An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R


This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.


  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.


The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Tue May 09 05:48:37 2017 +0000
AEDR-8300, VL6180X, TLC59116; new plunger firing detection

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 82:4f6209cb5c33 1 // Plunger Sensor Interface
mjr 82:4f6209cb5c33 2 //
mjr 82:4f6209cb5c33 3 // This module defines the abstract interface to the plunger sensors.
mjr 82:4f6209cb5c33 4 // We support several different physical sensor types, so we need a
mjr 82:4f6209cb5c33 5 // common interface for use in the main code.
mjr 82:4f6209cb5c33 6 //
mjr 82:4f6209cb5c33 7 // In case it's helpful in developing code for new sensor types, I've
mjr 82:4f6209cb5c33 8 // measured the maximum instantaneous speed of a plunger at .175 inches
mjr 82:4f6209cb5c33 9 // per millisecond, or 4.46 mm/ms. (I measured that with an AEDR-8300;
mjr 82:4f6209cb5c33 10 // see that code for more details.)
mjr 82:4f6209cb5c33 11 //
mjr 82:4f6209cb5c33 12
mjr 82:4f6209cb5c33 13 #ifndef PLUNGER_H
mjr 82:4f6209cb5c33 14 #define PLUNGER_H
mjr 82:4f6209cb5c33 15
mjr 87:8d35c74403af 16 #include "config.h"
mjr 87:8d35c74403af 17
mjr 82:4f6209cb5c33 18 // Plunger reading with timestamp
mjr 82:4f6209cb5c33 19 struct PlungerReading
mjr 82:4f6209cb5c33 20 {
mjr 82:4f6209cb5c33 21 // Raw sensor reading, normalied to 0x0000..0xFFFF range
mjr 82:4f6209cb5c33 22 int pos;
mjr 82:4f6209cb5c33 23
mjr 82:4f6209cb5c33 24 // Rimestamp of reading, in microseconds, relative to an arbitrary
mjr 82:4f6209cb5c33 25 // zero point. Note that a 32-bit int can only represent about 71.5
mjr 82:4f6209cb5c33 26 // minutes worth of microseconds, so this value is only meaningful
mjr 82:4f6209cb5c33 27 // to compute a delta from other recent readings. As long as two
mjr 82:4f6209cb5c33 28 // readings are within 71.5 minutes of each other, the time difference
mjr 82:4f6209cb5c33 29 // calculated from the timestamps using 32-bit math will be correct
mjr 82:4f6209cb5c33 30 // *even if a rollover occurs* between the two readings, since the
mjr 82:4f6209cb5c33 31 // calculation is done mod 2^32-1.
mjr 82:4f6209cb5c33 32 uint32_t t;
mjr 82:4f6209cb5c33 33 };
mjr 82:4f6209cb5c33 34
mjr 82:4f6209cb5c33 35 class PlungerSensor
mjr 82:4f6209cb5c33 36 {
mjr 82:4f6209cb5c33 37 public:
mjr 86:e30a1f60f783 38 PlungerSensor(int nativeScale)
mjr 86:e30a1f60f783 39 {
mjr 86:e30a1f60f783 40 // use the joystick scale as our native scale by default
mjr 86:e30a1f60f783 41 this->nativeScale = nativeScale;
mjr 86:e30a1f60f783 42
mjr 86:e30a1f60f783 43 // figure the scaling factor
mjr 86:e30a1f60f783 44 scalingFactor = (65535UL*65536UL) / nativeScale;
mjr 86:e30a1f60f783 45
mjr 86:e30a1f60f783 46 // presume no jitter filter
mjr 86:e30a1f60f783 47 jfWindow = 0;
mjr 86:e30a1f60f783 48
mjr 86:e30a1f60f783 49 // initialize the jitter filter
mjr 86:e30a1f60f783 50 jfLo = jfHi = jfLast = 0;
mjr 86:e30a1f60f783 51 }
mjr 82:4f6209cb5c33 52
mjr 82:4f6209cb5c33 53 // ---------- Abstract sensor interface ----------
mjr 82:4f6209cb5c33 54
mjr 82:4f6209cb5c33 55 // Initialize the physical sensor device. This is called at startup
mjr 82:4f6209cb5c33 56 // to set up the device for first use.
