An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Thu May 12 05:57:53 2016 +0000
Revision:
59:94eb9265b6d7
Parent:
55:4db125cd11a0
Child:
61:3c7e6e9ec355
Replaced library malloc with custom version that's slightly more efficient and makes more memory available overall

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 17:ab3cec0c8bf4 1 // Pinscape Controller Configuration
mjr 17:ab3cec0c8bf4 2 //
mjr 55:4db125cd11a0 3 // New for 2016: dynamic configuration! To configure the controller,
mjr 55:4db125cd11a0 4 // connect the KL25Z to your PC, install the STANDARD pre-compiled .bin
mjr 55:4db125cd11a0 5 // file, and run the Windows config tool. There's no need (as there was in
mjr 55:4db125cd11a0 6 // the past) to edit the source code or to compile a custom version of the
mjr 55:4db125cd11a0 7 // binary just to customize setup options.
mjr 35:e959ffba78fd 8 //
mjr 55:4db125cd11a0 9 // In earlier versions, configuration was handled mostly with #ifdef and
mjr 55:4db125cd11a0 10 // similar constructs. To customize the setup, you had to create a private
mjr 55:4db125cd11a0 11 // forked copy of the source code, edit the constants defined in config.h,
mjr 55:4db125cd11a0 12 // and compile a custom binary. That's no longer necessary!
mjr 35:e959ffba78fd 13 //
mjr 35:e959ffba78fd 14 // The new approach is to do everything (or as much as possible, anyway)
mjr 35:e959ffba78fd 15 // via the Windows config tool. You shouldn't have to recompile a custom
mjr 35:e959ffba78fd 16 // version just to make a configurable change. Of course, you're still free
mjr 55:4db125cd11a0 17 // to create a custom version if you want to add entirely new features or
mjr 55:4db125cd11a0 18 // make changes that go beyond what the setup tool exposes.
mjr 35:e959ffba78fd 19 //
mjr 35:e959ffba78fd 20
mjr 55:4db125cd11a0 21 // Pre-packaged configuration selection.
mjr 55:4db125cd11a0 22 //
mjr 55:4db125cd11a0 23 // IMPORTANT! If you just want to create a custom configuration, DON'T
mjr 55:4db125cd11a0 24 // modify this file, DON'T use these macros, and DON'T compiler on mbed.
mjr 55:4db125cd11a0 25 // Instead, use the unmodified standard build and configure your system
mjr 55:4db125cd11a0 26 // using the Pinscape Config Tool on Windows. That's easier and better
mjr 55:4db125cd11a0 27 // because the config tool will be able to back up your settings to a
mjr 55:4db125cd11a0 28 // local file on your PC, and will automatically preserve your settings
mjr 55:4db125cd11a0 29 // across upgrades. You won't have to worry about merging your changes
mjr 55:4db125cd11a0 30 // into every update of the repository source code, since you'll never
mjr 55:4db125cd11a0 31 // have to change the source code.
mjr 55:4db125cd11a0 32 //
mjr 55:4db125cd11a0 33 // The different configurations here are purely for testing purposes.
mjr 55:4db125cd11a0 34 // The standard build uses the STANDARD_CONFIG settings, which are the
mjr 55:4db125cd11a0 35 // same as the original version where you had to modify config.h by hand
mjr 55:4db125cd11a0 36 // to customize your system.
mjr 55:4db125cd11a0 37 //
mjr 55:4db125cd11a0 38 #define STANDARD_CONFIG 1 // standard settings, based on v1 base settings
mjr 55:4db125cd11a0 39 #define TEST_CONFIG_EXPAN 0 // configuration for the expansion boards
mjr 55:4db125cd11a0 40 #define TEST_KEEP_PRINTF 0 // for debugging purposes, keep printf() enabled
mjr 55:4db125cd11a0 41 // by leaving the SDA UART GPIO pins unallocated
mjr 48:058ace2aed1d 42
mjr 17:ab3cec0c8bf4 43
mjr 25:e22b88bd783a 44 #ifndef CONFIG_H
mjr 25:e22b88bd783a 45 #define CONFIG_H
mjr 17:ab3cec0c8bf4 46
mjr 35:e959ffba78fd 47 // Plunger type codes
mjr 35:e959ffba78fd 48 // NOTE! These values are part of the external USB interface. New
mjr 35:e959ffba78fd 49 // values can be added, but the meaning of an existing assigned number
mjr 35:e959ffba78fd 50 // should remain fixed to keep the PC-side config tool compatible across
mjr 35:e959ffba78fd 51 // versions.
mjr 35:e959ffba78fd 52 const int PlungerType_None = 0; // no plunger
mjr 35:e959ffba78fd 53 const int PlungerType_TSL1410RS = 1; // TSL1410R linear image sensor (1280x1 pixels, 400dpi), serial mode
mjr 35:e959ffba78fd 54 const int PlungerType_TSL1410RP = 2; // TSL1410R, parallel mode (reads the two sensor sections concurrently)
mjr 35:e959ffba78fd 55 const int PlungerType_TSL1412RS = 3; // TSL1412R linear image sensor (1536x1 pixels, 400dpi), serial mode
mjr 35:e959ffba78fd 56 const int PlungerType_TSL1412RP = 4; // TSL1412R, parallel mode
mjr 35:e959ffba78fd 57 const int PlungerType_Pot = 5; // potentionmeter
mjr 35:e959ffba78fd 58 const int PlungerType_OptQuad = 6; // AEDR8300 optical quadrature sensor
mjr 35:e959ffba78fd 59 const int PlungerType_MagQuad = 7; // AS5304 magnetic quadrature sensor
mjr 21:5048e16cc9ef 60
mjr 35:e959ffba78fd 61 // Accelerometer orientation codes
mjr 35:e959ffba78fd 62 // These values are part of the external USB interface
mjr 35:e959ffba78fd 63 const int OrientationFront = 0; // USB ports pointed toward front of cabinet
mjr 35:e959ffba78fd 64 const int OrientationLeft = 1; // ports pointed toward left side of cabinet
mjr 35:e959ffba78fd 65 const int OrientationRight = 2; // ports pointed toward right side of cabinet
mjr 35:e959ffba78fd 66 const int OrientationRear = 3; // ports pointed toward back of cabinet
mjr 25:e22b88bd783a 67
mjr 35:e959ffba78fd 68 // input button types
mjr 53:9b2611964afc 69 const int BtnTypeNone = 0; // unused
mjr 35:e959ffba78fd 70 const int BtnTypeJoystick = 1; // joystick button
mjr 53:9b2611964afc 71 const int BtnTypeKey = 2; // keyboard key
mjr 38:091e511ce8a0 72
