An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R


This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.


  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.


The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Tue May 09 05:48:37 2017 +0000
AEDR-8300, VL6180X, TLC59116; new plunger firing detection

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 17:ab3cec0c8bf4 1 // Pinscape Controller Configuration
mjr 17:ab3cec0c8bf4 2 //
mjr 87:8d35c74403af 3 // !!! ATTENTION !!!
mjr 87:8d35c74403af 4 // If you've come here on advice in a forum to change a GPIO setting or
mjr 87:8d35c74403af 5 // to #define a macro to enable the expansion boards, >>>STOP NOW<<<. The
mjr 87:8d35c74403af 6 // advice you found is out of date and no longer applies. You don't need
mjr 87:8d35c74403af 7 // to edit this file or recompile the firmware, and you shouldn't. Instead,
mjr 87:8d35c74403af 8 // use the standard firmware, and set options using the Pinscape Config Tool
mjr 87:8d35c74403af 9 // on your Windows PC. All options that were formerly configurable by
mjr 87:8d35c74403af 10 // editing this file can be selected with the Config Tool. That's much
mjr 87:8d35c74403af 11 // cleaner and easier than editing the source code, and it eliminates the
mjr 87:8d35c74403af 12 // problem of re-synchronizing a private copy of the source code with future
mjr 87:8d35c74403af 13 // updates. With the config tool, you only need the standard firmware build,
mjr 87:8d35c74403af 14 // so future updates are a simple matter of downloading the latest version.
mjr 35:e959ffba78fd 15 //
mjr 35:e959ffba78fd 16 //
mjr 87:8d35c74403af 17 // IN THE PAST (but NOT NOW - see above), configuration was handled mostly
mjr 87:8d35c74403af 18 // with #defines and #ifdefs. To customize the setup, you had to create a
mjr 87:8d35c74403af 19 // private forked copy of the source code, edit the constants defined in
mjr 87:8d35c74403af 20 // config.h, and compile a custom binary. That's no longer necessary because
mjr 87:8d35c74403af 21 // the config tool lets you set all configurable options dynamically. Of
mjr 87:8d35c74403af 22 // course, you're still free to create a custom version if you want to add
mjr 87:8d35c74403af 23 // entirely new features or make changes that go beyond the configurable
mjr 87:8d35c74403af 24 // options.
mjr 35:e959ffba78fd 25 //
mjr 87:8d35c74403af 26 #ifndef CONFIG_H
mjr 87:8d35c74403af 27 #define CONFIG_H
mjr 35:e959ffba78fd 28
mjr 87:8d35c74403af 29
mjr 87:8d35c74403af 30 // TEST SETTINGS - FOR DEBUGGING PURPOSES ONLY. The macros below select
mjr 87:8d35c74403af 31 // special option combinations for debugging purposes.
mjr 55:4db125cd11a0 32 //
mjr 87:8d35c74403af 33 // IMPORTANT! If you're trying to create a custom configuration because
mjr 87:8d35c74403af 34 // you have a pin conflict or because you're using the expansion boards,
mjr 87:8d35c74403af 35 // DON'T modify this file, DON'T use these macros, and DON'T recompile
mjr 87:8d35c74403af 36 // the firmware. Use the Config Tool on your Windows PC instead.
mjr 55:4db125cd11a0 37 #define STANDARD_CONFIG 1 // standard settings, based on v1 base settings
mjr 55:4db125cd11a0 38 #define TEST_CONFIG_EXPAN 0 // configuration for the expansion boards
mjr 80:94dc2946871b 39 #define TEST_KEEP_PRINTF 0 // for debugging purposes, keep printf() enabled
mjr 55:4db125cd11a0 40 // by leaving the SDA UART GPIO pins unallocated
mjr 48:058ace2aed1d 41
mjr 35:e959ffba78fd 42 // Plunger type codes
mjr 35:e959ffba78fd 43 // NOTE! These values are part of the external USB interface. New
mjr 35:e959ffba78fd 44 // values can be added, but the meaning of an existing assigned number
mjr 35:e959ffba78fd 45 // should remain fixed to keep the PC-side config tool compatible across
mjr 35:e959ffba78fd 46 // versions.
mjr 35:e959ffba78fd 47 const int PlungerType_None = 0; // no plunger
mjr 82:4f6209cb5c33 48 const int PlungerType_TSL1410R = 1; // TSL1410R linear image sensor (1280x1 pixels, 400dpi), serial mode, edge detection
mjr 82:4f6209cb5c33 49 const int PlungerType_TSL1412S = 3; // TSL1412S linear image sensor (1536x1 pixels, 400dpi), serial mode, edge detection
mjr 35:e959ffba78fd 50 const int PlungerType_Pot = 5; // potentionmeter
mjr 35:e959ffba78fd 51 const int PlungerType_OptQuad = 6; // AEDR8300 optical quadrature sensor
mjr 35:e959ffba78fd 52 const int PlungerType_MagQuad = 7; // AS5304 magnetic quadrature sensor
mjr 82:4f6209cb5c33 53 const int PlungerType_TSL1401CL = 8; // TSL1401CL linear image sensor (128x1 pixels, 400dpi), bar code sensing
mjr 82:4f6209cb5c33 54 const int PlungerType_VL6180X = 9; // VL6180X time-of-flight distance sensor
mjr 82:4f6209cb5c33 55
mjr 82:4f6209cb5c33 56 // Plunger auto-zero flags
mjr 82:4f6209cb5c33 57 const int PlungerAutoZeroEnabled = 0x01; // auto-zeroing enabled
mjr 21:5048e16cc9ef 58
mjr 35:e959ffba78fd 59 // Accelerometer orientation codes
mjr 35:e959ffba78fd 60 // These values are part of the external USB interface
mjr 35:e959ffba78fd 61 const int OrientationFront = 0; // USB ports pointed toward front of cabinet
mjr 35:e959ffba78fd 62 const int OrientationLeft = 1; // ports pointed toward left side of cabinet
mjr 35:e959ffba78fd 63 const int OrientationRight = 2; // ports pointed toward right side of cabinet
mjr 35:e959ffba78fd 64 const int OrientationRear = 3; // ports pointed toward back of cabinet
mjr 25:e22b88bd783a 65
mjr 77:0b96f6867312 66 // Accelerometer dynamic range codes
mjr 77:0b96f6867312 67 const int AccelRange1G = 0; // +/-1G
mjr 77:0b96f6867312 68 const int AccelRange2G = 1; // +/-2G
mjr 77:0b96f6867312 69 const int AccelRange4G = 2; // +/-4G
mjr 77:0b96f6867312 70 const int AccelRange8G = 3; // +/-8G
mjr 77:0b96f6867312 71
mjr 35:e959ffba78fd 72 // input button types
mjr 53:9b2611964afc 73 const int BtnTypeNone = 0; // unused
mjr 35:e959ffba78fd 74 const int BtnTypeJoystick = 1; // joystick button
mjr 53:9b2611964afc 75 const int BtnTypeKey = 2; // keyboard key
mjr 67:c39e66c4e000 76 const int BtnTypeMedia = 3; // media control key
mjr 38:091e511ce8a0 77
mjr 38:091e511ce8a0 78 // input button flags
mjr 38:091e511ce8a0 79 const uint8_t BtnFlagPulse = 0x01; // pulse mode - reports each change in the physical switch state
mjr 38:091e511ce8a0 80 // as a brief press of the logical button/keyboard key
mjr 40:cc0d9814522b 81
mjr 40:cc0d9814522b 82 // button setup structure
mjr 40:cc0d9814522b 83 struct ButtonCfg
mjr 40:cc0d9814522b 84 {
mjr 66:2e3583fbd2f4 85 // physical GPIO pin - a Wire-to-PinName mapping index
mjr 66:2e3583fbd2f4 86 uint8_t pin;
mjr 66:2e3583fbd2f4 87
mjr 66:2e3583fbd2f4 88 // Key type and value reported to the PC
mjr 40:cc0d9814522b 89 uint8_t typ; // key type reported to PC - a BtnTypeXxx value
mjr 53:9b2611964afc 90 uint8_t val; // key value reported - meaning depends on 'typ' value:
mjr 53:9b2611964afc 91 // none -> no PC input reports (val is unused)
mjr 53:9b2611964afc 92 // joystick -> val is joystick button number (1..32)
mjr 53:9b2611964afc 93 // keyboard -> val is USB scan code
mjr 77:0b96f6867312 94 uint8_t IRCommand; // IR command to send when the button is pressed, as
mjr 77:0b96f6867312 95 // an IR command slot number: 1..MAX_IR_CODES, or 0
mjr 77:0b96f6867312 96 // if no IR command is to be sent
mjr 66:2e3583fbd2f4 97
mjr 66:2e3583fbd2f4 98 // Shifted key type and value. These used when the button is pressed
mjr 66:2e3583fbd2f4 99 // while the Local Shift Button is being held down. We send the key
mjr 66:2e3583fbd2f4 100 // code given here instead of the regular typ/val code in this case.