mjr 82:4f6209cb5c33 57 virtual void init() { }
mjr 82:4f6209cb5c33 58
mjr 82:4f6209cb5c33 59 // Auto-zero the plunger. Relative sensor types, such as quadrature
mjr 82:4f6209cb5c33 60 // sensors, can lose sync with the absolute position over time if they
mjr 82:4f6209cb5c33 61 // ever miss any motion. We can automatically correct for this by
mjr 82:4f6209cb5c33 62 // resetting to the park position after periods of inactivity. It's
mjr 82:4f6209cb5c33 63 // usually safe to assume that the plunger is at the park position if it
mjr 82:4f6209cb5c33 64 // hasn't moved in a long time, since the spring always returns it to
mjr 82:4f6209cb5c33 65 // that position when it isn't being manipulated. The main loop monitors
mjr 82:4f6209cb5c33 66 // for motion, and calls this after a long enough time goes by without
mjr 82:4f6209cb5c33 67 // seeing any movement. Sensor types that are inherently absolute
mjr 82:4f6209cb5c33 68 // (TSL1410, potentiometers) shouldn't do anything here.
mjr 82:4f6209cb5c33 69 virtual void autoZero() { }
mjr 82:4f6209cb5c33 70
mjr 82:4f6209cb5c33 71 // Is the sensor ready to take a reading? The optical sensor requires
mjr 82:4f6209cb5c33 72 // a fairly long time (2.5ms) to transfer the data for each reading, but
mjr 82:4f6209cb5c33 73 // this is done via DMA, so we can carry on other work while the transfer
mjr 82:4f6209cb5c33 74 // takes place. This lets us poll the sensor to see if it's still busy
mjr 82:4f6209cb5c33 75 // working on the current reading's data transfer.
mjr 82:4f6209cb5c33 76 virtual bool ready() { return true; }
mjr 82:4f6209cb5c33 77
mjr 87:8d35c74403af 78 // Is a plunger DMA operation in progress?
mjr 87:8d35c74403af 79 virtual bool dmaBusy() { return false; }
mjr 87:8d35c74403af 80
mjr 82:4f6209cb5c33 81 // Read the sensor position, if possible. Returns true on success,
mjr 82:4f6209cb5c33 82 // false if it wasn't possible to take a reading. On success, fills
mjr 86:e30a1f60f783 83 // in 'r' with the current reading and timestamp and returns true.
mjr 86:e30a1f60f783 84 // Returns false if a reading couldn't be taken.
mjr 82:4f6209cb5c33 85 //
mjr 86:e30a1f60f783 86 // r.pos is set to the normalized position reading, and r.t is set to
mjr 86:e30a1f60f783 87 // the timestamp of the reading.
mjr 82:4f6209cb5c33 88 //
mjr 86:e30a1f60f783 89 // The normalized position is the sensor reading, corrected for jitter,
mjr 86:e30a1f60f783 90 // and adjusted to the abstract 0x0000..0xFFFF range.
mjr 86:e30a1f60f783 91 //
mjr 86:e30a1f60f783 92 // The timestamp is the time the sensor reading was taken, relative to
mjr 86:e30a1f60f783 93 // an arbitrary zero point. The arbitrary zero point makes this useful
mjr 86:e30a1f60f783 94 // only for calculating the time between readings. Note that the 32-bit
mjr 86:e30a1f60f783 95 // timestamp rolls over about every 71 minutes, so it should only be
mjr 86:e30a1f60f783 96 // used for time differences between readings taken fairly close together.
mjr 86:e30a1f60f783 97 // In practice, the higher level code only uses this for a few consecutive
mjr 86:e30a1f60f783 98 // readings to calculate (nearly) instantaneous velocities, so the time
mjr 86:e30a1f60f783 99 // spans are only tens of milliseconds.
mjr 82:4f6209cb5c33 100 //
mjr 82:4f6209cb5c33 101 // Timing requirements: for best results, readings should be taken
mjr 86:e30a1f60f783 102 // in well under 5ms. The release motion of the physical plunger
mjr 86:e30a1f60f783 103 // takes from 30ms to 50ms, so we need to collect samples much faster
mjr 86:e30a1f60f783 104 // than that to avoid aliasing during the bounce.
