c 937 // switching off - turn off the physical output
mjr 89:c43cd923401c 938 out->set(0);
mjr 89:c43cd923401c 939
mjr 89:c43cd923401c 940 // go to state 0 (off)
mjr 89:c43cd923401c 941 state = 0;
mjr 89:c43cd923401c 942 }
mjr 89:c43cd923401c 943 else
mjr 89:c43cd923401c 944 {
mjr 89:c43cd923401c 945 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 946 // lower of the requested power and the hold power
mjr 89:c43cd923401c 947 uint8_t hold = holdPower();
mjr 89:c43cd923401c 948 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 949 }
mjr 89:c43cd923401c 950 break;
mjr 89:c43cd923401c 951 }
mjr 89:c43cd923401c 952 }
mjr 89:c43cd923401c 953
mjr 89:c43cd923401c 954 // Class initialization
mjr 89:c43cd923401c 955 static void classInit(Config &cfg)
mjr 89:c43cd923401c 956 {
mjr 89:c43cd923401c 957 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 958 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 959 // all of these outputs.
mjr 89:c43cd923401c 960 int n = 0;
mjr 89:c43cd923401c 961 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 962 {
mjr 89:c43cd923401c 963 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 964 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 965 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 966 ++n;
mjr 89:c43cd923401c 967 }
mjr 89:c43cd923401c 968
mjr 89:c43cd923401c 969 // allocate space for the pending timer list
mjr 89:c43cd923401c 970 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 971
mjr 89:c43cd923401c 972 // there's nothing in the pending list yet
mjr 89:c43cd923401c 973 nPending = 0;
mjr 89:c43cd923401c 974
mjr 89:c43cd923401c 975 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 976 // use it to figure elapsed times.
mjr 89:c43cd923401c 977 timer.start();
mjr 89:c43cd923401c 978 }
mjr 89:c43cd923401c 979
mjr 89:c43cd923401c 980 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 981 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 982 static void poll()
mjr 89:c43cd923401c 983 {
mjr 89:c43cd923401c 984 // note the current time
mjr 89:c43cd923401c 985 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 986
mjr 89:c43cd923401c 987 // go through the timer list
mjr 89:c43cd923401c 988 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 989 {
mjr 89:c43cd923401c 990 // get the port
mjr 89:c43cd923401c 991 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 992
mjr 89:c43cd923401c 993 // assume we'll keep it
mjr 89:c43cd923401c 994 bool remove = false;
mjr 89:c43cd923401c 995
mjr 89:c43cd923401c 996 // check if the port is still on
mjr 89:c43cd923401c 997 if (port->state != 0)
mjr 89:c43cd923401c 998 {
mjr 89:c43cd923401c 999 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1000 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1001 {
mjr 89:c43cd923401c 1002 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1003 port->state = 2;
mjr 89:c43cd923401c 1004
mjr 89:c43cd923401c 1005 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1006 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1007 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1008 uint8_t val = port->val;
mjr 89:c43cd923401c 1009 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1010
mjr 89:c43cd923401c 1011 // we're done with the timer
mjr 89:c43cd923401c 1012 remove = true;
mjr 89:c43cd923401c 1013 }
mjr 89:c43cd923401c 1014 }
mjr 89:c43cd923401c 1015 else
mjr 89:c43cd923401c 1016 {
mjr 89:c43cd923401c 1017 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1018 // it from the timer list
mjr 89:c43cd923401c 1019 remove = true;
mjr 89:c43cd923401c 1020 }
mjr 89:c43cd923401c 1021
mjr 89:c43cd923401c 1022 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1023 if (remove)
mjr 89:c43cd923401c 1024 {
mjr 89:c43cd923401c 1025 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1026 // the last entry in the list.
mjr 89:c43cd923401c 1027 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1028
mjr 89:c43cd923401c 1029 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1030 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1031 }
mjr 89:c43cd923401c 1032 else
mjr 89:c43cd923401c 1033 {
mjr 89:c43cd923401c 1034 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1035 ++i;
mjr 89:c43cd923401c 1036 }
mjr 89:c43cd923401c 1037 }
mjr 89:c43cd923401c 1038 }
mjr 89:c43cd923401c 1039
mjr 89:c43cd923401c 1040 protected:
mjr 89:c43cd923401c 1041 // underlying physical output
mjr 89:c43cd923401c 1042 LwOut *out;
mjr 89:c43cd923401c 1043
mjr 89:c43cd923401c 1044 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1045 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1046 uint32_t t0;
mjr 89:c43cd923401c 1047
mjr 89:c43cd923401c 1048 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1049 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1050 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1051 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1052 // if it's lower.
mjr 89:c43cd923401c 1053 uint8_t val;
mjr 89:c43cd923401c 1054
mjr 89:c43cd923401c 1055 // Current port state:
mjr 89:c43cd923401c 1056 //
mjr 89:c43cd923401c 1057 // 0 = off
mjr 89:c43cd923401c 1058 // 1 = on at initial full power
mjr 89:c43cd923401c 1059 // 2 = on at hold power
mjr 89:c43cd923401c 1060 uint8_t state;
mjr 89:c43cd923401c 1061
mjr 89:c43cd923401c 1062 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1063 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1064 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1065 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1066 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1067 uint8_t params;
mjr 89:c43cd923401c 1068
mjr 89:c43cd923401c 1069 // Figure the initial full-power time in microseconds
mjr 89:c43cd923401c 1070 inline uint32_t fullPowerTime_us() const { return ((params >> 4) + 1)*50000; }
mjr 89:c43cd923401c 1071
mjr 89:c43cd923401c 1072 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1073 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1074
mjr 89:c43cd923401c 1075 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1076 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1077 // (which runs continuously).
mjr 89:c43cd923401c 1078 static Timer timer;
mjr 89:c43cd923401c 1079
mjr 89:c43cd923401c 1080 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 89:c43cd923401c 1081 // transitions from OFF to ON, tis timer
mjr 89:c43cd923401c 1082 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1083 static uint8_t nPending;
mjr 89:c43cd923401c 1084 };
mjr 89:c43cd923401c 1085
mjr 89:c43cd923401c 1086 // Flipper Logic statics
mjr 89:c43cd923401c 1087 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1088 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1089 uint8_t LwFlipperLogicOut::nPending;
mjr 89:c43cd923401c 1090
mjr 35:e959ffba78fd 1091 //
mjr 35:e959ffba78fd 1092 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1093 // assignments set in config.h.
mjr 33:d832bcab089e 1094 //
mjr 35:e959ffba78fd 1095 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1096 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1097 {
mjr 35:e959ffba78fd 1098 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1099 {
mjr 53:9b2611964afc 1100 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1101 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1102 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1103 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1104 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1105 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1106 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1107 }
mjr 35:e959ffba78fd 1108 }
mjr 26:cb71c4af2912 1109
mjr 40:cc0d9814522b 1110 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1111 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1112 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1113 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1114 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1115 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1116 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1117 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1118 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1119 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1120 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1121 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1122 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1123 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1124 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1125 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1126 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1127 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1128 };
mjr 40:cc0d9814522b 1129
mjr 40:cc0d9814522b 1130 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1131 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1132 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1133 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1134 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1135 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1136 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1137 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1138 // are always 8 bits.
mjr 40:cc0d9814522b 1139 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1140 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1141 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1142 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1143 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1144 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1145 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1146 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1147 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1148 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1149 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1150 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1151 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1152 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1153 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1154 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1155 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1156 };
mjr 40:cc0d9814522b 1157
mjr 26:cb71c4af2912 1158 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1159 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1160 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1161 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1162 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1163 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1164 {
mjr 26:cb71c4af2912 1165 public:
mjr 60:f38da020aa13 1166 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1167 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1168 {
mjr 26:cb71c4af2912 1169 if (val != prv)
mjr 40:cc0d9814522b 1170 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1171 }
mjr 60:f38da020aa13 1172 uint8_t idx;
mjr 40:cc0d9814522b 1173 uint8_t prv;
mjr 26:cb71c4af2912 1174 };
mjr 26:cb71c4af2912 1175
mjr 40:cc0d9814522b 1176 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1177 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1178 {
mjr 40:cc0d9814522b 1179 public:
mjr 60:f38da020aa13 1180 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1181 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1182 {
mjr 40:cc0d9814522b 1183 if (val != prv)
mjr 40:cc0d9814522b 1184 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1185 }
mjr 60:f38da020aa13 1186 uint8_t idx;
mjr 40:cc0d9814522b 1187 uint8_t prv;
mjr 40:cc0d9814522b 1188 };
mjr 40:cc0d9814522b 1189
mjr 87:8d35c74403af 1190 //
mjr 87:8d35c74403af 1191 // TLC59116 interface object
mjr 87:8d35c74403af 1192 //
mjr 87:8d35c74403af 1193 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1194 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1195 {
mjr 87:8d35c74403af 1196 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1197 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1198 {
mjr 87:8d35c74403af 1199 // set up the interface
mjr 87:8d35c74403af 1200 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1201 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1202 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1203 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1204
mjr 87:8d35c74403af 1205 // initialize the chips
mjr 87:8d35c74403af 1206 tlc59116->init();
mjr 87:8d35c74403af 1207 }
mjr 87:8d35c74403af 1208 }
mjr 87:8d35c74403af 1209
mjr 87:8d35c74403af 1210 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1211 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1212 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1213 // (0-15).
mjr 87:8d35c74403af 1214 //
mjr 87:8d35c74403af 1215 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1216 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1217 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1218 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1219 {
mjr 87:8d35c74403af 1220 public:
mjr 87:8d35c74403af 1221 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1222 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1223 {
mjr 87:8d35c74403af 1224 if (val != prv)
mjr 87:8d35c74403af 1225 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1226 }
mjr 87:8d35c74403af 1227
mjr 87:8d35c74403af 1228 protected:
mjr 87:8d35c74403af 1229 uint8_t addr;
mjr 87:8d35c74403af 1230 uint8_t port;
mjr 87:8d35c74403af 1231 uint8_t prv;
mjr 87:8d35c74403af 1232 };
mjr 87:8d35c74403af 1233
mjr 87:8d35c74403af 1234
mjr 87:8d35c74403af 1235 //
mjr 34:6b981a2afab7 1236 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1237 // config.h.
mjr 87:8d35c74403af 1238 //
mjr 35:e959ffba78fd 1239 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1240
mjr 35:e959ffba78fd 1241 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1242 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1243 {
mjr 35:e959ffba78fd 1244 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1245 {
mjr 53:9b2611964afc 1246 hc595 = new HC595(
mjr 53:9b2611964afc 1247 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1248 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1249 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1250 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1251 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1252 hc595->init();
mjr 35:e959ffba78fd 1253 hc595->update();
mjr 35:e959ffba78fd 1254 }
mjr 35:e959ffba78fd 1255 }
mjr 34:6b981a2afab7 1256
mjr 34:6b981a2afab7 1257 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1258 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1259 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1260 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1261 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1262 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1263 {
mjr 33:d832bcab089e 1264 public:
mjr 60:f38da020aa13 1265 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1266 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1267 {
mjr 34:6b981a2afab7 1268 if (val != prv)
mjr 40:cc0d9814522b 1269 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1270 }
mjr 60:f38da020aa13 1271 uint8_t idx;
mjr 40:cc0d9814522b 1272 uint8_t prv;
mjr 33:d832bcab089e 1273 };
mjr 33:d832bcab089e 1274
mjr 26:cb71c4af2912 1275
mjr 40:cc0d9814522b 1276
mjr 64:ef7ca92dff36 1277 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1278 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1279 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1280 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1281 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1282 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1283 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1284 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1285 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1286 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1287 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1288 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1289 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1290 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1291 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1292 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1293 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1294 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1295 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1296 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1297 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1298 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1299 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1300 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1301 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1302 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1303 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1304 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1305 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1306 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1307 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1308 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1309 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1310 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1311 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1312 };
mjr 26:cb71c4af2912 1313
mjr 64:ef7ca92dff36 1314
mjr 64:ef7ca92dff36 1315 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 1316 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 1317 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 1318 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 1319 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 1320 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1321 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1322 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1323 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1324 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1325 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1326 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1327 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1328 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1329 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1330 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1331 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1332 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1333 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1334 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1335 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1336 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1337 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1338 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1339 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1340 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1341 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1342 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1343 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1344 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1345 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1346 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1347 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1348 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1349 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1350 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1351 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1352 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1353 };
mjr 64:ef7ca92dff36 1354
mjr 77:0b96f6867312 1355 // Polled-update PWM output list
mjr 74:822a92bc11d2 1356 //
mjr 77:0b96f6867312 1357 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1358 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1359 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1360 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1361 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1362 //
mjr 77:0b96f6867312 1363 // Our solution is to simply repeat all PWM updates periodically. If a write
mjr 77:0b96f6867312 1364 // is lost on one cycle, it'll eventually be applied on a subseuqent periodic
mjr 77:0b96f6867312 1365 // update. For low overhead, we do these repeat updates periodically during
mjr 77:0b96f6867312 1366 // the main loop.
mjr 74:822a92bc11d2 1367 //
mjr 77:0b96f6867312 1368 // The mbed library has its own solution to this bug, but it creates a
mjr 77:0b96f6867312 1369 // separate problem of its own. The mbed solution is to write the value
mjr 77:0b96f6867312 1370 // register immediately, and then also reset the "count" register in the
mjr 77:0b96f6867312 1371 // TPM unit containing the output. The count reset truncates the current
mjr 77:0b96f6867312 1372 // PWM cycle, which avoids the hardware problem with more than one write per
mjr 77:0b96f6867312 1373 // cycle. The problem is that the truncated cycle causes visible flicker if
mjr 77:0b96f6867312 1374 // the output is connected to an LED. This is particularly noticeable during
mjr 77:0b96f6867312 1375 // fades, when we're updating the value register repeatedly and rapidly: an
mjr 77:0b96f6867312 1376 // attempt to fade from fully on to fully off causes rapid fluttering and
mjr 77:0b96f6867312 1377 // flashing rather than a smooth brightness fade.
mjr 74:822a92bc11d2 1378 //
mjr 77:0b96f6867312 1379 // The hardware bug is a case of good intentions gone bad. The hardware is
mjr 77:0b96f6867312 1380 // *supposed* to make it easy for software to avoid glitching during PWM
mjr 77:0b96f6867312 1381 // updates, by providing a staging register in front of the real value
mjr 77:0b96f6867312 1382 // register. The software actually writes to the staging register, which
mjr 77:0b96f6867312 1383 // holds updates until the end of the cycle, at which point the hardware
mjr 77:0b96f6867312 1384 // automatically moves the value from the staging register into the real
mjr 77:0b96f6867312 1385 // register. This ensures that the real register is always updated exactly
mjr 77:0b96f6867312 1386 // at a cycle boundary, which in turn ensures that there's no flicker when
mjr 77:0b96f6867312 1387 // values are updated. A great design - except that it doesn't quite work.
mjr 77:0b96f6867312 1388 // The problem is that the staging register actually seems to be implemented
mjr 77:0b96f6867312 1389 // as a one-element FIFO in "stop when full" mode. That is, when you write
mjr 77:0b96f6867312 1390 // the FIFO, it becomes full. When the cycle ends and the hardware reads it
mjr 77:0b96f6867312 1391 // to move the staged value into the real register, the FIFO becomes empty.
mjr 77:0b96f6867312 1392 // But if you try to write the FIFO twice before the hardware reads it and
mjr 77:0b96f6867312 1393 // empties it, the second write fails, leaving the first value in the queue.
mjr 77:0b96f6867312 1394 // There doesn't seem to be any way to clear the FIFO from software, so you
mjr 77:0b96f6867312 1395 // just have to wait for the cycle to end before writing another update.
mjr 77:0b96f6867312 1396 // That more or less defeats the purpose of the staging register, whose whole
mjr 77:0b96f6867312 1397 // point is to free software from worrying about timing considerations with
mjr 77:0b96f6867312 1398 // updates. It frees us of the need to align our timing on cycle boundaries,
mjr 77:0b96f6867312 1399 // but it leaves us with the need to limit writes to once per cycle.
mjr 74:822a92bc11d2 1400 //
mjr 77:0b96f6867312 1401 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1402 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1403 // of polled items.
mjr 74:822a92bc11d2 1404 static int numPolledPwm;
mjr 74:822a92bc11d2 1405 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1406
mjr 74:822a92bc11d2 1407 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1408 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1409 {
mjr 6:cc35eb643e8f 1410 public:
mjr 43:7a6364d82a41 1411 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1412 {
mjr 77:0b96f6867312 1413 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1414 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1415 polledPwm[numPolledPwm++] = this;
mjr 77:0b96f6867312 1416
mjr 77:0b96f6867312 1417 // set the initial value
mjr 77:0b96f6867312 1418 set(initVal);
mjr 43:7a6364d82a41 1419 }
mjr 74:822a92bc11d2 1420
mjr 40:cc0d9814522b 1421 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1422 {
mjr 77:0b96f6867312 1423 // save the new value
mjr 74:822a92bc11d2 1424 this->val = val;
mjr 77:0b96f6867312 1425
mjr 77:0b96f6867312 1426 // commit it to the hardware
mjr 77:0b96f6867312 1427 commit();
mjr 13:72dda449c3c0 1428 }
mjr 74:822a92bc11d2 1429
mjr 74:822a92bc11d2 1430 // handle periodic update polling
mjr 74:822a92bc11d2 1431 void poll()
mjr 74:822a92bc11d2 1432 {
mjr 77:0b96f6867312 1433 commit();
mjr 74:822a92bc11d2 1434 }
mjr 74:822a92bc11d2 1435
mjr 74:822a92bc11d2 1436 protected:
mjr 77:0b96f6867312 1437 virtual void commit()
mjr 74:822a92bc11d2 1438 {
mjr 74:822a92bc11d2 1439 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1440 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1441 }
mjr 74:822a92bc11d2 1442
mjr 77:0b96f6867312 1443 NewPwmOut p;
mjr 77:0b96f6867312 1444 uint8_t val;
mjr 6:cc35eb643e8f 1445 };
mjr 26:cb71c4af2912 1446
mjr 74:822a92bc11d2 1447 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1448 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1449 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1450 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1451 {
mjr 64:ef7ca92dff36 1452 public:
mjr 64:ef7ca92dff36 1453 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1454 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1455 {
mjr 64:ef7ca92dff36 1456 }
mjr 74:822a92bc11d2 1457
mjr 74:822a92bc11d2 1458 protected:
mjr 77:0b96f6867312 1459 virtual void commit()
mjr 64:ef7ca92dff36 1460 {
mjr 74:822a92bc11d2 1461 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1462 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1463 }
mjr 64:ef7ca92dff36 1464 };
mjr 64:ef7ca92dff36 1465
mjr 74:822a92bc11d2 1466 // poll the PWM outputs
mjr 74:822a92bc11d2 1467 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1468 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1469 void pollPwmUpdates()
mjr 74:822a92bc11d2 1470 {
mjr 74:822a92bc11d2 1471 // if it's been at least 25ms since the last update, do another update
mjr 74:822a92bc11d2 1472 if (polledPwmTimer.read_us() >= 25000)
mjr 74:822a92bc11d2 1473 {
mjr 74:822a92bc11d2 1474 // time the run for statistics collection
mjr 74:822a92bc11d2 1475 IF_DIAG(
mjr 74:822a92bc11d2 1476 Timer t;
mjr 74:822a92bc11d2 1477 t.start();
mjr 74:822a92bc11d2 1478 )
mjr 74:822a92bc11d2 1479
mjr 74:822a92bc11d2 1480 // poll each output
mjr 74:822a92bc11d2 1481 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1482 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1483
mjr 74:822a92bc11d2 1484 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1485 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1486
mjr 74:822a92bc11d2 1487 // collect statistics
mjr 74:822a92bc11d2 1488 IF_DIAG(
mjr 76:7f5912b6340e 1489 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1490 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1491 )
mjr 74:822a92bc11d2 1492 }
mjr 74:822a92bc11d2 1493 }
mjr 64:ef7ca92dff36 1494
mjr 26:cb71c4af2912 1495 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1496 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1497 {
mjr 6:cc35eb643e8f 1498 public:
mjr 43:7a6364d82a41 1499 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1500 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1501 {
mjr 13:72dda449c3c0 1502 if (val != prv)
mjr 40:cc0d9814522b 1503 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1504 }
mjr 6:cc35eb643e8f 1505 DigitalOut p;
mjr 40:cc0d9814522b 1506 uint8_t prv;
mjr 6:cc35eb643e8f 1507 };
mjr 26:cb71c4af2912 1508
mjr 29:582472d0bc57 1509 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1510 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1511 // port n (0-based).
mjr 35:e959ffba78fd 1512 //
mjr 35:e959ffba78fd 1513 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1514 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1515 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1516 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1517 // 74HC595 ports).
mjr 33:d832bcab089e 1518 static int numOutputs;
mjr 33:d832bcab089e 1519 static LwOut **lwPin;
mjr 33:d832bcab089e 1520
mjr 38:091e511ce8a0 1521 // create a single output pin
mjr 53:9b2611964afc 1522 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1523 {
mjr 38:091e511ce8a0 1524 // get this item's values
mjr 38:091e511ce8a0 1525 int typ = pc.typ;
mjr 38:091e511ce8a0 1526 int pin = pc.pin;
mjr 38:091e511ce8a0 1527 int flags = pc.flags;
mjr 40:cc0d9814522b 1528 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1529 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1530 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 1531 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 89:c43cd923401c 1532
mjr 89:c43cd923401c 1533 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 1534 if (flipperLogic)
mjr 89:c43cd923401c 1535 gamma = false;
mjr 38:091e511ce8a0 1536
mjr 38:091e511ce8a0 1537 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1538 LwOut *lwp;
mjr 38:091e511ce8a0 1539 switch (typ)
mjr 38:091e511ce8a0 1540 {
mjr 38:091e511ce8a0 1541 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1542 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1543 if (pin != 0)
mjr 64:ef7ca92dff36 1544 {
mjr 64:ef7ca92dff36 1545 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1546 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1547 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1548 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1549 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1550 {
mjr 64:ef7ca92dff36 1551 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1552 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1553
mjr 64:ef7ca92dff36 1554 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1555 gamma = false;
mjr 64:ef7ca92dff36 1556 }
mjr 64:ef7ca92dff36 1557 else
mjr 64:ef7ca92dff36 1558 {
mjr 64:ef7ca92dff36 1559 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1560 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1561 }
mjr 64:ef7ca92dff36 1562 }
mjr 48:058ace2aed1d 1563 else
mjr 48:058ace2aed1d 1564 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1565 break;
mjr 38:091e511ce8a0 1566
mjr 38:091e511ce8a0 1567 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1568 // Digital GPIO port
mjr 48:058ace2aed1d 1569 if (pin != 0)
mjr 48:058ace2aed1d 1570 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1571 else
mjr 48:058ace2aed1d 1572 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1573 break;
mjr 38:091e511ce8a0 1574
mjr 38:091e511ce8a0 1575 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1576 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1577 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1578 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1579 {
mjr 40:cc0d9814522b 1580 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1581 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1582 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1583 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1584 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1585 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1586 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1587 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1588 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1589 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1590 // for this unlikely case.
mjr 40:cc0d9814522b 1591 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1592 {
mjr 40:cc0d9814522b 1593 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1594 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1595
mjr 40:cc0d9814522b 1596 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1597 gamma = false;
mjr 40:cc0d9814522b 1598 }
mjr 40:cc0d9814522b 1599 else
mjr 40:cc0d9814522b 1600 {
mjr 40:cc0d9814522b 1601 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1602 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1603 }
mjr 40:cc0d9814522b 1604 }
mjr 38:091e511ce8a0 1605 else
mjr 40:cc0d9814522b 1606 {
mjr 40:cc0d9814522b 1607 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1608 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1609 }
mjr 38:091e511ce8a0 1610 break;
mjr 38:091e511ce8a0 1611
mjr 38:091e511ce8a0 1612 case PortType74HC595:
mjr 87:8d35c74403af 1613 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 1614 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 1615 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1616 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1617 else
mjr 38:091e511ce8a0 1618 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1619 break;
mjr 87:8d35c74403af 1620
mjr 87:8d35c74403af 1621 case PortTypeTLC59116:
mjr 87:8d35c74403af 1622 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 1623 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 1624 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 1625 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 1626 if (tlc59116 != 0)
mjr 87:8d35c74403af 1627 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 1628 break;
mjr 38:091e511ce8a0 1629
mjr 38:091e511ce8a0 1630 case PortTypeVirtual:
mjr 43:7a6364d82a41 1631 case PortTypeDisabled:
mjr 38:091e511ce8a0 1632 default:
mjr 38:091e511ce8a0 1633 // virtual or unknown
mjr 38:091e511ce8a0 1634 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1635 break;
mjr 38:091e511ce8a0 1636 }
mjr 38:091e511ce8a0 1637
mjr 40:cc0d9814522b 1638 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1639 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1640 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1641 if (activeLow)
mjr 38:091e511ce8a0 1642 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1643
mjr 89:c43cd923401c 1644 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 1645 if (flipperLogic)
mjr 89:c43cd923401c 1646 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 1647
mjr 89:c43cd923401c 1648 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 1649 if (noisy)
mjr 40:cc0d9814522b 1650 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1651
mjr 40:cc0d9814522b 1652 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1653 if (gamma)
mjr 40:cc0d9814522b 1654 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1655
mjr 53:9b2611964afc 1656 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1657 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1658 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1659 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1660 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1661
mjr 53:9b2611964afc 1662 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1663 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1664 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1665
mjr 38:091e511ce8a0 1666 // turn it off initially
mjr 38:091e511ce8a0 1667 lwp->set(0);
mjr 38:091e511ce8a0 1668
mjr 38:091e511ce8a0 1669 // return the pin
mjr 38:091e511ce8a0 1670 return lwp;
mjr 38:091e511ce8a0 1671 }
mjr 38:091e511ce8a0 1672
mjr 6:cc35eb643e8f 1673 // initialize the output pin array
mjr 35:e959ffba78fd 1674 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1675 {
mjr 89:c43cd923401c 1676 // Initialize the Flipper Logic outputs
mjr 89:c43cd923401c 1677 LwFlipperLogicOut::classInit(cfg);
mjr 89:c43cd923401c 1678
mjr 35:e959ffba78fd 1679 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1680 // total number of ports.
mjr 35:e959ffba78fd 1681 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1682 int i;
mjr 35:e959ffba78fd 1683 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1684 {
mjr 35:e959ffba78fd 1685 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1686 {
mjr 35:e959ffba78fd 1687 numOutputs = i;
mjr 34:6b981a2afab7 1688 break;
mjr 34:6b981a2afab7 1689 }
mjr 33:d832bcab089e 1690 }
mjr 33:d832bcab089e 1691
mjr 73:4e8ce0b18915 1692 // allocate the pin array
mjr 73:4e8ce0b18915 1693 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1694
mjr 73:4e8ce0b18915 1695 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1696 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1697
mjr 73:4e8ce0b18915 1698 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1699 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1700 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1701
mjr 73:4e8ce0b18915 1702 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1703 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1704 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1705
mjr 73:4e8ce0b18915 1706 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1707 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1708 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1709
mjr 35:e959ffba78fd 1710 // create the pin interface object for each port
mjr 35:e959ffba78fd 1711 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1712 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1713 }
mjr 6:cc35eb643e8f 1714
mjr 76:7f5912b6340e 1715 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1716 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1717 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1718 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1719 // equivalent to 48.