mjr 66:2e3583fbd2f4 101 // If typ2 is BtnTypeNone, we use the regular typ/val code whether or
mjr 66:2e3583fbd2f4 102 // not the shift button is being held.
mjr 66:2e3583fbd2f4 103 uint8_t typ2; // shifted key type
mjr 66:2e3583fbd2f4 104 uint8_t val2; // shifted key value
mjr 77:0b96f6867312 105 uint8_t IRCommand2; // IR command to send when shifted button is pressed
mjr 66:2e3583fbd2f4 106
mjr 66:2e3583fbd2f4 107 // key flags - a bitwise combination of BtnFlagXxx values
mjr 66:2e3583fbd2f4 108 uint8_t flags;
mjr 40:cc0d9814522b 109
mjr 40:cc0d9814522b 110 void set(uint8_t pin, uint8_t typ, uint8_t val, uint8_t flags = 0)
mjr 40:cc0d9814522b 111 {
mjr 40:cc0d9814522b 112 this->pin = pin;
mjr 40:cc0d9814522b 113 this->typ = typ;
mjr 40:cc0d9814522b 114 this->val = val;
mjr 77:0b96f6867312 115 this->IRCommand = 0;
mjr 40:cc0d9814522b 116 this->flags = flags;
mjr 77:0b96f6867312 117 this->typ2 = 0;
mjr 77:0b96f6867312 118 this->val2 = 0;
mjr 77:0b96f6867312 119 this->IRCommand2 = 0;
mjr 40:cc0d9814522b 120 }
mjr 40:cc0d9814522b 121
mjr 40:cc0d9814522b 122 } __attribute__((packed));
mjr 40:cc0d9814522b 123
mjr 33:d832bcab089e 124
mjr 65:739875521aae 125 // maximum number of input button mappings in configuration
mjr 65:739875521aae 126 const int MAX_BUTTONS = 48;
mjr 65:739875521aae 127
mjr 65:739875521aae 128 // extra slots for virtual buttons (ZB Launch Ball)
mjr 65:739875521aae 129 const int VIRTUAL_BUTTONS = 1; // total number of buttons
mjr 65:739875521aae 130 const int ZBL_BUTTON_CFG = MAX_BUTTONS; // index of ZB Launch Ball slot
mjr 33:d832bcab089e 131
mjr 35:e959ffba78fd 132 // LedWiz output port type codes
mjr 35:e959ffba78fd 133 // These values are part of the external USB interface
mjr 35:e959ffba78fd 134 const int PortTypeDisabled = 0; // port is disabled - not visible to LedWiz/DOF host
mjr 35:e959ffba78fd 135 const int PortTypeGPIOPWM = 1; // GPIO port, PWM enabled
mjr 35:e959ffba78fd 136 const int PortTypeGPIODig = 2; // GPIO port, digital out
mjr 35:e959ffba78fd 137 const int PortTypeTLC5940 = 3; // TLC5940 port
mjr 35:e959ffba78fd 138 const int PortType74HC595 = 4; // 74HC595 port
mjr 53:9b2611964afc 139 const int PortTypeVirtual = 5; // Virtual port - visible to host software, but not connected
mjr 53:9b2611964afc 140 // to a physical output
mjr 87:8d35c74403af 141 const int PortTypeTLC59116 = 6; // TLC59116 port
mjr 17:ab3cec0c8bf4 142
mjr 35:e959ffba78fd 143 // LedWiz output port flag bits
mjr 38:091e511ce8a0 144 const uint8_t PortFlagActiveLow = 0x01; // physical output is active-low
mjr 38:091e511ce8a0 145 const uint8_t PortFlagNoisemaker = 0x02; // noisemaker device - disable when night mode is engaged
mjr 40:cc0d9814522b 146 const uint8_t PortFlagGamma = 0x04; // apply gamma correction to this output
mjr 35:e959ffba78fd 147
mjr 35:e959ffba78fd 148 // maximum number of output ports
mjr 48:058ace2aed1d 149 const int MAX_OUT_PORTS = 128;
mjr 33:d832bcab089e 150
mjr 38:091e511ce8a0 151 // port configuration data
mjr 38:091e511ce8a0 152 struct LedWizPortCfg
mjr 38:091e511ce8a0 153 {
mjr 38:091e511ce8a0 154 uint8_t typ; // port type: a PortTypeXxx value
mjr 87:8d35c74403af 155 uint8_t pin; // physical output pin:
mjr 87:8d35c74403af 156 //
mjr 87:8d35c74403af 157 // - for a GPIO port, this is an index in the
mjr 87:8d35c74403af 158 // USB-to-PinName mapping list
mjr 87:8d35c74403af 159 //
mjr 87:8d35c74403af 160 // - for a TLC5940 or 74HC595 port, it's the output
mjr 87:8d35c74403af 161 // number in the overall daisy chain, starting
mjr 87:8d35c74403af 162 // from 0 for OUT0 on the first chip in the chain
mjr 87:8d35c74403af 163 //
mjr 87:8d35c74403af 164 // - for a TLC59116, the high 4 bits are the chip
mjr 87:8d35c74403af 165 // address (the low 4 bits of the address only),
mjr 87:8d35c74403af 166 // and the low 4 bits are the output number on
mjr 87:8d35c74403af 167 // the chip
mjr 87:8d35c74403af 168 //
mjr 87:8d35c74403af 169 // - for inactive and virtual ports, this is unused
mjr 87:8d35c74403af 170 //
mjr 38:091e511ce8a0 171 uint8_t flags; // flags: a combination of PortFlagXxx values
mjr 40:cc0d9814522b 172
mjr 40:cc0d9814522b 173 void set(uint8_t typ, uint8_t pin, uint8_t flags = 0)
mjr 40:cc0d9814522b 174 {
mjr 40:cc0d9814522b 175 this->typ = typ;
mjr 40:cc0d9814522b 176 this->pin = pin;
mjr 40:cc0d9814522b 177 this->flags = flags;
mjr 40:cc0d9814522b 178 }
mjr 40:cc0d9814522b 179
mjr 77:0b96f6867312 180 } __attribute__ ((packed));
mjr 77:0b96f6867312 181
mjr 77:0b96f6867312 182 // IR command configuration flags
mjr 77:0b96f6867312 183 const uint8_t IRFlagTVON = 0x01; // send command at TV ON time
mjr 77:0b96f6867312 184 const uint8_t IRFlagDittos = 0x02; // use "ditto" codes on send
mjr 77:0b96f6867312 185
mjr 77:0b96f6867312 186 // IR command configuration data
mjr 77:0b96f6867312 187 struct IRCommandCfg
mjr 77:0b96f6867312 188 {
mjr 77:0b96f6867312 189 uint8_t flags; // flags: a combination of IRFlagXxx values
mjr 77:0b96f6867312 190 uint8_t keytype; // key type to send when IR command is received
mjr 77:0b96f6867312 191 uint8_t keycode; // key code to send when IR command is received
mjr 77:0b96f6867312 192 uint8_t protocol; // IR protocol ID (see IRRemote/IRProtocolID.h)
mjr 77:0b96f6867312 193 struct
mjr 77:0b96f6867312 194 {
mjr 77:0b96f6867312 195 uint32_t lo; // low 32 bits of code
mjr 77:0b96f6867312 196 uint32_t hi; // high 32 bits of code
mjr 77:0b96f6867312 197 } code; // 64-bit command code (protocol-specific; see IRProtocols.h)
mjr 77:0b96f6867312 198 } __attribute__ ((packed));
mjr 77:0b96f6867312 199
mjr 77:0b96f6867312 200 // Maximum number of IR commands
mjr 77:0b96f6867312 201 const int MAX_IR_CODES = 16;
mjr 38:091e511ce8a0 202
mjr 38:091e511ce8a0 203
mjr 53:9b2611964afc 204 // Convert a physical pin name to a wire pin name
mjr 53:9b2611964afc 205 #define PINNAME_TO_WIRE(p) \
mjr 53:9b2611964afc 206 uint8_t((p) == NC ? 0xFF : \
mjr 53:9b2611964afc 207 (((p) & 0xF000 ) >> (PORT_SHIFT - 5)) | (((p) & 0xFF) >> 2))
mjr 53:9b2611964afc 208
mjr 35:e959ffba78fd 209 struct Config
mjr 35:e959ffba78fd 210 {
mjr 35:e959ffba78fd 211 // set all values to factory defaults
mjr 35:e959ffba78fd 212 void setFactoryDefaults()
mjr 35:e959ffba78fd 213 {
mjr 35:e959ffba78fd 214 // By default, pretend to be LedWiz unit #8. This can be from 1 to 16. Real
mjr 35:e959ffba78fd 215 // LedWiz units have their unit number set at the factory, and the vast majority
mjr 35:e959ffba78fd 216 // are set up as unit #1, since that's the default for anyone who doesn't ask
mjr 35:e959ffba78fd 217 // for a different setting. It seems rare for anyone to use more than one unit
mjr 35:e959ffba78fd 218 // in a pin cab, but for the few who do, the others will probably be numbered
mjr 35:e959ffba78fd 219 // sequentially as #2, #3, etc. It seems safe to assume that no one out there
mjr 48:058ace2aed1d 220 // has a unit #8, so we'll use that as our default. This can be changed from
mjr 48:058ace2aed1d 221 // the config tool, but for the sake of convenience, it's better to pick a
mjr 48:058ace2aed1d 222 // default that most people won't have to change.