mjr 86:e30a1f60f783 105 bool read(PlungerReading &r)
mjr 86:e30a1f60f783 106 {
mjr 86:e30a1f60f783 107 // get the raw reading
mjr 86:e30a1f60f783 108 if (readRaw(r))
mjr 86:e30a1f60f783 109 {
mjr 86:e30a1f60f783 110 // process it through the jitter filter
mjr 87:8d35c74403af 111 r.pos = jitterFilter(r.pos);
mjr 86:e30a1f60f783 112
mjr 86:e30a1f60f783 113 // adjust to the abstract scale via the scaling factor
mjr 86:e30a1f60f783 114 r.pos = uint16_t(uint32_t((scalingFactor * r.pos) + 32768) >> 16);
mjr 86:e30a1f60f783 115
mjr 86:e30a1f60f783 116 // success
mjr 86:e30a1f60f783 117 return true;
mjr 86:e30a1f60f783 118 }
mjr 86:e30a1f60f783 119 else
mjr 86:e30a1f60f783 120 {
mjr 86:e30a1f60f783 121 // no reading is available
mjr 86:e30a1f60f783 122 return false;
mjr 86:e30a1f60f783 123 }
mjr 86:e30a1f60f783 124 }
mjr 86:e30a1f60f783 125
mjr 86:e30a1f60f783 126 // Get a raw plunger reading. This gets the raw sensor reading with
mjr 86:e30a1f60f783 127 // timestamp, without jitter filtering and without any scale adjustment.
mjr 86:e30a1f60f783 128 virtual bool readRaw(PlungerReading &r) = 0;
mjr 82:4f6209cb5c33 129
mjr 82:4f6209cb5c33 130 // Begin calibration. The main loop calls this when the user activates
mjr 82:4f6209cb5c33 131 // calibration mode. Sensors that work in terms of relative positions,
mjr 82:4f6209cb5c33 132 // such as quadrature-based sensors, can use this to set the reference
mjr 82:4f6209cb5c33 133 // point for the park position internally.
mjr 82:4f6209cb5c33 134 virtual void beginCalibration() { }
mjr 82:4f6209cb5c33 135
mjr 82:4f6209cb5c33 136 // Send a sensor status report to the host, via the joystick interface.
mjr 82:4f6209cb5c33 137 // This provides some common information for all sensor types, and also
mjr 82:4f6209cb5c33 138 // includes a full image snapshot of the current sensor pixels for
mjr 82:4f6209cb5c33 139 // imaging sensor types.
mjr 82:4f6209cb5c33 140 //
mjr 82:4f6209cb5c33 141 // The default implementation here sends the common information
mjr 82:4f6209cb5c33 142 // packet, with the pixel size set to 0.
mjr 82:4f6209cb5c33 143 //
mjr 82:4f6209cb5c33 144 // 'flags' is a combination of bit flags:
mjr 82:4f6209cb5c33 145 // 0x01 -> low-res scan (default is high res scan)
mjr 82:4f6209cb5c33 146 //
mjr 82:4f6209cb5c33 147 // Low-res scan mode means that the sensor should send a scaled-down
mjr 82:4f6209cb5c33 148 // image, at a reduced size determined by the sensor subtype. The
mjr 82:4f6209cb5c33 149 // default if this flag isn't set is to send the full image, at the
mjr 82:4f6209cb5c33 150 // sensor's native pixel size. The low-res version is a reduced size
mjr 82:4f6209cb5c33 151 // image in the normal sense of scaling down a photo image, keeping the
mjr 82:4f6209cb5c33 152 // image intact but at reduced resolution. Note that low-res mode
mjr 82:4f6209cb5c33 153 // doesn't affect the ongoing sensor operation at all. It only applies
mjr 82:4f6209cb5c33 154 // to this single pixel report. The purpose is simply to reduce the USB
mjr 82:4f6209cb5c33 155 // transmission time for the image, to allow for a faster frame rate for
mjr 82:4f6209cb5c33 156 // displaying the sensor image in real time on the PC. For a high-res
mjr 82:4f6209cb5c33 157 // sensor like the TSL1410R, sending the full pixel array by USB takes
mjr 82:4f6209cb5c33 158 // so long that the frame rate is way below regular video rates.
mjr 82:4f6209cb5c33 159 //
mjr 82:4f6209cb5c33 160 // 'exposureTime' is the amount of extra time to add to the exposure,
mjr 82:4f6209cb5c33 161 // in 100us (.1ms) increments. For imaging sensors, the frame we report
mjr 82:4f6209cb5c33 162 // is exposed for the minimum exposure time plus this added time. This
mjr 82:4f6209cb5c33 163 // allows the host to take readings at different exposure levels for
mjr 82:4f6209cb5c33 164 // calibration purposes. Non-imaging sensors ignore this.
