An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Fri Mar 24 05:24:45 2017 +0000
Revision:
80:94dc2946871b
Parent:
78:1e00b3fa11af
Child:
82:4f6209cb5c33
IR features release

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 17:ab3cec0c8bf4 1 // Pinscape Controller Configuration
mjr 17:ab3cec0c8bf4 2 //
mjr 55:4db125cd11a0 3 // New for 2016: dynamic configuration! To configure the controller,
mjr 55:4db125cd11a0 4 // connect the KL25Z to your PC, install the STANDARD pre-compiled .bin
mjr 55:4db125cd11a0 5 // file, and run the Windows config tool. There's no need (as there was in
mjr 55:4db125cd11a0 6 // the past) to edit the source code or to compile a custom version of the
mjr 55:4db125cd11a0 7 // binary just to customize setup options.
mjr 35:e959ffba78fd 8 //
mjr 55:4db125cd11a0 9 // In earlier versions, configuration was handled mostly with #ifdef and
mjr 55:4db125cd11a0 10 // similar constructs. To customize the setup, you had to create a private
mjr 55:4db125cd11a0 11 // forked copy of the source code, edit the constants defined in config.h,
mjr 55:4db125cd11a0 12 // and compile a custom binary. That's no longer necessary!
mjr 35:e959ffba78fd 13 //
mjr 35:e959ffba78fd 14 // The new approach is to do everything (or as much as possible, anyway)
mjr 35:e959ffba78fd 15 // via the Windows config tool. You shouldn't have to recompile a custom
mjr 35:e959ffba78fd 16 // version just to make a configurable change. Of course, you're still free
mjr 55:4db125cd11a0 17 // to create a custom version if you want to add entirely new features or
mjr 55:4db125cd11a0 18 // make changes that go beyond what the setup tool exposes.
mjr 35:e959ffba78fd 19 //
mjr 35:e959ffba78fd 20
mjr 55:4db125cd11a0 21 // Pre-packaged configuration selection.
mjr 55:4db125cd11a0 22 //
mjr 55:4db125cd11a0 23 // IMPORTANT! If you just want to create a custom configuration, DON'T
mjr 55:4db125cd11a0 24 // modify this file, DON'T use these macros, and DON'T compiler on mbed.
mjr 55:4db125cd11a0 25 // Instead, use the unmodified standard build and configure your system
mjr 55:4db125cd11a0 26 // using the Pinscape Config Tool on Windows. That's easier and better
mjr 55:4db125cd11a0 27 // because the config tool will be able to back up your settings to a
mjr 55:4db125cd11a0 28 // local file on your PC, and will automatically preserve your settings
mjr 55:4db125cd11a0 29 // across upgrades. You won't have to worry about merging your changes
mjr 55:4db125cd11a0 30 // into every update of the repository source code, since you'll never
mjr 55:4db125cd11a0 31 // have to change the source code.
mjr 55:4db125cd11a0 32 //
mjr 55:4db125cd11a0 33 // The different configurations here are purely for testing purposes.
mjr 55:4db125cd11a0 34 // The standard build uses the STANDARD_CONFIG settings, which are the
mjr 55:4db125cd11a0 35 // same as the original version where you had to modify config.h by hand
mjr 55:4db125cd11a0 36 // to customize your system.
mjr 55:4db125cd11a0 37 //
mjr 55:4db125cd11a0 38 #define STANDARD_CONFIG 1 // standard settings, based on v1 base settings
mjr 55:4db125cd11a0 39 #define TEST_CONFIG_EXPAN 0 // configuration for the expansion boards
mjr 80:94dc2946871b 40 #define TEST_KEEP_PRINTF 0 // for debugging purposes, keep printf() enabled
mjr 55:4db125cd11a0 41 // by leaving the SDA UART GPIO pins unallocated
mjr 48:058ace2aed1d 42
mjr 17:ab3cec0c8bf4 43
mjr 25:e22b88bd783a 44 #ifndef CONFIG_H
mjr 25:e22b88bd783a 45 #define CONFIG_H
mjr 17:ab3cec0c8bf4 46
mjr 35:e959ffba78fd 47 // Plunger type codes
mjr 35:e959ffba78fd 48 // NOTE! These values are part of the external USB interface. New
mjr 35:e959ffba78fd 49 // values can be added, but the meaning of an existing assigned number
mjr 35:e959ffba78fd 50 // should remain fixed to keep the PC-side config tool compatible across
mjr 35:e959ffba78fd 51 // versions.
mjr 35:e959ffba78fd 52 const int PlungerType_None = 0; // no plunger
mjr 35:e959ffba78fd 53 const int PlungerType_TSL1410RS = 1; // TSL1410R linear image sensor (1280x1 pixels, 400dpi), serial mode
mjr 35:e959ffba78fd 54 const int PlungerType_TSL1410RP = 2; // TSL1410R, parallel mode (reads the two sensor sections concurrently)
mjr 69:cc5039284fac 55 const int PlungerType_TSL1412SS = 3; // TSL1412S linear image sensor (1536x1 pixels, 400dpi), serial mode
mjr 69:cc5039284fac 56 const int PlungerType_TSL1412SP = 4; // TSL1412S, parallel mode
mjr 35:e959ffba78fd 57 const int PlungerType_Pot = 5; // potentionmeter
mjr 35:e959ffba78fd 58 const int PlungerType_OptQuad = 6; // AEDR8300 optical quadrature sensor
mjr 35:e959ffba78fd 59 const int PlungerType_MagQuad = 7; // AS5304 magnetic quadrature sensor
mjr 21:5048e16cc9ef 60
mjr 35:e959ffba78fd 61 // Accelerometer orientation codes
mjr 35:e959ffba78fd 62 // These values are part of the external USB interface
mjr 35:e959ffba78fd 63 const int OrientationFront = 0; // USB ports pointed toward front of cabinet
mjr 35:e959ffba78fd 64 const int OrientationLeft = 1; // ports pointed toward left side of cabinet
mjr 35:e959ffba78fd 65 const int OrientationRight = 2; // ports pointed toward right side of cabinet
mjr 35:e959ffba78fd 66 const int OrientationRear = 3; // ports pointed toward back of cabinet
mjr 25:e22b88bd783a 67
mjr 77:0b96f6867312 68 // Accelerometer dynamic range codes
mjr 77:0b96f6867312 69 const int AccelRange1G = 0; // +/-1G
mjr 77:0b96f6867312 70 const int AccelRange2G = 1; // +/-2G
mjr 77:0b96f6867312 71 const int AccelRange4G = 2; // +/-4G
mjr 77:0b96f6867312 72 const int AccelRange8G = 3; // +/-8G
mjr 77:0b96f6867312 73
mjr 35:e959ffba78fd 74 // input button types
mjr 53:9b2611964afc 75 const int BtnTypeNone = 0; // unused
mjr 35:e959ffba78fd 76 const int BtnTypeJoystick = 1; // joystick button
mjr 53:9b2611964afc 77 const int BtnTypeKey = 2; // keyboard key
mjr 67:c39e66c4e000 78 const int BtnTypeMedia = 3; // media control key
mjr 38:091e511ce8a0 79
mjr 38:091e511ce8a0 80 // input button flags
mjr 38:091e511ce8a0 81 const uint8_t BtnFlagPulse = 0x01; // pulse mode - reports each change in the physical switch state
mjr 38:091e511ce8a0 82 // as a brief press of the logical button/keyboard key
mjr 40:cc0d9814522b 83
mjr 40:cc0d9814522b 84 // button setup structure
mjr 40:cc0d9814522b 85 struct ButtonCfg
mjr 40:cc0d9814522b 86 {
mjr 66:2e3583fbd2f4 87 // physical GPIO pin - a Wire-to-PinName mapping index
mjr 66:2e3583fbd2f4 88 uint8_t pin;
mjr 66:2e3583fbd2f4 89
mjr 66:2e3583fbd2f4 90 // Key type and value reported to the PC
mjr 40:cc0d9814522b 91 uint8_t typ; // key type reported to PC - a BtnTypeXxx value
mjr 53:9b2611964afc 92 uint8_t val; // key value reported - meaning depends on 'typ' value:
mjr 53:9b2611964afc 93 // none -> no PC input reports (val is unused)
mjr 53:9b2611964afc 94 // joystick -> val is joystick button number (1..32)
mjr 53:9b2611964afc 95 // keyboard -> val is USB scan code
mjr 77:0b96f6867312 96 uint8_t IRCommand; // IR command to send when the button is pressed, as
mjr 77:0b96f6867312 97 // an IR command slot number: 1..MAX_IR_CODES, or 0
mjr 77:0b96f6867312 98 // if no IR command is to be sent
mjr 66:2e3583fbd2f4 99
mjr 66:2e3583fbd2f4 100 // Shifted key type and value. These used when the button is pressed
mjr 66:2e3583fbd2f4 101 // while the Local Shift Button is being held down. We send the key
mjr 66:2e3583fbd2f4 102 // code given here instead of the regular typ/val code in this case.