mjr 54:fd77a6b2f76c 223 usbVendorID = 0xFAFA; // LedWiz vendor code
mjr 48:058ace2aed1d 224 usbProductID = 0x00F7; // LedWiz product code for unit #8
mjr 61:3c7e6e9ec355 225
mjr 55:4db125cd11a0 226 // Set the default Pinscape unit number to #1. This is a separate identifier
mjr 55:4db125cd11a0 227 // from the LedWiz ID, so you don't have to worry about making this different
mjr 55:4db125cd11a0 228 // from your LedWiz units. Each Pinscape unit should have a unique value for
mjr 55:4db125cd11a0 229 // this ID, though.
mjr 55:4db125cd11a0 230 //
mjr 55:4db125cd11a0 231 // Note that Pinscape unit #1 corresponds to DOF Pinscape #51, PS 2 -> DOF 52,
mjr 55:4db125cd11a0 232 // and so on - just add 50 to get the DOF ID.
mjr 55:4db125cd11a0 233 psUnitNo = 1;
mjr 35:e959ffba78fd 234
mjr 51:57eb311faafa 235 // set a disconnect reboot timeout of 10 seconds by default
mjr 55:4db125cd11a0 236 disconnectRebootTimeout = 10;
mjr 51:57eb311faafa 237
mjr 35:e959ffba78fd 238 // enable joystick reports
mjr 35:e959ffba78fd 239 joystickEnabled = true;
mjr 35:e959ffba78fd 240
mjr 35:e959ffba78fd 241 // assume standard orientation, with USB ports toward front of cabinet
mjr 78:1e00b3fa11af 242 accel.orientation = OrientationFront;
mjr 78:1e00b3fa11af 243
mjr 78:1e00b3fa11af 244 // default dynamic range +/-1G
mjr 78:1e00b3fa11af 245 accel.range = AccelRange1G;
mjr 78:1e00b3fa11af 246
mjr 78:1e00b3fa11af 247 // default auto-centering time
mjr 78:1e00b3fa11af 248 accel.autoCenterTime = 0;
mjr 25:e22b88bd783a 249
mjr 52:8298b2a73eb2 250 // assume a basic setup with no expansion boards
mjr 53:9b2611964afc 251 expan.typ = 0;
mjr 53:9b2611964afc 252 expan.vsn = 0;
mjr 53:9b2611964afc 253 memset(expan.ext, 0, sizeof(expan.ext));
mjr 52:8298b2a73eb2 254
mjr 35:e959ffba78fd 255 // assume no plunger is attached
mjr 77:0b96f6867312 256 plunger.enabled = 0x00;
mjr 35:e959ffba78fd 257 plunger.sensorType = PlungerType_None;
mjr 35:e959ffba78fd 258
mjr 55:4db125cd11a0 259 #if TEST_CONFIG_EXPAN || STANDARD_CONFIG
mjr 77:0b96f6867312 260 plunger.enabled = 0x01;
mjr 82:4f6209cb5c33 261 plunger.sensorType = PlungerType_TSL1410R;
mjr 53:9b2611964afc 262 plunger.sensorPin[0] = PINNAME_TO_WIRE(PTE20); // SI
mjr 53:9b2611964afc 263 plunger.sensorPin[1] = PINNAME_TO_WIRE(PTE21); // SCLK
mjr 53:9b2611964afc 264 plunger.sensorPin[2] = PINNAME_TO_WIRE(PTB0); // AO1 = PTB0 = ADC0_SE8
mjr 53:9b2611964afc 265 plunger.sensorPin[3] = PINNAME_TO_WIRE(PTE22); // AO2 (parallel mode) = PTE22 = ADC0_SE3
mjr 43:7a6364d82a41 266 #endif
mjr 43:7a6364d82a41 267
mjr 48:058ace2aed1d 268 // default plunger calibration button settings
mjr 55:4db125cd11a0 269 = 0x03; // 0x01 = enable button, 0x02 = enable indicator lamp
mjr 55:4db125cd11a0 270 = PINNAME_TO_WIRE(PTE29); // button input (DigitalIn port)
mjr 55:4db125cd11a0 271 = PINNAME_TO_WIRE(PTE23); // button output (DigitalOut port)
mjr 35:e959ffba78fd 272
mjr 44:b5ac89b9cd5d 273 // set the default plunger calibration
mjr 44:b5ac89b9cd5d 274;
mjr 35:e959ffba78fd 275
mjr 35:e959ffba78fd 276 // disable the ZB Launch Ball by default
mjr 53:9b2611964afc 277 plunger.zbLaunchBall.port = 0; // 0 = disabled
mjr 65:739875521aae 278 plunger.zbLaunchBall.keytype = BtnTypeKey; // keyboard key
mjr 61:3c7e6e9ec355 279 plunger.zbLaunchBall.keycode = 0x28; // USB keyboard scan code for Enter key
mjr 61:3c7e6e9ec355 280 plunger.zbLaunchBall.pushDistance = 63; // 63/1000 in == .063" == about 1/16"
mjr 35:e959ffba78fd 281
mjr 35:e959ffba78fd 282 // assume no TV ON switch
mjr 53:9b2611964afc 283 TVON.statusPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 284 TVON.latchPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 285 TVON.relayPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 286 TVON.delayTime = 700; // 7 seconds
mjr 55:4db125cd11a0 287
mjr 55:4db125cd11a0 288 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 289 // expansion board TV ON wiring
mjr 53:9b2611964afc 290 TVON.statusPin = PINNAME_TO_WIRE(PTD2);
mjr 53:9b2611964afc 291 TVON.latchPin = PINNAME_TO_WIRE(PTE0);
mjr 53:9b2611964afc 292 TVON.relayPin = PINNAME_TO_WIRE(PTD3);
mjr 53:9b2611964afc 293 TVON.delayTime = 700; // 7 seconds
mjr 38:091e511ce8a0 294 #endif
mjr 53:9b2611964afc 295
mjr 53:9b2611964afc 296 // assume no night mode switch or indicator lamp
mjr 53:9b2611964afc 297 nightMode.btn = 0;
mjr 53:9b2611964afc 298 nightMode.flags = 0;
mjr 53:9b2611964afc 299 nightMode.port = 0;
mjr 35:e959ffba78fd 300
mjr 35:e959ffba78fd 301 // assume no TLC5940 chips
mjr 35:e959ffba78fd 302 tlc5940.nchips = 0;
mjr 55:4db125cd11a0 303
mjr 55:4db125cd11a0 304 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 305 // for expansion board testing purposes, assume the common setup
mjr 55:4db125cd11a0 306 // with one main board and one power board
mjr 48:058ace2aed1d 307 tlc5940.nchips = 4;
mjr 38:091e511ce8a0 308 #endif
mjr 38:091e511ce8a0 309
mjr 55:4db125cd11a0 310 // Default TLC5940 pin assignments. Note that it's harmless to set
mjr 55:4db125cd11a0 311 // these to valid pins even if no TLC5940 chips are actually present,
mjr 55:4db125cd11a0 312 // since the main program won't allocate the connections if 'nchips'
mjr 55:4db125cd11a0 313 // is zero. This means that the pins are free to be used for other
mjr 55:4db125cd11a0 314 // purposes (such as output ports) if not using TLC5940 chips.