mjr 82:4f6209cb5c33 165 virtual void sendStatusReport(
mjr 82:4f6209cb5c33 166 class USBJoystick &js, uint8_t flags, uint8_t exposureTime)
mjr 82:4f6209cb5c33 167 {
mjr 82:4f6209cb5c33 168 // read the current position
mjr 82:4f6209cb5c33 169 int pos = 0xFFFF;
mjr 82:4f6209cb5c33 170 PlungerReading r;
mjr 86:e30a1f60f783 171 if (readRaw(r))
mjr 82:4f6209cb5c33 172 {
mjr 86:e30a1f60f783 173 // success - apply the jitter filter
mjr 86:e30a1f60f783 174 pos = jitterFilter(r.pos);
mjr 82:4f6209cb5c33 175 }
mjr 82:4f6209cb5c33 176
mjr 82:4f6209cb5c33 177 // Send the common status information, indicating 0 pixels, standard
mjr 82:4f6209cb5c33 178 // sensor orientation, and zero processing time. Non-imaging sensors
mjr 86:e30a1f60f783 179 // usually don't have any way to detect the orientation, so assume
mjr 86:e30a1f60f783 180 // normal orientation (flag 0x01). Also assume zero analysis time,
mjr 86:e30a1f60f783 181 // as most non-image sensors don't have to do anything CPU-intensive
mjr 86:e30a1f60f783 182 // with the raw readings (all they usually have to do is scale the
mjr 86:e30a1f60f783 183 // value to the abstract reporting range).
mjr 86:e30a1f60f783 184 js.sendPlungerStatus(0, pos, 0x01, getAvgScanTime(), 0);
mjr 86:e30a1f60f783 185 js.sendPlungerStatus2(nativeScale, jfLo, jfHi, r.pos, 0);
mjr 82:4f6209cb5c33 186 }
mjr 82:4f6209cb5c33 187
mjr 82:4f6209cb5c33 188 // Get the average sensor scan time in microseconds
mjr 82:4f6209cb5c33 189 virtual uint32_t getAvgScanTime() = 0;
mjr 82:4f6209cb5c33 190
mjr 86:e30a1f60f783 191 // Apply the jitter filter
mjr 86:e30a1f60f783 192 int jitterFilter(int pos)
mjr 86:e30a1f60f783 193 {
mjr 86:e30a1f60f783 194 // Check to see where the new reading is relative to the
mjr 86:e30a1f60f783 195 // current window
mjr 86:e30a1f60f783 196 if (pos < jfLo)
mjr 86:e30a1f60f783 197 {
mjr 86:e30a1f60f783 198 // the new position is below the current window, so move
mjr 86:e30a1f60f783 199 // the window down such that the new point is at the bottom
mjr 86:e30a1f60f783 200 // of the window
mjr 86:e30a1f60f783 201 jfLo = pos;
mjr 86:e30a1f60f783 202 jfHi = pos + jfWindow;
mjr 87:8d35c74403af 203
mjr 87:8d35c74403af 204 // figure the new position as the centerpoint of the new window
mjr 87:8d35c74403af 205 jfLast = pos = (jfHi + jfLo)/2;
mjr 86:e30a1f60f783 206 return pos;
mjr 86:e30a1f60f783 207 }
mjr 86:e30a1f60f783 208 else if (pos > jfHi)
mjr 86:e30a1f60f783 209 {
mjr 86:e30a1f60f783 210 // the new position is above the current window, so move
mjr 86:e30a1f60f783 211 // the window up such that the new point is at the top of
mjr 86:e30a1f60f783 212 // the window
mjr 86:e30a1f60f783 213 jfHi = pos;
mjr 86:e30a1f60f783 214 jfLo = pos - jfWindow;
mjr 87:8d35c74403af 215
mjr 87:8d35c74403af 216 // figure the new position as the centerpoint of the new window
mjr 87:8d35c74403af 217 jfLast = pos = (jfHi + jfLo)/2;
mjr 86:e30a1f60f783 218 return pos;
mjr 86:e30a1f60f783 219 }
mjr 86:e30a1f60f783 220 else
mjr 86:e30a1f60f783 221 {
mjr 86:e30a1f60f783 222 // the new position is inside the current window, so repeat
mjr 86:e30a1f60f783 223 // the last reading
mjr 86:e30a1f60f783 224 return jfLast;
mjr 86:e30a1f60f783 225 }
mjr 86:e30a1f60f783 226 }
mjr 86:e30a1f60f783 227
mjr 87:8d35c74403af 228 // Process a configuration variable change. 'varno' is the
mjr 87:8d35c74403af 229 // USB protocol variable number being updated; 'cfg' is the
mjr 87:8d35c74403af 230 // updated configuration.
