An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Wed May 10 20:04:50 2017 +0000
Revision:
88:98bce687e6c0
Parent:
87:8d35c74403af
Child:
89:c43cd923401c
New USB request to send preprogrammed IR command

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 82:4f6209cb5c33 262
mjr 2:c174f9ee414a 263
mjr 21:5048e16cc9ef 264 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 265 #include "config.h"
mjr 17:ab3cec0c8bf4 266
mjr 76:7f5912b6340e 267 // forward declarations
mjr 76:7f5912b6340e 268 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 269
mjr 53:9b2611964afc 270 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 273 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 274 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 275 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 276 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 277 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 278 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 279 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 280 // interface.
mjr 53:9b2611964afc 281 //
mjr 53:9b2611964afc 282 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 283 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 284 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 285 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 286 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 287 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 288 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 289 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 292 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 293 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 294 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 295 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 296 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 297 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 298 //
mjr 53:9b2611964afc 299 const char *getOpenSDAID()
mjr 53:9b2611964afc 300 {
mjr 53:9b2611964afc 301 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 302 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 303 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 304
mjr 53:9b2611964afc 305 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 306 }
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 309 //
mjr 53:9b2611964afc 310 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 311 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 312 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 313 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 314 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 315 // want from this.
mjr 53:9b2611964afc 316 //
mjr 53:9b2611964afc 317 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 318 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 319 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 320 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 321 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 322 // macros.
mjr 53:9b2611964afc 323 //
mjr 53:9b2611964afc 324 const char *getBuildID()
mjr 53:9b2611964afc 325 {
mjr 53:9b2611964afc 326 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 327 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 328 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 329
mjr 53:9b2611964afc 330 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 331 }
mjr 53:9b2611964afc 332
mjr 74:822a92bc11d2 333 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 334 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 335 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 336 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 337 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 338 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 339 Timer mainLoopTimer;
mjr 76:7f5912b6340e 340 #endif
mjr 76:7f5912b6340e 341
mjr 53:9b2611964afc 342
mjr 5:a70c0bce770d 343 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 344 //
mjr 38:091e511ce8a0 345 // Forward declarations
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 void setNightMode(bool on);
mjr 38:091e511ce8a0 348 void toggleNightMode();
mjr 38:091e511ce8a0 349
mjr 38:091e511ce8a0 350 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 351 // utilities
mjr 17:ab3cec0c8bf4 352
mjr 77:0b96f6867312 353 // int/float point square of a number
mjr 77:0b96f6867312 354 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 355 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 356
mjr 26:cb71c4af2912 357 // floating point rounding
mjr 26:cb71c4af2912 358 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 359
mjr 17:ab3cec0c8bf4 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 40:cc0d9814522b 363 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 364 // the running state.
mjr 40:cc0d9814522b 365 //
mjr 77:0b96f6867312 366 class ExtTimer: public Timer
mjr 40:cc0d9814522b 367 {
mjr 40:cc0d9814522b 368 public:
mjr 77:0b96f6867312 369 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 370
mjr 40:cc0d9814522b 371 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 372 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 373
mjr 40:cc0d9814522b 374 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 private:
mjr 40:cc0d9814522b 377 bool running;
mjr 40:cc0d9814522b 378 };
mjr 40:cc0d9814522b 379
mjr 53:9b2611964afc 380
mjr 53:9b2611964afc 381 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 382 //
mjr 33:d832bcab089e 383 // USB product version number
mjr 5:a70c0bce770d 384 //
mjr 47:df7a88cd249c 385 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 386
mjr 33:d832bcab089e 387 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 388 //
mjr 6:cc35eb643e8f 389 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 #define JOYMAX 4096
mjr 6:cc35eb643e8f 392
mjr 9:fd65b0a94720 393
mjr 17:ab3cec0c8bf4 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 //
mjr 40:cc0d9814522b 396 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 397 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 398 //
mjr 35:e959ffba78fd 399
mjr 35:e959ffba78fd 400 // unsigned 16-bit integer
mjr 35:e959ffba78fd 401 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 402 {
mjr 35:e959ffba78fd 403 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 404 }
mjr 40:cc0d9814522b 405 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 406 {
mjr 40:cc0d9814522b 407 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 408 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 409 }
mjr 35:e959ffba78fd 410
mjr 35:e959ffba78fd 411 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 412 {
mjr 35:e959ffba78fd 413 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 414 }
mjr 40:cc0d9814522b 415 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 416 {
mjr 40:cc0d9814522b 417 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 418 }
mjr 35:e959ffba78fd 419
mjr 35:e959ffba78fd 420 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 423 }
mjr 40:cc0d9814522b 424 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 425 {
mjr 40:cc0d9814522b 426 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 427 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 428 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 429 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 430 }
mjr 35:e959ffba78fd 431
mjr 35:e959ffba78fd 432 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 433 {
mjr 35:e959ffba78fd 434 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 435 }
mjr 35:e959ffba78fd 436
mjr 53:9b2611964afc 437 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 438 //
mjr 53:9b2611964afc 439 // The internal mbed PinName format is
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 444 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 445 //
mjr 53:9b2611964afc 446 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 447 // pin name fits in 8 bits:
mjr 53:9b2611964afc 448 //
mjr 53:9b2611964afc 449 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 456 {
mjr 53:9b2611964afc 457 if (c == 0xFF)
mjr 53:9b2611964afc 458 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 459 else
mjr 53:9b2611964afc 460 return PinName(
mjr 53:9b2611964afc 461 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 462 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 463 }
mjr 40:cc0d9814522b 464 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 465 {
mjr 53:9b2611964afc 466 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 467 }
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469
mjr 35:e959ffba78fd 470 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 471 //
mjr 38:091e511ce8a0 472 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 473 //
mjr 38:091e511ce8a0 474 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 475 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 476 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 477 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 478 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 479 // SPI capability.
mjr 38:091e511ce8a0 480 //
mjr 38:091e511ce8a0 481 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 482
mjr 73:4e8ce0b18915 483 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 484 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 485 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 486 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 487
mjr 38:091e511ce8a0 488 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 489 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 490 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 491 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 492 {
mjr 73:4e8ce0b18915 493 // remember the new state
mjr 73:4e8ce0b18915 494 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 495
mjr 73:4e8ce0b18915 496 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 497 // applying it to the blue LED
mjr 73:4e8ce0b18915 498 if (diagLEDState == 0)
mjr 77:0b96f6867312 499 {
mjr 77:0b96f6867312 500 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 501 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 502 }
mjr 73:4e8ce0b18915 503
mjr 73:4e8ce0b18915 504 // set the new state
mjr 38:091e511ce8a0 505 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 506 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 507 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 508 }
mjr 38:091e511ce8a0 509
mjr 73:4e8ce0b18915 510 // update the LEDs with the current state
mjr 73:4e8ce0b18915 511 void diagLED(void)
mjr 73:4e8ce0b18915 512 {
mjr 73:4e8ce0b18915 513 diagLED(
mjr 73:4e8ce0b18915 514 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 515 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 516 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 517 }
mjr 73:4e8ce0b18915 518
mjr 38:091e511ce8a0 519 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 520 // an on-board LED segment
mjr 38:091e511ce8a0 521 struct LedSeg
mjr 38:091e511ce8a0 522 {
mjr 38:091e511ce8a0 523 bool r, g, b;
mjr 38:091e511ce8a0 524 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 525
mjr 38:091e511ce8a0 526 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 527 {
mjr 38:091e511ce8a0 528 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 529 // our on-board LED segments
mjr 38:091e511ce8a0 530 int t = pc.typ;
mjr 38:091e511ce8a0 531 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 532 {
mjr 38:091e511ce8a0 533 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 534 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 535 if (pin == LED1)
mjr 38:091e511ce8a0 536 r = true;
mjr 38:091e511ce8a0 537 else if (pin == LED2)
mjr 38:091e511ce8a0 538 g = true;
mjr 38:091e511ce8a0 539 else if (pin == LED3)
mjr 38:091e511ce8a0 540 b = true;
mjr 38:091e511ce8a0 541 }
mjr 38:091e511ce8a0 542 }
mjr 38:091e511ce8a0 543 };
mjr 38:091e511ce8a0 544
mjr 38:091e511ce8a0 545 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 546 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 547 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 548 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 549 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 550 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 551 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 552 {
mjr 38:091e511ce8a0 553 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 554 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 555 LedSeg l;
mjr 38:091e511ce8a0 556 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 557 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 558
mjr 38:091e511ce8a0 559 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 560 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 561 // LedWiz use.
mjr 38:091e511ce8a0 562 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 563 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 564 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 565 }
mjr 38:091e511ce8a0 566
mjr 38:091e511ce8a0 567
mjr 38:091e511ce8a0 568 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 569 //
mjr 76:7f5912b6340e 570 // LedWiz emulation
mjr 76:7f5912b6340e 571 //
mjr 76:7f5912b6340e 572
mjr 76:7f5912b6340e 573 // LedWiz output states.
mjr 76:7f5912b6340e 574 //
mjr 76:7f5912b6340e 575 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 576 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 577 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 578 // The two axes are independent.
mjr 76:7f5912b6340e 579 //
mjr 76:7f5912b6340e 580 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 581 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 582 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 583 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 584 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 585 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 586 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 587 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 588
mjr 76:7f5912b6340e 589 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 590 static uint8_t *wizOn;
mjr 76:7f5912b6340e 591
mjr 76:7f5912b6340e 592 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 593 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 594 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 595 //
mjr 76:7f5912b6340e 596 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 597 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 598 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 599 // 130 = flash on / off
mjr 76:7f5912b6340e 600 // 131 = on / ramp down
mjr 76:7f5912b6340e 601 // 132 = ramp up / on
mjr 5:a70c0bce770d 602 //
mjr 76:7f5912b6340e 603 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 604 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 605 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 606 static uint8_t *wizVal;
mjr 76:7f5912b6340e 607
mjr 76:7f5912b6340e 608 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 609 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 610 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 611 // by the extended protocol:
mjr 76:7f5912b6340e 612 //
mjr 76:7f5912b6340e 613 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 614 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 615 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 616 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 617 // if the brightness is non-zero.
mjr 76:7f5912b6340e 618 //
mjr 76:7f5912b6340e 619 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 620 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 621 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 622 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 623 // 0..255 range.
mjr 26:cb71c4af2912 624 //
mjr 76:7f5912b6340e 625 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 626 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 627 // level.
mjr 26:cb71c4af2912 628 //
mjr 76:7f5912b6340e 629 static uint8_t *outLevel;
mjr 76:7f5912b6340e 630
mjr 76:7f5912b6340e 631
mjr 76:7f5912b6340e 632 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 633 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 634 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 635 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 636 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 637 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 638 //
mjr 76:7f5912b6340e 639 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 640 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 641 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 642 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 643 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 644 // at the maximum size.
mjr 76:7f5912b6340e 645 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 646 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 647
mjr 26:cb71c4af2912 648 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 649 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 650 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 651 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 652 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 653
mjr 76:7f5912b6340e 654
mjr 76:7f5912b6340e 655 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 656 //
mjr 76:7f5912b6340e 657 // Output Ports
mjr 76:7f5912b6340e 658 //
mjr 76:7f5912b6340e 659 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 660 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 661 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 662 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 663 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 664 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 665 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 666 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 667 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 668 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 669 // you have to ration pins among features.
mjr 76:7f5912b6340e 670 //
mjr 87:8d35c74403af 671 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 672 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 673 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 674 //
mjr 87:8d35c74403af 675 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 676 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 677 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 678 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 679 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 680 //
mjr 87:8d35c74403af 681 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 682 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 683 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 684 //
mjr 87:8d35c74403af 685 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 686 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 687 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 688 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 689 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 690 // for the chime board outputs.
mjr 76:7f5912b6340e 691 //
mjr 76:7f5912b6340e 692 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 693 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 694 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 695 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 696 //
mjr 76:7f5912b6340e 697 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 698 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 699 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 700 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 701 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 702 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 703 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 704 // of physical devices they're connected to.
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706
mjr 26:cb71c4af2912 707 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 708 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 709 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 710 class LwOut
mjr 6:cc35eb643e8f 711 {
mjr 6:cc35eb643e8f 712 public:
mjr 40:cc0d9814522b 713 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 714 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 715 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 716 };
mjr 26:cb71c4af2912 717
mjr 35:e959ffba78fd 718 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 719 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 720 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 721 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 722 // numbering.
mjr 35:e959ffba78fd 723 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 724 {
mjr 33:d832bcab089e 725 public:
mjr 35:e959ffba78fd 726 LwVirtualOut() { }
mjr 40:cc0d9814522b 727 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 728 };
mjr 26:cb71c4af2912 729
mjr 34:6b981a2afab7 730 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 731 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 732 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 733 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 734 {
mjr 34:6b981a2afab7 735 public:
mjr 34:6b981a2afab7 736 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 737 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 738
mjr 34:6b981a2afab7 739 private:
mjr 53:9b2611964afc 740 // underlying physical output
mjr 34:6b981a2afab7 741 LwOut *out;
mjr 34:6b981a2afab7 742 };
mjr 34:6b981a2afab7 743
mjr 53:9b2611964afc 744 // Global ZB Launch Ball state
mjr 53:9b2611964afc 745 bool zbLaunchOn = false;
mjr 53:9b2611964afc 746
mjr 53:9b2611964afc 747 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 748 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 749 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 750 {
mjr 53:9b2611964afc 751 public:
mjr 53:9b2611964afc 752 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 753 virtual void set(uint8_t val)
mjr 53:9b2611964afc 754 {
mjr 53:9b2611964afc 755 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 756 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 757
mjr 53:9b2611964afc 758 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 759 out->set(val);
mjr 53:9b2611964afc 760 }
mjr 53:9b2611964afc 761
mjr 53:9b2611964afc 762 private:
mjr 53:9b2611964afc 763 // underlying physical or virtual output
mjr 53:9b2611964afc 764 LwOut *out;
mjr 53:9b2611964afc 765 };
mjr 53:9b2611964afc 766
mjr 53:9b2611964afc 767
mjr 40:cc0d9814522b 768 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 769 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 770 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 771 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 772 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 773 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 774 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 775 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 776 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 777 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 778 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 779 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 780 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 781 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 782 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 783 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 784 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 785 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 786 };
mjr 40:cc0d9814522b 787
mjr 40:cc0d9814522b 788 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 789 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 790 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 791 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 792 {
mjr 40:cc0d9814522b 793 public:
mjr 40:cc0d9814522b 794 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 795 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 796
mjr 40:cc0d9814522b 797 private:
mjr 40:cc0d9814522b 798 LwOut *out;
mjr 40:cc0d9814522b 799 };
mjr 40:cc0d9814522b 800
mjr 77:0b96f6867312 801 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 802 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 803 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 804 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 805
mjr 40:cc0d9814522b 806 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 807 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 808 // mode is engaged.
mjr 40:cc0d9814522b 809 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 810 {
mjr 40:cc0d9814522b 811 public:
mjr 40:cc0d9814522b 812 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 813 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 814
mjr 53:9b2611964afc 815 private:
mjr 53:9b2611964afc 816 LwOut *out;
mjr 53:9b2611964afc 817 };
mjr 53:9b2611964afc 818
mjr 53:9b2611964afc 819 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 820 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 821 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 822 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 823 {
mjr 53:9b2611964afc 824 public:
mjr 53:9b2611964afc 825 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 826 virtual void set(uint8_t)
mjr 53:9b2611964afc 827 {
mjr 53:9b2611964afc 828 // ignore the host value and simply show the current
mjr 53:9b2611964afc 829 // night mode setting
mjr 53:9b2611964afc 830 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 831 }
mjr 40:cc0d9814522b 832
mjr 40:cc0d9814522b 833 private:
mjr 40:cc0d9814522b 834 LwOut *out;
mjr 40:cc0d9814522b 835 };
mjr 40:cc0d9814522b 836
mjr 26:cb71c4af2912 837
mjr 35:e959ffba78fd 838 //
mjr 35:e959ffba78fd 839 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 840 // assignments set in config.h.
mjr 33:d832bcab089e 841 //
mjr 35:e959ffba78fd 842 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 843 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 844 {
mjr 35:e959ffba78fd 845 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 846 {
mjr 53:9b2611964afc 847 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 848 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 849 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 850 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 851 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 852 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 853 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 854 }
mjr 35:e959ffba78fd 855 }
mjr 26:cb71c4af2912 856
mjr 40:cc0d9814522b 857 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 858 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 859 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 860 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 861 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 862 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 863 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 864 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 865 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 866 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 867 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 868 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 869 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 870 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 871 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 872 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 873 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 874 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 875 };
mjr 40:cc0d9814522b 876
mjr 40:cc0d9814522b 877 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 878 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 879 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 880 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 881 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 882 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 883 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 884 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 885 // are always 8 bits.
mjr 40:cc0d9814522b 886 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 887 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 888 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 889 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 890 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 891 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 892 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 893 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 894 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 895 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 896 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 897 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 898 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 899 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 900 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 901 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 902 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 903 };
mjr 40:cc0d9814522b 904
mjr 26:cb71c4af2912 905 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 906 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 907 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 908 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 909 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 910 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 911 {
mjr 26:cb71c4af2912 912 public:
mjr 60:f38da020aa13 913 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 914 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 915 {
mjr 26:cb71c4af2912 916 if (val != prv)
mjr 40:cc0d9814522b 917 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 918 }
mjr 60:f38da020aa13 919 uint8_t idx;
mjr 40:cc0d9814522b 920 uint8_t prv;
mjr 26:cb71c4af2912 921 };
mjr 26:cb71c4af2912 922
mjr 40:cc0d9814522b 923 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 924 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 925 {
mjr 40:cc0d9814522b 926 public:
mjr 60:f38da020aa13 927 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 928 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 929 {
mjr 40:cc0d9814522b 930 if (val != prv)
mjr 40:cc0d9814522b 931 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 932 }
mjr 60:f38da020aa13 933 uint8_t idx;
mjr 40:cc0d9814522b 934 uint8_t prv;
mjr 40:cc0d9814522b 935 };
mjr 40:cc0d9814522b 936
mjr 87:8d35c74403af 937 //
mjr 87:8d35c74403af 938 // TLC59116 interface object
mjr 87:8d35c74403af 939 //
mjr 87:8d35c74403af 940 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 941 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 942 {
mjr 87:8d35c74403af 943 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 944 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 945 {
mjr 87:8d35c74403af 946 // set up the interface
mjr 87:8d35c74403af 947 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 948 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 949 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 950 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 951
mjr 87:8d35c74403af 952 // initialize the chips
mjr 87:8d35c74403af 953 tlc59116->init();
mjr 87:8d35c74403af 954 }
mjr 87:8d35c74403af 955 }
mjr 87:8d35c74403af 956
mjr 87:8d35c74403af 957 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 958 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 959 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 960 // (0-15).
mjr 87:8d35c74403af 961 //
mjr 87:8d35c74403af 962 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 963 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 964 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 965 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 966 {
mjr 87:8d35c74403af 967 public:
mjr 87:8d35c74403af 968 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 969 virtual void set(uint8_t val)
mjr 87:8d35c74403af 970 {
mjr 87:8d35c74403af 971 if (val != prv)
mjr 87:8d35c74403af 972 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 973 }
mjr 87:8d35c74403af 974
mjr 87:8d35c74403af 975 protected:
mjr 87:8d35c74403af 976 uint8_t addr;
mjr 87:8d35c74403af 977 uint8_t port;
mjr 87:8d35c74403af 978 uint8_t prv;
mjr 87:8d35c74403af 979 };
mjr 87:8d35c74403af 980
mjr 87:8d35c74403af 981
mjr 87:8d35c74403af 982 //
mjr 34:6b981a2afab7 983 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 984 // config.h.
mjr 87:8d35c74403af 985 //
mjr 35:e959ffba78fd 986 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 987
mjr 35:e959ffba78fd 988 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 989 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 990 {
mjr 35:e959ffba78fd 991 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 992 {
mjr 53:9b2611964afc 993 hc595 = new HC595(
mjr 53:9b2611964afc 994 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 995 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 996 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 997 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 998 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 999 hc595->init();
mjr 35:e959ffba78fd 1000 hc595->update();
mjr 35:e959ffba78fd 1001 }
mjr 35:e959ffba78fd 1002 }
mjr 34:6b981a2afab7 1003
mjr 34:6b981a2afab7 1004 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1005 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1006 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1007 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1008 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1009 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1010 {
mjr 33:d832bcab089e 1011 public:
mjr 60:f38da020aa13 1012 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1013 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1014 {
mjr 34:6b981a2afab7 1015 if (val != prv)
mjr 40:cc0d9814522b 1016 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1017 }
mjr 60:f38da020aa13 1018 uint8_t idx;
mjr 40:cc0d9814522b 1019 uint8_t prv;
mjr 33:d832bcab089e 1020 };
mjr 33:d832bcab089e 1021
mjr 26:cb71c4af2912 1022
mjr 40:cc0d9814522b 1023
mjr 64:ef7ca92dff36 1024 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1025 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1026 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1027 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1028 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1029 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1030 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1031 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1032 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1033 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1034 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1035 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1036 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1037 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1038 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1039 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1040 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1041 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1042 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1043 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1044 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1045 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1046 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1047 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1048 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1049 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1050 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1051 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1052 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1053 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1054 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1055 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1056 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1057 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1058 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1059 };
mjr 26:cb71c4af2912 1060
mjr 64:ef7ca92dff36 1061
mjr 64:ef7ca92dff36 1062 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 1063 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 1064 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 1065 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 1066 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 1067 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1068 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1069 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1070 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1071 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1072 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1073 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1074 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1075 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1076 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1077 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1078 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1079 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1080 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1081 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1082 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1083 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1084 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1085 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1086 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1087 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1088 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1089 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1090 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1091 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1092 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1093 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1094 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1095 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1096 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1097 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1098 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1099 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1100 };
mjr 64:ef7ca92dff36 1101
mjr 77:0b96f6867312 1102 // Polled-update PWM output list
mjr 74:822a92bc11d2 1103 //
mjr 77:0b96f6867312 1104 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1105 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1106 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1107 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1108 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1109 //
mjr 77:0b96f6867312 1110 // Our solution is to simply repeat all PWM updates periodically. If a write
mjr 77:0b96f6867312 1111 // is lost on one cycle, it'll eventually be applied on a subseuqent periodic
mjr 77:0b96f6867312 1112 // update. For low overhead, we do these repeat updates periodically during
mjr 77:0b96f6867312 1113 // the main loop.
mjr 74:822a92bc11d2 1114 //
mjr 77:0b96f6867312 1115 // The mbed library has its own solution to this bug, but it creates a
mjr 77:0b96f6867312 1116 // separate problem of its own. The mbed solution is to write the value
mjr 77:0b96f6867312 1117 // register immediately, and then also reset the "count" register in the
mjr 77:0b96f6867312 1118 // TPM unit containing the output. The count reset truncates the current
mjr 77:0b96f6867312 1119 // PWM cycle, which avoids the hardware problem with more than one write per
mjr 77:0b96f6867312 1120 // cycle. The problem is that the truncated cycle causes visible flicker if
mjr 77:0b96f6867312 1121 // the output is connected to an LED. This is particularly noticeable during
mjr 77:0b96f6867312 1122 // fades, when we're updating the value register repeatedly and rapidly: an
mjr 77:0b96f6867312 1123 // attempt to fade from fully on to fully off causes rapid fluttering and
mjr 77:0b96f6867312 1124 // flashing rather than a smooth brightness fade.
mjr 74:822a92bc11d2 1125 //
mjr 77:0b96f6867312 1126 // The hardware bug is a case of good intentions gone bad. The hardware is
mjr 77:0b96f6867312 1127 // *supposed* to make it easy for software to avoid glitching during PWM
mjr 77:0b96f6867312 1128 // updates, by providing a staging register in front of the real value
mjr 77:0b96f6867312 1129 // register. The software actually writes to the staging register, which
mjr 77:0b96f6867312 1130 // holds updates until the end of the cycle, at which point the hardware
mjr 77:0b96f6867312 1131 // automatically moves the value from the staging register into the real
mjr 77:0b96f6867312 1132 // register. This ensures that the real register is always updated exactly
mjr 77:0b96f6867312 1133 // at a cycle boundary, which in turn ensures that there's no flicker when
mjr 77:0b96f6867312 1134 // values are updated. A great design - except that it doesn't quite work.
mjr 77:0b96f6867312 1135 // The problem is that the staging register actually seems to be implemented
mjr 77:0b96f6867312 1136 // as a one-element FIFO in "stop when full" mode. That is, when you write
mjr 77:0b96f6867312 1137 // the FIFO, it becomes full. When the cycle ends and the hardware reads it
mjr 77:0b96f6867312 1138 // to move the staged value into the real register, the FIFO becomes empty.
mjr 77:0b96f6867312 1139 // But if you try to write the FIFO twice before the hardware reads it and
mjr 77:0b96f6867312 1140 // empties it, the second write fails, leaving the first value in the queue.
mjr 77:0b96f6867312 1141 // There doesn't seem to be any way to clear the FIFO from software, so you
mjr 77:0b96f6867312 1142 // just have to wait for the cycle to end before writing another update.
mjr 77:0b96f6867312 1143 // That more or less defeats the purpose of the staging register, whose whole
mjr 77:0b96f6867312 1144 // point is to free software from worrying about timing considerations with
mjr 77:0b96f6867312 1145 // updates. It frees us of the need to align our timing on cycle boundaries,
mjr 77:0b96f6867312 1146 // but it leaves us with the need to limit writes to once per cycle.
mjr 74:822a92bc11d2 1147 //
mjr 77:0b96f6867312 1148 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1149 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1150 // of polled items.
mjr 74:822a92bc11d2 1151 static int numPolledPwm;
mjr 74:822a92bc11d2 1152 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1153
mjr 74:822a92bc11d2 1154 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1155 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1156 {
mjr 6:cc35eb643e8f 1157 public:
mjr 43:7a6364d82a41 1158 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1159 {
mjr 77:0b96f6867312 1160 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1161 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1162 polledPwm[numPolledPwm++] = this;
mjr 77:0b96f6867312 1163
mjr 77:0b96f6867312 1164 // set the initial value
mjr 77:0b96f6867312 1165 set(initVal);
mjr 43:7a6364d82a41 1166 }
mjr 74:822a92bc11d2 1167
mjr 40:cc0d9814522b 1168 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1169 {
mjr 77:0b96f6867312 1170 // save the new value
mjr 74:822a92bc11d2 1171 this->val = val;
mjr 77:0b96f6867312 1172
mjr 77:0b96f6867312 1173 // commit it to the hardware
mjr 77:0b96f6867312 1174 commit();
mjr 13:72dda449c3c0 1175 }
mjr 74:822a92bc11d2 1176
mjr 74:822a92bc11d2 1177 // handle periodic update polling
mjr 74:822a92bc11d2 1178 void poll()
mjr 74:822a92bc11d2 1179 {
mjr 77:0b96f6867312 1180 commit();
mjr 74:822a92bc11d2 1181 }
mjr 74:822a92bc11d2 1182
mjr 74:822a92bc11d2 1183 protected:
mjr 77:0b96f6867312 1184 virtual void commit()
mjr 74:822a92bc11d2 1185 {
mjr 74:822a92bc11d2 1186 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1187 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1188 }
mjr 74:822a92bc11d2 1189
mjr 77:0b96f6867312 1190 NewPwmOut p;
mjr 77:0b96f6867312 1191 uint8_t val;
mjr 6:cc35eb643e8f 1192 };
mjr 26:cb71c4af2912 1193
mjr 74:822a92bc11d2 1194 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1195 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1196 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1197 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1198 {
mjr 64:ef7ca92dff36 1199 public:
mjr 64:ef7ca92dff36 1200 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1201 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1202 {
mjr 64:ef7ca92dff36 1203 }
mjr 74:822a92bc11d2 1204
mjr 74:822a92bc11d2 1205 protected:
mjr 77:0b96f6867312 1206 virtual void commit()
mjr 64:ef7ca92dff36 1207 {
mjr 74:822a92bc11d2 1208 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1209 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1210 }
mjr 64:ef7ca92dff36 1211 };
mjr 64:ef7ca92dff36 1212
mjr 74:822a92bc11d2 1213 // poll the PWM outputs
mjr 74:822a92bc11d2 1214 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1215 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1216 void pollPwmUpdates()
mjr 74:822a92bc11d2 1217 {
mjr 74:822a92bc11d2 1218 // if it's been at least 25ms since the last update, do another update
mjr 74:822a92bc11d2 1219 if (polledPwmTimer.read_us() >= 25000)
mjr 74:822a92bc11d2 1220 {
mjr 74:822a92bc11d2 1221 // time the run for statistics collection
mjr 74:822a92bc11d2 1222 IF_DIAG(
mjr 74:822a92bc11d2 1223 Timer t;
mjr 74:822a92bc11d2 1224 t.start();
mjr 74:822a92bc11d2 1225 )
mjr 74:822a92bc11d2 1226
mjr 74:822a92bc11d2 1227 // poll each output
mjr 74:822a92bc11d2 1228 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1229 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1230
mjr 74:822a92bc11d2 1231 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1232 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1233
mjr 74:822a92bc11d2 1234 // collect statistics
mjr 74:822a92bc11d2 1235 IF_DIAG(
mjr 76:7f5912b6340e 1236 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1237 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1238 )
mjr 74:822a92bc11d2 1239 }
mjr 74:822a92bc11d2 1240 }
mjr 64:ef7ca92dff36 1241
mjr 26:cb71c4af2912 1242 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1243 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1244 {
mjr 6:cc35eb643e8f 1245 public:
mjr 43:7a6364d82a41 1246 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1247 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1248 {
mjr 13:72dda449c3c0 1249 if (val != prv)
mjr 40:cc0d9814522b 1250 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1251 }
mjr 6:cc35eb643e8f 1252 DigitalOut p;
mjr 40:cc0d9814522b 1253 uint8_t prv;
mjr 6:cc35eb643e8f 1254 };
mjr 26:cb71c4af2912 1255
mjr 29:582472d0bc57 1256 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1257 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1258 // port n (0-based).