mjr 38:091e511ce8a0 73 // input button flags
mjr 38:091e511ce8a0 74 const uint8_t BtnFlagPulse = 0x01; // pulse mode - reports each change in the physical switch state
mjr 38:091e511ce8a0 75 // as a brief press of the logical button/keyboard key
mjr 40:cc0d9814522b 76
mjr 40:cc0d9814522b 77 // button setup structure
mjr 40:cc0d9814522b 78 struct ButtonCfg
mjr 40:cc0d9814522b 79 {
mjr 40:cc0d9814522b 80 uint8_t pin; // physical input GPIO pin - a USB-to-PinName mapping index
mjr 40:cc0d9814522b 81 uint8_t typ; // key type reported to PC - a BtnTypeXxx value
mjr 53:9b2611964afc 82 uint8_t val; // key value reported - meaning depends on 'typ' value:
mjr 53:9b2611964afc 83 // none -> no PC input reports (val is unused)
mjr 53:9b2611964afc 84 // joystick -> val is joystick button number (1..32)
mjr 53:9b2611964afc 85 // keyboard -> val is USB scan code
mjr 40:cc0d9814522b 86 uint8_t flags; // key flags - a bitwise combination of BtnFlagXxx values
mjr 40:cc0d9814522b 87
mjr 40:cc0d9814522b 88 void set(uint8_t pin, uint8_t typ, uint8_t val, uint8_t flags = 0)
mjr 40:cc0d9814522b 89 {
mjr 40:cc0d9814522b 90 this->pin = pin;
mjr 40:cc0d9814522b 91 this->typ = typ;
mjr 40:cc0d9814522b 92 this->val = val;
mjr 40:cc0d9814522b 93 this->flags = flags;
mjr 40:cc0d9814522b 94 }
mjr 40:cc0d9814522b 95
mjr 40:cc0d9814522b 96 } __attribute__((packed));
mjr 40:cc0d9814522b 97
mjr 33:d832bcab089e 98
mjr 35:e959ffba78fd 99 // maximum number of input button mappings
mjr 53:9b2611964afc 100 const int MAX_EXT_BUTTONS = 32; // buttons visible through USB interface
mjr 53:9b2611964afc 101 const int VIRTUAL_BUTTONS = 1; // number of internal virtual buttons
mjr 53:9b2611964afc 102 const int ZBL_BUTTON = MAX_EXT_BUTTONS; // index of virtual ZB Launch Ball button
mjr 53:9b2611964afc 103 const int MAX_BUTTONS = MAX_EXT_BUTTONS + VIRTUAL_BUTTONS; // total button slots
mjr 33:d832bcab089e 104
mjr 35:e959ffba78fd 105 // LedWiz output port type codes
mjr 35:e959ffba78fd 106 // These values are part of the external USB interface
mjr 35:e959ffba78fd 107 const int PortTypeDisabled = 0; // port is disabled - not visible to LedWiz/DOF host
mjr 35:e959ffba78fd 108 const int PortTypeGPIOPWM = 1; // GPIO port, PWM enabled
mjr 35:e959ffba78fd 109 const int PortTypeGPIODig = 2; // GPIO port, digital out
mjr 35:e959ffba78fd 110 const int PortTypeTLC5940 = 3; // TLC5940 port
mjr 35:e959ffba78fd 111 const int PortType74HC595 = 4; // 74HC595 port
mjr 53:9b2611964afc 112 const int PortTypeVirtual = 5; // Virtual port - visible to host software, but not connected
mjr 53:9b2611964afc 113 // to a physical output
mjr 17:ab3cec0c8bf4 114
mjr 35:e959ffba78fd 115 // LedWiz output port flag bits
mjr 38:091e511ce8a0 116 const uint8_t PortFlagActiveLow = 0x01; // physical output is active-low
mjr 38:091e511ce8a0 117 const uint8_t PortFlagNoisemaker = 0x02; // noisemaker device - disable when night mode is engaged
mjr 40:cc0d9814522b 118 const uint8_t PortFlagGamma = 0x04; // apply gamma correction to this output
mjr 35:e959ffba78fd 119
mjr 35:e959ffba78fd 120 // maximum number of output ports
mjr 48:058ace2aed1d 121 const int MAX_OUT_PORTS = 128;
mjr 33:d832bcab089e 122
mjr 38:091e511ce8a0 123 // port configuration data
mjr 38:091e511ce8a0 124 struct LedWizPortCfg
mjr 38:091e511ce8a0 125 {
mjr 38:091e511ce8a0 126 uint8_t typ; // port type: a PortTypeXxx value
mjr 38:091e511ce8a0 127 uint8_t pin; // physical output pin: for a GPIO port, this is an index in the
mjr 38:091e511ce8a0 128 // USB-to-PinName mapping list; for a TLC5940 or 74HC595 port, it's
mjr 38:091e511ce8a0 129 // the output number, starting from 0 for OUT0 on the first chip in
mjr 38:091e511ce8a0 130 // the daisy chain. For inactive and virtual ports, it's unused.
mjr 38:091e511ce8a0 131 uint8_t flags; // flags: a combination of PortFlagXxx values
mjr 40:cc0d9814522b 132
mjr 40:cc0d9814522b 133 void set(uint8_t typ, uint8_t pin, uint8_t flags = 0)
mjr 40:cc0d9814522b 134 {
mjr 40:cc0d9814522b 135 this->typ = typ;
mjr 40:cc0d9814522b 136 this->pin = pin;
mjr 40:cc0d9814522b 137 this->flags = flags;
mjr 40:cc0d9814522b 138 }
mjr 40:cc0d9814522b 139
mjr 38:091e511ce8a0 140 } __attribute__((packed));
mjr 38:091e511ce8a0 141
mjr 38:091e511ce8a0 142
mjr 53:9b2611964afc 143 // Convert a physical pin name to a wire pin name
mjr 53:9b2611964afc 144 #define PINNAME_TO_WIRE(p) \
mjr 53:9b2611964afc 145 uint8_t((p) == NC ? 0xFF : \
mjr 53:9b2611964afc 146 (((p) & 0xF000 ) >> (PORT_SHIFT - 5)) | (((p) & 0xFF) >> 2))
mjr 53:9b2611964afc 147
mjr 35:e959ffba78fd 148 struct Config
mjr 35:e959ffba78fd 149 {
mjr 35:e959ffba78fd 150 // set all values to factory defaults
mjr 35:e959ffba78fd 151 void setFactoryDefaults()
mjr 35:e959ffba78fd 152 {
mjr 35:e959ffba78fd 153 // By default, pretend to be LedWiz unit #8. This can be from 1 to 16. Real
mjr 35:e959ffba78fd 154 // LedWiz units have their unit number set at the factory, and the vast majority
mjr 35:e959ffba78fd 155 // are set up as unit #1, since that's the default for anyone who doesn't ask
mjr 35:e959ffba78fd 156 // for a different setting. It seems rare for anyone to use more than one unit
mjr 35:e959ffba78fd 157 // in a pin cab, but for the few who do, the others will probably be numbered
mjr 35:e959ffba78fd 158 // sequentially as #2, #3, etc. It seems safe to assume that no one out there
mjr 48:058ace2aed1d 159 // has a unit #8, so we'll use that as our default. This can be changed from
mjr 48:058ace2aed1d 160 // the config tool, but for the sake of convenience, it's better to pick a
mjr 48:058ace2aed1d 161 // default that most people won't have to change.
