An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Mon Feb 03 22:09:37 2020 +0000
Revision:
107:8f3c7aeae7e0
Parent:
106:e9e3b46132c1
Child:
109:310ac82cbbee
Add two pins I missed for the diagnostic LED checks (plunger calibration button and LED pins)

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 99:8139b0c274f4 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 100:1ff35c07217c 262 #include "rotarySensor.h"
mjr 100:1ff35c07217c 263 #include "tcd1103Sensor.h"
mjr 82:4f6209cb5c33 264
mjr 2:c174f9ee414a 265
mjr 21:5048e16cc9ef 266 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 267 #include "config.h"
mjr 17:ab3cec0c8bf4 268
mjr 53:9b2611964afc 269
mjr 53:9b2611964afc 270 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 273 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 274 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 275 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 276 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 277 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 278 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 279 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 280 // interface.
mjr 53:9b2611964afc 281 //
mjr 53:9b2611964afc 282 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 283 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 284 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 285 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 286 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 287 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 288 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 289 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 292 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 293 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 294 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 295 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 296 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 297 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 298 //
mjr 53:9b2611964afc 299 const char *getOpenSDAID()
mjr 53:9b2611964afc 300 {
mjr 53:9b2611964afc 301 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 302 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 303 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 304
mjr 53:9b2611964afc 305 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 306 }
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 309 //
mjr 53:9b2611964afc 310 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 311 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 312 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 313 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 314 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 315 // want from this.
mjr 53:9b2611964afc 316 //
mjr 53:9b2611964afc 317 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 318 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 319 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 320 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 321 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 322 // macros.
mjr 53:9b2611964afc 323 //
mjr 53:9b2611964afc 324 const char *getBuildID()
mjr 53:9b2611964afc 325 {
mjr 53:9b2611964afc 326 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 327 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 328 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 329
mjr 53:9b2611964afc 330 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 331 }
mjr 53:9b2611964afc 332
mjr 74:822a92bc11d2 333 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 334 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 335 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 336 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 337 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 338 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 339 Timer mainLoopTimer;
mjr 76:7f5912b6340e 340 #endif
mjr 76:7f5912b6340e 341
mjr 53:9b2611964afc 342
mjr 5:a70c0bce770d 343 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 344 //
mjr 38:091e511ce8a0 345 // Forward declarations
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 void setNightMode(bool on);
mjr 38:091e511ce8a0 348 void toggleNightMode();
mjr 38:091e511ce8a0 349
mjr 38:091e511ce8a0 350 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 351 // utilities
mjr 17:ab3cec0c8bf4 352
mjr 77:0b96f6867312 353 // int/float point square of a number
mjr 77:0b96f6867312 354 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 355 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 356
mjr 26:cb71c4af2912 357 // floating point rounding
mjr 26:cb71c4af2912 358 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 359
mjr 17:ab3cec0c8bf4 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 40:cc0d9814522b 363 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 364 // the running state.
mjr 40:cc0d9814522b 365 //
mjr 77:0b96f6867312 366 class ExtTimer: public Timer
mjr 40:cc0d9814522b 367 {
mjr 40:cc0d9814522b 368 public:
mjr 77:0b96f6867312 369 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 370
mjr 40:cc0d9814522b 371 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 372 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 373
mjr 40:cc0d9814522b 374 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 private:
mjr 40:cc0d9814522b 377 bool running;
mjr 40:cc0d9814522b 378 };
mjr 40:cc0d9814522b 379
mjr 53:9b2611964afc 380
mjr 53:9b2611964afc 381 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 382 //
mjr 33:d832bcab089e 383 // USB product version number
mjr 5:a70c0bce770d 384 //
mjr 47:df7a88cd249c 385 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 386
mjr 33:d832bcab089e 387 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 388 //
mjr 6:cc35eb643e8f 389 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 #define JOYMAX 4096
mjr 6:cc35eb643e8f 392
mjr 9:fd65b0a94720 393
mjr 17:ab3cec0c8bf4 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 //
mjr 40:cc0d9814522b 396 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 397 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 398 //
mjr 35:e959ffba78fd 399
mjr 35:e959ffba78fd 400 // unsigned 16-bit integer
mjr 35:e959ffba78fd 401 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 402 {
mjr 35:e959ffba78fd 403 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 404 }
mjr 40:cc0d9814522b 405 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 406 {
mjr 40:cc0d9814522b 407 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 408 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 409 }
mjr 35:e959ffba78fd 410
mjr 35:e959ffba78fd 411 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 412 {
mjr 35:e959ffba78fd 413 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 414 }
mjr 40:cc0d9814522b 415 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 416 {
mjr 40:cc0d9814522b 417 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 418 }
mjr 35:e959ffba78fd 419
mjr 35:e959ffba78fd 420 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 423 }
mjr 40:cc0d9814522b 424 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 425 {
mjr 40:cc0d9814522b 426 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 427 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 428 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 429 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 430 }
mjr 35:e959ffba78fd 431
mjr 35:e959ffba78fd 432 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 433 {
mjr 35:e959ffba78fd 434 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 435 }
mjr 35:e959ffba78fd 436
mjr 53:9b2611964afc 437 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 438 //
mjr 53:9b2611964afc 439 // The internal mbed PinName format is
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 444 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 445 //
mjr 53:9b2611964afc 446 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 447 // pin name fits in 8 bits:
mjr 53:9b2611964afc 448 //
mjr 53:9b2611964afc 449 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 456 {
mjr 53:9b2611964afc 457 if (c == 0xFF)
mjr 53:9b2611964afc 458 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 459 else
mjr 53:9b2611964afc 460 return PinName(
mjr 53:9b2611964afc 461 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 462 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 463 }
mjr 40:cc0d9814522b 464 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 465 {
mjr 53:9b2611964afc 466 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 467 }
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469
mjr 35:e959ffba78fd 470 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 471 //
mjr 38:091e511ce8a0 472 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 473 //
mjr 38:091e511ce8a0 474 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 475 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 476 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 477 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 478 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 479 // SPI capability.
mjr 38:091e511ce8a0 480 //
mjr 38:091e511ce8a0 481 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 482
mjr 73:4e8ce0b18915 483 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 484 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 485 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 486 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 487
mjr 38:091e511ce8a0 488 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 489 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 490 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 491 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 492 {
mjr 73:4e8ce0b18915 493 // remember the new state
mjr 73:4e8ce0b18915 494 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 495
mjr 73:4e8ce0b18915 496 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 497 // applying it to the blue LED
mjr 73:4e8ce0b18915 498 if (diagLEDState == 0)
mjr 77:0b96f6867312 499 {
mjr 77:0b96f6867312 500 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 501 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 502 }
mjr 73:4e8ce0b18915 503
mjr 73:4e8ce0b18915 504 // set the new state
mjr 38:091e511ce8a0 505 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 506 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 507 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 508 }
mjr 38:091e511ce8a0 509
mjr 73:4e8ce0b18915 510 // update the LEDs with the current state
mjr 73:4e8ce0b18915 511 void diagLED(void)
mjr 73:4e8ce0b18915 512 {
mjr 73:4e8ce0b18915 513 diagLED(
mjr 73:4e8ce0b18915 514 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 515 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 516 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 517 }
mjr 73:4e8ce0b18915 518
mjr 106:e9e3b46132c1 519 // check an output port or pin assignment to see if it conflicts with
mjr 38:091e511ce8a0 520 // an on-board LED segment
mjr 38:091e511ce8a0 521 struct LedSeg
mjr 38:091e511ce8a0 522 {
mjr 38:091e511ce8a0 523 bool r, g, b;
mjr 38:091e511ce8a0 524 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 525
mjr 106:e9e3b46132c1 526 // check an output port to see if it conflicts with one of the LED ports
mjr 38:091e511ce8a0 527 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 528 {
mjr 38:091e511ce8a0 529 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 530 // our on-board LED segments
mjr 38:091e511ce8a0 531 int t = pc.typ;
mjr 38:091e511ce8a0 532 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 106:e9e3b46132c1 533 check(pc.pin);
mjr 106:e9e3b46132c1 534 }
mjr 106:e9e3b46132c1 535
mjr 106:e9e3b46132c1 536 // check a pin to see if it conflicts with one of the diagnostic LED ports
mjr 106:e9e3b46132c1 537 void check(uint8_t pinId)
mjr 106:e9e3b46132c1 538 {
mjr 106:e9e3b46132c1 539 PinName pin = wirePinName(pinId);
mjr 106:e9e3b46132c1 540 if (pin == LED1)
mjr 106:e9e3b46132c1 541 r = true;
mjr 106:e9e3b46132c1 542 else if (pin == LED2)
mjr 106:e9e3b46132c1 543 g = true;
mjr 106:e9e3b46132c1 544 else if (pin == LED3)
mjr 106:e9e3b46132c1 545 b = true;
mjr 38:091e511ce8a0 546 }
mjr 38:091e511ce8a0 547 };
mjr 38:091e511ce8a0 548
mjr 38:091e511ce8a0 549 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 550 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 551 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 552 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 553 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 554 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 555 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 556 {
mjr 38:091e511ce8a0 557 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 558 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 559 LedSeg l;
mjr 38:091e511ce8a0 560 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 561 l.check(cfg.outPort[i]);
mjr 106:e9e3b46132c1 562
mjr 106:e9e3b46132c1 563 // check the button inputs
mjr 106:e9e3b46132c1 564 for (int i = 0 ; i < countof(cfg.button) ; ++i)
mjr 106:e9e3b46132c1 565 l.check(cfg.button[i].pin);
mjr 106:e9e3b46132c1 566
mjr 106:e9e3b46132c1 567 // check plunger inputs
mjr 106:e9e3b46132c1 568 if (cfg.plunger.enabled && cfg.plunger.sensorType != PlungerType_None)
mjr 106:e9e3b46132c1 569 {
mjr 106:e9e3b46132c1 570 for (int i = 0 ; i < countof(cfg.plunger.sensorPin) ; ++i)
mjr 106:e9e3b46132c1 571 l.check(cfg.plunger.sensorPin[i]);
mjr 107:8f3c7aeae7e0 572
mjr 107:8f3c7aeae7e0 573 l.check(cfg.plunger.cal.btn);
mjr 107:8f3c7aeae7e0 574 l.check(cfg.plunger.cal.led);
mjr 106:e9e3b46132c1 575 }
mjr 106:e9e3b46132c1 576
mjr 106:e9e3b46132c1 577 // check the TV ON pin assignments
mjr 106:e9e3b46132c1 578 l.check(cfg.TVON.statusPin);
mjr 106:e9e3b46132c1 579 l.check(cfg.TVON.latchPin);
mjr 106:e9e3b46132c1 580 l.check(cfg.TVON.relayPin);
mjr 106:e9e3b46132c1 581
mjr 106:e9e3b46132c1 582 // check the TLC5940 pins
mjr 106:e9e3b46132c1 583 if (cfg.tlc5940.nchips != 0)
mjr 106:e9e3b46132c1 584 {
mjr 106:e9e3b46132c1 585 l.check(cfg.tlc5940.sin);
mjr 106:e9e3b46132c1 586 l.check(cfg.tlc5940.sclk);
mjr 106:e9e3b46132c1 587 l.check(cfg.tlc5940.xlat);
mjr 106:e9e3b46132c1 588 l.check(cfg.tlc5940.blank);
mjr 106:e9e3b46132c1 589 l.check(cfg.tlc5940.gsclk);
mjr 106:e9e3b46132c1 590 }
mjr 106:e9e3b46132c1 591
mjr 106:e9e3b46132c1 592 // check 74HC595 pin assignments
mjr 106:e9e3b46132c1 593 if (cfg.hc595.nchips != 0)
mjr 106:e9e3b46132c1 594 {
mjr 106:e9e3b46132c1 595 l.check(cfg.hc595.sin);
mjr 106:e9e3b46132c1 596 l.check(cfg.hc595.sclk);
mjr 106:e9e3b46132c1 597 l.check(cfg.hc595.latch);
mjr 106:e9e3b46132c1 598 l.check(cfg.hc595.ena);
mjr 106:e9e3b46132c1 599 }
mjr 106:e9e3b46132c1 600
mjr 106:e9e3b46132c1 601 // check TLC59116 pin assignments
mjr 106:e9e3b46132c1 602 if (cfg.tlc59116.chipMask != 0)
mjr 106:e9e3b46132c1 603 {
mjr 106:e9e3b46132c1 604 l.check(cfg.tlc59116.sda);
mjr 106:e9e3b46132c1 605 l.check(cfg.tlc59116.scl);
mjr 106:e9e3b46132c1 606 l.check(cfg.tlc59116.reset);
mjr 106:e9e3b46132c1 607 }
mjr 106:e9e3b46132c1 608
mjr 106:e9e3b46132c1 609 // check the IR remove control hardware
mjr 106:e9e3b46132c1 610 l.check(cfg.IR.sensor);
mjr 106:e9e3b46132c1 611 l.check(cfg.IR.emitter);
mjr 106:e9e3b46132c1 612
mjr 106:e9e3b46132c1 613 // We now know which segments are taken for other uses and which
mjr 38:091e511ce8a0 614 // are free. Create diagnostic ports for the ones not claimed for
mjr 106:e9e3b46132c1 615 // other purposes.