mjr 66:2e3583fbd2f4 103 // If typ2 is BtnTypeNone, we use the regular typ/val code whether or
mjr 66:2e3583fbd2f4 104 // not the shift button is being held.
mjr 66:2e3583fbd2f4 105 uint8_t typ2; // shifted key type
mjr 66:2e3583fbd2f4 106 uint8_t val2; // shifted key value
mjr 77:0b96f6867312 107 uint8_t IRCommand2; // IR command to send when shifted button is pressed
mjr 66:2e3583fbd2f4 108
mjr 66:2e3583fbd2f4 109 // key flags - a bitwise combination of BtnFlagXxx values
mjr 66:2e3583fbd2f4 110 uint8_t flags;
mjr 40:cc0d9814522b 111
mjr 40:cc0d9814522b 112 void set(uint8_t pin, uint8_t typ, uint8_t val, uint8_t flags = 0)
mjr 40:cc0d9814522b 113 {
mjr 40:cc0d9814522b 114 this->pin = pin;
mjr 40:cc0d9814522b 115 this->typ = typ;
mjr 40:cc0d9814522b 116 this->val = val;
mjr 77:0b96f6867312 117 this->IRCommand = 0;
mjr 40:cc0d9814522b 118 this->flags = flags;
mjr 77:0b96f6867312 119 this->typ2 = 0;
mjr 77:0b96f6867312 120 this->val2 = 0;
mjr 77:0b96f6867312 121 this->IRCommand2 = 0;
mjr 40:cc0d9814522b 122 }
mjr 40:cc0d9814522b 123
mjr 40:cc0d9814522b 124 } __attribute__((packed));
mjr 40:cc0d9814522b 125
mjr 33:d832bcab089e 126
mjr 65:739875521aae 127 // maximum number of input button mappings in configuration
mjr 65:739875521aae 128 const int MAX_BUTTONS = 48;
mjr 65:739875521aae 129
mjr 65:739875521aae 130 // extra slots for virtual buttons (ZB Launch Ball)
mjr 65:739875521aae 131 const int VIRTUAL_BUTTONS = 1; // total number of buttons
mjr 65:739875521aae 132 const int ZBL_BUTTON_CFG = MAX_BUTTONS; // index of ZB Launch Ball slot
mjr 33:d832bcab089e 133
mjr 35:e959ffba78fd 134 // LedWiz output port type codes
mjr 35:e959ffba78fd 135 // These values are part of the external USB interface
mjr 35:e959ffba78fd 136 const int PortTypeDisabled = 0; // port is disabled - not visible to LedWiz/DOF host
mjr 35:e959ffba78fd 137 const int PortTypeGPIOPWM = 1; // GPIO port, PWM enabled
mjr 35:e959ffba78fd 138 const int PortTypeGPIODig = 2; // GPIO port, digital out
mjr 35:e959ffba78fd 139 const int PortTypeTLC5940 = 3; // TLC5940 port
mjr 35:e959ffba78fd 140 const int PortType74HC595 = 4; // 74HC595 port
mjr 53:9b2611964afc 141 const int PortTypeVirtual = 5; // Virtual port - visible to host software, but not connected
mjr 53:9b2611964afc 142 // to a physical output
mjr 17:ab3cec0c8bf4 143
mjr 35:e959ffba78fd 144 // LedWiz output port flag bits
mjr 38:091e511ce8a0 145 const uint8_t PortFlagActiveLow = 0x01; // physical output is active-low
mjr 38:091e511ce8a0 146 const uint8_t PortFlagNoisemaker = 0x02; // noisemaker device - disable when night mode is engaged
mjr 40:cc0d9814522b 147 const uint8_t PortFlagGamma = 0x04; // apply gamma correction to this output
mjr 35:e959ffba78fd 148
mjr 35:e959ffba78fd 149 // maximum number of output ports
mjr 48:058ace2aed1d 150 const int MAX_OUT_PORTS = 128;
mjr 33:d832bcab089e 151
mjr 38:091e511ce8a0 152 // port configuration data
mjr 38:091e511ce8a0 153 struct LedWizPortCfg
mjr 38:091e511ce8a0 154 {
mjr 38:091e511ce8a0 155 uint8_t typ; // port type: a PortTypeXxx value
mjr 38:091e511ce8a0 156 uint8_t pin; // physical output pin: for a GPIO port, this is an index in the
mjr 38:091e511ce8a0 157 // USB-to-PinName mapping list; for a TLC5940 or 74HC595 port, it's
mjr 38:091e511ce8a0 158 // the output number, starting from 0 for OUT0 on the first chip in
mjr 38:091e511ce8a0 159 // the daisy chain. For inactive and virtual ports, it's unused.
mjr 38:091e511ce8a0 160 uint8_t flags; // flags: a combination of PortFlagXxx values
mjr 40:cc0d9814522b 161
mjr 40:cc0d9814522b 162 void set(uint8_t typ, uint8_t pin, uint8_t flags = 0)
mjr 40:cc0d9814522b 163 {
mjr 40:cc0d9814522b 164 this->typ = typ;
mjr 40:cc0d9814522b 165 this->pin = pin;
mjr 40:cc0d9814522b 166 this->flags = flags;
mjr 40:cc0d9814522b 167 }
mjr 40:cc0d9814522b 168
mjr 77:0b96f6867312 169 } __attribute__ ((packed));
mjr 77:0b96f6867312 170
mjr 77:0b96f6867312 171 // IR command configuration flags
mjr 77:0b96f6867312 172 const uint8_t IRFlagTVON = 0x01; // send command at TV ON time
mjr 77:0b96f6867312 173 const uint8_t IRFlagDittos = 0x02; // use "ditto" codes on send
mjr 77:0b96f6867312 174
mjr 77:0b96f6867312 175 // IR command configuration data
mjr 77:0b96f6867312 176 struct IRCommandCfg
mjr 77:0b96f6867312 177 {
mjr 77:0b96f6867312 178 uint8_t flags; // flags: a combination of IRFlagXxx values
mjr 77:0b96f6867312 179 uint8_t keytype; // key type to send when IR command is received
mjr 77:0b96f6867312 180 uint8_t keycode; // key code to send when IR command is received
mjr 77:0b96f6867312 181 uint8_t protocol; // IR protocol ID (see IRRemote/IRProtocolID.h)
mjr 77:0b96f6867312 182 struct
mjr 77:0b96f6867312 183 {
mjr 77:0b96f6867312 184 uint32_t lo; // low 32 bits of code
mjr 77:0b96f6867312 185 uint32_t hi; // high 32 bits of code
mjr 77:0b96f6867312 186 } code; // 64-bit command code (protocol-specific; see IRProtocols.h)
mjr 77:0b96f6867312 187 } __attribute__ ((packed));
mjr 77:0b96f6867312 188
mjr 77:0b96f6867312 189 // Maximum number of IR commands
mjr 77:0b96f6867312 190 const int MAX_IR_CODES = 16;
mjr 38:091e511ce8a0 191
mjr 38:091e511ce8a0 192
mjr 53:9b2611964afc 193 // Convert a physical pin name to a wire pin name
mjr 53:9b2611964afc 194 #define PINNAME_TO_WIRE(p) \
mjr 53:9b2611964afc 195 uint8_t((p) == NC ? 0xFF : \
mjr 53:9b2611964afc 196 (((p) & 0xF000 ) >> (PORT_SHIFT - 5)) | (((p) & 0xFF) >> 2))
mjr 53:9b2611964afc 197
mjr 35:e959ffba78fd 198 struct Config
mjr 35:e959ffba78fd 199 {
mjr 35:e959ffba78fd 200 // set all values to factory defaults
mjr 35:e959ffba78fd 201 void setFactoryDefaults()
mjr 35:e959ffba78fd 202 {
mjr 35:e959ffba78fd 203 // By default, pretend to be LedWiz unit #8. This can be from 1 to 16. Real
mjr 35:e959ffba78fd 204 // LedWiz units have their unit number set at the factory, and the vast majority
mjr 35:e959ffba78fd 205 // are set up as unit #1, since that's the default for anyone who doesn't ask
mjr 35:e959ffba78fd 206 // for a different setting. It seems rare for anyone to use more than one unit
mjr 35:e959ffba78fd 207 // in a pin cab, but for the few who do, the others will probably be numbered
mjr 35:e959ffba78fd 208 // sequentially as #2, #3, etc. It seems safe to assume that no one out there
mjr 48:058ace2aed1d 209 // has a unit #8, so we'll use that as our default. This can be changed from
mjr 48:058ace2aed1d 210 // the config tool, but for the sake of convenience, it's better to pick a
mjr 48:058ace2aed1d 211 // default that most people won't have to change.