mjr 54:fd77a6b2f76c 162 usbVendorID = 0xFAFA; // LedWiz vendor code
mjr 48:058ace2aed1d 163 usbProductID = 0x00F7; // LedWiz product code for unit #8
mjr 55:4db125cd11a0 164
mjr 55:4db125cd11a0 165 // Set the default Pinscape unit number to #1. This is a separate identifier
mjr 55:4db125cd11a0 166 // from the LedWiz ID, so you don't have to worry about making this different
mjr 55:4db125cd11a0 167 // from your LedWiz units. Each Pinscape unit should have a unique value for
mjr 55:4db125cd11a0 168 // this ID, though.
mjr 55:4db125cd11a0 169 //
mjr 55:4db125cd11a0 170 // Note that Pinscape unit #1 corresponds to DOF Pinscape #51, PS 2 -> DOF 52,
mjr 55:4db125cd11a0 171 // and so on - just add 50 to get the DOF ID.
mjr 55:4db125cd11a0 172 psUnitNo = 1;
mjr 35:e959ffba78fd 173
mjr 51:57eb311faafa 174 // set a disconnect reboot timeout of 10 seconds by default
mjr 55:4db125cd11a0 175 disconnectRebootTimeout = 10;
mjr 51:57eb311faafa 176
mjr 35:e959ffba78fd 177 // enable joystick reports
mjr 35:e959ffba78fd 178 joystickEnabled = true;
mjr 35:e959ffba78fd 179
mjr 35:e959ffba78fd 180 // assume standard orientation, with USB ports toward front of cabinet
mjr 35:e959ffba78fd 181 orientation = OrientationFront;
mjr 25:e22b88bd783a 182
mjr 52:8298b2a73eb2 183 // assume a basic setup with no expansion boards
mjr 53:9b2611964afc 184 expan.typ = 0;
mjr 53:9b2611964afc 185 expan.vsn = 0;
mjr 53:9b2611964afc 186 memset(expan.ext, 0, sizeof(expan.ext));
mjr 52:8298b2a73eb2 187
mjr 35:e959ffba78fd 188 // assume no plunger is attached
mjr 35:e959ffba78fd 189 plunger.enabled = false;
mjr 35:e959ffba78fd 190 plunger.sensorType = PlungerType_None;
mjr 35:e959ffba78fd 191
mjr 55:4db125cd11a0 192 #if TEST_CONFIG_EXPAN || STANDARD_CONFIG
mjr 43:7a6364d82a41 193 plunger.enabled = true;
mjr 43:7a6364d82a41 194 plunger.sensorType = PlungerType_TSL1410RS;
mjr 53:9b2611964afc 195 plunger.sensorPin[0] = PINNAME_TO_WIRE(PTE20); // SI
mjr 53:9b2611964afc 196 plunger.sensorPin[1] = PINNAME_TO_WIRE(PTE21); // SCLK
mjr 53:9b2611964afc 197 plunger.sensorPin[2] = PINNAME_TO_WIRE(PTB0); // AO1 = PTB0 = ADC0_SE8
mjr 53:9b2611964afc 198 plunger.sensorPin[3] = PINNAME_TO_WIRE(PTE22); // AO2 (parallel mode) = PTE22 = ADC0_SE3
mjr 43:7a6364d82a41 199 #endif
mjr 43:7a6364d82a41 200
mjr 48:058ace2aed1d 201 // default plunger calibration button settings
mjr 55:4db125cd11a0 202 plunger.cal.features = 0x03; // 0x01 = enable button, 0x02 = enable indicator lamp
mjr 55:4db125cd11a0 203 plunger.cal.btn = PINNAME_TO_WIRE(PTE29); // button input (DigitalIn port)
mjr 55:4db125cd11a0 204 plunger.cal.led = PINNAME_TO_WIRE(PTE23); // button output (DigitalOut port)
mjr 35:e959ffba78fd 205
mjr 44:b5ac89b9cd5d 206 // set the default plunger calibration
mjr 44:b5ac89b9cd5d 207 plunger.cal.setDefaults();
mjr 35:e959ffba78fd 208
mjr 35:e959ffba78fd 209 // disable the ZB Launch Ball by default
mjr 53:9b2611964afc 210 plunger.zbLaunchBall.port = 0; // 0 = disabled
mjr 53:9b2611964afc 211 plunger.zbLaunchBall.keytype = 2; // keyboard key
mjr 53:9b2611964afc 212 plunger.zbLaunchBall.keycode = 0x28; // Enter key (USB scan code)
mjr 53:9b2611964afc 213 plunger.zbLaunchBall.pushDistance = 63; // about 1/16"
mjr 35:e959ffba78fd 214
mjr 35:e959ffba78fd 215 // assume no TV ON switch
mjr 53:9b2611964afc 216 TVON.statusPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 217 TVON.latchPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 218 TVON.relayPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 219 TVON.delayTime = 700; // 7 seconds
mjr 55:4db125cd11a0 220
mjr 55:4db125cd11a0 221 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 222 // expansion board TV ON wiring
mjr 53:9b2611964afc 223 TVON.statusPin = PINNAME_TO_WIRE(PTD2);
mjr 53:9b2611964afc 224 TVON.latchPin = PINNAME_TO_WIRE(PTE0);
mjr 53:9b2611964afc 225 TVON.relayPin = PINNAME_TO_WIRE(PTD3);
mjr 53:9b2611964afc 226 TVON.delayTime = 700; // 7 seconds
mjr 38:091e511ce8a0 227 #endif
mjr 53:9b2611964afc 228
mjr 53:9b2611964afc 229 // assume no night mode switch or indicator lamp
mjr 53:9b2611964afc 230 nightMode.btn = 0;
mjr 53:9b2611964afc 231 nightMode.flags = 0;
mjr 53:9b2611964afc 232 nightMode.port = 0;
mjr 35:e959ffba78fd 233
mjr 35:e959ffba78fd 234 // assume no TLC5940 chips
mjr 35:e959ffba78fd 235 tlc5940.nchips = 0;
mjr 55:4db125cd11a0 236
mjr 55:4db125cd11a0 237 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 238 // for expansion board testing purposes, assume the common setup
mjr 55:4db125cd11a0 239 // with one main board and one power board
mjr 48:058ace2aed1d 240 tlc5940.nchips = 4;
mjr 38:091e511ce8a0 241 #endif
mjr 38:091e511ce8a0 242
mjr 55:4db125cd11a0 243 // Default TLC5940 pin assignments. Note that it's harmless to set
mjr 55:4db125cd11a0 244 // these to valid pins even if no TLC5940 chips are actually present,
mjr 55:4db125cd11a0 245 // since the main program won't allocate the connections if 'nchips'
mjr 55:4db125cd11a0 246 // is zero. This means that the pins are free to be used for other
mjr 55:4db125cd11a0 247 // purposes (such as output ports) if not using TLC5940 chips.