mjr 53:9b2611964afc 315 tlc5940.sin = PINNAME_TO_WIRE(PTC6);
mjr 53:9b2611964afc 316 tlc5940.sclk = PINNAME_TO_WIRE(PTC5);
mjr 53:9b2611964afc 317 tlc5940.xlat = PINNAME_TO_WIRE(PTC10);
mjr 59:94eb9265b6d7 318 tlc5940.blank = PINNAME_TO_WIRE(PTC7);
mjr 59:94eb9265b6d7 319 #if TEST_KEEP_PRINTF
mjr 59:94eb9265b6d7 320 tlc5940.gsclk = PINNAME_TO_WIRE(PTA13); // PTA1 is reserved for SDA printf()
mjr 59:94eb9265b6d7 321 #else
mjr 53:9b2611964afc 322 tlc5940.gsclk = PINNAME_TO_WIRE(PTA1);
mjr 59:94eb9265b6d7 323 #endif
mjr 35:e959ffba78fd 324
mjr 35:e959ffba78fd 325 // assume no 74HC595 chips
mjr 35:e959ffba78fd 326 hc595.nchips = 0;
mjr 55:4db125cd11a0 327
mjr 55:4db125cd11a0 328 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 329 // for expansion board testing purposes, assume one chime board
mjr 48:058ace2aed1d 330 hc595.nchips = 1;
mjr 40:cc0d9814522b 331 #endif
mjr 40:cc0d9814522b 332
mjr 55:4db125cd11a0 333 // Default 74HC595 pin assignments. As with the TLC5940 pins, it's
mjr 55:4db125cd11a0 334 // harmless to assign pins here even if no 74HC595 chips are used,
mjr 55:4db125cd11a0 335 // since the main program won't actually allocate the pins if 'nchips'
mjr 55:4db125cd11a0 336 // is zero.
mjr 53:9b2611964afc 337 hc595.sin = PINNAME_TO_WIRE(PTA5);
mjr 53:9b2611964afc 338 hc595.sclk = PINNAME_TO_WIRE(PTA4);
mjr 53:9b2611964afc 339 hc595.latch = PINNAME_TO_WIRE(PTA12);
mjr 53:9b2611964afc 340 hc595.ena = PINNAME_TO_WIRE(PTD4);
mjr 38:091e511ce8a0 341
mjr 87:8d35c74403af 342 // disable all TLC59116 chips by default
mjr 87:8d35c74403af 343 tlc59116.chipMask = 0;
mjr 87:8d35c74403af 344
mjr 87:8d35c74403af 345 // Default TLC59116 pin assignments
mjr 87:8d35c74403af 346 tlc59116.sda = PINNAME_TO_WIRE(PTC6);
mjr 87:8d35c74403af 347 tlc59116.scl = PINNAME_TO_WIRE(PTC5);
mjr 87:8d35c74403af 348 tlc59116.reset = PINNAME_TO_WIRE(PTC10);
mjr 77:0b96f6867312 349
mjr 77:0b96f6867312 350 // Default IR hardware pin assignments. On the expansion boards,
mjr 77:0b96f6867312 351 // the sensor is connected to PTA13, and the emitter LED is on PTC9.
mjr 77:0b96f6867312 352 #if TEST_CONFIG_EXPAN
mjr 77:0b96f6867312 353 IR.sensor = PINNAME_TO_WIRE(PTA13);
mjr 77:0b96f6867312 354 IR.emitter = PINNAME_TO_WIRE(PTC9);
mjr 77:0b96f6867312 355 #else
mjr 77:0b96f6867312 356 IR.sensor = PINNAME_TO_WIRE(NC);
mjr 77:0b96f6867312 357 IR.emitter = PINNAME_TO_WIRE(NC);
mjr 77:0b96f6867312 358 #endif
mjr 77:0b96f6867312 359
mjr 77:0b96f6867312 360 // clear out all IR slots
mjr 77:0b96f6867312 361 memset(IRCommand, 0, sizeof(IRCommand));
mjr 77:0b96f6867312 362 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 363 {
mjr 77:0b96f6867312 364 IRCommand[i].protocol = 0;
mjr 77:0b96f6867312 365 IRCommand[i].keytype = BtnTypeNone;
mjr 77:0b96f6867312 366 }
mjr 77:0b96f6867312 367
mjr 35:e959ffba78fd 368 // initially configure with no LedWiz output ports
mjr 35:e959ffba78fd 369 outPort[0].typ = PortTypeDisabled;
mjr 66:2e3583fbd2f4 370
mjr 66:2e3583fbd2f4 371 // initially configure with no shift key
mjr 78:1e00b3fa11af 372 shiftButton.idx = 0;
mjr 78:1e00b3fa11af 373 shiftButton.mode = 0;
mjr 53:9b2611964afc 374
mjr 35:e959ffba78fd 375 // initially configure with no input buttons
mjr 35:e959ffba78fd 376 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 53:9b2611964afc 377 button[i].set(PINNAME_TO_WIRE(NC), BtnTypeNone, 0);
mjr 38:091e511ce8a0 378
mjr 55:4db125cd11a0 379 #if STANDARD_CONFIG | TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 380 // For the standard configuration, assign 24 input ports to
mjr 55:4db125cd11a0 381 // joystick buttons 1-24. Assign the same GPIO pins used
mjr 55:4db125cd11a0 382 // in the original v1 default configuration. For expansion
mjr 55:4db125cd11a0 383 // board testing purposes, also assign the input ports, with
mjr 55:4db125cd11a0 384 // the noted differences.
mjr 38:091e511ce8a0 385 for (int i = 0 ; i < 24 ; ++i) {
mjr 55:4db125cd11a0 386 static const int bp[] = {
mjr 53:9b2611964afc 387 PINNAME_TO_WIRE(PTC2), // 1
mjr 53:9b2611964afc 388 PINNAME_TO_WIRE(PTB3), // 2
mjr 53:9b2611964afc 389 PINNAME_TO_WIRE(PTB2), // 3
mjr 53:9b2611964afc 390 PINNAME_TO_WIRE(PTB1), // 4
mjr 53:9b2611964afc 391 PINNAME_TO_WIRE(PTE30), // 5
mjr 48:058ace2aed1d 392 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 393 PINNAME_TO_WIRE(PTC11), // 6 - expansion boards use PTC11 for this, since PTE22
mjr 55:4db125cd11a0 394 // is reserved for a plunger connection
mjr 55:4db125cd11a0 395 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 396 PINNAME_TO_WIRE(PTE22), // 6 - original standalone setup uses PTE22
mjr 48:058ace2aed1d 397 #endif
mjr 53:9b2611964afc 398 PINNAME_TO_WIRE(PTE5), // 7
mjr 53:9b2611964afc 399 PINNAME_TO_WIRE(PTE4), // 8
mjr 53:9b2611964afc 400 PINNAME_TO_WIRE(PTE3), // 9
mjr 53:9b2611964afc 401 PINNAME_TO_WIRE(PTE2), // 10
mjr 53:9b2611964afc 402 PINNAME_TO_WIRE(PTB11), // 11
mjr 53:9b2611964afc 403 PINNAME_TO_WIRE(PTB10), // 12
mjr 53:9b2611964afc 404 PINNAME_TO_WIRE(PTB9), // 13
mjr 53:9b2611964afc 405 PINNAME_TO_WIRE(PTB8), // 14
mjr 53:9b2611964afc 406 PINNAME_TO_WIRE(PTC12), // 15
mjr 53:9b2611964afc 407 PINNAME_TO_WIRE(PTC13), // 16
mjr 53:9b2611964afc 408 PINNAME_TO_WIRE(PTC16), // 17
mjr 53:9b2611964afc 409 PINNAME_TO_WIRE(PTC17), // 18
mjr 53:9b2611964afc 410 PINNAME_TO_WIRE(PTA16), // 19
mjr 53:9b2611964afc 411 PINNAME_TO_WIRE(PTA17), // 20
mjr 53:9b2611964afc 412 PINNAME_TO_WIRE(PTE31), // 21
mjr 53:9b2611964afc 413 PINNAME_TO_WIRE(PTD6), // 22
mjr 53:9b2611964afc 414 PINNAME_TO_WIRE(PTD7), // 23
mjr 53:9b2611964afc 415 PINNAME_TO_WIRE(PTE1) // 24
mjr 40:cc0d9814522b 416 };
mjr 48:058ace2aed1d 417 button[i].set(bp[i],
mjr 48:058ace2aed1d 418 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 419 // For expansion board testing only, assign the inputs
mjr 55:4db125cd11a0 420 // to keyboard keys A, B, etc. This isn't useful; it's
mjr 55:4db125cd11a0 421 // just for testing purposes. Note that the USB key code
mjr 55:4db125cd11a0 422 // for "A" is 4, "B" is 5, and so on sequentially through
mjr 55:4db125cd11a0 423 // the alphabet.
