An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Tue May 09 05:48:37 2017 +0000
Revision:
87:8d35c74403af
Parent:
85:3c28aee81cde
Child:
89:c43cd923401c
AEDR-8300, VL6180X, TLC59116; new plunger firing detection

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 40:cc0d9814522b 1 // Define the configuration variable USB get/set mapper. We use
mjr 40:cc0d9814522b 2 // macros for the get/set operations to allow for common source
mjr 40:cc0d9814522b 3 // code for the two operations. main.cpp #includes this file twice:
mjr 40:cc0d9814522b 4 // once for the SET function and once for the GET function. main.cpp
mjr 40:cc0d9814522b 5 // redefines the v_xxx macros according to the current inclusion mode.
mjr 40:cc0d9814522b 6 //
mjr 40:cc0d9814522b 7 // This is a little tricky to follow because of the macros, but the
mjr 40:cc0d9814522b 8 // benefit is that the get and set functions automatically stay in
mjr 40:cc0d9814522b 9 // sync in terms of the variable types and byte mappings in the USB
mjr 40:cc0d9814522b 10 // messages, since they're both generated automatically from the
mjr 40:cc0d9814522b 11 // same code.
mjr 40:cc0d9814522b 12 //
mjr 40:cc0d9814522b 13 // The SET function is called directly from the corresponding USB
mjr 40:cc0d9814522b 14 // protocol message to set one variable. The data buffer is simply
mjr 40:cc0d9814522b 15 // the data passed in from the USB message.
mjr 40:cc0d9814522b 16 //
mjr 40:cc0d9814522b 17 // The GET function is called in a loop from our configuration
mjr 40:cc0d9814522b 18 // variable reporting function. The report function loops through
mjr 40:cc0d9814522b 19 // each variable in turn to generate a series of reports. The
mjr 40:cc0d9814522b 20 // caller in this case fills in data[1] with the variable ID, and
mjr 40:cc0d9814522b 21 // it also fills in data[2] with the current index being queried
mjr 40:cc0d9814522b 22 // for the array variables (buttons, outputs). We fill in the
mjr 40:cc0d9814522b 23 // rest of the data[] bytes with the current variable value(s),
mjr 40:cc0d9814522b 24 // encoded for the USB protocol message.
mjr 40:cc0d9814522b 25
mjr 40:cc0d9814522b 26
mjr 76:7f5912b6340e 27 void v_func
mjr 40:cc0d9814522b 28 {
mjr 40:cc0d9814522b 29 switch (data[1])
mjr 40:cc0d9814522b 30 {
mjr 61:3c7e6e9ec355 31 // ********** UNRECOGNIZED VARIABLE IDs **********
mjr 61:3c7e6e9ec355 32 // For any variable ID we don't recognize, we'll ignore SET
mjr 61:3c7e6e9ec355 33 // requests and return all zeroes on QUERY requests. This
mjr 61:3c7e6e9ec355 34 // provides sensible default behavior if a newer version of
mjr 61:3c7e6e9ec355 35 // the config tool is used with an older version of the
mjr 61:3c7e6e9ec355 36 // firwmare. Because of the default all-zero query response,
mjr 61:3c7e6e9ec355 37 // new variable added over time should use zero values as
mjr 61:3c7e6e9ec355 38 // the standard defaults whenever possible. Note that the
mjr 61:3c7e6e9ec355 39 // config tool can also use QUERY VARIABLE 0 to determine
mjr 61:3c7e6e9ec355 40 // the number of variables supported by the firmware it's
mjr 61:3c7e6e9ec355 41 // talking to, if it needs to know whether or not a
mjr 61:3c7e6e9ec355 42 // particular variable exists (a variable exists if its ID
mjr 61:3c7e6e9ec355 43 // is within the range returned by the QUERY 0 call).