mjr 35:e959ffba78fd 1259 //
mjr 35:e959ffba78fd 1260 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1261 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1262 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1263 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1264 // 74HC595 ports).
mjr 33:d832bcab089e 1265 static int numOutputs;
mjr 33:d832bcab089e 1266 static LwOut **lwPin;
mjr 33:d832bcab089e 1267
mjr 38:091e511ce8a0 1268 // create a single output pin
mjr 53:9b2611964afc 1269 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1270 {
mjr 38:091e511ce8a0 1271 // get this item's values
mjr 38:091e511ce8a0 1272 int typ = pc.typ;
mjr 38:091e511ce8a0 1273 int pin = pc.pin;
mjr 38:091e511ce8a0 1274 int flags = pc.flags;
mjr 40:cc0d9814522b 1275 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1276 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1277 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1278
mjr 38:091e511ce8a0 1279 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1280 LwOut *lwp;
mjr 38:091e511ce8a0 1281 switch (typ)
mjr 38:091e511ce8a0 1282 {
mjr 38:091e511ce8a0 1283 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1284 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1285 if (pin != 0)
mjr 64:ef7ca92dff36 1286 {
mjr 64:ef7ca92dff36 1287 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1288 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1289 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1290 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1291 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1292 {
mjr 64:ef7ca92dff36 1293 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1294 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1295
mjr 64:ef7ca92dff36 1296 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1297 gamma = false;
mjr 64:ef7ca92dff36 1298 }
mjr 64:ef7ca92dff36 1299 else
mjr 64:ef7ca92dff36 1300 {
mjr 64:ef7ca92dff36 1301 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1302 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1303 }
mjr 64:ef7ca92dff36 1304 }
mjr 48:058ace2aed1d 1305 else
mjr 48:058ace2aed1d 1306 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1307 break;
mjr 38:091e511ce8a0 1308
mjr 38:091e511ce8a0 1309 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1310 // Digital GPIO port
mjr 48:058ace2aed1d 1311 if (pin != 0)
mjr 48:058ace2aed1d 1312 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1313 else
mjr 48:058ace2aed1d 1314 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1315 break;
mjr 38:091e511ce8a0 1316
mjr 38:091e511ce8a0 1317 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1318 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1319 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1320 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1321 {
mjr 40:cc0d9814522b 1322 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1323 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1324 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1325 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1326 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1327 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1328 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1329 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1330 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1331 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1332 // for this unlikely case.
mjr 40:cc0d9814522b 1333 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1334 {
mjr 40:cc0d9814522b 1335 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1336 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1337
mjr 40:cc0d9814522b 1338 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1339 gamma = false;
mjr 40:cc0d9814522b 1340 }
mjr 40:cc0d9814522b 1341 else
mjr 40:cc0d9814522b 1342 {
mjr 40:cc0d9814522b 1343 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1344 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1345 }
mjr 40:cc0d9814522b 1346 }
mjr 38:091e511ce8a0 1347 else
mjr 40:cc0d9814522b 1348 {
mjr 40:cc0d9814522b 1349 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1350 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1351 }
mjr 38:091e511ce8a0 1352 break;
mjr 38:091e511ce8a0 1353
mjr 38:091e511ce8a0 1354 case PortType74HC595:
mjr 87:8d35c74403af 1355 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 1356 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 1357 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1358 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1359 else
mjr 38:091e511ce8a0 1360 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1361 break;
mjr 87:8d35c74403af 1362
mjr 87:8d35c74403af 1363 case PortTypeTLC59116:
mjr 87:8d35c74403af 1364 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 1365 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 1366 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 1367 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 1368 if (tlc59116 != 0)
mjr 87:8d35c74403af 1369 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 1370 break;
mjr 38:091e511ce8a0 1371
mjr 38:091e511ce8a0 1372 case PortTypeVirtual:
mjr 43:7a6364d82a41 1373 case PortTypeDisabled:
mjr 38:091e511ce8a0 1374 default:
mjr 38:091e511ce8a0 1375 // virtual or unknown
mjr 38:091e511ce8a0 1376 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1377 break;
mjr 38:091e511ce8a0 1378 }
mjr 38:091e511ce8a0 1379
mjr 40:cc0d9814522b 1380 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1381 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1382 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1383 if (activeLow)
mjr 38:091e511ce8a0 1384 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1385
mjr 40:cc0d9814522b 1386 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1387 // needs to be
mjr 40:cc0d9814522b 1388 if (noisy)
mjr 40:cc0d9814522b 1389 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1390
mjr 40:cc0d9814522b 1391 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1392 if (gamma)
mjr 40:cc0d9814522b 1393 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1394
mjr 53:9b2611964afc 1395 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1396 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1397 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1398 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1399 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1400
mjr 53:9b2611964afc 1401 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1402 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1403 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1404
mjr 38:091e511ce8a0 1405 // turn it off initially
mjr 38:091e511ce8a0 1406 lwp->set(0);
mjr 38:091e511ce8a0 1407
mjr 38:091e511ce8a0 1408 // return the pin
mjr 38:091e511ce8a0 1409 return lwp;
mjr 38:091e511ce8a0 1410 }
mjr 38:091e511ce8a0 1411
mjr 6:cc35eb643e8f 1412 // initialize the output pin array
mjr 35:e959ffba78fd 1413 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1414 {
mjr 35:e959ffba78fd 1415 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1416 // total number of ports.
mjr 35:e959ffba78fd 1417 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1418 int i;
mjr 35:e959ffba78fd 1419 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1420 {
mjr 35:e959ffba78fd 1421 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1422 {
mjr 35:e959ffba78fd 1423 numOutputs = i;
mjr 34:6b981a2afab7 1424 break;
mjr 34:6b981a2afab7 1425 }
mjr 33:d832bcab089e 1426 }
mjr 33:d832bcab089e 1427
mjr 73:4e8ce0b18915 1428 // allocate the pin array
mjr 73:4e8ce0b18915 1429 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1430
mjr 73:4e8ce0b18915 1431 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1432 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1433
mjr 73:4e8ce0b18915 1434 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1435 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1436 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1437
mjr 73:4e8ce0b18915 1438 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1439 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1440 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1441
mjr 73:4e8ce0b18915 1442 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1443 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1444 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1445
mjr 35:e959ffba78fd 1446 // create the pin interface object for each port
mjr 35:e959ffba78fd 1447 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1448 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1449 }
mjr 6:cc35eb643e8f 1450
mjr 76:7f5912b6340e 1451 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1452 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1453 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1454 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1455 // equivalent to 48.
mjr 40:cc0d9814522b 1456 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1457 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1458 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1459 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1460 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1461 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1462 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1463 255, 255
mjr 40:cc0d9814522b 1464 };
mjr 40:cc0d9814522b 1465
mjr 76:7f5912b6340e 1466 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1467 // level (1..48)
mjr 76:7f5912b6340e 1468 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1469 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1470 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1471 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1472 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1473 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1474 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1475 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1476 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1477 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1478 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1479 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1480 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1481 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1482 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1483 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1484 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1485 };
mjr 76:7f5912b6340e 1486
mjr 74:822a92bc11d2 1487 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1488 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1489 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1490 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1491 //
mjr 74:822a92bc11d2 1492 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1493 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1494 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1495 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1496 //
mjr 74:822a92bc11d2 1497 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1498 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1499 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1500 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1501 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1502 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1503 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1504 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1505 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1506 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1507 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1508 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1509 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1510 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1511 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1512 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1513 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1514 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1515 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1516 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1517
mjr 74:822a92bc11d2 1518 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1519 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1520 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1521 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1522 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1523 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1524 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1525 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1526 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1527 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1528 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1529 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1530 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1531 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1532 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1533 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1534 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1535
mjr 74:822a92bc11d2 1536 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1537 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1538 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1539 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1540 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1541 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1542 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1543 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1544 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1545 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1546 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1547 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1548 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1549 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1550 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1551 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1552 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1553
mjr 74:822a92bc11d2 1554 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1555 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1556 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1557 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1558 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1559 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1560 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1561 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1562 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1563 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1564 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1565 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1566 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1567 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1568 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1569 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1570 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1571 };
mjr 74:822a92bc11d2 1572
mjr 74:822a92bc11d2 1573 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1574 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1575 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1576
mjr 76:7f5912b6340e 1577 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1578 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1579
mjr 76:7f5912b6340e 1580 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1581 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1582 // outputs on each cycle.
mjr 29:582472d0bc57 1583 static void wizPulse()
mjr 29:582472d0bc57 1584 {
mjr 76:7f5912b6340e 1585 // current bank
mjr 76:7f5912b6340e 1586 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1587
mjr 76:7f5912b6340e 1588 // start a timer for statistics collection
mjr 76:7f5912b6340e 1589 IF_DIAG(
mjr 76:7f5912b6340e 1590 Timer t;
mjr 76:7f5912b6340e 1591 t.start();
mjr 76:7f5912b6340e 1592 )
mjr 76:7f5912b6340e 1593
mjr 76:7f5912b6340e 1594 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1595 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1596 //
mjr 76:7f5912b6340e 1597 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1598 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1599 //
mjr 76:7f5912b6340e 1600 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1601 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1602 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1603 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1604 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1605 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1606 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1607 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1608 // current cycle.
mjr 76:7f5912b6340e 1609 //
mjr 76:7f5912b6340e 1610 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1611 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1612 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1613 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1614 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1615 //
mjr 76:7f5912b6340e 1616 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1617 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1618 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1619 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1620 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1621 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1622 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1623 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1624 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1625 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1626 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1627 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1628 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1629 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1630 // bit counts.
mjr 76:7f5912b6340e 1631 //
mjr 76:7f5912b6340e 1632 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1633 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1634 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1635 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1636 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1637 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1638 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1639 // one division for another!
mjr 76:7f5912b6340e 1640 //
mjr 76:7f5912b6340e 1641 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1642 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1643 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1644 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1645 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1646 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1647 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1648 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1649 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1650 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1651 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1652 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1653 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1654 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1655 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1656 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1657 // remainder calculation anyway.
mjr 76:7f5912b6340e 1658 //
mjr 76:7f5912b6340e 1659 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1660 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1661 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1662 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1663 //
mjr 76:7f5912b6340e 1664 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1665 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1666 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1667 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1668 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1669 // the result, since we started with 32.
mjr 76:7f5912b6340e 1670 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1671 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1672 };
mjr 76:7f5912b6340e 1673 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1674
mjr 76:7f5912b6340e 1675 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1676 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1677 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1678 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1679 toPort = numOutputs;
mjr 76:7f5912b6340e 1680
mjr 76:7f5912b6340e 1681 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1682 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1683 {
mjr 76:7f5912b6340e 1684 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1685 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1686 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1687 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1688 if (wizOn[i])
mjr 29:582472d0bc57 1689 {
mjr 76:7f5912b6340e 1690 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 1691 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 1692 {
mjr 76:7f5912b6340e 1693 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 1694 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 1695 }
mjr 29:582472d0bc57 1696 }
mjr 76:7f5912b6340e 1697 }
mjr 76:7f5912b6340e 1698
mjr 34:6b981a2afab7 1699 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1700 if (hc595 != 0)
mjr 35:e959ffba78fd 1701 hc595->update();
mjr 76:7f5912b6340e 1702
mjr 76:7f5912b6340e 1703 // switch to the next bank
mjr 76:7f5912b6340e 1704 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 1705 wizPulseBank = 0;
mjr 76:7f5912b6340e 1706
mjr 76:7f5912b6340e 1707 // collect timing statistics
mjr 76:7f5912b6340e 1708 IF_DIAG(
mjr 76:7f5912b6340e 1709 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 1710 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 1711 )
mjr 1:d913e0afb2ac 1712 }
mjr 38:091e511ce8a0 1713
mjr 76:7f5912b6340e 1714 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 1715 static void updateLwPort(int port)
mjr 38:091e511ce8a0 1716 {
mjr 76:7f5912b6340e 1717 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 1718 if (wizOn[port])
mjr 76:7f5912b6340e 1719 {
mjr 76:7f5912b6340e 1720 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 1721 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 1722 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 1723 // it on the next cycle.
mjr 76:7f5912b6340e 1724 int val = wizVal[port];
mjr 76:7f5912b6340e 1725 if (val <= 49)
mjr 76:7f5912b6340e 1726 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 1727 }
mjr 76:7f5912b6340e 1728 else
mjr 76:7f5912b6340e 1729 {
mjr 76:7f5912b6340e 1730 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 1731 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 1732 }
mjr 73:4e8ce0b18915 1733 }
mjr 73:4e8ce0b18915 1734
mjr 73:4e8ce0b18915 1735 // Turn off all outputs and restore everything to the default LedWiz
mjr 73:4e8ce0b18915 1736 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 73:4e8ce0b18915 1737 // brightness) and switch state Off, sets all extended outputs (#33
mjr 73:4e8ce0b18915 1738 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 73:4e8ce0b18915 1739 // This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 1740 //
mjr 73:4e8ce0b18915 1741 void allOutputsOff()
mjr 73:4e8ce0b18915 1742 {
mjr 73:4e8ce0b18915 1743 // reset all LedWiz outputs to OFF/48
mjr 73:4e8ce0b18915 1744 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 1745 {
mjr 73:4e8ce0b18915 1746 outLevel[i] = 0;
mjr 73:4e8ce0b18915 1747 wizOn[i] = 0;
mjr 73:4e8ce0b18915 1748 wizVal[i] = 48;
mjr 73:4e8ce0b18915 1749 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 1750 }
mjr 73:4e8ce0b18915 1751
mjr 73:4e8ce0b18915 1752 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 1753 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1754 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 1755
mjr 73:4e8ce0b18915 1756 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 1757 if (hc595 != 0)
mjr 38:091e511ce8a0 1758 hc595->update();
mjr 38:091e511ce8a0 1759 }
mjr 38:091e511ce8a0 1760
mjr 74:822a92bc11d2 1761 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 1762 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 1763 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 1764 // address any port group.
mjr 74:822a92bc11d2 1765 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 1766 {
mjr 76:7f5912b6340e 1767 // update all on/off states in the group
mjr 74:822a92bc11d2 1768 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 1769 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 1770 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 1771 {
mjr 74:822a92bc11d2 1772 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 1773 if (bit == 0x100) {
mjr 74:822a92bc11d2 1774 bit = 1;
mjr 74:822a92bc11d2 1775 ++imsg;
mjr 74:822a92bc11d2 1776 }
mjr 74:822a92bc11d2 1777
mjr 74:822a92bc11d2 1778 // set the on/off state
mjr 76:7f5912b6340e 1779 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 1780
mjr 76:7f5912b6340e 1781 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 1782 updateLwPort(port);
mjr 74:822a92bc11d2 1783 }
mjr 74:822a92bc11d2 1784
mjr 74:822a92bc11d2 1785 // set the flash speed for the port group
mjr 74:822a92bc11d2 1786 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 1787 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 1788
mjr 76:7f5912b6340e 1789 // update 74HC959 outputs
mjr 76:7f5912b6340e 1790 if (hc595 != 0)
mjr 76:7f5912b6340e 1791 hc595->update();
mjr 74:822a92bc11d2 1792 }
mjr 74:822a92bc11d2 1793
mjr 74:822a92bc11d2 1794 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 1795 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 1796 {
mjr 74:822a92bc11d2 1797 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 1798 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 1799 {
mjr 74:822a92bc11d2 1800 // get the value
mjr 74:822a92bc11d2 1801 uint8_t v = data[i];
mjr 74:822a92bc11d2 1802
mjr 74:822a92bc11d2 1803 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 1804 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 1805 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 1806 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 1807 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 1808 // as such.
mjr 74:822a92bc11d2 1809 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 1810 v = 48;
mjr 74:822a92bc11d2 1811
mjr 74:822a92bc11d2 1812 // store it
mjr 76:7f5912b6340e 1813 wizVal[port] = v;
mjr 76:7f5912b6340e 1814
mjr 76:7f5912b6340e 1815 // update the port
mjr 76:7f5912b6340e 1816 updateLwPort(port);
mjr 74:822a92bc11d2 1817 }
mjr 74:822a92bc11d2 1818
mjr 76:7f5912b6340e 1819 // update 74HC595 outputs
mjr 76:7f5912b6340e 1820 if (hc595 != 0)
mjr 76:7f5912b6340e 1821 hc595->update();
mjr 74:822a92bc11d2 1822 }
mjr 74:822a92bc11d2 1823
mjr 77:0b96f6867312 1824 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 1825 //
mjr 77:0b96f6867312 1826 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 1827 //
mjr 77:0b96f6867312 1828
mjr 77:0b96f6867312 1829 // receiver
mjr 77:0b96f6867312 1830 IRReceiver *ir_rx;
mjr 77:0b96f6867312 1831
mjr 77:0b96f6867312 1832 // transmitter
mjr 77:0b96f6867312 1833 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 1834
mjr 77:0b96f6867312 1835 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 1836 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 1837 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 1838 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 1839 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 1840 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 1841 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 1842 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 1843 // configuration slot n
mjr 77:0b96f6867312 1844 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 1845
mjr 78:1e00b3fa11af 1846 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 1847 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 1848 // protocol.
mjr 78:1e00b3fa11af 1849 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 1850
mjr 78:1e00b3fa11af 1851 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 1852 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 1853 // while waiting for the rest.
mjr 78:1e00b3fa11af 1854 static struct
mjr 78:1e00b3fa11af 1855 {
mjr 78:1e00b3fa11af 1856 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 1857 uint64_t code; // code
mjr 78:1e00b3fa11af 1858 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 1859 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 1860 } IRAdHocCmd;
mjr 88:98bce687e6c0 1861
mjr 77:0b96f6867312 1862
mjr 77:0b96f6867312 1863 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 1864 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 1865 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 1866 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 1867 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 1868 // amount of time.
mjr 77:0b96f6867312 1869 Timer IRTimer;
mjr 77:0b96f6867312 1870
mjr 77:0b96f6867312 1871 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 1872 // The states are:
mjr 77:0b96f6867312 1873 //
mjr 77:0b96f6867312 1874 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 1875 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 1876 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 1877 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 1878 //
mjr 77:0b96f6867312 1879 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 1880 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 1881 // received within a reasonable time.
mjr 77:0b96f6867312 1882 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 1883
mjr 77:0b96f6867312 1884 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 1885 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 1886 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 1887 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 1888 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 1889 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 1890 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 1891 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 1892 IRCommand learnedIRCode;
mjr 77:0b96f6867312 1893
mjr 78:1e00b3fa11af 1894 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 1895 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 1896 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 1897 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 1898 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 1899 // index; 0 represents no command.
mjr 77:0b96f6867312 1900 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 1901
mjr 77:0b96f6867312 1902 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 1903 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 1904 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 1905 // command we received.
mjr 77:0b96f6867312 1906 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 1907
mjr 77:0b96f6867312 1908 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 1909 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 1910 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 1911 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 1912 // distinct key press.
mjr 77:0b96f6867312 1913 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 1914
mjr 78:1e00b3fa11af 1915
mjr 77:0b96f6867312 1916 // initialize
mjr 77:0b96f6867312 1917 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 1918 {
mjr 77:0b96f6867312 1919 PinName pin;
mjr 77:0b96f6867312 1920
mjr 77:0b96f6867312 1921 // start the IR timer
mjr 77:0b96f6867312 1922 IRTimer.start();
mjr 77:0b96f6867312 1923
mjr 77:0b96f6867312 1924 // if there's a transmitter, set it up
mjr 77:0b96f6867312 1925 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 1926 {
mjr 77:0b96f6867312 1927 // no virtual buttons yet
mjr 77:0b96f6867312 1928 int nVirtualButtons = 0;
mjr 77:0b96f6867312 1929 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 1930
mjr 77:0b96f6867312 1931 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 1932 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1933 {
mjr 77:0b96f6867312 1934 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 1935 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 1936 }
mjr 77:0b96f6867312 1937
mjr 77:0b96f6867312 1938 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 1939 // real button inputs
mjr 77:0b96f6867312 1940 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 1941 {
mjr 77:0b96f6867312 1942 // get the button
mjr 77:0b96f6867312 1943 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 1944
mjr 77:0b96f6867312 1945 // check the unshifted button
mjr 77:0b96f6867312 1946 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 1947 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1948 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1949 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1950
mjr 77:0b96f6867312 1951 // check the shifted button
mjr 77:0b96f6867312 1952 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 1953 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1954 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1955 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1956 }
mjr 77:0b96f6867312 1957
mjr 77:0b96f6867312 1958 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 1959 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 1960 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 1961
mjr 77:0b96f6867312 1962 // create the transmitter
mjr 77:0b96f6867312 1963 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 1964
mjr 77:0b96f6867312 1965 // program the commands into the virtual button slots
mjr 77:0b96f6867312 1966 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1967 {
mjr 77:0b96f6867312 1968 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 1969 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 1970 if (vb != 0xFF)
mjr 77:0b96f6867312 1971 {
mjr 77:0b96f6867312 1972 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1973 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 1974 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 1975 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 1976 }
mjr 77:0b96f6867312 1977 }
mjr 77:0b96f6867312 1978 }
mjr 77:0b96f6867312 1979
mjr 77:0b96f6867312 1980 // if there's a receiver, set it up
mjr 77:0b96f6867312 1981 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 1982 {
mjr 77:0b96f6867312 1983 // create the receiver
mjr 77:0b96f6867312 1984 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 1985
mjr 77:0b96f6867312 1986 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 1987 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 1988 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 1989
mjr 77:0b96f6867312 1990 // enable it
mjr 77:0b96f6867312 1991 ir_rx->enable();
mjr 77:0b96f6867312 1992
mjr 77:0b96f6867312 1993 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 1994 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 1995 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 1996 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1997 {
mjr 77:0b96f6867312 1998 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1999 if (cb.protocol != 0
mjr 77:0b96f6867312 2000 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2001 {
mjr 77:0b96f6867312 2002 kbKeys = true;
mjr 77:0b96f6867312 2003 break;
mjr 77:0b96f6867312 2004 }
mjr 77:0b96f6867312 2005 }
mjr 77:0b96f6867312 2006 }
mjr 77:0b96f6867312 2007 }
mjr 77:0b96f6867312 2008
mjr 77:0b96f6867312 2009 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2010 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2011 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2012 {
mjr 77:0b96f6867312 2013 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2014 if (ir_tx != 0)
mjr 77:0b96f6867312 2015 {
mjr 77:0b96f6867312 2016 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2017 int slot = cmd - 1;
mjr 77:0b96f6867312 2018
mjr 77:0b96f6867312 2019 // press or release the virtual button
mjr 77:0b96f6867312 2020 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2021 }
mjr 77:0b96f6867312 2022 }
mjr 77:0b96f6867312 2023
mjr 78:1e00b3fa11af 2024 // Process IR input and output
mjr 77:0b96f6867312 2025 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2026 {
mjr 78:1e00b3fa11af 2027 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2028 if (ir_tx != 0)
mjr 77:0b96f6867312 2029 {
mjr 78:1e00b3fa11af 2030 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2031 // is ready to send, send it.
mjr 78:1e00b3fa11af 2032 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2033 {
mjr 78:1e00b3fa11af 2034 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2035 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2036 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2037 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2038
mjr 78:1e00b3fa11af 2039 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2040 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2041 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2042
mjr 78:1e00b3fa11af 2043 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2044 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2045 }
mjr 77:0b96f6867312 2046 }
mjr 78:1e00b3fa11af 2047
mjr 78:1e00b3fa11af 2048 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2049 if (ir_rx != 0)
mjr 77:0b96f6867312 2050 {
mjr 78:1e00b3fa11af 2051 // Time out any received command
mjr 78:1e00b3fa11af 2052 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2053 {
mjr 80:94dc2946871b 2054 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 2055 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 2056 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 2057 if (t > 200000)
mjr 78:1e00b3fa11af 2058 IRCommandIn = 0;
mjr 80:94dc2946871b 2059 else if (t > 50000)
mjr 78:1e00b3fa11af 2060 IRKeyGap = false;
mjr 78:1e00b3fa11af 2061 }
mjr 78:1e00b3fa11af 2062
mjr 78:1e00b3fa11af 2063 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2064 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2065 {
mjr 78:1e00b3fa11af 2066 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2067 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2068 // limit.
mjr 78:1e00b3fa11af 2069 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2070 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2071 int n;
mjr 78:1e00b3fa11af 2072 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2073
mjr 78:1e00b3fa11af 2074 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2075 if (n != 0)
mjr 78:1e00b3fa11af 2076 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2077
mjr 78:1e00b3fa11af 2078 // check for a command
mjr 78:1e00b3fa11af 2079 IRCommand c;
mjr 78:1e00b3fa11af 2080 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2081 {
mjr 78:1e00b3fa11af 2082 // check the current learning state
mjr 78:1e00b3fa11af 2083 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2084 {
mjr 78:1e00b3fa11af 2085 case 1:
mjr 78:1e00b3fa11af 2086 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2087 // This is it.
mjr 78:1e00b3fa11af 2088 learnedIRCode = c;
mjr 78:1e00b3fa11af 2089
mjr 78:1e00b3fa11af 2090 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2091 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2092 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2093 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2094 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2095 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2096 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2097 break;
mjr 78:1e00b3fa11af 2098
mjr 78:1e00b3fa11af 2099 case 2:
mjr 78:1e00b3fa11af 2100 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2101 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2102 //
mjr 78:1e00b3fa11af 2103 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2104 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2105 //
mjr 78:1e00b3fa11af 2106 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2107 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2108 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2109 // them.
mjr 78:1e00b3fa11af 2110 //
mjr 78:1e00b3fa11af 2111 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2112 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2113 // over.
mjr 78:1e00b3fa11af 2114 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2115 && c.hasDittos
mjr 78:1e00b3fa11af 2116 && c.ditto)
mjr 78:1e00b3fa11af 2117 {
mjr 78:1e00b3fa11af 2118 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2119 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2120 }
mjr 78:1e00b3fa11af 2121 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2122 && c.hasDittos
mjr 78:1e00b3fa11af 2123 && !c.ditto
mjr 78:1e00b3fa11af 2124 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2125 {
mjr 78:1e00b3fa11af 2126 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2127 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2128 // protocol supports them
mjr 78:1e00b3fa11af 2129 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2130 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2131 }
mjr 78:1e00b3fa11af 2132 else
mjr 78:1e00b3fa11af 2133 {
mjr 78:1e00b3fa11af 2134 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2135 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2136 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2137 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2138 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2139 }
mjr 78:1e00b3fa11af 2140 break;
mjr 78:1e00b3fa11af 2141 }
mjr 77:0b96f6867312 2142
mjr 78:1e00b3fa11af 2143 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2144 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2145 // learning mode.