mjr 38:091e511ce8a0 616 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 617 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 618 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 619 }
mjr 38:091e511ce8a0 620
mjr 38:091e511ce8a0 621
mjr 38:091e511ce8a0 622 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 623 //
mjr 76:7f5912b6340e 624 // LedWiz emulation
mjr 76:7f5912b6340e 625 //
mjr 76:7f5912b6340e 626
mjr 76:7f5912b6340e 627 // LedWiz output states.
mjr 76:7f5912b6340e 628 //
mjr 76:7f5912b6340e 629 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 630 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 631 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 632 // The two axes are independent.
mjr 76:7f5912b6340e 633 //
mjr 76:7f5912b6340e 634 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 635 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 636 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 637 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 638 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 639 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 640 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 641 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 642
mjr 76:7f5912b6340e 643 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 644 static uint8_t *wizOn;
mjr 76:7f5912b6340e 645
mjr 76:7f5912b6340e 646 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 647 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 648 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 649 //
mjr 76:7f5912b6340e 650 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 651 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 652 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 653 // 130 = flash on / off
mjr 76:7f5912b6340e 654 // 131 = on / ramp down
mjr 76:7f5912b6340e 655 // 132 = ramp up / on
mjr 5:a70c0bce770d 656 //
mjr 76:7f5912b6340e 657 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 658 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 659 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 660 static uint8_t *wizVal;
mjr 76:7f5912b6340e 661
mjr 76:7f5912b6340e 662 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 663 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 664 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 665 // by the extended protocol:
mjr 76:7f5912b6340e 666 //
mjr 76:7f5912b6340e 667 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 668 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 669 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 670 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 671 // if the brightness is non-zero.
mjr 76:7f5912b6340e 672 //
mjr 76:7f5912b6340e 673 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 674 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 675 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 676 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 677 // 0..255 range.
mjr 26:cb71c4af2912 678 //
mjr 76:7f5912b6340e 679 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 680 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 681 // level.
mjr 26:cb71c4af2912 682 //
mjr 76:7f5912b6340e 683 static uint8_t *outLevel;
mjr 76:7f5912b6340e 684
mjr 76:7f5912b6340e 685
mjr 76:7f5912b6340e 686 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 687 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 688 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 689 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 690 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 691 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 692 //
mjr 76:7f5912b6340e 693 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 694 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 695 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 696 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 697 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 698 // at the maximum size.
mjr 76:7f5912b6340e 699 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 700 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 701
mjr 26:cb71c4af2912 702 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 703 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 704 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 705 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 706 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 707
mjr 76:7f5912b6340e 708
mjr 76:7f5912b6340e 709 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 710 //
mjr 76:7f5912b6340e 711 // Output Ports
mjr 76:7f5912b6340e 712 //
mjr 76:7f5912b6340e 713 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 714 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 715 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 716 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 717 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 718 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 719 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 720 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 721 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 722 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 723 // you have to ration pins among features.
mjr 76:7f5912b6340e 724 //
mjr 87:8d35c74403af 725 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 726 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 727 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 728 //
mjr 87:8d35c74403af 729 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 730 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 731 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 732 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 733 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 734 //
mjr 87:8d35c74403af 735 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 736 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 737 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 738 //
mjr 87:8d35c74403af 739 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 740 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 741 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 742 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 743 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 744 // for the chime board outputs.
mjr 76:7f5912b6340e 745 //
mjr 76:7f5912b6340e 746 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 747 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 748 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 749 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 750 //
mjr 76:7f5912b6340e 751 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 752 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 753 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 754 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 755 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 756 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 757 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 758 // of physical devices they're connected to.
mjr 76:7f5912b6340e 759
mjr 76:7f5912b6340e 760
mjr 26:cb71c4af2912 761 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 762 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 763 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 764 class LwOut
mjr 6:cc35eb643e8f 765 {
mjr 6:cc35eb643e8f 766 public:
mjr 40:cc0d9814522b 767 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 768 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 769 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 770 };
mjr 26:cb71c4af2912 771
mjr 35:e959ffba78fd 772 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 773 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 774 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 775 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 776 // numbering.
mjr 35:e959ffba78fd 777 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 778 {
mjr 33:d832bcab089e 779 public:
mjr 35:e959ffba78fd 780 LwVirtualOut() { }
mjr 40:cc0d9814522b 781 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 782 };
mjr 26:cb71c4af2912 783
mjr 34:6b981a2afab7 784 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 785 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 786 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 787 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 788 {
mjr 34:6b981a2afab7 789 public:
mjr 34:6b981a2afab7 790 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 791 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 792
mjr 34:6b981a2afab7 793 private:
mjr 53:9b2611964afc 794 // underlying physical output
mjr 34:6b981a2afab7 795 LwOut *out;
mjr 34:6b981a2afab7 796 };
mjr 34:6b981a2afab7 797
mjr 53:9b2611964afc 798 // Global ZB Launch Ball state
mjr 53:9b2611964afc 799 bool zbLaunchOn = false;
mjr 53:9b2611964afc 800
mjr 53:9b2611964afc 801 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 802 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 803 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 804 {
mjr 53:9b2611964afc 805 public:
mjr 53:9b2611964afc 806 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 807 virtual void set(uint8_t val)
mjr 53:9b2611964afc 808 {
mjr 53:9b2611964afc 809 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 810 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 811
mjr 53:9b2611964afc 812 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 813 out->set(val);
mjr 53:9b2611964afc 814 }
mjr 53:9b2611964afc 815
mjr 53:9b2611964afc 816 private:
mjr 53:9b2611964afc 817 // underlying physical or virtual output
mjr 53:9b2611964afc 818 LwOut *out;
mjr 53:9b2611964afc 819 };
mjr 53:9b2611964afc 820
mjr 53:9b2611964afc 821
mjr 40:cc0d9814522b 822 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 823 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 824 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 825 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 826 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 827 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 828 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 829 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 830 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 831 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 832 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 833 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 834 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 835 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 836 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 837 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 838 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 839 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 840 };
mjr 40:cc0d9814522b 841
mjr 40:cc0d9814522b 842 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 843 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 844 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 845 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 846 {
mjr 40:cc0d9814522b 847 public:
mjr 40:cc0d9814522b 848 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 849 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 850
mjr 40:cc0d9814522b 851 private:
mjr 40:cc0d9814522b 852 LwOut *out;
mjr 40:cc0d9814522b 853 };
mjr 40:cc0d9814522b 854
mjr 77:0b96f6867312 855 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 856 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 857 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 858 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 859
mjr 40:cc0d9814522b 860 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 861 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 862 // mode is engaged.
mjr 40:cc0d9814522b 863 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 864 {
mjr 40:cc0d9814522b 865 public:
mjr 40:cc0d9814522b 866 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 867 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 868
mjr 53:9b2611964afc 869 private:
mjr 53:9b2611964afc 870 LwOut *out;
mjr 53:9b2611964afc 871 };
mjr 53:9b2611964afc 872
mjr 53:9b2611964afc 873 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 874 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 875 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 876 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 877 {
mjr 53:9b2611964afc 878 public:
mjr 53:9b2611964afc 879 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 880 virtual void set(uint8_t)
mjr 53:9b2611964afc 881 {
mjr 53:9b2611964afc 882 // ignore the host value and simply show the current
mjr 53:9b2611964afc 883 // night mode setting
mjr 53:9b2611964afc 884 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 885 }
mjr 40:cc0d9814522b 886
mjr 40:cc0d9814522b 887 private:
mjr 40:cc0d9814522b 888 LwOut *out;
mjr 40:cc0d9814522b 889 };
mjr 40:cc0d9814522b 890
mjr 26:cb71c4af2912 891
mjr 89:c43cd923401c 892 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 893 // top of a physical pin output.
mjr 89:c43cd923401c 894 //
mjr 89:c43cd923401c 895 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 896 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 897 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 898 // level is ON.
mjr 89:c43cd923401c 899 //
mjr 89:c43cd923401c 900 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 901 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 902 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 903 //
mjr 89:c43cd923401c 904 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 905 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 906 // power and start a timer.
mjr 89:c43cd923401c 907 //
mjr 89:c43cd923401c 908 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 909 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 910 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 911 //
mjr 89:c43cd923401c 912 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 913 {
mjr 89:c43cd923401c 914 public:
mjr 89:c43cd923401c 915 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 916 // the configuration.
mjr 89:c43cd923401c 917 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 918 : out(o), params(params)
mjr 89:c43cd923401c 919 {
mjr 89:c43cd923401c 920 // initially OFF
mjr 89:c43cd923401c 921 state = 0;
mjr 89:c43cd923401c 922 }
mjr 89:c43cd923401c 923
mjr 89:c43cd923401c 924 virtual void set(uint8_t level)
mjr 89:c43cd923401c 925 {
mjr 98:4df3c0f7e707 926 // remember the new nominal level set by the client
mjr 89:c43cd923401c 927 val = level;
mjr 89:c43cd923401c 928
mjr 89:c43cd923401c 929 // update the physical output according to our current timing state
mjr 89:c43cd923401c 930 switch (state)
mjr 89:c43cd923401c 931 {
mjr 89:c43cd923401c 932 case 0:
mjr 89:c43cd923401c 933 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 934 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 935 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 936 // off, so there's no change.
mjr 89:c43cd923401c 937 if (level != 0)
mjr 89:c43cd923401c 938 {
mjr 89:c43cd923401c 939 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 940 state = 1;
mjr 89:c43cd923401c 941
mjr 89:c43cd923401c 942 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 943 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 944 // requested
mjr 89:c43cd923401c 945 out->set(level);
mjr 89:c43cd923401c 946
mjr 89:c43cd923401c 947 // add myself to the pending timer list
mjr 89:c43cd923401c 948 pending[nPending++] = this;
mjr 89:c43cd923401c 949
mjr 89:c43cd923401c 950 // note the starting time
mjr 89:c43cd923401c 951 t0 = timer.read_us();
mjr 89:c43cd923401c 952 }
mjr 89:c43cd923401c 953 break;
mjr 89:c43cd923401c 954
mjr 89:c43cd923401c 955 case 1:
mjr 89:c43cd923401c 956 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 957 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 958 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 959 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 960 out->set(level);
mjr 89:c43cd923401c 961 if (level == 0)
mjr 89:c43cd923401c 962 {
mjr 89:c43cd923401c 963 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 964 // so we need to remove it from the list.