mjr 53:9b2611964afc 248 tlc5940.sin = PINNAME_TO_WIRE(PTC6);
mjr 53:9b2611964afc 249 tlc5940.sclk = PINNAME_TO_WIRE(PTC5);
mjr 53:9b2611964afc 250 tlc5940.xlat = PINNAME_TO_WIRE(PTC10);
mjr 59:94eb9265b6d7 251 tlc5940.blank = PINNAME_TO_WIRE(PTC7);
mjr 59:94eb9265b6d7 252 #if TEST_KEEP_PRINTF
mjr 59:94eb9265b6d7 253 tlc5940.gsclk = PINNAME_TO_WIRE(PTA13); // PTA1 is reserved for SDA printf()
mjr 59:94eb9265b6d7 254 #else
mjr 53:9b2611964afc 255 tlc5940.gsclk = PINNAME_TO_WIRE(PTA1);
mjr 59:94eb9265b6d7 256 #endif
mjr 35:e959ffba78fd 257
mjr 35:e959ffba78fd 258 // assume no 74HC595 chips
mjr 35:e959ffba78fd 259 hc595.nchips = 0;
mjr 55:4db125cd11a0 260
mjr 55:4db125cd11a0 261 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 262 // for expansion board testing purposes, assume one chime board
mjr 48:058ace2aed1d 263 hc595.nchips = 1;
mjr 40:cc0d9814522b 264 #endif
mjr 40:cc0d9814522b 265
mjr 55:4db125cd11a0 266 // Default 74HC595 pin assignments. As with the TLC5940 pins, it's
mjr 55:4db125cd11a0 267 // harmless to assign pins here even if no 74HC595 chips are used,
mjr 55:4db125cd11a0 268 // since the main program won't actually allocate the pins if 'nchips'
mjr 55:4db125cd11a0 269 // is zero.
mjr 53:9b2611964afc 270 hc595.sin = PINNAME_TO_WIRE(PTA5);
mjr 53:9b2611964afc 271 hc595.sclk = PINNAME_TO_WIRE(PTA4);
mjr 53:9b2611964afc 272 hc595.latch = PINNAME_TO_WIRE(PTA12);
mjr 53:9b2611964afc 273 hc595.ena = PINNAME_TO_WIRE(PTD4);
mjr 38:091e511ce8a0 274
mjr 35:e959ffba78fd 275 // initially configure with no LedWiz output ports
mjr 35:e959ffba78fd 276 outPort[0].typ = PortTypeDisabled;
mjr 53:9b2611964afc 277
mjr 35:e959ffba78fd 278 // initially configure with no input buttons
mjr 35:e959ffba78fd 279 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 53:9b2611964afc 280 button[i].set(PINNAME_TO_WIRE(NC), BtnTypeNone, 0);
mjr 38:091e511ce8a0 281
mjr 55:4db125cd11a0 282 #if STANDARD_CONFIG | TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 283 // For the standard configuration, assign 24 input ports to
mjr 55:4db125cd11a0 284 // joystick buttons 1-24. Assign the same GPIO pins used
mjr 55:4db125cd11a0 285 // in the original v1 default configuration. For expansion
mjr 55:4db125cd11a0 286 // board testing purposes, also assign the input ports, with
mjr 55:4db125cd11a0 287 // the noted differences.
mjr 38:091e511ce8a0 288 for (int i = 0 ; i < 24 ; ++i) {
mjr 55:4db125cd11a0 289 static const int bp[] = {
mjr 53:9b2611964afc 290 PINNAME_TO_WIRE(PTC2), // 1
mjr 53:9b2611964afc 291 PINNAME_TO_WIRE(PTB3), // 2
mjr 53:9b2611964afc 292 PINNAME_TO_WIRE(PTB2), // 3
mjr 53:9b2611964afc 293 PINNAME_TO_WIRE(PTB1), // 4
mjr 53:9b2611964afc 294 PINNAME_TO_WIRE(PTE30), // 5
mjr 48:058ace2aed1d 295 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 296 PINNAME_TO_WIRE(PTC11), // 6 - expansion boards use PTC11 for this, since PTE22
mjr 55:4db125cd11a0 297 // is reserved for a plunger connection
mjr 55:4db125cd11a0 298 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 299 PINNAME_TO_WIRE(PTE22), // 6 - original standalone setup uses PTE22
mjr 48:058ace2aed1d 300 #endif
mjr 53:9b2611964afc 301 PINNAME_TO_WIRE(PTE5), // 7
mjr 53:9b2611964afc 302 PINNAME_TO_WIRE(PTE4), // 8
mjr 53:9b2611964afc 303 PINNAME_TO_WIRE(PTE3), // 9
mjr 53:9b2611964afc 304 PINNAME_TO_WIRE(PTE2), // 10
mjr 53:9b2611964afc 305 PINNAME_TO_WIRE(PTB11), // 11
mjr 53:9b2611964afc 306 PINNAME_TO_WIRE(PTB10), // 12
mjr 53:9b2611964afc 307 PINNAME_TO_WIRE(PTB9), // 13
mjr 53:9b2611964afc 308 PINNAME_TO_WIRE(PTB8), // 14
mjr 53:9b2611964afc 309 PINNAME_TO_WIRE(PTC12), // 15
mjr 53:9b2611964afc 310 PINNAME_TO_WIRE(PTC13), // 16
mjr 53:9b2611964afc 311 PINNAME_TO_WIRE(PTC16), // 17
mjr 53:9b2611964afc 312 PINNAME_TO_WIRE(PTC17), // 18
mjr 53:9b2611964afc 313 PINNAME_TO_WIRE(PTA16), // 19
mjr 53:9b2611964afc 314 PINNAME_TO_WIRE(PTA17), // 20
mjr 53:9b2611964afc 315 PINNAME_TO_WIRE(PTE31), // 21
mjr 53:9b2611964afc 316 PINNAME_TO_WIRE(PTD6), // 22
mjr 53:9b2611964afc 317 PINNAME_TO_WIRE(PTD7), // 23
mjr 53:9b2611964afc 318 PINNAME_TO_WIRE(PTE1) // 24
mjr 40:cc0d9814522b 319 };
mjr 48:058ace2aed1d 320 button[i].set(bp[i],
mjr 48:058ace2aed1d 321 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 322 // For expansion board testing only, assign the inputs
mjr 55:4db125cd11a0 323 // to keyboard keys A, B, etc. This isn't useful; it's
mjr 55:4db125cd11a0 324 // just for testing purposes. Note that the USB key code
mjr 55:4db125cd11a0 325 // for "A" is 4, "B" is 5, and so on sequentially through
mjr 55:4db125cd11a0 326 // the alphabet.