mjr 87:8d35c74403af 231 virtual void onConfigChange(int varno, Config &cfg)
mjr 87:8d35c74403af 232 {
mjr 87:8d35c74403af 233 switch (varno)
mjr 87:8d35c74403af 234 {
mjr 87:8d35c74403af 235 case 19:
mjr 87:8d35c74403af 236 // jitter window
mjr 87:8d35c74403af 237 setJitterWindow(cfg.plunger.jitterWindow);
mjr 87:8d35c74403af 238 break;
mjr 87:8d35c74403af 239 }
mjr 87:8d35c74403af 240 }
mjr 87:8d35c74403af 241
mjr 86:e30a1f60f783 242 // Set the jitter filter window size. This is specified in native
mjr 86:e30a1f60f783 243 // sensor units.
mjr 86:e30a1f60f783 244 void setJitterWindow(int w)
mjr 86:e30a1f60f783 245 {
mjr 86:e30a1f60f783 246 // set the new window size
mjr 86:e30a1f60f783 247 jfWindow = w;
mjr 86:e30a1f60f783 248
mjr 86:e30a1f60f783 249 // reset the running window
mjr 86:e30a1f60f783 250 jfHi = jfLo = jfLast;
mjr 86:e30a1f60f783 251 }
mjr 86:e30a1f60f783 252
mjr 82:4f6209cb5c33 253 protected:
mjr 86:e30a1f60f783 254 // Native scale of the device. This is the scale used for the position
mjr 86:e30a1f60f783 255 // reading in status reports. This lets us report the position in the
mjr 86:e30a1f60f783 256 // same units the sensor itself uses, to avoid any rounding error
mjr 86:e30a1f60f783 257 // converting to an abstract scale.
mjr 86:e30a1f60f783 258 //
mjr 86:e30a1f60f783 259 // Image edge detection sensors use the pixel size of the image, since
mjr 86:e30a1f60f783 260 // the position is determined by the pixel position of the shadow in
mjr 86:e30a1f60f783 261 // the image. Quadrature sensors and other sensors that report the
mjr 86:e30a1f60f783 262 // distance in terms of physical distance units should use the number
mjr 86:e30a1f60f783 263 // of quanta in the approximate total plunger travel distance of 3".
mjr 86:e30a1f60f783 264 // For example, the VL6180X uses millimeter quanta, so can report
mjr 86:e30a1f60f783 265 // about 77 quanta over 3"; a quadrature sensor that reports at 1/300"
mjr 86:e30a1f60f783 266 // intervals has about 900 quanta over 3". Absolute encoders (e.g.,
mjr 86:e30a1f60f783 267 // bar code sensors) should use the bar code range.
mjr 86:e30a1f60f783 268 //
mjr 86:e30a1f60f783 269 // Sensors that are inherently analog (e.g., potentiometers, analog
mjr 86:e30a1f60f783 270 // distance sensors) can quantize on any arbitrary scale. In most cases,
mjr 86:e30a1f60f783 271 // it's best to use the same 0..65535 scale used for the regular plunger
mjr 86:e30a1f60f783 272 // reports.