mjr 55:4db125cd11a0 424 BtnTypeKey, i+4);
mjr 55:4db125cd11a0 425 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 426 // For the standard configuration, assign the input to
mjr 55:4db125cd11a0 427 // joystick buttons 1-24, as in the original v1 default
mjr 55:4db125cd11a0 428 // configuration.
mjr 55:4db125cd11a0 429 BtnTypeJoystick, i+1);
mjr 48:058ace2aed1d 430 #endif
mjr 48:058ace2aed1d 431
mjr 38:091e511ce8a0 432 }
mjr 38:091e511ce8a0 433 #endif
mjr 38:091e511ce8a0 434
mjr 55:4db125cd11a0 435 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 436 // For testing purposes, configure the basic complement of
mjr 55:4db125cd11a0 437 // expansion board ports. AS MENTIONED ABOVE, THIS IS PURELY FOR
mjr 55:4db125cd11a0 439 // BOARDS FOR ACTUAL DEPLOYMENT. It's much easier and cleaner
mjr 55:4db125cd11a0 440 // to use the unmodified standard build, and customize your
mjr 55:4db125cd11a0 441 // installation with the Pinscape Config Tool on Windows.
mjr 40:cc0d9814522b 442 //
mjr 55:4db125cd11a0 443 // For this testing setup, we'll configure one main board, one
mjr 55:4db125cd11a0 444 // power board, and one chime board. The *physical* ports on
mjr 55:4db125cd11a0 445 // the board are shown below. The logical (LedWiz/DOF) numbering
mjr 55:4db125cd11a0 446 // ISN'T sequential through the physical ports, because we want
mjr 55:4db125cd11a0 447 // to arrange the DOF ports so that the most important and most
mjr 55:4db125cd11a0 448 // common toys are assigned to ports 1-32. Those ports are
mjr 55:4db125cd11a0 449 // special because they're accessible to ALL software on the PC,
mjr 55:4db125cd11a0 450 // including older LedWiz-only software such as Future Pinball.
mjr 55:4db125cd11a0 451 // Ports above 32 are accessible only to modern DOF software,
mjr 55:4db125cd11a0 452 // like Visual Pinball and PinballX.
mjr 40:cc0d9814522b 453 //
mjr 40:cc0d9814522b 454 // Main board
mjr 40:cc0d9814522b 455 // TLC ports 0-15 -> flashers
mjr 40:cc0d9814522b 456 // TLC ports 16 -> strobe
mjr 40:cc0d9814522b 457 // TLC ports 17-31 -> flippers
mjr 40:cc0d9814522b 458 // Dig GPIO PTC8 -> knocker (timer-protected outputs)
mjr 40:cc0d9814522b 459 //
mjr 40:cc0d9814522b 460 // Power board:
mjr 40:cc0d9814522b 461 // TLC ports 32-63 -> general purpose outputs
mjr 40:cc0d9814522b 462 //
mjr 40:cc0d9814522b 463 // Chime board:
mjr 40:cc0d9814522b 464 // HC595 ports 0-7 -> timer-protected outputs
mjr 40:cc0d9814522b 465 //
mjr 38:091e511ce8a0 466 {
mjr 38:091e511ce8a0 467 int n = 0;
mjr 40:cc0d9814522b 468
mjr 40:cc0d9814522b 469 // 1-15 = flashers (TLC ports 0-15)
mjr 40:cc0d9814522b 470 // 16 = strobe (TLC port 15)
mjr 40:cc0d9814522b 471 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 472 outPort[n++].set(PortTypeTLC5940, i, PortFlagGamma);
mjr 40:cc0d9814522b 473
mjr 53:9b2611964afc 474 // 17 = knocker (PTC8)
mjr 53:9b2611964afc 475 outPort[n++].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8));
mjr 35:e959ffba78fd 476
mjr 40:cc0d9814522b 477 // 18-49 = power board outputs 1-32 (TLC ports 32-63)
mjr 40:cc0d9814522b 478 for (int i = 0 ; i < 32 ; ++i)
mjr 40:cc0d9814522b 479 outPort[n++].set(PortTypeTLC5940, i+32);
mjr 40:cc0d9814522b 480
mjr 40:cc0d9814522b 481 // 50-65 = flipper RGB (TLC ports 16-31)
mjr 40:cc0d9814522b 482 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 483 outPort[n++].set(PortTypeTLC5940, i+16, PortFlagGamma);
mjr 59:94eb9265b6d7 484
mjr 40:cc0d9814522b 485 // 66-73 = chime board ports 1-8 (74HC595 ports 0-7)
mjr 40:cc0d9814522b 486 for (int i = 0 ; i < 8 ; ++i)
mjr 40:cc0d9814522b 487 outPort[n++].set(PortType74HC595, i);
mjr 59:94eb9265b6d7 488
mjr 40:cc0d9814522b 489 // set Disabled to signify end of configured outputs
mjr 38:091e511ce8a0 490 outPort[n].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 491 }
mjr 38:091e511ce8a0 492 #endif
mjr 48:058ace2aed1d 493
mjr 55:4db125cd11a0 494 #if STANDARD_CONFIG
mjr 55:4db125cd11a0 495 //
mjr 55:4db125cd11a0 496 // For the standard build, set up the original complement
mjr 55:4db125cd11a0 497 // of 22 ports from the v1 default onfiguration.
mjr 55:4db125cd11a0 498 //
mjr 55:4db125cd11a0 499 // IMPORTANT! As mentioned above, don't edit this file to
mjr 55:4db125cd11a0 500 // customize this for your machine. Instead, use the unmodified
mjr 55:4db125cd11a0 501 // standard build, and customize your installation using the
mjr 55:4db125cd11a0 502 // Pinscape Config Tool on Windows.
mjr 55:4db125cd11a0 503 //
mjr 48:058ace2aed1d 504 #if TEST_KEEP_PRINTF
mjr 55:4db125cd11a0 505 outPort[ 0].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 1 = NC to keep debug printf (PTA1 is SDA UART)
mjr 55:4db125cd11a0 506 outPort[ 1].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 2 = NC to keep debug printf (PTA2 is SDA UART)
mjr 48:058ace2aed1d 507 #else
mjr 53:9b2611964afc 508 outPort[ 0].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA1)); // port 1 = PTA1
mjr 53:9b2611964afc 509 outPort[ 1].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA2)); // port 2 = PTA2
mjr 48:058ace2aed1d 510 #endif
mjr 53:9b2611964afc 511 outPort[ 2].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD4)); // port 3 = PTD4
mjr 53:9b2611964afc 512 outPort[ 3].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA12)); // port 4 = PTA12
mjr 53:9b2611964afc 513 outPort[ 4].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA4)); // port 5 = PTA4
mjr 53:9b2611964afc 514 outPort[ 5].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA5)); // port 6 = PTA5
mjr 53:9b2611964afc 515 outPort[ 6].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA13)); // port 7 = PTA13
mjr 53:9b2611964afc 516 outPort[ 7].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD5)); // port 8 = PTD5
mjr 53:9b2611964afc 517 outPort[ 8].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD0)); // port 9 = PTD0
mjr 53:9b2611964afc 518 outPort[ 9].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD3)); // port 10 = PTD3
mjr 53:9b2611964afc 519 outPort[10].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTD2)); // port 11 = PTD2
mjr 53:9b2611964afc 520 outPort[11].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8)); // port 12 = PTC8
mjr 53:9b2611964afc 521 outPort[12].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC9)); // port 13 = PTC9
mjr 53:9b2611964afc 522 outPort[13].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC7)); // port 14 = PTC7
mjr 53:9b2611964afc 523 outPort[14].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC0)); // port 15 = PTC0
mjr 53:9b2611964afc 524 outPort[15].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC3)); // port 16 = PTC3
mjr 53:9b2611964afc 525 outPort[16].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC4)); // port 17 = PTC4
mjr 53:9b2611964afc 526 outPort[17].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC5)); // port 18 = PTC5
mjr 53:9b2611964afc 527 outPort[18].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC6)); // port 19 = PTC6
mjr 53:9b2611964afc 528 outPort[19].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC10)); // port 20 = PTC10
mjr 53:9b2611964afc 529 outPort[20].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC11)); // port 21 = PTC11
mjr 53:9b2611964afc 530 outPort[21].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTE0)); // port 22 = PTE0
mjr 48:058ace2aed1d 531 #endif
mjr 35:e959ffba78fd 532 }
mjr 35:e959ffba78fd 533
mjr 35:e959ffba78fd 534 // --- USB DEVICE CONFIGURATION ---
mjr 35:e959ffba78fd 535
mjr 35:e959ffba78fd 536 // USB device identification - vendor ID and product ID. For LedLWiz
mjr 35:e959ffba78fd 537 // emulation, use vendor ID 0xFAFA and product ID 0x00EF + unit#, where
mjr 35:e959ffba78fd 538 // unit# is the nominal LedWiz unit number from 1 to 16. Alternatively,
mjr 35:e959ffba78fd 539 // if LedWiz emulation isn't desired or causes any driver conflicts on
mjr 35:e959ffba78fd 540 // the host, we have a private Pinscape assignment as vendor ID 0x1209
mjr 35:e959ffba78fd 541 // and product ID 0xEAEA (registered with, a registry
mjr 35:e959ffba78fd 542 // for open-source USB projects).