mjr 54:fd77a6b2f76c 212 usbVendorID = 0xFAFA; // LedWiz vendor code
mjr 48:058ace2aed1d 213 usbProductID = 0x00F7; // LedWiz product code for unit #8
mjr 61:3c7e6e9ec355 214
mjr 55:4db125cd11a0 215 // Set the default Pinscape unit number to #1. This is a separate identifier
mjr 55:4db125cd11a0 216 // from the LedWiz ID, so you don't have to worry about making this different
mjr 55:4db125cd11a0 217 // from your LedWiz units. Each Pinscape unit should have a unique value for
mjr 55:4db125cd11a0 218 // this ID, though.
mjr 55:4db125cd11a0 219 //
mjr 55:4db125cd11a0 220 // Note that Pinscape unit #1 corresponds to DOF Pinscape #51, PS 2 -> DOF 52,
mjr 55:4db125cd11a0 221 // and so on - just add 50 to get the DOF ID.
mjr 55:4db125cd11a0 222 psUnitNo = 1;
mjr 35:e959ffba78fd 223
mjr 51:57eb311faafa 224 // set a disconnect reboot timeout of 10 seconds by default
mjr 55:4db125cd11a0 225 disconnectRebootTimeout = 10;
mjr 51:57eb311faafa 226
mjr 35:e959ffba78fd 227 // enable joystick reports
mjr 35:e959ffba78fd 228 joystickEnabled = true;
mjr 35:e959ffba78fd 229
mjr 35:e959ffba78fd 230 // assume standard orientation, with USB ports toward front of cabinet
mjr 78:1e00b3fa11af 231 accel.orientation = OrientationFront;
mjr 78:1e00b3fa11af 232
mjr 78:1e00b3fa11af 233 // default dynamic range +/-1G
mjr 78:1e00b3fa11af 234 accel.range = AccelRange1G;
mjr 78:1e00b3fa11af 235
mjr 78:1e00b3fa11af 236 // default auto-centering time
mjr 78:1e00b3fa11af 237 accel.autoCenterTime = 0;
mjr 25:e22b88bd783a 238
mjr 52:8298b2a73eb2 239 // assume a basic setup with no expansion boards
mjr 53:9b2611964afc 240 expan.typ = 0;
mjr 53:9b2611964afc 241 expan.vsn = 0;
mjr 53:9b2611964afc 242 memset(expan.ext, 0, sizeof(expan.ext));
mjr 52:8298b2a73eb2 243
mjr 35:e959ffba78fd 244 // assume no plunger is attached
mjr 77:0b96f6867312 245 plunger.enabled = 0x00;
mjr 35:e959ffba78fd 246 plunger.sensorType = PlungerType_None;
mjr 35:e959ffba78fd 247
mjr 55:4db125cd11a0 248 #if TEST_CONFIG_EXPAN || STANDARD_CONFIG
mjr 77:0b96f6867312 249 plunger.enabled = 0x01;
mjr 43:7a6364d82a41 250 plunger.sensorType = PlungerType_TSL1410RS;
mjr 53:9b2611964afc 251 plunger.sensorPin[0] = PINNAME_TO_WIRE(PTE20); // SI
mjr 53:9b2611964afc 252 plunger.sensorPin[1] = PINNAME_TO_WIRE(PTE21); // SCLK
mjr 53:9b2611964afc 253 plunger.sensorPin[2] = PINNAME_TO_WIRE(PTB0); // AO1 = PTB0 = ADC0_SE8
mjr 53:9b2611964afc 254 plunger.sensorPin[3] = PINNAME_TO_WIRE(PTE22); // AO2 (parallel mode) = PTE22 = ADC0_SE3
mjr 43:7a6364d82a41 255 #endif
mjr 43:7a6364d82a41 256
mjr 48:058ace2aed1d 257 // default plunger calibration button settings
mjr 55:4db125cd11a0 258 plunger.cal.features = 0x03; // 0x01 = enable button, 0x02 = enable indicator lamp
mjr 55:4db125cd11a0 259 plunger.cal.btn = PINNAME_TO_WIRE(PTE29); // button input (DigitalIn port)
mjr 55:4db125cd11a0 260 plunger.cal.led = PINNAME_TO_WIRE(PTE23); // button output (DigitalOut port)
mjr 35:e959ffba78fd 261
mjr 44:b5ac89b9cd5d 262 // set the default plunger calibration
mjr 44:b5ac89b9cd5d 263 plunger.cal.setDefaults();
mjr 35:e959ffba78fd 264
mjr 35:e959ffba78fd 265 // disable the ZB Launch Ball by default
mjr 53:9b2611964afc 266 plunger.zbLaunchBall.port = 0; // 0 = disabled
mjr 65:739875521aae 267 plunger.zbLaunchBall.keytype = BtnTypeKey; // keyboard key
mjr 61:3c7e6e9ec355 268 plunger.zbLaunchBall.keycode = 0x28; // USB keyboard scan code for Enter key
mjr 61:3c7e6e9ec355 269 plunger.zbLaunchBall.pushDistance = 63; // 63/1000 in == .063" == about 1/16"
mjr 35:e959ffba78fd 270
mjr 35:e959ffba78fd 271 // assume no TV ON switch
mjr 53:9b2611964afc 272 TVON.statusPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 273 TVON.latchPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 274 TVON.relayPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 275 TVON.delayTime = 700; // 7 seconds
mjr 55:4db125cd11a0 276
mjr 55:4db125cd11a0 277 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 278 // expansion board TV ON wiring
mjr 53:9b2611964afc 279 TVON.statusPin = PINNAME_TO_WIRE(PTD2);
mjr 53:9b2611964afc 280 TVON.latchPin = PINNAME_TO_WIRE(PTE0);
mjr 53:9b2611964afc 281 TVON.relayPin = PINNAME_TO_WIRE(PTD3);
mjr 53:9b2611964afc 282 TVON.delayTime = 700; // 7 seconds
mjr 38:091e511ce8a0 283 #endif
mjr 53:9b2611964afc 284
mjr 53:9b2611964afc 285 // assume no night mode switch or indicator lamp
mjr 53:9b2611964afc 286 nightMode.btn = 0;
mjr 53:9b2611964afc 287 nightMode.flags = 0;
mjr 53:9b2611964afc 288 nightMode.port = 0;
mjr 35:e959ffba78fd 289
mjr 35:e959ffba78fd 290 // assume no TLC5940 chips
mjr 35:e959ffba78fd 291 tlc5940.nchips = 0;
mjr 55:4db125cd11a0 292
mjr 55:4db125cd11a0 293 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 294 // for expansion board testing purposes, assume the common setup
mjr 55:4db125cd11a0 295 // with one main board and one power board
mjr 48:058ace2aed1d 296 tlc5940.nchips = 4;
mjr 38:091e511ce8a0 297 #endif
mjr 38:091e511ce8a0 298
mjr 55:4db125cd11a0 299 // Default TLC5940 pin assignments. Note that it's harmless to set
mjr 55:4db125cd11a0 300 // these to valid pins even if no TLC5940 chips are actually present,
mjr 55:4db125cd11a0 301 // since the main program won't allocate the connections if 'nchips'
mjr 55:4db125cd11a0 302 // is zero. This means that the pins are free to be used for other
mjr 55:4db125cd11a0 303 // purposes (such as output ports) if not using TLC5940 chips.