mjr 40:cc0d9814522b 1720 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1721 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1722 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1723 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1724 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1725 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1726 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1727 255, 255
mjr 40:cc0d9814522b 1728 };
mjr 40:cc0d9814522b 1729
mjr 76:7f5912b6340e 1730 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1731 // level (1..48)
mjr 76:7f5912b6340e 1732 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1733 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1734 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1735 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1736 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1737 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1738 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1739 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1740 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1741 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1742 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1743 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1744 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1745 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1746 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1747 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1748 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1749 };
mjr 76:7f5912b6340e 1750
mjr 74:822a92bc11d2 1751 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1752 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1753 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1754 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1755 //
mjr 74:822a92bc11d2 1756 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1757 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1758 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1759 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1760 //
mjr 74:822a92bc11d2 1761 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1762 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1763 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1764 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1765 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1766 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1767 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1768 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1769 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1770 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1771 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1772 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1773 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1774 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1775 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1776 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1777 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1778 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1779 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1780 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1781
mjr 74:822a92bc11d2 1782 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1783 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1784 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1785 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1786 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1787 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1788 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1789 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1790 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1791 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1792 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1793 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1794 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1795 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1796 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1797 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1798 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1799
mjr 74:822a92bc11d2 1800 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1801 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1802 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1803 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1804 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1805 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1806 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1807 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1808 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1809 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1810 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1811 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1812 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1813 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1814 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1815 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1816 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1817
mjr 74:822a92bc11d2 1818 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1819 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1820 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1821 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1822 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1823 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1824 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1825 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1826 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1827 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1828 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1829 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1830 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1831 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1832 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1833 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1834 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1835 };
mjr 74:822a92bc11d2 1836
mjr 74:822a92bc11d2 1837 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1838 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1839 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1840
mjr 76:7f5912b6340e 1841 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1842 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1843
mjr 76:7f5912b6340e 1844 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1845 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1846 // outputs on each cycle.
mjr 29:582472d0bc57 1847 static void wizPulse()
mjr 29:582472d0bc57 1848 {
mjr 76:7f5912b6340e 1849 // current bank
mjr 76:7f5912b6340e 1850 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1851
mjr 76:7f5912b6340e 1852 // start a timer for statistics collection
mjr 76:7f5912b6340e 1853 IF_DIAG(
mjr 76:7f5912b6340e 1854 Timer t;
mjr 76:7f5912b6340e 1855 t.start();
mjr 76:7f5912b6340e 1856 )
mjr 76:7f5912b6340e 1857
mjr 76:7f5912b6340e 1858 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1859 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1860 //
mjr 76:7f5912b6340e 1861 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1862 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1863 //
mjr 76:7f5912b6340e 1864 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1865 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1866 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1867 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1868 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1869 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1870 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1871 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1872 // current cycle.
mjr 76:7f5912b6340e 1873 //
mjr 76:7f5912b6340e 1874 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1875 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1876 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1877 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1878 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1879 //
mjr 76:7f5912b6340e 1880 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1881 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1882 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1883 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1884 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1885 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1886 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1887 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1888 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1889 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1890 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1891 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1892 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1893 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1894 // bit counts.
mjr 76:7f5912b6340e 1895 //
mjr 76:7f5912b6340e 1896 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1897 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1898 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1899 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1900 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1901 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1902 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1903 // one division for another!
mjr 76:7f5912b6340e 1904 //
mjr 76:7f5912b6340e 1905 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1906 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1907 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1908 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1909 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1910 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1911 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1912 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1913 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1914 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1915 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1916 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1917 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1918 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1919 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1920 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1921 // remainder calculation anyway.
mjr 76:7f5912b6340e 1922 //
mjr 76:7f5912b6340e 1923 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1924 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1925 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1926 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1927 //
mjr 76:7f5912b6340e 1928 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1929 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1930 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1931 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1932 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1933 // the result, since we started with 32.
mjr 76:7f5912b6340e 1934 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1935 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1936 };
mjr 76:7f5912b6340e 1937 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1938
mjr 76:7f5912b6340e 1939 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1940 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1941 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1942 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1943 toPort = numOutputs;
mjr 76:7f5912b6340e 1944
mjr 76:7f5912b6340e 1945 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1946 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1947 {
mjr 76:7f5912b6340e 1948 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1949 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1950 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1951 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1952 if (wizOn[i])
mjr 29:582472d0bc57 1953 {
mjr 76:7f5912b6340e 1954 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 1955 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 1956 {
mjr 76:7f5912b6340e 1957 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 1958 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 1959 }
mjr 29:582472d0bc57 1960 }
mjr 76:7f5912b6340e 1961 }
mjr 76:7f5912b6340e 1962
mjr 34:6b981a2afab7 1963 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1964 if (hc595 != 0)
mjr 35:e959ffba78fd 1965 hc595->update();
mjr 76:7f5912b6340e 1966
mjr 76:7f5912b6340e 1967 // switch to the next bank
mjr 76:7f5912b6340e 1968 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 1969 wizPulseBank = 0;
mjr 76:7f5912b6340e 1970
mjr 76:7f5912b6340e 1971 // collect timing statistics
mjr 76:7f5912b6340e 1972 IF_DIAG(
mjr 76:7f5912b6340e 1973 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 1974 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 1975 )
mjr 1:d913e0afb2ac 1976 }
mjr 38:091e511ce8a0 1977
mjr 76:7f5912b6340e 1978 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 1979 static void updateLwPort(int port)
mjr 38:091e511ce8a0 1980 {
mjr 76:7f5912b6340e 1981 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 1982 if (wizOn[port])
mjr 76:7f5912b6340e 1983 {
mjr 76:7f5912b6340e 1984 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 1985 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 1986 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 1987 // it on the next cycle.
mjr 76:7f5912b6340e 1988 int val = wizVal[port];
mjr 76:7f5912b6340e 1989 if (val <= 49)
mjr 76:7f5912b6340e 1990 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 1991 }
mjr 76:7f5912b6340e 1992 else
mjr 76:7f5912b6340e 1993 {
mjr 76:7f5912b6340e 1994 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 1995 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 1996 }
mjr 73:4e8ce0b18915 1997 }
mjr 73:4e8ce0b18915 1998
mjr 73:4e8ce0b18915 1999 // Turn off all outputs and restore everything to the default LedWiz
mjr 73:4e8ce0b18915 2000 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 73:4e8ce0b18915 2001 // brightness) and switch state Off, sets all extended outputs (#33
mjr 73:4e8ce0b18915 2002 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 73:4e8ce0b18915 2003 // This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2004 //
mjr 73:4e8ce0b18915 2005 void allOutputsOff()
mjr 73:4e8ce0b18915 2006 {
mjr 73:4e8ce0b18915 2007 // reset all LedWiz outputs to OFF/48
mjr 73:4e8ce0b18915 2008 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2009 {
mjr 73:4e8ce0b18915 2010 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2011 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2012 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2013 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2014 }
mjr 73:4e8ce0b18915 2015
mjr 73:4e8ce0b18915 2016 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2017 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2018 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2019
mjr 73:4e8ce0b18915 2020 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2021 if (hc595 != 0)
mjr 38:091e511ce8a0 2022 hc595->update();
mjr 38:091e511ce8a0 2023 }
mjr 38:091e511ce8a0 2024
mjr 74:822a92bc11d2 2025 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2026 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2027 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2028 // address any port group.
mjr 74:822a92bc11d2 2029 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2030 {
mjr 76:7f5912b6340e 2031 // update all on/off states in the group
mjr 74:822a92bc11d2 2032 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2033 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2034 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2035 {
mjr 74:822a92bc11d2 2036 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2037 if (bit == 0x100) {
mjr 74:822a92bc11d2 2038 bit = 1;
mjr 74:822a92bc11d2 2039 ++imsg;
mjr 74:822a92bc11d2 2040 }
mjr 74:822a92bc11d2 2041
mjr 74:822a92bc11d2 2042 // set the on/off state
mjr 76:7f5912b6340e 2043 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2044
mjr 76:7f5912b6340e 2045 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2046 updateLwPort(port);
mjr 74:822a92bc11d2 2047 }
mjr 74:822a92bc11d2 2048
mjr 74:822a92bc11d2 2049 // set the flash speed for the port group
mjr 74:822a92bc11d2 2050 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2051 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2052
mjr 76:7f5912b6340e 2053 // update 74HC959 outputs
mjr 76:7f5912b6340e 2054 if (hc595 != 0)
mjr 76:7f5912b6340e 2055 hc595->update();
mjr 74:822a92bc11d2 2056 }
mjr 74:822a92bc11d2 2057
mjr 74:822a92bc11d2 2058 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2059 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2060 {
mjr 74:822a92bc11d2 2061 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2062 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2063 {
mjr 74:822a92bc11d2 2064 // get the value
mjr 74:822a92bc11d2 2065 uint8_t v = data[i];
mjr 74:822a92bc11d2 2066
mjr 74:822a92bc11d2 2067 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2068 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2069 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2070 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2071 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2072 // as such.
mjr 74:822a92bc11d2 2073 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2074 v = 48;
mjr 74:822a92bc11d2 2075
mjr 74:822a92bc11d2 2076 // store it
mjr 76:7f5912b6340e 2077 wizVal[port] = v;
mjr 76:7f5912b6340e 2078
mjr 76:7f5912b6340e 2079 // update the port
mjr 76:7f5912b6340e 2080 updateLwPort(port);
mjr 74:822a92bc11d2 2081 }
mjr 74:822a92bc11d2 2082
mjr 76:7f5912b6340e 2083 // update 74HC595 outputs
mjr 76:7f5912b6340e 2084 if (hc595 != 0)
mjr 76:7f5912b6340e 2085 hc595->update();
mjr 74:822a92bc11d2 2086 }
mjr 74:822a92bc11d2 2087
mjr 77:0b96f6867312 2088 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2089 //
mjr 77:0b96f6867312 2090 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2091 //
mjr 77:0b96f6867312 2092
mjr 77:0b96f6867312 2093 // receiver
mjr 77:0b96f6867312 2094 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2095
mjr 77:0b96f6867312 2096 // transmitter
mjr 77:0b96f6867312 2097 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2098
mjr 77:0b96f6867312 2099 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2100 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2101 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2102 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2103 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2104 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2105 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2106 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2107 // configuration slot n
mjr 77:0b96f6867312 2108 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2109
mjr 78:1e00b3fa11af 2110 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2111 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2112 // protocol.
mjr 78:1e00b3fa11af 2113 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2114
mjr 78:1e00b3fa11af 2115 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2116 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2117 // while waiting for the rest.
mjr 78:1e00b3fa11af 2118 static struct
mjr 78:1e00b3fa11af 2119 {
mjr 78:1e00b3fa11af 2120 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 2121 uint64_t code; // code
mjr 78:1e00b3fa11af 2122 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 2123 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 2124 } IRAdHocCmd;
mjr 88:98bce687e6c0 2125
mjr 77:0b96f6867312 2126
mjr 77:0b96f6867312 2127 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 2128 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 2129 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 2130 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 2131 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 2132 // amount of time.
mjr 77:0b96f6867312 2133 Timer IRTimer;
mjr 77:0b96f6867312 2134
mjr 77:0b96f6867312 2135 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 2136 // The states are:
mjr 77:0b96f6867312 2137 //
mjr 77:0b96f6867312 2138 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 2139 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 2140 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 2141 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 2142 //
mjr 77:0b96f6867312 2143 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 2144 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 2145 // received within a reasonable time.
mjr 77:0b96f6867312 2146 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 2147
mjr 77:0b96f6867312 2148 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 2149 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 2150 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 2151 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 2152 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 2153 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 2154 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 2155 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 2156 IRCommand learnedIRCode;
mjr 77:0b96f6867312 2157
mjr 78:1e00b3fa11af 2158 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 2159 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 2160 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 2161 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 2162 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 2163 // index; 0 represents no command.
mjr 77:0b96f6867312 2164 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 2165
mjr 77:0b96f6867312 2166 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 2167 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 2168 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 2169 // command we received.
mjr 77:0b96f6867312 2170 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 2171
mjr 77:0b96f6867312 2172 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 2173 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 2174 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 2175 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 2176 // distinct key press.
mjr 77:0b96f6867312 2177 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 2178
mjr 78:1e00b3fa11af 2179
mjr 77:0b96f6867312 2180 // initialize
mjr 77:0b96f6867312 2181 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 2182 {
mjr 77:0b96f6867312 2183 PinName pin;
mjr 77:0b96f6867312 2184
mjr 77:0b96f6867312 2185 // start the IR timer
mjr 77:0b96f6867312 2186 IRTimer.start();
mjr 77:0b96f6867312 2187
mjr 77:0b96f6867312 2188 // if there's a transmitter, set it up
mjr 77:0b96f6867312 2189 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 2190 {
mjr 77:0b96f6867312 2191 // no virtual buttons yet
mjr 77:0b96f6867312 2192 int nVirtualButtons = 0;
mjr 77:0b96f6867312 2193 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 2194
mjr 77:0b96f6867312 2195 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 2196 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2197 {
mjr 77:0b96f6867312 2198 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 2199 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 2200 }
mjr 77:0b96f6867312 2201
mjr 77:0b96f6867312 2202 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 2203 // real button inputs
mjr 77:0b96f6867312 2204 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 2205 {
mjr 77:0b96f6867312 2206 // get the button
mjr 77:0b96f6867312 2207 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 2208
mjr 77:0b96f6867312 2209 // check the unshifted button
mjr 77:0b96f6867312 2210 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 2211 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2212 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2213 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2214
mjr 77:0b96f6867312 2215 // check the shifted button
mjr 77:0b96f6867312 2216 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 2217 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2218 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2219 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2220 }
mjr 77:0b96f6867312 2221
mjr 77:0b96f6867312 2222 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 2223 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 2224 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 2225
mjr 77:0b96f6867312 2226 // create the transmitter
mjr 77:0b96f6867312 2227 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 2228
mjr 77:0b96f6867312 2229 // program the commands into the virtual button slots
mjr 77:0b96f6867312 2230 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2231 {
mjr 77:0b96f6867312 2232 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 2233 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 2234 if (vb != 0xFF)
mjr 77:0b96f6867312 2235 {
mjr 77:0b96f6867312 2236 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2237 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 2238 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 2239 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 2240 }
mjr 77:0b96f6867312 2241 }
mjr 77:0b96f6867312 2242 }
mjr 77:0b96f6867312 2243
mjr 77:0b96f6867312 2244 // if there's a receiver, set it up
mjr 77:0b96f6867312 2245 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 2246 {
mjr 77:0b96f6867312 2247 // create the receiver
mjr 77:0b96f6867312 2248 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 2249
mjr 77:0b96f6867312 2250 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 2251 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 2252 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 2253
mjr 77:0b96f6867312 2254 // enable it
mjr 77:0b96f6867312 2255 ir_rx->enable();
mjr 77:0b96f6867312 2256
mjr 77:0b96f6867312 2257 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 2258 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 2259 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 2260 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2261 {
mjr 77:0b96f6867312 2262 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2263 if (cb.protocol != 0
mjr 77:0b96f6867312 2264 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2265 {
mjr 77:0b96f6867312 2266 kbKeys = true;
mjr 77:0b96f6867312 2267 break;
mjr 77:0b96f6867312 2268 }
mjr 77:0b96f6867312 2269 }
mjr 77:0b96f6867312 2270 }
mjr 77:0b96f6867312 2271 }
mjr 77:0b96f6867312 2272
mjr 77:0b96f6867312 2273 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2274 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2275 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2276 {
mjr 77:0b96f6867312 2277 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2278 if (ir_tx != 0)
mjr 77:0b96f6867312 2279 {
mjr 77:0b96f6867312 2280 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2281 int slot = cmd - 1;
mjr 77:0b96f6867312 2282
mjr 77:0b96f6867312 2283 // press or release the virtual button
mjr 77:0b96f6867312 2284 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2285 }
mjr 77:0b96f6867312 2286 }
mjr 77:0b96f6867312 2287
mjr 78:1e00b3fa11af 2288 // Process IR input and output
mjr 77:0b96f6867312 2289 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2290 {
mjr 78:1e00b3fa11af 2291 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2292 if (ir_tx != 0)
mjr 77:0b96f6867312 2293 {
mjr 78:1e00b3fa11af 2294 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2295 // is ready to send, send it.
mjr 78:1e00b3fa11af 2296 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2297 {
mjr 78:1e00b3fa11af 2298 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2299 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2300 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2301 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2302
mjr 78:1e00b3fa11af 2303 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2304 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2305 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2306
mjr 78:1e00b3fa11af 2307 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2308 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2309 }
mjr 77:0b96f6867312 2310 }
mjr 78:1e00b3fa11af 2311
mjr 78:1e00b3fa11af 2312 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2313 if (ir_rx != 0)
mjr 77:0b96f6867312 2314 {
mjr 78:1e00b3fa11af 2315 // Time out any received command
mjr 78:1e00b3fa11af 2316 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2317 {
mjr 80:94dc2946871b 2318 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 2319 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 2320 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 2321 if (t > 200000)
mjr 78:1e00b3fa11af 2322 IRCommandIn = 0;
mjr 80:94dc2946871b 2323 else if (t > 50000)
mjr 78:1e00b3fa11af 2324 IRKeyGap = false;
mjr 78:1e00b3fa11af 2325 }
mjr 78:1e00b3fa11af 2326
mjr 78:1e00b3fa11af 2327 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2328 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2329 {
mjr 78:1e00b3fa11af 2330 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2331 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2332 // limit.
mjr 78:1e00b3fa11af 2333 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2334 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2335 int n;
mjr 78:1e00b3fa11af 2336 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2337
mjr 78:1e00b3fa11af 2338 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2339 if (n != 0)
mjr 78:1e00b3fa11af 2340 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2341
mjr 78:1e00b3fa11af 2342 // check for a command
mjr 78:1e00b3fa11af 2343 IRCommand c;
mjr 78:1e00b3fa11af 2344 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2345 {
mjr 78:1e00b3fa11af 2346 // check the current learning state
mjr 78:1e00b3fa11af 2347 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2348 {
mjr 78:1e00b3fa11af 2349 case 1:
mjr 78:1e00b3fa11af 2350 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2351 // This is it.
mjr 78:1e00b3fa11af 2352 learnedIRCode = c;
mjr 78:1e00b3fa11af 2353
mjr 78:1e00b3fa11af 2354 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2355 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2356 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2357 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2358 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2359 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2360 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2361 break;
mjr 78:1e00b3fa11af 2362
mjr 78:1e00b3fa11af 2363 case 2:
mjr 78:1e00b3fa11af 2364 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2365 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2366 //
mjr 78:1e00b3fa11af 2367 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2368 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2369 //
mjr 78:1e00b3fa11af 2370 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2371 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2372 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2373 // them.
mjr 78:1e00b3fa11af 2374 //
mjr 78:1e00b3fa11af 2375 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2376 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2377 // over.
mjr 78:1e00b3fa11af 2378 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2379 && c.hasDittos
mjr 78:1e00b3fa11af 2380 && c.ditto)
mjr 78:1e00b3fa11af 2381 {
mjr 78:1e00b3fa11af 2382 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2383 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2384 }
mjr 78:1e00b3fa11af 2385 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2386 && c.hasDittos
mjr 78:1e00b3fa11af 2387 && !c.ditto
mjr 78:1e00b3fa11af 2388 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2389 {
mjr 78:1e00b3fa11af 2390 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2391 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2392 // protocol supports them
mjr 78:1e00b3fa11af 2393 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2394 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2395 }
mjr 78:1e00b3fa11af 2396 else
mjr 78:1e00b3fa11af 2397 {
mjr 78:1e00b3fa11af 2398 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2399 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2400 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2401 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2402 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2403 }
mjr 78:1e00b3fa11af 2404 break;
mjr 78:1e00b3fa11af 2405 }
mjr 77:0b96f6867312 2406
mjr 78:1e00b3fa11af 2407 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2408 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2409 // learning mode.
mjr 78:1e00b3fa11af 2410 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2411 {
mjr 78:1e00b3fa11af 2412 // figure the flags:
mjr 78:1e00b3fa11af 2413 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2414 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2415 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2416 flags |= 0x02;
mjr 78:1e00b3fa11af 2417
mjr 78:1e00b3fa11af 2418 // report the code
mjr 78:1e00b3fa11af 2419 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2420
mjr 78:1e00b3fa11af 2421 // exit learning mode
mjr 78:1e00b3fa11af 2422 IRLearningMode = 0;
mjr 77:0b96f6867312 2423 }
mjr 77:0b96f6867312 2424 }
mjr 77:0b96f6867312 2425
mjr 78:1e00b3fa11af 2426 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2427 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2428 {
mjr 78:1e00b3fa11af 2429 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2430 // zero data elements
mjr 78:1e00b3fa11af 2431 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2432
mjr 78:1e00b3fa11af 2433
mjr 78:1e00b3fa11af 2434 // cancel learning mode
mjr 77:0b96f6867312 2435 IRLearningMode = 0;
mjr 77:0b96f6867312 2436 }
mjr 77:0b96f6867312 2437 }
mjr 78:1e00b3fa11af 2438 else
mjr 77:0b96f6867312 2439 {
mjr 78:1e00b3fa11af 2440 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2441 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2442 ir_rx->process();
mjr 78:1e00b3fa11af 2443
mjr 78:1e00b3fa11af 2444 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2445 // have been read.
mjr 78:1e00b3fa11af 2446 IRCommand c;
mjr 78:1e00b3fa11af 2447 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2448 {
mjr 78:1e00b3fa11af 2449 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2450 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2451 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2452 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2453 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2454 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2455 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2456 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2457 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2458 //
mjr 78:1e00b3fa11af 2459 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2460 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2461 // command.
mjr 78:1e00b3fa11af 2462 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2463 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2464 {
mjr 78:1e00b3fa11af 2465 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2466 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2467 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2468 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2469 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2470 if (c.ditto)
mjr 78:1e00b3fa11af 2471 {
mjr 78:1e00b3fa11af 2472 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2473 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2474 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2475 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2476 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2477 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2478 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2479 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2480 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2481 }
mjr 78:1e00b3fa11af 2482 else
mjr 78:1e00b3fa11af 2483 {
mjr 78:1e00b3fa11af 2484 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2485 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2486 // prior command.
mjr 78:1e00b3fa11af 2487 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2488 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2489 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2490
mjr 78:1e00b3fa11af 2491 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2492 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2493 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2494 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2495 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2496 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2497 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2498 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2499 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2500 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2501 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2502 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2503 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2504 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2505 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2506 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2507 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2508 autoRepeat =
mjr 78:1e00b3fa11af 2509 repeat
mjr 78:1e00b3fa11af 2510 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2511 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2512 }
mjr 78:1e00b3fa11af 2513 }
mjr 78:1e00b3fa11af 2514
mjr 78:1e00b3fa11af 2515 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2516 if (repeat)
mjr 78:1e00b3fa11af 2517 {
mjr 78:1e00b3fa11af 2518 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2519 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2520 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2521 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2522 // key press event.
mjr 78:1e00b3fa11af 2523 if (!autoRepeat)
mjr 78:1e00b3fa11af 2524 IRKeyGap = true;
mjr 78:1e00b3fa11af 2525
mjr 78:1e00b3fa11af 2526 // restart the key-up timer
mjr 78:1e00b3fa11af 2527 IRTimer.reset();
mjr 78:1e00b3fa11af 2528 }
mjr 78:1e00b3fa11af 2529 else if (c.ditto)
mjr 78:1e00b3fa11af 2530 {
mjr 78:1e00b3fa11af 2531 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2532 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2533 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2534 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2535 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2536 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2537 // a full command for a new key press.
mjr 78:1e00b3fa11af 2538 IRCommandIn = 0;
mjr 77:0b96f6867312 2539 }
mjr 77:0b96f6867312 2540 else
mjr 77:0b96f6867312 2541 {
mjr 78:1e00b3fa11af 2542 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2543 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2544 // the new command).
mjr 78:1e00b3fa11af 2545 IRCommandIn = 0;
mjr 77:0b96f6867312 2546
mjr 78:1e00b3fa11af 2547 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2548 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2549 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2550 {
mjr 78:1e00b3fa11af 2551 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2552 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2553 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2554 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2555 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2556 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2557 {
mjr 78:1e00b3fa11af 2558 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2559 // remember the starting time.
mjr 78:1e00b3fa11af 2560 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2561 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2562 IRTimer.reset();
mjr 78:1e00b3fa11af 2563
mjr 78:1e00b3fa11af 2564 // no need to keep searching
mjr 78:1e00b3fa11af 2565 break;
mjr 78:1e00b3fa11af 2566 }
mjr 77:0b96f6867312 2567 }
mjr 77:0b96f6867312 2568 }
mjr 77:0b96f6867312 2569 }
mjr 77:0b96f6867312 2570 }
mjr 77:0b96f6867312 2571 }
mjr 77:0b96f6867312 2572 }
mjr 77:0b96f6867312 2573
mjr 74:822a92bc11d2 2574
mjr 11:bd9da7088e6e 2575 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2576 //
mjr 11:bd9da7088e6e 2577 // Button input
mjr 11:bd9da7088e6e 2578 //
mjr 11:bd9da7088e6e 2579
mjr 18:5e890ebd0023 2580 // button state
mjr 18:5e890ebd0023 2581 struct ButtonState
mjr 18:5e890ebd0023 2582 {
mjr 38:091e511ce8a0 2583 ButtonState()
mjr 38:091e511ce8a0 2584 {
mjr 53:9b2611964afc 2585 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2586 virtState = 0;
mjr 53:9b2611964afc 2587 dbState = 0;
mjr 38:091e511ce8a0 2588 pulseState = 0;
mjr 53:9b2611964afc 2589 pulseTime = 0;
mjr 38:091e511ce8a0 2590 }
mjr 35:e959ffba78fd 2591
mjr 53:9b2611964afc 2592 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2593 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2594 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2595 //
mjr 53:9b2611964afc 2596 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2597 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2598 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2599 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2600 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2601 void virtPress(bool on)
mjr 53:9b2611964afc 2602 {
mjr 53:9b2611964afc 2603 // Increment or decrement the current state
mjr 53:9b2611964afc 2604 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2605 }
mjr 53:9b2611964afc 2606
mjr 53:9b2611964afc 2607 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2608 TinyDigitalIn di;
mjr 38:091e511ce8a0 2609
mjr 65:739875521aae 2610 // Time of last pulse state transition.
mjr 65:739875521aae 2611 //
mjr 65:739875521aae 2612 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2613 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2614 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2615 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2616 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2617 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2618 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2619 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2620 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2621 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2622 // This software system can't be fooled that way.)
mjr 65:739875521aae 2623 uint32_t pulseTime;
mjr 18:5e890ebd0023 2624
mjr 65:739875521aae 2625 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2626 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2627 uint8_t cfgIndex;
mjr 53:9b2611964afc 2628
mjr 53:9b2611964afc 2629 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2630 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2631 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2632 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2633 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2634 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2635 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2636 // and physical source states.