mjr 78:1e00b3fa11af 2146 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2147 {
mjr 78:1e00b3fa11af 2148 // figure the flags:
mjr 78:1e00b3fa11af 2149 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2150 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2151 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2152 flags |= 0x02;
mjr 78:1e00b3fa11af 2153
mjr 78:1e00b3fa11af 2154 // report the code
mjr 78:1e00b3fa11af 2155 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2156
mjr 78:1e00b3fa11af 2157 // exit learning mode
mjr 78:1e00b3fa11af 2158 IRLearningMode = 0;
mjr 77:0b96f6867312 2159 }
mjr 77:0b96f6867312 2160 }
mjr 77:0b96f6867312 2161
mjr 78:1e00b3fa11af 2162 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2163 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2164 {
mjr 78:1e00b3fa11af 2165 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2166 // zero data elements
mjr 78:1e00b3fa11af 2167 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2168
mjr 78:1e00b3fa11af 2169
mjr 78:1e00b3fa11af 2170 // cancel learning mode
mjr 77:0b96f6867312 2171 IRLearningMode = 0;
mjr 77:0b96f6867312 2172 }
mjr 77:0b96f6867312 2173 }
mjr 78:1e00b3fa11af 2174 else
mjr 77:0b96f6867312 2175 {
mjr 78:1e00b3fa11af 2176 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2177 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2178 ir_rx->process();
mjr 78:1e00b3fa11af 2179
mjr 78:1e00b3fa11af 2180 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2181 // have been read.
mjr 78:1e00b3fa11af 2182 IRCommand c;
mjr 78:1e00b3fa11af 2183 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2184 {
mjr 78:1e00b3fa11af 2185 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2186 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2187 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2188 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2189 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2190 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2191 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2192 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2193 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2194 //
mjr 78:1e00b3fa11af 2195 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2196 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2197 // command.
mjr 78:1e00b3fa11af 2198 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2199 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2200 {
mjr 78:1e00b3fa11af 2201 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2202 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2203 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2204 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2205 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2206 if (c.ditto)
mjr 78:1e00b3fa11af 2207 {
mjr 78:1e00b3fa11af 2208 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2209 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2210 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2211 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2212 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2213 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2214 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2215 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2216 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2217 }
mjr 78:1e00b3fa11af 2218 else
mjr 78:1e00b3fa11af 2219 {
mjr 78:1e00b3fa11af 2220 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2221 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2222 // prior command.
mjr 78:1e00b3fa11af 2223 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2224 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2225 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2226
mjr 78:1e00b3fa11af 2227 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2228 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2229 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2230 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2231 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2232 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2233 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2234 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2235 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2236 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2237 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2238 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2239 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2240 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2241 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2242 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2243 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2244 autoRepeat =
mjr 78:1e00b3fa11af 2245 repeat
mjr 78:1e00b3fa11af 2246 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2247 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2248 }
mjr 78:1e00b3fa11af 2249 }
mjr 78:1e00b3fa11af 2250
mjr 78:1e00b3fa11af 2251 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2252 if (repeat)
mjr 78:1e00b3fa11af 2253 {
mjr 78:1e00b3fa11af 2254 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2255 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2256 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2257 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2258 // key press event.
mjr 78:1e00b3fa11af 2259 if (!autoRepeat)
mjr 78:1e00b3fa11af 2260 IRKeyGap = true;
mjr 78:1e00b3fa11af 2261
mjr 78:1e00b3fa11af 2262 // restart the key-up timer
mjr 78:1e00b3fa11af 2263 IRTimer.reset();
mjr 78:1e00b3fa11af 2264 }
mjr 78:1e00b3fa11af 2265 else if (c.ditto)
mjr 78:1e00b3fa11af 2266 {
mjr 78:1e00b3fa11af 2267 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2268 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2269 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2270 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2271 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2272 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2273 // a full command for a new key press.
mjr 78:1e00b3fa11af 2274 IRCommandIn = 0;
mjr 77:0b96f6867312 2275 }
mjr 77:0b96f6867312 2276 else
mjr 77:0b96f6867312 2277 {
mjr 78:1e00b3fa11af 2278 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2279 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2280 // the new command).
mjr 78:1e00b3fa11af 2281 IRCommandIn = 0;
mjr 77:0b96f6867312 2282
mjr 78:1e00b3fa11af 2283 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2284 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2285 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2286 {
mjr 78:1e00b3fa11af 2287 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2288 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2289 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2290 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2291 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2292 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2293 {
mjr 78:1e00b3fa11af 2294 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2295 // remember the starting time.
mjr 78:1e00b3fa11af 2296 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2297 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2298 IRTimer.reset();
mjr 78:1e00b3fa11af 2299
mjr 78:1e00b3fa11af 2300 // no need to keep searching
mjr 78:1e00b3fa11af 2301 break;
mjr 78:1e00b3fa11af 2302 }
mjr 77:0b96f6867312 2303 }
mjr 77:0b96f6867312 2304 }
mjr 77:0b96f6867312 2305 }
mjr 77:0b96f6867312 2306 }
mjr 77:0b96f6867312 2307 }
mjr 77:0b96f6867312 2308 }
mjr 77:0b96f6867312 2309
mjr 74:822a92bc11d2 2310
mjr 11:bd9da7088e6e 2311 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2312 //
mjr 11:bd9da7088e6e 2313 // Button input
mjr 11:bd9da7088e6e 2314 //
mjr 11:bd9da7088e6e 2315
mjr 18:5e890ebd0023 2316 // button state
mjr 18:5e890ebd0023 2317 struct ButtonState
mjr 18:5e890ebd0023 2318 {
mjr 38:091e511ce8a0 2319 ButtonState()
mjr 38:091e511ce8a0 2320 {
mjr 53:9b2611964afc 2321 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2322 virtState = 0;
mjr 53:9b2611964afc 2323 dbState = 0;
mjr 38:091e511ce8a0 2324 pulseState = 0;
mjr 53:9b2611964afc 2325 pulseTime = 0;
mjr 38:091e511ce8a0 2326 }
mjr 35:e959ffba78fd 2327
mjr 53:9b2611964afc 2328 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2329 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2330 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2331 //
mjr 53:9b2611964afc 2332 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2333 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2334 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2335 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2336 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2337 void virtPress(bool on)
mjr 53:9b2611964afc 2338 {
mjr 53:9b2611964afc 2339 // Increment or decrement the current state
mjr 53:9b2611964afc 2340 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2341 }
mjr 53:9b2611964afc 2342
mjr 53:9b2611964afc 2343 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2344 TinyDigitalIn di;
mjr 38:091e511ce8a0 2345
mjr 65:739875521aae 2346 // Time of last pulse state transition.
mjr 65:739875521aae 2347 //
mjr 65:739875521aae 2348 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2349 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2350 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2351 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2352 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2353 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2354 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2355 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2356 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2357 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2358 // This software system can't be fooled that way.)
mjr 65:739875521aae 2359 uint32_t pulseTime;
mjr 18:5e890ebd0023 2360
mjr 65:739875521aae 2361 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2362 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2363 uint8_t cfgIndex;
mjr 53:9b2611964afc 2364
mjr 53:9b2611964afc 2365 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2366 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2367 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2368 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2369 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2370 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2371 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2372 // and physical source states.
mjr 53:9b2611964afc 2373 uint8_t virtState;
mjr 38:091e511ce8a0 2374
mjr 38:091e511ce8a0 2375 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2376 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2377 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2378 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2379 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2380 uint8_t dbState;
mjr 38:091e511ce8a0 2381
mjr 65:739875521aae 2382 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2383 uint8_t physState : 1;
mjr 65:739875521aae 2384
mjr 65:739875521aae 2385 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2386 uint8_t logState : 1;
mjr 65:739875521aae 2387
mjr 79:682ae3171a08 2388 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 2389 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 2390 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 2391 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 2392 uint8_t prevLogState : 1;
mjr 65:739875521aae 2393
mjr 65:739875521aae 2394 // Pulse state
mjr 65:739875521aae 2395 //
mjr 65:739875521aae 2396 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2397 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2398 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2399 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2400 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2401 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2402 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2403 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2404 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2405 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2406 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 2407 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 2408 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2409 //
mjr 38:091e511ce8a0 2410 // Pulse state:
mjr 38:091e511ce8a0 2411 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2412 // 1 -> off
mjr 38:091e511ce8a0 2413 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2414 // 3 -> on
mjr 38:091e511ce8a0 2415 // 4 -> transitioning on-off
mjr 65:739875521aae 2416 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2417
mjr 65:739875521aae 2418 } __attribute__((packed));
mjr 65:739875521aae 2419
mjr 65:739875521aae 2420 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2421 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2422 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2423
mjr 66:2e3583fbd2f4 2424 // Shift button state
mjr 66:2e3583fbd2f4 2425 struct
mjr 66:2e3583fbd2f4 2426 {
mjr 66:2e3583fbd2f4 2427 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 2428 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 2429 // 0 = not shifted
mjr 66:2e3583fbd2f4 2430 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2431 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 2432 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 2433 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 2434 }
mjr 66:2e3583fbd2f4 2435 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2436
mjr 38:091e511ce8a0 2437 // Button data
mjr 38:091e511ce8a0 2438 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2439
mjr 38:091e511ce8a0 2440 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2441 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2442 // modifier keys.
mjr 38:091e511ce8a0 2443 struct
mjr 38:091e511ce8a0 2444 {
mjr 38:091e511ce8a0 2445 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2446 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2447 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2448 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2449 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2450
mjr 38:091e511ce8a0 2451 // Media key state
mjr 38:091e511ce8a0 2452 struct
mjr 38:091e511ce8a0 2453 {
mjr 38:091e511ce8a0 2454 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2455 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2456 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2457
mjr 79:682ae3171a08 2458 // button scan interrupt timer
mjr 79:682ae3171a08 2459 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 2460
mjr 38:091e511ce8a0 2461 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2462 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2463 void scanButtons()
mjr 38:091e511ce8a0 2464 {
mjr 79:682ae3171a08 2465 // schedule the next interrupt
mjr 79:682ae3171a08 2466 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 2467
mjr 38:091e511ce8a0 2468 // scan all button input pins
mjr 73:4e8ce0b18915 2469 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2470 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2471 {
mjr 73:4e8ce0b18915 2472 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2473 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2474 bs->dbState = db;
mjr 73:4e8ce0b18915 2475
mjr 73:4e8ce0b18915 2476 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2477 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2478 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2479 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2480 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2481 db &= stable;
mjr 73:4e8ce0b18915 2482 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2483 bs->physState = !db;
mjr 38:091e511ce8a0 2484 }
mjr 38:091e511ce8a0 2485 }
mjr 38:091e511ce8a0 2486
mjr 38:091e511ce8a0 2487 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2488 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2489 // in the physical button state.
mjr 38:091e511ce8a0 2490 Timer buttonTimer;
mjr 12:669df364a565 2491
mjr 65:739875521aae 2492 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2493 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2494 {
mjr 65:739875521aae 2495 // count it
mjr 65:739875521aae 2496 ++nButtons;
mjr 65:739875521aae 2497
mjr 67:c39e66c4e000 2498 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2499 // keyboard interface
mjr 72:884207c0aab0 2500 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2501 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2502 kbKeys = true;
mjr 65:739875521aae 2503 }
mjr 65:739875521aae 2504
mjr 11:bd9da7088e6e 2505 // initialize the button inputs
mjr 35:e959ffba78fd 2506 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2507 {
mjr 66:2e3583fbd2f4 2508 // presume no shift key
mjr 66:2e3583fbd2f4 2509 shiftButton.index = -1;
mjr 82:4f6209cb5c33 2510 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2511
mjr 65:739875521aae 2512 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2513 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2514 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2515 nButtons = 0;
mjr 65:739875521aae 2516 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2517 {
mjr 65:739875521aae 2518 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2519 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 2520 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 2521 }
mjr 65:739875521aae 2522
mjr 65:739875521aae 2523 // Count virtual buttons
mjr 65:739875521aae 2524
mjr 65:739875521aae 2525 // ZB Launch
mjr 65:739875521aae 2526 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 2527 {
mjr 65:739875521aae 2528 // valid - remember the live button index
mjr 65:739875521aae 2529 zblButtonIndex = nButtons;
mjr 65:739875521aae 2530
mjr 65:739875521aae 2531 // count it
mjr 72:884207c0aab0 2532 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 2533 }
mjr 65:739875521aae 2534
mjr 65:739875521aae 2535 // Allocate the live button slots
mjr 65:739875521aae 2536 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 2537
mjr 65:739875521aae 2538 // Configure the physical inputs
mjr 65:739875521aae 2539 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2540 {
mjr 65:739875521aae 2541 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 2542 if (pin != NC)
mjr 65:739875521aae 2543 {
mjr 65:739875521aae 2544 // point back to the config slot for the keyboard data
mjr 65:739875521aae 2545 bs->cfgIndex = i;
mjr 65:739875521aae 2546
mjr 65:739875521aae 2547 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 2548 bs->di.assignPin(pin);
mjr 65:739875521aae 2549
mjr 65:739875521aae 2550 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 2551 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 2552 bs->pulseState = 1;
mjr 65:739875521aae 2553
mjr 66:2e3583fbd2f4 2554 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 2555 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 2556 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 2557 // config slots are left unused.
mjr 78:1e00b3fa11af 2558 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 2559 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 2560
mjr 65:739875521aae 2561 // advance to the next button
mjr 65:739875521aae 2562 ++bs;
mjr 65:739875521aae 2563 }
mjr 65:739875521aae 2564 }
mjr 65:739875521aae 2565
mjr 53:9b2611964afc 2566 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 2567 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 2568 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 2569 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 2570
mjr 53:9b2611964afc 2571 // ZB Launch Ball button
mjr 65:739875521aae 2572 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 2573 {
mjr 65:739875521aae 2574 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 2575 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 2576 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 2577 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 2578 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 2579 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 2580 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 2581 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 2582
mjr 66:2e3583fbd2f4 2583 // advance to the next button
mjr 65:739875521aae 2584 ++bs;
mjr 11:bd9da7088e6e 2585 }
mjr 12:669df364a565 2586
mjr 38:091e511ce8a0 2587 // start the button scan thread
mjr 79:682ae3171a08 2588 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 2589
mjr 38:091e511ce8a0 2590 // start the button state transition timer
mjr 12:669df364a565 2591 buttonTimer.start();
mjr 11:bd9da7088e6e 2592 }
mjr 11:bd9da7088e6e 2593
mjr 67:c39e66c4e000 2594 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 2595 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 2596 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 2597 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 2598 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 2599 //
mjr 67:c39e66c4e000 2600 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 2601 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 2602 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 2603 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 2604 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 2605 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 2606 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 2607 //
mjr 67:c39e66c4e000 2608 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 2609 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 2610 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 2611 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 2612 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 2613 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 2614 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 2615 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 2616 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 2617 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 2618 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 2619 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 2620 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 2621 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 2622 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 2623 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 2624 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 2625 };
mjr 77:0b96f6867312 2626
mjr 77:0b96f6867312 2627 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 2628 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 2629 // states of the button iputs.
mjr 77:0b96f6867312 2630 struct KeyState
mjr 77:0b96f6867312 2631 {
mjr 77:0b96f6867312 2632 KeyState()
mjr 77:0b96f6867312 2633 {
mjr 77:0b96f6867312 2634 // zero all members
mjr 77:0b96f6867312 2635 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 2636 }
mjr 77:0b96f6867312 2637
mjr 77:0b96f6867312 2638 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 2639 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 2640 uint8_t mediakeys;
mjr 77:0b96f6867312 2641
mjr 77:0b96f6867312 2642 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 2643 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 2644 // USBJoystick.cpp).
mjr 77:0b96f6867312 2645 uint8_t modkeys;
mjr 77:0b96f6867312 2646
mjr 77:0b96f6867312 2647 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 2648 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 2649 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 2650 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 2651 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 2652 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 2653 uint8_t keys[7];
mjr 77:0b96f6867312 2654
mjr 77:0b96f6867312 2655 // number of valid entries in keys[] array
mjr 77:0b96f6867312 2656 int nkeys;
mjr 77:0b96f6867312 2657
mjr 77:0b96f6867312 2658 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 2659 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 2660 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 2661 uint32_t js;
mjr 77:0b96f6867312 2662
mjr 77:0b96f6867312 2663
mjr 77:0b96f6867312 2664 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 2665 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 2666 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 2667 {
mjr 77:0b96f6867312 2668 // add the key according to the type
mjr 77:0b96f6867312 2669 switch (typ)
mjr 77:0b96f6867312 2670 {
mjr 77:0b96f6867312 2671 case BtnTypeJoystick:
mjr 77:0b96f6867312 2672 // joystick button
mjr 77:0b96f6867312 2673 js |= (1 << (val - 1));
mjr 77:0b96f6867312 2674 break;
mjr 77:0b96f6867312 2675
mjr 77:0b96f6867312 2676 case BtnTypeKey:
mjr 77:0b96f6867312 2677 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 2678 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 2679 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 2680 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 2681 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 2682 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 2683 // explicitly using media keys if desired.
mjr 77:0b96f6867312 2684 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 2685 {
mjr 77:0b96f6867312 2686 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 2687 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 2688 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 2689 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 2690 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 2691 }
mjr 77:0b96f6867312 2692 else
mjr 77:0b96f6867312 2693 {
mjr 77:0b96f6867312 2694 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 2695 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 2696 // apply, add the key to the key array.
mjr 77:0b96f6867312 2697 if (nkeys < 7)
mjr 77:0b96f6867312 2698 {
mjr 77:0b96f6867312 2699 bool found = false;
mjr 77:0b96f6867312 2700 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 2701 {
mjr 77:0b96f6867312 2702 if (keys[i] == val)
mjr 77:0b96f6867312 2703 {
mjr 77:0b96f6867312 2704 found = true;
mjr 77:0b96f6867312 2705 break;
mjr 77:0b96f6867312 2706 }
mjr 77:0b96f6867312 2707 }
mjr 77:0b96f6867312 2708 if (!found)
mjr 77:0b96f6867312 2709 keys[nkeys++] = val;
mjr 77:0b96f6867312 2710 }
mjr 77:0b96f6867312 2711 }
mjr 77:0b96f6867312 2712 break;
mjr 77:0b96f6867312 2713
mjr 77:0b96f6867312 2714 case BtnTypeMedia:
mjr 77:0b96f6867312 2715 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 2716 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 2717 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 2718 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 2719 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 2720 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 2721 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 2722 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 2723 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 2724 break;
mjr 77:0b96f6867312 2725 }
mjr 77:0b96f6867312 2726 }
mjr 77:0b96f6867312 2727 };
mjr 67:c39e66c4e000 2728
mjr 67:c39e66c4e000 2729
mjr 38:091e511ce8a0 2730 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 2731 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 2732 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 2733 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 2734 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 2735 {
mjr 77:0b96f6867312 2736 // key state
mjr 77:0b96f6867312 2737 KeyState ks;
mjr 38:091e511ce8a0 2738
mjr 38:091e511ce8a0 2739 // calculate the time since the last run
mjr 53:9b2611964afc 2740 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 2741 buttonTimer.reset();
mjr 66:2e3583fbd2f4 2742
mjr 66:2e3583fbd2f4 2743 // check the shift button state
mjr 66:2e3583fbd2f4 2744 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 2745 {
mjr 78:1e00b3fa11af 2746 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 2747 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 2748
mjr 78:1e00b3fa11af 2749 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 2750 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 2751 {
mjr 66:2e3583fbd2f4 2752 case 0:
mjr 78:1e00b3fa11af 2753 default:
mjr 78:1e00b3fa11af 2754 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 2755 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 2756 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 2757 switch (shiftButton.state)
mjr 78:1e00b3fa11af 2758 {
mjr 78:1e00b3fa11af 2759 case 0:
mjr 78:1e00b3fa11af 2760 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 2761 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 2762 if (sbs->physState)
mjr 78:1e00b3fa11af 2763 shiftButton.state = 1;
mjr 78:1e00b3fa11af 2764 break;
mjr 78:1e00b3fa11af 2765
mjr 78:1e00b3fa11af 2766 case 1:
mjr 78:1e00b3fa11af 2767 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 2768 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 2769 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 2770 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 2771 // pulse event.
mjr 78:1e00b3fa11af 2772 if (!sbs->physState)
mjr 78:1e00b3fa11af 2773 {
mjr 78:1e00b3fa11af 2774 shiftButton.state = 3;
mjr 78:1e00b3fa11af 2775 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 2776 }
mjr 78:1e00b3fa11af 2777 break;
mjr 78:1e00b3fa11af 2778
mjr 78:1e00b3fa11af 2779 case 2:
mjr 78:1e00b3fa11af 2780 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 2781 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 2782 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 2783 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 2784 // suppressed.
mjr 78:1e00b3fa11af 2785 if (!sbs->physState)
mjr 78:1e00b3fa11af 2786 shiftButton.state = 0;
mjr 78:1e00b3fa11af 2787 break;
mjr 78:1e00b3fa11af 2788
mjr 78:1e00b3fa11af 2789 case 3:
mjr 78:1e00b3fa11af 2790 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 2791 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 2792 // has expired.
mjr 78:1e00b3fa11af 2793 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 2794 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 2795 else
mjr 78:1e00b3fa11af 2796 shiftButton.state = 0;
mjr 78:1e00b3fa11af 2797 break;
mjr 78:1e00b3fa11af 2798 }
mjr 66:2e3583fbd2f4 2799 break;
mjr 66:2e3583fbd2f4 2800
mjr 66:2e3583fbd2f4 2801 case 1:
mjr 78:1e00b3fa11af 2802 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 2803 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 2804 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 2805 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 2806 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 2807 break;
mjr 66:2e3583fbd2f4 2808 }
mjr 66:2e3583fbd2f4 2809 }
mjr 38:091e511ce8a0 2810
mjr 11:bd9da7088e6e 2811 // scan the button list
mjr 18:5e890ebd0023 2812 ButtonState *bs = buttonState;
mjr 65:739875521aae 2813 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 2814 {
mjr 77:0b96f6867312 2815 // get the config entry for the button
mjr 77:0b96f6867312 2816 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 2817
mjr 66:2e3583fbd2f4 2818 // Check the button type:
mjr 66:2e3583fbd2f4 2819 // - shift button
mjr 66:2e3583fbd2f4 2820 // - pulsed button
mjr 66:2e3583fbd2f4 2821 // - regular button
mjr 66:2e3583fbd2f4 2822 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 2823 {
mjr 78:1e00b3fa11af 2824 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 2825 // depends on the mode.
mjr 78:1e00b3fa11af 2826 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 2827 {
mjr 78:1e00b3fa11af 2828 case 0:
mjr 78:1e00b3fa11af 2829 default:
mjr 78:1e00b3fa11af 2830 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 2831 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 2832 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 2833 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 2834 break;
mjr 78:1e00b3fa11af 2835
mjr 78:1e00b3fa11af 2836 case 1:
mjr 78:1e00b3fa11af 2837 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 2838 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 2839 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 2840 break;
mjr 66:2e3583fbd2f4 2841 }
mjr 66:2e3583fbd2f4 2842 }
mjr 66:2e3583fbd2f4 2843 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 2844 {
mjr 38:091e511ce8a0 2845 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 2846 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 2847 {
mjr 53:9b2611964afc 2848 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 2849 bs->pulseTime -= dt;
mjr 53:9b2611964afc 2850 }
mjr 53:9b2611964afc 2851 else
mjr 53:9b2611964afc 2852 {
mjr 53:9b2611964afc 2853 // pulse time expired - check for a state change
mjr 53:9b2611964afc 2854 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 2855 switch (bs->pulseState)
mjr 18:5e890ebd0023 2856 {
mjr 38:091e511ce8a0 2857 case 1:
mjr 38:091e511ce8a0 2858 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 2859 if (bs->physState)
mjr 53:9b2611964afc 2860 {
mjr 38:091e511ce8a0 2861 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2862 bs->pulseState = 2;
mjr 53:9b2611964afc 2863 bs->logState = 1;
mjr 38:091e511ce8a0 2864 }
mjr 38:091e511ce8a0 2865 break;
mjr 18:5e890ebd0023 2866
mjr 38:091e511ce8a0 2867 case 2:
mjr 38:091e511ce8a0 2868 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 2869 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 2870 // change in state in the logical button
mjr 38:091e511ce8a0 2871 bs->pulseState = 3;
mjr 38:091e511ce8a0 2872 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2873 bs->logState = 0;
mjr 38:091e511ce8a0 2874 break;
mjr 38:091e511ce8a0 2875
mjr 38:091e511ce8a0 2876 case 3:
mjr 38:091e511ce8a0 2877 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 2878 if (!bs->physState)
mjr 53:9b2611964afc 2879 {
mjr 38:091e511ce8a0 2880 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2881 bs->pulseState = 4;
mjr 53:9b2611964afc 2882 bs->logState = 1;
mjr 38:091e511ce8a0 2883 }
mjr 38:091e511ce8a0 2884 break;
mjr 38:091e511ce8a0 2885
mjr 38:091e511ce8a0 2886 case 4:
mjr 38:091e511ce8a0 2887 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 2888 bs->pulseState = 1;
mjr 38:091e511ce8a0 2889 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2890 bs->logState = 0;
mjr 38:091e511ce8a0 2891 break;
mjr 18:5e890ebd0023 2892 }
mjr 18:5e890ebd0023 2893 }
mjr 38:091e511ce8a0 2894 }
mjr 38:091e511ce8a0 2895 else
mjr 38:091e511ce8a0 2896 {
mjr 38:091e511ce8a0 2897 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 2898 bs->logState = bs->physState;
mjr 38:091e511ce8a0 2899 }
mjr 77:0b96f6867312 2900
mjr 77:0b96f6867312 2901 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 2902 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 2903 //
mjr 78:1e00b3fa11af 2904 // - the shift button is down, AND
mjr 78:1e00b3fa11af 2905 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 2906 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 2907 //
mjr 78:1e00b3fa11af 2908 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 2909 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 2910 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 2911 //
mjr 78:1e00b3fa11af 2912 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 2913 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 2914 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 2915 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 2916 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 2917 bool useShift =
mjr 77:0b96f6867312 2918 (shiftButton.state != 0
mjr 78:1e00b3fa11af 2919 && shiftButton.index != i
mjr 77:0b96f6867312 2920 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 2921 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 2922 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 2923
mjr 77:0b96f6867312 2924 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 2925 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 2926 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 2927 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 2928 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 2929 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 2930 shiftButton.state = 2;
mjr 35:e959ffba78fd 2931
mjr 38:091e511ce8a0 2932 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 2933 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 2934 {
mjr 77:0b96f6867312 2935 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 2936 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 2937 {
mjr 77:0b96f6867312 2938 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 2939 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 2940 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 2941 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 2942 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 2943 // the night mode state.
mjr 77:0b96f6867312 2944 //
mjr 77:0b96f6867312 2945 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 2946 // mode. Shifting only works for toggle mode.
mjr 82:4f6209cb5c33 2947 if ((cfg.nightMode.flags & 0x01) != 0)
mjr 53:9b2611964afc 2948 {
mjr 77:0b96f6867312 2949 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 2950 // current switch state.
mjr 53:9b2611964afc 2951 setNightMode(bs->logState);
mjr 53:9b2611964afc 2952 }
mjr 82:4f6209cb5c33 2953 else if (bs->logState)
mjr 53:9b2611964afc 2954 {
mjr 77:0b96f6867312 2955 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 2956 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 2957 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 2958 // OFF to ON.
mjr 66:2e3583fbd2f4 2959 //
mjr 77:0b96f6867312 2960 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 2961 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 2962 // button.