mjr 53:9b2611964afc 304 tlc5940.sin = PINNAME_TO_WIRE(PTC6);
mjr 53:9b2611964afc 305 tlc5940.sclk = PINNAME_TO_WIRE(PTC5);
mjr 53:9b2611964afc 306 tlc5940.xlat = PINNAME_TO_WIRE(PTC10);
mjr 59:94eb9265b6d7 307 tlc5940.blank = PINNAME_TO_WIRE(PTC7);
mjr 59:94eb9265b6d7 308 #if TEST_KEEP_PRINTF
mjr 59:94eb9265b6d7 309 tlc5940.gsclk = PINNAME_TO_WIRE(PTA13); // PTA1 is reserved for SDA printf()
mjr 59:94eb9265b6d7 310 #else
mjr 53:9b2611964afc 311 tlc5940.gsclk = PINNAME_TO_WIRE(PTA1);
mjr 59:94eb9265b6d7 312 #endif
mjr 35:e959ffba78fd 313
mjr 35:e959ffba78fd 314 // assume no 74HC595 chips
mjr 35:e959ffba78fd 315 hc595.nchips = 0;
mjr 55:4db125cd11a0 316
mjr 55:4db125cd11a0 317 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 318 // for expansion board testing purposes, assume one chime board
mjr 48:058ace2aed1d 319 hc595.nchips = 1;
mjr 40:cc0d9814522b 320 #endif
mjr 40:cc0d9814522b 321
mjr 55:4db125cd11a0 322 // Default 74HC595 pin assignments. As with the TLC5940 pins, it's
mjr 55:4db125cd11a0 323 // harmless to assign pins here even if no 74HC595 chips are used,
mjr 55:4db125cd11a0 324 // since the main program won't actually allocate the pins if 'nchips'
mjr 55:4db125cd11a0 325 // is zero.
mjr 53:9b2611964afc 326 hc595.sin = PINNAME_TO_WIRE(PTA5);
mjr 53:9b2611964afc 327 hc595.sclk = PINNAME_TO_WIRE(PTA4);
mjr 53:9b2611964afc 328 hc595.latch = PINNAME_TO_WIRE(PTA12);
mjr 53:9b2611964afc 329 hc595.ena = PINNAME_TO_WIRE(PTD4);
mjr 38:091e511ce8a0 330
mjr 77:0b96f6867312 331
mjr 77:0b96f6867312 332 // Default IR hardware pin assignments. On the expansion boards,
mjr 77:0b96f6867312 333 // the sensor is connected to PTA13, and the emitter LED is on PTC9.
mjr 77:0b96f6867312 334 #if TEST_CONFIG_EXPAN
mjr 77:0b96f6867312 335 IR.sensor = PINNAME_TO_WIRE(PTA13);
mjr 77:0b96f6867312 336 IR.emitter = PINNAME_TO_WIRE(PTC9);
mjr 77:0b96f6867312 337 #else
mjr 77:0b96f6867312 338 IR.sensor = PINNAME_TO_WIRE(NC);
mjr 77:0b96f6867312 339 IR.emitter = PINNAME_TO_WIRE(NC);
mjr 77:0b96f6867312 340 #endif
mjr 77:0b96f6867312 341
mjr 77:0b96f6867312 342 // clear out all IR slots
mjr 77:0b96f6867312 343 memset(IRCommand, 0, sizeof(IRCommand));
mjr 77:0b96f6867312 344 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 345 {
mjr 77:0b96f6867312 346 IRCommand[i].protocol = 0;
mjr 77:0b96f6867312 347 IRCommand[i].keytype = BtnTypeNone;
mjr 77:0b96f6867312 348 }
mjr 77:0b96f6867312 349
mjr 35:e959ffba78fd 350 // initially configure with no LedWiz output ports
mjr 35:e959ffba78fd 351 outPort[0].typ = PortTypeDisabled;
mjr 66:2e3583fbd2f4 352
mjr 66:2e3583fbd2f4 353 // initially configure with no shift key
mjr 78:1e00b3fa11af 354 shiftButton.idx = 0;
mjr 78:1e00b3fa11af 355 shiftButton.mode = 0;
mjr 53:9b2611964afc 356
mjr 35:e959ffba78fd 357 // initially configure with no input buttons
mjr 35:e959ffba78fd 358 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 53:9b2611964afc 359 button[i].set(PINNAME_TO_WIRE(NC), BtnTypeNone, 0);
mjr 38:091e511ce8a0 360
mjr 55:4db125cd11a0 361 #if STANDARD_CONFIG | TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 362 // For the standard configuration, assign 24 input ports to
mjr 55:4db125cd11a0 363 // joystick buttons 1-24. Assign the same GPIO pins used
mjr 55:4db125cd11a0 364 // in the original v1 default configuration. For expansion
mjr 55:4db125cd11a0 365 // board testing purposes, also assign the input ports, with
mjr 55:4db125cd11a0 366 // the noted differences.
mjr 38:091e511ce8a0 367 for (int i = 0 ; i < 24 ; ++i) {
mjr 55:4db125cd11a0 368 static const int bp[] = {
mjr 53:9b2611964afc 369 PINNAME_TO_WIRE(PTC2), // 1
mjr 53:9b2611964afc 370 PINNAME_TO_WIRE(PTB3), // 2
mjr 53:9b2611964afc 371 PINNAME_TO_WIRE(PTB2), // 3
mjr 53:9b2611964afc 372 PINNAME_TO_WIRE(PTB1), // 4
mjr 53:9b2611964afc 373 PINNAME_TO_WIRE(PTE30), // 5
mjr 48:058ace2aed1d 374 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 375 PINNAME_TO_WIRE(PTC11), // 6 - expansion boards use PTC11 for this, since PTE22
mjr 55:4db125cd11a0 376 // is reserved for a plunger connection
mjr 55:4db125cd11a0 377 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 378 PINNAME_TO_WIRE(PTE22), // 6 - original standalone setup uses PTE22
mjr 48:058ace2aed1d 379 #endif
mjr 53:9b2611964afc 380 PINNAME_TO_WIRE(PTE5), // 7
mjr 53:9b2611964afc 381 PINNAME_TO_WIRE(PTE4), // 8
mjr 53:9b2611964afc 382 PINNAME_TO_WIRE(PTE3), // 9
mjr 53:9b2611964afc 383 PINNAME_TO_WIRE(PTE2), // 10
mjr 53:9b2611964afc 384 PINNAME_TO_WIRE(PTB11), // 11
mjr 53:9b2611964afc 385 PINNAME_TO_WIRE(PTB10), // 12
mjr 53:9b2611964afc 386 PINNAME_TO_WIRE(PTB9), // 13
mjr 53:9b2611964afc 387 PINNAME_TO_WIRE(PTB8), // 14
mjr 53:9b2611964afc 388 PINNAME_TO_WIRE(PTC12), // 15
mjr 53:9b2611964afc 389 PINNAME_TO_WIRE(PTC13), // 16
mjr 53:9b2611964afc 390 PINNAME_TO_WIRE(PTC16), // 17
mjr 53:9b2611964afc 391 PINNAME_TO_WIRE(PTC17), // 18
mjr 53:9b2611964afc 392 PINNAME_TO_WIRE(PTA16), // 19
mjr 53:9b2611964afc 393 PINNAME_TO_WIRE(PTA17), // 20
mjr 53:9b2611964afc 394 PINNAME_TO_WIRE(PTE31), // 21
mjr 53:9b2611964afc 395 PINNAME_TO_WIRE(PTD6), // 22
mjr 53:9b2611964afc 396 PINNAME_TO_WIRE(PTD7), // 23
mjr 53:9b2611964afc 397 PINNAME_TO_WIRE(PTE1) // 24
mjr 40:cc0d9814522b 398 };
mjr 48:058ace2aed1d 399 button[i].set(bp[i],
mjr 48:058ace2aed1d 400 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 401 // For expansion board testing only, assign the inputs
mjr 55:4db125cd11a0 402 // to keyboard keys A, B, etc. This isn't useful; it's
mjr 55:4db125cd11a0 403 // just for testing purposes. Note that the USB key code
mjr 55:4db125cd11a0 404 // for "A" is 4, "B" is 5, and so on sequentially through
mjr 55:4db125cd11a0 405 // the alphabet.