mjr 53:9b2611964afc 2637 uint8_t virtState;
mjr 38:091e511ce8a0 2638
mjr 38:091e511ce8a0 2639 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2640 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2641 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2642 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2643 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2644 uint8_t dbState;
mjr 38:091e511ce8a0 2645
mjr 65:739875521aae 2646 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2647 uint8_t physState : 1;
mjr 65:739875521aae 2648
mjr 65:739875521aae 2649 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2650 uint8_t logState : 1;
mjr 65:739875521aae 2651
mjr 79:682ae3171a08 2652 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 2653 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 2654 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 2655 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 2656 uint8_t prevLogState : 1;
mjr 65:739875521aae 2657
mjr 65:739875521aae 2658 // Pulse state
mjr 65:739875521aae 2659 //
mjr 65:739875521aae 2660 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2661 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2662 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2663 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2664 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2665 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2666 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2667 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2668 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2669 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2670 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 2671 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 2672 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2673 //
mjr 38:091e511ce8a0 2674 // Pulse state:
mjr 38:091e511ce8a0 2675 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2676 // 1 -> off
mjr 38:091e511ce8a0 2677 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2678 // 3 -> on
mjr 38:091e511ce8a0 2679 // 4 -> transitioning on-off
mjr 65:739875521aae 2680 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2681
mjr 65:739875521aae 2682 } __attribute__((packed));
mjr 65:739875521aae 2683
mjr 65:739875521aae 2684 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2685 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2686 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2687
mjr 66:2e3583fbd2f4 2688 // Shift button state
mjr 66:2e3583fbd2f4 2689 struct
mjr 66:2e3583fbd2f4 2690 {
mjr 66:2e3583fbd2f4 2691 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 2692 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 2693 // 0 = not shifted
mjr 66:2e3583fbd2f4 2694 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2695 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 2696 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 2697 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 2698 }
mjr 66:2e3583fbd2f4 2699 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2700
mjr 38:091e511ce8a0 2701 // Button data
mjr 38:091e511ce8a0 2702 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2703
mjr 38:091e511ce8a0 2704 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2705 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2706 // modifier keys.
mjr 38:091e511ce8a0 2707 struct
mjr 38:091e511ce8a0 2708 {
mjr 38:091e511ce8a0 2709 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2710 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2711 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2712 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2713 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2714
mjr 38:091e511ce8a0 2715 // Media key state
mjr 38:091e511ce8a0 2716 struct
mjr 38:091e511ce8a0 2717 {
mjr 38:091e511ce8a0 2718 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2719 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2720 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2721
mjr 79:682ae3171a08 2722 // button scan interrupt timer
mjr 79:682ae3171a08 2723 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 2724
mjr 38:091e511ce8a0 2725 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2726 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2727 void scanButtons()
mjr 38:091e511ce8a0 2728 {
mjr 79:682ae3171a08 2729 // schedule the next interrupt
mjr 79:682ae3171a08 2730 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 2731
mjr 38:091e511ce8a0 2732 // scan all button input pins
mjr 73:4e8ce0b18915 2733 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2734 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2735 {
mjr 73:4e8ce0b18915 2736 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2737 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2738 bs->dbState = db;
mjr 73:4e8ce0b18915 2739
mjr 73:4e8ce0b18915 2740 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2741 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2742 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2743 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2744 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2745 db &= stable;
mjr 73:4e8ce0b18915 2746 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2747 bs->physState = !db;
mjr 38:091e511ce8a0 2748 }
mjr 38:091e511ce8a0 2749 }
mjr 38:091e511ce8a0 2750
mjr 38:091e511ce8a0 2751 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2752 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2753 // in the physical button state.
mjr 38:091e511ce8a0 2754 Timer buttonTimer;
mjr 12:669df364a565 2755
mjr 65:739875521aae 2756 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2757 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2758 {
mjr 65:739875521aae 2759 // count it
mjr 65:739875521aae 2760 ++nButtons;
mjr 65:739875521aae 2761
mjr 67:c39e66c4e000 2762 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2763 // keyboard interface
mjr 72:884207c0aab0 2764 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2765 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2766 kbKeys = true;
mjr 65:739875521aae 2767 }
mjr 65:739875521aae 2768
mjr 11:bd9da7088e6e 2769 // initialize the button inputs
mjr 35:e959ffba78fd 2770 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2771 {
mjr 66:2e3583fbd2f4 2772 // presume no shift key
mjr 66:2e3583fbd2f4 2773 shiftButton.index = -1;
mjr 82:4f6209cb5c33 2774 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2775
mjr 65:739875521aae 2776 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2777 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2778 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2779 nButtons = 0;
mjr 65:739875521aae 2780 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2781 {
mjr 65:739875521aae 2782 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2783 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 2784 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 2785 }
mjr 65:739875521aae 2786
mjr 65:739875521aae 2787 // Count virtual buttons
mjr 65:739875521aae 2788
mjr 65:739875521aae 2789 // ZB Launch
mjr 65:739875521aae 2790 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 2791 {
mjr 65:739875521aae 2792 // valid - remember the live button index
mjr 65:739875521aae 2793 zblButtonIndex = nButtons;
mjr 65:739875521aae 2794
mjr 65:739875521aae 2795 // count it
mjr 72:884207c0aab0 2796 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 2797 }
mjr 65:739875521aae 2798
mjr 65:739875521aae 2799 // Allocate the live button slots
mjr 65:739875521aae 2800 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 2801
mjr 65:739875521aae 2802 // Configure the physical inputs
mjr 65:739875521aae 2803 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2804 {
mjr 65:739875521aae 2805 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 2806 if (pin != NC)
mjr 65:739875521aae 2807 {
mjr 65:739875521aae 2808 // point back to the config slot for the keyboard data
mjr 65:739875521aae 2809 bs->cfgIndex = i;
mjr 65:739875521aae 2810
mjr 65:739875521aae 2811 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 2812 bs->di.assignPin(pin);
mjr 65:739875521aae 2813
mjr 65:739875521aae 2814 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 2815 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 2816 bs->pulseState = 1;
mjr 65:739875521aae 2817
mjr 66:2e3583fbd2f4 2818 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 2819 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 2820 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 2821 // config slots are left unused.
mjr 78:1e00b3fa11af 2822 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 2823 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 2824
mjr 65:739875521aae 2825 // advance to the next button
mjr 65:739875521aae 2826 ++bs;
mjr 65:739875521aae 2827 }
mjr 65:739875521aae 2828 }
mjr 65:739875521aae 2829
mjr 53:9b2611964afc 2830 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 2831 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 2832 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 2833 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 2834
mjr 53:9b2611964afc 2835 // ZB Launch Ball button
mjr 65:739875521aae 2836 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 2837 {
mjr 65:739875521aae 2838 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 2839 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 2840 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 2841 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 2842 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 2843 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 2844 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 2845 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 2846
mjr 66:2e3583fbd2f4 2847 // advance to the next button
mjr 65:739875521aae 2848 ++bs;
mjr 11:bd9da7088e6e 2849 }
mjr 12:669df364a565 2850
mjr 38:091e511ce8a0 2851 // start the button scan thread
mjr 79:682ae3171a08 2852 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 2853
mjr 38:091e511ce8a0 2854 // start the button state transition timer
mjr 12:669df364a565 2855 buttonTimer.start();
mjr 11:bd9da7088e6e 2856 }
mjr 11:bd9da7088e6e 2857
mjr 67:c39e66c4e000 2858 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 2859 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 2860 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 2861 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 2862 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 2863 //
mjr 67:c39e66c4e000 2864 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 2865 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 2866 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 2867 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 2868 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 2869 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 2870 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 2871 //
mjr 67:c39e66c4e000 2872 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 2873 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 2874 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 2875 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 2876 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 2877 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 2878 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 2879 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 2880 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 2881 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 2882 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 2883 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 2884 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 2885 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 2886 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 2887 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 2888 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 2889 };
mjr 77:0b96f6867312 2890
mjr 77:0b96f6867312 2891 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 2892 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 2893 // states of the button iputs.
mjr 77:0b96f6867312 2894 struct KeyState
mjr 77:0b96f6867312 2895 {
mjr 77:0b96f6867312 2896 KeyState()
mjr 77:0b96f6867312 2897 {
mjr 77:0b96f6867312 2898 // zero all members
mjr 77:0b96f6867312 2899 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 2900 }
mjr 77:0b96f6867312 2901
mjr 77:0b96f6867312 2902 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 2903 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 2904 uint8_t mediakeys;
mjr 77:0b96f6867312 2905
mjr 77:0b96f6867312 2906 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 2907 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 2908 // USBJoystick.cpp).
mjr 77:0b96f6867312 2909 uint8_t modkeys;
mjr 77:0b96f6867312 2910
mjr 77:0b96f6867312 2911 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 2912 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 2913 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 2914 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 2915 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 2916 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 2917 uint8_t keys[7];
mjr 77:0b96f6867312 2918
mjr 77:0b96f6867312 2919 // number of valid entries in keys[] array
mjr 77:0b96f6867312 2920 int nkeys;
mjr 77:0b96f6867312 2921
mjr 77:0b96f6867312 2922 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 2923 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 2924 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 2925 uint32_t js;
mjr 77:0b96f6867312 2926
mjr 77:0b96f6867312 2927
mjr 77:0b96f6867312 2928 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 2929 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 2930 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 2931 {
mjr 77:0b96f6867312 2932 // add the key according to the type
mjr 77:0b96f6867312 2933 switch (typ)
mjr 77:0b96f6867312 2934 {
mjr 77:0b96f6867312 2935 case BtnTypeJoystick:
mjr 77:0b96f6867312 2936 // joystick button
mjr 77:0b96f6867312 2937 js |= (1 << (val - 1));
mjr 77:0b96f6867312 2938 break;
mjr 77:0b96f6867312 2939
mjr 77:0b96f6867312 2940 case BtnTypeKey:
mjr 77:0b96f6867312 2941 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 2942 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 2943 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 2944 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 2945 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 2946 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 2947 // explicitly using media keys if desired.
mjr 77:0b96f6867312 2948 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 2949 {
mjr 77:0b96f6867312 2950 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 2951 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 2952 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 2953 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 2954 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 2955 }
mjr 77:0b96f6867312 2956 else
mjr 77:0b96f6867312 2957 {
mjr 77:0b96f6867312 2958 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 2959 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 2960 // apply, add the key to the key array.
mjr 77:0b96f6867312 2961 if (nkeys < 7)
mjr 77:0b96f6867312 2962 {
mjr 77:0b96f6867312 2963 bool found = false;
mjr 77:0b96f6867312 2964 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 2965 {
mjr 77:0b96f6867312 2966 if (keys[i] == val)
mjr 77:0b96f6867312 2967 {
mjr 77:0b96f6867312 2968 found = true;
mjr 77:0b96f6867312 2969 break;
mjr 77:0b96f6867312 2970 }
mjr 77:0b96f6867312 2971 }
mjr 77:0b96f6867312 2972 if (!found)
mjr 77:0b96f6867312 2973 keys[nkeys++] = val;
mjr 77:0b96f6867312 2974 }
mjr 77:0b96f6867312 2975 }
mjr 77:0b96f6867312 2976 break;
mjr 77:0b96f6867312 2977
mjr 77:0b96f6867312 2978 case BtnTypeMedia:
mjr 77:0b96f6867312 2979 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 2980 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 2981 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 2982 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 2983 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 2984 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 2985 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 2986 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 2987 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 2988 break;
mjr 77:0b96f6867312 2989 }
mjr 77:0b96f6867312 2990 }
mjr 77:0b96f6867312 2991 };
mjr 67:c39e66c4e000 2992
mjr 67:c39e66c4e000 2993
mjr 38:091e511ce8a0 2994 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 2995 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 2996 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 2997 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 2998 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 2999 {
mjr 77:0b96f6867312 3000 // key state
mjr 77:0b96f6867312 3001 KeyState ks;
mjr 38:091e511ce8a0 3002
mjr 38:091e511ce8a0 3003 // calculate the time since the last run
mjr 53:9b2611964afc 3004 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 3005 buttonTimer.reset();
mjr 66:2e3583fbd2f4 3006
mjr 66:2e3583fbd2f4 3007 // check the shift button state
mjr 66:2e3583fbd2f4 3008 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 3009 {
mjr 78:1e00b3fa11af 3010 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 3011 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 3012
mjr 78:1e00b3fa11af 3013 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 3014 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3015 {
mjr 66:2e3583fbd2f4 3016 case 0:
mjr 78:1e00b3fa11af 3017 default:
mjr 78:1e00b3fa11af 3018 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 3019 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 3020 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 3021 switch (shiftButton.state)
mjr 78:1e00b3fa11af 3022 {
mjr 78:1e00b3fa11af 3023 case 0:
mjr 78:1e00b3fa11af 3024 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 3025 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 3026 if (sbs->physState)
mjr 78:1e00b3fa11af 3027 shiftButton.state = 1;
mjr 78:1e00b3fa11af 3028 break;
mjr 78:1e00b3fa11af 3029
mjr 78:1e00b3fa11af 3030 case 1:
mjr 78:1e00b3fa11af 3031 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 3032 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 3033 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 3034 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 3035 // pulse event.
mjr 78:1e00b3fa11af 3036 if (!sbs->physState)
mjr 78:1e00b3fa11af 3037 {
mjr 78:1e00b3fa11af 3038 shiftButton.state = 3;
mjr 78:1e00b3fa11af 3039 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 3040 }
mjr 78:1e00b3fa11af 3041 break;
mjr 78:1e00b3fa11af 3042
mjr 78:1e00b3fa11af 3043 case 2:
mjr 78:1e00b3fa11af 3044 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 3045 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 3046 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 3047 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 3048 // suppressed.
mjr 78:1e00b3fa11af 3049 if (!sbs->physState)
mjr 78:1e00b3fa11af 3050 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3051 break;
mjr 78:1e00b3fa11af 3052
mjr 78:1e00b3fa11af 3053 case 3:
mjr 78:1e00b3fa11af 3054 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 3055 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 3056 // has expired.
mjr 78:1e00b3fa11af 3057 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 3058 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 3059 else
mjr 78:1e00b3fa11af 3060 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3061 break;
mjr 78:1e00b3fa11af 3062 }
mjr 66:2e3583fbd2f4 3063 break;
mjr 66:2e3583fbd2f4 3064
mjr 66:2e3583fbd2f4 3065 case 1:
mjr 78:1e00b3fa11af 3066 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 3067 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 3068 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 3069 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 3070 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 3071 break;
mjr 66:2e3583fbd2f4 3072 }
mjr 66:2e3583fbd2f4 3073 }
mjr 38:091e511ce8a0 3074
mjr 11:bd9da7088e6e 3075 // scan the button list
mjr 18:5e890ebd0023 3076 ButtonState *bs = buttonState;
mjr 65:739875521aae 3077 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 3078 {
mjr 77:0b96f6867312 3079 // get the config entry for the button
mjr 77:0b96f6867312 3080 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 3081
mjr 66:2e3583fbd2f4 3082 // Check the button type:
mjr 66:2e3583fbd2f4 3083 // - shift button
mjr 66:2e3583fbd2f4 3084 // - pulsed button
mjr 66:2e3583fbd2f4 3085 // - regular button
mjr 66:2e3583fbd2f4 3086 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 3087 {
mjr 78:1e00b3fa11af 3088 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 3089 // depends on the mode.
mjr 78:1e00b3fa11af 3090 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3091 {
mjr 78:1e00b3fa11af 3092 case 0:
mjr 78:1e00b3fa11af 3093 default:
mjr 78:1e00b3fa11af 3094 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 3095 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 3096 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 3097 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 3098 break;
mjr 78:1e00b3fa11af 3099
mjr 78:1e00b3fa11af 3100 case 1:
mjr 78:1e00b3fa11af 3101 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 3102 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 3103 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 3104 break;
mjr 66:2e3583fbd2f4 3105 }
mjr 66:2e3583fbd2f4 3106 }
mjr 66:2e3583fbd2f4 3107 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 3108 {
mjr 38:091e511ce8a0 3109 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 3110 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 3111 {
mjr 53:9b2611964afc 3112 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 3113 bs->pulseTime -= dt;
mjr 53:9b2611964afc 3114 }
mjr 53:9b2611964afc 3115 else
mjr 53:9b2611964afc 3116 {
mjr 53:9b2611964afc 3117 // pulse time expired - check for a state change
mjr 53:9b2611964afc 3118 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 3119 switch (bs->pulseState)
mjr 18:5e890ebd0023 3120 {
mjr 38:091e511ce8a0 3121 case 1:
mjr 38:091e511ce8a0 3122 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 3123 if (bs->physState)
mjr 53:9b2611964afc 3124 {
mjr 38:091e511ce8a0 3125 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3126 bs->pulseState = 2;
mjr 53:9b2611964afc 3127 bs->logState = 1;
mjr 38:091e511ce8a0 3128 }
mjr 38:091e511ce8a0 3129 break;
mjr 18:5e890ebd0023 3130
mjr 38:091e511ce8a0 3131 case 2:
mjr 38:091e511ce8a0 3132 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 3133 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 3134 // change in state in the logical button
mjr 38:091e511ce8a0 3135 bs->pulseState = 3;
mjr 38:091e511ce8a0 3136 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3137 bs->logState = 0;
mjr 38:091e511ce8a0 3138 break;
mjr 38:091e511ce8a0 3139
mjr 38:091e511ce8a0 3140 case 3:
mjr 38:091e511ce8a0 3141 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 3142 if (!bs->physState)
mjr 53:9b2611964afc 3143 {
mjr 38:091e511ce8a0 3144 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3145 bs->pulseState = 4;
mjr 53:9b2611964afc 3146 bs->logState = 1;
mjr 38:091e511ce8a0 3147 }
mjr 38:091e511ce8a0 3148 break;
mjr 38:091e511ce8a0 3149
mjr 38:091e511ce8a0 3150 case 4:
mjr 38:091e511ce8a0 3151 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 3152 bs->pulseState = 1;
mjr 38:091e511ce8a0 3153 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3154 bs->logState = 0;
mjr 38:091e511ce8a0 3155 break;
mjr 18:5e890ebd0023 3156 }
mjr 18:5e890ebd0023 3157 }
mjr 38:091e511ce8a0 3158 }
mjr 38:091e511ce8a0 3159 else
mjr 38:091e511ce8a0 3160 {
mjr 38:091e511ce8a0 3161 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 3162 bs->logState = bs->physState;
mjr 38:091e511ce8a0 3163 }
mjr 77:0b96f6867312 3164
mjr 77:0b96f6867312 3165 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 3166 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 3167 //
mjr 78:1e00b3fa11af 3168 // - the shift button is down, AND
mjr 78:1e00b3fa11af 3169 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 3170 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 3171 //
mjr 78:1e00b3fa11af 3172 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 3173 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 3174 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 3175 //
mjr 78:1e00b3fa11af 3176 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 3177 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 3178 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 3179 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 3180 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 3181 bool useShift =
mjr 77:0b96f6867312 3182 (shiftButton.state != 0
mjr 78:1e00b3fa11af 3183 && shiftButton.index != i
mjr 77:0b96f6867312 3184 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 3185 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 3186 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 3187
mjr 77:0b96f6867312 3188 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 3189 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 3190 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 3191 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 3192 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 3193 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 3194 shiftButton.state = 2;
mjr 35:e959ffba78fd 3195
mjr 38:091e511ce8a0 3196 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 3197 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 3198 {
mjr 77:0b96f6867312 3199 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 3200 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 3201 {
mjr 77:0b96f6867312 3202 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 3203 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 3204 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 3205 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 3206 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 3207 // the night mode state.
mjr 77:0b96f6867312 3208 //
mjr 77:0b96f6867312 3209 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 3210 // mode. Shifting only works for toggle mode.
mjr 82:4f6209cb5c33 3211 if ((cfg.nightMode.flags & 0x01) != 0)
mjr 53:9b2611964afc 3212 {
mjr 77:0b96f6867312 3213 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 3214 // current switch state.
mjr 53:9b2611964afc 3215 setNightMode(bs->logState);
mjr 53:9b2611964afc 3216 }
mjr 82:4f6209cb5c33 3217 else if (bs->logState)
mjr 53:9b2611964afc 3218 {
mjr 77:0b96f6867312 3219 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 3220 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 3221 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 3222 // OFF to ON.
mjr 66:2e3583fbd2f4 3223 //
mjr 77:0b96f6867312 3224 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 3225 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 3226 // button.
mjr 77:0b96f6867312 3227 bool pressed;
mjr 66:2e3583fbd2f4 3228 if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 3229 {
mjr 77:0b96f6867312 3230 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 3231 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 3232 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 3233 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 3234 }
mjr 77:0b96f6867312 3235 else
mjr 77:0b96f6867312 3236 {
mjr 77:0b96f6867312 3237 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 3238 // regular unshifted button. The button press only
mjr 77:0b96f6867312 3239 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 3240 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 3241 }
mjr 66:2e3583fbd2f4 3242
mjr 66:2e3583fbd2f4 3243 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 3244 // toggle night mode
mjr 66:2e3583fbd2f4 3245 if (pressed)
mjr 53:9b2611964afc 3246 toggleNightMode();
mjr 53:9b2611964afc 3247 }
mjr 35:e959ffba78fd 3248 }
mjr 38:091e511ce8a0 3249
mjr 77:0b96f6867312 3250 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 3251 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 3252 if (irc != 0)
mjr 77:0b96f6867312 3253 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 3254
mjr 38:091e511ce8a0 3255 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 3256 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 3257 }
mjr 38:091e511ce8a0 3258
mjr 53:9b2611964afc 3259 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 3260 // key state list
mjr 53:9b2611964afc 3261 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 3262 {
mjr 70:9f58735a1732 3263 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 3264 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 3265 uint8_t typ, val;
mjr 77:0b96f6867312 3266 if (useShift)
mjr 66:2e3583fbd2f4 3267 {
mjr 77:0b96f6867312 3268 typ = bc->typ2;
mjr 77:0b96f6867312 3269 val = bc->val2;
mjr 66:2e3583fbd2f4 3270 }
mjr 77:0b96f6867312 3271 else
mjr 77:0b96f6867312 3272 {
mjr 77:0b96f6867312 3273 typ = bc->typ;
mjr 77:0b96f6867312 3274 val = bc->val;
mjr 77:0b96f6867312 3275 }
mjr 77:0b96f6867312 3276
mjr 70:9f58735a1732 3277 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 3278 // the keyboard or joystick event.
mjr 77:0b96f6867312 3279 ks.addKey(typ, val);
mjr 18:5e890ebd0023 3280 }
mjr 11:bd9da7088e6e 3281 }
mjr 77:0b96f6867312 3282
mjr 77:0b96f6867312 3283 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 3284 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 3285 // the IR key.
mjr 77:0b96f6867312 3286 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 3287 {
mjr 77:0b96f6867312 3288 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 3289 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 3290 }
mjr 77:0b96f6867312 3291
mjr 77:0b96f6867312 3292 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 3293 // key state variables to reflect the new state.
mjr 77:0b96f6867312 3294
mjr 77:0b96f6867312 3295 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 3296 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 3297 jsButtons = ks.js;
mjr 77:0b96f6867312 3298
mjr 77:0b96f6867312 3299 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 3300 // something changes)
mjr 77:0b96f6867312 3301 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 3302 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 3303 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 3304 {
mjr 35:e959ffba78fd 3305 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3306 kbState.changed = true;
mjr 77:0b96f6867312 3307 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 3308 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 3309 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 3310 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 3311 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 3312 }
mjr 35:e959ffba78fd 3313 else {
mjr 35:e959ffba78fd 3314 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 3315 kbState.nkeys = 6;
mjr 35:e959ffba78fd 3316 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 3317 }
mjr 35:e959ffba78fd 3318 }
mjr 35:e959ffba78fd 3319
mjr 77:0b96f6867312 3320 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 3321 // something changes)
mjr 77:0b96f6867312 3322 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 3323 {
mjr 77:0b96f6867312 3324 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3325 mediaState.changed = true;
mjr 77:0b96f6867312 3326 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 3327 }
mjr 11:bd9da7088e6e 3328 }
mjr 11:bd9da7088e6e 3329
mjr 73:4e8ce0b18915 3330 // Send a button status report
mjr 73:4e8ce0b18915 3331 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 3332 {
mjr 73:4e8ce0b18915 3333 // start with all buttons off
mjr 73:4e8ce0b18915 3334 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 3335 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 3336
mjr 73:4e8ce0b18915 3337 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 3338 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 3339 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 3340 {
mjr 73:4e8ce0b18915 3341 // get the physical state
mjr 73:4e8ce0b18915 3342 int b = bs->physState;
mjr 73:4e8ce0b18915 3343
mjr 73:4e8ce0b18915 3344 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 3345 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 3346 int si = idx / 8;
mjr 73:4e8ce0b18915 3347 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 3348 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3349 }
mjr 73:4e8ce0b18915 3350
mjr 73:4e8ce0b18915 3351 // send the report
mjr 73:4e8ce0b18915 3352 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3353 }
mjr 73:4e8ce0b18915 3354
mjr 5:a70c0bce770d 3355 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3356 //
mjr 5:a70c0bce770d 3357 // Customization joystick subbclass
mjr 5:a70c0bce770d 3358 //
mjr 5:a70c0bce770d 3359
mjr 5:a70c0bce770d 3360 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3361 {
mjr 5:a70c0bce770d 3362 public:
mjr 35:e959ffba78fd 3363 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 90:aa4e571da8e8 3364 bool waitForConnect, bool enableJoystick, int axisFormat, bool useKB)
mjr 90:aa4e571da8e8 3365 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, axisFormat, useKB)
mjr 5:a70c0bce770d 3366 {
mjr 54:fd77a6b2f76c 3367 sleeping_ = false;
mjr 54:fd77a6b2f76c 3368 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3369 timer_.start();
mjr 54:fd77a6b2f76c 3370 }
mjr 54:fd77a6b2f76c 3371
mjr 54:fd77a6b2f76c 3372 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3373 void diagFlash()
mjr 54:fd77a6b2f76c 3374 {
mjr 54:fd77a6b2f76c 3375 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3376 {
mjr 54:fd77a6b2f76c 3377 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3378 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3379 {
mjr 54:fd77a6b2f76c 3380 // short red flash
mjr 54:fd77a6b2f76c 3381 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3382 wait_us(50000);
mjr 54:fd77a6b2f76c 3383 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3384 wait_us(50000);
mjr 54:fd77a6b2f76c 3385 }
mjr 54:fd77a6b2f76c 3386 }
mjr 5:a70c0bce770d 3387 }
mjr 5:a70c0bce770d 3388
mjr 5:a70c0bce770d 3389 // are we connected?
mjr 5:a70c0bce770d 3390 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3391
mjr 54:fd77a6b2f76c 3392 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3393 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3394 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3395 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3396 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3397
mjr 54:fd77a6b2f76c 3398 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3399 //
mjr 54:fd77a6b2f76c 3400 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3401 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3402 // other way.
mjr 54:fd77a6b2f76c 3403 //
mjr 54:fd77a6b2f76c 3404 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3405 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3406 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3407 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3408 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3409 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3410 //
mjr 54:fd77a6b2f76c 3411 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3412 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3413 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3414 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3415 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3416 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3417 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3418 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3419 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3420 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3421 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3422 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3423 // is effectively dead.