mjr 89:c43cd923401c 965 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 966 {
mjr 89:c43cd923401c 967 // is this us?
mjr 89:c43cd923401c 968 if (pending[i] == this)
mjr 89:c43cd923401c 969 {
mjr 89:c43cd923401c 970 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 971 // last list entry
mjr 89:c43cd923401c 972 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 973
mjr 89:c43cd923401c 974 // no need to look any further
mjr 89:c43cd923401c 975 break;
mjr 89:c43cd923401c 976 }
mjr 89:c43cd923401c 977 }
mjr 89:c43cd923401c 978
mjr 89:c43cd923401c 979 // switch to state 0 (off)
mjr 89:c43cd923401c 980 state = 0;
mjr 89:c43cd923401c 981 }
mjr 89:c43cd923401c 982 break;
mjr 89:c43cd923401c 983
mjr 89:c43cd923401c 984 case 2:
mjr 89:c43cd923401c 985 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 986 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 987 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 988 // as the upper bound.
mjr 89:c43cd923401c 989 if (level == 0)
mjr 89:c43cd923401c 990 {
mjr 89:c43cd923401c 991 // switching off - turn off the physical output
mjr 89:c43cd923401c 992 out->set(0);
mjr 89:c43cd923401c 993
mjr 89:c43cd923401c 994 // go to state 0 (off)
mjr 89:c43cd923401c 995 state = 0;
mjr 89:c43cd923401c 996 }
mjr 89:c43cd923401c 997 else
mjr 89:c43cd923401c 998 {
mjr 89:c43cd923401c 999 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 1000 // lower of the requested power and the hold power
mjr 89:c43cd923401c 1001 uint8_t hold = holdPower();
mjr 89:c43cd923401c 1002 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 1003 }
mjr 89:c43cd923401c 1004 break;
mjr 89:c43cd923401c 1005 }
mjr 89:c43cd923401c 1006 }
mjr 89:c43cd923401c 1007
mjr 89:c43cd923401c 1008 // Class initialization
mjr 89:c43cd923401c 1009 static void classInit(Config &cfg)
mjr 89:c43cd923401c 1010 {
mjr 89:c43cd923401c 1011 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 1012 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 1013 // all of these outputs.
mjr 89:c43cd923401c 1014 int n = 0;
mjr 89:c43cd923401c 1015 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 1016 {
mjr 89:c43cd923401c 1017 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 1018 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 1019 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 1020 ++n;
mjr 89:c43cd923401c 1021 }
mjr 89:c43cd923401c 1022
mjr 89:c43cd923401c 1023 // allocate space for the pending timer list
mjr 89:c43cd923401c 1024 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 1025
mjr 89:c43cd923401c 1026 // there's nothing in the pending list yet
mjr 89:c43cd923401c 1027 nPending = 0;
mjr 89:c43cd923401c 1028
mjr 89:c43cd923401c 1029 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 1030 // use it to figure elapsed times.
mjr 89:c43cd923401c 1031 timer.start();
mjr 89:c43cd923401c 1032 }
mjr 89:c43cd923401c 1033
mjr 89:c43cd923401c 1034 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 1035 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 1036 static void poll()
mjr 89:c43cd923401c 1037 {
mjr 89:c43cd923401c 1038 // note the current time
mjr 89:c43cd923401c 1039 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 1040
mjr 89:c43cd923401c 1041 // go through the timer list
mjr 89:c43cd923401c 1042 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 1043 {
mjr 89:c43cd923401c 1044 // get the port
mjr 89:c43cd923401c 1045 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 1046
mjr 89:c43cd923401c 1047 // assume we'll keep it
mjr 89:c43cd923401c 1048 bool remove = false;
mjr 89:c43cd923401c 1049
mjr 89:c43cd923401c 1050 // check if the port is still on
mjr 89:c43cd923401c 1051 if (port->state != 0)
mjr 89:c43cd923401c 1052 {
mjr 89:c43cd923401c 1053 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1054 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1055 {
mjr 89:c43cd923401c 1056 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1057 port->state = 2;
mjr 89:c43cd923401c 1058
mjr 89:c43cd923401c 1059 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1060 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1061 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1062 uint8_t val = port->val;
mjr 89:c43cd923401c 1063 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1064
mjr 89:c43cd923401c 1065 // we're done with the timer
mjr 89:c43cd923401c 1066 remove = true;
mjr 89:c43cd923401c 1067 }
mjr 89:c43cd923401c 1068 }
mjr 89:c43cd923401c 1069 else
mjr 89:c43cd923401c 1070 {
mjr 89:c43cd923401c 1071 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1072 // it from the timer list
mjr 89:c43cd923401c 1073 remove = true;
mjr 89:c43cd923401c 1074 }
mjr 89:c43cd923401c 1075
mjr 89:c43cd923401c 1076 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1077 if (remove)
mjr 89:c43cd923401c 1078 {
mjr 89:c43cd923401c 1079 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1080 // the last entry in the list.
mjr 89:c43cd923401c 1081 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1082
mjr 89:c43cd923401c 1083 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1084 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1085 }
mjr 89:c43cd923401c 1086 else
mjr 89:c43cd923401c 1087 {
mjr 89:c43cd923401c 1088 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1089 ++i;
mjr 89:c43cd923401c 1090 }
mjr 89:c43cd923401c 1091 }
mjr 89:c43cd923401c 1092 }
mjr 89:c43cd923401c 1093
mjr 89:c43cd923401c 1094 protected:
mjr 89:c43cd923401c 1095 // underlying physical output
mjr 89:c43cd923401c 1096 LwOut *out;
mjr 89:c43cd923401c 1097
mjr 89:c43cd923401c 1098 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1099 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1100 uint32_t t0;
mjr 89:c43cd923401c 1101
mjr 89:c43cd923401c 1102 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1103 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1104 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1105 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1106 // if it's lower.
mjr 89:c43cd923401c 1107 uint8_t val;
mjr 89:c43cd923401c 1108
mjr 89:c43cd923401c 1109 // Current port state:
mjr 89:c43cd923401c 1110 //
mjr 89:c43cd923401c 1111 // 0 = off
mjr 89:c43cd923401c 1112 // 1 = on at initial full power
mjr 89:c43cd923401c 1113 // 2 = on at hold power
mjr 89:c43cd923401c 1114 uint8_t state;
mjr 89:c43cd923401c 1115
mjr 89:c43cd923401c 1116 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1117 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1118 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1119 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1120 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1121 uint8_t params;
mjr 89:c43cd923401c 1122
mjr 99:8139b0c274f4 1123 // Figure the initial full-power time in microseconds: 50ms * (1+N),
mjr 99:8139b0c274f4 1124 // where N is the high 4 bits of the parameter byte.
mjr 99:8139b0c274f4 1125 inline uint32_t fullPowerTime_us() const { return 50000*(1 + ((params >> 4) & 0x0F)); }
mjr 89:c43cd923401c 1126
mjr 89:c43cd923401c 1127 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1128 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1129
mjr 89:c43cd923401c 1130 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1131 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1132 // (which runs continuously).
mjr 89:c43cd923401c 1133 static Timer timer;
mjr 89:c43cd923401c 1134
mjr 89:c43cd923401c 1135 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 98:4df3c0f7e707 1136 // transitions from OFF to ON, we add it to this list. We scan the
mjr 98:4df3c0f7e707 1137 // list in our polling routine to find ports that have reached the
mjr 98:4df3c0f7e707 1138 // expiration of their initial full-power intervals.
mjr 89:c43cd923401c 1139 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1140 static uint8_t nPending;
mjr 89:c43cd923401c 1141 };
mjr 89:c43cd923401c 1142
mjr 89:c43cd923401c 1143 // Flipper Logic statics
mjr 89:c43cd923401c 1144 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1145 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1146 uint8_t LwFlipperLogicOut::nPending;
mjr 99:8139b0c274f4 1147
mjr 99:8139b0c274f4 1148 // Chime Logic. This is a filter output that we layer on a physical
mjr 99:8139b0c274f4 1149 // output to set a minimum and maximum ON time for the output.
mjr 99:8139b0c274f4 1150 class LwChimeLogicOut: public LwOut
mjr 98:4df3c0f7e707 1151 {
mjr 98:4df3c0f7e707 1152 public:
mjr 99:8139b0c274f4 1153 // Set up the output. 'params' encodes the minimum and maximum time.
mjr 99:8139b0c274f4 1154 LwChimeLogicOut(LwOut *o, uint8_t params)
mjr 99:8139b0c274f4 1155 : out(o), params(params)
mjr 98:4df3c0f7e707 1156 {
mjr 98:4df3c0f7e707 1157 // initially OFF
mjr 98:4df3c0f7e707 1158 state = 0;
mjr 98:4df3c0f7e707 1159 }
mjr 98:4df3c0f7e707 1160
mjr 98:4df3c0f7e707 1161 virtual void set(uint8_t level)
mjr 98:4df3c0f7e707 1162 {
mjr 98:4df3c0f7e707 1163 // update the physical output according to our current timing state
mjr 98:4df3c0f7e707 1164 switch (state)
mjr 98:4df3c0f7e707 1165 {
mjr 98:4df3c0f7e707 1166 case 0:
mjr 98:4df3c0f7e707 1167 // We're currently off. If the new level is non-zero, switch
mjr 98:4df3c0f7e707 1168 // to state 1 (initial minimum interval) and set the requested
mjr 98:4df3c0f7e707 1169 // level. If the new level is zero, we're switching from off to
mjr 98:4df3c0f7e707 1170 // off, so there's no change.
mjr 98:4df3c0f7e707 1171 if (level != 0)
mjr 98:4df3c0f7e707 1172 {
mjr 98:4df3c0f7e707 1173 // switch to state 1 (initial minimum interval, port is
mjr 98:4df3c0f7e707 1174 // logically on)
mjr 98:4df3c0f7e707 1175 state = 1;
mjr 98:4df3c0f7e707 1176
mjr 98:4df3c0f7e707 1177 // set the requested output level
mjr 98:4df3c0f7e707 1178 out->set(level);
mjr 98:4df3c0f7e707 1179
mjr 98:4df3c0f7e707 1180 // add myself to the pending timer list
mjr 98:4df3c0f7e707 1181 pending[nPending++] = this;
mjr 98:4df3c0f7e707 1182
mjr 98:4df3c0f7e707 1183 // note the starting time
mjr 98:4df3c0f7e707 1184 t0 = timer.read_us();
mjr 98:4df3c0f7e707 1185 }
mjr 98:4df3c0f7e707 1186 break;
mjr 98:4df3c0f7e707 1187
mjr 98:4df3c0f7e707 1188 case 1: // min ON interval, port on
mjr 98:4df3c0f7e707 1189 case 2: // min ON interval, port off
mjr 98:4df3c0f7e707 1190 // We're in the initial minimum ON interval. If the new power
mjr 98:4df3c0f7e707 1191 // level is non-zero, pass it through to the physical port, since
mjr 98:4df3c0f7e707 1192 // the client is allowed to change the power level during the
mjr 98:4df3c0f7e707 1193 // initial ON interval - they just can't turn it off entirely.
mjr 98:4df3c0f7e707 1194 // Set the state to 1 to indicate that the logical port is on.
mjr 98:4df3c0f7e707 1195 //
mjr 98:4df3c0f7e707 1196 // If the new level is zero, leave the underlying port at its
mjr 98:4df3c0f7e707 1197 // current power level, since we're not allowed to turn it off
mjr 98:4df3c0f7e707 1198 // during this period. Set the state to 2 to indicate that the
mjr 98:4df3c0f7e707 1199 // logical port is off even though the physical port has to stay
mjr 98:4df3c0f7e707 1200 // on for the remainder of the interval.