mjr 55:4db125cd11a0 406 BtnTypeKey, i+4);
mjr 55:4db125cd11a0 407 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 408 // For the standard configuration, assign the input to
mjr 55:4db125cd11a0 409 // joystick buttons 1-24, as in the original v1 default
mjr 55:4db125cd11a0 410 // configuration.
mjr 55:4db125cd11a0 411 BtnTypeJoystick, i+1);
mjr 48:058ace2aed1d 412 #endif
mjr 48:058ace2aed1d 413
mjr 38:091e511ce8a0 414 }
mjr 38:091e511ce8a0 415 #endif
mjr 38:091e511ce8a0 416
mjr 55:4db125cd11a0 417 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 418 // For testing purposes, configure the basic complement of
mjr 55:4db125cd11a0 419 // expansion board ports. AS MENTIONED ABOVE, THIS IS PURELY FOR
mjr 55:4db125cd11a0 420 // TESTING. DON'T USE THIS METHOD TO CONFIGURE YOUR EXPANSION
mjr 55:4db125cd11a0 421 // BOARDS FOR ACTUAL DEPLOYMENT. It's much easier and cleaner
mjr 55:4db125cd11a0 422 // to use the unmodified standard build, and customize your
mjr 55:4db125cd11a0 423 // installation with the Pinscape Config Tool on Windows.
mjr 40:cc0d9814522b 424 //
mjr 55:4db125cd11a0 425 // For this testing setup, we'll configure one main board, one
mjr 55:4db125cd11a0 426 // power board, and one chime board. The *physical* ports on
mjr 55:4db125cd11a0 427 // the board are shown below. The logical (LedWiz/DOF) numbering
mjr 55:4db125cd11a0 428 // ISN'T sequential through the physical ports, because we want
mjr 55:4db125cd11a0 429 // to arrange the DOF ports so that the most important and most
mjr 55:4db125cd11a0 430 // common toys are assigned to ports 1-32. Those ports are
mjr 55:4db125cd11a0 431 // special because they're accessible to ALL software on the PC,
mjr 55:4db125cd11a0 432 // including older LedWiz-only software such as Future Pinball.
mjr 55:4db125cd11a0 433 // Ports above 32 are accessible only to modern DOF software,
mjr 55:4db125cd11a0 434 // like Visual Pinball and PinballX.
mjr 40:cc0d9814522b 435 //
mjr 40:cc0d9814522b 436 // Main board
mjr 40:cc0d9814522b 437 // TLC ports 0-15 -> flashers
mjr 40:cc0d9814522b 438 // TLC ports 16 -> strobe
mjr 40:cc0d9814522b 439 // TLC ports 17-31 -> flippers
mjr 40:cc0d9814522b 440 // Dig GPIO PTC8 -> knocker (timer-protected outputs)
mjr 40:cc0d9814522b 441 //
mjr 40:cc0d9814522b 442 // Power board:
mjr 40:cc0d9814522b 443 // TLC ports 32-63 -> general purpose outputs
mjr 40:cc0d9814522b 444 //
mjr 40:cc0d9814522b 445 // Chime board:
mjr 40:cc0d9814522b 446 // HC595 ports 0-7 -> timer-protected outputs
mjr 40:cc0d9814522b 447 //
mjr 38:091e511ce8a0 448 {
mjr 38:091e511ce8a0 449 int n = 0;
mjr 40:cc0d9814522b 450
mjr 40:cc0d9814522b 451 // 1-15 = flashers (TLC ports 0-15)
mjr 40:cc0d9814522b 452 // 16 = strobe (TLC port 15)
mjr 40:cc0d9814522b 453 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 454 outPort[n++].set(PortTypeTLC5940, i, PortFlagGamma);
mjr 40:cc0d9814522b 455
mjr 53:9b2611964afc 456 // 17 = knocker (PTC8)
mjr 53:9b2611964afc 457 outPort[n++].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8));
mjr 35:e959ffba78fd 458
mjr 40:cc0d9814522b 459 // 18-49 = power board outputs 1-32 (TLC ports 32-63)
mjr 40:cc0d9814522b 460 for (int i = 0 ; i < 32 ; ++i)
mjr 40:cc0d9814522b 461 outPort[n++].set(PortTypeTLC5940, i+32);
mjr 40:cc0d9814522b 462
mjr 40:cc0d9814522b 463 // 50-65 = flipper RGB (TLC ports 16-31)
mjr 40:cc0d9814522b 464 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 465 outPort[n++].set(PortTypeTLC5940, i+16, PortFlagGamma);
mjr 59:94eb9265b6d7 466
mjr 40:cc0d9814522b 467 // 66-73 = chime board ports 1-8 (74HC595 ports 0-7)
mjr 40:cc0d9814522b 468 for (int i = 0 ; i < 8 ; ++i)
mjr 40:cc0d9814522b 469 outPort[n++].set(PortType74HC595, i);
mjr 59:94eb9265b6d7 470
mjr 40:cc0d9814522b 471 // set Disabled to signify end of configured outputs
mjr 38:091e511ce8a0 472 outPort[n].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 473 }
mjr 38:091e511ce8a0 474 #endif
mjr 48:058ace2aed1d 475
mjr 55:4db125cd11a0 476 #if STANDARD_CONFIG
mjr 55:4db125cd11a0 477 //
mjr 55:4db125cd11a0 478 // For the standard build, set up the original complement
mjr 55:4db125cd11a0 479 // of 22 ports from the v1 default onfiguration.
mjr 55:4db125cd11a0 480 //
mjr 55:4db125cd11a0 481 // IMPORTANT! As mentioned above, don't edit this file to
mjr 55:4db125cd11a0 482 // customize this for your machine. Instead, use the unmodified
mjr 55:4db125cd11a0 483 // standard build, and customize your installation using the
mjr 55:4db125cd11a0 484 // Pinscape Config Tool on Windows.