mjr 77:0b96f6867312 2963 bool pressed;
mjr 66:2e3583fbd2f4 2964 if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 2965 {
mjr 77:0b96f6867312 2966 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 2967 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 2968 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 2969 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 2970 }
mjr 77:0b96f6867312 2971 else
mjr 77:0b96f6867312 2972 {
mjr 77:0b96f6867312 2973 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 2974 // regular unshifted button. The button press only
mjr 77:0b96f6867312 2975 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 2976 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 2977 }
mjr 66:2e3583fbd2f4 2978
mjr 66:2e3583fbd2f4 2979 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 2980 // toggle night mode
mjr 66:2e3583fbd2f4 2981 if (pressed)
mjr 53:9b2611964afc 2982 toggleNightMode();
mjr 53:9b2611964afc 2983 }
mjr 35:e959ffba78fd 2984 }
mjr 38:091e511ce8a0 2985
mjr 77:0b96f6867312 2986 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 2987 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 2988 if (irc != 0)
mjr 77:0b96f6867312 2989 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 2990
mjr 38:091e511ce8a0 2991 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 2992 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 2993 }
mjr 38:091e511ce8a0 2994
mjr 53:9b2611964afc 2995 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 2996 // key state list
mjr 53:9b2611964afc 2997 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 2998 {
mjr 70:9f58735a1732 2999 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 3000 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 3001 uint8_t typ, val;
mjr 77:0b96f6867312 3002 if (useShift)
mjr 66:2e3583fbd2f4 3003 {
mjr 77:0b96f6867312 3004 typ = bc->typ2;
mjr 77:0b96f6867312 3005 val = bc->val2;
mjr 66:2e3583fbd2f4 3006 }
mjr 77:0b96f6867312 3007 else
mjr 77:0b96f6867312 3008 {
mjr 77:0b96f6867312 3009 typ = bc->typ;
mjr 77:0b96f6867312 3010 val = bc->val;
mjr 77:0b96f6867312 3011 }
mjr 77:0b96f6867312 3012
mjr 70:9f58735a1732 3013 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 3014 // the keyboard or joystick event.
mjr 77:0b96f6867312 3015 ks.addKey(typ, val);
mjr 18:5e890ebd0023 3016 }
mjr 11:bd9da7088e6e 3017 }
mjr 77:0b96f6867312 3018
mjr 77:0b96f6867312 3019 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 3020 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 3021 // the IR key.
mjr 77:0b96f6867312 3022 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 3023 {
mjr 77:0b96f6867312 3024 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 3025 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 3026 }
mjr 77:0b96f6867312 3027
mjr 77:0b96f6867312 3028 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 3029 // key state variables to reflect the new state.
mjr 77:0b96f6867312 3030
mjr 77:0b96f6867312 3031 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 3032 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 3033 jsButtons = ks.js;
mjr 77:0b96f6867312 3034
mjr 77:0b96f6867312 3035 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 3036 // something changes)
mjr 77:0b96f6867312 3037 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 3038 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 3039 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 3040 {
mjr 35:e959ffba78fd 3041 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3042 kbState.changed = true;
mjr 77:0b96f6867312 3043 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 3044 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 3045 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 3046 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 3047 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 3048 }
mjr 35:e959ffba78fd 3049 else {
mjr 35:e959ffba78fd 3050 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 3051 kbState.nkeys = 6;
mjr 35:e959ffba78fd 3052 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 3053 }
mjr 35:e959ffba78fd 3054 }
mjr 35:e959ffba78fd 3055
mjr 77:0b96f6867312 3056 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 3057 // something changes)
mjr 77:0b96f6867312 3058 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 3059 {
mjr 77:0b96f6867312 3060 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3061 mediaState.changed = true;
mjr 77:0b96f6867312 3062 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 3063 }
mjr 11:bd9da7088e6e 3064 }
mjr 11:bd9da7088e6e 3065
mjr 73:4e8ce0b18915 3066 // Send a button status report
mjr 73:4e8ce0b18915 3067 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 3068 {
mjr 73:4e8ce0b18915 3069 // start with all buttons off
mjr 73:4e8ce0b18915 3070 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 3071 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 3072
mjr 73:4e8ce0b18915 3073 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 3074 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 3075 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 3076 {
mjr 73:4e8ce0b18915 3077 // get the physical state
mjr 73:4e8ce0b18915 3078 int b = bs->physState;
mjr 73:4e8ce0b18915 3079
mjr 73:4e8ce0b18915 3080 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 3081 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 3082 int si = idx / 8;
mjr 73:4e8ce0b18915 3083 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 3084 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3085 }
mjr 73:4e8ce0b18915 3086
mjr 73:4e8ce0b18915 3087 // send the report
mjr 73:4e8ce0b18915 3088 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3089 }
mjr 73:4e8ce0b18915 3090
mjr 5:a70c0bce770d 3091 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3092 //
mjr 5:a70c0bce770d 3093 // Customization joystick subbclass
mjr 5:a70c0bce770d 3094 //
mjr 5:a70c0bce770d 3095
mjr 5:a70c0bce770d 3096 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3097 {
mjr 5:a70c0bce770d 3098 public:
mjr 35:e959ffba78fd 3099 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 3100 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 3101 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 3102 {
mjr 54:fd77a6b2f76c 3103 sleeping_ = false;
mjr 54:fd77a6b2f76c 3104 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3105 timer_.start();
mjr 54:fd77a6b2f76c 3106 }
mjr 54:fd77a6b2f76c 3107
mjr 54:fd77a6b2f76c 3108 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3109 void diagFlash()
mjr 54:fd77a6b2f76c 3110 {
mjr 54:fd77a6b2f76c 3111 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3112 {
mjr 54:fd77a6b2f76c 3113 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3114 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3115 {
mjr 54:fd77a6b2f76c 3116 // short red flash
mjr 54:fd77a6b2f76c 3117 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3118 wait_us(50000);
mjr 54:fd77a6b2f76c 3119 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3120 wait_us(50000);
mjr 54:fd77a6b2f76c 3121 }
mjr 54:fd77a6b2f76c 3122 }
mjr 5:a70c0bce770d 3123 }
mjr 5:a70c0bce770d 3124
mjr 5:a70c0bce770d 3125 // are we connected?
mjr 5:a70c0bce770d 3126 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3127
mjr 54:fd77a6b2f76c 3128 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3129 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3130 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3131 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3132 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3133
mjr 54:fd77a6b2f76c 3134 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3135 //
mjr 54:fd77a6b2f76c 3136 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3137 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3138 // other way.
mjr 54:fd77a6b2f76c 3139 //
mjr 54:fd77a6b2f76c 3140 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3141 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3142 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3143 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3144 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3145 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3146 //
mjr 54:fd77a6b2f76c 3147 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3148 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3149 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3150 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3151 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3152 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3153 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3154 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3155 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3156 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3157 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3158 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3159 // is effectively dead.
mjr 54:fd77a6b2f76c 3160 //
mjr 54:fd77a6b2f76c 3161 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3162 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3163 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3164 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3165 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3166 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3167 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3168 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3169 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3170 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3171 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3172 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3173 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3174 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3175 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3176 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3177 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3178 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3179 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3180 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3181 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3182 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3183 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3184 // a disconnect.
mjr 54:fd77a6b2f76c 3185 //
mjr 54:fd77a6b2f76c 3186 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3187 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3188 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3189 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3190 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3191 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3192 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3193 //
mjr 54:fd77a6b2f76c 3194 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3195 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3196 //
mjr 54:fd77a6b2f76c 3197 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3198 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3199 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3200 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3201 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3202 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3203 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3204 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3205 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3206 // reliable in practice.
mjr 54:fd77a6b2f76c 3207 //
mjr 54:fd77a6b2f76c 3208 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3209 //
mjr 54:fd77a6b2f76c 3210 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3211 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3212 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3213 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3214 // return.
mjr 54:fd77a6b2f76c 3215 //
mjr 54:fd77a6b2f76c 3216 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3217 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3218 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3219 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3220 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3221 //
mjr 54:fd77a6b2f76c 3222 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3223 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3224 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3225 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3226 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3227 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3228 //
mjr 54:fd77a6b2f76c 3229 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3230 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3231 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3232 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3233 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3234 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3235 // freezes over.
mjr 54:fd77a6b2f76c 3236 //
mjr 54:fd77a6b2f76c 3237 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3238 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3239 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3240 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3241 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3242 void recoverConnection()
mjr 54:fd77a6b2f76c 3243 {
mjr 54:fd77a6b2f76c 3244 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3245 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3246 {
mjr 54:fd77a6b2f76c 3247 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3248 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 3249 {
mjr 54:fd77a6b2f76c 3250 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 3251 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 3252 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 3253 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 3254 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 3255 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 3256 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 3257 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 3258 __disable_irq();
mjr 54:fd77a6b2f76c 3259 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 3260 {
mjr 54:fd77a6b2f76c 3261 connect(false);
mjr 54:fd77a6b2f76c 3262 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3263 done = true;
mjr 54:fd77a6b2f76c 3264 }
mjr 54:fd77a6b2f76c 3265 __enable_irq();
mjr 54:fd77a6b2f76c 3266 }
mjr 54:fd77a6b2f76c 3267 }
mjr 54:fd77a6b2f76c 3268 }
mjr 5:a70c0bce770d 3269
mjr 5:a70c0bce770d 3270 protected:
mjr 54:fd77a6b2f76c 3271 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 3272 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 3273 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 3274 //
mjr 54:fd77a6b2f76c 3275 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 3276 //
mjr 54:fd77a6b2f76c 3277 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 3278 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 3279 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 3280 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 3281 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 3282 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 3283 {
mjr 54:fd77a6b2f76c 3284 // note the new state
mjr 54:fd77a6b2f76c 3285 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 3286
mjr 54:fd77a6b2f76c 3287 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 3288 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 3289 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 3290 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 3291 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 3292 {
mjr 54:fd77a6b2f76c 3293 disconnect();
mjr 54:fd77a6b2f76c 3294 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 3295 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 3296 }
mjr 54:fd77a6b2f76c 3297 }
mjr 54:fd77a6b2f76c 3298
mjr 54:fd77a6b2f76c 3299 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 3300 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 3301
mjr 54:fd77a6b2f76c 3302 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 3303 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 3304
mjr 54:fd77a6b2f76c 3305 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 3306 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 3307
mjr 54:fd77a6b2f76c 3308 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 3309 Timer timer_;
mjr 5:a70c0bce770d 3310 };
mjr 5:a70c0bce770d 3311
mjr 5:a70c0bce770d 3312 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3313 //
mjr 5:a70c0bce770d 3314 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 3315 //
mjr 5:a70c0bce770d 3316
mjr 5:a70c0bce770d 3317 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 3318 //
mjr 5:a70c0bce770d 3319 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 3320 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 3321 // automatic calibration.
mjr 5:a70c0bce770d 3322 //
mjr 77:0b96f6867312 3323 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 3324 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 3325 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 3326 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 3327 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 3328 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 3329 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 3330 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 3331 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 3332 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 3333 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 3334 //
mjr 77:0b96f6867312 3335 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 3336 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 3337 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 3338 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 3339 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 3340 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 3341 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 3342 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 3343 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 3344 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 3345 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 3346 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 3347 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 3348 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 3349 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 3350 // rather than change it across the board.
mjr 5:a70c0bce770d 3351 //
mjr 6:cc35eb643e8f 3352 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 3353 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 3354 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 3355 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 3356 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 3357 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 3358 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 3359 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 3360 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 3361 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 3362 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 3363 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 3364 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 3365 // of nudging, say).
mjr 5:a70c0bce770d 3366 //
mjr 5:a70c0bce770d 3367
mjr 17:ab3cec0c8bf4 3368 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 3369 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 3370
mjr 17:ab3cec0c8bf4 3371 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 3372 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 3373 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 3374
mjr 17:ab3cec0c8bf4 3375 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 3376 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 3377 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 3378 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 3379
mjr 17:ab3cec0c8bf4 3380
mjr 6:cc35eb643e8f 3381 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 3382 struct AccHist
mjr 5:a70c0bce770d 3383 {
mjr 77:0b96f6867312 3384 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3385 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 3386 {
mjr 6:cc35eb643e8f 3387 // save the raw position
mjr 6:cc35eb643e8f 3388 this->x = x;
mjr 6:cc35eb643e8f 3389 this->y = y;
mjr 77:0b96f6867312 3390 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 3391 }
mjr 6:cc35eb643e8f 3392
mjr 6:cc35eb643e8f 3393 // reading for this entry
mjr 77:0b96f6867312 3394 int x, y;
mjr 77:0b96f6867312 3395
mjr 77:0b96f6867312 3396 // (distance from previous entry) squared
mjr 77:0b96f6867312 3397 int dsq;
mjr 5:a70c0bce770d 3398
mjr 6:cc35eb643e8f 3399 // total and count of samples averaged over this period
mjr 77:0b96f6867312 3400 int xtot, ytot;
mjr 6:cc35eb643e8f 3401 int cnt;
mjr 6:cc35eb643e8f 3402
mjr 77:0b96f6867312 3403 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3404 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 3405 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 3406 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 3407
mjr 77:0b96f6867312 3408 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 3409 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 3410 };
mjr 5:a70c0bce770d 3411
mjr 5:a70c0bce770d 3412 // accelerometer wrapper class
mjr 3:3514575d4f86 3413 class Accel
mjr 3:3514575d4f86 3414 {
mjr 3:3514575d4f86 3415 public:
mjr 78:1e00b3fa11af 3416 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin,
mjr 78:1e00b3fa11af 3417 int range, int autoCenterMode)
mjr 77:0b96f6867312 3418 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 3419 {
mjr 5:a70c0bce770d 3420 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 3421 irqPin_ = irqPin;
mjr 77:0b96f6867312 3422
mjr 77:0b96f6867312 3423 // remember the range
mjr 77:0b96f6867312 3424 range_ = range;
mjr 78:1e00b3fa11af 3425
mjr 78:1e00b3fa11af 3426 // set the auto-centering mode
mjr 78:1e00b3fa11af 3427 setAutoCenterMode(autoCenterMode);
mjr 78:1e00b3fa11af 3428
mjr 78:1e00b3fa11af 3429 // no manual centering request has been received
mjr 78:1e00b3fa11af 3430 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 3431
mjr 5:a70c0bce770d 3432 // reset and initialize
mjr 5:a70c0bce770d 3433 reset();
mjr 5:a70c0bce770d 3434 }
mjr 5:a70c0bce770d 3435
mjr 78:1e00b3fa11af 3436 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 3437 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 3438 // as soon as we have enough data.
mjr 78:1e00b3fa11af 3439 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 3440
mjr 78:1e00b3fa11af 3441 // set the auto-centering mode
mjr 78:1e00b3fa11af 3442 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 3443 {
mjr 78:1e00b3fa11af 3444 // remember the mode
mjr 78:1e00b3fa11af 3445 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 3446
mjr 78:1e00b3fa11af 3447 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 3448 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 3449 if (mode == 0)
mjr 78:1e00b3fa11af 3450 {
mjr 78:1e00b3fa11af 3451 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 3452 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 3453 }
mjr 78:1e00b3fa11af 3454 else if (mode <= 60)
mjr 78:1e00b3fa11af 3455 {
mjr 78:1e00b3fa11af 3456 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 3457 // interval is 1/5 of this
mjr 78:1e00b3fa11af 3458 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 3459 }
mjr 78:1e00b3fa11af 3460 else
mjr 78:1e00b3fa11af 3461 {
mjr 78:1e00b3fa11af 3462 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 3463 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 3464 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 3465 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 3466 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 3467 // includes recent data.
mjr 78:1e00b3fa11af 3468 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 3469 }
mjr 78:1e00b3fa11af 3470 }
mjr 78:1e00b3fa11af 3471
mjr 5:a70c0bce770d 3472 void reset()
mjr 5:a70c0bce770d 3473 {
mjr 6:cc35eb643e8f 3474 // clear the center point
mjr 77:0b96f6867312 3475 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 3476
mjr 77:0b96f6867312 3477 // start the auto-centering timer
mjr 5:a70c0bce770d 3478 tCenter_.start();
mjr 5:a70c0bce770d 3479 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 3480
mjr 5:a70c0bce770d 3481 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 3482 mma_.init();
mjr 77:0b96f6867312 3483
mjr 77:0b96f6867312 3484 // set the range
mjr 77:0b96f6867312 3485 mma_.setRange(
mjr 77:0b96f6867312 3486 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 3487 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 3488 2);
mjr 6:cc35eb643e8f 3489
mjr 77:0b96f6867312 3490 // set the average accumulators to zero
mjr 77:0b96f6867312 3491 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3492 nSum_ = 0;
mjr 3:3514575d4f86 3493
mjr 3:3514575d4f86 3494 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 3495 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 3496 }
mjr 3:3514575d4f86 3497
mjr 77:0b96f6867312 3498 void poll()
mjr 76:7f5912b6340e 3499 {
mjr 77:0b96f6867312 3500 // read samples until we clear the FIFO
mjr 77:0b96f6867312 3501 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 3502 {
mjr 77:0b96f6867312 3503 int x, y, z;
mjr 77:0b96f6867312 3504 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 3505
mjr 77:0b96f6867312 3506 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 3507 xSum_ += (x - cx_);
mjr 77:0b96f6867312 3508 ySum_ += (y - cy_);
mjr 77:0b96f6867312 3509 ++nSum_;
mjr 77:0b96f6867312 3510
mjr 77:0b96f6867312 3511 // store the updates
mjr 77:0b96f6867312 3512 ax_ = x;
mjr 77:0b96f6867312 3513 ay_ = y;
mjr 77:0b96f6867312 3514 az_ = z;
mjr 77:0b96f6867312 3515 }
mjr 76:7f5912b6340e 3516 }
mjr 77:0b96f6867312 3517
mjr 9:fd65b0a94720 3518 void get(int &x, int &y)
mjr 3:3514575d4f86 3519 {
mjr 77:0b96f6867312 3520 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 3521 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 3522 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 3523 int nSum = nSum_;
mjr 6:cc35eb643e8f 3524
mjr 77:0b96f6867312 3525 // reset the average accumulators for the next run
mjr 77:0b96f6867312 3526 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3527 nSum_ = 0;
mjr 77:0b96f6867312 3528
mjr 77:0b96f6867312 3529 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 3530 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3531 p->addAvg(ax, ay);
mjr 77:0b96f6867312 3532
mjr 78:1e00b3fa11af 3533 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 3534 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 3535 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 3536 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 3537 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 3538 {
mjr 77:0b96f6867312 3539 // add the latest raw sample to the history list
mjr 77:0b96f6867312 3540 AccHist *prv = p;
mjr 77:0b96f6867312 3541 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 3542 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3543 iAccPrv_ = 0;
mjr 77:0b96f6867312 3544 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3545 p->set(ax, ay, prv);
mjr 77:0b96f6867312 3546
mjr 78:1e00b3fa11af 3547 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 3548 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3549 {
mjr 78:1e00b3fa11af 3550 // Center if:
mjr 78:1e00b3fa11af 3551 //
mjr 78:1e00b3fa11af 3552 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 3553 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 3554 //
mjr 78:1e00b3fa11af 3555 // - A manual centering request is pending
mjr 78:1e00b3fa11af 3556 //
mjr 77:0b96f6867312 3557 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 3558 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 3559 if (manualCenterRequest_
mjr 78:1e00b3fa11af 3560 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 3561 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 3562 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 3563 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 3564 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 3565 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 3566 {
mjr 77:0b96f6867312 3567 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 3568 // the samples over the rest period
mjr 77:0b96f6867312 3569 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 3570 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 3571
mjr 78:1e00b3fa11af 3572 // clear any pending manual centering request
mjr 78:1e00b3fa11af 3573 manualCenterRequest_ = false;
mjr 77:0b96f6867312 3574 }
mjr 77:0b96f6867312 3575 }
mjr 77:0b96f6867312 3576 else
mjr 77:0b96f6867312 3577 {
mjr 77:0b96f6867312 3578 // not enough samples yet; just up the count
mjr 77:0b96f6867312 3579 ++nAccPrv_;
mjr 77:0b96f6867312 3580 }
mjr 6:cc35eb643e8f 3581
mjr 77:0b96f6867312 3582 // clear the new item's running totals
mjr 77:0b96f6867312 3583 p->clearAvg();
mjr 5:a70c0bce770d 3584
mjr 77:0b96f6867312 3585 // reset the timer
mjr 77:0b96f6867312 3586 tCenter_.reset();
mjr 77:0b96f6867312 3587 }
mjr 5:a70c0bce770d 3588
mjr 77:0b96f6867312 3589 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 3590 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 3591 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 3592
mjr 6:cc35eb643e8f 3593 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 3594 if (x != 0 || y != 0)
mjr 77:0b96f6867312 3595 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 3596 #endif
mjr 77:0b96f6867312 3597 }
mjr 29:582472d0bc57 3598
mjr 3:3514575d4f86 3599 private:
mjr 6:cc35eb643e8f 3600 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 3601 int rawToReport(int v)
mjr 5:a70c0bce770d 3602 {
mjr 77:0b96f6867312 3603 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 3604 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 3605 // so their scale is 2^13.
mjr 77:0b96f6867312 3606 //
mjr 77:0b96f6867312 3607 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 3608 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 3609 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 3610 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 3611 int i = v*JOYMAX;
mjr 77:0b96f6867312 3612 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 3613
mjr 6:cc35eb643e8f 3614 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 3615 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 3616 static const int filter[] = {
mjr 6:cc35eb643e8f 3617 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 3618 0,
mjr 6:cc35eb643e8f 3619 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 3620 };
mjr 6:cc35eb643e8f 3621 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 3622 }
mjr 5:a70c0bce770d 3623
mjr 3:3514575d4f86 3624 // underlying accelerometer object
mjr 3:3514575d4f86 3625 MMA8451Q mma_;
mjr 3:3514575d4f86 3626
mjr 77:0b96f6867312 3627 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 3628 // scale -8192..+8191
mjr 77:0b96f6867312 3629 int ax_, ay_, az_;
mjr 77:0b96f6867312 3630
mjr 77:0b96f6867312 3631 // running sum of readings since last get()
mjr 77:0b96f6867312 3632 int xSum_, ySum_;
mjr 77:0b96f6867312 3633
mjr 77:0b96f6867312 3634 // number of readings since last get()
mjr 77:0b96f6867312 3635 int nSum_;
mjr 6:cc35eb643e8f 3636
mjr 6:cc35eb643e8f 3637 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 3638 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 3639 // at rest.
mjr 77:0b96f6867312 3640 int cx_, cy_;
mjr 77:0b96f6867312 3641
mjr 77:0b96f6867312 3642 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 3643 uint8_t range_;
mjr 78:1e00b3fa11af 3644
mjr 78:1e00b3fa11af 3645 // auto-center mode:
mjr 78:1e00b3fa11af 3646 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 3647 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 3648 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 3649 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 3650
mjr 78:1e00b3fa11af 3651 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 3652 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 3653
mjr 78:1e00b3fa11af 3654 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 3655 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 3656
mjr 77:0b96f6867312 3657 // atuo-centering timer
mjr 5:a70c0bce770d 3658 Timer tCenter_;
mjr 6:cc35eb643e8f 3659
mjr 6:cc35eb643e8f 3660 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 3661 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 3662 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 3663 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 3664 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 3665 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 3666 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 3667 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 3668 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 3669 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 3670 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 3671 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 3672 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 3673 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 3674 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 3675
mjr 5:a70c0bce770d 3676 // interurupt pin name
mjr 5:a70c0bce770d 3677 PinName irqPin_;
mjr 3:3514575d4f86 3678 };
mjr 3:3514575d4f86 3679
mjr 5:a70c0bce770d 3680 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3681 //
mjr 14:df700b22ca08 3682 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 3683 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 3684 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 3685 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 3686 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 3687 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 3688 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 3689 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 3690 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 3691 //
mjr 14:df700b22ca08 3692 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 3693 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 3694 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 3695 //
mjr 5:a70c0bce770d 3696 void clear_i2c()
mjr 5:a70c0bce770d 3697 {
mjr 38:091e511ce8a0 3698 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 3699 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 3700 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 3701
mjr 5:a70c0bce770d 3702 // clock the SCL 9 times
mjr 5:a70c0bce770d 3703 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 3704 {
mjr 5:a70c0bce770d 3705 scl = 1;
mjr 5:a70c0bce770d 3706 wait_us(20);
mjr 5:a70c0bce770d 3707 scl = 0;
mjr 5:a70c0bce770d 3708 wait_us(20);
mjr 5:a70c0bce770d 3709 }
mjr 5:a70c0bce770d 3710 }
mjr 76:7f5912b6340e 3711
mjr 76:7f5912b6340e 3712
mjr 14:df700b22ca08 3713 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 3714 //
mjr 33:d832bcab089e 3715 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 3716 // for a given interval before allowing an update.
mjr 33:d832bcab089e 3717 //
mjr 33:d832bcab089e 3718 class Debouncer
mjr 33:d832bcab089e 3719 {
mjr 33:d832bcab089e 3720 public:
mjr 33:d832bcab089e 3721 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 3722 {
mjr 33:d832bcab089e 3723 t.start();
mjr 33:d832bcab089e 3724 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 3725 this->tmin = tmin;
mjr 33:d832bcab089e 3726 }
mjr 33:d832bcab089e 3727
mjr 33:d832bcab089e 3728 // Get the current stable value
mjr 33:d832bcab089e 3729 bool val() const { return stable; }
mjr 33:d832bcab089e 3730
mjr 33:d832bcab089e 3731 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 3732 // input device.
mjr 33:d832bcab089e 3733 void sampleIn(bool val)
mjr 33:d832bcab089e 3734 {
mjr 33:d832bcab089e 3735 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 3736 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 3737 // on the sample reader.
mjr 33:d832bcab089e 3738 if (val != prv)
mjr 33:d832bcab089e 3739 {
mjr 33:d832bcab089e 3740 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 3741 t.reset();
mjr 33:d832bcab089e 3742
mjr 33:d832bcab089e 3743 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 3744 prv = val;
mjr 33:d832bcab089e 3745 }
mjr 33:d832bcab089e 3746 else if (val != stable)
mjr 33:d832bcab089e 3747 {
mjr 33:d832bcab089e 3748 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 3749 // and different from the stable value. This means that
mjr 33:d832bcab089e 3750 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 3751 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 3752 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 3753 if (t.read() > tmin)
mjr 33:d832bcab089e 3754 stable = val;
mjr 33:d832bcab089e 3755 }
mjr 33:d832bcab089e 3756 }
mjr 33:d832bcab089e 3757
mjr 33:d832bcab089e 3758 private:
mjr 33:d832bcab089e 3759 // current stable value
mjr 33:d832bcab089e 3760 bool stable;
mjr 33:d832bcab089e 3761
mjr 33:d832bcab089e 3762 // last raw sample value
mjr 33:d832bcab089e 3763 bool prv;
mjr 33:d832bcab089e 3764
mjr 33:d832bcab089e 3765 // elapsed time since last raw input change
mjr 33:d832bcab089e 3766 Timer t;
mjr 33:d832bcab089e 3767
mjr 33:d832bcab089e 3768 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 3769 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 3770 float tmin;
mjr 33:d832bcab089e 3771 };
mjr 33:d832bcab089e 3772
mjr 33:d832bcab089e 3773
mjr 33:d832bcab089e 3774 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 3775 //
mjr 33:d832bcab089e 3776 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 3777 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 3778 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 3779 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 3780 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 3781 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 3782 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 3783 //
mjr 33:d832bcab089e 3784 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 3785 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 3786 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 3787 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 3788 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 3789 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 3790 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 3791 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 3792 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 3793 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 3794 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 3795 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 3796 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 3797 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 3798 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 3799 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 3800 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 3801 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 3802 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 3803 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 3804 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 3805 //
mjr 40:cc0d9814522b 3806 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 3807 // of tricky but likely scenarios:
mjr 33:d832bcab089e 3808 //
mjr 33:d832bcab089e 3809 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 3810 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 3811 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 3812 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 3813 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 3814 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 3815 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 3816 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 3817 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 3818 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 3819 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 3820 //
mjr 33:d832bcab089e 3821 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 3822 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 3823 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 3824 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 3825 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 3826 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 3827 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 3828 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 3829 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 3830 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 3831 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 3832 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 3833 // first check.