mjr 98:4df3c0f7e707 1201 if (level != 0)
mjr 98:4df3c0f7e707 1202 {
mjr 98:4df3c0f7e707 1203 // client is leaving the port on - pass through the new
mjr 98:4df3c0f7e707 1204 // power level and set state 1 (logically on)
mjr 98:4df3c0f7e707 1205 out->set(level);
mjr 98:4df3c0f7e707 1206 state = 1;
mjr 98:4df3c0f7e707 1207 }
mjr 98:4df3c0f7e707 1208 else
mjr 98:4df3c0f7e707 1209 {
mjr 98:4df3c0f7e707 1210 // Client is turning off the port - leave the underlying port
mjr 98:4df3c0f7e707 1211 // on at its current level and set state 2 (logically off).
mjr 98:4df3c0f7e707 1212 // When the minimum ON time expires, the polling routine will
mjr 98:4df3c0f7e707 1213 // see that we're logically off and will pass that through to
mjr 98:4df3c0f7e707 1214 // the underlying physical port. Until then, though, we have
mjr 98:4df3c0f7e707 1215 // to leave the physical port on to satisfy the minimum ON
mjr 98:4df3c0f7e707 1216 // time requirement.
mjr 98:4df3c0f7e707 1217 state = 2;
mjr 98:4df3c0f7e707 1218 }
mjr 98:4df3c0f7e707 1219 break;
mjr 98:4df3c0f7e707 1220
mjr 98:4df3c0f7e707 1221 case 3:
mjr 99:8139b0c274f4 1222 // We're after the minimum ON interval and before the maximum
mjr 99:8139b0c274f4 1223 // ON time limit. We can set any new level, including fully off.
mjr 99:8139b0c274f4 1224 // Pass the new power level through to the port.
mjr 98:4df3c0f7e707 1225 out->set(level);
mjr 98:4df3c0f7e707 1226
mjr 98:4df3c0f7e707 1227 // if the port is now off, return to state 0 (OFF)
mjr 98:4df3c0f7e707 1228 if (level == 0)
mjr 99:8139b0c274f4 1229 {
mjr 99:8139b0c274f4 1230 // return to the OFF state
mjr 99:8139b0c274f4 1231 state = 0;
mjr 99:8139b0c274f4 1232
mjr 99:8139b0c274f4 1233 // If we have a timer pending, remove it. A timer will be
mjr 99:8139b0c274f4 1234 // pending if we have a non-infinite maximum on time for the
mjr 99:8139b0c274f4 1235 // port.
mjr 99:8139b0c274f4 1236 for (int i = 0 ; i < nPending ; ++i)
mjr 99:8139b0c274f4 1237 {
mjr 99:8139b0c274f4 1238 // is this us?
mjr 99:8139b0c274f4 1239 if (pending[i] == this)
mjr 99:8139b0c274f4 1240 {
mjr 99:8139b0c274f4 1241 // remove myself by replacing the slot with the
mjr 99:8139b0c274f4 1242 // last list entry
mjr 99:8139b0c274f4 1243 pending[i] = pending[--nPending];
mjr 99:8139b0c274f4 1244
mjr 99:8139b0c274f4 1245 // no need to look any further
mjr 99:8139b0c274f4 1246 break;
mjr 99:8139b0c274f4 1247 }
mjr 99:8139b0c274f4 1248 }
mjr 99:8139b0c274f4 1249 }
mjr 99:8139b0c274f4 1250 break;
mjr 99:8139b0c274f4 1251
mjr 99:8139b0c274f4 1252 case 4:
mjr 99:8139b0c274f4 1253 // We're after the maximum ON time. The physical port stays off
mjr 99:8139b0c274f4 1254 // during this interval, so we don't pass any changes through to
mjr 99:8139b0c274f4 1255 // the physical port. When the client sets the level to 0, we
mjr 99:8139b0c274f4 1256 // turn off the logical port and reset to state 0.
mjr 99:8139b0c274f4 1257 if (level == 0)
mjr 98:4df3c0f7e707 1258 state = 0;
mjr 98:4df3c0f7e707 1259 break;
mjr 98:4df3c0f7e707 1260 }
mjr 98:4df3c0f7e707 1261 }
mjr 98:4df3c0f7e707 1262
mjr 98:4df3c0f7e707 1263 // Class initialization
mjr 98:4df3c0f7e707 1264 static void classInit(Config &cfg)
mjr 98:4df3c0f7e707 1265 {
mjr 98:4df3c0f7e707 1266 // Count the Minimum On Time outputs in the configuration. We
mjr 98:4df3c0f7e707 1267 // need to allocate enough pending timer list space to accommodate
mjr 98:4df3c0f7e707 1268 // all of these outputs.
mjr 98:4df3c0f7e707 1269 int n = 0;
mjr 98:4df3c0f7e707 1270 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 98:4df3c0f7e707 1271 {
mjr 98:4df3c0f7e707 1272 // if this port is active and marked as Flipper Logic, count it
mjr 98:4df3c0f7e707 1273 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 99:8139b0c274f4 1274 && (cfg.outPort[i].flags & PortFlagChimeLogic) != 0)
mjr 98:4df3c0f7e707 1275 ++n;
mjr 98:4df3c0f7e707 1276 }
mjr 98:4df3c0f7e707 1277
mjr 98:4df3c0f7e707 1278 // allocate space for the pending timer list
mjr 99:8139b0c274f4 1279 pending = new LwChimeLogicOut*[n];
mjr 98:4df3c0f7e707 1280
mjr 98:4df3c0f7e707 1281 // there's nothing in the pending list yet
mjr 98:4df3c0f7e707 1282 nPending = 0;
mjr 98:4df3c0f7e707 1283
mjr 98:4df3c0f7e707 1284 // Start our shared timer. The epoch is arbitrary, since we only
mjr 98:4df3c0f7e707 1285 // use it to figure elapsed times.
mjr 98:4df3c0f7e707 1286 timer.start();
mjr 98:4df3c0f7e707 1287 }
mjr 98:4df3c0f7e707 1288
mjr 98:4df3c0f7e707 1289 // Check for ports with pending timers. The main routine should
mjr 98:4df3c0f7e707 1290 // call this on each iteration to process our state transitions.
mjr 98:4df3c0f7e707 1291 static void poll()
mjr 98:4df3c0f7e707 1292 {
mjr 98:4df3c0f7e707 1293 // note the current time
mjr 98:4df3c0f7e707 1294 uint32_t t = timer.read_us();
mjr 98:4df3c0f7e707 1295
mjr 98:4df3c0f7e707 1296 // go through the timer list
mjr 98:4df3c0f7e707 1297 for (int i = 0 ; i < nPending ; )
mjr 98:4df3c0f7e707 1298 {
mjr 98:4df3c0f7e707 1299 // get the port
mjr 99:8139b0c274f4 1300 LwChimeLogicOut *port = pending[i];
mjr 98:4df3c0f7e707 1301
mjr 98:4df3c0f7e707 1302 // assume we'll keep it
mjr 98:4df3c0f7e707 1303 bool remove = false;
mjr 98:4df3c0f7e707 1304
mjr 99:8139b0c274f4 1305 // check our state
mjr 99:8139b0c274f4 1306 switch (port->state)
mjr 98:4df3c0f7e707 1307 {
mjr 99:8139b0c274f4 1308 case 1: // initial minimum ON time, port logically on
mjr 99:8139b0c274f4 1309 case 2: // initial minimum ON time, port logically off
mjr 99:8139b0c274f4 1310 // check if the minimum ON time has elapsed
mjr 98:4df3c0f7e707 1311 if (uint32_t(t - port->t0) > port->minOnTime_us())
mjr 98:4df3c0f7e707 1312 {
mjr 98:4df3c0f7e707 1313 // This port has completed its initial ON interval, so
mjr 98:4df3c0f7e707 1314 // it advances to the next state.
mjr 98:4df3c0f7e707 1315 if (port->state == 1)
mjr 98:4df3c0f7e707 1316 {
mjr 99:8139b0c274f4 1317 // The port is logically on, so advance to state 3.
mjr 99:8139b0c274f4 1318 // The underlying port is already at its proper level,
mjr 99:8139b0c274f4 1319 // since we pass through non-zero power settings to the
mjr 99:8139b0c274f4 1320 // underlying port throughout the initial minimum time.
mjr 99:8139b0c274f4 1321 // The timer stays active into state 3.
mjr 98:4df3c0f7e707 1322 port->state = 3;
mjr 99:8139b0c274f4 1323
mjr 99:8139b0c274f4 1324 // Special case: maximum on time 0 means "infinite".
mjr 99:8139b0c274f4 1325 // There's no need for a timer in this case; we'll
mjr 99:8139b0c274f4 1326 // just stay in state 3 until the client turns the
mjr 99:8139b0c274f4 1327 // port off.
mjr 99:8139b0c274f4 1328 if (port->maxOnTime_us() == 0)
mjr 99:8139b0c274f4 1329 remove = true;
mjr 98:4df3c0f7e707 1330 }
mjr 98:4df3c0f7e707 1331 else
mjr 98:4df3c0f7e707 1332 {
mjr 98:4df3c0f7e707 1333 // The port was switched off by the client during the
mjr 98:4df3c0f7e707 1334 // minimum ON period. We haven't passed the OFF state
mjr 98:4df3c0f7e707 1335 // to the underlying port yet, because the port has to
mjr 98:4df3c0f7e707 1336 // stay on throughout the minimum ON period. So turn
mjr 98:4df3c0f7e707 1337 // the port off now.
mjr 98:4df3c0f7e707 1338 port->out->set(0);
mjr 98:4df3c0f7e707 1339
mjr 98:4df3c0f7e707 1340 // return to state 0 (OFF)
mjr 98:4df3c0f7e707 1341 port->state = 0;
mjr 99:8139b0c274f4 1342
mjr 99:8139b0c274f4 1343 // we're done with the timer
mjr 99:8139b0c274f4 1344 remove = true;
mjr 98:4df3c0f7e707 1345 }
mjr 99:8139b0c274f4 1346 }
mjr 99:8139b0c274f4 1347 break;
mjr 99:8139b0c274f4 1348
mjr 99:8139b0c274f4 1349 case 3: // between minimum ON time and maximum ON time
mjr 99:8139b0c274f4 1350 // check if the maximum ON time has expired
mjr 99:8139b0c274f4 1351 if (uint32_t(t - port->t0) > port->maxOnTime_us())
mjr 99:8139b0c274f4 1352 {
mjr 99:8139b0c274f4 1353 // The maximum ON time has expired. Turn off the physical
mjr 99:8139b0c274f4 1354 // port.
mjr 99:8139b0c274f4 1355 port->out->set(0);
mjr 98:4df3c0f7e707 1356
mjr 99:8139b0c274f4 1357 // Switch to state 4 (logically ON past maximum time)
mjr 99:8139b0c274f4 1358 port->state = 4;
mjr 99:8139b0c274f4 1359
mjr 99:8139b0c274f4 1360 // Remove the timer on this port. This port simply stays
mjr 99:8139b0c274f4 1361 // in state 4 until the client turns off the port.
mjr 98:4df3c0f7e707 1362 remove = true;
mjr 98:4df3c0f7e707 1363 }
mjr 99:8139b0c274f4 1364 break;
mjr 98:4df3c0f7e707 1365 }
mjr 98:4df3c0f7e707 1366
mjr 98:4df3c0f7e707 1367 // if desired, remove the port from the timer list
mjr 98:4df3c0f7e707 1368 if (remove)
mjr 98:4df3c0f7e707 1369 {
mjr 98:4df3c0f7e707 1370 // Remove the list entry by overwriting the slot with
mjr 98:4df3c0f7e707 1371 // the last entry in the list.