mjr 86:e30a1f60f783 273 uint16_t nativeScale;
mjr 86:e30a1f60f783 274
mjr 86:e30a1f60f783 275 // Scaling factor to convert native readings to abstract units on the
mjr 86:e30a1f60f783 276 // 0x0000..0xFFFF scale used in the higher level sensor-independent
mjr 86:e30a1f60f783 277 // code. Multiply a raw sensor position reading by this value to
mjr 86:e30a1f60f783 278 // get the equivalent value on the abstract scale. This is expressed
mjr 86:e30a1f60f783 279 // as a fixed-point real number with a scale of 65536: calculate it as
mjr 86:e30a1f60f783 280 //
mjr 86:e30a1f60f783 281 // (65535U*65536U) / (nativeScale - 1);
mjr 86:e30a1f60f783 282 uint32_t scalingFactor;
mjr 86:e30a1f60f783 283
mjr 86:e30a1f60f783 284 // Jitter filtering
mjr 86:e30a1f60f783 285 int jfWindow; // window size, in native sensor units
mjr 86:e30a1f60f783 286 int jfLo, jfHi; // bounds of current window
mjr 86:e30a1f60f783 287 int jfLast; // last filtered reading
mjr 82:4f6209cb5c33 288 };
mjr 82:4f6209cb5c33 289
mjr 87:8d35c74403af 290
mjr 87:8d35c74403af 291 // --------------------------------------------------------------------------
mjr 87:8d35c74403af 292 //
mjr 87:8d35c74403af 293 // Generic image sensor interface for image-based plungers
mjr 87:8d35c74403af 294 //
mjr 87:8d35c74403af 295 class PlungerSensorImageInterface
mjr 87:8d35c74403af 296 {
mjr 87:8d35c74403af 297 public:
mjr 87:8d35c74403af 298 PlungerSensorImageInterface(int npix)
mjr 87:8d35c74403af 299 {
mjr 87:8d35c74403af 300 native_npix = npix;
mjr 87:8d35c74403af 301 }
mjr 87:8d35c74403af 302
mjr 87:8d35c74403af 303 // initialize the sensor
mjr 87:8d35c74403af 304 virtual void init() = 0;
mjr 87:8d35c74403af 305
mjr 87:8d35c74403af 306 // is the sensor ready?
mjr 87:8d35c74403af 307 virtual bool ready() = 0;
mjr 87:8d35c74403af 308
mjr 87:8d35c74403af 309 // is a DMA transfer in progress?
mjr 87:8d35c74403af 310 virtual bool dmaBusy() = 0;
mjr 87:8d35c74403af 311
mjr 87:8d35c74403af 312 // read the image
mjr 87:8d35c74403af 313 virtual void readPix(uint8_t* &pix, uint32_t &t, int axcTime) = 0;
mjr 87:8d35c74403af 314
mjr 87:8d35c74403af 315 // Get an image for a pixel status report. 't' is the timestamp of
mjr 87:8d35c74403af 316 // the image. 'extraTime' is extra exposure time for the image, in
mjr 87:8d35c74403af 317 // 0.1ms increments.
mjr 87:8d35c74403af 318 virtual void getStatusReportPixels(
mjr 87:8d35c74403af 319 uint8_t* &pix, uint32_t &t, int axcTime, int extraTime) = 0;
mjr 87:8d35c74403af 320
mjr 87:8d35c74403af 321 // Reset the sensor after a status report. Status reports take a long
mjr 87:8d35c74403af 322 // time to send, so sensors that use continuous integration cycling may
mjr 87:8d35c74403af 323 // need to reset after a status report so that they aren't overexposed
mjr 87:8d35c74403af 324 // by the long delay of sending the status report.
mjr 87:8d35c74403af 325 virtual void resetAfterStatusReport(int axcTime) = 0;
mjr 87:8d35c74403af 326
mjr 87:8d35c74403af 327 // get the average sensor pixel scan time (the time it takes on average
mjr 87:8d35c74403af 328 // to read one image frame from the sensor)
mjr 87:8d35c74403af 329 virtual uint32_t getAvgScanTime() = 0;
mjr 87:8d35c74403af 330
mjr 87:8d35c74403af 331 protected:
mjr 87:8d35c74403af 332 // number of pixels on sensor
mjr 87:8d35c74403af 333 int native_npix;
mjr 87:8d35c74403af 334 };
mjr 87:8d35c74403af 335
mjr 87:8d35c74403af 336
mjr 87:8d35c74403af 337 // ----------------------------------------------------------------------------
mjr 87:8d35c74403af 338 //
mjr 87:8d35c74403af 339 // Plunger base class for image-based sensors
mjr 87:8d35c74403af 340 //
mjr 87:8d35c74403af 341 template<class ProcessResult>
mjr 87:8d35c74403af 342 class PlungerSensorImage: public PlungerSensor
mjr 87:8d35c74403af 343 {
mjr 87:8d35c74403af 344 public:
mjr 87:8d35c74403af 345 PlungerSensorImage(PlungerSensorImageInterface &sensor, int npix, int nativeScale)
mjr 87:8d35c74403af 346 : PlungerSensor(nativeScale), sensor(sensor)
mjr 87:8d35c74403af 347 {
mjr 87:8d35c74403af 348 axcTime = 0;
mjr 87:8d35c74403af 349 native_npix = npix;
mjr 87:8d35c74403af 350 }
mjr 87:8d35c74403af 351
mjr 87:8d35c74403af 352 // initialize the sensor
mjr 87:8d35c74403af 353 virtual void init() { sensor.init(); }
mjr 87:8d35c74403af 354
mjr 87:8d35c74403af 355 // is the sensor ready?