mjr 55:4db125cd11a0 485 //
mjr 48:058ace2aed1d 486 #if TEST_KEEP_PRINTF
mjr 55:4db125cd11a0 487 outPort[ 0].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 1 = NC to keep debug printf (PTA1 is SDA UART)
mjr 55:4db125cd11a0 488 outPort[ 1].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 2 = NC to keep debug printf (PTA2 is SDA UART)
mjr 48:058ace2aed1d 489 #else
mjr 53:9b2611964afc 490 outPort[ 0].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA1)); // port 1 = PTA1
mjr 53:9b2611964afc 491 outPort[ 1].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA2)); // port 2 = PTA2
mjr 48:058ace2aed1d 492 #endif
mjr 53:9b2611964afc 493 outPort[ 2].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD4)); // port 3 = PTD4
mjr 53:9b2611964afc 494 outPort[ 3].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA12)); // port 4 = PTA12
mjr 53:9b2611964afc 495 outPort[ 4].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA4)); // port 5 = PTA4
mjr 53:9b2611964afc 496 outPort[ 5].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA5)); // port 6 = PTA5
mjr 53:9b2611964afc 497 outPort[ 6].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA13)); // port 7 = PTA13
mjr 53:9b2611964afc 498 outPort[ 7].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD5)); // port 8 = PTD5
mjr 53:9b2611964afc 499 outPort[ 8].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD0)); // port 9 = PTD0
mjr 53:9b2611964afc 500 outPort[ 9].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD3)); // port 10 = PTD3
mjr 53:9b2611964afc 501 outPort[10].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTD2)); // port 11 = PTD2
mjr 53:9b2611964afc 502 outPort[11].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8)); // port 12 = PTC8
mjr 53:9b2611964afc 503 outPort[12].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC9)); // port 13 = PTC9
mjr 53:9b2611964afc 504 outPort[13].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC7)); // port 14 = PTC7
mjr 53:9b2611964afc 505 outPort[14].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC0)); // port 15 = PTC0
mjr 53:9b2611964afc 506 outPort[15].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC3)); // port 16 = PTC3
mjr 53:9b2611964afc 507 outPort[16].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC4)); // port 17 = PTC4
mjr 53:9b2611964afc 508 outPort[17].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC5)); // port 18 = PTC5
mjr 53:9b2611964afc 509 outPort[18].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC6)); // port 19 = PTC6
mjr 53:9b2611964afc 510 outPort[19].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC10)); // port 20 = PTC10
mjr 53:9b2611964afc 511 outPort[20].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC11)); // port 21 = PTC11
mjr 53:9b2611964afc 512 outPort[21].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTE0)); // port 22 = PTE0
mjr 48:058ace2aed1d 513 #endif
mjr 35:e959ffba78fd 514 }
mjr 35:e959ffba78fd 515
mjr 35:e959ffba78fd 516 // --- USB DEVICE CONFIGURATION ---
mjr 35:e959ffba78fd 517
mjr 35:e959ffba78fd 518 // USB device identification - vendor ID and product ID. For LedLWiz
mjr 35:e959ffba78fd 519 // emulation, use vendor ID 0xFAFA and product ID 0x00EF + unit#, where
mjr 35:e959ffba78fd 520 // unit# is the nominal LedWiz unit number from 1 to 16. Alternatively,
mjr 35:e959ffba78fd 521 // if LedWiz emulation isn't desired or causes any driver conflicts on
mjr 35:e959ffba78fd 522 // the host, we have a private Pinscape assignment as vendor ID 0x1209
mjr 35:e959ffba78fd 523 // and product ID 0xEAEA (registered with http://pid.codes, a registry
mjr 35:e959ffba78fd 524 // for open-source USB projects).
mjr 35:e959ffba78fd 525 uint16_t usbVendorID;
mjr 35:e959ffba78fd 526 uint16_t usbProductID;
mjr 35:e959ffba78fd 527
mjr 35:e959ffba78fd 528 // Pinscape Controller unit number. This is the nominal unit number,
mjr 35:e959ffba78fd 529 // from 1 to 16. We report this in the status query; DOF uses it to
mjr 53:9b2611964afc 530 // distinguish among Pinscape units. Note that this doesn't affect
mjr 35:e959ffba78fd 531 // the LedWiz unit numbering, which is implied by the USB Product ID.
mjr 35:e959ffba78fd 532 uint8_t psUnitNo;
mjr 35:e959ffba78fd 533
mjr 35:e959ffba78fd 534 // Are joystick reports enabled? Joystick reports can be turned off, to
mjr 35:e959ffba78fd 535 // use the device as purely an output controller.
mjr 77:0b96f6867312 536 uint8_t joystickEnabled;
mjr 35:e959ffba78fd 537
mjr 51:57eb311faafa 538 // Timeout for rebooting the KL25Z when the connection is lost. On some
mjr 51:57eb311faafa 539 // hosts, the mbed USB stack has problems reconnecting after an initial
mjr 51:57eb311faafa 540 // connection is dropped. As a workaround, we can automatically reboot
mjr 51:57eb311faafa 541 // the KL25Z when it detects that it's no longer connected, after the
mjr 51:57eb311faafa 542 // interval set here expires. The timeout is in seconds; setting this
mjr 51:57eb311faafa 543 // to 0 disables the automatic reboot.
mjr 51:57eb311faafa 544 uint8_t disconnectRebootTimeout;
mjr 35:e959ffba78fd 545
mjr 35:e959ffba78fd 546 // --- ACCELEROMETER ---
mjr 78:1e00b3fa11af 547 struct
mjr 78:1e00b3fa11af 548 {
mjr 78:1e00b3fa11af 549 // accelerometer orientation (OrientationXxx value)
mjr 78:1e00b3fa11af 550 uint8_t orientation;
mjr 35:e959ffba78fd 551
mjr 78:1e00b3fa11af 552 // dynamic range (AccelRangeXxx value)
mjr 78:1e00b3fa11af 553 uint8_t range;
mjr 77:0b96f6867312 554
mjr 78:1e00b3fa11af 555 // Auto-centering mode:
mjr 78:1e00b3fa11af 556 // 0 = auto-centering on, 5-second timer
mjr 78:1e00b3fa11af 557 // 1-60 = auto-centering on with the given timer in seconds
mjr 78:1e00b3fa11af 558 // 255 = auto-centering off
mjr 78:1e00b3fa11af 559 uint8_t autoCenterTime;
mjr 78:1e00b3fa11af 560
mjr 78:1e00b3fa11af 561 } accel;
mjr 35:e959ffba78fd 562
mjr 35:e959ffba78fd 563
mjr 52:8298b2a73eb2 564 // --- EXPANSION BOARDS ---
mjr 52:8298b2a73eb2 565 struct
mjr 52:8298b2a73eb2 566 {
mjr 53:9b2611964afc 567 uint8_t typ; // expansion board set type:
mjr 53:9b2611964afc 568 // 1 -> Pinscape expansion boards
mjr 53:9b2611964afc 569 uint8_t vsn; // board set interface version
mjr 53:9b2611964afc 570 uint8_t ext[3]; // board set type-specific extended data
mjr 52:8298b2a73eb2 571
mjr 52:8298b2a73eb2 572 } expan;
mjr 52:8298b2a73eb2 573
mjr 52:8298b2a73eb2 574
mjr 35:e959ffba78fd 575 // --- PLUNGER CONFIGURATION ---
mjr 35:e959ffba78fd 576 struct
mjr 35:e959ffba78fd 577 {
mjr 77:0b96f6867312 578 // Plunger enabled/disabled. Note that we use the status flag
mjr 77:0b96f6867312 579 // bit 0x01 if enabled, 0x00 if disabled. This conveniently
mjr 77:0b96f6867312 580 // can be tested as though it's a bool, but should always be
mjr 77:0b96f6867312 581 // stored as 0x01 or 0x00 so that it can be OR'ed into the
mjr 77:0b96f6867312 582 // status report flag bits.
mjr 77:0b96f6867312 583 uint8_t enabled;
mjr 33:d832bcab089e 584
mjr 35:e959ffba78fd 585 // plunger sensor type
mjr 77:0b96f6867312 586 uint8_t sensorType;
mjr 35:e959ffba78fd 587
mjr 35:e959ffba78fd 588 // Plunger sensor pins. To accommodate a wide range of sensor types,
mjr 35:e959ffba78fd 589 // we keep a generic list of 4 pin assignments. The use of each pin
mjr 35:e959ffba78fd 590 // varies by sensor. The lists below are in order of the generic
mjr 35:e959ffba78fd 591 // pins; NC means that the pin isn't used by the sensor. Each pin's
mjr 35:e959ffba78fd 592 // GPIO usage is also listed. Certain usages limit which physical
mjr 35:e959ffba78fd 593 // pins can be assigned (e.g., AnalogIn or PwmOut).
mjr 35:e959ffba78fd 594 //
mjr 35:e959ffba78fd 595 // TSL1410R/1412R, serial: SI (DigitalOut), CLK (DigitalOut), AO (AnalogIn), NC
mjr 35:e959ffba78fd 596 // TSL1410R/1412R, parallel: SI (DigitalOut), CLK (DigitalOut), AO1 (AnalogIn), AO2 (AnalogIn)
mjr 35:e959ffba78fd 597 // Potentiometer: AO (AnalogIn), NC, NC, NC
mjr 35:e959ffba78fd 598 // AEDR8300: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 599 // AS5304: A (InterruptIn), B (InterruptIn), NC, NC
mjr 53:9b2611964afc 600 //
mjr 53:9b2611964afc 601 // Note! These are stored in uint8_t WIRE format, not PinName format.
mjr 53:9b2611964afc 602 uint8_t sensorPin[4];
mjr 35:e959ffba78fd 603
mjr 53:9b2611964afc 604 // ZB LAUNCH BALL button setup.