mjr 98:4df3c0f7e707 1372 pending[i] = pending[--nPending];
mjr 98:4df3c0f7e707 1373
mjr 98:4df3c0f7e707 1374 // Note that we don't increment the loop counter, since
mjr 98:4df3c0f7e707 1375 // we now need to revisit this same slot.
mjr 98:4df3c0f7e707 1376 }
mjr 98:4df3c0f7e707 1377 else
mjr 98:4df3c0f7e707 1378 {
mjr 98:4df3c0f7e707 1379 // we're keeping this item; move on to the next one
mjr 98:4df3c0f7e707 1380 ++i;
mjr 98:4df3c0f7e707 1381 }
mjr 98:4df3c0f7e707 1382 }
mjr 98:4df3c0f7e707 1383 }
mjr 98:4df3c0f7e707 1384
mjr 98:4df3c0f7e707 1385 protected:
mjr 98:4df3c0f7e707 1386 // underlying physical output
mjr 98:4df3c0f7e707 1387 LwOut *out;
mjr 98:4df3c0f7e707 1388
mjr 98:4df3c0f7e707 1389 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 98:4df3c0f7e707 1390 // to the current 'timer' timestamp when entering state 1.
mjr 98:4df3c0f7e707 1391 uint32_t t0;
mjr 98:4df3c0f7e707 1392
mjr 98:4df3c0f7e707 1393 // Current port state:
mjr 98:4df3c0f7e707 1394 //
mjr 98:4df3c0f7e707 1395 // 0 = off
mjr 99:8139b0c274f4 1396 // 1 = in initial minimum ON interval, logical port is on
mjr 99:8139b0c274f4 1397 // 2 = in initial minimum ON interval, logical port is off
mjr 99:8139b0c274f4 1398 // 3 = in interval between minimum and maximum ON times
mjr 99:8139b0c274f4 1399 // 4 = after the maximum ON interval
mjr 99:8139b0c274f4 1400 //
mjr 99:8139b0c274f4 1401 // The "logical" on/off state of the port is the state set by the
mjr 99:8139b0c274f4 1402 // client. The "physical" state is the state of the underlying port.
mjr 99:8139b0c274f4 1403 // The relationships between logical and physical port state, and the
mjr 99:8139b0c274f4 1404 // effects of updates by the client, are as follows:
mjr 99:8139b0c274f4 1405 //
mjr 99:8139b0c274f4 1406 // State | Logical | Physical | Client set on | Client set off
mjr 99:8139b0c274f4 1407 // -----------------------------------------------------------
mjr 99:8139b0c274f4 1408 // 0 | Off | Off | phys on, -> 1 | no effect
mjr 99:8139b0c274f4 1409 // 1 | On | On | no effect | -> 2
mjr 99:8139b0c274f4 1410 // 2 | Off | On | -> 1 | no effect
mjr 99:8139b0c274f4 1411 // 3 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1412 // 4 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1413 //
mjr 99:8139b0c274f4 1414 // The polling routine makes the following transitions when the current
mjr 99:8139b0c274f4 1415 // time limit expires:
mjr 99:8139b0c274f4 1416 //
mjr 99:8139b0c274f4 1417 // 1: at end of minimum ON, -> 3 (or 4 if max == infinity)
mjr 99:8139b0c274f4 1418 // 2: at end of minimum ON, port off, -> 0
mjr 99:8139b0c274f4 1419 // 3: at end of maximum ON, port off, -> 4
mjr 98:4df3c0f7e707 1420 //
mjr 98:4df3c0f7e707 1421 uint8_t state;
mjr 98:4df3c0f7e707 1422
mjr 99:8139b0c274f4 1423 // Configuration parameters byte. This encodes the minimum and maximum
mjr 99:8139b0c274f4 1424 // ON times.
mjr 99:8139b0c274f4 1425 uint8_t params;
mjr 98:4df3c0f7e707 1426
mjr 98:4df3c0f7e707 1427 // Timer. This is a shared timer for all of the minimum ON time ports.
mjr 98:4df3c0f7e707 1428 // When we transition from OFF to ON, we note the current time on this
mjr 98:4df3c0f7e707 1429 // timer to establish the start of our minimum ON period.
mjr 98:4df3c0f7e707 1430 static Timer timer;
mjr 98:4df3c0f7e707 1431
mjr 98:4df3c0f7e707 1432 // translaton table from timing parameter in config to minimum ON time
mjr 98:4df3c0f7e707 1433 static const uint32_t paramToTime_us[];
mjr 98:4df3c0f7e707 1434
mjr 99:8139b0c274f4 1435 // Figure the minimum ON time. The minimum ON time is given by the
mjr 99:8139b0c274f4 1436 // low-order 4 bits of the parameters byte, which serves as an index
mjr 99:8139b0c274f4 1437 // into our time table.
mjr 99:8139b0c274f4 1438 inline uint32_t minOnTime_us() const { return paramToTime_us[params & 0x0F]; }
mjr 99:8139b0c274f4 1439
mjr 99:8139b0c274f4 1440 // Figure the maximum ON time. The maximum time is the high 4 bits
mjr 99:8139b0c274f4 1441 // of the parameters byte. This is an index into our time table, but
mjr 99:8139b0c274f4 1442 // 0 has the special meaning "infinite".
mjr 99:8139b0c274f4 1443 inline uint32_t maxOnTime_us() const { return paramToTime_us[((params >> 4) & 0x0F)]; }
mjr 98:4df3c0f7e707 1444
mjr 98:4df3c0f7e707 1445 // Pending timer list. Whenever one of our ports transitions from OFF
mjr 98:4df3c0f7e707 1446 // to ON, we add it to this list. We scan this list in our polling
mjr 98:4df3c0f7e707 1447 // routine to find ports that have reached the ends of their initial
mjr 98:4df3c0f7e707 1448 // ON intervals.
mjr 99:8139b0c274f4 1449 static LwChimeLogicOut **pending;
mjr 98:4df3c0f7e707 1450 static uint8_t nPending;
mjr 98:4df3c0f7e707 1451 };
mjr 98:4df3c0f7e707 1452
mjr 98:4df3c0f7e707 1453 // Min Time Out statics
mjr 99:8139b0c274f4 1454 Timer LwChimeLogicOut::timer;
mjr 99:8139b0c274f4 1455 LwChimeLogicOut **LwChimeLogicOut::pending;
mjr 99:8139b0c274f4 1456 uint8_t LwChimeLogicOut::nPending;
mjr 99:8139b0c274f4 1457 const uint32_t LwChimeLogicOut::paramToTime_us[] = {
mjr 99:8139b0c274f4 1458 0, // for the max time, this means "infinite"
mjr 98:4df3c0f7e707 1459 1000,
mjr 98:4df3c0f7e707 1460 2000,
mjr 98:4df3c0f7e707 1461 5000,
mjr 98:4df3c0f7e707 1462 10000,
mjr 98:4df3c0f7e707 1463 20000,
mjr 98:4df3c0f7e707 1464 40000,
mjr 98:4df3c0f7e707 1465 80000,
mjr 98:4df3c0f7e707 1466 100000,
mjr 98:4df3c0f7e707 1467 200000,
mjr 98:4df3c0f7e707 1468 300000,
mjr 98:4df3c0f7e707 1469 400000,
mjr 98:4df3c0f7e707 1470 500000,
mjr 98:4df3c0f7e707 1471 600000,
mjr 98:4df3c0f7e707 1472 700000,
mjr 98:4df3c0f7e707 1473 800000
mjr 98:4df3c0f7e707 1474 };
mjr 89:c43cd923401c 1475
mjr 35:e959ffba78fd 1476 //
mjr 35:e959ffba78fd 1477 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1478 // assignments set in config.h.
mjr 33:d832bcab089e 1479 //
mjr 35:e959ffba78fd 1480 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1481 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1482 {
mjr 35:e959ffba78fd 1483 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1484 {
mjr 53:9b2611964afc 1485 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1486 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1487 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1488 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1489 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1490 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1491 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1492 }
mjr 35:e959ffba78fd 1493 }
mjr 26:cb71c4af2912 1494
mjr 40:cc0d9814522b 1495 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1496 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1497 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1498 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1499 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1500 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1501 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1502 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1503 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1504 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1505 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1506 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1507 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1508 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1509 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1510 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1511 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1512 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1513 };
mjr 40:cc0d9814522b 1514
mjr 40:cc0d9814522b 1515 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1516 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1517 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1518 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1519 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1520 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1521 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1522 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1523 // are always 8 bits.
mjr 40:cc0d9814522b 1524 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1525 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1526 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1527 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1528 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1529 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1530 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1531 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1532 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1533 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1534 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1535 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1536 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1537 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1538 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1539 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1540 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1541 };
mjr 40:cc0d9814522b 1542
mjr 26:cb71c4af2912 1543 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1544 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1545 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1546 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1547 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1548 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1549 {
mjr 26:cb71c4af2912 1550 public:
mjr 60:f38da020aa13 1551 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1552 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1553 {
mjr 26:cb71c4af2912 1554 if (val != prv)
mjr 40:cc0d9814522b 1555 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1556 }
mjr 60:f38da020aa13 1557 uint8_t idx;
mjr 40:cc0d9814522b 1558 uint8_t prv;
mjr 26:cb71c4af2912 1559 };
mjr 26:cb71c4af2912 1560
mjr 40:cc0d9814522b 1561 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1562 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1563 {
mjr 40:cc0d9814522b 1564 public:
mjr 60:f38da020aa13 1565 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1566 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1567 {
mjr 40:cc0d9814522b 1568 if (val != prv)
mjr 40:cc0d9814522b 1569 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1570 }
mjr 60:f38da020aa13 1571 uint8_t idx;
mjr 40:cc0d9814522b 1572 uint8_t prv;
mjr 40:cc0d9814522b 1573 };
mjr 40:cc0d9814522b 1574
mjr 87:8d35c74403af 1575 //
mjr 87:8d35c74403af 1576 // TLC59116 interface object
mjr 87:8d35c74403af 1577 //
mjr 87:8d35c74403af 1578 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1579 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1580 {
mjr 87:8d35c74403af 1581 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1582 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1583 {
mjr 87:8d35c74403af 1584 // set up the interface
mjr 87:8d35c74403af 1585 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1586 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1587 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1588 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1589
mjr 87:8d35c74403af 1590 // initialize the chips
mjr 87:8d35c74403af 1591 tlc59116->init();
mjr 87:8d35c74403af 1592 }
mjr 87:8d35c74403af 1593 }
mjr 87:8d35c74403af 1594
mjr 87:8d35c74403af 1595 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1596 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1597 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1598 // (0-15).
mjr 87:8d35c74403af 1599 //
mjr 87:8d35c74403af 1600 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1601 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1602 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1603 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1604 {
mjr 87:8d35c74403af 1605 public:
mjr 87:8d35c74403af 1606 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1607 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1608 {
mjr 87:8d35c74403af 1609 if (val != prv)
mjr 87:8d35c74403af 1610 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1611 }
mjr 87:8d35c74403af 1612
mjr 87:8d35c74403af 1613 protected:
mjr 87:8d35c74403af 1614 uint8_t addr;
mjr 87:8d35c74403af 1615 uint8_t port;
mjr 87:8d35c74403af 1616 uint8_t prv;
mjr 87:8d35c74403af 1617 };
mjr 87:8d35c74403af 1618
mjr 87:8d35c74403af 1619
mjr 87:8d35c74403af 1620 //
mjr 34:6b981a2afab7 1621 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1622 // config.h.