mjr 87:8d35c74403af 356 virtual bool ready() { return sensor.ready(); }
mjr 87:8d35c74403af 357
mjr 87:8d35c74403af 358 // is a DMA transfer in progress?
mjr 87:8d35c74403af 359 virtual bool dmaBusy() { return sensor.dmaBusy(); }
mjr 87:8d35c74403af 360
mjr 87:8d35c74403af 361 // get the pixel transfer time
mjr 87:8d35c74403af 362 virtual uint32_t getAvgScanTime() { return sensor.getAvgScanTime(); }
mjr 87:8d35c74403af 363
mjr 87:8d35c74403af 364 // read the plunger position
mjr 87:8d35c74403af 365 virtual bool readRaw(PlungerReading &r)
mjr 87:8d35c74403af 366 {
mjr 87:8d35c74403af 367 // read pixels from the sensor
mjr 87:8d35c74403af 368 uint8_t *pix;
mjr 87:8d35c74403af 369 uint32_t tpix;
mjr 87:8d35c74403af 370 sensor.readPix(pix, tpix, axcTime);
mjr 87:8d35c74403af 371
mjr 87:8d35c74403af 372 // process the pixels
mjr 87:8d35c74403af 373 int pixpos;
mjr 87:8d35c74403af 374 ProcessResult res;
mjr 87:8d35c74403af 375 if (process(pix, native_npix, pixpos, res))
mjr 87:8d35c74403af 376 {
mjr 87:8d35c74403af 377 r.pos = pixpos;
mjr 87:8d35c74403af 378 r.t = tpix;
mjr 87:8d35c74403af 379
mjr 87:8d35c74403af 380 // success
mjr 87:8d35c74403af 381 return true;
mjr 87:8d35c74403af 382 }
mjr 87:8d35c74403af 383 else
mjr 87:8d35c74403af 384 {
mjr 87:8d35c74403af 385 // no position found
mjr 87:8d35c74403af 386 return false;
mjr 87:8d35c74403af 387 }
mjr 87:8d35c74403af 388 }
mjr 87:8d35c74403af 389
mjr 87:8d35c74403af 390 // Send a status report to the joystick interface.
mjr 87:8d35c74403af 391 // See plunger.h for details on the arguments.
mjr 87:8d35c74403af 392 virtual void sendStatusReport(USBJoystick &js, uint8_t flags, uint8_t extraTime)
mjr 87:8d35c74403af 393 {
mjr 87:8d35c74403af 394 // get pixels
mjr 87:8d35c74403af 395 uint8_t *pix;
mjr 87:8d35c74403af 396 uint32_t t;
mjr 87:8d35c74403af 397 sensor.getStatusReportPixels(pix, t, axcTime, extraTime);
mjr 87:8d35c74403af 398
mjr 87:8d35c74403af 399 // start a timer to measure the processing time
mjr 87:8d35c74403af 400 Timer pt;
mjr 87:8d35c74403af 401 pt.start();
mjr 87:8d35c74403af 402
mjr 87:8d35c74403af 403 // process the pixels and read the position
mjr 87:8d35c74403af 404 int pos, rawPos;
mjr 87:8d35c74403af 405 int n = native_npix;
mjr 87:8d35c74403af 406 ProcessResult res;
mjr 87:8d35c74403af 407 if (process(pix, n, rawPos, res))
mjr 87:8d35c74403af 408 {
mjr 87:8d35c74403af 409 // success - apply the jitter filter
mjr 87:8d35c74403af 410 pos = jitterFilter(rawPos);
mjr 87:8d35c74403af 411 }
mjr 87:8d35c74403af 412 else
mjr 87:8d35c74403af 413 {
mjr 87:8d35c74403af 414 // report 0xFFFF to indicate that the position wasn't read
mjr 87:8d35c74403af 415 pos = 0xFFFF;
mjr 87:8d35c74403af 416 rawPos = 0xFFFF;
mjr 87:8d35c74403af 417 }
mjr 87:8d35c74403af 418
mjr 87:8d35c74403af 419 // note the processing time
mjr 87:8d35c74403af 420 uint32_t processTime = pt.read_us();
mjr 87:8d35c74403af 421