mjr 35:e959ffba78fd 605 //
mjr 35:e959ffba78fd 606 // This configures the "ZB Launch Ball" feature in DOF, based on Zeb's (of
mjr 35:e959ffba78fd 607 // zebsboards.com) scheme for using a mechanical plunger as a Launch button.
mjr 35:e959ffba78fd 608 // Set the port to 0 to disable the feature.
mjr 35:e959ffba78fd 609 //
mjr 35:e959ffba78fd 610 // The port number is an LedWiz port number that we monitor for activation.
mjr 53:9b2611964afc 611 // This port isn't meant to be connected to a physical device, although it
mjr 53:9b2611964afc 612 // can be if desired. It's primarily to let the host tell the controller
mjr 53:9b2611964afc 613 // when the ZB Launch feature is active. The port numbering starts at 1;
mjr 53:9b2611964afc 614 // set this to zero to disable the feature.
mjr 35:e959ffba78fd 615 //
mjr 53:9b2611964afc 616 // The key type and code has the same meaning as for a button mapping. This
mjr 53:9b2611964afc 617 // sets the key input sent to the PC when the plunger triggers a launch when
mjr 53:9b2611964afc 618 // the mode is active. For example, set keytype=2 and keycode=0x28 to send
mjr 53:9b2611964afc 619 // the Enter key (which is the key almost all PC pinball software uses for
mjr 53:9b2611964afc 620 // plunger and Launch button input).
mjr 35:e959ffba78fd 621 //
mjr 40:cc0d9814522b 622 // The "push distance" is the distance, in 1/1000 inch units, for registering a
mjr 40:cc0d9814522b 623 // push on the plunger as a button push. If the player pushes the plunger
mjr 40:cc0d9814522b 624 // forward of the rest position by this amount, we'll treat it as pushing the
mjr 40:cc0d9814522b 625 // button, even if the player didn't pull back the plunger first. This lets
mjr 40:cc0d9814522b 626 // the player treat the plunger knob as a button for games where it's meaningful
mjr 35:e959ffba78fd 627 // to hold down the Launch button for specific intervals (e.g., "Championship
mjr 35:e959ffba78fd 628 // Pub").
mjr 35:e959ffba78fd 629 struct
mjr 35:e959ffba78fd 630 {
mjr 53:9b2611964afc 631 uint8_t port;
mjr 53:9b2611964afc 632 uint8_t keytype;
mjr 53:9b2611964afc 633 uint8_t keycode;
mjr 53:9b2611964afc 634 uint16_t pushDistance;
mjr 35:e959ffba78fd 635
mjr 35:e959ffba78fd 636 } zbLaunchBall;
mjr 35:e959ffba78fd 637
mjr 35:e959ffba78fd 638 // --- PLUNGER CALIBRATION ---
mjr 35:e959ffba78fd 639 struct
mjr 35:e959ffba78fd 640 {
mjr 35:e959ffba78fd 641 // has the plunger been calibrated?
mjr 53:9b2611964afc 642 bool calibrated;
mjr 55:4db125cd11a0 643
mjr 55:4db125cd11a0 644 // Feature enable mask:
mjr 55:4db125cd11a0 645 //
mjr 55:4db125cd11a0 646 // 0x01 = calibration button enabled
mjr 55:4db125cd11a0 647 // 0x02 = indicator light enabled
mjr 55:4db125cd11a0 648 uint8_t features;
mjr 35:e959ffba78fd 649
mjr 35:e959ffba78fd 650 // calibration button switch pin
mjr 53:9b2611964afc 651 uint8_t btn;
mjr 35:e959ffba78fd 652
mjr 35:e959ffba78fd 653 // calibration button indicator light pin
mjr 53:9b2611964afc 654 uint8_t led;
mjr 35:e959ffba78fd 655
mjr 48:058ace2aed1d 656 // Plunger calibration min, zero, and max. These are in terms of the
mjr 48:058ace2aed1d 657 // unsigned 16-bit scale (0x0000..0xffff) that we use for the raw sensor
mjr 48:058ace2aed1d 658 // readings.
mjr 48:058ace2aed1d 659 //
mjr 48:058ace2aed1d 660 // The zero point is the rest position (aka park position), where the
mjr 48:058ace2aed1d 661 // plunger is in equilibrium between the main spring and the barrel
mjr 48:058ace2aed1d 662 // spring. In the standard setup, the plunger can travel a small
mjr 48:058ace2aed1d 663 // distance forward of the rest position, because the barrel spring
mjr 48:058ace2aed1d 664 // can be compressed a bit. The minimum is the maximum forward point
mjr 48:058ace2aed1d 665 // where the barrel spring can't be compressed any further.
mjr 48:058ace2aed1d 666 uint16_t min;
mjr 48:058ace2aed1d 667 uint16_t zero;
mjr 48:058ace2aed1d 668 uint16_t max;
mjr 52:8298b2a73eb2 669
mjr 52:8298b2a73eb2 670 // Measured release time, in milliseconds.
mjr 52:8298b2a73eb2 671 uint8_t tRelease;
mjr 35:e959ffba78fd 672
mjr 44:b5ac89b9cd5d 673 // Reset the plunger calibration
mjr 44:b5ac89b9cd5d 674 void setDefaults()
mjr 35:e959ffba78fd 675 {
mjr 44:b5ac89b9cd5d 676 calibrated = false; // not calibrated
mjr 48:058ace2aed1d 677 min = 0; // assume we can go all the way forward...
mjr 48:058ace2aed1d 678 max = 0xffff; // ...and all the way back
mjr 48:058ace2aed1d 679 zero = max/6; // the rest position is usually around 1/2" back = 1/6 of total travel
mjr 52:8298b2a73eb2 680 tRelease = 65; // standard 65ms release time
mjr 44:b5ac89b9cd5d 681 }
mjr 44:b5ac89b9cd5d 682
mjr 44:b5ac89b9cd5d 683 // Begin calibration. This sets each limit to the worst
mjr 44:b5ac89b9cd5d 684 // case point - for example, we set the retracted position
mjr 44:b5ac89b9cd5d 685 // to all the way forward. Each actual reading that comes
mjr 44:b5ac89b9cd5d 686 // in is then checked against the current limit, and if it's
mjr 44:b5ac89b9cd5d 687 // outside of the limit, we reset the limit to the new reading.
mjr 44:b5ac89b9cd5d 688 void begin()
mjr 44:b5ac89b9cd5d 689 {
mjr 48:058ace2aed1d 690 min = 0; // we don't calibrate the maximum forward position, so keep this at zero
mjr 48:058ace2aed1d 691 zero = 0xffff; // set the zero position all the way back
mjr 48:058ace2aed1d 692 max = 0; // set the retracted position all the way forward
mjr 52:8298b2a73eb2 693 tRelease = 65; // revert to a default release time
mjr 35:e959ffba78fd 694 }
mjr 17:ab3cec0c8bf4 695
mjr 35:e959ffba78fd 696 } cal;
mjr 18:5e890ebd0023 697
mjr 35:e959ffba78fd 698 } plunger;
mjr 29:582472d0bc57 699
mjr 35:e959ffba78fd 700
mjr 35:e959ffba78fd 701 // --- TV ON SWITCH ---
mjr 35:e959ffba78fd 702 //
mjr 35:e959ffba78fd 703 // To use the TV ON switch feature, the special power sensing circuitry
mjr 35:e959ffba78fd 704 // implemented on the Expansion Board must be attached (or an equivalent
mjr 35:e959ffba78fd 705 // circuit, as described in the Build Guide). The circuitry lets us
mjr 35:e959ffba78fd 706 // detect power state changes on the secondary power supply.
mjr 35:e959ffba78fd 707 struct
mjr 35:e959ffba78fd 708 {
mjr 35:e959ffba78fd 709 // PSU2 power status sense (DigitalIn pin). This pin goes LOW when the
mjr 35:e959ffba78fd 710 // secondary power supply is turned off, and remains LOW until the LATCH
mjr 35:e959ffba78fd 711 // pin is raised high AND the secondary PSU is turned on. Once HIGH,
mjr 35:e959ffba78fd 712 // it remains HIGH as long as the secondary PSU is on.