mjr 87:8d35c74403af 1623 //
mjr 35:e959ffba78fd 1624 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1625
mjr 35:e959ffba78fd 1626 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1627 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1628 {
mjr 35:e959ffba78fd 1629 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1630 {
mjr 53:9b2611964afc 1631 hc595 = new HC595(
mjr 53:9b2611964afc 1632 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1633 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1634 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1635 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1636 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1637 hc595->init();
mjr 35:e959ffba78fd 1638 hc595->update();
mjr 35:e959ffba78fd 1639 }
mjr 35:e959ffba78fd 1640 }
mjr 34:6b981a2afab7 1641
mjr 34:6b981a2afab7 1642 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1643 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1644 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1645 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1646 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1647 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1648 {
mjr 33:d832bcab089e 1649 public:
mjr 60:f38da020aa13 1650 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1651 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1652 {
mjr 34:6b981a2afab7 1653 if (val != prv)
mjr 40:cc0d9814522b 1654 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1655 }
mjr 60:f38da020aa13 1656 uint8_t idx;
mjr 40:cc0d9814522b 1657 uint8_t prv;
mjr 33:d832bcab089e 1658 };
mjr 33:d832bcab089e 1659
mjr 26:cb71c4af2912 1660
mjr 40:cc0d9814522b 1661
mjr 64:ef7ca92dff36 1662 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1663 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1664 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1665 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1666 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1667 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1668 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1669 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1670 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1671 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1672 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1673 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1674 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1675 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1676 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1677 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1678 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1679 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1680 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1681 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1682 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1683 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1684 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1685 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1686 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1687 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1688 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1689 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1690 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1691 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1692 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1693 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1694 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1695 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1696 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1697 };
mjr 26:cb71c4af2912 1698
mjr 64:ef7ca92dff36 1699
mjr 92:f264fbaa1be5 1700 // Conversion table for 8-bit DOF level to pulse width, with gamma correction
mjr 92:f264fbaa1be5 1701 // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0.
mjr 92:f264fbaa1be5 1702 // Note that we could use the layered gamma output on top of the regular
mjr 92:f264fbaa1be5 1703 // LwPwmOut class for this instead of a separate table, but we get much better
mjr 92:f264fbaa1be5 1704 // precision with a dedicated table, because we apply gamma correction to the
mjr 92:f264fbaa1be5 1705 // actual duty cycle values (as 'float') rather than the 8-bit DOF values.
mjr 64:ef7ca92dff36 1706 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1707 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1708 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1709 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1710 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1711 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1712 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1713 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1714 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1715 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1716 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1717 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1718 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1719 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1720 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1721 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1722 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1723 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1724 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1725 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1726 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1727 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1728 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1729 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1730 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1731 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1732 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1733 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1734 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1735 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1736 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1737 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1738 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1739 };
mjr 64:ef7ca92dff36 1740
mjr 77:0b96f6867312 1741 // Polled-update PWM output list
mjr 74:822a92bc11d2 1742 //
mjr 77:0b96f6867312 1743 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1744 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1745 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1746 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1747 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1748 //
mjr 92:f264fbaa1be5 1749 // The symptom of the problem, if it's not worked around somehow, is that
mjr 92:f264fbaa1be5 1750 // an output will get "stuck" due to a missed write. This is especially
mjr 92:f264fbaa1be5 1751 // noticeable during a series of updates such as a fade. If the last
mjr 92:f264fbaa1be5 1752 // couple of updates in a fade are lost, the output will get stuck at some
mjr 92:f264fbaa1be5 1753 // value above or below the desired final value. The stuck setting will
mjr 92:f264fbaa1be5 1754 // persist until the output is deliberately changed again later.
mjr 92:f264fbaa1be5 1755 //
mjr 92:f264fbaa1be5 1756 // Our solution: Simply repeat all PWM updates periodically. This way, any
mjr 92:f264fbaa1be5 1757 // lost write will *eventually* take hold on one of the repeats. Repeats of
mjr 92:f264fbaa1be5 1758 // the same value won't change anything and thus won't be noticeable. We do
mjr 92:f264fbaa1be5 1759 // these periodic updates during the main loop, which makes them very low
mjr 92:f264fbaa1be5 1760 // overhead (there's no interrupt overhead; we just do them when convenient
mjr 92:f264fbaa1be5 1761 // in the main loop), and also makes them very frequent. The frequency
mjr 92:f264fbaa1be5 1762 // is crucial because it ensures that updates will never be lost for long
mjr 92:f264fbaa1be5 1763 // enough to become noticeable.
mjr 92:f264fbaa1be5 1764 //
mjr 92:f264fbaa1be5 1765 // The mbed library has its own, different solution to this bug, but the
mjr 92:f264fbaa1be5 1766 // mbed solution isn't really a solution at all because it creates a separate
mjr 100:1ff35c07217c 1767 // problem of its own. The mbed approach is to reset the TPM "count" register
mjr 92:f264fbaa1be5 1768 // on every value register write. The count reset truncates the current
mjr 92:f264fbaa1be5 1769 // PWM cycle, which bypasses the hardware problem. Remember, the hardware
mjr 92:f264fbaa1be5 1770 // problem is that you can only write once per cycle; the mbed "solution" gets
mjr 92:f264fbaa1be5 1771 // around that by making sure the cycle ends immediately after the write.
mjr 92:f264fbaa1be5 1772 // The problem with this approach is that the truncated cycle causes visible
mjr 92:f264fbaa1be5 1773 // flicker if the output is connected to an LED. This is particularly
mjr 92:f264fbaa1be5 1774 // noticeable during fades, when we're updating the value register repeatedly
mjr 92:f264fbaa1be5 1775 // and rapidly: an attempt to fade from fully on to fully off causes rapid
mjr 92:f264fbaa1be5 1776 // fluttering and flashing rather than a smooth brightness fade. That's why
mjr 92:f264fbaa1be5 1777 // I had to come up with something different - the mbed solution just trades
mjr 92:f264fbaa1be5 1778 // one annoying bug for another that's just as bad.
mjr 92:f264fbaa1be5 1779 //
mjr 92:f264fbaa1be5 1780 // The hardware bug, by the way, is a case of good intentions gone bad.
mjr 92:f264fbaa1be5 1781 // The whole point of the staging register is to make things easier for
mjr 92:f264fbaa1be5 1782 // us software writers. In most PWM hardware, software has to coordinate
mjr 92:f264fbaa1be5 1783 // with the PWM duty cycle when updating registers to avoid a glitch that
mjr 92:f264fbaa1be5 1784 // you'd get by scribbling to the duty cycle register mid-cycle. The
mjr 92:f264fbaa1be5 1785 // staging register solves this by letting the software write an update at
mjr 92:f264fbaa1be5 1786 // any time, knowing that the hardware will apply the update at exactly the
mjr 92:f264fbaa1be5 1787 // end of the cycle, ensuring glitch-free updates. It's a great design,
mjr 92:f264fbaa1be5 1788 // except that it doesn't quite work. The problem is that they implemented
mjr 92:f264fbaa1be5 1789 // this clever staging register as a one-element FIFO that refuses any more
mjr 92:f264fbaa1be5 1790 // writes when full. That is, writing a value to the FIFO fills it; once
mjr 92:f264fbaa1be5 1791 // full, it ignores writes until it gets emptied out. How's it emptied out?
mjr 92:f264fbaa1be5 1792 // By the hardware moving the staged value to the real register. Sadly, they
mjr 92:f264fbaa1be5 1793 // didn't provide any way for the software to clear the register, and no way
mjr 92:f264fbaa1be5 1794 // to even tell that it's full. So we don't have glitches on write, but we're
mjr 92:f264fbaa1be5 1795 // back to the original problem that the software has to be aware of the PWM
mjr 92:f264fbaa1be5 1796 // cycle timing, because the only way for the software to know that a write
mjr 92:f264fbaa1be5 1797 // actually worked is to know that it's been at least one PWM cycle since the
mjr 92:f264fbaa1be5 1798 // last write. That largely defeats the whole purpose of the staging register,
mjr 92:f264fbaa1be5 1799 // since the whole point was to free software writers of these timing
mjr 92:f264fbaa1be5 1800 // considerations. It's still an improvement over no staging register at
mjr 92:f264fbaa1be5 1801 // all, since we at least don't have to worry about glitches, but it leaves
mjr 92:f264fbaa1be5 1802 // us with this somewhat similar hassle.
mjr 74:822a92bc11d2 1803 //
mjr 77:0b96f6867312 1804 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1805 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1806 // of polled items.
mjr 74:822a92bc11d2 1807 static int numPolledPwm;
mjr 74:822a92bc11d2 1808 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1809
mjr 74:822a92bc11d2 1810 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1811 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1812 {
mjr 6:cc35eb643e8f 1813 public:
mjr 43:7a6364d82a41 1814 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1815 {
mjr 77:0b96f6867312 1816 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1817 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1818 polledPwm[numPolledPwm++] = this;
mjr 93:177832c29041 1819
mjr 94:0476b3e2b996 1820 // IMPORTANT: Do not set the PWM period (frequency) here explicitly.
mjr 94:0476b3e2b996 1821 // We instead want to accept the current setting for the TPM unit
mjr 94:0476b3e2b996 1822 // we're assigned to. The KL25Z hardware can only set the period at
mjr 94:0476b3e2b996 1823 // the TPM unit level, not per channel, so if we changed the frequency
mjr 94:0476b3e2b996 1824 // here, we'd change it for everything attached to our TPM unit. LW
mjr 94:0476b3e2b996 1825 // outputs don't care about frequency other than that it's fast enough
mjr 94:0476b3e2b996 1826 // that attached LEDs won't flicker. Some other PWM users (IR remote,
mjr 94:0476b3e2b996 1827 // TLC5940) DO care about exact frequencies, because they use the PWM
mjr 94:0476b3e2b996 1828 // as a signal generator rather than merely for brightness control.
mjr 94:0476b3e2b996 1829 // If we changed the frequency here, we could clobber one of those
mjr 94:0476b3e2b996 1830 // carefully chosen frequencies and break the other subsystem. So
mjr 94:0476b3e2b996 1831 // we need to be the "free variable" here and accept whatever setting
mjr 94:0476b3e2b996 1832 // is currently on our assigned unit. To minimize flicker, the main()
mjr 94:0476b3e2b996 1833 // entrypoint sets a default PWM rate of 1kHz on all channels. All
mjr 94:0476b3e2b996 1834 // of the other subsystems that might set specific frequencies will
mjr 94:0476b3e2b996 1835 // set much high frequencies, so that should only be good for us.
mjr 94:0476b3e2b996 1836
mjr 94:0476b3e2b996 1837 // set the initial brightness value
mjr 77:0b96f6867312 1838 set(initVal);
mjr 43:7a6364d82a41 1839 }
mjr 74:822a92bc11d2 1840
mjr 40:cc0d9814522b 1841 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1842 {
mjr 77:0b96f6867312 1843 // save the new value
mjr 74:822a92bc11d2 1844 this->val = val;
mjr 77:0b96f6867312 1845
mjr 77:0b96f6867312 1846 // commit it to the hardware
mjr 77:0b96f6867312 1847 commit();
mjr 13:72dda449c3c0 1848 }
mjr 74:822a92bc11d2 1849
mjr 74:822a92bc11d2 1850 // handle periodic update polling
mjr 74:822a92bc11d2 1851 void poll()
mjr 74:822a92bc11d2 1852 {
mjr 77:0b96f6867312 1853 commit();
mjr 74:822a92bc11d2 1854 }
mjr 74:822a92bc11d2 1855
mjr 74:822a92bc11d2 1856 protected:
mjr 77:0b96f6867312 1857 virtual void commit()
mjr 74:822a92bc11d2 1858 {
mjr 74:822a92bc11d2 1859 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1860 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1861 }
mjr 74:822a92bc11d2 1862
mjr 77:0b96f6867312 1863 NewPwmOut p;
mjr 77:0b96f6867312 1864 uint8_t val;
mjr 6:cc35eb643e8f 1865 };
mjr 26:cb71c4af2912 1866
mjr 74:822a92bc11d2 1867 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1868 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1869 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1870 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1871 {
mjr 64:ef7ca92dff36 1872 public:
mjr 64:ef7ca92dff36 1873 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1874 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1875 {
mjr 64:ef7ca92dff36 1876 }
mjr 74:822a92bc11d2 1877
mjr 74:822a92bc11d2 1878 protected:
mjr 77:0b96f6867312 1879 virtual void commit()
mjr 64:ef7ca92dff36 1880 {
mjr 74:822a92bc11d2 1881 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1882 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1883 }
mjr 64:ef7ca92dff36 1884 };
mjr 64:ef7ca92dff36 1885
mjr 74:822a92bc11d2 1886 // poll the PWM outputs
mjr 74:822a92bc11d2 1887 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1888 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1889 void pollPwmUpdates()
mjr 74:822a92bc11d2 1890 {
mjr 94:0476b3e2b996 1891 // If it's been long enough since the last update, do another update.