mjr 35:e959ffba78fd 543 uint16_t usbVendorID;
mjr 35:e959ffba78fd 544 uint16_t usbProductID;
mjr 35:e959ffba78fd 545
mjr 35:e959ffba78fd 546 // Pinscape Controller unit number. This is the nominal unit number,
mjr 35:e959ffba78fd 547 // from 1 to 16. We report this in the status query; DOF uses it to
mjr 53:9b2611964afc 548 // distinguish among Pinscape units. Note that this doesn't affect
mjr 35:e959ffba78fd 549 // the LedWiz unit numbering, which is implied by the USB Product ID.
mjr 35:e959ffba78fd 550 uint8_t psUnitNo;
mjr 35:e959ffba78fd 551
mjr 35:e959ffba78fd 552 // Are joystick reports enabled? Joystick reports can be turned off, to
mjr 35:e959ffba78fd 553 // use the device as purely an output controller.
mjr 77:0b96f6867312 554 uint8_t joystickEnabled;
mjr 35:e959ffba78fd 555
mjr 51:57eb311faafa 556 // Timeout for rebooting the KL25Z when the connection is lost. On some
mjr 51:57eb311faafa 557 // hosts, the mbed USB stack has problems reconnecting after an initial
mjr 51:57eb311faafa 558 // connection is dropped. As a workaround, we can automatically reboot
mjr 51:57eb311faafa 559 // the KL25Z when it detects that it's no longer connected, after the
mjr 51:57eb311faafa 560 // interval set here expires. The timeout is in seconds; setting this
mjr 51:57eb311faafa 561 // to 0 disables the automatic reboot.
mjr 51:57eb311faafa 562 uint8_t disconnectRebootTimeout;
mjr 35:e959ffba78fd 563
mjr 35:e959ffba78fd 564 // --- ACCELEROMETER ---
mjr 78:1e00b3fa11af 565 struct
mjr 78:1e00b3fa11af 566 {
mjr 78:1e00b3fa11af 567 // accelerometer orientation (OrientationXxx value)
mjr 78:1e00b3fa11af 568 uint8_t orientation;
mjr 35:e959ffba78fd 569
mjr 78:1e00b3fa11af 570 // dynamic range (AccelRangeXxx value)
mjr 78:1e00b3fa11af 571 uint8_t range;
mjr 77:0b96f6867312 572
mjr 78:1e00b3fa11af 573 // Auto-centering mode:
mjr 78:1e00b3fa11af 574 // 0 = auto-centering on, 5-second timer
mjr 78:1e00b3fa11af 575 // 1-60 = auto-centering on with the given timer in seconds
mjr 78:1e00b3fa11af 576 // 255 = auto-centering off
mjr 78:1e00b3fa11af 577 uint8_t autoCenterTime;
mjr 78:1e00b3fa11af 578
mjr 78:1e00b3fa11af 579 } accel;
mjr 35:e959ffba78fd 580
mjr 35:e959ffba78fd 581
mjr 52:8298b2a73eb2 582 // --- EXPANSION BOARDS ---
mjr 52:8298b2a73eb2 583 struct
mjr 52:8298b2a73eb2 584 {
mjr 53:9b2611964afc 585 uint8_t typ; // expansion board set type:
mjr 53:9b2611964afc 586 // 1 -> Pinscape expansion boards
mjr 53:9b2611964afc 587 uint8_t vsn; // board set interface version
mjr 53:9b2611964afc 588 uint8_t ext[3]; // board set type-specific extended data
mjr 52:8298b2a73eb2 589
mjr 52:8298b2a73eb2 590 } expan;
mjr 52:8298b2a73eb2 591
mjr 52:8298b2a73eb2 592
mjr 35:e959ffba78fd 593 // --- PLUNGER CONFIGURATION ---
mjr 35:e959ffba78fd 594 struct
mjr 35:e959ffba78fd 595 {
mjr 77:0b96f6867312 596 // Plunger enabled/disabled. Note that we use the status flag
mjr 77:0b96f6867312 597 // bit 0x01 if enabled, 0x00 if disabled. This conveniently
mjr 77:0b96f6867312 598 // can be tested as though it's a bool, but should always be
mjr 77:0b96f6867312 599 // stored as 0x01 or 0x00 so that it can be OR'ed into the
mjr 77:0b96f6867312 600 // status report flag bits.
mjr 77:0b96f6867312 601 uint8_t enabled;
mjr 33:d832bcab089e 602
mjr 35:e959ffba78fd 603 // plunger sensor type
mjr 77:0b96f6867312 604 uint8_t sensorType;
mjr 35:e959ffba78fd 605
mjr 35:e959ffba78fd 606 // Plunger sensor pins. To accommodate a wide range of sensor types,
mjr 35:e959ffba78fd 607 // we keep a generic list of 4 pin assignments. The use of each pin
mjr 35:e959ffba78fd 608 // varies by sensor. The lists below are in order of the generic
mjr 35:e959ffba78fd 609 // pins; NC means that the pin isn't used by the sensor. Each pin's
mjr 35:e959ffba78fd 610 // GPIO usage is also listed. Certain usages limit which physical
mjr 35:e959ffba78fd 611 // pins can be assigned (e.g., AnalogIn or PwmOut).
mjr 35:e959ffba78fd 612 //
mjr 82:4f6209cb5c33 613 // TSL1410R/1412S/1401CL: SI (GPIO), CLK (GPIO), AO (AnalogIn), NC
mjr 35:e959ffba78fd 614 // Potentiometer: AO (AnalogIn), NC, NC, NC
mjr 35:e959ffba78fd 615 // AEDR8300: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 616 // AS5304: A (InterruptIn), B (InterruptIn), NC, NC
mjr 82:4f6209cb5c33 617 // VL6180X: SDA (GPIO), SCL (GPIO), GPIO0/CE (GPIO)
mjr 53:9b2611964afc 618 //
mjr 53:9b2611964afc 619 // Note! These are stored in uint8_t WIRE format, not PinName format.
mjr 53:9b2611964afc 620 uint8_t sensorPin[4];
mjr 35:e959ffba78fd 621
mjr 82:4f6209cb5c33 622 // Automatic zeroing. If enabled, we'll reset the plunger position to
mjr 82:4f6209cb5c33 623 // the park position after a period of inactivity. This only applies
mjr 82:4f6209cb5c33 624 // to certain sensor types; sensors that don't use it simply ignore it.
mjr 82:4f6209cb5c33 625 struct
mjr 82:4f6209cb5c33 626 {
mjr 82:4f6209cb5c33 627 uint8_t flags; // flags bits - combination of PlungerAutoZeroXxx flags
mjr 82:4f6209cb5c33 628 uint8_t t; // inactivity time in seconds
mjr 82:4f6209cb5c33 629 } autoZero;
mjr 82:4f6209cb5c33 630
mjr 85:3c28aee81cde 631 // Jitter filter. This is the size of the hysteresis window, in joystick
mjr 85:3c28aee81cde 632 // units (-4095..+4095). One joystick unit is approximately 1/10000" of
mjr 85:3c28aee81cde 633 // physical travel. Zero disables the jitter filter.
mjr 85:3c28aee81cde 634 uint16_t jitterWindow;
mjr 85:3c28aee81cde 635
mjr 87:8d35c74403af 636 // bar code sensor parameters
mjr 87:8d35c74403af 637 struct
mjr 87:8d35c74403af 638 {
mjr 87:8d35c74403af 639 uint16_t startPix; // starting pixel offset
mjr 87:8d35c74403af 640 } barCode;
mjr 87:8d35c74403af 641
mjr 53:9b2611964afc 642 // ZB LAUNCH BALL button setup.
mjr 35:e959ffba78fd 643 //
mjr 35:e959ffba78fd 644 // This configures the "ZB Launch Ball" feature in DOF, based on Zeb's (of
mjr 35:e959ffba78fd 645 // scheme for using a mechanical plunger as a Launch button.