mjr 54:fd77a6b2f76c 3424 //
mjr 54:fd77a6b2f76c 3425 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3426 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3427 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3428 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3429 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3430 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3431 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3432 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3433 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3434 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3435 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3436 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3437 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3438 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3439 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3440 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3441 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3442 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3443 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3444 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3445 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3446 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3447 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3448 // a disconnect.
mjr 54:fd77a6b2f76c 3449 //
mjr 54:fd77a6b2f76c 3450 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3451 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3452 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3453 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3454 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3455 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3456 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3457 //
mjr 54:fd77a6b2f76c 3458 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3459 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3460 //
mjr 54:fd77a6b2f76c 3461 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3462 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3463 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3464 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3465 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3466 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3467 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3468 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3469 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3470 // reliable in practice.
mjr 54:fd77a6b2f76c 3471 //
mjr 54:fd77a6b2f76c 3472 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3473 //
mjr 54:fd77a6b2f76c 3474 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3475 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3476 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3477 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3478 // return.
mjr 54:fd77a6b2f76c 3479 //
mjr 54:fd77a6b2f76c 3480 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3481 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3482 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3483 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3484 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3485 //
mjr 54:fd77a6b2f76c 3486 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3487 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3488 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3489 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3490 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3491 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3492 //
mjr 54:fd77a6b2f76c 3493 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3494 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3495 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3496 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3497 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3498 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3499 // freezes over.
mjr 54:fd77a6b2f76c 3500 //
mjr 54:fd77a6b2f76c 3501 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3502 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3503 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3504 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3505 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3506 void recoverConnection()
mjr 54:fd77a6b2f76c 3507 {
mjr 54:fd77a6b2f76c 3508 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3509 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3510 {
mjr 54:fd77a6b2f76c 3511 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3512 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 3513 {
mjr 54:fd77a6b2f76c 3514 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 3515 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 3516 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 3517 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 3518 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 3519 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 3520 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 3521 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 3522 __disable_irq();
mjr 54:fd77a6b2f76c 3523 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 3524 {
mjr 54:fd77a6b2f76c 3525 connect(false);
mjr 54:fd77a6b2f76c 3526 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3527 done = true;
mjr 54:fd77a6b2f76c 3528 }
mjr 54:fd77a6b2f76c 3529 __enable_irq();
mjr 54:fd77a6b2f76c 3530 }
mjr 54:fd77a6b2f76c 3531 }
mjr 54:fd77a6b2f76c 3532 }
mjr 5:a70c0bce770d 3533
mjr 5:a70c0bce770d 3534 protected:
mjr 54:fd77a6b2f76c 3535 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 3536 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 3537 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 3538 //
mjr 54:fd77a6b2f76c 3539 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 3540 //
mjr 54:fd77a6b2f76c 3541 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 3542 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 3543 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 3544 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 3545 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 3546 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 3547 {
mjr 54:fd77a6b2f76c 3548 // note the new state
mjr 54:fd77a6b2f76c 3549 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 3550
mjr 54:fd77a6b2f76c 3551 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 3552 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 3553 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 3554 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 3555 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 3556 {
mjr 54:fd77a6b2f76c 3557 disconnect();
mjr 54:fd77a6b2f76c 3558 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 3559 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 3560 }
mjr 54:fd77a6b2f76c 3561 }
mjr 54:fd77a6b2f76c 3562
mjr 54:fd77a6b2f76c 3563 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 3564 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 3565
mjr 54:fd77a6b2f76c 3566 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 3567 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 3568
mjr 54:fd77a6b2f76c 3569 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 3570 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 3571
mjr 54:fd77a6b2f76c 3572 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 3573 Timer timer_;
mjr 5:a70c0bce770d 3574 };
mjr 5:a70c0bce770d 3575
mjr 5:a70c0bce770d 3576 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3577 //
mjr 5:a70c0bce770d 3578 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 3579 //
mjr 5:a70c0bce770d 3580
mjr 5:a70c0bce770d 3581 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 3582 //
mjr 5:a70c0bce770d 3583 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 3584 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 3585 // automatic calibration.
mjr 5:a70c0bce770d 3586 //
mjr 77:0b96f6867312 3587 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 3588 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 3589 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 3590 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 3591 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 3592 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 3593 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 3594 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 3595 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 3596 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 3597 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 3598 //
mjr 77:0b96f6867312 3599 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 3600 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 3601 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 3602 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 3603 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 3604 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 3605 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 3606 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 3607 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 3608 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 3609 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 3610 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 3611 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 3612 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 3613 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 3614 // rather than change it across the board.
mjr 5:a70c0bce770d 3615 //
mjr 6:cc35eb643e8f 3616 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 3617 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 3618 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 3619 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 3620 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 3621 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 3622 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 3623 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 3624 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 3625 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 3626 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 3627 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 3628 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 3629 // of nudging, say).
mjr 5:a70c0bce770d 3630 //
mjr 5:a70c0bce770d 3631
mjr 17:ab3cec0c8bf4 3632 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 3633 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 3634
mjr 17:ab3cec0c8bf4 3635 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 3636 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 3637 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 3638
mjr 17:ab3cec0c8bf4 3639 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 3640 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 3641 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 3642 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 3643
mjr 17:ab3cec0c8bf4 3644
mjr 6:cc35eb643e8f 3645 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 3646 struct AccHist
mjr 5:a70c0bce770d 3647 {
mjr 77:0b96f6867312 3648 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3649 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 3650 {
mjr 6:cc35eb643e8f 3651 // save the raw position
mjr 6:cc35eb643e8f 3652 this->x = x;
mjr 6:cc35eb643e8f 3653 this->y = y;
mjr 77:0b96f6867312 3654 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 3655 }
mjr 6:cc35eb643e8f 3656
mjr 6:cc35eb643e8f 3657 // reading for this entry
mjr 77:0b96f6867312 3658 int x, y;
mjr 77:0b96f6867312 3659
mjr 77:0b96f6867312 3660 // (distance from previous entry) squared
mjr 77:0b96f6867312 3661 int dsq;
mjr 5:a70c0bce770d 3662
mjr 6:cc35eb643e8f 3663 // total and count of samples averaged over this period
mjr 77:0b96f6867312 3664 int xtot, ytot;
mjr 6:cc35eb643e8f 3665 int cnt;
mjr 6:cc35eb643e8f 3666
mjr 77:0b96f6867312 3667 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3668 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 3669 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 3670 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 3671
mjr 77:0b96f6867312 3672 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 3673 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 3674 };
mjr 5:a70c0bce770d 3675
mjr 5:a70c0bce770d 3676 // accelerometer wrapper class
mjr 3:3514575d4f86 3677 class Accel
mjr 3:3514575d4f86 3678 {
mjr 3:3514575d4f86 3679 public:
mjr 78:1e00b3fa11af 3680 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin,
mjr 78:1e00b3fa11af 3681 int range, int autoCenterMode)
mjr 77:0b96f6867312 3682 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 3683 {
mjr 5:a70c0bce770d 3684 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 3685 irqPin_ = irqPin;
mjr 77:0b96f6867312 3686
mjr 77:0b96f6867312 3687 // remember the range
mjr 77:0b96f6867312 3688 range_ = range;
mjr 78:1e00b3fa11af 3689
mjr 78:1e00b3fa11af 3690 // set the auto-centering mode
mjr 78:1e00b3fa11af 3691 setAutoCenterMode(autoCenterMode);
mjr 78:1e00b3fa11af 3692
mjr 78:1e00b3fa11af 3693 // no manual centering request has been received
mjr 78:1e00b3fa11af 3694 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 3695
mjr 5:a70c0bce770d 3696 // reset and initialize
mjr 5:a70c0bce770d 3697 reset();
mjr 5:a70c0bce770d 3698 }
mjr 5:a70c0bce770d 3699
mjr 78:1e00b3fa11af 3700 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 3701 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 3702 // as soon as we have enough data.
mjr 78:1e00b3fa11af 3703 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 3704
mjr 78:1e00b3fa11af 3705 // set the auto-centering mode
mjr 78:1e00b3fa11af 3706 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 3707 {
mjr 78:1e00b3fa11af 3708 // remember the mode
mjr 78:1e00b3fa11af 3709 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 3710
mjr 78:1e00b3fa11af 3711 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 3712 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 3713 if (mode == 0)
mjr 78:1e00b3fa11af 3714 {
mjr 78:1e00b3fa11af 3715 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 3716 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 3717 }
mjr 78:1e00b3fa11af 3718 else if (mode <= 60)
mjr 78:1e00b3fa11af 3719 {
mjr 78:1e00b3fa11af 3720 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 3721 // interval is 1/5 of this
mjr 78:1e00b3fa11af 3722 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 3723 }
mjr 78:1e00b3fa11af 3724 else
mjr 78:1e00b3fa11af 3725 {
mjr 78:1e00b3fa11af 3726 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 3727 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 3728 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 3729 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 3730 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 3731 // includes recent data.
mjr 78:1e00b3fa11af 3732 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 3733 }
mjr 78:1e00b3fa11af 3734 }
mjr 78:1e00b3fa11af 3735
mjr 5:a70c0bce770d 3736 void reset()
mjr 5:a70c0bce770d 3737 {
mjr 6:cc35eb643e8f 3738 // clear the center point
mjr 77:0b96f6867312 3739 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 3740
mjr 77:0b96f6867312 3741 // start the auto-centering timer
mjr 5:a70c0bce770d 3742 tCenter_.start();
mjr 5:a70c0bce770d 3743 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 3744
mjr 5:a70c0bce770d 3745 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 3746 mma_.init();
mjr 77:0b96f6867312 3747
mjr 77:0b96f6867312 3748 // set the range
mjr 77:0b96f6867312 3749 mma_.setRange(
mjr 77:0b96f6867312 3750 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 3751 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 3752 2);
mjr 6:cc35eb643e8f 3753
mjr 77:0b96f6867312 3754 // set the average accumulators to zero
mjr 77:0b96f6867312 3755 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3756 nSum_ = 0;
mjr 3:3514575d4f86 3757
mjr 3:3514575d4f86 3758 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 3759 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 3760 }
mjr 3:3514575d4f86 3761
mjr 77:0b96f6867312 3762 void poll()
mjr 76:7f5912b6340e 3763 {
mjr 77:0b96f6867312 3764 // read samples until we clear the FIFO
mjr 77:0b96f6867312 3765 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 3766 {
mjr 77:0b96f6867312 3767 int x, y, z;
mjr 77:0b96f6867312 3768 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 3769
mjr 77:0b96f6867312 3770 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 3771 xSum_ += (x - cx_);
mjr 77:0b96f6867312 3772 ySum_ += (y - cy_);
mjr 77:0b96f6867312 3773 ++nSum_;
mjr 77:0b96f6867312 3774
mjr 77:0b96f6867312 3775 // store the updates
mjr 77:0b96f6867312 3776 ax_ = x;
mjr 77:0b96f6867312 3777 ay_ = y;
mjr 77:0b96f6867312 3778 az_ = z;
mjr 77:0b96f6867312 3779 }
mjr 76:7f5912b6340e 3780 }
mjr 77:0b96f6867312 3781
mjr 9:fd65b0a94720 3782 void get(int &x, int &y)
mjr 3:3514575d4f86 3783 {
mjr 77:0b96f6867312 3784 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 3785 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 3786 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 3787 int nSum = nSum_;
mjr 6:cc35eb643e8f 3788
mjr 77:0b96f6867312 3789 // reset the average accumulators for the next run
mjr 77:0b96f6867312 3790 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3791 nSum_ = 0;
mjr 77:0b96f6867312 3792
mjr 77:0b96f6867312 3793 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 3794 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3795 p->addAvg(ax, ay);
mjr 77:0b96f6867312 3796
mjr 78:1e00b3fa11af 3797 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 3798 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 3799 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 3800 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 3801 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 3802 {
mjr 77:0b96f6867312 3803 // add the latest raw sample to the history list
mjr 77:0b96f6867312 3804 AccHist *prv = p;
mjr 77:0b96f6867312 3805 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 3806 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3807 iAccPrv_ = 0;
mjr 77:0b96f6867312 3808 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3809 p->set(ax, ay, prv);
mjr 77:0b96f6867312 3810
mjr 78:1e00b3fa11af 3811 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 3812 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3813 {
mjr 78:1e00b3fa11af 3814 // Center if:
mjr 78:1e00b3fa11af 3815 //
mjr 78:1e00b3fa11af 3816 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 3817 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 3818 //
mjr 78:1e00b3fa11af 3819 // - A manual centering request is pending
mjr 78:1e00b3fa11af 3820 //
mjr 77:0b96f6867312 3821 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 3822 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 3823 if (manualCenterRequest_
mjr 78:1e00b3fa11af 3824 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 3825 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 3826 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 3827 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 3828 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 3829 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 3830 {
mjr 77:0b96f6867312 3831 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 3832 // the samples over the rest period
mjr 77:0b96f6867312 3833 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 3834 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 3835
mjr 78:1e00b3fa11af 3836 // clear any pending manual centering request
mjr 78:1e00b3fa11af 3837 manualCenterRequest_ = false;
mjr 77:0b96f6867312 3838 }
mjr 77:0b96f6867312 3839 }
mjr 77:0b96f6867312 3840 else
mjr 77:0b96f6867312 3841 {
mjr 77:0b96f6867312 3842 // not enough samples yet; just up the count
mjr 77:0b96f6867312 3843 ++nAccPrv_;
mjr 77:0b96f6867312 3844 }
mjr 6:cc35eb643e8f 3845
mjr 77:0b96f6867312 3846 // clear the new item's running totals
mjr 77:0b96f6867312 3847 p->clearAvg();
mjr 5:a70c0bce770d 3848
mjr 77:0b96f6867312 3849 // reset the timer
mjr 77:0b96f6867312 3850 tCenter_.reset();
mjr 77:0b96f6867312 3851 }
mjr 5:a70c0bce770d 3852
mjr 77:0b96f6867312 3853 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 3854 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 3855 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 3856
mjr 6:cc35eb643e8f 3857 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 3858 if (x != 0 || y != 0)
mjr 77:0b96f6867312 3859 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 3860 #endif
mjr 77:0b96f6867312 3861 }
mjr 29:582472d0bc57 3862
mjr 3:3514575d4f86 3863 private:
mjr 6:cc35eb643e8f 3864 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 3865 int rawToReport(int v)
mjr 5:a70c0bce770d 3866 {
mjr 77:0b96f6867312 3867 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 3868 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 3869 // so their scale is 2^13.
mjr 77:0b96f6867312 3870 //
mjr 77:0b96f6867312 3871 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 3872 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 3873 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 3874 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 3875 int i = v*JOYMAX;
mjr 77:0b96f6867312 3876 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 3877
mjr 6:cc35eb643e8f 3878 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 3879 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 3880 static const int filter[] = {
mjr 6:cc35eb643e8f 3881 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 3882 0,
mjr 6:cc35eb643e8f 3883 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 3884 };
mjr 6:cc35eb643e8f 3885 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 3886 }
mjr 5:a70c0bce770d 3887
mjr 3:3514575d4f86 3888 // underlying accelerometer object
mjr 3:3514575d4f86 3889 MMA8451Q mma_;
mjr 3:3514575d4f86 3890
mjr 77:0b96f6867312 3891 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 3892 // scale -8192..+8191
mjr 77:0b96f6867312 3893 int ax_, ay_, az_;
mjr 77:0b96f6867312 3894
mjr 77:0b96f6867312 3895 // running sum of readings since last get()
mjr 77:0b96f6867312 3896 int xSum_, ySum_;
mjr 77:0b96f6867312 3897
mjr 77:0b96f6867312 3898 // number of readings since last get()
mjr 77:0b96f6867312 3899 int nSum_;
mjr 6:cc35eb643e8f 3900
mjr 6:cc35eb643e8f 3901 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 3902 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 3903 // at rest.
mjr 77:0b96f6867312 3904 int cx_, cy_;
mjr 77:0b96f6867312 3905
mjr 77:0b96f6867312 3906 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 3907 uint8_t range_;
mjr 78:1e00b3fa11af 3908
mjr 78:1e00b3fa11af 3909 // auto-center mode:
mjr 78:1e00b3fa11af 3910 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 3911 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 3912 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 3913 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 3914
mjr 78:1e00b3fa11af 3915 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 3916 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 3917
mjr 78:1e00b3fa11af 3918 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 3919 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 3920
mjr 77:0b96f6867312 3921 // atuo-centering timer
mjr 5:a70c0bce770d 3922 Timer tCenter_;
mjr 6:cc35eb643e8f 3923
mjr 6:cc35eb643e8f 3924 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 3925 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 3926 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 3927 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 3928 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 3929 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 3930 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 3931 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 3932 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 3933 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 3934 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 3935 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 3936 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 3937 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 3938 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 3939
mjr 5:a70c0bce770d 3940 // interurupt pin name
mjr 5:a70c0bce770d 3941 PinName irqPin_;
mjr 3:3514575d4f86 3942 };
mjr 3:3514575d4f86 3943
mjr 5:a70c0bce770d 3944 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3945 //
mjr 14:df700b22ca08 3946 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 3947 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 3948 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 3949 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 3950 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 3951 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 3952 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 3953 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 3954 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 3955 //
mjr 14:df700b22ca08 3956 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 3957 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 3958 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 3959 //
mjr 5:a70c0bce770d 3960 void clear_i2c()
mjr 5:a70c0bce770d 3961 {
mjr 38:091e511ce8a0 3962 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 3963 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 3964 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 3965
mjr 5:a70c0bce770d 3966 // clock the SCL 9 times
mjr 5:a70c0bce770d 3967 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 3968 {
mjr 5:a70c0bce770d 3969 scl = 1;
mjr 5:a70c0bce770d 3970 wait_us(20);
mjr 5:a70c0bce770d 3971 scl = 0;
mjr 5:a70c0bce770d 3972 wait_us(20);
mjr 5:a70c0bce770d 3973 }
mjr 5:a70c0bce770d 3974 }
mjr 76:7f5912b6340e 3975
mjr 76:7f5912b6340e 3976
mjr 14:df700b22ca08 3977 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 3978 //
mjr 33:d832bcab089e 3979 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 3980 // for a given interval before allowing an update.
mjr 33:d832bcab089e 3981 //
mjr 33:d832bcab089e 3982 class Debouncer
mjr 33:d832bcab089e 3983 {
mjr 33:d832bcab089e 3984 public:
mjr 33:d832bcab089e 3985 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 3986 {
mjr 33:d832bcab089e 3987 t.start();
mjr 33:d832bcab089e 3988 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 3989 this->tmin = tmin;
mjr 33:d832bcab089e 3990 }
mjr 33:d832bcab089e 3991
mjr 33:d832bcab089e 3992 // Get the current stable value
mjr 33:d832bcab089e 3993 bool val() const { return stable; }
mjr 33:d832bcab089e 3994
mjr 33:d832bcab089e 3995 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 3996 // input device.
mjr 33:d832bcab089e 3997 void sampleIn(bool val)
mjr 33:d832bcab089e 3998 {
mjr 33:d832bcab089e 3999 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 4000 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 4001 // on the sample reader.
mjr 33:d832bcab089e 4002 if (val != prv)
mjr 33:d832bcab089e 4003 {
mjr 33:d832bcab089e 4004 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 4005 t.reset();
mjr 33:d832bcab089e 4006
mjr 33:d832bcab089e 4007 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 4008 prv = val;
mjr 33:d832bcab089e 4009 }
mjr 33:d832bcab089e 4010 else if (val != stable)
mjr 33:d832bcab089e 4011 {
mjr 33:d832bcab089e 4012 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 4013 // and different from the stable value. This means that
mjr 33:d832bcab089e 4014 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 4015 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 4016 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 4017 if (t.read() > tmin)
mjr 33:d832bcab089e 4018 stable = val;
mjr 33:d832bcab089e 4019 }
mjr 33:d832bcab089e 4020 }
mjr 33:d832bcab089e 4021
mjr 33:d832bcab089e 4022 private:
mjr 33:d832bcab089e 4023 // current stable value
mjr 33:d832bcab089e 4024 bool stable;
mjr 33:d832bcab089e 4025
mjr 33:d832bcab089e 4026 // last raw sample value
mjr 33:d832bcab089e 4027 bool prv;
mjr 33:d832bcab089e 4028
mjr 33:d832bcab089e 4029 // elapsed time since last raw input change
mjr 33:d832bcab089e 4030 Timer t;
mjr 33:d832bcab089e 4031
mjr 33:d832bcab089e 4032 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 4033 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 4034 float tmin;
mjr 33:d832bcab089e 4035 };
mjr 33:d832bcab089e 4036
mjr 33:d832bcab089e 4037
mjr 33:d832bcab089e 4038 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 4039 //
mjr 33:d832bcab089e 4040 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 4041 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 4042 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 4043 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 4044 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 4045 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 4046 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 4047 //
mjr 33:d832bcab089e 4048 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 4049 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 4050 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 4051 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 4052 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 4053 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 4054 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 4055 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 4056 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 4057 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 4058 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 4059 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 4060 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 4061 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 4062 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 4063 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 4064 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 4065 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 4066 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 4067 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 4068 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 4069 //
mjr 40:cc0d9814522b 4070 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 4071 // of tricky but likely scenarios:
mjr 33:d832bcab089e 4072 //
mjr 33:d832bcab089e 4073 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 4074 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 4075 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 4076 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 4077 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 4078 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 4079 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 4080 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 4081 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 4082 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 4083 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 4084 //
mjr 33:d832bcab089e 4085 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 4086 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 4087 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 4088 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 4089 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 4090 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 4091 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 4092 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 4093 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 4094 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 4095 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 4096 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 4097 // first check.
mjr 33:d832bcab089e 4098 //
mjr 33:d832bcab089e 4099 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 4100 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 4101 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 4102 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 4103 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 4104 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 4105 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 4106 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 4107 //
mjr 33:d832bcab089e 4108
mjr 77:0b96f6867312 4109 // Current PSU2 power state:
mjr 33:d832bcab089e 4110 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 4111 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 4112 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 4113 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 4114 // 5 -> TV relay on
mjr 77:0b96f6867312 4115 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 4116 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 4117
mjr 73:4e8ce0b18915 4118 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 4119 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 4120 // separate state for each:
mjr 73:4e8ce0b18915 4121 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 4122 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 4123 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 4124 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 4125 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 4126
mjr 79:682ae3171a08 4127 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 4128 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 4129
mjr 77:0b96f6867312 4130 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 4131 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 4132 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 4133 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 4134 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 4135 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 4136 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 4137 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 4138 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 4139 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 4140 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 4141
mjr 77:0b96f6867312 4142 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 4143 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 4144
mjr 35:e959ffba78fd 4145 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 4146 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 4147 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 4148
mjr 73:4e8ce0b18915 4149 // Apply the current TV relay state
mjr 73:4e8ce0b18915 4150 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 4151 {
mjr 73:4e8ce0b18915 4152 // update the state
mjr 73:4e8ce0b18915 4153 if (state)
mjr 73:4e8ce0b18915 4154 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 4155 else
mjr 73:4e8ce0b18915 4156 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 4157
mjr 73:4e8ce0b18915 4158 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 4159 if (tv_relay != 0)
mjr 73:4e8ce0b18915 4160 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 4161 }
mjr 35:e959ffba78fd 4162
mjr 86:e30a1f60f783 4163 // Does the current power status allow a reboot? We shouldn't reboot
mjr 86:e30a1f60f783 4164 // in certain power states, because some states are purely internal:
mjr 86:e30a1f60f783 4165 // we can't get enough information from the external power sensor to
mjr 86:e30a1f60f783 4166 // return to the same state later. Code that performs discretionary
mjr 86:e30a1f60f783 4167 // reboots should always check here first, and delay any reboot until
mjr 86:e30a1f60f783 4168 // we say it's okay.
mjr 86:e30a1f60f783 4169 static inline bool powerStatusAllowsReboot()
mjr 86:e30a1f60f783 4170 {
mjr 86:e30a1f60f783 4171 // The only safe state for rebooting is state 1, idle/default.
mjr 86:e30a1f60f783 4172 // In other states, we can't reboot, because the external sensor
mjr 86:e30a1f60f783 4173 // and latch circuit doesn't give us enough information to return
mjr 86:e30a1f60f783 4174 // to the same state later.
mjr 86:e30a1f60f783 4175 return psu2_state == 1;
mjr 86:e30a1f60f783 4176 }
mjr 86:e30a1f60f783 4177
mjr 77:0b96f6867312 4178 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 4179 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 4180 // functions.
mjr 77:0b96f6867312 4181 Timer powerStatusTimer;
mjr 77:0b96f6867312 4182 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 4183 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 4184 {
mjr 79:682ae3171a08 4185 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 4186 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 4187 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 4188 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 4189 {
mjr 79:682ae3171a08 4190 // turn off the relay and disable the timer
mjr 79:682ae3171a08 4191 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 4192 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 4193 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4194 }
mjr 79:682ae3171a08 4195
mjr 77:0b96f6867312 4196 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 4197 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 4198 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 4199 // skip this whole routine.
mjr 77:0b96f6867312 4200 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 4201 return;
mjr 77:0b96f6867312 4202
mjr 77:0b96f6867312 4203 // reset the update timer for next time
mjr 77:0b96f6867312 4204 powerStatusTimer.reset();
mjr 77:0b96f6867312 4205
mjr 77:0b96f6867312 4206 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 4207 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 4208 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 4209 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 4210 static Timer tv_timer;
mjr 35:e959ffba78fd 4211
mjr 33:d832bcab089e 4212 // Check our internal state
mjr 33:d832bcab089e 4213 switch (psu2_state)
mjr 33:d832bcab089e 4214 {
mjr 33:d832bcab089e 4215 case 1:
mjr 33:d832bcab089e 4216 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 4217 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 4218 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 4219 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 4220 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 4221 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 4222 {
mjr 33:d832bcab089e 4223 // switch to OFF state
mjr 33:d832bcab089e 4224 psu2_state = 2;
mjr 33:d832bcab089e 4225
mjr 33:d832bcab089e 4226 // try setting the latch
mjr 35:e959ffba78fd 4227 psu2_status_set->write(1);
mjr 33:d832bcab089e 4228 }
mjr 77:0b96f6867312 4229 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4230 break;
mjr 33:d832bcab089e 4231
mjr 33:d832bcab089e 4232 case 2:
mjr 33:d832bcab089e 4233 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 4234 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 4235 psu2_status_set->write(0);
mjr 33:d832bcab089e 4236 psu2_state = 3;
mjr 77:0b96f6867312 4237 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4238 break;
mjr 33:d832bcab089e 4239
mjr 33:d832bcab089e 4240 case 3:
mjr 33:d832bcab089e 4241 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 4242 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 4243 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 4244 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 4245 if (psu2_status_sense->read())
mjr 33:d832bcab089e 4246 {
mjr 33:d832bcab089e 4247 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 4248 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 4249 tv_timer.reset();
mjr 33:d832bcab089e 4250 tv_timer.start();
mjr 33:d832bcab089e 4251 psu2_state = 4;
mjr 73:4e8ce0b18915 4252
mjr 73:4e8ce0b18915 4253 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 4254 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4255 }
mjr 33:d832bcab089e 4256 else
mjr 33:d832bcab089e 4257 {
mjr 33:d832bcab089e 4258 // The latch didn't stick, so PSU2 was still off at
mjr 87:8d35c74403af 4259 // our last check. Return to idle state.