mjr 53:9b2611964afc 713 uint8_t statusPin;
mjr 35:e959ffba78fd 714
mjr 35:e959ffba78fd 715 // PSU2 power status latch (DigitalOut pin)
mjr 53:9b2611964afc 716 uint8_t latchPin;
mjr 35:e959ffba78fd 717
mjr 35:e959ffba78fd 718 // TV ON relay pin (DigitalOut pin). This pin controls the TV switch
mjr 35:e959ffba78fd 719 // relay. Raising the pin HIGH turns the relay ON (energizes the coil).
mjr 53:9b2611964afc 720 uint8_t relayPin;
mjr 35:e959ffba78fd 721
mjr 40:cc0d9814522b 722 // TV ON delay time, in 1/100 second units. This is the interval between
mjr 40:cc0d9814522b 723 // sensing that the secondary power supply has turned on and pulsing the
mjr 40:cc0d9814522b 724 // TV ON switch relay.
mjr 40:cc0d9814522b 725 int delayTime;
mjr 35:e959ffba78fd 726
mjr 35:e959ffba78fd 727 } TVON;
mjr 35:e959ffba78fd 728
mjr 53:9b2611964afc 729 // --- Night Mode ---
mjr 53:9b2611964afc 730 struct
mjr 53:9b2611964afc 731 {
mjr 55:4db125cd11a0 732 uint8_t btn; // night mode button number (1..MAX_BUTTONS, 0 = no button)
mjr 53:9b2611964afc 733 uint8_t flags; // flags:
mjr 53:9b2611964afc 734 // 0x01 = on/off switch (if not set, it's a momentary button)
mjr 55:4db125cd11a0 735 uint8_t port; // indicator output port number (1..MAX_OUT_PORTS, 0 = no indicator)
mjr 53:9b2611964afc 736 } nightMode;
mjr 53:9b2611964afc 737
mjr 29:582472d0bc57 738
mjr 35:e959ffba78fd 739 // --- TLC5940NT PWM Controller Chip Setup ---
mjr 35:e959ffba78fd 740 struct
mjr 35:e959ffba78fd 741 {
mjr 35:e959ffba78fd 742 // number of TLC5940NT chips connected in daisy chain
mjr 35:e959ffba78fd 743 int nchips;
mjr 35:e959ffba78fd 744
mjr 53:9b2611964afc 745 // pin connections (wire pin IDs)
mjr 53:9b2611964afc 746 uint8_t sin; // Serial data - must connect to SPIO MOSI -> PTC6 or PTD2
mjr 53:9b2611964afc 747 uint8_t sclk; // Serial clock - must connect to SPIO SCLK -> PTC5 or PTD1
mjr 35:e959ffba78fd 748 // (but don't use PTD1, since it's hard-wired to the on-board blue LED)
mjr 53:9b2611964afc 749 uint8_t xlat; // XLAT (latch) signal - connect to any GPIO pin
mjr 53:9b2611964afc 750 uint8_t blank; // BLANK signal - connect to any GPIO pin
mjr 53:9b2611964afc 751 uint8_t gsclk; // Grayscale clock - must connect to a PWM-out capable pin
mjr 29:582472d0bc57 752
mjr 35:e959ffba78fd 753 } tlc5940;
mjr 35:e959ffba78fd 754
mjr 35:e959ffba78fd 755
mjr 35:e959ffba78fd 756 // --- 74HC595 Shift Register Setup ---
mjr 35:e959ffba78fd 757 struct
mjr 35:e959ffba78fd 758 {
mjr 35:e959ffba78fd 759 // number of 74HC595 chips attached in daisy chain
mjr 35:e959ffba78fd 760 int nchips;
mjr 35:e959ffba78fd 761
mjr 35:e959ffba78fd 762 // pin connections
mjr 53:9b2611964afc 763 uint8_t sin; // Serial data - use any GPIO pin
mjr 53:9b2611964afc 764 uint8_t sclk; // Serial clock - use any GPIO pin
mjr 53:9b2611964afc 765 uint8_t latch; // Latch - use any GPIO pin
mjr 53:9b2611964afc 766 uint8_t ena; // Enable signal - use any GPIO pin
mjr 35:e959ffba78fd 767
mjr 35:e959ffba78fd 768 } hc595;
mjr 77:0b96f6867312 769
mjr 77:0b96f6867312 770
mjr 77:0b96f6867312 771 // --- IR Remote Control Hardware Setup ---
mjr 77:0b96f6867312 772 struct
mjr 77:0b96f6867312 773 {
mjr 77:0b96f6867312 774 // sensor (receiver) GPIO input pin; must be interrupt-capable
mjr 77:0b96f6867312 775 uint8_t sensor;
mjr 77:0b96f6867312 776
mjr 77:0b96f6867312 777 // IR emitter LED GPIO output pin; must be PWM-capable
mjr 77:0b96f6867312 778 uint8_t emitter;
mjr 77:0b96f6867312 779 } IR;
mjr 77:0b96f6867312 780
mjr 77:0b96f6867312 781
mjr 35:e959ffba78fd 782 // --- Button Input Setup ---
mjr 65:739875521aae 783 ButtonCfg button[MAX_BUTTONS + VIRTUAL_BUTTONS] __attribute__((packed));
mjr 66:2e3583fbd2f4 784
mjr 78:1e00b3fa11af 785 // Shift button. This can be used to give each physical button a
mjr 78:1e00b3fa11af 786 // second meaning.
mjr 78:1e00b3fa11af 787 struct
mjr 78:1e00b3fa11af 788 {
mjr 78:1e00b3fa11af 789 // Shift button index, 1..MAX_BUTTONS. If this is zero, there's
mjr 78:1e00b3fa11af 790 // no shift button.
mjr 78:1e00b3fa11af 791 uint8_t idx;
mjr 78:1e00b3fa11af 792
mjr 78:1e00b3fa11af 793 // Shift button mode. If the shift button has a key mapping or
mjr 78:1e00b3fa11af 794 // IR command assigned, this determines what happens when the
mjr 78:1e00b3fa11af 795 // shift button is pressed in combination with another key.
mjr 78:1e00b3fa11af 796 //
mjr 78:1e00b3fa11af 797 // 0 = Shift OR Key mode. In this mode, when you initially press
mjr 78:1e00b3fa11af 798 // the shift button, nothing happens. Instead, we wait to see if
mjr 78:1e00b3fa11af 799 // any other buttons are pressed. If so, we use the shifted meaning
mjr 78:1e00b3fa11af 800 // of the other button, and we DON'T send the shift button's key or
mjr 78:1e00b3fa11af 801 // IR command at all.
mjr 78:1e00b3fa11af 802 //
mjr 78:1e00b3fa11af 803 // 1 = Shift AND Key mode. In this mode, the shift button acts like
mjr 78:1e00b3fa11af 804 // any other button: its assigned key is sent to the PC as soon as
mjr 78:1e00b3fa11af 805 // you press it. If you also press another button while the shift
mjr 78:1e00b3fa11af 806 // button is down, the shifted meaning of the other button is used.
mjr 78:1e00b3fa11af 807 //
mjr 78:1e00b3fa11af 808 // Mode 0, the "OR" mode, is the default. This allows a button with
mjr 78:1e00b3fa11af 809 // a key assignment to do double duty as the shift button without
mjr 78:1e00b3fa11af 810 // creating any confusing situations where the shift button's own
mjr 78:1e00b3fa11af 811 // key is also sent to the PC during shift usage.
mjr 78:1e00b3fa11af 812 uint8_t mode;
mjr 78:1e00b3fa11af 813
mjr 78:1e00b3fa11af 814 } shiftButton;
mjr 17:ab3cec0c8bf4 815
mjr 35:e959ffba78fd 816 // --- LedWiz Output Port Setup ---
mjr 77:0b96f6867312 817 LedWizPortCfg outPort[MAX_OUT_PORTS] __attribute__ ((packed)); // LedWiz & extended output ports
mjr 48:058ace2aed1d 818
mjr 77:0b96f6867312 819 // --- IR Command Slots ---
mjr 77:0b96f6867312 820 IRCommandCfg IRCommand[MAX_IR_CODES] __attribute__ ((packed));
mjr 17:ab3cec0c8bf4 821 };
mjr 17:ab3cec0c8bf4 822
mjr 35:e959ffba78fd 823 #endif