mjr 61:3c7e6e9ec355 44 //
mjr 61:3c7e6e9ec355 45 default:
mjr 61:3c7e6e9ec355 46 break;
mjr 61:3c7e6e9ec355 47
mjr 61:3c7e6e9ec355 48
mjr 53:9b2611964afc 49 // ********** DESCRIBE CONFIGURATION VARIABLES **********
mjr 53:9b2611964afc 50 case 0:
mjr 87:8d35c74403af 51 v_byte_ro(21, 2); // number of SCALAR variables
mjr 77:0b96f6867312 52 v_byte_ro(6, 3); // number of ARRAY variables
mjr 53:9b2611964afc 53 break;
mjr 53:9b2611964afc 54
mjr 53:9b2611964afc 55 // ********** SCALAR VARIABLES **********
mjr 53:9b2611964afc 56
mjr 40:cc0d9814522b 57 case 1:
mjr 40:cc0d9814522b 58 // USB identification (Vendor ID, Product ID)
mjr 40:cc0d9814522b 59 v_ui16(usbVendorID, 2);
mjr 40:cc0d9814522b 60 v_ui16(usbProductID, 4);
mjr 40:cc0d9814522b 61 break;
mjr 40:cc0d9814522b 62
mjr 40:cc0d9814522b 63 case 2:
mjr 40:cc0d9814522b 64 // Pinscape Controller unit number (nominal unit number, 1-16)
mjr 40:cc0d9814522b 65 if_msg_valid(data[2] >= 1 && data[2] <= 16)
mjr 40:cc0d9814522b 66 v_byte(psUnitNo, 2);
mjr 40:cc0d9814522b 67 break;
mjr 40:cc0d9814522b 68
mjr 40:cc0d9814522b 69 case 3:
mjr 40:cc0d9814522b 70 // Enable/disable joystick
mjr 40:cc0d9814522b 71 v_byte(joystickEnabled, 2);
mjr 40:cc0d9814522b 72 break;
mjr 40:cc0d9814522b 73
mjr 40:cc0d9814522b 74 case 4:
mjr 78:1e00b3fa11af 75 // Accelerometer options
mjr 78:1e00b3fa11af 76 v_byte(accel.orientation, 2);
mjr 78:1e00b3fa11af 77 v_byte(accel.range, 3);
mjr 78:1e00b3fa11af 78 v_byte(accel.autoCenterTime, 4);
mjr 40:cc0d9814522b 79 break;
mjr 40:cc0d9814522b 80
mjr 40:cc0d9814522b 81 case 5:
mjr 40:cc0d9814522b 82 // Plunger sensor type
mjr 40:cc0d9814522b 83 v_byte(plunger.sensorType, 2);
mjr 40:cc0d9814522b 84 break;
mjr 40:cc0d9814522b 85
mjr 40:cc0d9814522b 86 case 6:
mjr 40:cc0d9814522b 87 // Plunger sensor pin assignments
mjr 53:9b2611964afc 88 v_byte(plunger.sensorPin[0], 2);
mjr 53:9b2611964afc 89 v_byte(plunger.sensorPin[1], 3);
mjr 53:9b2611964afc 90 v_byte(plunger.sensorPin[2], 4);
mjr 53:9b2611964afc 91 v_byte(plunger.sensorPin[3], 5);
mjr 40:cc0d9814522b 92 break;
mjr 40:cc0d9814522b 93
mjr 40:cc0d9814522b 94 case 7:
mjr 40:cc0d9814522b 95 // Plunger calibration button and indicator light pin assignments
mjr 55:4db125cd11a0 96 v_byte(plunger.cal.features, 2);
mjr 55:4db125cd11a0 97 v_byte(plunger.cal.btn, 3);
mjr 55:4db125cd11a0 98 v_byte(plunger.cal.led, 4);
mjr 40:cc0d9814522b 99 break;
mjr 40:cc0d9814522b 100
mjr 40:cc0d9814522b 101 case 8:
mjr 40:cc0d9814522b 102 // ZB Launch Ball setup
mjr 40:cc0d9814522b 103 v_byte(plunger.zbLaunchBall.port, 2);
mjr 53:9b2611964afc 104 v_byte(plunger.zbLaunchBall.keytype, 3);
mjr 53:9b2611964afc 105 v_byte(plunger.zbLaunchBall.keycode, 4);
mjr 53:9b2611964afc 106 v_ui16(plunger.zbLaunchBall.pushDistance, 5);
mjr 40:cc0d9814522b 107 break;
mjr 40:cc0d9814522b 108
mjr 40:cc0d9814522b 109 case 9:
mjr 40:cc0d9814522b 110 // TV ON setup
mjr 53:9b2611964afc 111 v_byte(TVON.statusPin, 2);
mjr 53:9b2611964afc 112 v_byte(TVON.latchPin, 3);
mjr 53:9b2611964afc 113 v_byte(TVON.relayPin, 4);
mjr 40:cc0d9814522b 114 v_ui16(TVON.delayTime, 5);
mjr 40:cc0d9814522b 115 break;
mjr 40:cc0d9814522b 116
mjr 40:cc0d9814522b 117 case 10:
mjr 40:cc0d9814522b 118 // TLC5940NT PWM controller chip setup
mjr 40:cc0d9814522b 119 v_byte(tlc5940.nchips, 2);
mjr 53:9b2611964afc 120 v_byte(tlc5940.sin, 3);
mjr 53:9b2611964afc 121 v_byte(tlc5940.sclk, 4);
mjr 53:9b2611964afc 122 v_byte(tlc5940.xlat, 5);
mjr 53:9b2611964afc 123 v_byte(tlc5940.blank, 6);
mjr 53:9b2611964afc 124 v_byte(tlc5940.gsclk, 7);
mjr 40:cc0d9814522b 125 break;
mjr 40:cc0d9814522b 126
mjr 40:cc0d9814522b 127 case 11:
mjr 40:cc0d9814522b 128 // 74HC595 shift register chip setup
mjr 40:cc0d9814522b 129 v_byte(hc595.nchips, 2);
mjr 53:9b2611964afc 130 v_byte(hc595.sin, 3);
mjr 53:9b2611964afc 131 v_byte(hc595.sclk, 4);
mjr 53:9b2611964afc 132 v_byte(hc595.latch, 5);
mjr 53:9b2611964afc 133 v_byte(hc595.ena, 6);
mjr 40:cc0d9814522b 134 break;
mjr 40:cc0d9814522b 135
mjr 40:cc0d9814522b 136 case 12:
mjr 53:9b2611964afc 137 // Disconnect reboot timeout
mjr 53:9b2611964afc 138 v_byte(disconnectRebootTimeout, 2);
mjr 53:9b2611964afc 139 break;
mjr 53:9b2611964afc 140
mjr 53:9b2611964afc 141 case 13:
mjr 53:9b2611964afc 142 // plunger calibration
mjr 53:9b2611964afc 143 v_ui16(plunger.cal.zero, 2);
mjr 53:9b2611964afc 144 v_ui16(plunger.cal.max, 4);
mjr 53:9b2611964afc 145 v_byte(plunger.cal.tRelease, 6);
mjr 74:822a92bc11d2 146 v_byte(plunger.cal.calibrated, 7);
mjr 53:9b2611964afc 147 break;
mjr 53:9b2611964afc 148
mjr 53:9b2611964afc 149 case 14:
mjr 53:9b2611964afc 150 // expansion board configuration
mjr 53:9b2611964afc 151 v_byte(expan.typ, 2);
mjr 53:9b2611964afc 152 v_byte(expan.vsn, 3);
mjr 53:9b2611964afc 153 v_byte(expan.ext[0], 4);
mjr 53:9b2611964afc 154 v_byte(expan.ext[1], 5);
mjr 53:9b2611964afc 155 v_byte(expan.ext[2], 6);
mjr 53:9b2611964afc 156 break;
mjr 53:9b2611964afc 157