mjr 33:d832bcab089e 3834 //
mjr 33:d832bcab089e 3835 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 3836 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 3837 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 3838 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 3839 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 3840 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 3841 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 3842 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 3843 //
mjr 33:d832bcab089e 3844
mjr 77:0b96f6867312 3845 // Current PSU2 power state:
mjr 33:d832bcab089e 3846 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 3847 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 3848 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 3849 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 3850 // 5 -> TV relay on
mjr 77:0b96f6867312 3851 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 3852 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 3853
mjr 73:4e8ce0b18915 3854 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 3855 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 3856 // separate state for each:
mjr 73:4e8ce0b18915 3857 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 3858 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 3859 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 3860 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 3861 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 3862
mjr 79:682ae3171a08 3863 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 3864 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 3865
mjr 77:0b96f6867312 3866 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 3867 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 3868 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 3869 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 3870 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 3871 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 3872 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 3873 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 3874 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 3875 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 3876 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 3877
mjr 77:0b96f6867312 3878 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 3879 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 3880
mjr 35:e959ffba78fd 3881 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 3882 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 3883 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 3884
mjr 73:4e8ce0b18915 3885 // Apply the current TV relay state
mjr 73:4e8ce0b18915 3886 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 3887 {
mjr 73:4e8ce0b18915 3888 // update the state
mjr 73:4e8ce0b18915 3889 if (state)
mjr 73:4e8ce0b18915 3890 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 3891 else
mjr 73:4e8ce0b18915 3892 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 3893
mjr 73:4e8ce0b18915 3894 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 3895 if (tv_relay != 0)
mjr 73:4e8ce0b18915 3896 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 3897 }
mjr 35:e959ffba78fd 3898
mjr 86:e30a1f60f783 3899 // Does the current power status allow a reboot? We shouldn't reboot
mjr 86:e30a1f60f783 3900 // in certain power states, because some states are purely internal:
mjr 86:e30a1f60f783 3901 // we can't get enough information from the external power sensor to
mjr 86:e30a1f60f783 3902 // return to the same state later. Code that performs discretionary
mjr 86:e30a1f60f783 3903 // reboots should always check here first, and delay any reboot until
mjr 86:e30a1f60f783 3904 // we say it's okay.
mjr 86:e30a1f60f783 3905 static inline bool powerStatusAllowsReboot()
mjr 86:e30a1f60f783 3906 {
mjr 86:e30a1f60f783 3907 // The only safe state for rebooting is state 1, idle/default.
mjr 86:e30a1f60f783 3908 // In other states, we can't reboot, because the external sensor
mjr 86:e30a1f60f783 3909 // and latch circuit doesn't give us enough information to return
mjr 86:e30a1f60f783 3910 // to the same state later.
mjr 86:e30a1f60f783 3911 return psu2_state == 1;
mjr 86:e30a1f60f783 3912 }
mjr 86:e30a1f60f783 3913
mjr 77:0b96f6867312 3914 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 3915 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 3916 // functions.
mjr 77:0b96f6867312 3917 Timer powerStatusTimer;
mjr 77:0b96f6867312 3918 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 3919 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 3920 {
mjr 79:682ae3171a08 3921 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 3922 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 3923 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 3924 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 3925 {
mjr 79:682ae3171a08 3926 // turn off the relay and disable the timer
mjr 79:682ae3171a08 3927 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 3928 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 3929 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 3930 }
mjr 79:682ae3171a08 3931
mjr 77:0b96f6867312 3932 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 3933 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 3934 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 3935 // skip this whole routine.
mjr 77:0b96f6867312 3936 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 3937 return;
mjr 77:0b96f6867312 3938
mjr 77:0b96f6867312 3939 // reset the update timer for next time
mjr 77:0b96f6867312 3940 powerStatusTimer.reset();
mjr 77:0b96f6867312 3941
mjr 77:0b96f6867312 3942 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 3943 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 3944 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 3945 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 3946 static Timer tv_timer;
mjr 35:e959ffba78fd 3947
mjr 33:d832bcab089e 3948 // Check our internal state
mjr 33:d832bcab089e 3949 switch (psu2_state)
mjr 33:d832bcab089e 3950 {
mjr 33:d832bcab089e 3951 case 1:
mjr 33:d832bcab089e 3952 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 3953 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 3954 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 3955 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 3956 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 3957 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 3958 {
mjr 33:d832bcab089e 3959 // switch to OFF state
mjr 33:d832bcab089e 3960 psu2_state = 2;
mjr 33:d832bcab089e 3961
mjr 33:d832bcab089e 3962 // try setting the latch
mjr 35:e959ffba78fd 3963 psu2_status_set->write(1);
mjr 33:d832bcab089e 3964 }
mjr 77:0b96f6867312 3965 powerTimerDiagState = 0;
mjr 33:d832bcab089e 3966 break;
mjr 33:d832bcab089e 3967
mjr 33:d832bcab089e 3968 case 2:
mjr 33:d832bcab089e 3969 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 3970 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 3971 psu2_status_set->write(0);
mjr 33:d832bcab089e 3972 psu2_state = 3;
mjr 77:0b96f6867312 3973 powerTimerDiagState = 0;
mjr 33:d832bcab089e 3974 break;
mjr 33:d832bcab089e 3975
mjr 33:d832bcab089e 3976 case 3:
mjr 33:d832bcab089e 3977 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 3978 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 3979 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 3980 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 3981 if (psu2_status_sense->read())
mjr 33:d832bcab089e 3982 {
mjr 33:d832bcab089e 3983 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 3984 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 3985 tv_timer.reset();
mjr 33:d832bcab089e 3986 tv_timer.start();
mjr 33:d832bcab089e 3987 psu2_state = 4;
mjr 73:4e8ce0b18915 3988
mjr 73:4e8ce0b18915 3989 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 3990 powerTimerDiagState = 2;
mjr 33:d832bcab089e 3991 }
mjr 33:d832bcab089e 3992 else
mjr 33:d832bcab089e 3993 {
mjr 33:d832bcab089e 3994 // The latch didn't stick, so PSU2 was still off at
mjr 87:8d35c74403af 3995 // our last check. Return to idle state.
mjr 87:8d35c74403af 3996 psu2_state = 1;
mjr 33:d832bcab089e 3997 }
mjr 33:d832bcab089e 3998 break;
mjr 33:d832bcab089e 3999
mjr 33:d832bcab089e 4000 case 4:
mjr 77:0b96f6867312 4001 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 4002 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 4003 // off again before the countdown finished.
mjr 77:0b96f6867312 4004 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 4005 {
mjr 77:0b96f6867312 4006 // power is off - start a new check cycle
mjr 77:0b96f6867312 4007 psu2_status_set->write(1);
mjr 77:0b96f6867312 4008 psu2_state = 2;
mjr 77:0b96f6867312 4009 break;
mjr 77:0b96f6867312 4010 }
mjr 77:0b96f6867312 4011
mjr 77:0b96f6867312 4012 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 4013 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 4014
mjr 77:0b96f6867312 4015 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 4016 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 4017 {
mjr 33:d832bcab089e 4018 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 4019 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 4020 psu2_state = 5;
mjr 77:0b96f6867312 4021
mjr 77:0b96f6867312 4022 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 4023 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4024 }
mjr 33:d832bcab089e 4025 break;
mjr 33:d832bcab089e 4026
mjr 33:d832bcab089e 4027 case 5:
mjr 33:d832bcab089e 4028 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 4029 // it's now time to turn it off.
mjr 73:4e8ce0b18915 4030 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 4031
mjr 77:0b96f6867312 4032 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 4033 psu2_state = 6;
mjr 77:0b96f6867312 4034 tvon_ir_state = 0;
mjr 77:0b96f6867312 4035
mjr 77:0b96f6867312 4036 // diagnostic LEDs off for now
mjr 77:0b96f6867312 4037 powerTimerDiagState = 0;
mjr 77:0b96f6867312 4038 break;
mjr 77:0b96f6867312 4039
mjr 77:0b96f6867312 4040 case 6:
mjr 77:0b96f6867312 4041 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 4042 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 4043 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 4044 psu2_state = 1;
mjr 77:0b96f6867312 4045 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 4046
mjr 77:0b96f6867312 4047 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 4048 if (ir_tx != 0)
mjr 77:0b96f6867312 4049 {
mjr 77:0b96f6867312 4050 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 4051 if (ir_tx->isSending())
mjr 77:0b96f6867312 4052 {
mjr 77:0b96f6867312 4053 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 4054 // state 6.
mjr 77:0b96f6867312 4055 psu2_state = 6;
mjr 77:0b96f6867312 4056 powerTimerDiagState = 4;
mjr 77:0b96f6867312 4057 break;
mjr 77:0b96f6867312 4058 }
mjr 77:0b96f6867312 4059
mjr 77:0b96f6867312 4060 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 4061 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 4062 // number.
mjr 77:0b96f6867312 4063 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 4064 {
mjr 77:0b96f6867312 4065 // is this a TV ON command?
mjr 77:0b96f6867312 4066 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 4067 {
mjr 77:0b96f6867312 4068 // It's a TV ON command - check if it's the one we're
mjr 77:0b96f6867312 4069 // looking for.
mjr 77:0b96f6867312 4070 if (n == tvon_ir_state)
mjr 77:0b96f6867312 4071 {
mjr 77:0b96f6867312 4072 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 4073 // pushing its virtual button.
mjr 77:0b96f6867312 4074 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 4075 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 4076
mjr 77:0b96f6867312 4077 // Pushing the button starts transmission, and once
mjr 88:98bce687e6c0 4078 // started, the transmission runs to completion even
mjr 88:98bce687e6c0 4079 // if the button is no longer pushed. So we can
mjr 88:98bce687e6c0 4080 // immediately un-push the button, since we only need
mjr 88:98bce687e6c0 4081 // to send the code once.
mjr 77:0b96f6867312 4082 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 4083
mjr 77:0b96f6867312 4084 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 4085 // await the end of this transmission and move on to
mjr 77:0b96f6867312 4086 // the next one.
mjr 77:0b96f6867312 4087 psu2_state = 6;
mjr 77:0b96f6867312 4088 tvon_ir_state++;
mjr 77:0b96f6867312 4089 break;
mjr 77:0b96f6867312 4090 }
mjr 77:0b96f6867312 4091
mjr 77:0b96f6867312 4092 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 4093 ++n;
mjr 77:0b96f6867312 4094 }
mjr 77:0b96f6867312 4095 }
mjr 77:0b96f6867312 4096 }
mjr 33:d832bcab089e 4097 break;
mjr 33:d832bcab089e 4098 }
mjr 77:0b96f6867312 4099
mjr 77:0b96f6867312 4100 // update the diagnostic LEDs
mjr 77:0b96f6867312 4101 diagLED();
mjr 33:d832bcab089e 4102 }
mjr 33:d832bcab089e 4103
mjr 77:0b96f6867312 4104 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4105 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4106 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4107 // are configured as NC.
mjr 77:0b96f6867312 4108 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4109 {
mjr 55:4db125cd11a0 4110 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4111 // time is nonzero
mjr 77:0b96f6867312 4112 powerStatusTimer.reset();
mjr 77:0b96f6867312 4113 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4114 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4115 {
mjr 77:0b96f6867312 4116 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4117 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4118 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4119
mjr 77:0b96f6867312 4120 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4121 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4122 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4123
mjr 77:0b96f6867312 4124 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4125 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4126 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4127 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4128
mjr 77:0b96f6867312 4129 // Start the TV timer
mjr 77:0b96f6867312 4130 powerStatusTimer.start();
mjr 35:e959ffba78fd 4131 }
mjr 35:e959ffba78fd 4132 }
mjr 35:e959ffba78fd 4133
mjr 73:4e8ce0b18915 4134 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4135 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4136 //
mjr 73:4e8ce0b18915 4137 // Mode:
mjr 73:4e8ce0b18915 4138 // 0 = turn relay off
mjr 73:4e8ce0b18915 4139 // 1 = turn relay on
mjr 73:4e8ce0b18915 4140 // 2 = pulse relay
mjr 73:4e8ce0b18915 4141 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4142 {
mjr 73:4e8ce0b18915 4143 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4144 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4145 return;
mjr 73:4e8ce0b18915 4146
mjr 73:4e8ce0b18915 4147 switch (mode)
mjr 73:4e8ce0b18915 4148 {
mjr 73:4e8ce0b18915 4149 case 0:
mjr 73:4e8ce0b18915 4150 // relay off
mjr 73:4e8ce0b18915 4151 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4152 break;
mjr 73:4e8ce0b18915 4153
mjr 73:4e8ce0b18915 4154 case 1:
mjr 73:4e8ce0b18915 4155 // relay on
mjr 73:4e8ce0b18915 4156 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4157 break;
mjr 73:4e8ce0b18915 4158
mjr 73:4e8ce0b18915 4159 case 2:
mjr 79:682ae3171a08 4160 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 4161 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 4162 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4163 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 4164 break;
mjr 73:4e8ce0b18915 4165 }
mjr 73:4e8ce0b18915 4166 }
mjr 73:4e8ce0b18915 4167
mjr 73:4e8ce0b18915 4168
mjr 35:e959ffba78fd 4169 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4170 //
mjr 35:e959ffba78fd 4171 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4172 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4173 //
mjr 35:e959ffba78fd 4174 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4175 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4176 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4177 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4178 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4179 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4180 //
mjr 35:e959ffba78fd 4181 NVM nvm;
mjr 35:e959ffba78fd 4182
mjr 86:e30a1f60f783 4183 // Save Config followup time, in seconds. After a successful save,
mjr 86:e30a1f60f783 4184 // we leave the success flag on in the status for this interval. At
mjr 86:e30a1f60f783 4185 // the end of the interval, we reboot the device if requested.
mjr 86:e30a1f60f783 4186 uint8_t saveConfigFollowupTime;
mjr 86:e30a1f60f783 4187
mjr 86:e30a1f60f783 4188 // is a reboot pending at the end of the config save followup interval?
mjr 86:e30a1f60f783 4189 uint8_t saveConfigRebootPending;
mjr 77:0b96f6867312 4190
mjr 79:682ae3171a08 4191 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 4192 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 4193
mjr 86:e30a1f60f783 4194 // Timer for configuration change followup timer
mjr 86:e30a1f60f783 4195 ExtTimer saveConfigFollowupTimer;
mjr 86:e30a1f60f783 4196
mjr 86:e30a1f60f783 4197
mjr 35:e959ffba78fd 4198 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4199 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4200
mjr 35:e959ffba78fd 4201 // flash memory controller interface
mjr 35:e959ffba78fd 4202 FreescaleIAP iap;
mjr 35:e959ffba78fd 4203
mjr 79:682ae3171a08 4204 // figure the flash address for the config data
mjr 79:682ae3171a08 4205 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 4206 {
mjr 79:682ae3171a08 4207 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 4208 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 4209
mjr 79:682ae3171a08 4210 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 4211 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 4212
mjr 79:682ae3171a08 4213 // locate it at the top of memory
mjr 79:682ae3171a08 4214 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 4215
mjr 79:682ae3171a08 4216 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 4217 return (const NVM *)addr;
mjr 35:e959ffba78fd 4218 }
mjr 35:e959ffba78fd 4219
mjr 76:7f5912b6340e 4220 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4221 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4222 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4223 // in either case.
mjr 76:7f5912b6340e 4224 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4225 {
mjr 35:e959ffba78fd 4226 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4227 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4228 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4229 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4230 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4231 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4232 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4233 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4234 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4235 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4236 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4237 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4238 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4239 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4240 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4241 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4242
mjr 35:e959ffba78fd 4243 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 4244 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4245
mjr 35:e959ffba78fd 4246 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 4247 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 4248 if (nvm_valid)
mjr 35:e959ffba78fd 4249 {
mjr 35:e959ffba78fd 4250 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 4251 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 4252 }
mjr 35:e959ffba78fd 4253 else
mjr 35:e959ffba78fd 4254 {
mjr 76:7f5912b6340e 4255 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 4256 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 4257 }
mjr 76:7f5912b6340e 4258
mjr 76:7f5912b6340e 4259 // tell the caller what happened
mjr 76:7f5912b6340e 4260 return nvm_valid;
mjr 35:e959ffba78fd 4261 }
mjr 35:e959ffba78fd 4262
mjr 86:e30a1f60f783 4263 // Save the config. Returns true on success, false on failure.
mjr 86:e30a1f60f783 4264 // 'tFollowup' is the follow-up time in seconds. If the write is
mjr 86:e30a1f60f783 4265 // successful, we'll turn on the success flag in the status reports
mjr 86:e30a1f60f783 4266 // and leave it on for this interval. If 'reboot' is true, we'll
mjr 86:e30a1f60f783 4267 // also schedule a reboot at the end of the followup interval.
mjr 86:e30a1f60f783 4268 bool saveConfigToFlash(int tFollowup, bool reboot)
mjr 33:d832bcab089e 4269 {
mjr 76:7f5912b6340e 4270 // make sure the plunger sensor isn't busy
mjr 76:7f5912b6340e 4271 waitPlungerIdle();
mjr 76:7f5912b6340e 4272
mjr 76:7f5912b6340e 4273 // get the config block location in the flash memory
mjr 77:0b96f6867312 4274 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 4275
mjr 79:682ae3171a08 4276 // save the data
mjr 86:e30a1f60f783 4277 if (nvm.save(iap, addr))
mjr 86:e30a1f60f783 4278 {
mjr 86:e30a1f60f783 4279 // success - report the successful save in the status flags
mjr 86:e30a1f60f783 4280 saveConfigSucceededFlag = 0x40;
mjr 86:e30a1f60f783 4281
mjr 86:e30a1f60f783 4282 // start the followup timer
mjr 87:8d35c74403af 4283 saveConfigFollowupTime = tFollowup;
mjr 87:8d35c74403af 4284 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 4285 saveConfigFollowupTimer.start();
mjr 86:e30a1f60f783 4286
mjr 86:e30a1f60f783 4287 // if a reboot is pending, flag it
mjr 86:e30a1f60f783 4288 saveConfigRebootPending = reboot;
mjr 86:e30a1f60f783 4289
mjr 86:e30a1f60f783 4290 // return success
mjr 86:e30a1f60f783 4291 return true;
mjr 86:e30a1f60f783 4292 }
mjr 86:e30a1f60f783 4293 else
mjr 86:e30a1f60f783 4294 {
mjr 86:e30a1f60f783 4295 // return failure
mjr 86:e30a1f60f783 4296 return false;
mjr 86:e30a1f60f783 4297 }
mjr 76:7f5912b6340e 4298 }
mjr 76:7f5912b6340e 4299
mjr 76:7f5912b6340e 4300 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 4301 //
mjr 76:7f5912b6340e 4302 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 4303 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 4304 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 4305 // downloading it to the device.
mjr 76:7f5912b6340e 4306 //
mjr 76:7f5912b6340e 4307 // Ideally, we'd use the host-loaded memory for all configuration updates,
mjr 76:7f5912b6340e 4308 // because the KL25Z doesn't seem to be 100% reliable writing flash itself.
mjr 76:7f5912b6340e 4309 // There seems to be a chance of memory bus contention while a write is in
mjr 76:7f5912b6340e 4310 // progress, which can either corrupt the write or cause the CPU to lock up
mjr 76:7f5912b6340e 4311 // before the write is completed. It seems more reliable to program the
mjr 76:7f5912b6340e 4312 // flash externally, via the OpenSDA connection. Unfortunately, none of
mjr 76:7f5912b6340e 4313 // the available OpenSDA versions are capable of programming specific flash
mjr 76:7f5912b6340e 4314 // sectors; they always erase the entire flash memory space. We *could*
mjr 76:7f5912b6340e 4315 // make the Windows config program simply re-download the entire firmware
mjr 76:7f5912b6340e 4316 // for every configuration update, but I'd rather not because of the extra
mjr 76:7f5912b6340e 4317 // wear this would put on the flash. So, as a compromise, we'll use the
mjr 76:7f5912b6340e 4318 // host-loaded config whenever the user explicitly updates the firmware,
mjr 76:7f5912b6340e 4319 // but we'll use the on-board writer when only making a config change.
mjr 76:7f5912b6340e 4320 //
mjr 76:7f5912b6340e 4321 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 4322 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 4323 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 4324 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 4325 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 4326 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 4327 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 4328 //
mjr 76:7f5912b6340e 4329 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 4330 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 4331 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 4332 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 4333 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 4334 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 4335 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 4336 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 4337 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 4338 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 4339
mjr 76:7f5912b6340e 4340 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 4341 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 4342 {
mjr 76:7f5912b6340e 4343 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 4344 // 32-byte signature header
mjr 76:7f5912b6340e 4345 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 4346 };
mjr 76:7f5912b6340e 4347
mjr 76:7f5912b6340e 4348 // forward reference to config var store function
mjr 76:7f5912b6340e 4349 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 4350
mjr 76:7f5912b6340e 4351 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 4352 // configuration object.
mjr 76:7f5912b6340e 4353 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 4354 {
mjr 76:7f5912b6340e 4355 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 4356 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 4357 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 4358 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 4359 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 4360 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 4361 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 4362 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 4363 {
mjr 76:7f5912b6340e 4364 // load this variable
mjr 76:7f5912b6340e 4365 configVarSet(p);
mjr 76:7f5912b6340e 4366 }
mjr 35:e959ffba78fd 4367 }
mjr 35:e959ffba78fd 4368
mjr 35:e959ffba78fd 4369 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4370 //
mjr 55:4db125cd11a0 4371 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 4372 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 4373 //
mjr 55:4db125cd11a0 4374 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 4375 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 4376 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 4377
mjr 55:4db125cd11a0 4378
mjr 55:4db125cd11a0 4379
mjr 55:4db125cd11a0 4380 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 4381 //
mjr 40:cc0d9814522b 4382 // Night mode setting updates
mjr 40:cc0d9814522b 4383 //
mjr 38:091e511ce8a0 4384
mjr 38:091e511ce8a0 4385 // Turn night mode on or off
mjr 38:091e511ce8a0 4386 static void setNightMode(bool on)
mjr 38:091e511ce8a0 4387 {
mjr 77:0b96f6867312 4388 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 4389 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 4390 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 4391 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 4392
mjr 40:cc0d9814522b 4393 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 4394 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 4395 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 4396 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 4397
mjr 76:7f5912b6340e 4398 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 4399 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 4400 // mode change.
mjr 76:7f5912b6340e 4401 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 4402 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 4403
mjr 76:7f5912b6340e 4404 // update 74HC595 outputs
mjr 76:7f5912b6340e 4405 if (hc595 != 0)
mjr 76:7f5912b6340e 4406 hc595->update();
mjr 38:091e511ce8a0 4407 }
mjr 38:091e511ce8a0 4408
mjr 38:091e511ce8a0 4409 // Toggle night mode
mjr 38:091e511ce8a0 4410 static void toggleNightMode()
mjr 38:091e511ce8a0 4411 {
mjr 53:9b2611964afc 4412 setNightMode(!nightMode);
mjr 38:091e511ce8a0 4413 }
mjr 38:091e511ce8a0 4414
mjr 38:091e511ce8a0 4415
mjr 38:091e511ce8a0 4416 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 4417 //
mjr 35:e959ffba78fd 4418 // Plunger Sensor
mjr 35:e959ffba78fd 4419 //
mjr 35:e959ffba78fd 4420
mjr 35:e959ffba78fd 4421 // the plunger sensor interface object
mjr 35:e959ffba78fd 4422 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 4423
mjr 87:8d35c74403af 4424 // wait for the plunger sensor to complete any outstanding DMA transfer
mjr 76:7f5912b6340e 4425 static void waitPlungerIdle(void)
mjr 76:7f5912b6340e 4426 {
mjr 87:8d35c74403af 4427 while (plungerSensor->dmaBusy()) { }
mjr 76:7f5912b6340e 4428 }
mjr 76:7f5912b6340e 4429
mjr 35:e959ffba78fd 4430 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 4431 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 4432 void createPlunger()
mjr 35:e959ffba78fd 4433 {
mjr 35:e959ffba78fd 4434 // create the new sensor object according to the type
mjr 35:e959ffba78fd 4435 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 4436 {
mjr 82:4f6209cb5c33 4437 case PlungerType_TSL1410R:
mjr 82:4f6209cb5c33 4438 // TSL1410R, shadow edge detector
mjr 35:e959ffba78fd 4439 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4440 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 4441 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4442 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4443 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 4444 break;
mjr 35:e959ffba78fd 4445
mjr 82:4f6209cb5c33 4446 case PlungerType_TSL1412S:
mjr 82:4f6209cb5c33 4447 // TSL1412S, shadow edge detector
mjr 82:4f6209cb5c33 4448 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4449 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 4450 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4451 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4452 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 4453 break;
mjr 35:e959ffba78fd 4454
mjr 35:e959ffba78fd 4455 case PlungerType_Pot:
mjr 82:4f6209cb5c33 4456 // Potentiometer (or any other sensor with a linear analog voltage
mjr 82:4f6209cb5c33 4457 // reading as the proxy for the position)
mjr 82:4f6209cb5c33 4458 // pins are: AO (analog in)
mjr 53:9b2611964afc 4459 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 4460 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 4461 break;
mjr 82:4f6209cb5c33 4462
mjr 82:4f6209cb5c33 4463 case PlungerType_OptQuad:
mjr 82:4f6209cb5c33 4464 // Optical quadrature sensor, AEDR8300-K or similar. The -K is
mjr 82:4f6209cb5c33 4465 // designed for a 75 LPI scale, which translates to 300 pulses/inch.
mjr 82:4f6209cb5c33 4466 // Pins are: CHA, CHB (quadrature pulse inputs).
mjr 82:4f6209cb5c33 4467 plungerSensor = new PlungerSensorQuad(
mjr 82:4f6209cb5c33 4468 300,
mjr 82:4f6209cb5c33 4469 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4470 wirePinName(cfg.plunger.sensorPin[1]));
mjr 82:4f6209cb5c33 4471 break;
mjr 82:4f6209cb5c33 4472
mjr 82:4f6209cb5c33 4473 case PlungerType_TSL1401CL:
mjr 82:4f6209cb5c33 4474 // TSL1401CL, absolute position encoder with bar code scale
mjr 82:4f6209cb5c33 4475 // pins are: SI, CLOCK, AO
mjr 82:4f6209cb5c33 4476 plungerSensor = new PlungerSensorTSL1401CL(
mjr 82:4f6209cb5c33 4477 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4478 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4479 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 4480 break;
mjr 82:4f6209cb5c33 4481
mjr 82:4f6209cb5c33 4482 case PlungerType_VL6180X:
mjr 82:4f6209cb5c33 4483 // VL6180X time-of-flight IR distance sensor
mjr 82:4f6209cb5c33 4484 // pins are: SDL, SCL, GPIO0/CE
mjr 82:4f6209cb5c33 4485 plungerSensor = new PlungerSensorVL6180X(
mjr 82:4f6209cb5c33 4486 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4487 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4488 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 4489 break;
mjr 82:4f6209cb5c33 4490
mjr 35:e959ffba78fd 4491 case PlungerType_None:
mjr 35:e959ffba78fd 4492 default:
mjr 35:e959ffba78fd 4493 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 4494 break;
mjr 35:e959ffba78fd 4495 }
mjr 86:e30a1f60f783 4496
mjr 87:8d35c74403af 4497 // initialize the config variables affecting the plunger
mjr 87:8d35c74403af 4498 plungerSensor->onConfigChange(19, cfg);
mjr 87:8d35c74403af 4499 plungerSensor->onConfigChange(20, cfg);
mjr 33:d832bcab089e 4500 }
mjr 33:d832bcab089e 4501
mjr 52:8298b2a73eb2 4502 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 4503 bool plungerCalMode;
mjr 52:8298b2a73eb2 4504
mjr 48:058ace2aed1d 4505 // Plunger reader
mjr 51:57eb311faafa 4506 //
mjr 51:57eb311faafa 4507 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 4508 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 4509 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 4510 //
mjr 51:57eb311faafa 4511 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 4512 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 4513 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 4514 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 4515 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 4516 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 4517 // firing motion.
mjr 51:57eb311faafa 4518 //
mjr 51:57eb311faafa 4519 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 4520 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 4521 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 4522 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 4523 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 4524 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 4525 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 4526 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 4527 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 4528 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 4529 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 4530 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 4531 // a classic digital aliasing effect.
mjr 51:57eb311faafa 4532 //
mjr 51:57eb311faafa 4533 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 4534 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 4535 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 4536 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 4537 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 4538 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 4539 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 4540 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 4541 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 4542 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 4543 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 4544 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 4545 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 4546 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 4547 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 4548 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 4549 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 4550 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 4551 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 4552 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 4553 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 4554 //
mjr 48:058ace2aed1d 4555 class PlungerReader
mjr 48:058ace2aed1d 4556 {
mjr 48:058ace2aed1d 4557 public:
mjr 48:058ace2aed1d 4558 PlungerReader()
mjr 48:058ace2aed1d 4559 {
mjr 48:058ace2aed1d 4560 // not in a firing event yet
mjr 48:058ace2aed1d 4561 firing = 0;
mjr 48:058ace2aed1d 4562 }
mjr 76:7f5912b6340e 4563
mjr 48:058ace2aed1d 4564 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 4565 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 4566 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 4567 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 4568 void read()
mjr 48:058ace2aed1d 4569 {
mjr 76:7f5912b6340e 4570 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 4571 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 4572 return;
mjr 76:7f5912b6340e 4573
mjr 48:058ace2aed1d 4574 // Read a sample from the sensor
mjr 48:058ace2aed1d 4575 PlungerReading r;
mjr 48:058ace2aed1d 4576 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 4577 {
mjr 53:9b2611964afc 4578 // check for calibration mode
mjr 53:9b2611964afc 4579 if (plungerCalMode)
mjr 53:9b2611964afc 4580 {
mjr 53:9b2611964afc 4581 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 4582 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 4583 // expand the envelope to include this new value.