mjr 87:8d35c74403af 4260 psu2_state = 1;
mjr 33:d832bcab089e 4261 }
mjr 33:d832bcab089e 4262 break;
mjr 33:d832bcab089e 4263
mjr 33:d832bcab089e 4264 case 4:
mjr 77:0b96f6867312 4265 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 4266 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 4267 // off again before the countdown finished.
mjr 77:0b96f6867312 4268 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 4269 {
mjr 77:0b96f6867312 4270 // power is off - start a new check cycle
mjr 77:0b96f6867312 4271 psu2_status_set->write(1);
mjr 77:0b96f6867312 4272 psu2_state = 2;
mjr 77:0b96f6867312 4273 break;
mjr 77:0b96f6867312 4274 }
mjr 77:0b96f6867312 4275
mjr 77:0b96f6867312 4276 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 4277 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 4278
mjr 77:0b96f6867312 4279 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 4280 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 4281 {
mjr 33:d832bcab089e 4282 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 4283 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 4284 psu2_state = 5;
mjr 77:0b96f6867312 4285
mjr 77:0b96f6867312 4286 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 4287 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4288 }
mjr 33:d832bcab089e 4289 break;
mjr 33:d832bcab089e 4290
mjr 33:d832bcab089e 4291 case 5:
mjr 33:d832bcab089e 4292 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 4293 // it's now time to turn it off.
mjr 73:4e8ce0b18915 4294 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 4295
mjr 77:0b96f6867312 4296 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 4297 psu2_state = 6;
mjr 77:0b96f6867312 4298 tvon_ir_state = 0;
mjr 77:0b96f6867312 4299
mjr 77:0b96f6867312 4300 // diagnostic LEDs off for now
mjr 77:0b96f6867312 4301 powerTimerDiagState = 0;
mjr 77:0b96f6867312 4302 break;
mjr 77:0b96f6867312 4303
mjr 77:0b96f6867312 4304 case 6:
mjr 77:0b96f6867312 4305 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 4306 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 4307 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 4308 psu2_state = 1;
mjr 77:0b96f6867312 4309 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 4310
mjr 77:0b96f6867312 4311 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 4312 if (ir_tx != 0)
mjr 77:0b96f6867312 4313 {
mjr 77:0b96f6867312 4314 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 4315 if (ir_tx->isSending())
mjr 77:0b96f6867312 4316 {
mjr 77:0b96f6867312 4317 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 4318 // state 6.
mjr 77:0b96f6867312 4319 psu2_state = 6;
mjr 77:0b96f6867312 4320 powerTimerDiagState = 4;
mjr 77:0b96f6867312 4321 break;
mjr 77:0b96f6867312 4322 }
mjr 77:0b96f6867312 4323
mjr 77:0b96f6867312 4324 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 4325 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 4326 // number.
mjr 77:0b96f6867312 4327 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 4328 {
mjr 77:0b96f6867312 4329 // is this a TV ON command?
mjr 77:0b96f6867312 4330 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 4331 {
mjr 77:0b96f6867312 4332 // It's a TV ON command - check if it's the one we're
mjr 77:0b96f6867312 4333 // looking for.
mjr 77:0b96f6867312 4334 if (n == tvon_ir_state)
mjr 77:0b96f6867312 4335 {
mjr 77:0b96f6867312 4336 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 4337 // pushing its virtual button.
mjr 77:0b96f6867312 4338 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 4339 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 4340
mjr 77:0b96f6867312 4341 // Pushing the button starts transmission, and once
mjr 88:98bce687e6c0 4342 // started, the transmission runs to completion even
mjr 88:98bce687e6c0 4343 // if the button is no longer pushed. So we can
mjr 88:98bce687e6c0 4344 // immediately un-push the button, since we only need
mjr 88:98bce687e6c0 4345 // to send the code once.
mjr 77:0b96f6867312 4346 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 4347
mjr 77:0b96f6867312 4348 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 4349 // await the end of this transmission and move on to
mjr 77:0b96f6867312 4350 // the next one.
mjr 77:0b96f6867312 4351 psu2_state = 6;
mjr 77:0b96f6867312 4352 tvon_ir_state++;
mjr 77:0b96f6867312 4353 break;
mjr 77:0b96f6867312 4354 }
mjr 77:0b96f6867312 4355
mjr 77:0b96f6867312 4356 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 4357 ++n;
mjr 77:0b96f6867312 4358 }
mjr 77:0b96f6867312 4359 }
mjr 77:0b96f6867312 4360 }
mjr 33:d832bcab089e 4361 break;
mjr 33:d832bcab089e 4362 }
mjr 77:0b96f6867312 4363
mjr 77:0b96f6867312 4364 // update the diagnostic LEDs
mjr 77:0b96f6867312 4365 diagLED();
mjr 33:d832bcab089e 4366 }
mjr 33:d832bcab089e 4367
mjr 77:0b96f6867312 4368 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4369 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4370 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4371 // are configured as NC.
mjr 77:0b96f6867312 4372 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4373 {
mjr 55:4db125cd11a0 4374 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4375 // time is nonzero
mjr 77:0b96f6867312 4376 powerStatusTimer.reset();
mjr 77:0b96f6867312 4377 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4378 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4379 {
mjr 77:0b96f6867312 4380 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4381 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4382 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4383
mjr 77:0b96f6867312 4384 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4385 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4386 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4387
mjr 77:0b96f6867312 4388 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4389 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4390 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4391 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4392
mjr 77:0b96f6867312 4393 // Start the TV timer
mjr 77:0b96f6867312 4394 powerStatusTimer.start();
mjr 35:e959ffba78fd 4395 }
mjr 35:e959ffba78fd 4396 }
mjr 35:e959ffba78fd 4397
mjr 73:4e8ce0b18915 4398 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4399 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4400 //
mjr 73:4e8ce0b18915 4401 // Mode:
mjr 73:4e8ce0b18915 4402 // 0 = turn relay off
mjr 73:4e8ce0b18915 4403 // 1 = turn relay on
mjr 73:4e8ce0b18915 4404 // 2 = pulse relay
mjr 73:4e8ce0b18915 4405 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4406 {
mjr 73:4e8ce0b18915 4407 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4408 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4409 return;
mjr 73:4e8ce0b18915 4410
mjr 73:4e8ce0b18915 4411 switch (mode)
mjr 73:4e8ce0b18915 4412 {
mjr 73:4e8ce0b18915 4413 case 0:
mjr 73:4e8ce0b18915 4414 // relay off
mjr 73:4e8ce0b18915 4415 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4416 break;
mjr 73:4e8ce0b18915 4417
mjr 73:4e8ce0b18915 4418 case 1:
mjr 73:4e8ce0b18915 4419 // relay on
mjr 73:4e8ce0b18915 4420 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4421 break;
mjr 73:4e8ce0b18915 4422
mjr 73:4e8ce0b18915 4423 case 2:
mjr 79:682ae3171a08 4424 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 4425 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 4426 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4427 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 4428 break;
mjr 73:4e8ce0b18915 4429 }
mjr 73:4e8ce0b18915 4430 }
mjr 73:4e8ce0b18915 4431
mjr 73:4e8ce0b18915 4432
mjr 35:e959ffba78fd 4433 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4434 //
mjr 35:e959ffba78fd 4435 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4436 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4437 //
mjr 35:e959ffba78fd 4438 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4439 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4440 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4441 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4442 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4443 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4444 //
mjr 35:e959ffba78fd 4445 NVM nvm;
mjr 35:e959ffba78fd 4446
mjr 86:e30a1f60f783 4447 // Save Config followup time, in seconds. After a successful save,
mjr 86:e30a1f60f783 4448 // we leave the success flag on in the status for this interval. At
mjr 86:e30a1f60f783 4449 // the end of the interval, we reboot the device if requested.
mjr 86:e30a1f60f783 4450 uint8_t saveConfigFollowupTime;
mjr 86:e30a1f60f783 4451
mjr 86:e30a1f60f783 4452 // is a reboot pending at the end of the config save followup interval?
mjr 86:e30a1f60f783 4453 uint8_t saveConfigRebootPending;
mjr 77:0b96f6867312 4454
mjr 79:682ae3171a08 4455 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 4456 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 4457
mjr 86:e30a1f60f783 4458 // Timer for configuration change followup timer
mjr 86:e30a1f60f783 4459 ExtTimer saveConfigFollowupTimer;
mjr 86:e30a1f60f783 4460
mjr 86:e30a1f60f783 4461
mjr 35:e959ffba78fd 4462 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4463 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4464
mjr 35:e959ffba78fd 4465 // flash memory controller interface
mjr 35:e959ffba78fd 4466 FreescaleIAP iap;
mjr 35:e959ffba78fd 4467
mjr 79:682ae3171a08 4468 // figure the flash address for the config data
mjr 79:682ae3171a08 4469 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 4470 {
mjr 79:682ae3171a08 4471 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 4472 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 4473
mjr 79:682ae3171a08 4474 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 4475 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 4476
mjr 79:682ae3171a08 4477 // locate it at the top of memory
mjr 79:682ae3171a08 4478 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 4479
mjr 79:682ae3171a08 4480 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 4481 return (const NVM *)addr;
mjr 35:e959ffba78fd 4482 }
mjr 35:e959ffba78fd 4483
mjr 76:7f5912b6340e 4484 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4485 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4486 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4487 // in either case.
mjr 76:7f5912b6340e 4488 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4489 {
mjr 35:e959ffba78fd 4490 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4491 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4492 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4493 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4494 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4495 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4496 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4497 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4498 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4499 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4500 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4501 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4502 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4503 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4504 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4505 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4506
mjr 35:e959ffba78fd 4507 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 4508 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4509
mjr 35:e959ffba78fd 4510 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 4511 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 4512 if (nvm_valid)
mjr 35:e959ffba78fd 4513 {
mjr 35:e959ffba78fd 4514 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 4515 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 4516 }
mjr 35:e959ffba78fd 4517 else
mjr 35:e959ffba78fd 4518 {
mjr 76:7f5912b6340e 4519 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 4520 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 4521 }
mjr 76:7f5912b6340e 4522
mjr 76:7f5912b6340e 4523 // tell the caller what happened
mjr 76:7f5912b6340e 4524 return nvm_valid;
mjr 35:e959ffba78fd 4525 }
mjr 35:e959ffba78fd 4526
mjr 86:e30a1f60f783 4527 // Save the config. Returns true on success, false on failure.
mjr 86:e30a1f60f783 4528 // 'tFollowup' is the follow-up time in seconds. If the write is
mjr 86:e30a1f60f783 4529 // successful, we'll turn on the success flag in the status reports
mjr 86:e30a1f60f783 4530 // and leave it on for this interval. If 'reboot' is true, we'll
mjr 86:e30a1f60f783 4531 // also schedule a reboot at the end of the followup interval.
mjr 86:e30a1f60f783 4532 bool saveConfigToFlash(int tFollowup, bool reboot)
mjr 33:d832bcab089e 4533 {
mjr 76:7f5912b6340e 4534 // make sure the plunger sensor isn't busy
mjr 76:7f5912b6340e 4535 waitPlungerIdle();
mjr 76:7f5912b6340e 4536
mjr 76:7f5912b6340e 4537 // get the config block location in the flash memory
mjr 77:0b96f6867312 4538 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 4539
mjr 79:682ae3171a08 4540 // save the data
mjr 86:e30a1f60f783 4541 if (nvm.save(iap, addr))
mjr 86:e30a1f60f783 4542 {
mjr 86:e30a1f60f783 4543 // success - report the successful save in the status flags
mjr 86:e30a1f60f783 4544 saveConfigSucceededFlag = 0x40;
mjr 86:e30a1f60f783 4545
mjr 86:e30a1f60f783 4546 // start the followup timer
mjr 87:8d35c74403af 4547 saveConfigFollowupTime = tFollowup;
mjr 87:8d35c74403af 4548 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 4549 saveConfigFollowupTimer.start();
mjr 86:e30a1f60f783 4550
mjr 86:e30a1f60f783 4551 // if a reboot is pending, flag it
mjr 86:e30a1f60f783 4552 saveConfigRebootPending = reboot;
mjr 86:e30a1f60f783 4553
mjr 86:e30a1f60f783 4554 // return success
mjr 86:e30a1f60f783 4555 return true;
mjr 86:e30a1f60f783 4556 }
mjr 86:e30a1f60f783 4557 else
mjr 86:e30a1f60f783 4558 {
mjr 86:e30a1f60f783 4559 // return failure
mjr 86:e30a1f60f783 4560 return false;
mjr 86:e30a1f60f783 4561 }
mjr 76:7f5912b6340e 4562 }
mjr 76:7f5912b6340e 4563
mjr 76:7f5912b6340e 4564 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 4565 //
mjr 76:7f5912b6340e 4566 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 4567 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 4568 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 4569 // downloading it to the device.
mjr 76:7f5912b6340e 4570 //
mjr 76:7f5912b6340e 4571 // Ideally, we'd use the host-loaded memory for all configuration updates,
mjr 76:7f5912b6340e 4572 // because the KL25Z doesn't seem to be 100% reliable writing flash itself.
mjr 76:7f5912b6340e 4573 // There seems to be a chance of memory bus contention while a write is in
mjr 76:7f5912b6340e 4574 // progress, which can either corrupt the write or cause the CPU to lock up
mjr 76:7f5912b6340e 4575 // before the write is completed. It seems more reliable to program the
mjr 76:7f5912b6340e 4576 // flash externally, via the OpenSDA connection. Unfortunately, none of
mjr 76:7f5912b6340e 4577 // the available OpenSDA versions are capable of programming specific flash
mjr 76:7f5912b6340e 4578 // sectors; they always erase the entire flash memory space. We *could*
mjr 76:7f5912b6340e 4579 // make the Windows config program simply re-download the entire firmware
mjr 76:7f5912b6340e 4580 // for every configuration update, but I'd rather not because of the extra
mjr 76:7f5912b6340e 4581 // wear this would put on the flash. So, as a compromise, we'll use the
mjr 76:7f5912b6340e 4582 // host-loaded config whenever the user explicitly updates the firmware,
mjr 76:7f5912b6340e 4583 // but we'll use the on-board writer when only making a config change.
mjr 76:7f5912b6340e 4584 //
mjr 76:7f5912b6340e 4585 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 4586 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 4587 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 4588 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 4589 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 4590 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 4591 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 4592 //
mjr 76:7f5912b6340e 4593 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 4594 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 4595 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 4596 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 4597 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 4598 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 4599 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 4600 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 4601 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 4602 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 4603
mjr 76:7f5912b6340e 4604 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 4605 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 4606 {
mjr 76:7f5912b6340e 4607 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 4608 // 32-byte signature header
mjr 76:7f5912b6340e 4609 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 4610 };
mjr 76:7f5912b6340e 4611
mjr 76:7f5912b6340e 4612 // forward reference to config var store function
mjr 76:7f5912b6340e 4613 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 4614
mjr 76:7f5912b6340e 4615 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 4616 // configuration object.
mjr 76:7f5912b6340e 4617 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 4618 {
mjr 76:7f5912b6340e 4619 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 4620 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 4621 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 4622 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 4623 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 4624 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 4625 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 4626 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 4627 {
mjr 76:7f5912b6340e 4628 // load this variable
mjr 76:7f5912b6340e 4629 configVarSet(p);
mjr 76:7f5912b6340e 4630 }
mjr 35:e959ffba78fd 4631 }
mjr 35:e959ffba78fd 4632
mjr 35:e959ffba78fd 4633 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4634 //
mjr 55:4db125cd11a0 4635 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 4636 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 4637 //
mjr 55:4db125cd11a0 4638 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 4639 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 4640 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 4641
mjr 55:4db125cd11a0 4642
mjr 55:4db125cd11a0 4643
mjr 55:4db125cd11a0 4644 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 4645 //
mjr 40:cc0d9814522b 4646 // Night mode setting updates
mjr 40:cc0d9814522b 4647 //
mjr 38:091e511ce8a0 4648
mjr 38:091e511ce8a0 4649 // Turn night mode on or off
mjr 38:091e511ce8a0 4650 static void setNightMode(bool on)
mjr 38:091e511ce8a0 4651 {
mjr 77:0b96f6867312 4652 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 4653 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 4654 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 4655 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 4656
mjr 40:cc0d9814522b 4657 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 4658 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 4659 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 4660 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 4661
mjr 76:7f5912b6340e 4662 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 4663 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 4664 // mode change.
mjr 76:7f5912b6340e 4665 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 4666 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 4667
mjr 76:7f5912b6340e 4668 // update 74HC595 outputs
mjr 76:7f5912b6340e 4669 if (hc595 != 0)
mjr 76:7f5912b6340e 4670 hc595->update();
mjr 38:091e511ce8a0 4671 }
mjr 38:091e511ce8a0 4672
mjr 38:091e511ce8a0 4673 // Toggle night mode
mjr 38:091e511ce8a0 4674 static void toggleNightMode()
mjr 38:091e511ce8a0 4675 {
mjr 53:9b2611964afc 4676 setNightMode(!nightMode);
mjr 38:091e511ce8a0 4677 }
mjr 38:091e511ce8a0 4678
mjr 38:091e511ce8a0 4679
mjr 38:091e511ce8a0 4680 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 4681 //
mjr 35:e959ffba78fd 4682 // Plunger Sensor
mjr 35:e959ffba78fd 4683 //
mjr 35:e959ffba78fd 4684
mjr 35:e959ffba78fd 4685 // the plunger sensor interface object
mjr 35:e959ffba78fd 4686 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 4687
mjr 87:8d35c74403af 4688 // wait for the plunger sensor to complete any outstanding DMA transfer
mjr 76:7f5912b6340e 4689 static void waitPlungerIdle(void)
mjr 76:7f5912b6340e 4690 {
mjr 87:8d35c74403af 4691 while (plungerSensor->dmaBusy()) { }
mjr 76:7f5912b6340e 4692 }
mjr 76:7f5912b6340e 4693
mjr 35:e959ffba78fd 4694 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 4695 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 4696 void createPlunger()
mjr 35:e959ffba78fd 4697 {
mjr 35:e959ffba78fd 4698 // create the new sensor object according to the type
mjr 35:e959ffba78fd 4699 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 4700 {
mjr 82:4f6209cb5c33 4701 case PlungerType_TSL1410R:
mjr 82:4f6209cb5c33 4702 // TSL1410R, shadow edge detector
mjr 35:e959ffba78fd 4703 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4704 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 4705 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4706 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4707 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 4708 break;
mjr 35:e959ffba78fd 4709
mjr 82:4f6209cb5c33 4710 case PlungerType_TSL1412S:
mjr 82:4f6209cb5c33 4711 // TSL1412S, shadow edge detector
mjr 82:4f6209cb5c33 4712 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4713 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 4714 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4715 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4716 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 4717 break;
mjr 35:e959ffba78fd 4718
mjr 35:e959ffba78fd 4719 case PlungerType_Pot:
mjr 82:4f6209cb5c33 4720 // Potentiometer (or any other sensor with a linear analog voltage
mjr 82:4f6209cb5c33 4721 // reading as the proxy for the position)
mjr 82:4f6209cb5c33 4722 // pins are: AO (analog in)
mjr 53:9b2611964afc 4723 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 4724 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 4725 break;
mjr 82:4f6209cb5c33 4726
mjr 82:4f6209cb5c33 4727 case PlungerType_OptQuad:
mjr 82:4f6209cb5c33 4728 // Optical quadrature sensor, AEDR8300-K or similar. The -K is
mjr 82:4f6209cb5c33 4729 // designed for a 75 LPI scale, which translates to 300 pulses/inch.
mjr 82:4f6209cb5c33 4730 // Pins are: CHA, CHB (quadrature pulse inputs).
mjr 82:4f6209cb5c33 4731 plungerSensor = new PlungerSensorQuad(
mjr 82:4f6209cb5c33 4732 300,
mjr 82:4f6209cb5c33 4733 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4734 wirePinName(cfg.plunger.sensorPin[1]));
mjr 82:4f6209cb5c33 4735 break;
mjr 82:4f6209cb5c33 4736
mjr 82:4f6209cb5c33 4737 case PlungerType_TSL1401CL:
mjr 82:4f6209cb5c33 4738 // TSL1401CL, absolute position encoder with bar code scale
mjr 82:4f6209cb5c33 4739 // pins are: SI, CLOCK, AO
mjr 82:4f6209cb5c33 4740 plungerSensor = new PlungerSensorTSL1401CL(
mjr 82:4f6209cb5c33 4741 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4742 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4743 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 4744 break;
mjr 82:4f6209cb5c33 4745
mjr 82:4f6209cb5c33 4746 case PlungerType_VL6180X:
mjr 82:4f6209cb5c33 4747 // VL6180X time-of-flight IR distance sensor
mjr 82:4f6209cb5c33 4748 // pins are: SDL, SCL, GPIO0/CE
mjr 82:4f6209cb5c33 4749 plungerSensor = new PlungerSensorVL6180X(
mjr 82:4f6209cb5c33 4750 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4751 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4752 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 4753 break;
mjr 82:4f6209cb5c33 4754
mjr 35:e959ffba78fd 4755 case PlungerType_None:
mjr 35:e959ffba78fd 4756 default:
mjr 35:e959ffba78fd 4757 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 4758 break;
mjr 35:e959ffba78fd 4759 }
mjr 86:e30a1f60f783 4760
mjr 87:8d35c74403af 4761 // initialize the config variables affecting the plunger
mjr 87:8d35c74403af 4762 plungerSensor->onConfigChange(19, cfg);
mjr 87:8d35c74403af 4763 plungerSensor->onConfigChange(20, cfg);
mjr 33:d832bcab089e 4764 }
mjr 33:d832bcab089e 4765
mjr 52:8298b2a73eb2 4766 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 4767 bool plungerCalMode;
mjr 52:8298b2a73eb2 4768
mjr 48:058ace2aed1d 4769 // Plunger reader
mjr 51:57eb311faafa 4770 //
mjr 51:57eb311faafa 4771 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 4772 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 4773 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 4774 //
mjr 51:57eb311faafa 4775 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 4776 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 4777 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 4778 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 4779 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 4780 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 4781 // firing motion.
mjr 51:57eb311faafa 4782 //
mjr 51:57eb311faafa 4783 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 4784 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 4785 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 4786 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 4787 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 4788 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 4789 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 4790 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 4791 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 4792 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 4793 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 4794 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 4795 // a classic digital aliasing effect.
mjr 51:57eb311faafa 4796 //
mjr 51:57eb311faafa 4797 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 4798 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 4799 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 4800 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 4801 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 4802 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 4803 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 4804 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 4805 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 4806 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 4807 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 4808 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 4809 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 4810 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 4811 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 4812 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 4813 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 4814 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 4815 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 4816 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 4817 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 4818 //
mjr 48:058ace2aed1d 4819 class PlungerReader
mjr 48:058ace2aed1d 4820 {
mjr 48:058ace2aed1d 4821 public:
mjr 48:058ace2aed1d 4822 PlungerReader()
mjr 48:058ace2aed1d 4823 {
mjr 48:058ace2aed1d 4824 // not in a firing event yet
mjr 48:058ace2aed1d 4825 firing = 0;
mjr 48:058ace2aed1d 4826 }
mjr 76:7f5912b6340e 4827
mjr 48:058ace2aed1d 4828 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 4829 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 4830 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 4831 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 4832 void read()
mjr 48:058ace2aed1d 4833 {
mjr 76:7f5912b6340e 4834 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 4835 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 4836 return;
mjr 76:7f5912b6340e 4837
mjr 48:058ace2aed1d 4838 // Read a sample from the sensor
mjr 48:058ace2aed1d 4839 PlungerReading r;
mjr 48:058ace2aed1d 4840 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 4841 {
mjr 53:9b2611964afc 4842 // check for calibration mode
mjr 53:9b2611964afc 4843 if (plungerCalMode)
mjr 53:9b2611964afc 4844 {
mjr 53:9b2611964afc 4845 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 4846 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 4847 // expand the envelope to include this new value.
mjr 53:9b2611964afc 4848 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 4849 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 4850 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 4851 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 4852
mjr 76:7f5912b6340e 4853 // update our cached calibration data
mjr 76:7f5912b6340e 4854 onUpdateCal();
mjr 50:40015764bbe6 4855
mjr 53:9b2611964afc 4856 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 4857 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 4858 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 4859 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 4860 if (calState == 0)
mjr 53:9b2611964afc 4861 {
mjr 53:9b2611964afc 4862 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 4863 {
mjr 53:9b2611964afc 4864 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 4865 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 4866 {
mjr 53:9b2611964afc 4867 // we've been at rest long enough - count it
mjr 53:9b2611964afc 4868 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 4869 calZeroPosN += 1;
mjr 53:9b2611964afc 4870
mjr 53:9b2611964afc 4871 // update the zero position from the new average
mjr 53:9b2611964afc 4872 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 4873 onUpdateCal();
mjr 53:9b2611964afc 4874
mjr 53:9b2611964afc 4875 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 4876 calState = 1;
mjr 53:9b2611964afc 4877 }
mjr 53:9b2611964afc 4878 }
mjr 53:9b2611964afc 4879 else
mjr 53:9b2611964afc 4880 {
mjr 53:9b2611964afc 4881 // we're not close to the last position - start again here
mjr 53:9b2611964afc 4882 calZeroStart = r;
mjr 53:9b2611964afc 4883 }
mjr 53:9b2611964afc 4884 }
mjr 53:9b2611964afc 4885
mjr 53:9b2611964afc 4886 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 4887 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 4888 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 4889 r.pos = int(
mjr 53:9b2611964afc 4890 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 4891 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 4892 }
mjr 53:9b2611964afc 4893 else
mjr 53:9b2611964afc 4894 {
mjr 53:9b2611964afc 4895 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 4896 // rescale to the joystick range.
mjr 76:7f5912b6340e 4897 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 4898
mjr 53:9b2611964afc 4899 // limit the result to the valid joystick range
mjr 53:9b2611964afc 4900 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 4901 r.pos = JOYMAX;
mjr 53:9b2611964afc 4902 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 4903 r.pos = -JOYMAX;
mjr 53:9b2611964afc 4904 }
mjr 50:40015764bbe6 4905
mjr 87:8d35c74403af 4906 // Look for a firing event - the user releasing the plunger and
mjr 87:8d35c74403af 4907 // allowing it to shoot forward at full speed. Wait at least 5ms
mjr 87:8d35c74403af 4908 // between samples for this, to help distinguish random motion
mjr 87:8d35c74403af 4909 // from the rapid motion of a firing event.
mjr 50:40015764bbe6 4910 //
mjr 87:8d35c74403af 4911 // There's a trade-off in the choice of minimum sampling interval.
mjr 87:8d35c74403af 4912 // The longer we wait, the more certain we can be of the trend.
mjr 87:8d35c74403af 4913 // But if we wait too long, the user will perceive a delay. We
mjr 87:8d35c74403af 4914 // also want to sample frequently enough to see the release motion
mjr 87:8d35c74403af 4915 // at intermediate steps along the way, so the sampling has to be
mjr 87:8d35c74403af 4916 // considerably faster than the whole travel time, which is about
mjr 87:8d35c74403af 4917 // 25-50ms.