mjr 55:4db125cd11a0 327 BtnTypeKey, i+4);
mjr 55:4db125cd11a0 328 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 329 // For the standard configuration, assign the input to
mjr 55:4db125cd11a0 330 // joystick buttons 1-24, as in the original v1 default
mjr 55:4db125cd11a0 331 // configuration.
mjr 55:4db125cd11a0 332 BtnTypeJoystick, i+1);
mjr 48:058ace2aed1d 333 #endif
mjr 48:058ace2aed1d 334
mjr 38:091e511ce8a0 335 }
mjr 38:091e511ce8a0 336 #endif
mjr 38:091e511ce8a0 337
mjr 55:4db125cd11a0 338 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 339 // For testing purposes, configure the basic complement of
mjr 55:4db125cd11a0 340 // expansion board ports. AS MENTIONED ABOVE, THIS IS PURELY FOR
mjr 55:4db125cd11a0 341 // TESTING. DON'T USE THIS METHOD TO CONFIGURE YOUR EXPANSION
mjr 55:4db125cd11a0 342 // BOARDS FOR ACTUAL DEPLOYMENT. It's much easier and cleaner
mjr 55:4db125cd11a0 343 // to use the unmodified standard build, and customize your
mjr 55:4db125cd11a0 344 // installation with the Pinscape Config Tool on Windows.
mjr 40:cc0d9814522b 345 //
mjr 55:4db125cd11a0 346 // For this testing setup, we'll configure one main board, one
mjr 55:4db125cd11a0 347 // power board, and one chime board. The *physical* ports on
mjr 55:4db125cd11a0 348 // the board are shown below. The logical (LedWiz/DOF) numbering
mjr 55:4db125cd11a0 349 // ISN'T sequential through the physical ports, because we want
mjr 55:4db125cd11a0 350 // to arrange the DOF ports so that the most important and most
mjr 55:4db125cd11a0 351 // common toys are assigned to ports 1-32. Those ports are
mjr 55:4db125cd11a0 352 // special because they're accessible to ALL software on the PC,
mjr 55:4db125cd11a0 353 // including older LedWiz-only software such as Future Pinball.
mjr 55:4db125cd11a0 354 // Ports above 32 are accessible only to modern DOF software,
mjr 55:4db125cd11a0 355 // like Visual Pinball and PinballX.
mjr 40:cc0d9814522b 356 //
mjr 40:cc0d9814522b 357 // Main board
mjr 40:cc0d9814522b 358 // TLC ports 0-15 -> flashers
mjr 40:cc0d9814522b 359 // TLC ports 16 -> strobe
mjr 40:cc0d9814522b 360 // TLC ports 17-31 -> flippers
mjr 40:cc0d9814522b 361 // Dig GPIO PTC8 -> knocker (timer-protected outputs)
mjr 40:cc0d9814522b 362 //
mjr 40:cc0d9814522b 363 // Power board:
mjr 40:cc0d9814522b 364 // TLC ports 32-63 -> general purpose outputs
mjr 40:cc0d9814522b 365 //
mjr 40:cc0d9814522b 366 // Chime board:
mjr 40:cc0d9814522b 367 // HC595 ports 0-7 -> timer-protected outputs
mjr 40:cc0d9814522b 368 //
mjr 38:091e511ce8a0 369 {
mjr 38:091e511ce8a0 370 int n = 0;
mjr 40:cc0d9814522b 371
mjr 40:cc0d9814522b 372 // 1-15 = flashers (TLC ports 0-15)
mjr 40:cc0d9814522b 373 // 16 = strobe (TLC port 15)
mjr 40:cc0d9814522b 374 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 375 outPort[n++].set(PortTypeTLC5940, i, PortFlagGamma);
mjr 40:cc0d9814522b 376
mjr 53:9b2611964afc 377 // 17 = knocker (PTC8)
mjr 53:9b2611964afc 378 outPort[n++].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8));
mjr 35:e959ffba78fd 379
mjr 40:cc0d9814522b 380 // 18-49 = power board outputs 1-32 (TLC ports 32-63)
mjr 40:cc0d9814522b 381 for (int i = 0 ; i < 32 ; ++i)
mjr 40:cc0d9814522b 382 outPort[n++].set(PortTypeTLC5940, i+32);
mjr 40:cc0d9814522b 383
mjr 40:cc0d9814522b 384 // 50-65 = flipper RGB (TLC ports 16-31)
mjr 40:cc0d9814522b 385 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 386 outPort[n++].set(PortTypeTLC5940, i+16, PortFlagGamma);
mjr 59:94eb9265b6d7 387
mjr 40:cc0d9814522b 388 // 66-73 = chime board ports 1-8 (74HC595 ports 0-7)
mjr 40:cc0d9814522b 389 for (int i = 0 ; i < 8 ; ++i)
mjr 40:cc0d9814522b 390 outPort[n++].set(PortType74HC595, i);
mjr 59:94eb9265b6d7 391
mjr 40:cc0d9814522b 392 // set Disabled to signify end of configured outputs
mjr 38:091e511ce8a0 393 outPort[n].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 394 }
mjr 38:091e511ce8a0 395 #endif
mjr 48:058ace2aed1d 396
mjr 55:4db125cd11a0 397 #if STANDARD_CONFIG
mjr 55:4db125cd11a0 398 //
mjr 55:4db125cd11a0 399 // For the standard build, set up the original complement
mjr 55:4db125cd11a0 400 // of 22 ports from the v1 default onfiguration.
mjr 55:4db125cd11a0 401 //
mjr 55:4db125cd11a0 402 // IMPORTANT! As mentioned above, don't edit this file to
mjr 55:4db125cd11a0 403 // customize this for your machine. Instead, use the unmodified
mjr 55:4db125cd11a0 404 // standard build, and customize your installation using the
mjr 55:4db125cd11a0 405 // Pinscape Config Tool on Windows.