mjr 53:9b2611964afc 158 case 15:
mjr 53:9b2611964afc 159 // night mode configuration
mjr 53:9b2611964afc 160 v_byte(nightMode.btn, 2);
mjr 53:9b2611964afc 161 v_byte(nightMode.flags, 3);
mjr 53:9b2611964afc 162 v_byte(nightMode.port, 4);
mjr 53:9b2611964afc 163 break;
mjr 53:9b2611964afc 164
mjr 66:2e3583fbd2f4 165 case 16:
mjr 66:2e3583fbd2f4 166 // shift button configuration
mjr 78:1e00b3fa11af 167 v_byte(shiftButton.idx, 2);
mjr 78:1e00b3fa11af 168 v_byte(shiftButton.mode, 3);
mjr 66:2e3583fbd2f4 169 break;
mjr 66:2e3583fbd2f4 170
mjr 77:0b96f6867312 171 case 17:
mjr 77:0b96f6867312 172 // IR sensor and emitter setup
mjr 77:0b96f6867312 173 v_byte(IR.sensor, 2);
mjr 77:0b96f6867312 174 v_byte(IR.emitter, 3);
mjr 77:0b96f6867312 175 break;
mjr 77:0b96f6867312 176
mjr 82:4f6209cb5c33 177 case 18:
mjr 82:4f6209cb5c33 178 // plunger auto-zeroing time
mjr 82:4f6209cb5c33 179 v_byte(plunger.autoZero.flags, 2);
mjr 82:4f6209cb5c33 180 v_byte(plunger.autoZero.t, 3);
mjr 82:4f6209cb5c33 181 break;
mjr 82:4f6209cb5c33 182
mjr 85:3c28aee81cde 183 case 19:
mjr 85:3c28aee81cde 184 // plunger jitter filter window size
mjr 85:3c28aee81cde 185 v_ui16(plunger.jitterWindow, 2);
mjr 85:3c28aee81cde 186 break;
mjr 85:3c28aee81cde 187
mjr 87:8d35c74403af 188 case 20:
mjr 87:8d35c74403af 189 // bar-code plunger setup
mjr 87:8d35c74403af 190 v_ui16(plunger.barCode.startPix, 2);
mjr 87:8d35c74403af 191 break;
mjr 87:8d35c74403af 192
mjr 87:8d35c74403af 193 case 21:
mjr 87:8d35c74403af 194 v_ui16(tlc59116.chipMask, 2);
mjr 87:8d35c74403af 195 v_byte(tlc59116.sda, 4);
mjr 87:8d35c74403af 196 v_byte(tlc59116.scl, 5);
mjr 87:8d35c74403af 197 v_byte(tlc59116.reset, 6);
mjr 87:8d35c74403af 198 break;
mjr 87:8d35c74403af 199
mjr 74:822a92bc11d2 200 // case N: // new scalar variable
mjr 53:9b2611964afc 201 //
mjr 74:822a92bc11d2 202 // !!! ATTENTION !!!
mjr 53:9b2611964afc 203 // UPDATE CASE 0 ABOVE WHEN ADDING A NEW VARIABLE!!!
mjr 66:2e3583fbd2f4 204
mjr 66:2e3583fbd2f4 205
mjr 74:822a92bc11d2 206 // ********** SPECIAL DIAGNOSTIC VARIBLES **********
mjr 74:822a92bc11d2 207 //
mjr 74:822a92bc11d2 208 // This is a set of variables that act like the array variables
mjr 74:822a92bc11d2 209 // below. However, these are generally read-only, and since they
mjr 74:822a92bc11d2 210 // don't contain restorable configuration data, they're not
mjr 74:822a92bc11d2 211 // included in the variable counts reported by a "variable 0"
mjr 74:822a92bc11d2 212 // query above.