mjr 87:8d35c74403af 4918 if (uint32_t(r.t - prv.t) < 5000UL)
mjr 87:8d35c74403af 4919 return;
mjr 87:8d35c74403af 4920
mjr 87:8d35c74403af 4921 // assume that we'll report this reading as-is
mjr 87:8d35c74403af 4922 z = r.pos;
mjr 87:8d35c74403af 4923
mjr 87:8d35c74403af 4924 // Firing event detection.
mjr 87:8d35c74403af 4925 //
mjr 87:8d35c74403af 4926 // A "firing event" is when the player releases the plunger from
mjr 87:8d35c74403af 4927 // a retracted position, allowing it to shoot forward under the
mjr 87:8d35c74403af 4928 // spring tension.
mjr 50:40015764bbe6 4929 //
mjr 87:8d35c74403af 4930 // We monitor the plunger motion for these events, and when they
mjr 87:8d35c74403af 4931 // occur, we report an "idealized" version of the motion to the
mjr 87:8d35c74403af 4932 // PC. The idealized version consists of a series of readings
mjr 87:8d35c74403af 4933 // frozen at the fully retracted position for the whole duration
mjr 87:8d35c74403af 4934 // of the forward travel, followed by a series of readings at the
mjr 87:8d35c74403af 4935 // fully forward position for long enough for the plunger to come
mjr 87:8d35c74403af 4936 // mostly to rest. The series of frozen readings aren't meant to
mjr 87:8d35c74403af 4937 // be perceptible to the player - we try to keep them short enough
mjr 87:8d35c74403af 4938 // that they're not apparent as delay. Instead, they're for the
mjr 87:8d35c74403af 4939 // PC client software's benefit. PC joystick clients use polling,
mjr 87:8d35c74403af 4940 // so they only see an unpredictable subset of the readings we
mjr 87:8d35c74403af 4941 // send. The only way to be sure that the client sees a particular
mjr 87:8d35c74403af 4942 // reading is to hold it for long enough that the client is sure to
mjr 87:8d35c74403af 4943 // poll within the hold interval. In the case of the plunger
mjr 87:8d35c74403af 4944 // firing motion, it's important that the client sees the *ends*
mjr 87:8d35c74403af 4945 // of the travel - the fully retracted starting position in
mjr 87:8d35c74403af 4946 // particular. If the PC client only polls for a sample while the
mjr 87:8d35c74403af 4947 // plunger is somewhere in the middle of the travel, the PC will
mjr 87:8d35c74403af 4948 // think that the firing motion *started* in that middle position,
mjr 87:8d35c74403af 4949 // so it won't be able to model the right amount of momentum when
mjr 87:8d35c74403af 4950 // the plunger hits the ball. We try to ensure that the PC sees
mjr 87:8d35c74403af 4951 // the right starting point by reporting the starting point for
mjr 87:8d35c74403af 4952 // extra time during the forward motion. By the same token, we
mjr 87:8d35c74403af 4953 // want the PC to know that the plunger has moved all the way
mjr 87:8d35c74403af 4954 // forward, rather than mistakenly thinking that it stopped
mjr 87:8d35c74403af 4955 // somewhere in the middle of the travel, so we freeze at the
mjr 87:8d35c74403af 4956 // forward position for a short time.
mjr 76:7f5912b6340e 4957 //
mjr 87:8d35c74403af 4958 // To detect a firing event, we look for forward motion that's
mjr 87:8d35c74403af 4959 // fast enough to be a firing event. To determine how fast is
mjr 87:8d35c74403af 4960 // fast enough, we use a simple model of the plunger motion where
mjr 87:8d35c74403af 4961 // the acceleration is constant. This is only an approximation,
mjr 87:8d35c74403af 4962 // as the spring force actually varies with spring's compression,
mjr 87:8d35c74403af 4963 // but it's close enough for our purposes here.
mjr 87:8d35c74403af 4964 //
mjr 87:8d35c74403af 4965 // Do calculations in fixed-point 2^48 scale with 64-bit ints.
mjr 87:8d35c74403af 4966 // acc2 = acceleration/2 for 50ms release time, units of unit
mjr 87:8d35c74403af 4967 // distances per microsecond squared, where the unit distance
mjr 87:8d35c74403af 4968 // is the overall travel from the starting retracted position
mjr 87:8d35c74403af 4969 // to the park position.
mjr 87:8d35c74403af 4970 const int32_t acc2 = 112590; // 2^48 scale
mjr 50:40015764bbe6 4971 switch (firing)
mjr 50:40015764bbe6 4972 {
mjr 50:40015764bbe6 4973 case 0:
mjr 87:8d35c74403af 4974 // Not in firing mode. If we're retracted a bit, and the
mjr 87:8d35c74403af 4975 // motion is forward at a fast enough rate to look like a
mjr 87:8d35c74403af 4976 // release, enter firing mode.
mjr 87:8d35c74403af 4977 if (r.pos > JOYMAX/6)
mjr 50:40015764bbe6 4978 {
mjr 87:8d35c74403af 4979 const uint32_t dt = uint32_t(r.t - prv.t);
mjr 87:8d35c74403af 4980 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 4981 if (r.pos < prv.pos - int((prv.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 4982 {
mjr 87:8d35c74403af 4983 // Tentatively enter firing mode. Use the prior reading
mjr 87:8d35c74403af 4984 // as the starting point, and freeze reports for now.
mjr 87:8d35c74403af 4985 firingMode(1);
mjr 87:8d35c74403af 4986 f0 = prv;
mjr 87:8d35c74403af 4987 z = f0.pos;
mjr 87:8d35c74403af 4988
mjr 87:8d35c74403af 4989 // if in calibration state 1 (at rest), switch to
mjr 87:8d35c74403af 4990 // state 2 (not at rest)
mjr 87:8d35c74403af 4991 if (calState == 1)
mjr 87:8d35c74403af 4992 calState = 2;
mjr 87:8d35c74403af 4993 }
mjr 50:40015764bbe6 4994 }
mjr 50:40015764bbe6 4995 break;
mjr 50:40015764bbe6 4996
mjr 50:40015764bbe6 4997 case 1:
mjr 87:8d35c74403af 4998 // Tentative firing mode: the plunger was moving forward
mjr 87:8d35c74403af 4999 // at last check. To stay in firing mode, the plunger has
mjr 87:8d35c74403af 5000 // to keep moving forward fast enough to look like it's
mjr 87:8d35c74403af 5001 // moving under spring force. To figure out how fast is
mjr 87:8d35c74403af 5002 // fast enough, we use a simple model where the acceleration
mjr 87:8d35c74403af 5003 // is constant over the whole travel distance and the total
mjr 87:8d35c74403af 5004 // travel time is 50ms. The acceleration actually varies
mjr 87:8d35c74403af 5005 // slightly since it comes from the spring force, which
mjr 87:8d35c74403af 5006 // is linear in the displacement; but the plunger spring is
mjr 87:8d35c74403af 5007 // fairly compressed even when the plunger is all the way
mjr 87:8d35c74403af 5008 // forward, so the difference in tension from one end of
mjr 87:8d35c74403af 5009 // the travel to the other is fairly small, so it's not too
mjr 87:8d35c74403af 5010 // far off to model it as constant. And the real travel
mjr 87:8d35c74403af 5011 // time obviously isn't a constant, but all we need for
mjr 87:8d35c74403af 5012 // that is an upper bound. So: we'll figure the time since
mjr 87:8d35c74403af 5013 // we entered firing mode, and figure the distance we should
mjr 87:8d35c74403af 5014 // have traveled to complete the trip within the maximum
mjr 87:8d35c74403af 5015 // time allowed. If we've moved far enough, we'll stay
mjr 87:8d35c74403af 5016 // in firing mode; if not, we'll exit firing mode. And if
mjr 87:8d35c74403af 5017 // we cross the finish line while still in firing mode,
mjr 87:8d35c74403af 5018 // we'll switch to the next phase of the firing event.
mjr 50:40015764bbe6 5019 if (r.pos <= 0)
mjr 50:40015764bbe6 5020 {
mjr 87:8d35c74403af 5021 // We crossed the park position. Switch to the second
mjr 87:8d35c74403af 5022 // phase of the firing event, where we hold the reported
mjr 87:8d35c74403af 5023 // position at the "bounce" position (where the plunger
mjr 87:8d35c74403af 5024 // is all the way forward, compressing the barrel spring).
mjr 87:8d35c74403af 5025 // We'll stick here long enough to ensure that the PC
mjr 87:8d35c74403af 5026 // client (Visual Pinball or whatever) sees the reading
mjr 87:8d35c74403af 5027 // and processes the release motion via the simulated
mjr 87:8d35c74403af 5028 // physics.
mjr 50:40015764bbe6 5029 firingMode(2);
mjr 53:9b2611964afc 5030
mjr 53:9b2611964afc 5031 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 5032 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 5033 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 5034 {
mjr 53:9b2611964afc 5035 // collect a new zero point for the average when we
mjr 53:9b2611964afc 5036 // come to rest
mjr 53:9b2611964afc 5037 calState = 0;
mjr 53:9b2611964afc 5038
mjr 87:8d35c74403af 5039 // collect average firing time statistics in millseconds,
mjr 87:8d35c74403af 5040 // if it's in range (20 to 255 ms)
mjr 87:8d35c74403af 5041 const int dt = uint32_t(r.t - f0.t)/1000UL;
mjr 87:8d35c74403af 5042 if (dt >= 15 && dt <= 255)
mjr 53:9b2611964afc 5043 {
mjr 53:9b2611964afc 5044 calRlsTimeSum += dt;
mjr 53:9b2611964afc 5045 calRlsTimeN += 1;
mjr 53:9b2611964afc 5046 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 5047 }
mjr 53:9b2611964afc 5048 }
mjr 87:8d35c74403af 5049
mjr 87:8d35c74403af 5050 // Figure the "bounce" position as forward of the park
mjr 87:8d35c74403af 5051 // position by 1/6 of the starting retraction distance.
mjr 87:8d35c74403af 5052 // This simulates the momentum of the plunger compressing
mjr 87:8d35c74403af 5053 // the barrel spring on the rebound. The barrel spring
mjr 87:8d35c74403af 5054 // can compress by about 1/6 of the maximum retraction
mjr 87:8d35c74403af 5055 // distance, so we'll simply treat its compression as
mjr 87:8d35c74403af 5056 // proportional to the retraction. (It might be more
mjr 87:8d35c74403af 5057 // realistic to use a slightly higher value here, maybe
mjr 87:8d35c74403af 5058 // 1/4 or 1/3 or the retraction distance, capping it at
mjr 87:8d35c74403af 5059 // a maximum of 1/6, because the real plunger probably
mjr 87:8d35c74403af 5060 // compresses the barrel spring by 100% with less than
mjr 87:8d35c74403af 5061 // 100% retraction. But that won't affect the physics
mjr 87:8d35c74403af 5062 // meaningfully, just the animation, and the effect is
mjr 87:8d35c74403af 5063 // small in any case.)
mjr 87:8d35c74403af 5064 z = f0.pos = -f0.pos / 6;
mjr 87:8d35c74403af 5065
mjr 87:8d35c74403af 5066 // reset the starting time for this phase
mjr 87:8d35c74403af 5067 f0.t = r.t;
mjr 50:40015764bbe6 5068 }
mjr 50:40015764bbe6 5069 else
mjr 50:40015764bbe6 5070 {
mjr 87:8d35c74403af 5071 // check for motion since the start of the firing event
mjr 87:8d35c74403af 5072 const uint32_t dt = uint32_t(r.t - f0.t);
mjr 87:8d35c74403af 5073 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5074 if (dt < 50000
mjr 87:8d35c74403af 5075 && r.pos < f0.pos - int((f0.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5076 {
mjr 87:8d35c74403af 5077 // It's moving fast enough to still be in a release
mjr 87:8d35c74403af 5078 // motion. Continue reporting the start position, and
mjr 87:8d35c74403af 5079 // stay in the first release phase.
mjr 87:8d35c74403af 5080 z = f0.pos;
mjr 87:8d35c74403af 5081 }
mjr 87:8d35c74403af 5082 else
mjr 87:8d35c74403af 5083 {
mjr 87:8d35c74403af 5084 // It's not moving fast enough to be a release
mjr 87:8d35c74403af 5085 // motion. Return to the default state.
mjr 87:8d35c74403af 5086 firingMode(0);
mjr 87:8d35c74403af 5087 calState = 1;
mjr 87:8d35c74403af 5088 }
mjr 50:40015764bbe6 5089 }
mjr 50:40015764bbe6 5090 break;
mjr 50:40015764bbe6 5091
mjr 50:40015764bbe6 5092 case 2:
mjr 87:8d35c74403af 5093 // Firing mode, holding at forward compression position.
mjr 87:8d35c74403af 5094 // Hold here for 25ms.
mjr 87:8d35c74403af 5095 if (uint32_t(r.t - f0.t) < 25000)
mjr 50:40015764bbe6 5096 {
mjr 87:8d35c74403af 5097 // stay here for now
mjr 87:8d35c74403af 5098 z = f0.pos;
mjr 50:40015764bbe6 5099 }
mjr 50:40015764bbe6 5100 else
mjr 50:40015764bbe6 5101 {
mjr 87:8d35c74403af 5102 // advance to the next phase, where we report the park
mjr 87:8d35c74403af 5103 // position until the plunger comes to rest
mjr 50:40015764bbe6 5104 firingMode(3);
mjr 50:40015764bbe6 5105 z = 0;
mjr 87:8d35c74403af 5106
mjr 87:8d35c74403af 5107 // remember when we started
mjr 87:8d35c74403af 5108 f0.t = r.t;
mjr 50:40015764bbe6 5109 }
mjr 50:40015764bbe6 5110 break;
mjr 50:40015764bbe6 5111
mjr 50:40015764bbe6 5112 case 3:
mjr 87:8d35c74403af 5113 // Firing event, holding at park position. Stay here for
mjr 87:8d35c74403af 5114 // a few moments so that the PC client can simulate the
mjr 87:8d35c74403af 5115 // full release motion, then return to real readings.
mjr 87:8d35c74403af 5116 if (uint32_t(r.t - f0.t) < 250000)
mjr 50:40015764bbe6 5117 {
mjr 87:8d35c74403af 5118 // stay here a while longer
mjr 87:8d35c74403af 5119 z = 0;
mjr 50:40015764bbe6 5120 }
mjr 50:40015764bbe6 5121 else
mjr 50:40015764bbe6 5122 {
mjr 87:8d35c74403af 5123 // it's been long enough - return to normal mode
mjr 87:8d35c74403af 5124 firingMode(0);
mjr 50:40015764bbe6 5125 }
mjr 50:40015764bbe6 5126 break;
mjr 50:40015764bbe6 5127 }
mjr 50:40015764bbe6 5128
mjr 82:4f6209cb5c33 5129 // Check for auto-zeroing, if enabled
mjr 82:4f6209cb5c33 5130 if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0)
mjr 82:4f6209cb5c33 5131 {
mjr 82:4f6209cb5c33 5132 // If we moved since the last reading, reset and restart the
mjr 82:4f6209cb5c33 5133 // auto-zero timer. Otherwise, if the timer has reached the
mjr 82:4f6209cb5c33 5134 // auto-zero timeout, it means we've been motionless for that
mjr 82:4f6209cb5c33 5135 // long, so auto-zero now.
mjr 82:4f6209cb5c33 5136 if (r.pos != prv.pos)
mjr 82:4f6209cb5c33 5137 {
mjr 82:4f6209cb5c33 5138 // movement detected - reset the timer
mjr 82:4f6209cb5c33 5139 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5140 autoZeroTimer.start();
mjr 82:4f6209cb5c33 5141 }
mjr 82:4f6209cb5c33 5142 else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL)
mjr 82:4f6209cb5c33 5143 {
mjr 82:4f6209cb5c33 5144 // auto-zero now
mjr 82:4f6209cb5c33 5145 plungerSensor->autoZero();
mjr 82:4f6209cb5c33 5146
mjr 82:4f6209cb5c33 5147 // stop the timer so that we don't keep repeating this
mjr 82:4f6209cb5c33 5148 // if the plunger stays still for a long time
mjr 82:4f6209cb5c33 5149 autoZeroTimer.stop();
mjr 82:4f6209cb5c33 5150 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5151 }
mjr 82:4f6209cb5c33 5152 }
mjr 82:4f6209cb5c33 5153
mjr 87:8d35c74403af 5154 // this new reading becomes the previous reading for next time
mjr 87:8d35c74403af 5155 prv = r;
mjr 48:058ace2aed1d 5156 }
mjr 48:058ace2aed1d 5157 }
mjr 48:058ace2aed1d 5158
mjr 48:058ace2aed1d 5159 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 5160 int16_t getPosition()
mjr 58:523fdcffbe6d 5161 {
mjr 86:e30a1f60f783 5162 // return the last reading
mjr 86:e30a1f60f783 5163 return z;
mjr 55:4db125cd11a0 5164 }
mjr 58:523fdcffbe6d 5165
mjr 48:058ace2aed1d 5166 // Set calibration mode on or off
mjr 52:8298b2a73eb2 5167 void setCalMode(bool f)
mjr 48:058ace2aed1d 5168 {
mjr 52:8298b2a73eb2 5169 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 5170 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 5171 {
mjr 52:8298b2a73eb2 5172 // reset the calibration in the configuration
mjr 48:058ace2aed1d 5173 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 5174
mjr 52:8298b2a73eb2 5175 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 5176 calState = 0;
mjr 52:8298b2a73eb2 5177 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 5178 calZeroPosN = 0;
mjr 52:8298b2a73eb2 5179 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 5180 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 5181
mjr 82:4f6209cb5c33 5182 // tell the plunger we're starting calibration
mjr 82:4f6209cb5c33 5183 plungerSensor->beginCalibration();
mjr 82:4f6209cb5c33 5184
mjr 52:8298b2a73eb2 5185 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 5186 PlungerReading r;
mjr 52:8298b2a73eb2 5187 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 5188 {
mjr 52:8298b2a73eb2 5189 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 5190 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 5191 onUpdateCal();
mjr 52:8298b2a73eb2 5192
mjr 52:8298b2a73eb2 5193 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 5194 calZeroStart = r;
mjr 52:8298b2a73eb2 5195 }
mjr 52:8298b2a73eb2 5196 else
mjr 52:8298b2a73eb2 5197 {
mjr 52:8298b2a73eb2 5198 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 5199 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5200 onUpdateCal();
mjr 52:8298b2a73eb2 5201
mjr 52:8298b2a73eb2 5202 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 5203 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 5204 calZeroStart.t = 0;
mjr 53:9b2611964afc 5205 }
mjr 53:9b2611964afc 5206 }
mjr 53:9b2611964afc 5207 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 5208 {
mjr 53:9b2611964afc 5209 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 5210 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 5211 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 5212 // physically meaningless.
mjr 53:9b2611964afc 5213 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 5214 {
mjr 53:9b2611964afc 5215 // bad settings - reset to defaults
mjr 53:9b2611964afc 5216 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 5217 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5218 onUpdateCal();
mjr 52:8298b2a73eb2 5219 }
mjr 52:8298b2a73eb2 5220 }
mjr 52:8298b2a73eb2 5221
mjr 48:058ace2aed1d 5222 // remember the new mode
mjr 52:8298b2a73eb2 5223 plungerCalMode = f;
mjr 48:058ace2aed1d 5224 }
mjr 48:058ace2aed1d 5225
mjr 76:7f5912b6340e 5226 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 5227 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 5228 // cached inverse is calculated as
mjr 76:7f5912b6340e 5229 //
mjr 76:7f5912b6340e 5230 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 5231 //
mjr 76:7f5912b6340e 5232 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 5233 //
mjr 76:7f5912b6340e 5234 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 5235 //
mjr 76:7f5912b6340e 5236 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 5237 int invCalRange;
mjr 76:7f5912b6340e 5238
mjr 76:7f5912b6340e 5239 // apply the calibration range to a reading
mjr 76:7f5912b6340e 5240 inline int applyCal(int reading)
mjr 76:7f5912b6340e 5241 {
mjr 76:7f5912b6340e 5242 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 5243 }
mjr 76:7f5912b6340e 5244
mjr 76:7f5912b6340e 5245 void onUpdateCal()
mjr 76:7f5912b6340e 5246 {
mjr 76:7f5912b6340e 5247 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 5248 }
mjr 76:7f5912b6340e 5249
mjr 48:058ace2aed1d 5250 // is a firing event in progress?
mjr 53:9b2611964afc 5251 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 5252
mjr 48:058ace2aed1d 5253 private:
mjr 87:8d35c74403af 5254 // current reported joystick reading
mjr 87:8d35c74403af 5255 int z;
mjr 87:8d35c74403af 5256
mjr 87:8d35c74403af 5257 // previous reading
mjr 87:8d35c74403af 5258 PlungerReading prv;
mjr 87:8d35c74403af 5259
mjr 52:8298b2a73eb2 5260 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 5261 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 5262 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 5263 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5264 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5265 // 1 = at rest
mjr 52:8298b2a73eb2 5266 // 2 = retracting
mjr 52:8298b2a73eb2 5267 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5268 uint8_t calState;
mjr 52:8298b2a73eb2 5269
mjr 52:8298b2a73eb2 5270 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5271 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5272 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5273 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5274 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5275 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5276 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5277 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5278 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5279 long calZeroPosSum;
mjr 52:8298b2a73eb2 5280 int calZeroPosN;
mjr 52:8298b2a73eb2 5281
mjr 52:8298b2a73eb2 5282 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5283 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5284 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5285 int calRlsTimeN;
mjr 52:8298b2a73eb2 5286
mjr 85:3c28aee81cde 5287 // Auto-zeroing timer
mjr 85:3c28aee81cde 5288 Timer autoZeroTimer;
mjr 85:3c28aee81cde 5289
mjr 48:058ace2aed1d 5290 // set a firing mode
mjr 48:058ace2aed1d 5291 inline void firingMode(int m)
mjr 48:058ace2aed1d 5292 {
mjr 48:058ace2aed1d 5293 firing = m;
mjr 48:058ace2aed1d 5294 }
mjr 48:058ace2aed1d 5295
mjr 48:058ace2aed1d 5296 // Firing event state.
mjr 48:058ace2aed1d 5297 //
mjr 87:8d35c74403af 5298 // 0 - Default state: not in firing event. We report the true
mjr 87:8d35c74403af 5299 // instantaneous plunger position to the joystick interface.
mjr 48:058ace2aed1d 5300 //
mjr 87:8d35c74403af 5301 // 1 - Moving forward at release speed
mjr 48:058ace2aed1d 5302 //
mjr 87:8d35c74403af 5303 // 2 - Firing - reporting the bounce position
mjr 87:8d35c74403af 5304 //
mjr 87:8d35c74403af 5305 // 3 - Firing - reporting the park position
mjr 48:058ace2aed1d 5306 //
mjr 48:058ace2aed1d 5307 int firing;
mjr 48:058ace2aed1d 5308
mjr 87:8d35c74403af 5309 // Starting position for current firing mode phase
mjr 87:8d35c74403af 5310 PlungerReading f0;
mjr 48:058ace2aed1d 5311 };
mjr 48:058ace2aed1d 5312
mjr 48:058ace2aed1d 5313 // plunger reader singleton
mjr 48:058ace2aed1d 5314 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5315
mjr 48:058ace2aed1d 5316 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5317 //
mjr 48:058ace2aed1d 5318 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5319 //
mjr 48:058ace2aed1d 5320 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5321 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5322 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5323 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5324 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5325 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5326 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5327 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5328 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5329 //
mjr 48:058ace2aed1d 5330 // This feature has two configuration components:
mjr 48:058ace2aed1d 5331 //
mjr 48:058ace2aed1d 5332 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5333 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5334 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5335 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5336 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5337 // plunger/launch button connection.
mjr 48:058ace2aed1d 5338 //
mjr 48:058ace2aed1d 5339 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5340 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5341 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5342 // position.
mjr 48:058ace2aed1d 5343 //
mjr 48:058ace2aed1d 5344 class ZBLaunchBall
mjr 48:058ace2aed1d 5345 {
mjr 48:058ace2aed1d 5346 public:
mjr 48:058ace2aed1d 5347 ZBLaunchBall()
mjr 48:058ace2aed1d 5348 {
mjr 48:058ace2aed1d 5349 // start in the default state
mjr 48:058ace2aed1d 5350 lbState = 0;
mjr 53:9b2611964afc 5351 btnState = false;
mjr 48:058ace2aed1d 5352 }
mjr 48:058ace2aed1d 5353
mjr 48:058ace2aed1d 5354 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5355 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5356 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5357 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5358 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5359 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5360 void update()
mjr 48:058ace2aed1d 5361 {
mjr 53:9b2611964afc 5362 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5363 // plunger firing event
mjr 53:9b2611964afc 5364 if (zbLaunchOn)
mjr 48:058ace2aed1d 5365 {
mjr 53:9b2611964afc 5366 // note the new position
mjr 48:058ace2aed1d 5367 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5368
mjr 53:9b2611964afc 5369 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5370 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5371
mjr 53:9b2611964afc 5372 // check the state
mjr 48:058ace2aed1d 5373 switch (lbState)
mjr 48:058ace2aed1d 5374 {
mjr 48:058ace2aed1d 5375 case 0:
mjr 53:9b2611964afc 5376 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5377 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5378 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5379 // the button.
mjr 53:9b2611964afc 5380 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5381 {
mjr 53:9b2611964afc 5382 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5383 lbTimer.reset();
mjr 53:9b2611964afc 5384 lbTimer.start();
mjr 53:9b2611964afc 5385 setButton(true);
mjr 53:9b2611964afc 5386
mjr 53:9b2611964afc 5387 // switch to state 1
mjr 53:9b2611964afc 5388 lbState = 1;
mjr 53:9b2611964afc 5389 }
mjr 48:058ace2aed1d 5390 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5391 {
mjr 53:9b2611964afc 5392 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5393 // button as long as we're pushed forward
mjr 53:9b2611964afc 5394 setButton(true);
mjr 53:9b2611964afc 5395 }
mjr 53:9b2611964afc 5396 else
mjr 53:9b2611964afc 5397 {
mjr 53:9b2611964afc 5398 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5399 setButton(false);
mjr 53:9b2611964afc 5400 }
mjr 48:058ace2aed1d 5401 break;
mjr 48:058ace2aed1d 5402
mjr 48:058ace2aed1d 5403 case 1:
mjr 53:9b2611964afc 5404 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5405 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5406 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5407 {
mjr 53:9b2611964afc 5408 // timer expired - turn off the button
mjr 53:9b2611964afc 5409 setButton(false);
mjr 53:9b2611964afc 5410
mjr 53:9b2611964afc 5411 // switch to state 2
mjr 53:9b2611964afc 5412 lbState = 2;
mjr 53:9b2611964afc 5413 }
mjr 48:058ace2aed1d 5414 break;
mjr 48:058ace2aed1d 5415
mjr 48:058ace2aed1d 5416 case 2:
mjr 53:9b2611964afc 5417 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5418 // plunger launch event to end.