mjr 55:4db125cd11a0 406 //
mjr 48:058ace2aed1d 407 #if TEST_KEEP_PRINTF
mjr 55:4db125cd11a0 408 outPort[ 0].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 1 = NC to keep debug printf (PTA1 is SDA UART)
mjr 55:4db125cd11a0 409 outPort[ 1].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 2 = NC to keep debug printf (PTA2 is SDA UART)
mjr 48:058ace2aed1d 410 #else
mjr 53:9b2611964afc 411 outPort[ 0].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA1)); // port 1 = PTA1
mjr 53:9b2611964afc 412 outPort[ 1].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA2)); // port 2 = PTA2
mjr 48:058ace2aed1d 413 #endif
mjr 53:9b2611964afc 414 outPort[ 2].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD4)); // port 3 = PTD4
mjr 53:9b2611964afc 415 outPort[ 3].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA12)); // port 4 = PTA12
mjr 53:9b2611964afc 416 outPort[ 4].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA4)); // port 5 = PTA4
mjr 53:9b2611964afc 417 outPort[ 5].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA5)); // port 6 = PTA5
mjr 53:9b2611964afc 418 outPort[ 6].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA13)); // port 7 = PTA13
mjr 53:9b2611964afc 419 outPort[ 7].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD5)); // port 8 = PTD5
mjr 53:9b2611964afc 420 outPort[ 8].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD0)); // port 9 = PTD0
mjr 53:9b2611964afc 421 outPort[ 9].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD3)); // port 10 = PTD3
mjr 53:9b2611964afc 422 outPort[10].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTD2)); // port 11 = PTD2
mjr 53:9b2611964afc 423 outPort[11].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8)); // port 12 = PTC8
mjr 53:9b2611964afc 424 outPort[12].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC9)); // port 13 = PTC9
mjr 53:9b2611964afc 425 outPort[13].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC7)); // port 14 = PTC7
mjr 53:9b2611964afc 426 outPort[14].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC0)); // port 15 = PTC0
mjr 53:9b2611964afc 427 outPort[15].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC3)); // port 16 = PTC3
mjr 53:9b2611964afc 428 outPort[16].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC4)); // port 17 = PTC4
mjr 53:9b2611964afc 429 outPort[17].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC5)); // port 18 = PTC5
mjr 53:9b2611964afc 430 outPort[18].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC6)); // port 19 = PTC6
mjr 53:9b2611964afc 431 outPort[19].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC10)); // port 20 = PTC10
mjr 53:9b2611964afc 432 outPort[20].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC11)); // port 21 = PTC11
mjr 53:9b2611964afc 433 outPort[21].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTE0)); // port 22 = PTE0
mjr 48:058ace2aed1d 434 #endif
mjr 35:e959ffba78fd 435 }
mjr 35:e959ffba78fd 436
mjr 35:e959ffba78fd 437 // --- USB DEVICE CONFIGURATION ---
mjr 35:e959ffba78fd 438
mjr 35:e959ffba78fd 439 // USB device identification - vendor ID and product ID. For LedLWiz
mjr 35:e959ffba78fd 440 // emulation, use vendor ID 0xFAFA and product ID 0x00EF + unit#, where
mjr 35:e959ffba78fd 441 // unit# is the nominal LedWiz unit number from 1 to 16. Alternatively,
mjr 35:e959ffba78fd 442 // if LedWiz emulation isn't desired or causes any driver conflicts on
mjr 35:e959ffba78fd 443 // the host, we have a private Pinscape assignment as vendor ID 0x1209
mjr 35:e959ffba78fd 444 // and product ID 0xEAEA (registered with http://pid.codes, a registry
mjr 35:e959ffba78fd 445 // for open-source USB projects).
mjr 35:e959ffba78fd 446 uint16_t usbVendorID;
mjr 35:e959ffba78fd 447 uint16_t usbProductID;
mjr 35:e959ffba78fd 448
mjr 35:e959ffba78fd 449 // Pinscape Controller unit number. This is the nominal unit number,
mjr 35:e959ffba78fd 450 // from 1 to 16. We report this in the status query; DOF uses it to
mjr 53:9b2611964afc 451 // distinguish among Pinscape units. Note that this doesn't affect
mjr 35:e959ffba78fd 452 // the LedWiz unit numbering, which is implied by the USB Product ID.
mjr 35:e959ffba78fd 453 uint8_t psUnitNo;
mjr 35:e959ffba78fd 454
mjr 35:e959ffba78fd 455 // Are joystick reports enabled? Joystick reports can be turned off, to
mjr 35:e959ffba78fd 456 // use the device as purely an output controller.
mjr 35:e959ffba78fd 457 char joystickEnabled;
mjr 35:e959ffba78fd 458
mjr 51:57eb311faafa 459 // Timeout for rebooting the KL25Z when the connection is lost. On some
mjr 51:57eb311faafa 460 // hosts, the mbed USB stack has problems reconnecting after an initial
mjr 51:57eb311faafa 461 // connection is dropped. As a workaround, we can automatically reboot
mjr 51:57eb311faafa 462 // the KL25Z when it detects that it's no longer connected, after the
mjr 51:57eb311faafa 463 // interval set here expires. The timeout is in seconds; setting this
mjr 51:57eb311faafa 464 // to 0 disables the automatic reboot.
mjr 51:57eb311faafa 465 uint8_t disconnectRebootTimeout;
mjr 35:e959ffba78fd 466
mjr 35:e959ffba78fd 467 // --- ACCELEROMETER ---
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469 // accelerometer orientation (ORIENTATION_xxx value)
mjr 35:e959ffba78fd 470 char orientation;
mjr 35:e959ffba78fd 471
mjr 35:e959ffba78fd 472
mjr 52:8298b2a73eb2 473 // --- EXPANSION BOARDS ---
mjr 52:8298b2a73eb2 474 struct
mjr 52:8298b2a73eb2 475 {
mjr 53:9b2611964afc 476 uint8_t typ; // expansion board set type:
mjr 53:9b2611964afc 477 // 1 -> Pinscape expansion boards
mjr 53:9b2611964afc 478 uint8_t vsn; // board set interface version
mjr 53:9b2611964afc 479 uint8_t ext[3]; // board set type-specific extended data
mjr 52:8298b2a73eb2 480
mjr 52:8298b2a73eb2 481 } expan;
mjr 52:8298b2a73eb2 482
mjr 52:8298b2a73eb2 483
mjr 35:e959ffba78fd 484 // --- PLUNGER CONFIGURATION ---
mjr 35:e959ffba78fd 485 struct
mjr 35:e959ffba78fd 486 {
mjr 35:e959ffba78fd 487 // plunger enabled/disabled
mjr 35:e959ffba78fd 488 char enabled;
mjr 33:d832bcab089e 489
mjr 35:e959ffba78fd 490 // plunger sensor type
mjr 35:e959ffba78fd 491 char sensorType;
mjr 35:e959ffba78fd 492
mjr 35:e959ffba78fd 493 // Plunger sensor pins. To accommodate a wide range of sensor types,
mjr 35:e959ffba78fd 494 // we keep a generic list of 4 pin assignments. The use of each pin
mjr 35:e959ffba78fd 495 // varies by sensor. The lists below are in order of the generic
mjr 35:e959ffba78fd 496 // pins; NC means that the pin isn't used by the sensor. Each pin's
mjr 35:e959ffba78fd 497 // GPIO usage is also listed. Certain usages limit which physical
mjr 35:e959ffba78fd 498 // pins can be assigned (e.g., AnalogIn or PwmOut).