mjr 74:822a92bc11d2 213 case 220:
mjr 76:7f5912b6340e 214 #if !VAR_MODE_SET && ENABLE_DIAGNOSTICS
mjr 74:822a92bc11d2 215 {
mjr 74:822a92bc11d2 216 uint32_t a;
mjr 74:822a92bc11d2 217 switch (data[2])
mjr 74:822a92bc11d2 218 {
mjr 74:822a92bc11d2 219 case 1:
mjr 74:822a92bc11d2 220 // main loop, average iteration time in us
mjr 76:7f5912b6340e 221 a = uint32_t(mainLoopIterTime/mainLoopIterCount);
mjr 74:822a92bc11d2 222 v_ui32_ro(a, 3);
mjr 74:822a92bc11d2 223 break;
mjr 74:822a92bc11d2 224
mjr 74:822a92bc11d2 225 case 2:
mjr 74:822a92bc11d2 226 // incoming message average processing time in us
mjr 76:7f5912b6340e 227 a = uint32_t(mainLoopMsgTime/mainLoopMsgCount);
mjr 74:822a92bc11d2 228 v_ui32_ro(a, 3);
mjr 74:822a92bc11d2 229 break;
mjr 74:822a92bc11d2 230
mjr 74:822a92bc11d2 231 case 3:
mjr 74:822a92bc11d2 232 // PWM update polling routine, average time per call in us
mjr 76:7f5912b6340e 233 a = uint32_t(polledPwmTotalTime/polledPwmRunCount);
mjr 74:822a92bc11d2 234 v_ui32_ro(a, 3);
mjr 74:822a92bc11d2 235 break;
mjr 74:822a92bc11d2 236
mjr 74:822a92bc11d2 237 case 4:
mjr 74:822a92bc11d2 238 // LedWiz flash update routine, average time per call in us
mjr 76:7f5912b6340e 239 a = uint32_t(wizPulseTotalTime/wizPulseRunCount);
mjr 74:822a92bc11d2 240 v_ui32_ro(a, 3);
mjr 74:822a92bc11d2 241 break;
mjr 76:7f5912b6340e 242
mjr 76:7f5912b6340e 243 case 5:
mjr 76:7f5912b6340e 244 case 6:
mjr 76:7f5912b6340e 245 case 7:
mjr 76:7f5912b6340e 246 case 8:
mjr 76:7f5912b6340e 247 case 9:
mjr 76:7f5912b6340e 248 case 10:
mjr 76:7f5912b6340e 249 case 11:
mjr 76:7f5912b6340e 250 case 12:
mjr 76:7f5912b6340e 251 case 13:
mjr 76:7f5912b6340e 252 case 14:
mjr 76:7f5912b6340e 253 case 15:
mjr 76:7f5912b6340e 254 case 16:
mjr 76:7f5912b6340e 255 // main loop checkpoint N, time in us
mjr 76:7f5912b6340e 256 a = uint32_t(mainLoopIterCheckpt[data[2]-5]/mainLoopIterCount);
mjr 76:7f5912b6340e 257 v_ui32_ro(a, 3);
mjr 76:7f5912b6340e 258 break;
mjr 76:7f5912b6340e 259
mjr 76:7f5912b6340e 260 case 30:
mjr 76:7f5912b6340e 261 a = (plungerSensor != 0 ? plungerSensor->getAvgScanTime() : 0);
mjr 76:7f5912b6340e 262 v_ui32_ro(a, 3);
mjr 76:7f5912b6340e 263 break;
mjr 74:822a92bc11d2 264 }
mjr 74:822a92bc11d2 265 }
mjr 74:822a92bc11d2 266 #endif
mjr 74:822a92bc11d2 267 break;
mjr 53:9b2611964afc 268
mjr 74:822a92bc11d2 269 // ********** ARRAY VARIABLES **********
mjr 53:9b2611964afc 270
mjr 66:2e3583fbd2f4 271
mjr 74:822a92bc11d2 272 // case N: // new array variable
mjr 53:9b2611964afc 273 //
mjr 74:822a92bc11d2 274 // !!! ATTENTION !!!
mjr 53:9b2611964afc 275 // UPDATE CASE 0 ABOVE WHEN ADDING A NEW ARRAY VARIABLE!!!