mjr 35:e959ffba78fd 646 // Set the port to 0 to disable the feature.
mjr 35:e959ffba78fd 647 //
mjr 35:e959ffba78fd 648 // The port number is an LedWiz port number that we monitor for activation.
mjr 53:9b2611964afc 649 // This port isn't meant to be connected to a physical device, although it
mjr 53:9b2611964afc 650 // can be if desired. It's primarily to let the host tell the controller
mjr 53:9b2611964afc 651 // when the ZB Launch feature is active. The port numbering starts at 1;
mjr 53:9b2611964afc 652 // set this to zero to disable the feature.
mjr 35:e959ffba78fd 653 //
mjr 53:9b2611964afc 654 // The key type and code has the same meaning as for a button mapping. This
mjr 53:9b2611964afc 655 // sets the key input sent to the PC when the plunger triggers a launch when
mjr 53:9b2611964afc 656 // the mode is active. For example, set keytype=2 and keycode=0x28 to send
mjr 53:9b2611964afc 657 // the Enter key (which is the key almost all PC pinball software uses for
mjr 53:9b2611964afc 658 // plunger and Launch button input).
mjr 35:e959ffba78fd 659 //
mjr 40:cc0d9814522b 660 // The "push distance" is the distance, in 1/1000 inch units, for registering a
mjr 40:cc0d9814522b 661 // push on the plunger as a button push. If the player pushes the plunger
mjr 40:cc0d9814522b 662 // forward of the rest position by this amount, we'll treat it as pushing the
mjr 40:cc0d9814522b 663 // button, even if the player didn't pull back the plunger first. This lets
mjr 40:cc0d9814522b 664 // the player treat the plunger knob as a button for games where it's meaningful
mjr 35:e959ffba78fd 665 // to hold down the Launch button for specific intervals (e.g., "Championship
mjr 35:e959ffba78fd 666 // Pub").
mjr 35:e959ffba78fd 667 struct
mjr 35:e959ffba78fd 668 {
mjr 53:9b2611964afc 669 uint8_t port;
mjr 53:9b2611964afc 670 uint8_t keytype;
mjr 53:9b2611964afc 671 uint8_t keycode;
mjr 53:9b2611964afc 672 uint16_t pushDistance;
mjr 35:e959ffba78fd 673
mjr 35:e959ffba78fd 674 } zbLaunchBall;
mjr 35:e959ffba78fd 675
mjr 35:e959ffba78fd 676 // --- PLUNGER CALIBRATION ---
mjr 35:e959ffba78fd 677 struct
mjr 35:e959ffba78fd 678 {
mjr 35:e959ffba78fd 679 // has the plunger been calibrated?
mjr 53:9b2611964afc 680 bool calibrated;
mjr 55:4db125cd11a0 681
mjr 55:4db125cd11a0 682 // Feature enable mask:
mjr 55:4db125cd11a0 683 //
mjr 55:4db125cd11a0 684 // 0x01 = calibration button enabled
mjr 55:4db125cd11a0 685 // 0x02 = indicator light enabled
mjr 55:4db125cd11a0 686 uint8_t features;
mjr 35:e959ffba78fd 687
mjr 35:e959ffba78fd 688 // calibration button switch pin
mjr 53:9b2611964afc 689 uint8_t btn;
mjr 35:e959ffba78fd 690
mjr 35:e959ffba78fd 691 // calibration button indicator light pin
mjr 53:9b2611964afc 692 uint8_t led;
mjr 35:e959ffba78fd 693
mjr 48:058ace2aed1d 694 // Plunger calibration min, zero, and max. These are in terms of the
mjr 48:058ace2aed1d 695 // unsigned 16-bit scale (0x0000..0xffff) that we use for the raw sensor
mjr 48:058ace2aed1d 696 // readings.
mjr 48:058ace2aed1d 697 //
mjr 48:058ace2aed1d 698 // The zero point is the rest position (aka park position), where the
mjr 48:058ace2aed1d 699 // plunger is in equilibrium between the main spring and the barrel
mjr 48:058ace2aed1d 700 // spring. In the standard setup, the plunger can travel a small
mjr 48:058ace2aed1d 701 // distance forward of the rest position, because the barrel spring
mjr 48:058ace2aed1d 702 // can be compressed a bit. The minimum is the maximum forward point
mjr 48:058ace2aed1d 703 // where the barrel spring can't be compressed any further.
mjr 48:058ace2aed1d 704 uint16_t min;
mjr 48:058ace2aed1d 705 uint16_t zero;
mjr 48:058ace2aed1d 706 uint16_t max;
mjr 52:8298b2a73eb2 707
mjr 52:8298b2a73eb2 708 // Measured release time, in milliseconds.
mjr 52:8298b2a73eb2 709 uint8_t tRelease;
mjr 35:e959ffba78fd 710
mjr 44:b5ac89b9cd5d 711 // Reset the plunger calibration
mjr 44:b5ac89b9cd5d 712 void setDefaults()
mjr 35:e959ffba78fd 713 {
mjr 44:b5ac89b9cd5d 714 calibrated = false; // not calibrated
mjr 48:058ace2aed1d 715 min = 0; // assume we can go all the way forward...
mjr 48:058ace2aed1d 716 max = 0xffff; // ...and all the way back
mjr 48:058ace2aed1d 717 zero = max/6; // the rest position is usually around 1/2" back = 1/6 of total travel
mjr 52:8298b2a73eb2 718 tRelease = 65; // standard 65ms release time
mjr 44:b5ac89b9cd5d 719 }
mjr 44:b5ac89b9cd5d 720
mjr 44:b5ac89b9cd5d 721 // Begin calibration. This sets each limit to the worst
mjr 44:b5ac89b9cd5d 722 // case point - for example, we set the retracted position
mjr 44:b5ac89b9cd5d 723 // to all the way forward. Each actual reading that comes
mjr 44:b5ac89b9cd5d 724 // in is then checked against the current limit, and if it's
mjr 44:b5ac89b9cd5d 725 // outside of the limit, we reset the limit to the new reading.
mjr 44:b5ac89b9cd5d 726 void begin()
mjr 44:b5ac89b9cd5d 727 {
mjr 48:058ace2aed1d 728 min = 0; // we don't calibrate the maximum forward position, so keep this at zero
mjr 48:058ace2aed1d 729 zero = 0xffff; // set the zero position all the way back
mjr 48:058ace2aed1d 730 max = 0; // set the retracted position all the way forward
mjr 52:8298b2a73eb2 731 tRelease = 65; // revert to a default release time
mjr 35:e959ffba78fd 732 }
mjr 17:ab3cec0c8bf4 733
mjr 35:e959ffba78fd 734 } cal;
mjr 18:5e890ebd0023 735
mjr 35:e959ffba78fd 736 } plunger;
mjr 29:582472d0bc57 737
mjr 35:e959ffba78fd 738
mjr 35:e959ffba78fd 739 // --- TV ON SWITCH ---
mjr 35:e959ffba78fd 740 //
mjr 35:e959ffba78fd 741 // To use the TV ON switch feature, the special power sensing circuitry
mjr 35:e959ffba78fd 742 // implemented on the Expansion Board must be attached (or an equivalent
mjr 35:e959ffba78fd 743 // circuit, as described in the Build Guide). The circuitry lets us
mjr 35:e959ffba78fd 744 // detect power state changes on the secondary power supply.
mjr 35:e959ffba78fd 745 struct
mjr 35:e959ffba78fd 746 {
mjr 35:e959ffba78fd 747 // PSU2 power status sense (DigitalIn pin). This pin goes LOW when the
mjr 35:e959ffba78fd 748 // secondary power supply is turned off, and remains LOW until the LATCH
mjr 35:e959ffba78fd 749 // pin is raised high AND the secondary PSU is turned on. Once HIGH,
mjr 35:e959ffba78fd 750 // it remains HIGH as long as the secondary PSU is on.
mjr 53:9b2611964afc 751 uint8_t statusPin;
mjr 35:e959ffba78fd 752
mjr 35:e959ffba78fd 753 // PSU2 power status latch (DigitalOut pin)
mjr 53:9b2611964afc 754 uint8_t latchPin;
mjr 35:e959ffba78fd 755
mjr 35:e959ffba78fd 756 // TV ON relay pin (DigitalOut pin). This pin controls the TV switch
mjr 35:e959ffba78fd 757 // relay. Raising the pin HIGH turns the relay ON (energizes the coil).