mjr 35:e959ffba78fd 499 //
mjr 35:e959ffba78fd 500 // TSL1410R/1412R, serial: SI (DigitalOut), CLK (DigitalOut), AO (AnalogIn), NC
mjr 35:e959ffba78fd 501 // TSL1410R/1412R, parallel: SI (DigitalOut), CLK (DigitalOut), AO1 (AnalogIn), AO2 (AnalogIn)
mjr 35:e959ffba78fd 502 // Potentiometer: AO (AnalogIn), NC, NC, NC
mjr 35:e959ffba78fd 503 // AEDR8300: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 504 // AS5304: A (InterruptIn), B (InterruptIn), NC, NC
mjr 53:9b2611964afc 505 //
mjr 53:9b2611964afc 506 // Note! These are stored in uint8_t WIRE format, not PinName format.
mjr 53:9b2611964afc 507 uint8_t sensorPin[4];
mjr 35:e959ffba78fd 508
mjr 53:9b2611964afc 509 // ZB LAUNCH BALL button setup.
mjr 35:e959ffba78fd 510 //
mjr 35:e959ffba78fd 511 // This configures the "ZB Launch Ball" feature in DOF, based on Zeb's (of
mjr 35:e959ffba78fd 512 // zebsboards.com) scheme for using a mechanical plunger as a Launch button.
mjr 35:e959ffba78fd 513 // Set the port to 0 to disable the feature.
mjr 35:e959ffba78fd 514 //
mjr 35:e959ffba78fd 515 // The port number is an LedWiz port number that we monitor for activation.
mjr 53:9b2611964afc 516 // This port isn't meant to be connected to a physical device, although it
mjr 53:9b2611964afc 517 // can be if desired. It's primarily to let the host tell the controller
mjr 53:9b2611964afc 518 // when the ZB Launch feature is active. The port numbering starts at 1;
mjr 53:9b2611964afc 519 // set this to zero to disable the feature.
mjr 35:e959ffba78fd 520 //
mjr 53:9b2611964afc 521 // The key type and code has the same meaning as for a button mapping. This
mjr 53:9b2611964afc 522 // sets the key input sent to the PC when the plunger triggers a launch when
mjr 53:9b2611964afc 523 // the mode is active. For example, set keytype=2 and keycode=0x28 to send
mjr 53:9b2611964afc 524 // the Enter key (which is the key almost all PC pinball software uses for
mjr 53:9b2611964afc 525 // plunger and Launch button input).
mjr 35:e959ffba78fd 526 //
mjr 40:cc0d9814522b 527 // The "push distance" is the distance, in 1/1000 inch units, for registering a
mjr 40:cc0d9814522b 528 // push on the plunger as a button push. If the player pushes the plunger
mjr 40:cc0d9814522b 529 // forward of the rest position by this amount, we'll treat it as pushing the
mjr 40:cc0d9814522b 530 // button, even if the player didn't pull back the plunger first. This lets
mjr 40:cc0d9814522b 531 // the player treat the plunger knob as a button for games where it's meaningful
mjr 35:e959ffba78fd 532 // to hold down the Launch button for specific intervals (e.g., "Championship
mjr 35:e959ffba78fd 533 // Pub").
mjr 35:e959ffba78fd 534 struct
mjr 35:e959ffba78fd 535 {
mjr 53:9b2611964afc 536 uint8_t port;
mjr 53:9b2611964afc 537 uint8_t keytype;
mjr 53:9b2611964afc 538 uint8_t keycode;
mjr 53:9b2611964afc 539 uint16_t pushDistance;
mjr 35:e959ffba78fd 540
mjr 35:e959ffba78fd 541 } zbLaunchBall;
mjr 35:e959ffba78fd 542
mjr 35:e959ffba78fd 543 // --- PLUNGER CALIBRATION ---
mjr 35:e959ffba78fd 544 struct
mjr 35:e959ffba78fd 545 {
mjr 35:e959ffba78fd 546 // has the plunger been calibrated?
mjr 53:9b2611964afc 547 bool calibrated;
mjr 55:4db125cd11a0 548
mjr 55:4db125cd11a0 549 // Feature enable mask:
mjr 55:4db125cd11a0 550 //
mjr 55:4db125cd11a0 551 // 0x01 = calibration button enabled
mjr 55:4db125cd11a0 552 // 0x02 = indicator light enabled
mjr 55:4db125cd11a0 553 uint8_t features;
mjr 35:e959ffba78fd 554
mjr 35:e959ffba78fd 555 // calibration button switch pin
mjr 53:9b2611964afc 556 uint8_t btn;
mjr 35:e959ffba78fd 557
mjr 35:e959ffba78fd 558 // calibration button indicator light pin
mjr 53:9b2611964afc 559 uint8_t led;
mjr 35:e959ffba78fd 560
mjr 48:058ace2aed1d 561 // Plunger calibration min, zero, and max. These are in terms of the
mjr 48:058ace2aed1d 562 // unsigned 16-bit scale (0x0000..0xffff) that we use for the raw sensor
mjr 48:058ace2aed1d 563 // readings.
mjr 48:058ace2aed1d 564 //
mjr 48:058ace2aed1d 565 // The zero point is the rest position (aka park position), where the
mjr 48:058ace2aed1d 566 // plunger is in equilibrium between the main spring and the barrel
mjr 48:058ace2aed1d 567 // spring. In the standard setup, the plunger can travel a small
mjr 48:058ace2aed1d 568 // distance forward of the rest position, because the barrel spring
mjr 48:058ace2aed1d 569 // can be compressed a bit. The minimum is the maximum forward point
mjr 48:058ace2aed1d 570 // where the barrel spring can't be compressed any further.
mjr 48:058ace2aed1d 571 uint16_t min;
mjr 48:058ace2aed1d 572 uint16_t zero;
mjr 48:058ace2aed1d 573 uint16_t max;
mjr 52:8298b2a73eb2 574
mjr 52:8298b2a73eb2 575 // Measured release time, in milliseconds.
mjr 52:8298b2a73eb2 576 uint8_t tRelease;
mjr 35:e959ffba78fd 577
mjr 44:b5ac89b9cd5d 578 // Reset the plunger calibration
mjr 44:b5ac89b9cd5d 579 void setDefaults()
mjr 35:e959ffba78fd 580 {
mjr 44:b5ac89b9cd5d 581 calibrated = false; // not calibrated
mjr 48:058ace2aed1d 582 min = 0; // assume we can go all the way forward...
mjr 48:058ace2aed1d 583 max = 0xffff; // ...and all the way back
mjr 48:058ace2aed1d 584 zero = max/6; // the rest position is usually around 1/2" back = 1/6 of total travel
mjr 52:8298b2a73eb2 585 tRelease = 65; // standard 65ms release time
mjr 44:b5ac89b9cd5d 586 }
mjr 44:b5ac89b9cd5d 587
mjr 44:b5ac89b9cd5d 588 // Begin calibration. This sets each limit to the worst
mjr 44:b5ac89b9cd5d 589 // case point - for example, we set the retracted position
mjr 44:b5ac89b9cd5d 590 // to all the way forward. Each actual reading that comes
mjr 44:b5ac89b9cd5d 591 // in is then checked against the current limit, and if it's
mjr 44:b5ac89b9cd5d 592 // outside of the limit, we reset the limit to the new reading.