mjr 53:9b2611964afc 4584 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 4585 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 4586 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 4587 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 4588
mjr 76:7f5912b6340e 4589 // update our cached calibration data
mjr 76:7f5912b6340e 4590 onUpdateCal();
mjr 50:40015764bbe6 4591
mjr 53:9b2611964afc 4592 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 4593 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 4594 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 4595 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 4596 if (calState == 0)
mjr 53:9b2611964afc 4597 {
mjr 53:9b2611964afc 4598 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 4599 {
mjr 53:9b2611964afc 4600 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 4601 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 4602 {
mjr 53:9b2611964afc 4603 // we've been at rest long enough - count it
mjr 53:9b2611964afc 4604 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 4605 calZeroPosN += 1;
mjr 53:9b2611964afc 4606
mjr 53:9b2611964afc 4607 // update the zero position from the new average
mjr 53:9b2611964afc 4608 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 4609 onUpdateCal();
mjr 53:9b2611964afc 4610
mjr 53:9b2611964afc 4611 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 4612 calState = 1;
mjr 53:9b2611964afc 4613 }
mjr 53:9b2611964afc 4614 }
mjr 53:9b2611964afc 4615 else
mjr 53:9b2611964afc 4616 {
mjr 53:9b2611964afc 4617 // we're not close to the last position - start again here
mjr 53:9b2611964afc 4618 calZeroStart = r;
mjr 53:9b2611964afc 4619 }
mjr 53:9b2611964afc 4620 }
mjr 53:9b2611964afc 4621
mjr 53:9b2611964afc 4622 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 4623 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 4624 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 4625 r.pos = int(
mjr 53:9b2611964afc 4626 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 4627 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 4628 }
mjr 53:9b2611964afc 4629 else
mjr 53:9b2611964afc 4630 {
mjr 53:9b2611964afc 4631 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 4632 // rescale to the joystick range.
mjr 76:7f5912b6340e 4633 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 4634
mjr 53:9b2611964afc 4635 // limit the result to the valid joystick range
mjr 53:9b2611964afc 4636 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 4637 r.pos = JOYMAX;
mjr 53:9b2611964afc 4638 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 4639 r.pos = -JOYMAX;
mjr 53:9b2611964afc 4640 }
mjr 50:40015764bbe6 4641
mjr 87:8d35c74403af 4642 // Look for a firing event - the user releasing the plunger and
mjr 87:8d35c74403af 4643 // allowing it to shoot forward at full speed. Wait at least 5ms
mjr 87:8d35c74403af 4644 // between samples for this, to help distinguish random motion
mjr 87:8d35c74403af 4645 // from the rapid motion of a firing event.
mjr 50:40015764bbe6 4646 //
mjr 87:8d35c74403af 4647 // There's a trade-off in the choice of minimum sampling interval.
mjr 87:8d35c74403af 4648 // The longer we wait, the more certain we can be of the trend.
mjr 87:8d35c74403af 4649 // But if we wait too long, the user will perceive a delay. We
mjr 87:8d35c74403af 4650 // also want to sample frequently enough to see the release motion
mjr 87:8d35c74403af 4651 // at intermediate steps along the way, so the sampling has to be
mjr 87:8d35c74403af 4652 // considerably faster than the whole travel time, which is about
mjr 87:8d35c74403af 4653 // 25-50ms.
mjr 87:8d35c74403af 4654 if (uint32_t(r.t - prv.t) < 5000UL)
mjr 87:8d35c74403af 4655 return;
mjr 87:8d35c74403af 4656
mjr 87:8d35c74403af 4657 // assume that we'll report this reading as-is
mjr 87:8d35c74403af 4658 z = r.pos;
mjr 87:8d35c74403af 4659
mjr 87:8d35c74403af 4660 // Firing event detection.
mjr 87:8d35c74403af 4661 //
mjr 87:8d35c74403af 4662 // A "firing event" is when the player releases the plunger from
mjr 87:8d35c74403af 4663 // a retracted position, allowing it to shoot forward under the
mjr 87:8d35c74403af 4664 // spring tension.
mjr 50:40015764bbe6 4665 //
mjr 87:8d35c74403af 4666 // We monitor the plunger motion for these events, and when they
mjr 87:8d35c74403af 4667 // occur, we report an "idealized" version of the motion to the
mjr 87:8d35c74403af 4668 // PC. The idealized version consists of a series of readings
mjr 87:8d35c74403af 4669 // frozen at the fully retracted position for the whole duration
mjr 87:8d35c74403af 4670 // of the forward travel, followed by a series of readings at the
mjr 87:8d35c74403af 4671 // fully forward position for long enough for the plunger to come
mjr 87:8d35c74403af 4672 // mostly to rest. The series of frozen readings aren't meant to
mjr 87:8d35c74403af 4673 // be perceptible to the player - we try to keep them short enough
mjr 87:8d35c74403af 4674 // that they're not apparent as delay. Instead, they're for the
mjr 87:8d35c74403af 4675 // PC client software's benefit. PC joystick clients use polling,
mjr 87:8d35c74403af 4676 // so they only see an unpredictable subset of the readings we
mjr 87:8d35c74403af 4677 // send. The only way to be sure that the client sees a particular
mjr 87:8d35c74403af 4678 // reading is to hold it for long enough that the client is sure to
mjr 87:8d35c74403af 4679 // poll within the hold interval. In the case of the plunger
mjr 87:8d35c74403af 4680 // firing motion, it's important that the client sees the *ends*
mjr 87:8d35c74403af 4681 // of the travel - the fully retracted starting position in
mjr 87:8d35c74403af 4682 // particular. If the PC client only polls for a sample while the
mjr 87:8d35c74403af 4683 // plunger is somewhere in the middle of the travel, the PC will
mjr 87:8d35c74403af 4684 // think that the firing motion *started* in that middle position,
mjr 87:8d35c74403af 4685 // so it won't be able to model the right amount of momentum when
mjr 87:8d35c74403af 4686 // the plunger hits the ball. We try to ensure that the PC sees
mjr 87:8d35c74403af 4687 // the right starting point by reporting the starting point for
mjr 87:8d35c74403af 4688 // extra time during the forward motion. By the same token, we
mjr 87:8d35c74403af 4689 // want the PC to know that the plunger has moved all the way
mjr 87:8d35c74403af 4690 // forward, rather than mistakenly thinking that it stopped
mjr 87:8d35c74403af 4691 // somewhere in the middle of the travel, so we freeze at the
mjr 87:8d35c74403af 4692 // forward position for a short time.
mjr 76:7f5912b6340e 4693 //
mjr 87:8d35c74403af 4694 // To detect a firing event, we look for forward motion that's
mjr 87:8d35c74403af 4695 // fast enough to be a firing event. To determine how fast is
mjr 87:8d35c74403af 4696 // fast enough, we use a simple model of the plunger motion where
mjr 87:8d35c74403af 4697 // the acceleration is constant. This is only an approximation,
mjr 87:8d35c74403af 4698 // as the spring force actually varies with spring's compression,
mjr 87:8d35c74403af 4699 // but it's close enough for our purposes here.
mjr 87:8d35c74403af 4700 //
mjr 87:8d35c74403af 4701 // Do calculations in fixed-point 2^48 scale with 64-bit ints.
mjr 87:8d35c74403af 4702 // acc2 = acceleration/2 for 50ms release time, units of unit
mjr 87:8d35c74403af 4703 // distances per microsecond squared, where the unit distance
mjr 87:8d35c74403af 4704 // is the overall travel from the starting retracted position
mjr 87:8d35c74403af 4705 // to the park position.
mjr 87:8d35c74403af 4706 const int32_t acc2 = 112590; // 2^48 scale
mjr 50:40015764bbe6 4707 switch (firing)
mjr 50:40015764bbe6 4708 {
mjr 50:40015764bbe6 4709 case 0:
mjr 87:8d35c74403af 4710 // Not in firing mode. If we're retracted a bit, and the
mjr 87:8d35c74403af 4711 // motion is forward at a fast enough rate to look like a
mjr 87:8d35c74403af 4712 // release, enter firing mode.
mjr 87:8d35c74403af 4713 if (r.pos > JOYMAX/6)
mjr 50:40015764bbe6 4714 {
mjr 87:8d35c74403af 4715 const uint32_t dt = uint32_t(r.t - prv.t);
mjr 87:8d35c74403af 4716 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 4717 if (r.pos < prv.pos - int((prv.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 4718 {
mjr 87:8d35c74403af 4719 // Tentatively enter firing mode. Use the prior reading
mjr 87:8d35c74403af 4720 // as the starting point, and freeze reports for now.
mjr 87:8d35c74403af 4721 firingMode(1);
mjr 87:8d35c74403af 4722 f0 = prv;
mjr 87:8d35c74403af 4723 z = f0.pos;
mjr 87:8d35c74403af 4724
mjr 87:8d35c74403af 4725 // if in calibration state 1 (at rest), switch to
mjr 87:8d35c74403af 4726 // state 2 (not at rest)
mjr 87:8d35c74403af 4727 if (calState == 1)
mjr 87:8d35c74403af 4728 calState = 2;
mjr 87:8d35c74403af 4729 }
mjr 50:40015764bbe6 4730 }
mjr 50:40015764bbe6 4731 break;
mjr 50:40015764bbe6 4732
mjr 50:40015764bbe6 4733 case 1:
mjr 87:8d35c74403af 4734 // Tentative firing mode: the plunger was moving forward
mjr 87:8d35c74403af 4735 // at last check. To stay in firing mode, the plunger has
mjr 87:8d35c74403af 4736 // to keep moving forward fast enough to look like it's
mjr 87:8d35c74403af 4737 // moving under spring force. To figure out how fast is
mjr 87:8d35c74403af 4738 // fast enough, we use a simple model where the acceleration
mjr 87:8d35c74403af 4739 // is constant over the whole travel distance and the total
mjr 87:8d35c74403af 4740 // travel time is 50ms. The acceleration actually varies
mjr 87:8d35c74403af 4741 // slightly since it comes from the spring force, which
mjr 87:8d35c74403af 4742 // is linear in the displacement; but the plunger spring is
mjr 87:8d35c74403af 4743 // fairly compressed even when the plunger is all the way
mjr 87:8d35c74403af 4744 // forward, so the difference in tension from one end of
mjr 87:8d35c74403af 4745 // the travel to the other is fairly small, so it's not too
mjr 87:8d35c74403af 4746 // far off to model it as constant. And the real travel
mjr 87:8d35c74403af 4747 // time obviously isn't a constant, but all we need for
mjr 87:8d35c74403af 4748 // that is an upper bound. So: we'll figure the time since
mjr 87:8d35c74403af 4749 // we entered firing mode, and figure the distance we should
mjr 87:8d35c74403af 4750 // have traveled to complete the trip within the maximum
mjr 87:8d35c74403af 4751 // time allowed. If we've moved far enough, we'll stay
mjr 87:8d35c74403af 4752 // in firing mode; if not, we'll exit firing mode. And if
mjr 87:8d35c74403af 4753 // we cross the finish line while still in firing mode,
mjr 87:8d35c74403af 4754 // we'll switch to the next phase of the firing event.
mjr 50:40015764bbe6 4755 if (r.pos <= 0)
mjr 50:40015764bbe6 4756 {
mjr 87:8d35c74403af 4757 // We crossed the park position. Switch to the second
mjr 87:8d35c74403af 4758 // phase of the firing event, where we hold the reported
mjr 87:8d35c74403af 4759 // position at the "bounce" position (where the plunger
mjr 87:8d35c74403af 4760 // is all the way forward, compressing the barrel spring).
mjr 87:8d35c74403af 4761 // We'll stick here long enough to ensure that the PC
mjr 87:8d35c74403af 4762 // client (Visual Pinball or whatever) sees the reading
mjr 87:8d35c74403af 4763 // and processes the release motion via the simulated
mjr 87:8d35c74403af 4764 // physics.
mjr 50:40015764bbe6 4765 firingMode(2);
mjr 53:9b2611964afc 4766
mjr 53:9b2611964afc 4767 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 4768 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 4769 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 4770 {
mjr 53:9b2611964afc 4771 // collect a new zero point for the average when we
mjr 53:9b2611964afc 4772 // come to rest
mjr 53:9b2611964afc 4773 calState = 0;
mjr 53:9b2611964afc 4774
mjr 87:8d35c74403af 4775 // collect average firing time statistics in millseconds,
mjr 87:8d35c74403af 4776 // if it's in range (20 to 255 ms)
mjr 87:8d35c74403af 4777 const int dt = uint32_t(r.t - f0.t)/1000UL;
mjr 87:8d35c74403af 4778 if (dt >= 15 && dt <= 255)
mjr 53:9b2611964afc 4779 {
mjr 53:9b2611964afc 4780 calRlsTimeSum += dt;
mjr 53:9b2611964afc 4781 calRlsTimeN += 1;
mjr 53:9b2611964afc 4782 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 4783 }
mjr 53:9b2611964afc 4784 }
mjr 87:8d35c74403af 4785
mjr 87:8d35c74403af 4786 // Figure the "bounce" position as forward of the park
mjr 87:8d35c74403af 4787 // position by 1/6 of the starting retraction distance.
mjr 87:8d35c74403af 4788 // This simulates the momentum of the plunger compressing
mjr 87:8d35c74403af 4789 // the barrel spring on the rebound. The barrel spring
mjr 87:8d35c74403af 4790 // can compress by about 1/6 of the maximum retraction
mjr 87:8d35c74403af 4791 // distance, so we'll simply treat its compression as
mjr 87:8d35c74403af 4792 // proportional to the retraction. (It might be more
mjr 87:8d35c74403af 4793 // realistic to use a slightly higher value here, maybe
mjr 87:8d35c74403af 4794 // 1/4 or 1/3 or the retraction distance, capping it at
mjr 87:8d35c74403af 4795 // a maximum of 1/6, because the real plunger probably
mjr 87:8d35c74403af 4796 // compresses the barrel spring by 100% with less than
mjr 87:8d35c74403af 4797 // 100% retraction. But that won't affect the physics
mjr 87:8d35c74403af 4798 // meaningfully, just the animation, and the effect is
mjr 87:8d35c74403af 4799 // small in any case.)
mjr 87:8d35c74403af 4800 z = f0.pos = -f0.pos / 6;
mjr 87:8d35c74403af 4801
mjr 87:8d35c74403af 4802 // reset the starting time for this phase
mjr 87:8d35c74403af 4803 f0.t = r.t;
mjr 50:40015764bbe6 4804 }
mjr 50:40015764bbe6 4805 else
mjr 50:40015764bbe6 4806 {
mjr 87:8d35c74403af 4807 // check for motion since the start of the firing event
mjr 87:8d35c74403af 4808 const uint32_t dt = uint32_t(r.t - f0.t);
mjr 87:8d35c74403af 4809 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 4810 if (dt < 50000
mjr 87:8d35c74403af 4811 && r.pos < f0.pos - int((f0.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 4812 {
mjr 87:8d35c74403af 4813 // It's moving fast enough to still be in a release
mjr 87:8d35c74403af 4814 // motion. Continue reporting the start position, and
mjr 87:8d35c74403af 4815 // stay in the first release phase.
mjr 87:8d35c74403af 4816 z = f0.pos;
mjr 87:8d35c74403af 4817 }
mjr 87:8d35c74403af 4818 else
mjr 87:8d35c74403af 4819 {
mjr 87:8d35c74403af 4820 // It's not moving fast enough to be a release
mjr 87:8d35c74403af 4821 // motion. Return to the default state.
mjr 87:8d35c74403af 4822 firingMode(0);
mjr 87:8d35c74403af 4823 calState = 1;
mjr 87:8d35c74403af 4824 }
mjr 50:40015764bbe6 4825 }
mjr 50:40015764bbe6 4826 break;
mjr 50:40015764bbe6 4827
mjr 50:40015764bbe6 4828 case 2:
mjr 87:8d35c74403af 4829 // Firing mode, holding at forward compression position.
mjr 87:8d35c74403af 4830 // Hold here for 25ms.
mjr 87:8d35c74403af 4831 if (uint32_t(r.t - f0.t) < 25000)
mjr 50:40015764bbe6 4832 {
mjr 87:8d35c74403af 4833 // stay here for now
mjr 87:8d35c74403af 4834 z = f0.pos;
mjr 50:40015764bbe6 4835 }
mjr 50:40015764bbe6 4836 else
mjr 50:40015764bbe6 4837 {
mjr 87:8d35c74403af 4838 // advance to the next phase, where we report the park
mjr 87:8d35c74403af 4839 // position until the plunger comes to rest
mjr 50:40015764bbe6 4840 firingMode(3);
mjr 50:40015764bbe6 4841 z = 0;
mjr 87:8d35c74403af 4842
mjr 87:8d35c74403af 4843 // remember when we started
mjr 87:8d35c74403af 4844 f0.t = r.t;
mjr 50:40015764bbe6 4845 }
mjr 50:40015764bbe6 4846 break;
mjr 50:40015764bbe6 4847
mjr 50:40015764bbe6 4848 case 3:
mjr 87:8d35c74403af 4849 // Firing event, holding at park position. Stay here for
mjr 87:8d35c74403af 4850 // a few moments so that the PC client can simulate the
mjr 87:8d35c74403af 4851 // full release motion, then return to real readings.
mjr 87:8d35c74403af 4852 if (uint32_t(r.t - f0.t) < 250000)
mjr 50:40015764bbe6 4853 {
mjr 87:8d35c74403af 4854 // stay here a while longer
mjr 87:8d35c74403af 4855 z = 0;
mjr 50:40015764bbe6 4856 }
mjr 50:40015764bbe6 4857 else
mjr 50:40015764bbe6 4858 {
mjr 87:8d35c74403af 4859 // it's been long enough - return to normal mode
mjr 87:8d35c74403af 4860 firingMode(0);
mjr 50:40015764bbe6 4861 }
mjr 50:40015764bbe6 4862 break;
mjr 50:40015764bbe6 4863 }
mjr 50:40015764bbe6 4864
mjr 82:4f6209cb5c33 4865 // Check for auto-zeroing, if enabled
mjr 82:4f6209cb5c33 4866 if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0)
mjr 82:4f6209cb5c33 4867 {
mjr 82:4f6209cb5c33 4868 // If we moved since the last reading, reset and restart the
mjr 82:4f6209cb5c33 4869 // auto-zero timer. Otherwise, if the timer has reached the
mjr 82:4f6209cb5c33 4870 // auto-zero timeout, it means we've been motionless for that
mjr 82:4f6209cb5c33 4871 // long, so auto-zero now.
mjr 82:4f6209cb5c33 4872 if (r.pos != prv.pos)
mjr 82:4f6209cb5c33 4873 {
mjr 82:4f6209cb5c33 4874 // movement detected - reset the timer
mjr 82:4f6209cb5c33 4875 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 4876 autoZeroTimer.start();
mjr 82:4f6209cb5c33 4877 }
mjr 82:4f6209cb5c33 4878 else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL)
mjr 82:4f6209cb5c33 4879 {
mjr 82:4f6209cb5c33 4880 // auto-zero now
mjr 82:4f6209cb5c33 4881 plungerSensor->autoZero();
mjr 82:4f6209cb5c33 4882
mjr 82:4f6209cb5c33 4883 // stop the timer so that we don't keep repeating this
mjr 82:4f6209cb5c33 4884 // if the plunger stays still for a long time
mjr 82:4f6209cb5c33 4885 autoZeroTimer.stop();
mjr 82:4f6209cb5c33 4886 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 4887 }
mjr 82:4f6209cb5c33 4888 }
mjr 82:4f6209cb5c33 4889
mjr 87:8d35c74403af 4890 // this new reading becomes the previous reading for next time
mjr 87:8d35c74403af 4891 prv = r;
mjr 48:058ace2aed1d 4892 }
mjr 48:058ace2aed1d 4893 }
mjr 48:058ace2aed1d 4894
mjr 48:058ace2aed1d 4895 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 4896 int16_t getPosition()
mjr 58:523fdcffbe6d 4897 {
mjr 86:e30a1f60f783 4898 // return the last reading
mjr 86:e30a1f60f783 4899 return z;
mjr 55:4db125cd11a0 4900 }
mjr 58:523fdcffbe6d 4901
mjr 48:058ace2aed1d 4902 // Set calibration mode on or off
mjr 52:8298b2a73eb2 4903 void setCalMode(bool f)
mjr 48:058ace2aed1d 4904 {
mjr 52:8298b2a73eb2 4905 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 4906 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 4907 {
mjr 52:8298b2a73eb2 4908 // reset the calibration in the configuration
mjr 48:058ace2aed1d 4909 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 4910
mjr 52:8298b2a73eb2 4911 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 4912 calState = 0;
mjr 52:8298b2a73eb2 4913 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 4914 calZeroPosN = 0;
mjr 52:8298b2a73eb2 4915 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 4916 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 4917
mjr 82:4f6209cb5c33 4918 // tell the plunger we're starting calibration
mjr 82:4f6209cb5c33 4919 plungerSensor->beginCalibration();
mjr 82:4f6209cb5c33 4920
mjr 52:8298b2a73eb2 4921 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 4922 PlungerReading r;
mjr 52:8298b2a73eb2 4923 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 4924 {
mjr 52:8298b2a73eb2 4925 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 4926 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 4927 onUpdateCal();
mjr 52:8298b2a73eb2 4928
mjr 52:8298b2a73eb2 4929 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 4930 calZeroStart = r;
mjr 52:8298b2a73eb2 4931 }
mjr 52:8298b2a73eb2 4932 else
mjr 52:8298b2a73eb2 4933 {
mjr 52:8298b2a73eb2 4934 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 4935 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 4936 onUpdateCal();
mjr 52:8298b2a73eb2 4937
mjr 52:8298b2a73eb2 4938 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 4939 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 4940 calZeroStart.t = 0;
mjr 53:9b2611964afc 4941 }
mjr 53:9b2611964afc 4942 }
mjr 53:9b2611964afc 4943 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 4944 {
mjr 53:9b2611964afc 4945 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 4946 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 4947 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 4948 // physically meaningless.
mjr 53:9b2611964afc 4949 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 4950 {
mjr 53:9b2611964afc 4951 // bad settings - reset to defaults
mjr 53:9b2611964afc 4952 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 4953 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 4954 onUpdateCal();
mjr 52:8298b2a73eb2 4955 }
mjr 52:8298b2a73eb2 4956 }
mjr 52:8298b2a73eb2 4957
mjr 48:058ace2aed1d 4958 // remember the new mode
mjr 52:8298b2a73eb2 4959 plungerCalMode = f;
mjr 48:058ace2aed1d 4960 }
mjr 48:058ace2aed1d 4961
mjr 76:7f5912b6340e 4962 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 4963 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 4964 // cached inverse is calculated as
mjr 76:7f5912b6340e 4965 //
mjr 76:7f5912b6340e 4966 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 4967 //
mjr 76:7f5912b6340e 4968 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 4969 //
mjr 76:7f5912b6340e 4970 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 4971 //
mjr 76:7f5912b6340e 4972 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 4973 int invCalRange;
mjr 76:7f5912b6340e 4974
mjr 76:7f5912b6340e 4975 // apply the calibration range to a reading
mjr 76:7f5912b6340e 4976 inline int applyCal(int reading)
mjr 76:7f5912b6340e 4977 {
mjr 76:7f5912b6340e 4978 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 4979 }
mjr 76:7f5912b6340e 4980
mjr 76:7f5912b6340e 4981 void onUpdateCal()
mjr 76:7f5912b6340e 4982 {
mjr 76:7f5912b6340e 4983 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 4984 }
mjr 76:7f5912b6340e 4985
mjr 48:058ace2aed1d 4986 // is a firing event in progress?
mjr 53:9b2611964afc 4987 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 4988
mjr 48:058ace2aed1d 4989 private:
mjr 87:8d35c74403af 4990 // current reported joystick reading
mjr 87:8d35c74403af 4991 int z;
mjr 87:8d35c74403af 4992
mjr 87:8d35c74403af 4993 // previous reading
mjr 87:8d35c74403af 4994 PlungerReading prv;
mjr 87:8d35c74403af 4995
mjr 52:8298b2a73eb2 4996 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 4997 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 4998 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 4999 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5000 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5001 // 1 = at rest
mjr 52:8298b2a73eb2 5002 // 2 = retracting
mjr 52:8298b2a73eb2 5003 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5004 uint8_t calState;
mjr 52:8298b2a73eb2 5005
mjr 52:8298b2a73eb2 5006 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5007 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5008 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5009 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5010 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5011 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5012 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5013 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5014 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5015 long calZeroPosSum;
mjr 52:8298b2a73eb2 5016 int calZeroPosN;
mjr 52:8298b2a73eb2 5017
mjr 52:8298b2a73eb2 5018 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5019 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5020 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5021 int calRlsTimeN;
mjr 52:8298b2a73eb2 5022
mjr 85:3c28aee81cde 5023 // Auto-zeroing timer
mjr 85:3c28aee81cde 5024 Timer autoZeroTimer;
mjr 85:3c28aee81cde 5025
mjr 48:058ace2aed1d 5026 // set a firing mode
mjr 48:058ace2aed1d 5027 inline void firingMode(int m)
mjr 48:058ace2aed1d 5028 {
mjr 48:058ace2aed1d 5029 firing = m;
mjr 48:058ace2aed1d 5030 }
mjr 48:058ace2aed1d 5031
mjr 48:058ace2aed1d 5032 // Firing event state.
mjr 48:058ace2aed1d 5033 //
mjr 87:8d35c74403af 5034 // 0 - Default state: not in firing event. We report the true
mjr 87:8d35c74403af 5035 // instantaneous plunger position to the joystick interface.
mjr 48:058ace2aed1d 5036 //
mjr 87:8d35c74403af 5037 // 1 - Moving forward at release speed
mjr 48:058ace2aed1d 5038 //
mjr 87:8d35c74403af 5039 // 2 - Firing - reporting the bounce position
mjr 87:8d35c74403af 5040 //
mjr 87:8d35c74403af 5041 // 3 - Firing - reporting the park position
mjr 48:058ace2aed1d 5042 //
mjr 48:058ace2aed1d 5043 int firing;
mjr 48:058ace2aed1d 5044
mjr 87:8d35c74403af 5045 // Starting position for current firing mode phase
mjr 87:8d35c74403af 5046 PlungerReading f0;
mjr 48:058ace2aed1d 5047 };
mjr 48:058ace2aed1d 5048
mjr 48:058ace2aed1d 5049 // plunger reader singleton
mjr 48:058ace2aed1d 5050 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5051
mjr 48:058ace2aed1d 5052 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5053 //
mjr 48:058ace2aed1d 5054 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5055 //
mjr 48:058ace2aed1d 5056 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5057 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5058 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5059 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5060 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5061 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5062 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5063 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5064 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5065 //
mjr 48:058ace2aed1d 5066 // This feature has two configuration components:
mjr 48:058ace2aed1d 5067 //
mjr 48:058ace2aed1d 5068 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5069 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5070 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5071 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5072 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5073 // plunger/launch button connection.
mjr 48:058ace2aed1d 5074 //
mjr 48:058ace2aed1d 5075 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5076 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5077 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5078 // position.
mjr 48:058ace2aed1d 5079 //
mjr 48:058ace2aed1d 5080 class ZBLaunchBall
mjr 48:058ace2aed1d 5081 {
mjr 48:058ace2aed1d 5082 public:
mjr 48:058ace2aed1d 5083 ZBLaunchBall()
mjr 48:058ace2aed1d 5084 {
mjr 48:058ace2aed1d 5085 // start in the default state
mjr 48:058ace2aed1d 5086 lbState = 0;
mjr 53:9b2611964afc 5087 btnState = false;
mjr 48:058ace2aed1d 5088 }
mjr 48:058ace2aed1d 5089
mjr 48:058ace2aed1d 5090 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5091 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5092 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5093 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5094 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5095 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5096 void update()
mjr 48:058ace2aed1d 5097 {
mjr 53:9b2611964afc 5098 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5099 // plunger firing event
mjr 53:9b2611964afc 5100 if (zbLaunchOn)
mjr 48:058ace2aed1d 5101 {
mjr 53:9b2611964afc 5102 // note the new position
mjr 48:058ace2aed1d 5103 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5104
mjr 53:9b2611964afc 5105 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5106 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5107
mjr 53:9b2611964afc 5108 // check the state
mjr 48:058ace2aed1d 5109 switch (lbState)
mjr 48:058ace2aed1d 5110 {
mjr 48:058ace2aed1d 5111 case 0:
mjr 53:9b2611964afc 5112 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5113 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5114 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5115 // the button.