mjr 53:9b2611964afc 758 uint8_t relayPin;
mjr 35:e959ffba78fd 759
mjr 40:cc0d9814522b 760 // TV ON delay time, in 1/100 second units. This is the interval between
mjr 40:cc0d9814522b 761 // sensing that the secondary power supply has turned on and pulsing the
mjr 40:cc0d9814522b 762 // TV ON switch relay.
mjr 40:cc0d9814522b 763 int delayTime;
mjr 35:e959ffba78fd 764
mjr 35:e959ffba78fd 765 } TVON;
mjr 35:e959ffba78fd 766
mjr 53:9b2611964afc 767 // --- Night Mode ---
mjr 53:9b2611964afc 768 struct
mjr 53:9b2611964afc 769 {
mjr 55:4db125cd11a0 770 uint8_t btn; // night mode button number (1..MAX_BUTTONS, 0 = no button)
mjr 53:9b2611964afc 771 uint8_t flags; // flags:
mjr 53:9b2611964afc 772 // 0x01 = on/off switch (if not set, it's a momentary button)
mjr 55:4db125cd11a0 773 uint8_t port; // indicator output port number (1..MAX_OUT_PORTS, 0 = no indicator)
mjr 53:9b2611964afc 774 } nightMode;
mjr 53:9b2611964afc 775
mjr 29:582472d0bc57 776
mjr 35:e959ffba78fd 777 // --- TLC5940NT PWM Controller Chip Setup ---
mjr 35:e959ffba78fd 778 struct
mjr 35:e959ffba78fd 779 {
mjr 35:e959ffba78fd 780 // number of TLC5940NT chips connected in daisy chain
mjr 87:8d35c74403af 781 uint8_t nchips;
mjr 35:e959ffba78fd 782
mjr 53:9b2611964afc 783 // pin connections (wire pin IDs)
mjr 53:9b2611964afc 784 uint8_t sin; // Serial data - must connect to SPIO MOSI -> PTC6 or PTD2
mjr 53:9b2611964afc 785 uint8_t sclk; // Serial clock - must connect to SPIO SCLK -> PTC5 or PTD1
mjr 35:e959ffba78fd 786 // (but don't use PTD1, since it's hard-wired to the on-board blue LED)
mjr 53:9b2611964afc 787 uint8_t xlat; // XLAT (latch) signal - connect to any GPIO pin
mjr 53:9b2611964afc 788 uint8_t blank; // BLANK signal - connect to any GPIO pin
mjr 53:9b2611964afc 789 uint8_t gsclk; // Grayscale clock - must connect to a PWM-out capable pin
mjr 29:582472d0bc57 790
mjr 35:e959ffba78fd 791 } tlc5940;
mjr 35:e959ffba78fd 792
mjr 35:e959ffba78fd 793
mjr 35:e959ffba78fd 794 // --- 74HC595 Shift Register Setup ---
mjr 35:e959ffba78fd 795 struct
mjr 35:e959ffba78fd 796 {
mjr 35:e959ffba78fd 797 // number of 74HC595 chips attached in daisy chain
mjr 87:8d35c74403af 798 uint8_t nchips;
mjr 35:e959ffba78fd 799
mjr 35:e959ffba78fd 800 // pin connections
mjr 53:9b2611964afc 801 uint8_t sin; // Serial data - use any GPIO pin
mjr 53:9b2611964afc 802 uint8_t sclk; // Serial clock - use any GPIO pin
mjr 53:9b2611964afc 803 uint8_t latch; // Latch - use any GPIO pin
mjr 53:9b2611964afc 804 uint8_t ena; // Enable signal - use any GPIO pin
mjr 35:e959ffba78fd 805
mjr 35:e959ffba78fd 806 } hc595;
mjr 77:0b96f6867312 807
mjr 87:8d35c74403af 808 // --- TLC59116 PWM Controller Chip Setup --
mjr 87:8d35c74403af 809 struct
mjr 87:8d35c74403af 810 {
mjr 87:8d35c74403af 811 // Chip mask. Each bit represents an enabled chip at the
mjr 87:8d35c74403af 812 // corresponding 4-bit address (i.e., bit 1<<addr represents
mjr 87:8d35c74403af 813 // the chip at 'addr').
mjr 87:8d35c74403af 814 uint16_t chipMask;
mjr 87:8d35c74403af 815
mjr 87:8d35c74403af 816 // pin connections
mjr 87:8d35c74403af 817 uint8_t sda; // I2C SDA
mjr 87:8d35c74403af 818 uint8_t scl; // I2C SCL
mjr 87:8d35c74403af 819 uint8_t reset; // !RESET (hardware reset line, active low)
mjr 87:8d35c74403af 820
mjr 87:8d35c74403af 821 } tlc59116;
mjr 87:8d35c74403af 822
mjr 77:0b96f6867312 823
mjr 77:0b96f6867312 824 // --- IR Remote Control Hardware Setup ---
mjr 77:0b96f6867312 825 struct
mjr 77:0b96f6867312 826 {
mjr 77:0b96f6867312 827 // sensor (receiver) GPIO input pin; must be interrupt-capable
mjr 77:0b96f6867312 828 uint8_t sensor;
mjr 77:0b96f6867312 829
mjr 77:0b96f6867312 830 // IR emitter LED GPIO output pin; must be PWM-capable
mjr 77:0b96f6867312 831 uint8_t emitter;
mjr 77:0b96f6867312 832 } IR;
mjr 77:0b96f6867312 833
mjr 77:0b96f6867312 834
mjr 35:e959ffba78fd 835 // --- Button Input Setup ---
mjr 65:739875521aae 836 ButtonCfg button[MAX_BUTTONS + VIRTUAL_BUTTONS] __attribute__((packed));
mjr 66:2e3583fbd2f4 837
mjr 78:1e00b3fa11af 838 // Shift button. This can be used to give each physical button a
mjr 78:1e00b3fa11af 839 // second meaning.
mjr 78:1e00b3fa11af 840 struct
mjr 78:1e00b3fa11af 841 {
mjr 78:1e00b3fa11af 842 // Shift button index, 1..MAX_BUTTONS. If this is zero, there's
mjr 78:1e00b3fa11af 843 // no shift button.
mjr 78:1e00b3fa11af 844 uint8_t idx;
mjr 78:1e00b3fa11af 845
mjr 78:1e00b3fa11af 846 // Shift button mode. If the shift button has a key mapping or
mjr 78:1e00b3fa11af 847 // IR command assigned, this determines what happens when the
mjr 78:1e00b3fa11af 848 // shift button is pressed in combination with another key.
mjr 78:1e00b3fa11af 849 //
mjr 78:1e00b3fa11af 850 // 0 = Shift OR Key mode. In this mode, when you initially press
mjr 78:1e00b3fa11af 851 // the shift button, nothing happens. Instead, we wait to see if
mjr 78:1e00b3fa11af 852 // any other buttons are pressed. If so, we use the shifted meaning
mjr 78:1e00b3fa11af 853 // of the other button, and we DON'T send the shift button's key or
mjr 78:1e00b3fa11af 854 // IR command at all.
mjr 78:1e00b3fa11af 855 //
mjr 78:1e00b3fa11af 856 // 1 = Shift AND Key mode. In this mode, the shift button acts like
mjr 78:1e00b3fa11af 857 // any other button: its assigned key is sent to the PC as soon as
mjr 78:1e00b3fa11af 858 // you press it. If you also press another button while the shift
mjr 78:1e00b3fa11af 859 // button is down, the shifted meaning of the other button is used.
mjr 78:1e00b3fa11af 860 //
mjr 78:1e00b3fa11af 861 // Mode 0, the "OR" mode, is the default. This allows a button with
mjr 78:1e00b3fa11af 862 // a key assignment to do double duty as the shift button without
mjr 78:1e00b3fa11af 863 // creating any confusing situations where the shift button's own
mjr 78:1e00b3fa11af 864 // key is also sent to the PC during shift usage.
mjr 78:1e00b3fa11af 865 uint8_t mode;
mjr 78:1e00b3fa11af 866
mjr 78:1e00b3fa11af 867 } shiftButton;
mjr 17:ab3cec0c8bf4 868
mjr 35:e959ffba78fd 869 // --- LedWiz Output Port Setup ---
mjr 77:0b96f6867312 870 LedWizPortCfg outPort[MAX_OUT_PORTS] __attribute__ ((packed)); // LedWiz & extended output ports
mjr 48:058ace2aed1d 871
mjr 77:0b96f6867312 872 // --- IR Command Slots ---
mjr 77:0b96f6867312 873 IRCommandCfg IRCommand[MAX_IR_CODES] __attribute__ ((packed));
mjr 17:ab3cec0c8bf4 874 };
mjr 17:ab3cec0c8bf4 875
mjr 35:e959ffba78fd 876 #endif