mjr 94:0476b3e2b996 1892 // Note that the time limit is fairly arbitrary: it has to be at least
mjr 94:0476b3e2b996 1893 // 1.5X the PWM period, so that we can be sure that at least one PWM
mjr 94:0476b3e2b996 1894 // period has elapsed since the last update, but there's no hard upper
mjr 94:0476b3e2b996 1895 // bound. Instead, it only has to be short enough that fades don't
mjr 94:0476b3e2b996 1896 // become noticeably chunky. The competing interest is that we don't
mjr 94:0476b3e2b996 1897 // want to do this more often than necessary to provide incremental
mjr 94:0476b3e2b996 1898 // benefit, because the polling adds overhead to the main loop and
mjr 94:0476b3e2b996 1899 // takes time away from other tasks we could be performing. The
mjr 94:0476b3e2b996 1900 // shortest time with practical benefit is probably around 50-60Hz,
mjr 94:0476b3e2b996 1901 // since that gives us "video rate" granularity in fades. Anything
mjr 94:0476b3e2b996 1902 // faster wouldn't probably make fades look any smoother to a human
mjr 94:0476b3e2b996 1903 // viewer.
mjr 94:0476b3e2b996 1904 if (polledPwmTimer.read_us() >= 15000)
mjr 74:822a92bc11d2 1905 {
mjr 74:822a92bc11d2 1906 // time the run for statistics collection
mjr 74:822a92bc11d2 1907 IF_DIAG(
mjr 74:822a92bc11d2 1908 Timer t;
mjr 74:822a92bc11d2 1909 t.start();
mjr 74:822a92bc11d2 1910 )
mjr 74:822a92bc11d2 1911
mjr 74:822a92bc11d2 1912 // poll each output
mjr 74:822a92bc11d2 1913 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1914 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1915
mjr 74:822a92bc11d2 1916 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1917 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1918
mjr 74:822a92bc11d2 1919 // collect statistics
mjr 74:822a92bc11d2 1920 IF_DIAG(
mjr 76:7f5912b6340e 1921 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1922 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1923 )
mjr 74:822a92bc11d2 1924 }
mjr 74:822a92bc11d2 1925 }
mjr 64:ef7ca92dff36 1926
mjr 26:cb71c4af2912 1927 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1928 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1929 {
mjr 6:cc35eb643e8f 1930 public:
mjr 43:7a6364d82a41 1931 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1932 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1933 {
mjr 13:72dda449c3c0 1934 if (val != prv)
mjr 40:cc0d9814522b 1935 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1936 }
mjr 6:cc35eb643e8f 1937 DigitalOut p;
mjr 40:cc0d9814522b 1938 uint8_t prv;
mjr 6:cc35eb643e8f 1939 };
mjr 26:cb71c4af2912 1940
mjr 29:582472d0bc57 1941 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1942 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1943 // port n (0-based).
mjr 35:e959ffba78fd 1944 //
mjr 35:e959ffba78fd 1945 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1946 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1947 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1948 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1949 // 74HC595 ports).
mjr 33:d832bcab089e 1950 static int numOutputs;
mjr 33:d832bcab089e 1951 static LwOut **lwPin;
mjr 33:d832bcab089e 1952
mjr 38:091e511ce8a0 1953 // create a single output pin
mjr 53:9b2611964afc 1954 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1955 {
mjr 38:091e511ce8a0 1956 // get this item's values
mjr 38:091e511ce8a0 1957 int typ = pc.typ;
mjr 38:091e511ce8a0 1958 int pin = pc.pin;
mjr 38:091e511ce8a0 1959 int flags = pc.flags;
mjr 40:cc0d9814522b 1960 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1961 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1962 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 1963 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 99:8139b0c274f4 1964 int chimeLogic = flags & PortFlagChimeLogic;
mjr 89:c43cd923401c 1965
mjr 89:c43cd923401c 1966 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 1967 if (flipperLogic)
mjr 89:c43cd923401c 1968 gamma = false;
mjr 38:091e511ce8a0 1969
mjr 38:091e511ce8a0 1970 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1971 LwOut *lwp;
mjr 38:091e511ce8a0 1972 switch (typ)
mjr 38:091e511ce8a0 1973 {
mjr 38:091e511ce8a0 1974 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1975 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1976 if (pin != 0)
mjr 64:ef7ca92dff36 1977 {
mjr 64:ef7ca92dff36 1978 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1979 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1980 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1981 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1982 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1983 {
mjr 64:ef7ca92dff36 1984 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1985 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1986
mjr 64:ef7ca92dff36 1987 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1988 gamma = false;
mjr 64:ef7ca92dff36 1989 }
mjr 64:ef7ca92dff36 1990 else
mjr 64:ef7ca92dff36 1991 {
mjr 64:ef7ca92dff36 1992 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1993 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1994 }
mjr 64:ef7ca92dff36 1995 }
mjr 48:058ace2aed1d 1996 else
mjr 48:058ace2aed1d 1997 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1998 break;
mjr 38:091e511ce8a0 1999
mjr 38:091e511ce8a0 2000 case PortTypeGPIODig:
mjr 38:091e511ce8a0 2001 // Digital GPIO port
mjr 48:058ace2aed1d 2002 if (pin != 0)
mjr 48:058ace2aed1d 2003 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 2004 else
mjr 48:058ace2aed1d 2005 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2006 break;
mjr 38:091e511ce8a0 2007
mjr 38:091e511ce8a0 2008 case PortTypeTLC5940:
mjr 38:091e511ce8a0 2009 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 2010 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 2011 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 2012 {
mjr 40:cc0d9814522b 2013 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 2014 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 2015 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 2016 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 2017 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 2018 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 2019 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 2020 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 2021 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 2022 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 2023 // for this unlikely case.
mjr 40:cc0d9814522b 2024 if (gamma && !activeLow)
mjr 40:cc0d9814522b 2025 {
mjr 40:cc0d9814522b 2026 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 2027 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 2028
mjr 40:cc0d9814522b 2029 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 2030 gamma = false;
mjr 40:cc0d9814522b 2031 }
mjr 40:cc0d9814522b 2032 else
mjr 40:cc0d9814522b 2033 {
mjr 40:cc0d9814522b 2034 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 2035 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 2036 }
mjr 40:cc0d9814522b 2037 }
mjr 38:091e511ce8a0 2038 else
mjr 40:cc0d9814522b 2039 {
mjr 40:cc0d9814522b 2040 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 2041 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 2042 }
mjr 38:091e511ce8a0 2043 break;
mjr 38:091e511ce8a0 2044
mjr 38:091e511ce8a0 2045 case PortType74HC595:
mjr 87:8d35c74403af 2046 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 2047 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 2048 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 2049 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 2050 else
mjr 38:091e511ce8a0 2051 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2052 break;
mjr 87:8d35c74403af 2053
mjr 87:8d35c74403af 2054 case PortTypeTLC59116:
mjr 87:8d35c74403af 2055 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 2056 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 2057 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 2058 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 2059 if (tlc59116 != 0)
mjr 87:8d35c74403af 2060 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 2061 break;
mjr 38:091e511ce8a0 2062
mjr 38:091e511ce8a0 2063 case PortTypeVirtual:
mjr 43:7a6364d82a41 2064 case PortTypeDisabled:
mjr 38:091e511ce8a0 2065 default:
mjr 38:091e511ce8a0 2066 // virtual or unknown
mjr 38:091e511ce8a0 2067 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2068 break;
mjr 38:091e511ce8a0 2069 }
mjr 38:091e511ce8a0 2070
mjr 40:cc0d9814522b 2071 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 2072 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 2073 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 2074 if (activeLow)
mjr 38:091e511ce8a0 2075 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 2076
mjr 89:c43cd923401c 2077 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 2078 if (flipperLogic)
mjr 89:c43cd923401c 2079 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 2080
mjr 99:8139b0c274f4 2081 // Layer on Chime Logic if desired. Note that Chime Logic and
mjr 99:8139b0c274f4 2082 // Flipper Logic are mutually exclusive, and Flipper Logic takes
mjr 99:8139b0c274f4 2083 // precedence, so ignore the Chime Logic bit if both are set.
mjr 99:8139b0c274f4 2084 if (chimeLogic && !flipperLogic)
mjr 99:8139b0c274f4 2085 lwp = new LwChimeLogicOut(lwp, pc.flipperLogic);
mjr 98:4df3c0f7e707 2086
mjr 89:c43cd923401c 2087 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 2088 if (noisy)
mjr 40:cc0d9814522b 2089 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 2090
mjr 40:cc0d9814522b 2091 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 2092 if (gamma)
mjr 40:cc0d9814522b 2093 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 2094
mjr 53:9b2611964afc 2095 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 2096 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 2097 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 2098 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 2099 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 2100
mjr 53:9b2611964afc 2101 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 2102 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 2103 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 2104
mjr 38:091e511ce8a0 2105 // turn it off initially
mjr 38:091e511ce8a0 2106 lwp->set(0);
mjr 38:091e511ce8a0 2107
mjr 38:091e511ce8a0 2108 // return the pin
mjr 38:091e511ce8a0 2109 return lwp;
mjr 38:091e511ce8a0 2110 }
mjr 38:091e511ce8a0 2111
mjr 6:cc35eb643e8f 2112 // initialize the output pin array
mjr 35:e959ffba78fd 2113 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 2114 {
mjr 99:8139b0c274f4 2115 // Initialize the Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 2116 LwFlipperLogicOut::classInit(cfg);
mjr 99:8139b0c274f4 2117 LwChimeLogicOut::classInit(cfg);
mjr 89:c43cd923401c 2118
mjr 35:e959ffba78fd 2119 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 2120 // total number of ports.
mjr 35:e959ffba78fd 2121 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 2122 int i;
mjr 35:e959ffba78fd 2123 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 2124 {
mjr 35:e959ffba78fd 2125 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 2126 {
mjr 35:e959ffba78fd 2127 numOutputs = i;
mjr 34:6b981a2afab7 2128 break;
mjr 34:6b981a2afab7 2129 }
mjr 33:d832bcab089e 2130 }
mjr 33:d832bcab089e 2131
mjr 73:4e8ce0b18915 2132 // allocate the pin array
mjr 73:4e8ce0b18915 2133 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 2134
mjr 73:4e8ce0b18915 2135 // Allocate the current brightness array
mjr 73:4e8ce0b18915 2136 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 2137
mjr 73:4e8ce0b18915 2138 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 2139 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2140 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2141
mjr 73:4e8ce0b18915 2142 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 2143 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 2144 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 2145
mjr 73:4e8ce0b18915 2146 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 2147 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2148 wizSpeed[i] = 2;
mjr 33:d832bcab089e 2149
mjr 35:e959ffba78fd 2150 // create the pin interface object for each port
mjr 35:e959ffba78fd 2151 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 2152 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 2153 }
mjr 6:cc35eb643e8f 2154
mjr 76:7f5912b6340e 2155 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 2156 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 2157 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 2158 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 2159 // equivalent to 48.