mjr 53:9b2611964afc 5116 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5117 {
mjr 53:9b2611964afc 5118 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5119 lbTimer.reset();
mjr 53:9b2611964afc 5120 lbTimer.start();
mjr 53:9b2611964afc 5121 setButton(true);
mjr 53:9b2611964afc 5122
mjr 53:9b2611964afc 5123 // switch to state 1
mjr 53:9b2611964afc 5124 lbState = 1;
mjr 53:9b2611964afc 5125 }
mjr 48:058ace2aed1d 5126 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5127 {
mjr 53:9b2611964afc 5128 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5129 // button as long as we're pushed forward
mjr 53:9b2611964afc 5130 setButton(true);
mjr 53:9b2611964afc 5131 }
mjr 53:9b2611964afc 5132 else
mjr 53:9b2611964afc 5133 {
mjr 53:9b2611964afc 5134 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5135 setButton(false);
mjr 53:9b2611964afc 5136 }
mjr 48:058ace2aed1d 5137 break;
mjr 48:058ace2aed1d 5138
mjr 48:058ace2aed1d 5139 case 1:
mjr 53:9b2611964afc 5140 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5141 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5142 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5143 {
mjr 53:9b2611964afc 5144 // timer expired - turn off the button
mjr 53:9b2611964afc 5145 setButton(false);
mjr 53:9b2611964afc 5146
mjr 53:9b2611964afc 5147 // switch to state 2
mjr 53:9b2611964afc 5148 lbState = 2;
mjr 53:9b2611964afc 5149 }
mjr 48:058ace2aed1d 5150 break;
mjr 48:058ace2aed1d 5151
mjr 48:058ace2aed1d 5152 case 2:
mjr 53:9b2611964afc 5153 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5154 // plunger launch event to end.
mjr 53:9b2611964afc 5155 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5156 {
mjr 53:9b2611964afc 5157 // firing event done - return to default state
mjr 53:9b2611964afc 5158 lbState = 0;
mjr 53:9b2611964afc 5159 }
mjr 48:058ace2aed1d 5160 break;
mjr 48:058ace2aed1d 5161 }
mjr 53:9b2611964afc 5162 }
mjr 53:9b2611964afc 5163 else
mjr 53:9b2611964afc 5164 {
mjr 53:9b2611964afc 5165 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5166 setButton(false);
mjr 48:058ace2aed1d 5167
mjr 53:9b2611964afc 5168 // return to the default state
mjr 53:9b2611964afc 5169 lbState = 0;
mjr 48:058ace2aed1d 5170 }
mjr 48:058ace2aed1d 5171 }
mjr 53:9b2611964afc 5172
mjr 53:9b2611964afc 5173 // Set the button state
mjr 53:9b2611964afc 5174 void setButton(bool on)
mjr 53:9b2611964afc 5175 {
mjr 53:9b2611964afc 5176 if (btnState != on)
mjr 53:9b2611964afc 5177 {
mjr 53:9b2611964afc 5178 // remember the new state
mjr 53:9b2611964afc 5179 btnState = on;
mjr 53:9b2611964afc 5180
mjr 53:9b2611964afc 5181 // update the virtual button state
mjr 65:739875521aae 5182 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5183 }
mjr 53:9b2611964afc 5184 }
mjr 53:9b2611964afc 5185
mjr 48:058ace2aed1d 5186 private:
mjr 48:058ace2aed1d 5187 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5188 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5189 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5190 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5191 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5192 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5193 //
mjr 48:058ace2aed1d 5194 // States:
mjr 48:058ace2aed1d 5195 // 0 = default
mjr 53:9b2611964afc 5196 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5197 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5198 // firing event to end)
mjr 53:9b2611964afc 5199 uint8_t lbState;
mjr 48:058ace2aed1d 5200
mjr 53:9b2611964afc 5201 // button state
mjr 53:9b2611964afc 5202 bool btnState;
mjr 48:058ace2aed1d 5203
mjr 48:058ace2aed1d 5204 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5205 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5206 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5207 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5208 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5209 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5210 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5211 Timer lbTimer;
mjr 48:058ace2aed1d 5212 };
mjr 48:058ace2aed1d 5213
mjr 35:e959ffba78fd 5214 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5215 //
mjr 35:e959ffba78fd 5216 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 5217 //
mjr 54:fd77a6b2f76c 5218 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 5219 {
mjr 35:e959ffba78fd 5220 // disconnect from USB
mjr 54:fd77a6b2f76c 5221 if (disconnect)
mjr 54:fd77a6b2f76c 5222 js.disconnect();
mjr 35:e959ffba78fd 5223
mjr 35:e959ffba78fd 5224 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 5225 wait_us(pause_us);
mjr 35:e959ffba78fd 5226
mjr 35:e959ffba78fd 5227 // reset the device
mjr 35:e959ffba78fd 5228 NVIC_SystemReset();
mjr 35:e959ffba78fd 5229 while (true) { }
mjr 35:e959ffba78fd 5230 }
mjr 35:e959ffba78fd 5231
mjr 35:e959ffba78fd 5232 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5233 //
mjr 35:e959ffba78fd 5234 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 5235 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 5236 //
mjr 35:e959ffba78fd 5237 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 5238 {
mjr 35:e959ffba78fd 5239 int tmp;
mjr 78:1e00b3fa11af 5240 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 5241 {
mjr 35:e959ffba78fd 5242 case OrientationFront:
mjr 35:e959ffba78fd 5243 tmp = x;
mjr 35:e959ffba78fd 5244 x = y;
mjr 35:e959ffba78fd 5245 y = tmp;
mjr 35:e959ffba78fd 5246 break;
mjr 35:e959ffba78fd 5247
mjr 35:e959ffba78fd 5248 case OrientationLeft:
mjr 35:e959ffba78fd 5249 x = -x;
mjr 35:e959ffba78fd 5250 break;
mjr 35:e959ffba78fd 5251
mjr 35:e959ffba78fd 5252 case OrientationRight:
mjr 35:e959ffba78fd 5253 y = -y;
mjr 35:e959ffba78fd 5254 break;
mjr 35:e959ffba78fd 5255
mjr 35:e959ffba78fd 5256 case OrientationRear:
mjr 35:e959ffba78fd 5257 tmp = -x;
mjr 35:e959ffba78fd 5258 x = -y;
mjr 35:e959ffba78fd 5259 y = tmp;
mjr 35:e959ffba78fd 5260 break;
mjr 35:e959ffba78fd 5261 }
mjr 35:e959ffba78fd 5262 }
mjr 35:e959ffba78fd 5263
mjr 35:e959ffba78fd 5264 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5265 //
mjr 35:e959ffba78fd 5266 // Calibration button state:
mjr 35:e959ffba78fd 5267 // 0 = not pushed
mjr 35:e959ffba78fd 5268 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 5269 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 5270 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 5271 int calBtnState = 0;
mjr 35:e959ffba78fd 5272
mjr 35:e959ffba78fd 5273 // calibration button debounce timer
mjr 35:e959ffba78fd 5274 Timer calBtnTimer;
mjr 35:e959ffba78fd 5275
mjr 35:e959ffba78fd 5276 // calibration button light state
mjr 35:e959ffba78fd 5277 int calBtnLit = false;
mjr 35:e959ffba78fd 5278
mjr 35:e959ffba78fd 5279
mjr 35:e959ffba78fd 5280 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5281 //
mjr 40:cc0d9814522b 5282 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 5283 //
mjr 40:cc0d9814522b 5284
mjr 40:cc0d9814522b 5285 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 5286 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 5287 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 5288 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 5289 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 5290 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 5291 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5292 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5293 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 5294 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 5295 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 5296
mjr 40:cc0d9814522b 5297 // redefine everything for the SET messages
mjr 40:cc0d9814522b 5298 #undef if_msg_valid
mjr 40:cc0d9814522b 5299 #undef v_byte
mjr 40:cc0d9814522b 5300 #undef v_ui16
mjr 77:0b96f6867312 5301 #undef v_ui32
mjr 40:cc0d9814522b 5302 #undef v_pin
mjr 53:9b2611964afc 5303 #undef v_byte_ro
mjr 74:822a92bc11d2 5304 #undef v_ui32_ro
mjr 74:822a92bc11d2 5305 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 5306 #undef v_func
mjr 38:091e511ce8a0 5307
mjr 40:cc0d9814522b 5308 // Handle GET messages - read variable values and return in USB message daa
mjr 40:cc0d9814522b 5309 #define if_msg_valid(test)
mjr 53:9b2611964afc 5310 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 5311 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 5312 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 5313 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 5314 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 5315 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 5316 #define VAR_MODE_SET 0 // we're in GET mode
mjr 76:7f5912b6340e 5317 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 5318 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 5319
mjr 35:e959ffba78fd 5320
mjr 35:e959ffba78fd 5321 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5322 //
mjr 35:e959ffba78fd 5323 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 5324 // LedWiz protocol.
mjr 33:d832bcab089e 5325 //
mjr 78:1e00b3fa11af 5326 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 5327 {
mjr 38:091e511ce8a0 5328 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 5329 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 5330 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 5331 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 5332 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 5333 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 5334 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 5335 // So our full protocol is as follows:
mjr 38:091e511ce8a0 5336 //
mjr 38:091e511ce8a0 5337 // first byte =
mjr 74:822a92bc11d2 5338 // 0-48 -> PBA
mjr 74:822a92bc11d2 5339 // 64 -> SBA
mjr 38:091e511ce8a0 5340 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 5341 // 129-132 -> PBA
mjr 38:091e511ce8a0 5342 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 5343 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 5344 // other -> reserved for future use
mjr 38:091e511ce8a0 5345 //
mjr 39:b3815a1c3802 5346 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 5347 if (data[0] == 64)
mjr 35:e959ffba78fd 5348 {
mjr 74:822a92bc11d2 5349 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 5350 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 5351 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 5352 sba_sbx(0, data);
mjr 74:822a92bc11d2 5353
mjr 74:822a92bc11d2 5354 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 5355 pbaIdx = 0;
mjr 38:091e511ce8a0 5356 }
mjr 38:091e511ce8a0 5357 else if (data[0] == 65)
mjr 38:091e511ce8a0 5358 {
mjr 38:091e511ce8a0 5359 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 5360 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 5361 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 5362 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 5363 // message type.
mjr 39:b3815a1c3802 5364 switch (data[1])
mjr 38:091e511ce8a0 5365 {
mjr 39:b3815a1c3802 5366 case 0:
mjr 39:b3815a1c3802 5367 // No Op
mjr 39:b3815a1c3802 5368 break;
mjr 39:b3815a1c3802 5369
mjr 39:b3815a1c3802 5370 case 1:
mjr 38:091e511ce8a0 5371 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 5372 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 5373 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 5374 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 5375 {
mjr 39:b3815a1c3802 5376
mjr 39:b3815a1c3802 5377 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 5378 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 5379 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 5380
mjr 86:e30a1f60f783 5381 // we'll need a reboot if the LedWiz unit number is changing
mjr 86:e30a1f60f783 5382 bool reboot = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 5383
mjr 39:b3815a1c3802 5384 // set the configuration parameters from the message
mjr 39:b3815a1c3802 5385 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 5386 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 5387
mjr 77:0b96f6867312 5388 // set the flag to do the save
mjr 86:e30a1f60f783 5389 saveConfigToFlash(0, reboot);
mjr 39:b3815a1c3802 5390 }
mjr 39:b3815a1c3802 5391 break;
mjr 38:091e511ce8a0 5392
mjr 39:b3815a1c3802 5393 case 2:
mjr 38:091e511ce8a0 5394 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 5395 // (No parameters)
mjr 38:091e511ce8a0 5396
mjr 38:091e511ce8a0 5397 // enter calibration mode
mjr 38:091e511ce8a0 5398 calBtnState = 3;
mjr 52:8298b2a73eb2 5399 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 5400 calBtnTimer.reset();
mjr 39:b3815a1c3802 5401 break;
mjr 39:b3815a1c3802 5402
mjr 39:b3815a1c3802 5403 case 3:
mjr 52:8298b2a73eb2 5404 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 5405 // data[2] = flag bits
mjr 53:9b2611964afc 5406 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 5407 reportPlungerStat = true;
mjr 53:9b2611964afc 5408 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 5409 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 5410
mjr 38:091e511ce8a0 5411 // show purple until we finish sending the report
mjr 38:091e511ce8a0 5412 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 5413 break;
mjr 39:b3815a1c3802 5414
mjr 39:b3815a1c3802 5415 case 4:
mjr 38:091e511ce8a0 5416 // 4 = hardware configuration query
mjr 38:091e511ce8a0 5417 // (No parameters)
mjr 38:091e511ce8a0 5418 js.reportConfig(
mjr 38:091e511ce8a0 5419 numOutputs,
mjr 38:091e511ce8a0 5420 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 5421 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 5422 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 5423 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 5424 true, // we support the new accelerometer settings
mjr 82:4f6209cb5c33 5425 true, // we support the "flash write ok" status bit in joystick reports
mjr 79:682ae3171a08 5426 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 5427 break;
mjr 39:b3815a1c3802 5428
mjr 39:b3815a1c3802 5429 case 5:
mjr 38:091e511ce8a0 5430 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 5431 allOutputsOff();
mjr 39:b3815a1c3802 5432 break;
mjr 39:b3815a1c3802 5433
mjr 39:b3815a1c3802 5434 case 6:
mjr 85:3c28aee81cde 5435 // 6 = Save configuration to flash. Optionally reboot after the
mjr 85:3c28aee81cde 5436 // delay time in seconds given in data[2].
mjr 85:3c28aee81cde 5437 //
mjr 85:3c28aee81cde 5438 // data[2] = delay time in seconds
mjr 85:3c28aee81cde 5439 // data[3] = flags:
mjr 85:3c28aee81cde 5440 // 0x01 -> do not reboot
mjr 86:e30a1f60f783 5441 saveConfigToFlash(data[2], !(data[3] & 0x01));
mjr 39:b3815a1c3802 5442 break;
mjr 40:cc0d9814522b 5443
mjr 40:cc0d9814522b 5444 case 7:
mjr 40:cc0d9814522b 5445 // 7 = Device ID report
mjr 53:9b2611964afc 5446 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 5447 js.reportID(data[2]);
mjr 40:cc0d9814522b 5448 break;
mjr 40:cc0d9814522b 5449
mjr 40:cc0d9814522b 5450 case 8:
mjr 40:cc0d9814522b 5451 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 5452 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 5453 setNightMode(data[2]);
mjr 40:cc0d9814522b 5454 break;
mjr 52:8298b2a73eb2 5455
mjr 52:8298b2a73eb2 5456 case 9:
mjr 52:8298b2a73eb2 5457 // 9 = Config variable query.
mjr 52:8298b2a73eb2 5458 // data[2] = config var ID
mjr 52:8298b2a73eb2 5459 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 5460 {
mjr 53:9b2611964afc 5461 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 5462 // the rest of the buffer
mjr 52:8298b2a73eb2 5463 uint8_t reply[8];
mjr 52:8298b2a73eb2 5464 reply[1] = data[2];
mjr 52:8298b2a73eb2 5465 reply[2] = data[3];
mjr 53:9b2611964afc 5466 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 5467
mjr 52:8298b2a73eb2 5468 // query the value
mjr 52:8298b2a73eb2 5469 configVarGet(reply);
mjr 52:8298b2a73eb2 5470
mjr 52:8298b2a73eb2 5471 // send the reply
mjr 52:8298b2a73eb2 5472 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 5473 }
mjr 52:8298b2a73eb2 5474 break;
mjr 53:9b2611964afc 5475
mjr 53:9b2611964afc 5476 case 10:
mjr 53:9b2611964afc 5477 // 10 = Build ID query.
mjr 53:9b2611964afc 5478 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 5479 break;
mjr 73:4e8ce0b18915 5480
mjr 73:4e8ce0b18915 5481 case 11:
mjr 73:4e8ce0b18915 5482 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 5483 // data[2] = operation:
mjr 73:4e8ce0b18915 5484 // 0 = turn relay off
mjr 73:4e8ce0b18915 5485 // 1 = turn relay on
mjr 73:4e8ce0b18915 5486 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 5487 TVRelay(data[2]);
mjr 73:4e8ce0b18915 5488 break;
mjr 73:4e8ce0b18915 5489
mjr 73:4e8ce0b18915 5490 case 12:
mjr 77:0b96f6867312 5491 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 5492 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 5493 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 5494 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 5495 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 5496
mjr 77:0b96f6867312 5497 // enter IR learning mode
mjr 77:0b96f6867312 5498 IRLearningMode = 1;
mjr 77:0b96f6867312 5499
mjr 77:0b96f6867312 5500 // cancel any regular IR input in progress
mjr 77:0b96f6867312 5501 IRCommandIn = 0;
mjr 77:0b96f6867312 5502
mjr 77:0b96f6867312 5503 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 5504 IRTimer.reset();
mjr 73:4e8ce0b18915 5505 break;
mjr 73:4e8ce0b18915 5506
mjr 73:4e8ce0b18915 5507 case 13:
mjr 73:4e8ce0b18915 5508 // 13 = Send button status report
mjr 73:4e8ce0b18915 5509 reportButtonStatus(js);
mjr 73:4e8ce0b18915 5510 break;
mjr 78:1e00b3fa11af 5511
mjr 78:1e00b3fa11af 5512 case 14:
mjr 78:1e00b3fa11af 5513 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 5514 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 5515 break;
mjr 78:1e00b3fa11af 5516
mjr 78:1e00b3fa11af 5517 case 15:
mjr 78:1e00b3fa11af 5518 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 5519 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 5520 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 5521 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 5522 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 5523 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 5524 break;
mjr 78:1e00b3fa11af 5525
mjr 78:1e00b3fa11af 5526 case 16:
mjr 78:1e00b3fa11af 5527 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 5528 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 5529 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 5530 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 5531 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 5532 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 5533 break;
mjr 88:98bce687e6c0 5534
mjr 88:98bce687e6c0 5535 case 17:
mjr 88:98bce687e6c0 5536 // 17 = send pre-programmed IR command. This works just like
mjr 88:98bce687e6c0 5537 // sending an ad hoc command above, but we get the command data
mjr 88:98bce687e6c0 5538 // from an IR slot in the config rather than from the client.
mjr 88:98bce687e6c0 5539 // First make sure we have a valid slot number.
mjr 88:98bce687e6c0 5540 if (data[2] >= 1 && data[2] <= MAX_IR_CODES)
mjr 88:98bce687e6c0 5541 {
mjr 88:98bce687e6c0 5542 // get the IR command slot in the config
mjr 88:98bce687e6c0 5543 IRCommandCfg &cmd = cfg.IRCommand[data[2] - 1];
mjr 88:98bce687e6c0 5544
mjr 88:98bce687e6c0 5545 // copy the IR command data from the config
mjr 88:98bce687e6c0 5546 IRAdHocCmd.protocol = cmd.protocol;
mjr 88:98bce687e6c0 5547 IRAdHocCmd.dittos = (cmd.flags & IRFlagDittos) != 0;
mjr 88:98bce687e6c0 5548 IRAdHocCmd.code = (uint64_t(cmd.code.hi) << 32) | cmd.code.lo;
mjr 88:98bce687e6c0 5549
mjr 88:98bce687e6c0 5550 // mark the command as ready - this will trigger the polling
mjr 88:98bce687e6c0 5551 // routine to send the command as soon as the transmitter
mjr 88:98bce687e6c0 5552 // is free
mjr 88:98bce687e6c0 5553 IRAdHocCmd.ready = 1;
mjr 88:98bce687e6c0 5554 }
mjr 88:98bce687e6c0 5555 break;
mjr 38:091e511ce8a0 5556 }
mjr 38:091e511ce8a0 5557 }
mjr 38:091e511ce8a0 5558 else if (data[0] == 66)
mjr 38:091e511ce8a0 5559 {
mjr 38:091e511ce8a0 5560 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 5561 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 5562 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 5563 // in a variable-dependent format.
mjr 40:cc0d9814522b 5564 configVarSet(data);
mjr 86:e30a1f60f783 5565
mjr 87:8d35c74403af 5566 // notify the plunger, so that it can update relevant variables
mjr 87:8d35c74403af 5567 // dynamically
mjr 87:8d35c74403af 5568 plungerSensor->onConfigChange(data[1], cfg);
mjr 38:091e511ce8a0 5569 }
mjr 74:822a92bc11d2 5570 else if (data[0] == 67)
mjr 74:822a92bc11d2 5571 {
mjr 74:822a92bc11d2 5572 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 5573 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 5574 // to ports beyond the first 32.
mjr 74:822a92bc11d2 5575 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 5576 }
mjr 74:822a92bc11d2 5577 else if (data[0] == 68)
mjr 74:822a92bc11d2 5578 {
mjr 74:822a92bc11d2 5579 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 5580 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 5581 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 5582
mjr 74:822a92bc11d2 5583 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 5584 int portGroup = data[1];
mjr 74:822a92bc11d2 5585
mjr 74:822a92bc11d2 5586 // unpack the brightness values
mjr 74:822a92bc11d2 5587 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 5588 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 5589 uint8_t bri[8] = {
mjr 74:822a92bc11d2 5590 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 5591 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 5592 };
mjr 74:822a92bc11d2 5593
mjr 74:822a92bc11d2 5594 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 5595 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 5596 {
mjr 74:822a92bc11d2 5597 if (bri[i] >= 60)
mjr 74:822a92bc11d2 5598 bri[i] += 129-60;
mjr 74:822a92bc11d2 5599 }
mjr 74:822a92bc11d2 5600
mjr 74:822a92bc11d2 5601 // Carry out the PBA
mjr 74:822a92bc11d2 5602 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 5603 }
mjr 38:091e511ce8a0 5604 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 5605 {
mjr 38:091e511ce8a0 5606 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 5607 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 5608 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 5609 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 5610 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 5611 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 5612 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 5613 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 5614 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 5615 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 5616 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 5617 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 5618 //
mjr 38:091e511ce8a0 5619 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 5620 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 5621 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 5622 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 5623 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 5624 // address those ports anyway.
mjr 63:5cd1a5f3a41b 5625
mjr 63:5cd1a5f3a41b 5626 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 5627 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 5628 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 5629
mjr 63:5cd1a5f3a41b 5630 // update each port
mjr 38:091e511ce8a0 5631 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 5632 {
mjr 38:091e511ce8a0 5633 // set the brightness level for the output
mjr 40:cc0d9814522b 5634 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 5635 outLevel[i] = b;
mjr 38:091e511ce8a0 5636
mjr 74:822a92bc11d2 5637 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 5638 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 5639 // LedWiz mode on a future update
mjr 76:7f5912b6340e 5640 if (b != 0)
mjr 76:7f5912b6340e 5641 {
mjr 76:7f5912b6340e 5642 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 5643 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 5644 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 5645 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 5646 // forward unchanged.
mjr 76:7f5912b6340e 5647 wizOn[i] = 1;
mjr 76:7f5912b6340e 5648 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 5649 }
mjr 76:7f5912b6340e 5650 else
mjr 76:7f5912b6340e 5651 {
mjr 76:7f5912b6340e 5652 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 5653 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 5654 wizOn[i] = 0;
mjr 76:7f5912b6340e 5655 }
mjr 74:822a92bc11d2 5656
mjr 38:091e511ce8a0 5657 // set the output
mjr 40:cc0d9814522b 5658 lwPin[i]->set(b);
mjr 38:091e511ce8a0 5659 }
mjr 38:091e511ce8a0 5660
mjr 38:091e511ce8a0 5661 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 5662 if (hc595 != 0)
mjr 38:091e511ce8a0 5663 hc595->update();
mjr 38:091e511ce8a0 5664 }
mjr 38:091e511ce8a0 5665 else
mjr 38:091e511ce8a0 5666 {
mjr 74:822a92bc11d2 5667 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 5668 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 5669 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 5670 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 5671 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 5672 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 5673 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 5674 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 5675 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 5676 //
mjr 38:091e511ce8a0 5677 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 5678 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 5679 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 5680 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 5681 // protocol mode.
mjr 38:091e511ce8a0 5682 //
mjr 38:091e511ce8a0 5683 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 5684 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 5685
mjr 74:822a92bc11d2 5686 // carry out the PBA
mjr 74:822a92bc11d2 5687 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 5688
mjr 74:822a92bc11d2 5689 // update the PBX index state for the next message
mjr 74:822a92bc11d2 5690 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 5691 }
mjr 38:091e511ce8a0 5692 }
mjr 35:e959ffba78fd 5693
mjr 38:091e511ce8a0 5694 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5695 //
mjr 5:a70c0bce770d 5696 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 5697 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 5698 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 5699 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 5700 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 5701 // port outputs.
mjr 5:a70c0bce770d 5702 //
mjr 0:5acbbe3f4cf4 5703 int main(void)
mjr 0:5acbbe3f4cf4 5704 {
mjr 60:f38da020aa13 5705 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 5706 printf("\r\nPinscape Controller starting\r\n");
mjr 82:4f6209cb5c33 5707
mjr 76:7f5912b6340e 5708 // clear the I2C connection
mjr 35:e959ffba78fd 5709 clear_i2c();
mjr 82:4f6209cb5c33 5710
mjr 82:4f6209cb5c33 5711 // Elevate GPIO pin interrupt priorities, so that they can preempt
mjr 82:4f6209cb5c33 5712 // other interrupts. This is important for some external peripherals,
mjr 82:4f6209cb5c33 5713 // particularly the quadrature plunger sensors, which can generate
mjr 82:4f6209cb5c33 5714 // high-speed interrupts that need to be serviced quickly to keep
mjr 82:4f6209cb5c33 5715 // proper count of the quadrature position.
mjr 82:4f6209cb5c33 5716 FastInterruptIn::elevatePriority();
mjr 38:091e511ce8a0 5717
mjr 76:7f5912b6340e 5718 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 5719 // configuration data:
mjr 76:7f5912b6340e 5720 //
mjr 76:7f5912b6340e 5721 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 5722 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 5723 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 5724 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 5725 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 5726 // to store user settings updates.
mjr 76:7f5912b6340e 5727 //
mjr 76:7f5912b6340e 5728 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 5729 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 5730 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 5731 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 5732 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 5733 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 5734 // without a separate download of the config data.
mjr 76:7f5912b6340e 5735 //
mjr 76:7f5912b6340e 5736 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 5737 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 5738 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 5739 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 5740 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 5741 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 5742 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 5743 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 5744 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 5745 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 5746 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 5747 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 5748 loadHostLoadedConfig();
mjr 35:e959ffba78fd 5749
mjr 38:091e511ce8a0 5750 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 5751 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 5752
mjr 33:d832bcab089e 5753 // we're not connected/awake yet
mjr 33:d832bcab089e 5754 bool connected = false;
mjr 40:cc0d9814522b 5755 Timer connectChangeTimer;
mjr 33:d832bcab089e 5756
mjr 35:e959ffba78fd 5757 // create the plunger sensor interface
mjr 35:e959ffba78fd 5758 createPlunger();
mjr 76:7f5912b6340e 5759
mjr 76:7f5912b6340e 5760 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 5761 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 5762
mjr 60:f38da020aa13 5763 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 5764 init_tlc5940(cfg);
mjr 34:6b981a2afab7 5765
mjr 87:8d35c74403af 5766 // initialize the TLC5916 interface, if these chips are present
mjr 87:8d35c74403af 5767 init_tlc59116(cfg);
mjr 87:8d35c74403af 5768
mjr 60:f38da020aa13 5769 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 5770 init_hc595(cfg);
mjr 6:cc35eb643e8f 5771
mjr 54:fd77a6b2f76c 5772 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 5773 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 5774 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 5775 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 5776 initLwOut(cfg);
mjr 48:058ace2aed1d 5777
mjr 60:f38da020aa13 5778 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 5779 if (tlc5940 != 0)
mjr 35:e959ffba78fd 5780 tlc5940->start();
mjr 87:8d35c74403af 5781
mjr 77:0b96f6867312 5782 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 5783 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 5784 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 5785 // USB keyboard interface.