mjr 66:2e3583fbd2f4 276
mjr 77:0b96f6867312 277 case 250:
mjr 77:0b96f6867312 278 // IR command code - high 32 bits
mjr 77:0b96f6867312 279 {
mjr 77:0b96f6867312 280 int idx = data[2];
mjr 77:0b96f6867312 281 if (idx == 0)
mjr 77:0b96f6867312 282 {
mjr 77:0b96f6867312 283 v_byte_ro(MAX_IR_CODES, 3);
mjr 77:0b96f6867312 284 }
mjr 77:0b96f6867312 285 else if (idx > 0 && idx <= MAX_IR_CODES)
mjr 77:0b96f6867312 286 {
mjr 77:0b96f6867312 287 --idx;
mjr 77:0b96f6867312 288 v_ui32(IRCommand[idx].code.hi, 3);
mjr 77:0b96f6867312 289 }
mjr 77:0b96f6867312 290 }
mjr 77:0b96f6867312 291 break;
mjr 77:0b96f6867312 292
mjr 77:0b96f6867312 293 case 251:
mjr 77:0b96f6867312 294 // IR command code - protocol and low 32 bits
mjr 77:0b96f6867312 295 {
mjr 77:0b96f6867312 296 int idx = data[2];
mjr 77:0b96f6867312 297 if (idx == 0)
mjr 77:0b96f6867312 298 {
mjr 77:0b96f6867312 299 v_byte_ro(MAX_IR_CODES, 3);
mjr 77:0b96f6867312 300 }
mjr 77:0b96f6867312 301 else if (idx > 0 && idx <= MAX_IR_CODES)
mjr 77:0b96f6867312 302 {
mjr 77:0b96f6867312 303 --idx;
mjr 77:0b96f6867312 304 v_byte(IRCommand[idx].protocol, 3);
mjr 77:0b96f6867312 305 v_ui32(IRCommand[idx].code.lo, 4);
mjr 77:0b96f6867312 306 }
mjr 77:0b96f6867312 307 }
mjr 77:0b96f6867312 308 break;
mjr 77:0b96f6867312 309
mjr 77:0b96f6867312 310 case 252:
mjr 77:0b96f6867312 311 // IR command descriptor
mjr 77:0b96f6867312 312 {
mjr 77:0b96f6867312 313 int idx = data[2];
mjr 77:0b96f6867312 314 if (idx == 0)
mjr 77:0b96f6867312 315 {
mjr 77:0b96f6867312 316 v_byte_ro(MAX_IR_CODES, 3);
mjr 77:0b96f6867312 317 }
mjr 77:0b96f6867312 318 else if (idx > 0 && idx <= MAX_IR_CODES)
mjr 77:0b96f6867312 319 {
mjr 77:0b96f6867312 320 --idx;
mjr 77:0b96f6867312 321 v_byte(IRCommand[idx].flags, 3);
mjr 77:0b96f6867312 322 v_byte(IRCommand[idx].keytype, 4);
mjr 77:0b96f6867312 323 v_byte(IRCommand[idx].keycode, 5);
mjr 77:0b96f6867312 324 }
mjr 77:0b96f6867312 325 }
mjr 77:0b96f6867312 326 break;
mjr 77:0b96f6867312 327
mjr 66:2e3583fbd2f4 328 case 253:
mjr 66:2e3583fbd2f4 329 // extended button setup
mjr 66:2e3583fbd2f4 330 {
mjr 66:2e3583fbd2f4 331 // get the index and check if it's in range
mjr 66:2e3583fbd2f4 332 int idx = data[2];
mjr 66:2e3583fbd2f4 333 if (idx == 0)
mjr 66:2e3583fbd2f4 334 {
mjr 66:2e3583fbd2f4 335 // index 0 on query retrieves number of slots
mjr 66:2e3583fbd2f4 336 v_byte_ro(MAX_BUTTONS, 3);
mjr 66:2e3583fbd2f4 337 }
mjr 66:2e3583fbd2f4 338 else if (idx > 0 && idx <= MAX_BUTTONS)
mjr 66:2e3583fbd2f4 339 {
mjr 66:2e3583fbd2f4 340 // adjust to an array index