mjr 53:9b2611964afc 5419 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5420 {
mjr 53:9b2611964afc 5421 // firing event done - return to default state
mjr 53:9b2611964afc 5422 lbState = 0;
mjr 53:9b2611964afc 5423 }
mjr 48:058ace2aed1d 5424 break;
mjr 48:058ace2aed1d 5425 }
mjr 53:9b2611964afc 5426 }
mjr 53:9b2611964afc 5427 else
mjr 53:9b2611964afc 5428 {
mjr 53:9b2611964afc 5429 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5430 setButton(false);
mjr 48:058ace2aed1d 5431
mjr 53:9b2611964afc 5432 // return to the default state
mjr 53:9b2611964afc 5433 lbState = 0;
mjr 48:058ace2aed1d 5434 }
mjr 48:058ace2aed1d 5435 }
mjr 53:9b2611964afc 5436
mjr 53:9b2611964afc 5437 // Set the button state
mjr 53:9b2611964afc 5438 void setButton(bool on)
mjr 53:9b2611964afc 5439 {
mjr 53:9b2611964afc 5440 if (btnState != on)
mjr 53:9b2611964afc 5441 {
mjr 53:9b2611964afc 5442 // remember the new state
mjr 53:9b2611964afc 5443 btnState = on;
mjr 53:9b2611964afc 5444
mjr 53:9b2611964afc 5445 // update the virtual button state
mjr 65:739875521aae 5446 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5447 }
mjr 53:9b2611964afc 5448 }
mjr 53:9b2611964afc 5449
mjr 48:058ace2aed1d 5450 private:
mjr 48:058ace2aed1d 5451 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5452 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5453 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5454 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5455 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5456 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5457 //
mjr 48:058ace2aed1d 5458 // States:
mjr 48:058ace2aed1d 5459 // 0 = default
mjr 53:9b2611964afc 5460 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5461 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5462 // firing event to end)
mjr 53:9b2611964afc 5463 uint8_t lbState;
mjr 48:058ace2aed1d 5464
mjr 53:9b2611964afc 5465 // button state
mjr 53:9b2611964afc 5466 bool btnState;
mjr 48:058ace2aed1d 5467
mjr 48:058ace2aed1d 5468 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5469 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5470 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5471 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5472 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5473 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5474 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5475 Timer lbTimer;
mjr 48:058ace2aed1d 5476 };
mjr 48:058ace2aed1d 5477
mjr 35:e959ffba78fd 5478 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5479 //
mjr 35:e959ffba78fd 5480 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 5481 //
mjr 54:fd77a6b2f76c 5482 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 5483 {
mjr 35:e959ffba78fd 5484 // disconnect from USB
mjr 54:fd77a6b2f76c 5485 if (disconnect)
mjr 54:fd77a6b2f76c 5486 js.disconnect();
mjr 35:e959ffba78fd 5487
mjr 35:e959ffba78fd 5488 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 5489 wait_us(pause_us);
mjr 35:e959ffba78fd 5490
mjr 35:e959ffba78fd 5491 // reset the device
mjr 35:e959ffba78fd 5492 NVIC_SystemReset();
mjr 35:e959ffba78fd 5493 while (true) { }
mjr 35:e959ffba78fd 5494 }
mjr 35:e959ffba78fd 5495
mjr 35:e959ffba78fd 5496 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5497 //
mjr 35:e959ffba78fd 5498 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 5499 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 5500 //
mjr 35:e959ffba78fd 5501 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 5502 {
mjr 35:e959ffba78fd 5503 int tmp;
mjr 78:1e00b3fa11af 5504 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 5505 {
mjr 35:e959ffba78fd 5506 case OrientationFront:
mjr 35:e959ffba78fd 5507 tmp = x;
mjr 35:e959ffba78fd 5508 x = y;
mjr 35:e959ffba78fd 5509 y = tmp;
mjr 35:e959ffba78fd 5510 break;
mjr 35:e959ffba78fd 5511
mjr 35:e959ffba78fd 5512 case OrientationLeft:
mjr 35:e959ffba78fd 5513 x = -x;
mjr 35:e959ffba78fd 5514 break;
mjr 35:e959ffba78fd 5515
mjr 35:e959ffba78fd 5516 case OrientationRight:
mjr 35:e959ffba78fd 5517 y = -y;
mjr 35:e959ffba78fd 5518 break;
mjr 35:e959ffba78fd 5519
mjr 35:e959ffba78fd 5520 case OrientationRear:
mjr 35:e959ffba78fd 5521 tmp = -x;
mjr 35:e959ffba78fd 5522 x = -y;
mjr 35:e959ffba78fd 5523 y = tmp;
mjr 35:e959ffba78fd 5524 break;
mjr 35:e959ffba78fd 5525 }
mjr 35:e959ffba78fd 5526 }
mjr 35:e959ffba78fd 5527
mjr 35:e959ffba78fd 5528 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5529 //
mjr 35:e959ffba78fd 5530 // Calibration button state:
mjr 35:e959ffba78fd 5531 // 0 = not pushed
mjr 35:e959ffba78fd 5532 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 5533 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 5534 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 5535 int calBtnState = 0;
mjr 35:e959ffba78fd 5536
mjr 35:e959ffba78fd 5537 // calibration button debounce timer
mjr 35:e959ffba78fd 5538 Timer calBtnTimer;
mjr 35:e959ffba78fd 5539
mjr 35:e959ffba78fd 5540 // calibration button light state
mjr 35:e959ffba78fd 5541 int calBtnLit = false;
mjr 35:e959ffba78fd 5542
mjr 35:e959ffba78fd 5543
mjr 35:e959ffba78fd 5544 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5545 //
mjr 40:cc0d9814522b 5546 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 5547 //
mjr 40:cc0d9814522b 5548
mjr 40:cc0d9814522b 5549 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 5550 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 5551 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 91:ae9be42652bf 5552 #define v_byte_wo(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 5553 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 5554 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 5555 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 5556 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5557 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5558 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 5559 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 5560 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 5561
mjr 40:cc0d9814522b 5562 // redefine everything for the SET messages
mjr 40:cc0d9814522b 5563 #undef if_msg_valid
mjr 40:cc0d9814522b 5564 #undef v_byte
mjr 40:cc0d9814522b 5565 #undef v_ui16
mjr 77:0b96f6867312 5566 #undef v_ui32
mjr 40:cc0d9814522b 5567 #undef v_pin
mjr 53:9b2611964afc 5568 #undef v_byte_ro
mjr 91:ae9be42652bf 5569 #undef v_byte_wo
mjr 74:822a92bc11d2 5570 #undef v_ui32_ro
mjr 74:822a92bc11d2 5571 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 5572 #undef v_func
mjr 38:091e511ce8a0 5573
mjr 91:ae9be42652bf 5574 // Handle GET messages - read variable values and return in USB message data
mjr 40:cc0d9814522b 5575 #define if_msg_valid(test)
mjr 53:9b2611964afc 5576 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 5577 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 5578 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 5579 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 5580 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 5581 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 5582 #define VAR_MODE_SET 0 // we're in GET mode
mjr 91:ae9be42652bf 5583 #define v_byte_wo(var, ofs) // ignore write-only variables in GET mode
mjr 76:7f5912b6340e 5584 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 5585 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 5586
mjr 35:e959ffba78fd 5587
mjr 35:e959ffba78fd 5588 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5589 //
mjr 35:e959ffba78fd 5590 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 5591 // LedWiz protocol.
mjr 33:d832bcab089e 5592 //
mjr 78:1e00b3fa11af 5593 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 5594 {
mjr 38:091e511ce8a0 5595 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 5596 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 5597 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 5598 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 5599 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 5600 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 5601 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 5602 // So our full protocol is as follows:
mjr 38:091e511ce8a0 5603 //
mjr 38:091e511ce8a0 5604 // first byte =
mjr 74:822a92bc11d2 5605 // 0-48 -> PBA
mjr 74:822a92bc11d2 5606 // 64 -> SBA
mjr 38:091e511ce8a0 5607 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 5608 // 129-132 -> PBA
mjr 38:091e511ce8a0 5609 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 5610 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 5611 // other -> reserved for future use
mjr 38:091e511ce8a0 5612 //
mjr 39:b3815a1c3802 5613 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 5614 if (data[0] == 64)
mjr 35:e959ffba78fd 5615 {
mjr 74:822a92bc11d2 5616 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 5617 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 5618 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 5619 sba_sbx(0, data);
mjr 74:822a92bc11d2 5620
mjr 74:822a92bc11d2 5621 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 5622 pbaIdx = 0;
mjr 38:091e511ce8a0 5623 }
mjr 38:091e511ce8a0 5624 else if (data[0] == 65)
mjr 38:091e511ce8a0 5625 {
mjr 38:091e511ce8a0 5626 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 5627 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 5628 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 5629 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 5630 // message type.
mjr 39:b3815a1c3802 5631 switch (data[1])
mjr 38:091e511ce8a0 5632 {
mjr 39:b3815a1c3802 5633 case 0:
mjr 39:b3815a1c3802 5634 // No Op
mjr 39:b3815a1c3802 5635 break;
mjr 39:b3815a1c3802 5636
mjr 39:b3815a1c3802 5637 case 1:
mjr 38:091e511ce8a0 5638 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 5639 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 5640 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 5641 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 5642 {
mjr 39:b3815a1c3802 5643
mjr 39:b3815a1c3802 5644 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 5645 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 5646 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 5647
mjr 86:e30a1f60f783 5648 // we'll need a reboot if the LedWiz unit number is changing
mjr 86:e30a1f60f783 5649 bool reboot = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 5650
mjr 39:b3815a1c3802 5651 // set the configuration parameters from the message
mjr 39:b3815a1c3802 5652 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 5653 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 5654
mjr 77:0b96f6867312 5655 // set the flag to do the save
mjr 86:e30a1f60f783 5656 saveConfigToFlash(0, reboot);
mjr 39:b3815a1c3802 5657 }
mjr 39:b3815a1c3802 5658 break;
mjr 38:091e511ce8a0 5659
mjr 39:b3815a1c3802 5660 case 2:
mjr 38:091e511ce8a0 5661 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 5662 // (No parameters)
mjr 38:091e511ce8a0 5663
mjr 38:091e511ce8a0 5664 // enter calibration mode
mjr 38:091e511ce8a0 5665 calBtnState = 3;
mjr 52:8298b2a73eb2 5666 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 5667 calBtnTimer.reset();
mjr 39:b3815a1c3802 5668 break;
mjr 39:b3815a1c3802 5669
mjr 39:b3815a1c3802 5670 case 3:
mjr 52:8298b2a73eb2 5671 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 5672 // data[2] = flag bits
mjr 53:9b2611964afc 5673 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 5674 reportPlungerStat = true;
mjr 53:9b2611964afc 5675 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 5676 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 5677
mjr 38:091e511ce8a0 5678 // show purple until we finish sending the report
mjr 38:091e511ce8a0 5679 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 5680 break;
mjr 39:b3815a1c3802 5681
mjr 39:b3815a1c3802 5682 case 4:
mjr 38:091e511ce8a0 5683 // 4 = hardware configuration query
mjr 38:091e511ce8a0 5684 // (No parameters)
mjr 38:091e511ce8a0 5685 js.reportConfig(
mjr 38:091e511ce8a0 5686 numOutputs,
mjr 38:091e511ce8a0 5687 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 5688 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 5689 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 5690 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 5691 true, // we support the new accelerometer settings
mjr 82:4f6209cb5c33 5692 true, // we support the "flash write ok" status bit in joystick reports
mjr 79:682ae3171a08 5693 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 5694 break;
mjr 39:b3815a1c3802 5695
mjr 39:b3815a1c3802 5696 case 5:
mjr 38:091e511ce8a0 5697 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 5698 allOutputsOff();
mjr 39:b3815a1c3802 5699 break;
mjr 39:b3815a1c3802 5700
mjr 39:b3815a1c3802 5701 case 6:
mjr 85:3c28aee81cde 5702 // 6 = Save configuration to flash. Optionally reboot after the
mjr 85:3c28aee81cde 5703 // delay time in seconds given in data[2].
mjr 85:3c28aee81cde 5704 //
mjr 85:3c28aee81cde 5705 // data[2] = delay time in seconds
mjr 85:3c28aee81cde 5706 // data[3] = flags:
mjr 85:3c28aee81cde 5707 // 0x01 -> do not reboot
mjr 86:e30a1f60f783 5708 saveConfigToFlash(data[2], !(data[3] & 0x01));
mjr 39:b3815a1c3802 5709 break;
mjr 40:cc0d9814522b 5710
mjr 40:cc0d9814522b 5711 case 7:
mjr 40:cc0d9814522b 5712 // 7 = Device ID report
mjr 53:9b2611964afc 5713 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 5714 js.reportID(data[2]);
mjr 40:cc0d9814522b 5715 break;
mjr 40:cc0d9814522b 5716
mjr 40:cc0d9814522b 5717 case 8:
mjr 40:cc0d9814522b 5718 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 5719 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 5720 setNightMode(data[2]);
mjr 40:cc0d9814522b 5721 break;
mjr 52:8298b2a73eb2 5722
mjr 52:8298b2a73eb2 5723 case 9:
mjr 52:8298b2a73eb2 5724 // 9 = Config variable query.
mjr 52:8298b2a73eb2 5725 // data[2] = config var ID
mjr 52:8298b2a73eb2 5726 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 5727 {
mjr 53:9b2611964afc 5728 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 5729 // the rest of the buffer
mjr 52:8298b2a73eb2 5730 uint8_t reply[8];
mjr 52:8298b2a73eb2 5731 reply[1] = data[2];
mjr 52:8298b2a73eb2 5732 reply[2] = data[3];
mjr 53:9b2611964afc 5733 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 5734
mjr 52:8298b2a73eb2 5735 // query the value
mjr 52:8298b2a73eb2 5736 configVarGet(reply);
mjr 52:8298b2a73eb2 5737
mjr 52:8298b2a73eb2 5738 // send the reply
mjr 52:8298b2a73eb2 5739 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 5740 }
mjr 52:8298b2a73eb2 5741 break;
mjr 53:9b2611964afc 5742
mjr 53:9b2611964afc 5743 case 10:
mjr 53:9b2611964afc 5744 // 10 = Build ID query.
mjr 53:9b2611964afc 5745 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 5746 break;
mjr 73:4e8ce0b18915 5747
mjr 73:4e8ce0b18915 5748 case 11:
mjr 73:4e8ce0b18915 5749 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 5750 // data[2] = operation:
mjr 73:4e8ce0b18915 5751 // 0 = turn relay off
mjr 73:4e8ce0b18915 5752 // 1 = turn relay on
mjr 73:4e8ce0b18915 5753 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 5754 TVRelay(data[2]);
mjr 73:4e8ce0b18915 5755 break;
mjr 73:4e8ce0b18915 5756
mjr 73:4e8ce0b18915 5757 case 12:
mjr 77:0b96f6867312 5758 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 5759 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 5760 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 5761 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 5762 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 5763
mjr 77:0b96f6867312 5764 // enter IR learning mode
mjr 77:0b96f6867312 5765 IRLearningMode = 1;
mjr 77:0b96f6867312 5766
mjr 77:0b96f6867312 5767 // cancel any regular IR input in progress
mjr 77:0b96f6867312 5768 IRCommandIn = 0;
mjr 77:0b96f6867312 5769
mjr 77:0b96f6867312 5770 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 5771 IRTimer.reset();
mjr 73:4e8ce0b18915 5772 break;
mjr 73:4e8ce0b18915 5773
mjr 73:4e8ce0b18915 5774 case 13:
mjr 73:4e8ce0b18915 5775 // 13 = Send button status report
mjr 73:4e8ce0b18915 5776 reportButtonStatus(js);
mjr 73:4e8ce0b18915 5777 break;
mjr 78:1e00b3fa11af 5778
mjr 78:1e00b3fa11af 5779 case 14:
mjr 78:1e00b3fa11af 5780 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 5781 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 5782 break;
mjr 78:1e00b3fa11af 5783
mjr 78:1e00b3fa11af 5784 case 15:
mjr 78:1e00b3fa11af 5785 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 5786 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 5787 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 5788 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 5789 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 5790 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 5791 break;
mjr 78:1e00b3fa11af 5792
mjr 78:1e00b3fa11af 5793 case 16:
mjr 78:1e00b3fa11af 5794 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 5795 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 5796 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 5797 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 5798 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 5799 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 5800 break;
mjr 88:98bce687e6c0 5801
mjr 88:98bce687e6c0 5802 case 17:
mjr 88:98bce687e6c0 5803 // 17 = send pre-programmed IR command. This works just like
mjr 88:98bce687e6c0 5804 // sending an ad hoc command above, but we get the command data
mjr 88:98bce687e6c0 5805 // from an IR slot in the config rather than from the client.
mjr 88:98bce687e6c0 5806 // First make sure we have a valid slot number.
mjr 88:98bce687e6c0 5807 if (data[2] >= 1 && data[2] <= MAX_IR_CODES)
mjr 88:98bce687e6c0 5808 {
mjr 88:98bce687e6c0 5809 // get the IR command slot in the config
mjr 88:98bce687e6c0 5810 IRCommandCfg &cmd = cfg.IRCommand[data[2] - 1];
mjr 88:98bce687e6c0 5811
mjr 88:98bce687e6c0 5812 // copy the IR command data from the config
mjr 88:98bce687e6c0 5813 IRAdHocCmd.protocol = cmd.protocol;
mjr 88:98bce687e6c0 5814 IRAdHocCmd.dittos = (cmd.flags & IRFlagDittos) != 0;
mjr 88:98bce687e6c0 5815 IRAdHocCmd.code = (uint64_t(cmd.code.hi) << 32) | cmd.code.lo;
mjr 88:98bce687e6c0 5816
mjr 88:98bce687e6c0 5817 // mark the command as ready - this will trigger the polling
mjr 88:98bce687e6c0 5818 // routine to send the command as soon as the transmitter
mjr 88:98bce687e6c0 5819 // is free
mjr 88:98bce687e6c0 5820 IRAdHocCmd.ready = 1;
mjr 88:98bce687e6c0 5821 }
mjr 88:98bce687e6c0 5822 break;
mjr 38:091e511ce8a0 5823 }
mjr 38:091e511ce8a0 5824 }
mjr 38:091e511ce8a0 5825 else if (data[0] == 66)
mjr 38:091e511ce8a0 5826 {
mjr 38:091e511ce8a0 5827 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 5828 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 5829 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 5830 // in a variable-dependent format.
mjr 40:cc0d9814522b 5831 configVarSet(data);
mjr 86:e30a1f60f783 5832
mjr 87:8d35c74403af 5833 // notify the plunger, so that it can update relevant variables
mjr 87:8d35c74403af 5834 // dynamically
mjr 87:8d35c74403af 5835 plungerSensor->onConfigChange(data[1], cfg);
mjr 38:091e511ce8a0 5836 }
mjr 74:822a92bc11d2 5837 else if (data[0] == 67)
mjr 74:822a92bc11d2 5838 {
mjr 74:822a92bc11d2 5839 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 5840 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 5841 // to ports beyond the first 32.
mjr 74:822a92bc11d2 5842 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 5843 }
mjr 74:822a92bc11d2 5844 else if (data[0] == 68)
mjr 74:822a92bc11d2 5845 {
mjr 74:822a92bc11d2 5846 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 5847 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 5848 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 5849
mjr 74:822a92bc11d2 5850 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 5851 int portGroup = data[1];
mjr 74:822a92bc11d2 5852
mjr 74:822a92bc11d2 5853 // unpack the brightness values
mjr 74:822a92bc11d2 5854 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 5855 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 5856 uint8_t bri[8] = {
mjr 74:822a92bc11d2 5857 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 5858 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 5859 };
mjr 74:822a92bc11d2 5860
mjr 74:822a92bc11d2 5861 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 5862 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 5863 {
mjr 74:822a92bc11d2 5864 if (bri[i] >= 60)
mjr 74:822a92bc11d2 5865 bri[i] += 129-60;
mjr 74:822a92bc11d2 5866 }
mjr 74:822a92bc11d2 5867
mjr 74:822a92bc11d2 5868 // Carry out the PBA
mjr 74:822a92bc11d2 5869 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 5870 }
mjr 38:091e511ce8a0 5871 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 5872 {
mjr 38:091e511ce8a0 5873 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 5874 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 5875 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 5876 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 5877 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 5878 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 5879 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 5880 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 5881 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 5882 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 5883 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 5884 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 5885 //
mjr 38:091e511ce8a0 5886 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 5887 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 5888 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 5889 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 5890 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 5891 // address those ports anyway.
mjr 63:5cd1a5f3a41b 5892
mjr 63:5cd1a5f3a41b 5893 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 5894 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 5895 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 5896
mjr 63:5cd1a5f3a41b 5897 // update each port
mjr 38:091e511ce8a0 5898 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 5899 {
mjr 38:091e511ce8a0 5900 // set the brightness level for the output
mjr 40:cc0d9814522b 5901 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 5902 outLevel[i] = b;
mjr 38:091e511ce8a0 5903
mjr 74:822a92bc11d2 5904 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 5905 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 5906 // LedWiz mode on a future update
mjr 76:7f5912b6340e 5907 if (b != 0)
mjr 76:7f5912b6340e 5908 {
mjr 76:7f5912b6340e 5909 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 5910 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 5911 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 5912 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 5913 // forward unchanged.
mjr 76:7f5912b6340e 5914 wizOn[i] = 1;
mjr 76:7f5912b6340e 5915 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 5916 }
mjr 76:7f5912b6340e 5917 else
mjr 76:7f5912b6340e 5918 {
mjr 76:7f5912b6340e 5919 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 5920 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 5921 wizOn[i] = 0;
mjr 76:7f5912b6340e 5922 }
mjr 74:822a92bc11d2 5923
mjr 38:091e511ce8a0 5924 // set the output
mjr 40:cc0d9814522b 5925 lwPin[i]->set(b);
mjr 38:091e511ce8a0 5926 }
mjr 38:091e511ce8a0 5927
mjr 38:091e511ce8a0 5928 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 5929 if (hc595 != 0)
mjr 38:091e511ce8a0 5930 hc595->update();
mjr 38:091e511ce8a0 5931 }
mjr 38:091e511ce8a0 5932 else
mjr 38:091e511ce8a0 5933 {
mjr 74:822a92bc11d2 5934 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 5935 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 5936 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 5937 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 5938 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 5939 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 5940 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 5941 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 5942 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 5943 //
mjr 38:091e511ce8a0 5944 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 5945 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 5946 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 5947 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 5948 // protocol mode.
mjr 38:091e511ce8a0 5949 //
mjr 38:091e511ce8a0 5950 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 5951 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 5952
mjr 74:822a92bc11d2 5953 // carry out the PBA
mjr 74:822a92bc11d2 5954 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 5955
mjr 74:822a92bc11d2 5956 // update the PBX index state for the next message
mjr 74:822a92bc11d2 5957 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 5958 }
mjr 38:091e511ce8a0 5959 }
mjr 35:e959ffba78fd 5960
mjr 38:091e511ce8a0 5961 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5962 //
mjr 5:a70c0bce770d 5963 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 5964 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 5965 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 5966 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 5967 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 5968 // port outputs.
mjr 5:a70c0bce770d 5969 //
mjr 0:5acbbe3f4cf4 5970 int main(void)
mjr 0:5acbbe3f4cf4 5971 {
mjr 60:f38da020aa13 5972 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 5973 printf("\r\nPinscape Controller starting\r\n");
mjr 82:4f6209cb5c33 5974
mjr 76:7f5912b6340e 5975 // clear the I2C connection
mjr 35:e959ffba78fd 5976 clear_i2c();
mjr 82:4f6209cb5c33 5977
mjr 82:4f6209cb5c33 5978 // Elevate GPIO pin interrupt priorities, so that they can preempt
mjr 82:4f6209cb5c33 5979 // other interrupts. This is important for some external peripherals,
mjr 82:4f6209cb5c33 5980 // particularly the quadrature plunger sensors, which can generate
mjr 82:4f6209cb5c33 5981 // high-speed interrupts that need to be serviced quickly to keep
mjr 82:4f6209cb5c33 5982 // proper count of the quadrature position.
mjr 82:4f6209cb5c33 5983 FastInterruptIn::elevatePriority();
mjr 38:091e511ce8a0 5984
mjr 76:7f5912b6340e 5985 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 5986 // configuration data:
mjr 76:7f5912b6340e 5987 //
mjr 76:7f5912b6340e 5988 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 5989 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 5990 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 5991 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 5992 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 5993 // to store user settings updates.
mjr 76:7f5912b6340e 5994 //
mjr 76:7f5912b6340e 5995 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 5996 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 5997 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 5998 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 5999 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 6000 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 6001 // without a separate download of the config data.
mjr 76:7f5912b6340e 6002 //
mjr 76:7f5912b6340e 6003 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 6004 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 6005 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 6006 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 6007 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 6008 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 6009 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 6010 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 6011 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 6012 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 6013 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 6014 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 6015 loadHostLoadedConfig();
mjr 35:e959ffba78fd 6016
mjr 38:091e511ce8a0 6017 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 6018 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 6019
mjr 33:d832bcab089e 6020 // we're not connected/awake yet
mjr 33:d832bcab089e 6021 bool connected = false;
mjr 40:cc0d9814522b 6022 Timer connectChangeTimer;
mjr 33:d832bcab089e 6023
mjr 35:e959ffba78fd 6024 // create the plunger sensor interface
mjr 35:e959ffba78fd 6025 createPlunger();
mjr 76:7f5912b6340e 6026
mjr 76:7f5912b6340e 6027 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 6028 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 6029
mjr 60:f38da020aa13 6030 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 6031 init_tlc5940(cfg);
mjr 34:6b981a2afab7 6032
mjr 87:8d35c74403af 6033 // initialize the TLC5916 interface, if these chips are present
mjr 87:8d35c74403af 6034 init_tlc59116(cfg);
mjr 87:8d35c74403af 6035
mjr 60:f38da020aa13 6036 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 6037 init_hc595(cfg);
mjr 6:cc35eb643e8f 6038
mjr 54:fd77a6b2f76c 6039 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 6040 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 6041 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 6042 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 6043 initLwOut(cfg);
mjr 48:058ace2aed1d 6044
mjr 60:f38da020aa13 6045 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 6046 if (tlc5940 != 0)
mjr 35:e959ffba78fd 6047 tlc5940->start();
mjr 87:8d35c74403af 6048
mjr 77:0b96f6867312 6049 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 6050 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 6051 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 6052 // USB keyboard interface.
mjr 77:0b96f6867312 6053 bool kbKeys = false;
mjr 77:0b96f6867312 6054
mjr 77:0b96f6867312 6055 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 6056 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 6057
mjr 77:0b96f6867312 6058 // start the power status time, if applicable
mjr 77:0b96f6867312 6059 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 6060
mjr 35:e959ffba78fd 6061 // initialize the button input ports
mjr 35:e959ffba78fd 6062 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 6063
mjr 60:f38da020aa13 6064 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 6065 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 6066 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 6067 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 6068 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 6069 // to the joystick interface.
mjr 51:57eb311faafa 6070 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 90:aa4e571da8e8 6071 cfg.joystickEnabled, cfg.joystickAxisFormat, kbKeys);
mjr 51:57eb311faafa 6072
mjr 60:f38da020aa13 6073 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 6074 // flash pattern while waiting.