mjr 40:cc0d9814522b 2160 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 2161 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 2162 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 2163 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 2164 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 2165 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 2166 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 2167 255, 255
mjr 40:cc0d9814522b 2168 };
mjr 40:cc0d9814522b 2169
mjr 76:7f5912b6340e 2170 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 2171 // level (1..48)
mjr 76:7f5912b6340e 2172 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 2173 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 2174 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 2175 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 2176 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 2177 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 2178 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 2179 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 2180 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 2181 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 2182 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 2183 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 2184 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 2185 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 2186 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 2187 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 2188 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 2189 };
mjr 76:7f5912b6340e 2190
mjr 74:822a92bc11d2 2191 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 2192 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 2193 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 2194 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 2195 //
mjr 74:822a92bc11d2 2196 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2197 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2198 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 2199 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 2200 //
mjr 74:822a92bc11d2 2201 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 2202 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 2203 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 2204 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2205 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 2206 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 2207 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 2208 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 2209 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 2210 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 2211 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 2212 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 2213 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2214 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2215 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2216 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2217 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2218 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2219 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2220 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2221
mjr 74:822a92bc11d2 2222 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2223 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2224 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2225 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2226 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2227 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2228 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2229 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2230 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2231 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2232 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2233 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2234 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2235 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2236 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2237 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2238 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2239
mjr 74:822a92bc11d2 2240 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 2241 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2242 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2243 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2244 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2245 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2246 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2247 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2248 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2249 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2250 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2251 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2252 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2253 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2254 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2255 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2256 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2257
mjr 74:822a92bc11d2 2258 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 2259 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 2260 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 2261 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 2262 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 2263 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 2264 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 2265 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 2266 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 2267 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2268 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2269 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2270 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2271 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2272 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2273 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2274 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 2275 };
mjr 74:822a92bc11d2 2276
mjr 74:822a92bc11d2 2277 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 2278 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 2279 Timer wizCycleTimer;
mjr 74:822a92bc11d2 2280
mjr 76:7f5912b6340e 2281 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 2282 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 2283
mjr 76:7f5912b6340e 2284 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 2285 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 2286 // outputs on each cycle.
mjr 29:582472d0bc57 2287 static void wizPulse()
mjr 29:582472d0bc57 2288 {
mjr 76:7f5912b6340e 2289 // current bank
mjr 76:7f5912b6340e 2290 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 2291
mjr 76:7f5912b6340e 2292 // start a timer for statistics collection
mjr 76:7f5912b6340e 2293 IF_DIAG(
mjr 76:7f5912b6340e 2294 Timer t;
mjr 76:7f5912b6340e 2295 t.start();
mjr 76:7f5912b6340e 2296 )
mjr 76:7f5912b6340e 2297
mjr 76:7f5912b6340e 2298 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 2299 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 2300 //
mjr 76:7f5912b6340e 2301 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 2302 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 2303 //
mjr 76:7f5912b6340e 2304 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 2305 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 2306 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 2307 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 2308 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 2309 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 2310 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 2311 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 2312 // current cycle.
mjr 76:7f5912b6340e 2313 //
mjr 76:7f5912b6340e 2314 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 2315 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 2316 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 2317 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 2318 // there by less-than-obvious means.
mjr 76:7f5912b6340e 2319 //
mjr 76:7f5912b6340e 2320 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 2321 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 2322 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 2323 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 2324 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 2325 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 2326 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 2327 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 2328 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 2329 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 2330 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 2331 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 2332 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 2333 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 2334 // bit counts.
mjr 76:7f5912b6340e 2335 //
mjr 76:7f5912b6340e 2336 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 2337 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 2338 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 2339 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 2340 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 2341 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 2342 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 2343 // one division for another!
mjr 76:7f5912b6340e 2344 //
mjr 76:7f5912b6340e 2345 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 2346 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 2347 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 2348 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 2349 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 2350 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 2351 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 2352 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 2353 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 2354 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 2355 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 2356 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 2357 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 2358 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 2359 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 2360 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 2361 // remainder calculation anyway.
mjr 76:7f5912b6340e 2362 //
mjr 76:7f5912b6340e 2363 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 2364 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 2365 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 2366 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 2367 //
mjr 76:7f5912b6340e 2368 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 2369 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 2370 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 2371 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 2372 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 2373 // the result, since we started with 32.
mjr 76:7f5912b6340e 2374 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 2375 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 2376 };
mjr 76:7f5912b6340e 2377 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 2378
mjr 76:7f5912b6340e 2379 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 2380 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 2381 int toPort = fromPort+32;
mjr 76:7f5912b6340e 2382 if (toPort > numOutputs)
mjr 76:7f5912b6340e 2383 toPort = numOutputs;
mjr 76:7f5912b6340e 2384
mjr 76:7f5912b6340e 2385 // update all outputs set to flashing values
mjr 76:7f5912b6340e 2386 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 2387 {
mjr 76:7f5912b6340e 2388 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 2389 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 2390 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 2391 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 2392 if (wizOn[i])
mjr 29:582472d0bc57 2393 {
mjr 76:7f5912b6340e 2394 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 2395 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 2396 {
mjr 76:7f5912b6340e 2397 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 2398 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 2399 }
mjr 29:582472d0bc57 2400 }
mjr 76:7f5912b6340e 2401 }
mjr 76:7f5912b6340e 2402
mjr 34:6b981a2afab7 2403 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 2404 if (hc595 != 0)
mjr 35:e959ffba78fd 2405 hc595->update();
mjr 76:7f5912b6340e 2406
mjr 76:7f5912b6340e 2407 // switch to the next bank
mjr 76:7f5912b6340e 2408 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 2409 wizPulseBank = 0;
mjr 76:7f5912b6340e 2410
mjr 76:7f5912b6340e 2411 // collect timing statistics
mjr 76:7f5912b6340e 2412 IF_DIAG(
mjr 76:7f5912b6340e 2413 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 2414 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 2415 )
mjr 1:d913e0afb2ac 2416 }
mjr 38:091e511ce8a0 2417
mjr 76:7f5912b6340e 2418 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 2419 static void updateLwPort(int port)
mjr 38:091e511ce8a0 2420 {
mjr 76:7f5912b6340e 2421 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 2422 if (wizOn[port])
mjr 76:7f5912b6340e 2423 {
mjr 76:7f5912b6340e 2424 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 2425 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 2426 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 2427 // it on the next cycle.
mjr 76:7f5912b6340e 2428 int val = wizVal[port];
mjr 76:7f5912b6340e 2429 if (val <= 49)
mjr 76:7f5912b6340e 2430 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 2431 }
mjr 76:7f5912b6340e 2432 else
mjr 76:7f5912b6340e 2433 {
mjr 76:7f5912b6340e 2434 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 2435 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 2436 }
mjr 73:4e8ce0b18915 2437 }
mjr 73:4e8ce0b18915 2438
mjr 73:4e8ce0b18915 2439 // Turn off all outputs and restore everything to the default LedWiz
mjr 92:f264fbaa1be5 2440 // state. This sets all outputs to LedWiz profile value 48 (full
mjr 92:f264fbaa1be5 2441 // brightness) and switch state Off, and sets the LedWiz flash rate
mjr 92:f264fbaa1be5 2442 // to 2. This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2443 //
mjr 73:4e8ce0b18915 2444 void allOutputsOff()
mjr 73:4e8ce0b18915 2445 {
mjr 92:f264fbaa1be5 2446 // reset all outputs to OFF/48
mjr 73:4e8ce0b18915 2447 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2448 {
mjr 73:4e8ce0b18915 2449 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2450 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2451 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2452 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2453 }
mjr 73:4e8ce0b18915 2454
mjr 73:4e8ce0b18915 2455 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2456 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2457 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2458
mjr 73:4e8ce0b18915 2459 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2460 if (hc595 != 0)
mjr 38:091e511ce8a0 2461 hc595->update();
mjr 38:091e511ce8a0 2462 }
mjr 38:091e511ce8a0 2463
mjr 74:822a92bc11d2 2464 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2465 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2466 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2467 // address any port group.
mjr 74:822a92bc11d2 2468 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2469 {
mjr 76:7f5912b6340e 2470 // update all on/off states in the group
mjr 74:822a92bc11d2 2471 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2472 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2473 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2474 {
mjr 74:822a92bc11d2 2475 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2476 if (bit == 0x100) {
mjr 74:822a92bc11d2 2477 bit = 1;
mjr 74:822a92bc11d2 2478 ++imsg;
mjr 74:822a92bc11d2 2479 }
mjr 74:822a92bc11d2 2480
mjr 74:822a92bc11d2 2481 // set the on/off state
mjr 76:7f5912b6340e 2482 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2483
mjr 76:7f5912b6340e 2484 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2485 updateLwPort(port);
mjr 74:822a92bc11d2 2486 }
mjr 74:822a92bc11d2 2487
mjr 74:822a92bc11d2 2488 // set the flash speed for the port group
mjr 74:822a92bc11d2 2489 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2490 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2491
mjr 76:7f5912b6340e 2492 // update 74HC959 outputs
mjr 76:7f5912b6340e 2493 if (hc595 != 0)
mjr 76:7f5912b6340e 2494 hc595->update();
mjr 74:822a92bc11d2 2495 }
mjr 74:822a92bc11d2 2496
mjr 74:822a92bc11d2 2497 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2498 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2499 {
mjr 74:822a92bc11d2 2500 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2501 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2502 {
mjr 74:822a92bc11d2 2503 // get the value
mjr 74:822a92bc11d2 2504 uint8_t v = data[i];
mjr 74:822a92bc11d2 2505
mjr 74:822a92bc11d2 2506 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2507 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2508 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2509 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2510 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2511 // as such.
mjr 74:822a92bc11d2 2512 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2513 v = 48;
mjr 74:822a92bc11d2 2514
mjr 74:822a92bc11d2 2515 // store it
mjr 76:7f5912b6340e 2516 wizVal[port] = v;
mjr 76:7f5912b6340e 2517
mjr 76:7f5912b6340e 2518 // update the port
mjr 76:7f5912b6340e 2519 updateLwPort(port);
mjr 74:822a92bc11d2 2520 }
mjr 74:822a92bc11d2 2521
mjr 76:7f5912b6340e 2522 // update 74HC595 outputs
mjr 76:7f5912b6340e 2523 if (hc595 != 0)
mjr 76:7f5912b6340e 2524 hc595->update();
mjr 74:822a92bc11d2 2525 }
mjr 74:822a92bc11d2 2526
mjr 77:0b96f6867312 2527 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2528 //
mjr 77:0b96f6867312 2529 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2530 //
mjr 77:0b96f6867312 2531
mjr 77:0b96f6867312 2532 // receiver
mjr 77:0b96f6867312 2533 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2534
mjr 77:0b96f6867312 2535 // transmitter
mjr 77:0b96f6867312 2536 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2537
mjr 77:0b96f6867312 2538 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2539 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2540 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2541 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2542 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2543 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2544 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2545 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2546 // configuration slot n
mjr 77:0b96f6867312 2547 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2548
mjr 78:1e00b3fa11af 2549 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2550 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2551 // protocol.
mjr 78:1e00b3fa11af 2552 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2553
mjr 78:1e00b3fa11af 2554 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2555 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2556 // while waiting for the rest.
mjr 78:1e00b3fa11af