mjr 66:2e3583fbd2f4 341 --idx;
mjr 66:2e3583fbd2f4 342
mjr 66:2e3583fbd2f4 343 // transfer the values
mjr 66:2e3583fbd2f4 344 v_byte(button[idx].typ2, 3);
mjr 66:2e3583fbd2f4 345 v_byte(button[idx].val2, 4);
mjr 77:0b96f6867312 346 v_byte(button[idx].IRCommand2, 5);
mjr 66:2e3583fbd2f4 347 }
mjr 66:2e3583fbd2f4 348 }
mjr 66:2e3583fbd2f4 349 break;
mjr 74:822a92bc11d2 350
mjr 53:9b2611964afc 351 case 254:
mjr 40:cc0d9814522b 352 // button setup
mjr 40:cc0d9814522b 353 {
mjr 40:cc0d9814522b 354 // get the button number
mjr 40:cc0d9814522b 355 int idx = data[2];
mjr 40:cc0d9814522b 356
mjr 40:cc0d9814522b 357 // if it's in range, set the button data
mjr 53:9b2611964afc 358 if (idx == 0)
mjr 53:9b2611964afc 359 {
mjr 53:9b2611964afc 360 // index 0 on query retrieves number of slots
mjr 65:739875521aae 361 v_byte_ro(MAX_BUTTONS, 3);
mjr 53:9b2611964afc 362 }
mjr 65:739875521aae 363 else if (idx > 0 && idx <= MAX_BUTTONS)
mjr 40:cc0d9814522b 364 {
mjr 40:cc0d9814522b 365 // adjust to an array index
mjr 40:cc0d9814522b 366 --idx;
mjr 40:cc0d9814522b 367
mjr 66:2e3583fbd2f4 368 // transfer the values
mjr 40:cc0d9814522b 369 v_byte(button[idx].pin, 3);
mjr 40:cc0d9814522b 370 v_byte(button[idx].typ, 4);
mjr 40:cc0d9814522b 371 v_byte(button[idx].val, 5);
mjr 40:cc0d9814522b 372 v_byte(button[idx].flags, 6);
mjr 77:0b96f6867312 373 v_byte(button[idx].IRCommand, 7);
mjr 40:cc0d9814522b 374 }
mjr 40:cc0d9814522b 375 }
mjr 40:cc0d9814522b 376 break;
mjr 40:cc0d9814522b 377
mjr 53:9b2611964afc 378 case 255:
mjr 40:cc0d9814522b 379 // LedWiz output port setup
mjr 40:cc0d9814522b 380 {
mjr 40:cc0d9814522b 381 // get the port number
mjr 40:cc0d9814522b 382 int idx = data[2];
mjr 40:cc0d9814522b 383
mjr 40:cc0d9814522b 384 // if it's in range, set the port data
mjr 53:9b2611964afc 385 if (idx == 0)
mjr 53:9b2611964afc 386 {
mjr 53:9b2611964afc 387 // index 0 on query retrieves number of slots
mjr 53:9b2611964afc 388 v_byte_ro(MAX_OUT_PORTS, 3);
mjr 53:9b2611964afc 389 }
mjr 53:9b2611964afc 390 else if (idx > 0 && idx <= MAX_OUT_PORTS)
mjr 40:cc0d9814522b 391 {
mjr 40:cc0d9814522b 392 // adjust to an array index
mjr 40:cc0d9814522b 393 --idx;
mjr 40:cc0d9814522b 394
mjr 40:cc0d9814522b 395 // set the values
mjr 40:cc0d9814522b 396 v_byte(outPort[idx].typ, 3);
mjr 40:cc0d9814522b 397 v_byte(outPort[idx].pin, 4);
mjr 40:cc0d9814522b 398 v_byte(outPort[idx].flags, 5);
mjr 40:cc0d9814522b 399 }
mjr 40:cc0d9814522b 400 }
mjr 40:cc0d9814522b 401 break;
mjr 40:cc0d9814522b 402 }
mjr 40:cc0d9814522b 403 }
mjr 40:cc0d9814522b 404