mjr 70:9f58735a1732 6075 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 6076 connTimeoutTimer.start();
mjr 70:9f58735a1732 6077 connFlashTimer.start();
mjr 51:57eb311faafa 6078 while (!js.configured())
mjr 51:57eb311faafa 6079 {
mjr 51:57eb311faafa 6080 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 6081 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6082 {
mjr 51:57eb311faafa 6083 // short yellow flash
mjr 51:57eb311faafa 6084 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 6085 wait_us(50000);
mjr 51:57eb311faafa 6086 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6087
mjr 51:57eb311faafa 6088 // reset the flash timer
mjr 70:9f58735a1732 6089 connFlashTimer.reset();
mjr 51:57eb311faafa 6090 }
mjr 70:9f58735a1732 6091
mjr 77:0b96f6867312 6092 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 6093 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 6094 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 6095 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 86:e30a1f60f783 6096 // Don't do this if we're in a non-recoverable PSU2 power state.
mjr 70:9f58735a1732 6097 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6098 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6099 && powerStatusAllowsReboot())
mjr 70:9f58735a1732 6100 reboot(js, false, 0);
mjr 77:0b96f6867312 6101
mjr 77:0b96f6867312 6102 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6103 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 6104 }
mjr 60:f38da020aa13 6105
mjr 60:f38da020aa13 6106 // we're now connected to the host
mjr 54:fd77a6b2f76c 6107 connected = true;
mjr 40:cc0d9814522b 6108
mjr 60:f38da020aa13 6109 // Last report timer for the joytick interface. We use this timer to
mjr 60:f38da020aa13 6110 // throttle the report rate to a pace that's suitable for VP. Without
mjr 60:f38da020aa13 6111 // any artificial delays, we could generate data to send on the joystick
mjr 60:f38da020aa13 6112 // interface on every loop iteration. The loop iteration time depends
mjr 60:f38da020aa13 6113 // on which devices are attached, since most of the work in our main
mjr 60:f38da020aa13 6114 // loop is simply polling our devices. For typical setups, the loop
mjr 60:f38da020aa13 6115 // time ranges from about 0.25ms to 2.5ms; the biggest factor is the
mjr 60:f38da020aa13 6116 // plunger sensor. But VP polls for input about every 10ms, so there's
mjr 60:f38da020aa13 6117 // no benefit in sending data faster than that, and there's some harm,
mjr 60:f38da020aa13 6118 // in that it creates USB overhead (both on the wire and on the host
mjr 60:f38da020aa13 6119 // CPU). We therefore use this timer to pace our reports to roughly
mjr 60:f38da020aa13 6120 // the VP input polling rate. Note that there's no way to actually
mjr 60:f38da020aa13 6121 // synchronize with VP's polling, but there's also no need to, as the
mjr 60:f38da020aa13 6122 // input model is designed to reflect the overall current state at any
mjr 60:f38da020aa13 6123 // given time rather than events or deltas. If VP polls twice between
mjr 60:f38da020aa13 6124 // two updates, it simply sees no state change; if we send two updates
mjr 60:f38da020aa13 6125 // between VP polls, VP simply sees the latest state when it does get
mjr 60:f38da020aa13 6126 // around to polling.
mjr 38:091e511ce8a0 6127 Timer jsReportTimer;
mjr 38:091e511ce8a0 6128 jsReportTimer.start();
mjr 38:091e511ce8a0 6129
mjr 60:f38da020aa13 6130 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 6131 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 6132 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 6133 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 6134 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 6135 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 6136 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 6137 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 6138 Timer jsOKTimer;
mjr 38:091e511ce8a0 6139 jsOKTimer.start();
mjr 35:e959ffba78fd 6140
mjr 55:4db125cd11a0 6141 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 6142 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 6143 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 6144 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 6145 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 6146
mjr 55:4db125cd11a0 6147 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 6148 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 6149 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 6150
mjr 55:4db125cd11a0 6151 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 6152 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 6153 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 6154
mjr 35:e959ffba78fd 6155 // initialize the calibration button
mjr 1:d913e0afb2ac 6156 calBtnTimer.start();
mjr 35:e959ffba78fd 6157 calBtnState = 0;
mjr 1:d913e0afb2ac 6158
mjr 1:d913e0afb2ac 6159 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 6160 Timer hbTimer;
mjr 1:d913e0afb2ac 6161 hbTimer.start();
mjr 1:d913e0afb2ac 6162 int hb = 0;
mjr 5:a70c0bce770d 6163 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 6164
mjr 1:d913e0afb2ac 6165 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 6166 Timer acTimer;
mjr 1:d913e0afb2ac 6167 acTimer.start();
mjr 1:d913e0afb2ac 6168
mjr 0:5acbbe3f4cf4 6169 // create the accelerometer object
mjr 77:0b96f6867312 6170 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 78:1e00b3fa11af 6171 MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime);
mjr 76:7f5912b6340e 6172
mjr 17:ab3cec0c8bf4 6173 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 6174 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 6175 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 6176
mjr 48:058ace2aed1d 6177 // initialize the plunger sensor
mjr 35:e959ffba78fd 6178 plungerSensor->init();
mjr 10:976666ffa4ef 6179
mjr 48:058ace2aed1d 6180 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 6181 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 6182
mjr 54:fd77a6b2f76c 6183 // enable the peripheral chips
mjr 54:fd77a6b2f76c 6184 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6185 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6186 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6187 hc595->enable(true);
mjr 87:8d35c74403af 6188 if (tlc59116 != 0)
mjr 87:8d35c74403af 6189 tlc59116->enable(true);
mjr 74:822a92bc11d2 6190
mjr 76:7f5912b6340e 6191 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 6192 wizCycleTimer.start();
mjr 74:822a92bc11d2 6193
mjr 74:822a92bc11d2 6194 // start the PWM update polling timer
mjr 74:822a92bc11d2 6195 polledPwmTimer.start();
mjr 43:7a6364d82a41 6196
mjr 1:d913e0afb2ac 6197 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 6198 // host requests
mjr 0:5acbbe3f4cf4 6199 for (;;)
mjr 0:5acbbe3f4cf4 6200 {
mjr 74:822a92bc11d2 6201 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 6202 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 74:822a92bc11d2 6203
mjr 48:058ace2aed1d 6204 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 6205 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 6206 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 6207 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 6208 LedWizMsg lwm;
mjr 48:058ace2aed1d 6209 Timer lwt;
mjr 48:058ace2aed1d 6210 lwt.start();
mjr 77:0b96f6867312 6211 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 6212 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 6213 {
mjr 78:1e00b3fa11af 6214 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 6215 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 6216 }
mjr 74:822a92bc11d2 6217
mjr 74:822a92bc11d2 6218 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 6219 IF_DIAG(
mjr 74:822a92bc11d2 6220 if (msgCount != 0)
mjr 74:822a92bc11d2 6221 {
mjr 76:7f5912b6340e 6222 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 6223 mainLoopMsgCount++;
mjr 74:822a92bc11d2 6224 }
mjr 74:822a92bc11d2 6225 )
mjr 74:822a92bc11d2 6226
mjr 77:0b96f6867312 6227 // process IR input
mjr 77:0b96f6867312 6228 process_IR(cfg, js);
mjr 77:0b96f6867312 6229
mjr 77:0b96f6867312 6230 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6231 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 6232
mjr 74:822a92bc11d2 6233 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 6234 wizPulse();
mjr 74:822a92bc11d2 6235
mjr 74:822a92bc11d2 6236 // update PWM outputs
mjr 74:822a92bc11d2 6237 pollPwmUpdates();
mjr 77:0b96f6867312 6238
mjr 89:c43cd923401c 6239 // update Flipper Logic outputs
mjr 89:c43cd923401c 6240 LwFlipperLogicOut::poll();
mjr 89:c43cd923401c 6241
mjr 77:0b96f6867312 6242 // poll the accelerometer
mjr 77:0b96f6867312 6243 accel.poll();
mjr 55:4db125cd11a0 6244
mjr 76:7f5912b6340e 6245 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 6246 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6247
mjr 55:4db125cd11a0 6248 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 6249 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6250 tlc5940->send();
mjr 87:8d35c74403af 6251
mjr 87:8d35c74403af 6252 // send TLC59116 data updates
mjr 87:8d35c74403af 6253 if (tlc59116 != 0)
mjr 87:8d35c74403af 6254 tlc59116->send();
mjr 1:d913e0afb2ac 6255
mjr 76:7f5912b6340e 6256 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 6257 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 6258
mjr 1:d913e0afb2ac 6259 // check for plunger calibration
mjr 17:ab3cec0c8bf4 6260 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 6261 {
mjr 1:d913e0afb2ac 6262 // check the state
mjr 1:d913e0afb2ac 6263 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6264 {
mjr 1:d913e0afb2ac 6265 case 0:
mjr 1:d913e0afb2ac 6266 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 6267 calBtnTimer.reset();
mjr 1:d913e0afb2ac 6268 calBtnState = 1;
mjr 1:d913e0afb2ac 6269 break;
mjr 1:d913e0afb2ac 6270
mjr 1:d913e0afb2ac 6271 case 1:
mjr 1:d913e0afb2ac 6272 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 6273 // passed, start the hold period
mjr 48:058ace2aed1d 6274 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 6275 calBtnState = 2;
mjr 1:d913e0afb2ac 6276 break;
mjr 1:d913e0afb2ac 6277
mjr 1:d913e0afb2ac 6278 case 2:
mjr 1:d913e0afb2ac 6279 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 6280 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 6281 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 6282 {
mjr 1:d913e0afb2ac 6283 // enter calibration mode
mjr 1:d913e0afb2ac 6284 calBtnState = 3;
mjr 9:fd65b0a94720 6285 calBtnTimer.reset();
mjr 35:e959ffba78fd 6286
mjr 44:b5ac89b9cd5d 6287 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 6288 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 6289 }
mjr 1:d913e0afb2ac 6290 break;
mjr 2:c174f9ee414a 6291
mjr 2:c174f9ee414a 6292 case 3:
mjr 9:fd65b0a94720 6293 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6294 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6295 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6296 break;
mjr 0:5acbbe3f4cf4 6297 }
mjr 0:5acbbe3f4cf4 6298 }
mjr 1:d913e0afb2ac 6299 else
mjr 1:d913e0afb2ac 6300 {
mjr 2:c174f9ee414a 6301 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6302 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6303 // and save the results to flash.
mjr 2:c174f9ee414a 6304 //
mjr 2:c174f9ee414a 6305 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6306 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6307 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 6308 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6309 {
mjr 2:c174f9ee414a 6310 // exit calibration mode
mjr 1:d913e0afb2ac 6311 calBtnState = 0;
mjr 52:8298b2a73eb2 6312 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6313
mjr 6:cc35eb643e8f 6314 // save the updated configuration
mjr 35:e959ffba78fd 6315 cfg.plunger.cal.calibrated = 1;
mjr 86:e30a1f60f783 6316 saveConfigToFlash(0, false);
mjr 2:c174f9ee414a 6317 }
mjr 2:c174f9ee414a 6318 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6319 {
mjr 2:c174f9ee414a 6320 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6321 calBtnState = 0;
mjr 2:c174f9ee414a 6322 }
mjr 1:d913e0afb2ac 6323 }
mjr 1:d913e0afb2ac 6324
mjr 1:d913e0afb2ac 6325 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6326 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6327 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6328 {
mjr 1:d913e0afb2ac 6329 case 2:
mjr 1:d913e0afb2ac 6330 // in the hold period - flash the light
mjr 48:058ace2aed1d 6331 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6332 break;
mjr 1:d913e0afb2ac 6333
mjr 1:d913e0afb2ac 6334 case 3:
mjr 1:d913e0afb2ac 6335 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6336 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6337 break;
mjr 1:d913e0afb2ac 6338
mjr 1:d913e0afb2ac 6339 default:
mjr 1:d913e0afb2ac 6340 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6341 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6342 break;
mjr 1:d913e0afb2ac 6343 }
mjr 3:3514575d4f86 6344
mjr 3:3514575d4f86 6345 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6346 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6347 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6348 {
mjr 1:d913e0afb2ac 6349 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6350 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6351 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6352 calBtnLed->write(1);
mjr 38:091e511ce8a0 6353 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6354 }
mjr 2:c174f9ee414a 6355 else {
mjr 17:ab3cec0c8bf4 6356 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6357 calBtnLed->write(0);
mjr 38:091e511ce8a0 6358 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6359 }
mjr 1:d913e0afb2ac 6360 }
mjr 35:e959ffba78fd 6361
mjr 76:7f5912b6340e 6362 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6363 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6364
mjr 48:058ace2aed1d 6365 // read the plunger sensor
mjr 48:058ace2aed1d 6366 plungerReader.read();
mjr 48:058ace2aed1d 6367
mjr 76:7f5912b6340e 6368 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6369 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6370
mjr 53:9b2611964afc 6371 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6372 zbLaunchBall.update();
mjr 37:ed52738445fc 6373
mjr 76:7f5912b6340e 6374 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6375 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6376
mjr 53:9b2611964afc 6377 // process button updates
mjr 53:9b2611964afc 6378 processButtons(cfg);
mjr 53:9b2611964afc 6379
mjr 76:7f5912b6340e 6380 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6381 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6382
mjr 38:091e511ce8a0 6383 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6384 if (kbState.changed)
mjr 37:ed52738445fc 6385 {
mjr 38:091e511ce8a0 6386 // send a keyboard report
mjr 37:ed52738445fc 6387 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6388 kbState.changed = false;
mjr 37:ed52738445fc 6389 }
mjr 38:091e511ce8a0 6390
mjr 38:091e511ce8a0 6391 // likewise for the media controller
mjr 37:ed52738445fc 6392 if (mediaState.changed)
mjr 37:ed52738445fc 6393 {
mjr 38:091e511ce8a0 6394 // send a media report
mjr 37:ed52738445fc 6395 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6396 mediaState.changed = false;
mjr 37:ed52738445fc 6397 }
mjr 38:091e511ce8a0 6398
mjr 76:7f5912b6340e 6399 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6400 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6401
mjr 38:091e511ce8a0 6402 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6403 bool jsOK = false;
mjr 55:4db125cd11a0 6404
mjr 55:4db125cd11a0 6405 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6406 uint16_t statusFlags =
mjr 77:0b96f6867312 6407 cfg.plunger.enabled // 0x01
mjr 77:0b96f6867312 6408 | nightMode // 0x02
mjr 79:682ae3171a08 6409 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 6410 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 6411 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6412 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6413
mjr 50:40015764bbe6 6414 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6415 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6416 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 6417 // More frequent reporting would only add USB I/O overhead.
mjr 50:40015764bbe6 6418 if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 17:ab3cec0c8bf4 6419 {
mjr 17:ab3cec0c8bf4 6420 // read the accelerometer
mjr 17:ab3cec0c8bf4 6421 int xa, ya;
mjr 17:ab3cec0c8bf4 6422 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 6423
mjr 17:ab3cec0c8bf4 6424 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 6425 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 6426 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 6427 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 6428 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 6429
mjr 17:ab3cec0c8bf4 6430 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 6431 x = xa;
mjr 17:ab3cec0c8bf4 6432 y = ya;
mjr 17:ab3cec0c8bf4 6433
mjr 48:058ace2aed1d 6434 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 6435 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 6436 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 6437 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 6438 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 6439 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 6440 // regular plunger inputs.
mjr 48:058ace2aed1d 6441 int z = plungerReader.getPosition();
mjr 53:9b2611964afc 6442 int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z);
mjr 35:e959ffba78fd 6443
mjr 35:e959ffba78fd 6444 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 6445 accelRotate(x, y);
mjr 35:e959ffba78fd 6446
mjr 35:e959ffba78fd 6447 // send the joystick report
mjr 53:9b2611964afc 6448 jsOK = js.update(x, y, zrep, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 6449
mjr 17:ab3cec0c8bf4 6450 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 6451 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 6452 }
mjr 21:5048e16cc9ef 6453
mjr 52:8298b2a73eb2 6454 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 6455 if (reportPlungerStat)
mjr 10:976666ffa4ef 6456 {
mjr 17:ab3cec0c8bf4 6457 // send the report
mjr 53:9b2611964afc 6458 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 6459
mjr 10:976666ffa4ef 6460 // we have satisfied this request
mjr 52:8298b2a73eb2 6461 reportPlungerStat = false;
mjr 10:976666ffa4ef 6462 }
mjr 10:976666ffa4ef 6463
mjr 35:e959ffba78fd 6464 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 6465 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 6466 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 6467 {
mjr 55:4db125cd11a0 6468 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 6469 jsReportTimer.reset();
mjr 38:091e511ce8a0 6470 }
mjr 38:091e511ce8a0 6471
mjr 38:091e511ce8a0 6472 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 6473 if (jsOK)
mjr 38:091e511ce8a0 6474 {
mjr 38:091e511ce8a0 6475 jsOKTimer.reset();
mjr 38:091e511ce8a0 6476 jsOKTimer.start();
mjr 21:5048e16cc9ef 6477 }
mjr 21:5048e16cc9ef 6478
mjr 76:7f5912b6340e 6479 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 6480 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6481
mjr 6:cc35eb643e8f 6482 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 6483 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 6484 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 6485 #endif
mjr 6:cc35eb643e8f 6486
mjr 33:d832bcab089e 6487 // check for connection status changes
mjr 54:fd77a6b2f76c 6488 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 6489 if (newConnected != connected)
mjr 33:d832bcab089e 6490 {
mjr 54:fd77a6b2f76c 6491 // give it a moment to stabilize
mjr 40:cc0d9814522b 6492 connectChangeTimer.start();
mjr 55:4db125cd11a0 6493 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 6494 {
mjr 33:d832bcab089e 6495 // note the new status
mjr 33:d832bcab089e 6496 connected = newConnected;
mjr 40:cc0d9814522b 6497
mjr 40:cc0d9814522b 6498 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 6499 connectChangeTimer.stop();
mjr 40:cc0d9814522b 6500 connectChangeTimer.reset();
mjr 33:d832bcab089e 6501
mjr 54:fd77a6b2f76c 6502 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 6503 if (!connected)
mjr 40:cc0d9814522b 6504 {
mjr 54:fd77a6b2f76c 6505 // turn off all outputs
mjr 33:d832bcab089e 6506 allOutputsOff();
mjr 40:cc0d9814522b 6507
mjr 40:cc0d9814522b 6508 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 6509 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 6510 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 6511 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 6512 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 6513 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 6514 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 6515 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 6516 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 6517 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 6518 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 6519 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 6520 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 6521 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 6522 // the power first comes on.
mjr 40:cc0d9814522b 6523 if (tlc5940 != 0)
mjr 40:cc0d9814522b 6524 tlc5940->enable(false);
mjr 87:8d35c74403af 6525 if (tlc59116 != 0)
mjr 87:8d35c74403af 6526 tlc59116->enable(false);
mjr 40:cc0d9814522b 6527 if (hc595 != 0)
mjr 40:cc0d9814522b 6528 hc595->enable(false);
mjr 40:cc0d9814522b 6529 }
mjr 33:d832bcab089e 6530 }
mjr 33:d832bcab089e 6531 }
mjr 48:058ace2aed1d 6532
mjr 53:9b2611964afc 6533 // if we have a reboot timer pending, check for completion
mjr 86:e30a1f60f783 6534 if (saveConfigFollowupTimer.isRunning()
mjr 87:8d35c74403af 6535 && saveConfigFollowupTimer.read_us() > saveConfigFollowupTime*1000000UL)
mjr 85:3c28aee81cde 6536 {
mjr 85:3c28aee81cde 6537 // if a reboot is pending, execute it now
mjr 86:e30a1f60f783 6538 if (saveConfigRebootPending)
mjr 82:4f6209cb5c33 6539 {
mjr 86:e30a1f60f783 6540 // Only reboot if the PSU2 power state allows it. If it
mjr 86:e30a1f60f783 6541 // doesn't, suppress the reboot for now, but leave the boot
mjr 86:e30a1f60f783 6542 // flags set so that we keep checking on future rounds.
mjr 86:e30a1f60f783 6543 // That way we should eventually reboot when the power
mjr 86:e30a1f60f783 6544 // status allows it.
mjr 86:e30a1f60f783 6545 if (powerStatusAllowsReboot())
mjr 86:e30a1f60f783 6546 reboot(js);
mjr 82:4f6209cb5c33 6547 }
mjr 85:3c28aee81cde 6548 else
mjr 85:3c28aee81cde 6549 {
mjr 86:e30a1f60f783 6550 // No reboot required. Exit the timed post-save state.
mjr 86:e30a1f60f783 6551
mjr 86:e30a1f60f783 6552 // stop and reset the post-save timer
mjr 86:e30a1f60f783 6553 saveConfigFollowupTimer.stop();
mjr 86:e30a1f60f783 6554 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 6555
mjr 86:e30a1f60f783 6556 // clear the post-save success flag
mjr 86:e30a1f60f783 6557 saveConfigSucceededFlag = 0;
mjr 85:3c28aee81cde 6558 }
mjr 77:0b96f6867312 6559 }
mjr 86:e30a1f60f783 6560
mjr 48:058ace2aed1d 6561 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 6562 if (!connected)
mjr 48:058ace2aed1d 6563 {
mjr 54:fd77a6b2f76c 6564 // show USB HAL debug events
mjr 54:fd77a6b2f76c 6565 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 6566 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 6567
mjr 54:fd77a6b2f76c 6568 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 6569 js.diagFlash();
mjr 54:fd77a6b2f76c 6570
mjr 54:fd77a6b2f76c 6571 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 6572 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6573
mjr 51:57eb311faafa 6574 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 6575 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 6576 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 6577
mjr 54:fd77a6b2f76c 6578 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 6579 Timer diagTimer;
mjr 54:fd77a6b2f76c 6580 diagTimer.reset();
mjr 54:fd77a6b2f76c 6581 diagTimer.start();
mjr 74:822a92bc11d2 6582
mjr 74:822a92bc11d2 6583 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 6584 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 6585
mjr 54:fd77a6b2f76c 6586 // loop until we get our connection back
mjr 54:fd77a6b2f76c 6587 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 6588 {
mjr 54:fd77a6b2f76c 6589 // try to recover the connection
mjr 54:fd77a6b2f76c 6590 js.recoverConnection();
mjr 54:fd77a6b2f76c 6591
mjr 89:c43cd923401c 6592 // update Flipper Logic outputs
mjr 89:c43cd923401c 6593 LwFlipperLogicOut::poll();
mjr 89:c43cd923401c 6594
mjr 55:4db125cd11a0 6595 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 6596 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6597 tlc5940->send();
mjr 87:8d35c74403af 6598
mjr 87:8d35c74403af 6599 // update TLC59116 outputs
mjr 87:8d35c74403af 6600 if (tlc59116 != 0)
mjr 87:8d35c74403af 6601 tlc59116->send();
mjr 55:4db125cd11a0 6602
mjr 54:fd77a6b2f76c 6603 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 6604 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6605 {
mjr 54:fd77a6b2f76c 6606 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 6607 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 6608
mjr 54:fd77a6b2f76c 6609 // show diagnostic feedback
mjr 54:fd77a6b2f76c 6610 js.diagFlash();
mjr 51:57eb311faafa 6611
mjr 51:57eb311faafa 6612 // reset the flash timer
mjr 54:fd77a6b2f76c 6613 diagTimer.reset();
mjr 51:57eb311faafa 6614 }
mjr 51:57eb311faafa 6615
mjr 77:0b96f6867312 6616 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 6617 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 6618 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 6619 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 6620 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 6621 // reliable way to get Windows to notice us again after one
mjr 86:e30a1f60f783 6622 // of these events and make it reconnect. Only reboot if
mjr 86:e30a1f60f783 6623 // the PSU2 power status allows it - if not, skip it on this
mjr 86:e30a1f60f783 6624 // round and keep waiting.
mjr 51:57eb311faafa 6625 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6626 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6627 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 6628 reboot(js, false, 0);
mjr 77:0b96f6867312 6629
mjr 77:0b96f6867312 6630 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6631 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 6632 }
mjr 54:fd77a6b2f76c 6633
mjr 74:822a92bc11d2 6634 // resume the main loop timer
mjr 74:822a92bc11d2 6635 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 6636
mjr 54:fd77a6b2f76c 6637 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 6638 connected = true;
mjr 54:fd77a6b2f76c 6639 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 6640
mjr 54:fd77a6b2f76c 6641 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 6642 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6643 tlc5940->enable(true);
mjr 87:8d35c74403af 6644 if (tlc59116 != 0)
mjr 87:8d35c74403af 6645 tlc59116->enable(true);
mjr 54:fd77a6b2f76c 6646 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6647 {
mjr 55:4db125cd11a0 6648 hc595->enable(true);
mjr 54:fd77a6b2f76c 6649 hc595->update(true);
mjr 51:57eb311faafa 6650 }
mjr 48:058ace2aed1d 6651 }
mjr 43:7a6364d82a41 6652
mjr 6:cc35eb643e8f 6653 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 6654 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 6655 {
mjr 54:fd77a6b2f76c 6656 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 6657 {
mjr 39:b3815a1c3802 6658 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 6659 //
mjr 54:fd77a6b2f76c 6660 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 6661 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 6662 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 6663 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 6664 hb = !hb;
mjr 38:091e511ce8a0 6665 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 6666
mjr 54:fd77a6b2f76c 6667 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 6668 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 6669 // with the USB connection.
mjr 54:fd77a6b2f76c 6670 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 6671 {
mjr 54:fd77a6b2f76c 6672 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 6673 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 6674 // limit, keep running for now, and leave the OK timer running so
mjr 86:e30a1f60f783 6675 // that we can continue to monitor this. Only reboot if the PSU2
mjr 86:e30a1f60f783 6676 // power status allows it.
mjr 86:e30a1f60f783 6677 if (jsOKTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6678 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 6679 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 6680 }
mjr 54:fd77a6b2f76c 6681 else
mjr 54:fd77a6b2f76c 6682 {
mjr 54:fd77a6b2f76c 6683 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 6684 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 6685 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 6686 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 6687 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 6688 }
mjr 38:091e511ce8a0 6689 }
mjr 73:4e8ce0b18915 6690 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 6691 {
mjr 73:4e8ce0b18915 6692 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 6693 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 6694 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 6695 }
mjr 35:e959ffba78fd 6696 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 6697 {
mjr 6:cc35eb643e8f 6698 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 6699 hb = !hb;
mjr 38:091e511ce8a0 6700 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 6701 }
mjr 6:cc35eb643e8f 6702 else
mjr 6:cc35eb643e8f 6703 {
mjr 6:cc35eb643e8f 6704 // connected - flash blue/green
mjr 2:c174f9ee414a 6705 hb = !hb;
mjr 38:091e511ce8a0 6706 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 6707 }
mjr 1:d913e0afb2ac 6708
mjr 1:d913e0afb2ac 6709 // reset the heartbeat timer
mjr 1:d913e0afb2ac 6710 hbTimer.reset();
mjr 5:a70c0bce770d 6711 ++hbcnt;
mjr 1:d913e0afb2ac 6712 }
mjr 74:822a92bc11d2 6713
mjr 74:822a92bc11d2 6714 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 6715 IF_DIAG(
mjr 76:7f5912b6340e 6716 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 6717 mainLoopIterCount++;
mjr 74:822a92bc11d2 6718 )
mjr 1:d913e0afb2ac 6719 }
mjr 0:5acbbe3f4cf4 6720 }