mjr 77:0b96f6867312 5786 bool kbKeys = false;
mjr 77:0b96f6867312 5787
mjr 77:0b96f6867312 5788 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 5789 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 5790
mjr 77:0b96f6867312 5791 // start the power status time, if applicable
mjr 77:0b96f6867312 5792 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 5793
mjr 35:e959ffba78fd 5794 // initialize the button input ports
mjr 35:e959ffba78fd 5795 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 5796
mjr 60:f38da020aa13 5797 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 5798 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 5799 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 5800 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 5801 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 5802 // to the joystick interface.
mjr 51:57eb311faafa 5803 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 51:57eb311faafa 5804 cfg.joystickEnabled, kbKeys);
mjr 51:57eb311faafa 5805
mjr 60:f38da020aa13 5806 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 5807 // flash pattern while waiting.
mjr 70:9f58735a1732 5808 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 5809 connTimeoutTimer.start();
mjr 70:9f58735a1732 5810 connFlashTimer.start();
mjr 51:57eb311faafa 5811 while (!js.configured())
mjr 51:57eb311faafa 5812 {
mjr 51:57eb311faafa 5813 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 5814 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 5815 {
mjr 51:57eb311faafa 5816 // short yellow flash
mjr 51:57eb311faafa 5817 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 5818 wait_us(50000);
mjr 51:57eb311faafa 5819 diagLED(0, 0, 0);
mjr 51:57eb311faafa 5820
mjr 51:57eb311faafa 5821 // reset the flash timer
mjr 70:9f58735a1732 5822 connFlashTimer.reset();
mjr 51:57eb311faafa 5823 }
mjr 70:9f58735a1732 5824
mjr 77:0b96f6867312 5825 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 5826 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 5827 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 5828 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 86:e30a1f60f783 5829 // Don't do this if we're in a non-recoverable PSU2 power state.
mjr 70:9f58735a1732 5830 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 5831 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 5832 && powerStatusAllowsReboot())
mjr 70:9f58735a1732 5833 reboot(js, false, 0);
mjr 77:0b96f6867312 5834
mjr 77:0b96f6867312 5835 // update the PSU2 power sensing status
mjr 77:0b96f6867312 5836 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 5837 }
mjr 60:f38da020aa13 5838
mjr 60:f38da020aa13 5839 // we're now connected to the host
mjr 54:fd77a6b2f76c 5840 connected = true;
mjr 40:cc0d9814522b 5841
mjr 60:f38da020aa13 5842 // Last report timer for the joytick interface. We use this timer to
mjr 60:f38da020aa13 5843 // throttle the report rate to a pace that's suitable for VP. Without
mjr 60:f38da020aa13 5844 // any artificial delays, we could generate data to send on the joystick
mjr 60:f38da020aa13 5845 // interface on every loop iteration. The loop iteration time depends
mjr 60:f38da020aa13 5846 // on which devices are attached, since most of the work in our main
mjr 60:f38da020aa13 5847 // loop is simply polling our devices. For typical setups, the loop
mjr 60:f38da020aa13 5848 // time ranges from about 0.25ms to 2.5ms; the biggest factor is the
mjr 60:f38da020aa13 5849 // plunger sensor. But VP polls for input about every 10ms, so there's
mjr 60:f38da020aa13 5850 // no benefit in sending data faster than that, and there's some harm,
mjr 60:f38da020aa13 5851 // in that it creates USB overhead (both on the wire and on the host
mjr 60:f38da020aa13 5852 // CPU). We therefore use this timer to pace our reports to roughly
mjr 60:f38da020aa13 5853 // the VP input polling rate. Note that there's no way to actually
mjr 60:f38da020aa13 5854 // synchronize with VP's polling, but there's also no need to, as the
mjr 60:f38da020aa13 5855 // input model is designed to reflect the overall current state at any
mjr 60:f38da020aa13 5856 // given time rather than events or deltas. If VP polls twice between
mjr 60:f38da020aa13 5857 // two updates, it simply sees no state change; if we send two updates
mjr 60:f38da020aa13 5858 // between VP polls, VP simply sees the latest state when it does get
mjr 60:f38da020aa13 5859 // around to polling.
mjr 38:091e511ce8a0 5860 Timer jsReportTimer;
mjr 38:091e511ce8a0 5861 jsReportTimer.start();
mjr 38:091e511ce8a0 5862
mjr 60:f38da020aa13 5863 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 5864 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 5865 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 5866 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 5867 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 5868 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 5869 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 5870 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 5871 Timer jsOKTimer;
mjr 38:091e511ce8a0 5872 jsOKTimer.start();
mjr 35:e959ffba78fd 5873
mjr 55:4db125cd11a0 5874 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 5875 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 5876 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 5877 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 5878 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 5879
mjr 55:4db125cd11a0 5880 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 5881 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 5882 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 5883
mjr 55:4db125cd11a0 5884 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 5885 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 5886 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 5887
mjr 35:e959ffba78fd 5888 // initialize the calibration button
mjr 1:d913e0afb2ac 5889 calBtnTimer.start();
mjr 35:e959ffba78fd 5890 calBtnState = 0;
mjr 1:d913e0afb2ac 5891
mjr 1:d913e0afb2ac 5892 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 5893 Timer hbTimer;
mjr 1:d913e0afb2ac 5894 hbTimer.start();
mjr 1:d913e0afb2ac 5895 int hb = 0;
mjr 5:a70c0bce770d 5896 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 5897
mjr 1:d913e0afb2ac 5898 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 5899 Timer acTimer;
mjr 1:d913e0afb2ac 5900 acTimer.start();
mjr 1:d913e0afb2ac 5901
mjr 0:5acbbe3f4cf4 5902 // create the accelerometer object
mjr 77:0b96f6867312 5903 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 78:1e00b3fa11af 5904 MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime);
mjr 76:7f5912b6340e 5905
mjr 17:ab3cec0c8bf4 5906 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 5907 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 5908 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 5909
mjr 48:058ace2aed1d 5910 // initialize the plunger sensor
mjr 35:e959ffba78fd 5911 plungerSensor->init();
mjr 10:976666ffa4ef 5912
mjr 48:058ace2aed1d 5913 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 5914 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 5915
mjr 54:fd77a6b2f76c 5916 // enable the peripheral chips
mjr 54:fd77a6b2f76c 5917 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 5918 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 5919 if (hc595 != 0)
mjr 54:fd77a6b2f76c 5920 hc595->enable(true);
mjr 87:8d35c74403af 5921 if (tlc59116 != 0)
mjr 87:8d35c74403af 5922 tlc59116->enable(true);
mjr 74:822a92bc11d2 5923
mjr 76:7f5912b6340e 5924 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 5925 wizCycleTimer.start();
mjr 74:822a92bc11d2 5926
mjr 74:822a92bc11d2 5927 // start the PWM update polling timer
mjr 74:822a92bc11d2 5928 polledPwmTimer.start();
mjr 43:7a6364d82a41 5929
mjr 1:d913e0afb2ac 5930 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 5931 // host requests
mjr 0:5acbbe3f4cf4 5932 for (;;)
mjr 0:5acbbe3f4cf4 5933 {
mjr 74:822a92bc11d2 5934 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 5935 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 74:822a92bc11d2 5936
mjr 48:058ace2aed1d 5937 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 5938 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 5939 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 5940 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 5941 LedWizMsg lwm;
mjr 48:058ace2aed1d 5942 Timer lwt;
mjr 48:058ace2aed1d 5943 lwt.start();
mjr 77:0b96f6867312 5944 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 5945 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 5946 {
mjr 78:1e00b3fa11af 5947 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 5948 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 5949 }
mjr 74:822a92bc11d2 5950
mjr 74:822a92bc11d2 5951 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 5952 IF_DIAG(
mjr 74:822a92bc11d2 5953 if (msgCount != 0)
mjr 74:822a92bc11d2 5954 {
mjr 76:7f5912b6340e 5955 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 5956 mainLoopMsgCount++;
mjr 74:822a92bc11d2 5957 }
mjr 74:822a92bc11d2 5958 )
mjr 74:822a92bc11d2 5959
mjr 77:0b96f6867312 5960 // process IR input
mjr 77:0b96f6867312 5961 process_IR(cfg, js);
mjr 77:0b96f6867312 5962
mjr 77:0b96f6867312 5963 // update the PSU2 power sensing status
mjr 77:0b96f6867312 5964 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 5965
mjr 74:822a92bc11d2 5966 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 5967 wizPulse();
mjr 74:822a92bc11d2 5968
mjr 74:822a92bc11d2 5969 // update PWM outputs
mjr 74:822a92bc11d2 5970 pollPwmUpdates();
mjr 77:0b96f6867312 5971
mjr 77:0b96f6867312 5972 // poll the accelerometer
mjr 77:0b96f6867312 5973 accel.poll();
mjr 55:4db125cd11a0 5974
mjr 76:7f5912b6340e 5975 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 5976 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 5977
mjr 55:4db125cd11a0 5978 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 5979 if (tlc5940 != 0)
mjr 55:4db125cd11a0 5980 tlc5940->send();
mjr 87:8d35c74403af 5981
mjr 87:8d35c74403af 5982 // send TLC59116 data updates
mjr 87:8d35c74403af 5983 if (tlc59116 != 0)
mjr 87:8d35c74403af 5984 tlc59116->send();
mjr 1:d913e0afb2ac 5985
mjr 76:7f5912b6340e 5986 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 5987 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 5988
mjr 1:d913e0afb2ac 5989 // check for plunger calibration
mjr 17:ab3cec0c8bf4 5990 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 5991 {
mjr 1:d913e0afb2ac 5992 // check the state
mjr 1:d913e0afb2ac 5993 switch (calBtnState)
mjr 0:5acbbe3f4cf4 5994 {
mjr 1:d913e0afb2ac 5995 case 0:
mjr 1:d913e0afb2ac 5996 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 5997 calBtnTimer.reset();
mjr 1:d913e0afb2ac 5998 calBtnState = 1;
mjr 1:d913e0afb2ac 5999 break;
mjr 1:d913e0afb2ac 6000
mjr 1:d913e0afb2ac 6001 case 1:
mjr 1:d913e0afb2ac 6002 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 6003 // passed, start the hold period
mjr 48:058ace2aed1d 6004 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 6005 calBtnState = 2;
mjr 1:d913e0afb2ac 6006 break;
mjr 1:d913e0afb2ac 6007
mjr 1:d913e0afb2ac 6008 case 2:
mjr 1:d913e0afb2ac 6009 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 6010 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 6011 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 6012 {
mjr 1:d913e0afb2ac 6013 // enter calibration mode
mjr 1:d913e0afb2ac 6014 calBtnState = 3;
mjr 9:fd65b0a94720 6015 calBtnTimer.reset();
mjr 35:e959ffba78fd 6016
mjr 44:b5ac89b9cd5d 6017 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 6018 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 6019 }
mjr 1:d913e0afb2ac 6020 break;
mjr 2:c174f9ee414a 6021
mjr 2:c174f9ee414a 6022 case 3:
mjr 9:fd65b0a94720 6023 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6024 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6025 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6026 break;
mjr 0:5acbbe3f4cf4 6027 }
mjr 0:5acbbe3f4cf4 6028 }
mjr 1:d913e0afb2ac 6029 else
mjr 1:d913e0afb2ac 6030 {
mjr 2:c174f9ee414a 6031 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6032 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6033 // and save the results to flash.
mjr 2:c174f9ee414a 6034 //
mjr 2:c174f9ee414a 6035 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6036 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6037 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 6038 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6039 {
mjr 2:c174f9ee414a 6040 // exit calibration mode
mjr 1:d913e0afb2ac 6041 calBtnState = 0;
mjr 52:8298b2a73eb2 6042 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6043
mjr 6:cc35eb643e8f 6044 // save the updated configuration
mjr 35:e959ffba78fd 6045 cfg.plunger.cal.calibrated = 1;
mjr 86:e30a1f60f783 6046 saveConfigToFlash(0, false);
mjr 2:c174f9ee414a 6047 }
mjr 2:c174f9ee414a 6048 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6049 {
mjr 2:c174f9ee414a 6050 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6051 calBtnState = 0;
mjr 2:c174f9ee414a 6052 }
mjr 1:d913e0afb2ac 6053 }
mjr 1:d913e0afb2ac 6054
mjr 1:d913e0afb2ac 6055 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6056 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6057 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6058 {
mjr 1:d913e0afb2ac 6059 case 2:
mjr 1:d913e0afb2ac 6060 // in the hold period - flash the light
mjr 48:058ace2aed1d 6061 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6062 break;
mjr 1:d913e0afb2ac 6063
mjr 1:d913e0afb2ac 6064 case 3:
mjr 1:d913e0afb2ac 6065 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6066 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6067 break;
mjr 1:d913e0afb2ac 6068
mjr 1:d913e0afb2ac 6069 default:
mjr 1:d913e0afb2ac 6070 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6071 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6072 break;
mjr 1:d913e0afb2ac 6073 }
mjr 3:3514575d4f86 6074
mjr 3:3514575d4f86 6075 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6076 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6077 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6078 {
mjr 1:d913e0afb2ac 6079 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6080 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6081 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6082 calBtnLed->write(1);
mjr 38:091e511ce8a0 6083 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6084 }
mjr 2:c174f9ee414a 6085 else {
mjr 17:ab3cec0c8bf4 6086 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6087 calBtnLed->write(0);
mjr 38:091e511ce8a0 6088 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6089 }
mjr 1:d913e0afb2ac 6090 }
mjr 35:e959ffba78fd 6091
mjr 76:7f5912b6340e 6092 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6093 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6094
mjr 48:058ace2aed1d 6095 // read the plunger sensor
mjr 48:058ace2aed1d 6096 plungerReader.read();
mjr 48:058ace2aed1d 6097
mjr 76:7f5912b6340e 6098 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6099 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6100
mjr 53:9b2611964afc 6101 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6102 zbLaunchBall.update();
mjr 37:ed52738445fc 6103
mjr 76:7f5912b6340e 6104 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6105 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6106
mjr 53:9b2611964afc 6107 // process button updates
mjr 53:9b2611964afc 6108 processButtons(cfg);
mjr 53:9b2611964afc 6109
mjr 76:7f5912b6340e 6110 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6111 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6112
mjr 38:091e511ce8a0 6113 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6114 if (kbState.changed)
mjr 37:ed52738445fc 6115 {
mjr 38:091e511ce8a0 6116 // send a keyboard report
mjr 37:ed52738445fc 6117 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6118 kbState.changed = false;
mjr 37:ed52738445fc 6119 }
mjr 38:091e511ce8a0 6120
mjr 38:091e511ce8a0 6121 // likewise for the media controller
mjr 37:ed52738445fc 6122 if (mediaState.changed)
mjr 37:ed52738445fc 6123 {
mjr 38:091e511ce8a0 6124 // send a media report
mjr 37:ed52738445fc 6125 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6126 mediaState.changed = false;
mjr 37:ed52738445fc 6127 }
mjr 38:091e511ce8a0 6128
mjr 76:7f5912b6340e 6129 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6130 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6131
mjr 38:091e511ce8a0 6132 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6133 bool jsOK = false;
mjr 55:4db125cd11a0 6134
mjr 55:4db125cd11a0 6135 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6136 uint16_t statusFlags =
mjr 77:0b96f6867312 6137 cfg.plunger.enabled // 0x01
mjr 77:0b96f6867312 6138 | nightMode // 0x02
mjr 79:682ae3171a08 6139 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 6140 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 6141 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6142 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6143
mjr 50:40015764bbe6 6144 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6145 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6146 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 6147 // More frequent reporting would only add USB I/O overhead.
mjr 50:40015764bbe6 6148 if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 17:ab3cec0c8bf4 6149 {
mjr 17:ab3cec0c8bf4 6150 // read the accelerometer
mjr 17:ab3cec0c8bf4 6151 int xa, ya;
mjr 17:ab3cec0c8bf4 6152 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 6153
mjr 17:ab3cec0c8bf4 6154 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 6155 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 6156 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 6157 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 6158 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 6159
mjr 17:ab3cec0c8bf4 6160 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 6161 x = xa;
mjr 17:ab3cec0c8bf4 6162 y = ya;
mjr 17:ab3cec0c8bf4 6163
mjr 48:058ace2aed1d 6164 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 6165 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 6166 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 6167 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 6168 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 6169 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 6170 // regular plunger inputs.
mjr 48:058ace2aed1d 6171 int z = plungerReader.getPosition();
mjr 53:9b2611964afc 6172 int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z);
mjr 35:e959ffba78fd 6173
mjr 35:e959ffba78fd 6174 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 6175 accelRotate(x, y);
mjr 35:e959ffba78fd 6176
mjr 35:e959ffba78fd 6177 // send the joystick report
mjr 53:9b2611964afc 6178 jsOK = js.update(x, y, zrep, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 6179
mjr 17:ab3cec0c8bf4 6180 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 6181 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 6182 }
mjr 21:5048e16cc9ef 6183
mjr 52:8298b2a73eb2 6184 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 6185 if (reportPlungerStat)
mjr 10:976666ffa4ef 6186 {
mjr 17:ab3cec0c8bf4 6187 // send the report
mjr 53:9b2611964afc 6188 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 6189
mjr 10:976666ffa4ef 6190 // we have satisfied this request
mjr 52:8298b2a73eb2 6191 reportPlungerStat = false;
mjr 10:976666ffa4ef 6192 }
mjr 10:976666ffa4ef 6193
mjr 35:e959ffba78fd 6194 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 6195 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 6196 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 6197 {
mjr 55:4db125cd11a0 6198 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 6199 jsReportTimer.reset();
mjr 38:091e511ce8a0 6200 }
mjr 38:091e511ce8a0 6201
mjr 38:091e511ce8a0 6202 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 6203 if (jsOK)
mjr 38:091e511ce8a0 6204 {
mjr 38:091e511ce8a0 6205 jsOKTimer.reset();
mjr 38:091e511ce8a0 6206 jsOKTimer.start();
mjr 21:5048e16cc9ef 6207 }
mjr 21:5048e16cc9ef 6208
mjr 76:7f5912b6340e 6209 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 6210 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6211
mjr 6:cc35eb643e8f 6212 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 6213 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 6214 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 6215 #endif
mjr 6:cc35eb643e8f 6216
mjr 33:d832bcab089e 6217 // check for connection status changes
mjr 54:fd77a6b2f76c 6218 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 6219 if (newConnected != connected)
mjr 33:d832bcab089e 6220 {
mjr 54:fd77a6b2f76c 6221 // give it a moment to stabilize
mjr 40:cc0d9814522b 6222 connectChangeTimer.start();
mjr 55:4db125cd11a0 6223 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 6224 {
mjr 33:d832bcab089e 6225 // note the new status
mjr 33:d832bcab089e 6226 connected = newConnected;
mjr 40:cc0d9814522b 6227
mjr 40:cc0d9814522b 6228 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 6229 connectChangeTimer.stop();
mjr 40:cc0d9814522b 6230 connectChangeTimer.reset();
mjr 33:d832bcab089e 6231
mjr 54:fd77a6b2f76c 6232 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 6233 if (!connected)
mjr 40:cc0d9814522b 6234 {
mjr 54:fd77a6b2f76c 6235 // turn off all outputs
mjr 33:d832bcab089e 6236 allOutputsOff();
mjr 40:cc0d9814522b 6237
mjr 40:cc0d9814522b 6238 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 6239 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 6240 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 6241 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 6242 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 6243 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 6244 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 6245 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 6246 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 6247 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 6248 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 6249 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 6250 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 6251 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 6252 // the power first comes on.
mjr 40:cc0d9814522b 6253 if (tlc5940 != 0)
mjr 40:cc0d9814522b 6254 tlc5940->enable(false);
mjr 87:8d35c74403af 6255 if (tlc59116 != 0)
mjr 87:8d35c74403af 6256 tlc59116->enable(false);
mjr 40:cc0d9814522b 6257 if (hc595 != 0)
mjr 40:cc0d9814522b 6258 hc595->enable(false);
mjr 40:cc0d9814522b 6259 }
mjr 33:d832bcab089e 6260 }
mjr 33:d832bcab089e 6261 }
mjr 48:058ace2aed1d 6262
mjr 53:9b2611964afc 6263 // if we have a reboot timer pending, check for completion
mjr 86:e30a1f60f783 6264 if (saveConfigFollowupTimer.isRunning()
mjr 87:8d35c74403af 6265 && saveConfigFollowupTimer.read_us() > saveConfigFollowupTime*1000000UL)
mjr 85:3c28aee81cde 6266 {
mjr 85:3c28aee81cde 6267 // if a reboot is pending, execute it now
mjr 86:e30a1f60f783 6268 if (saveConfigRebootPending)
mjr 82:4f6209cb5c33 6269 {
mjr 86:e30a1f60f783 6270 // Only reboot if the PSU2 power state allows it. If it
mjr 86:e30a1f60f783 6271 // doesn't, suppress the reboot for now, but leave the boot
mjr 86:e30a1f60f783 6272 // flags set so that we keep checking on future rounds.
mjr 86:e30a1f60f783 6273 // That way we should eventually reboot when the power
mjr 86:e30a1f60f783 6274 // status allows it.
mjr 86:e30a1f60f783 6275 if (powerStatusAllowsReboot())
mjr 86:e30a1f60f783 6276 reboot(js);
mjr 82:4f6209cb5c33 6277 }
mjr 85:3c28aee81cde 6278 else
mjr 85:3c28aee81cde 6279 {
mjr 86:e30a1f60f783 6280 // No reboot required. Exit the timed post-save state.
mjr 86:e30a1f60f783 6281
mjr 86:e30a1f60f783 6282 // stop and reset the post-save timer
mjr 86:e30a1f60f783 6283 saveConfigFollowupTimer.stop();
mjr 86:e30a1f60f783 6284 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 6285
mjr 86:e30a1f60f783 6286 // clear the post-save success flag
mjr 86:e30a1f60f783 6287 saveConfigSucceededFlag = 0;
mjr 85:3c28aee81cde 6288 }
mjr 77:0b96f6867312 6289 }
mjr 86:e30a1f60f783 6290
mjr 48:058ace2aed1d 6291 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 6292 if (!connected)
mjr 48:058ace2aed1d 6293 {
mjr 54:fd77a6b2f76c 6294 // show USB HAL debug events
mjr 54:fd77a6b2f76c 6295 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 6296 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 6297
mjr 54:fd77a6b2f76c 6298 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 6299 js.diagFlash();
mjr 54:fd77a6b2f76c 6300
mjr 54:fd77a6b2f76c 6301 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 6302 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6303
mjr 51:57eb311faafa 6304 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 6305 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 6306 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 6307
mjr 54:fd77a6b2f76c 6308 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 6309 Timer diagTimer;
mjr 54:fd77a6b2f76c 6310 diagTimer.reset();
mjr 54:fd77a6b2f76c 6311 diagTimer.start();
mjr 74:822a92bc11d2 6312
mjr 74:822a92bc11d2 6313 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 6314 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 6315
mjr 54:fd77a6b2f76c 6316 // loop until we get our connection back
mjr 54:fd77a6b2f76c 6317 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 6318 {
mjr 54:fd77a6b2f76c 6319 // try to recover the connection
mjr 54:fd77a6b2f76c 6320 js.recoverConnection();
mjr 54:fd77a6b2f76c 6321
mjr 55:4db125cd11a0 6322 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 6323 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6324 tlc5940->send();
mjr 87:8d35c74403af 6325
mjr 87:8d35c74403af 6326 // update TLC59116 outputs
mjr 87:8d35c74403af 6327 if (tlc59116 != 0)
mjr 87:8d35c74403af 6328 tlc59116->send();
mjr 55:4db125cd11a0 6329
mjr 54:fd77a6b2f76c 6330 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 6331 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6332 {
mjr 54:fd77a6b2f76c 6333 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 6334 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 6335
mjr 54:fd77a6b2f76c 6336 // show diagnostic feedback
mjr 54:fd77a6b2f76c 6337 js.diagFlash();
mjr 51:57eb311faafa 6338
mjr 51:57eb311faafa 6339 // reset the flash timer
mjr 54:fd77a6b2f76c 6340 diagTimer.reset();
mjr 51:57eb311faafa 6341 }
mjr 51:57eb311faafa 6342
mjr 77:0b96f6867312 6343 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 6344 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 6345 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 6346 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 6347 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 6348 // reliable way to get Windows to notice us again after one
mjr 86:e30a1f60f783 6349 // of these events and make it reconnect. Only reboot if
mjr 86:e30a1f60f783 6350 // the PSU2 power status allows it - if not, skip it on this
mjr 86:e30a1f60f783 6351 // round and keep waiting.
mjr 51:57eb311faafa 6352 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6353 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6354 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 6355 reboot(js, false, 0);
mjr 77:0b96f6867312 6356
mjr 77:0b96f6867312 6357 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6358 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 6359 }
mjr 54:fd77a6b2f76c 6360
mjr 74:822a92bc11d2 6361 // resume the main loop timer
mjr 74:822a92bc11d2 6362 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 6363
mjr 54:fd77a6b2f76c 6364 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 6365 connected = true;
mjr 54:fd77a6b2f76c 6366 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 6367
mjr 54:fd77a6b2f76c 6368 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 6369 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6370 tlc5940->enable(true);
mjr 87:8d35c74403af 6371 if (tlc59116 != 0)
mjr 87:8d35c74403af 6372 tlc59116->enable(true);
mjr 54:fd77a6b2f76c 6373 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6374 {
mjr 55:4db125cd11a0 6375 hc595->enable(true);
mjr 54:fd77a6b2f76c 6376 hc595->update(true);
mjr 51:57eb311faafa 6377 }
mjr 48:058ace2aed1d 6378 }
mjr 43:7a6364d82a41 6379
mjr 6:cc35eb643e8f 6380 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 6381 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 6382 {
mjr 54:fd77a6b2f76c 6383 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 6384 {
mjr 39:b3815a1c3802 6385 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 6386 //
mjr 54:fd77a6b2f76c 6387 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 6388 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 6389 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 6390 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 6391 hb = !hb;
mjr 38:091e511ce8a0 6392 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 6393
mjr 54:fd77a6b2f76c 6394 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 6395 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 6396 // with the USB connection.
mjr 54:fd77a6b2f76c 6397 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 6398 {
mjr 54:fd77a6b2f76c 6399 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 6400 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 6401 // limit, keep running for now, and leave the OK timer running so
mjr 86:e30a1f60f783 6402 // that we can continue to monitor this. Only reboot if the PSU2
mjr 86:e30a1f60f783 6403 // power status allows it.
mjr 86:e30a1f60f783 6404 if (jsOKTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6405 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 6406 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 6407 }
mjr 54:fd77a6b2f76c 6408 else
mjr 54:fd77a6b2f76c 6409 {
mjr 54:fd77a6b2f76c 6410 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 6411 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 6412 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 6413 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 6414 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 6415 }
mjr 38:091e511ce8a0 6416 }
mjr 73:4e8ce0b18915 6417 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 6418 {
mjr 73:4e8ce0b18915 6419 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 6420 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 6421 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 6422 }
mjr 35:e959ffba78fd 6423 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 6424 {
mjr 6:cc35eb643e8f 6425 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 6426 hb = !hb;
mjr 38:091e511ce8a0 6427 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 6428 }
mjr 6:cc35eb643e8f 6429 else
mjr 6:cc35eb643e8f 6430 {
mjr 6:cc35eb643e8f 6431 // connected - flash blue/green
mjr 2:c174f9ee414a 6432 hb = !hb;
mjr 38:091e511ce8a0 6433 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 6434 }
mjr 1:d913e0afb2ac 6435
mjr 1:d913e0afb2ac 6436 // reset the heartbeat timer
mjr 1:d913e0afb2ac 6437 hbTimer.reset();
mjr 5:a70c0bce770d 6438 ++hbcnt;
mjr 1:d913e0afb2ac 6439 }
mjr 74:822a92bc11d2 6440
mjr 74:822a92bc11d2 6441 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 6442 IF_DIAG(
mjr 76:7f5912b6340e 6443 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 6444 mainLoopIterCount++;
mjr 74:822a92bc11d2 6445 )
mjr 1:d913e0afb2ac 6446 }
mjr 0:5acbbe3f4cf4 6447 }