mjr 44:b5ac89b9cd5d 593 void begin()
mjr 44:b5ac89b9cd5d 594 {
mjr 48:058ace2aed1d 595 min = 0; // we don't calibrate the maximum forward position, so keep this at zero
mjr 48:058ace2aed1d 596 zero = 0xffff; // set the zero position all the way back
mjr 48:058ace2aed1d 597 max = 0; // set the retracted position all the way forward
mjr 52:8298b2a73eb2 598 tRelease = 65; // revert to a default release time
mjr 35:e959ffba78fd 599 }
mjr 17:ab3cec0c8bf4 600
mjr 35:e959ffba78fd 601 } cal;
mjr 18:5e890ebd0023 602
mjr 35:e959ffba78fd 603 } plunger;
mjr 29:582472d0bc57 604
mjr 35:e959ffba78fd 605
mjr 35:e959ffba78fd 606 // --- TV ON SWITCH ---
mjr 35:e959ffba78fd 607 //
mjr 35:e959ffba78fd 608 // To use the TV ON switch feature, the special power sensing circuitry
mjr 35:e959ffba78fd 609 // implemented on the Expansion Board must be attached (or an equivalent
mjr 35:e959ffba78fd 610 // circuit, as described in the Build Guide). The circuitry lets us
mjr 35:e959ffba78fd 611 // detect power state changes on the secondary power supply.
mjr 35:e959ffba78fd 612 struct
mjr 35:e959ffba78fd 613 {
mjr 35:e959ffba78fd 614 // PSU2 power status sense (DigitalIn pin). This pin goes LOW when the
mjr 35:e959ffba78fd 615 // secondary power supply is turned off, and remains LOW until the LATCH
mjr 35:e959ffba78fd 616 // pin is raised high AND the secondary PSU is turned on. Once HIGH,
mjr 35:e959ffba78fd 617 // it remains HIGH as long as the secondary PSU is on.
mjr 53:9b2611964afc 618 uint8_t statusPin;
mjr 35:e959ffba78fd 619
mjr 35:e959ffba78fd 620 // PSU2 power status latch (DigitalOut pin)
mjr 53:9b2611964afc 621 uint8_t latchPin;
mjr 35:e959ffba78fd 622
mjr 35:e959ffba78fd 623 // TV ON relay pin (DigitalOut pin). This pin controls the TV switch
mjr 35:e959ffba78fd 624 // relay. Raising the pin HIGH turns the relay ON (energizes the coil).
mjr 53:9b2611964afc 625 uint8_t relayPin;
mjr 35:e959ffba78fd 626
mjr 40:cc0d9814522b 627 // TV ON delay time, in 1/100 second units. This is the interval between
mjr 40:cc0d9814522b 628 // sensing that the secondary power supply has turned on and pulsing the
mjr 40:cc0d9814522b 629 // TV ON switch relay.
mjr 40:cc0d9814522b 630 int delayTime;
mjr 35:e959ffba78fd 631
mjr 35:e959ffba78fd 632 } TVON;
mjr 35:e959ffba78fd 633
mjr 53:9b2611964afc 634 // --- Night Mode ---
mjr 53:9b2611964afc 635 struct
mjr 53:9b2611964afc 636 {
mjr 55:4db125cd11a0 637 uint8_t btn; // night mode button number (1..MAX_BUTTONS, 0 = no button)
mjr 53:9b2611964afc 638 uint8_t flags; // flags:
mjr 53:9b2611964afc 639 // 0x01 = on/off switch (if not set, it's a momentary button)
mjr 55:4db125cd11a0 640 uint8_t port; // indicator output port number (1..MAX_OUT_PORTS, 0 = no indicator)
mjr 53:9b2611964afc 641 } nightMode;
mjr 53:9b2611964afc 642
mjr 29:582472d0bc57 643
mjr 35:e959ffba78fd 644 // --- TLC5940NT PWM Controller Chip Setup ---
mjr 35:e959ffba78fd 645 struct
mjr 35:e959ffba78fd 646 {
mjr 35:e959ffba78fd 647 // number of TLC5940NT chips connected in daisy chain
mjr 35:e959ffba78fd 648 int nchips;
mjr 35:e959ffba78fd 649
mjr 53:9b2611964afc 650 // pin connections (wire pin IDs)
mjr 53:9b2611964afc 651 uint8_t sin; // Serial data - must connect to SPIO MOSI -> PTC6 or PTD2
mjr 53:9b2611964afc 652 uint8_t sclk; // Serial clock - must connect to SPIO SCLK -> PTC5 or PTD1
mjr 35:e959ffba78fd 653 // (but don't use PTD1, since it's hard-wired to the on-board blue LED)
mjr 53:9b2611964afc 654 uint8_t xlat; // XLAT (latch) signal - connect to any GPIO pin
mjr 53:9b2611964afc 655 uint8_t blank; // BLANK signal - connect to any GPIO pin
mjr 53:9b2611964afc 656 uint8_t gsclk; // Grayscale clock - must connect to a PWM-out capable pin
mjr 29:582472d0bc57 657
mjr 35:e959ffba78fd 658 } tlc5940;
mjr 35:e959ffba78fd 659
mjr 35:e959ffba78fd 660
mjr 35:e959ffba78fd 661 // --- 74HC595 Shift Register Setup ---
mjr 35:e959ffba78fd 662 struct
mjr 35:e959ffba78fd 663 {
mjr 35:e959ffba78fd 664 // number of 74HC595 chips attached in daisy chain
mjr 35:e959ffba78fd 665 int nchips;
mjr 35:e959ffba78fd 666
mjr 35:e959ffba78fd 667 // pin connections
mjr 53:9b2611964afc 668 uint8_t sin; // Serial data - use any GPIO pin
mjr 53:9b2611964afc 669 uint8_t sclk; // Serial clock - use any GPIO pin
mjr 53:9b2611964afc 670 uint8_t latch; // Latch - use any GPIO pin
mjr 53:9b2611964afc 671 uint8_t ena; // Enable signal - use any GPIO pin
mjr 35:e959ffba78fd 672
mjr 35:e959ffba78fd 673 } hc595;
mjr 34:6b981a2afab7 674
mjr 25:e22b88bd783a 675
mjr 35:e959ffba78fd 676 // --- Button Input Setup ---
mjr 40:cc0d9814522b 677 ButtonCfg button[MAX_BUTTONS] __attribute__((packed));
mjr 17:ab3cec0c8bf4 678
mjr 35:e959ffba78fd 679 // --- LedWiz Output Port Setup ---
mjr 38:091e511ce8a0 680 LedWizPortCfg outPort[MAX_OUT_PORTS] __attribute__((packed)); // LedWiz & extended output ports
mjr 48:058ace2aed1d 681
mjr 17:ab3cec0c8bf4 682 };
mjr 17:ab3cec0c8bf4 683
mjr 35:e959ffba78fd 684 #endif