mjr 87:8d35c74403af 422 // If a low-res scan is desired, reduce to a subset of pixels. Ignore
mjr 87:8d35c74403af 423 // this for smaller sensors (below 512 pixels)
mjr 87:8d35c74403af 424 if ((flags & 0x01) && n >= 512)
mjr 87:8d35c74403af 425 {
mjr 87:8d35c74403af 426 // figure how many sensor pixels we combine into each low-res pixel
mjr 87:8d35c74403af 427 const int group = 8;
mjr 87:8d35c74403af 428 int lowResPix = n / group;
mjr 87:8d35c74403af 429
mjr 87:8d35c74403af 430 // combine the pixels
mjr 87:8d35c74403af 431 int src, dst;
mjr 87:8d35c74403af 432 for (src = dst = 0 ; dst < lowResPix ; ++dst)
mjr 87:8d35c74403af 433 {
mjr 87:8d35c74403af 434 // average this block of pixels
mjr 87:8d35c74403af 435 int a = 0;
mjr 87:8d35c74403af 436 for (int j = 0 ; j < group ; ++j)
mjr 87:8d35c74403af 437 a += pix[src++];
mjr 87:8d35c74403af 438
mjr 87:8d35c74403af 439 // we have the sum, so get the average
mjr 87:8d35c74403af 440 a /= group;
mjr 87:8d35c74403af 441
mjr 87:8d35c74403af 442 // store the down-res'd pixel in the array
mjr 87:8d35c74403af 443 pix[dst] = uint8_t(a);
mjr 87:8d35c74403af 444 }
mjr 87:8d35c74403af 445
mjr 87:8d35c74403af 446 // update the pixel count to the reduced array size
mjr 87:8d35c74403af 447 n = lowResPix;
mjr 87:8d35c74403af 448 }
mjr 87:8d35c74403af 449
mjr 87:8d35c74403af 450 // figure the report flags
mjr 87:8d35c74403af 451 int jsflags = 0;
mjr 87:8d35c74403af 452
mjr 87:8d35c74403af 453 // add flags for the detected orientation: 0x01 for normal orientation,
mjr 87:8d35c74403af 454 // 0x02 for reversed orientation; no flags if orientation is unknown
mjr 87:8d35c74403af 455 int dir = getOrientation();
mjr 87:8d35c74403af 456 if (dir == 1)
mjr 87:8d35c74403af 457 jsflags |= 0x01;
mjr 87:8d35c74403af 458 else if (dir == -1)
mjr 87:8d35c74403af 459 jsflags |= 0x02;
mjr 87:8d35c74403af 460
mjr 87:8d35c74403af 461 // send the sensor status report headers
mjr 87:8d35c74403af 462 js.sendPlungerStatus(n, pos, jsflags, sensor.getAvgScanTime(), processTime);
mjr 87:8d35c74403af 463 js.sendPlungerStatus2(nativeScale, jfLo, jfHi, rawPos, axcTime);
mjr 87:8d35c74403af 464
mjr 87:8d35c74403af 465 // send any extra status headers for subclasses
mjr 87:8d35c74403af 466 extraStatusHeaders(js, res);
mjr 87:8d35c74403af 467
mjr 87:8d35c74403af 468 // If we're not in calibration mode, send the pixels
mjr 87:8d35c74403af 469 extern bool plungerCalMode;
mjr 87:8d35c74403af 470 if (!plungerCalMode)
mjr 87:8d35c74403af 471 {
mjr 87:8d35c74403af 472 // send the pixels in report-sized chunks until we get them all
mjr 87:8d35c74403af 473 int idx = 0;
mjr 87:8d35c74403af 474 while (idx < n)
mjr 87:8d35c74403af 475 js.sendPlungerPix(idx, n, pix);
mjr 87:8d35c74403af 476 }
mjr 87:8d35c74403af 477
mjr 87:8d35c74403af 478 // reset the sensor, if necessary
mjr 87:8d35c74403af 479 sensor.resetAfterStatusReport(axcTime);
mjr 87:8d35c74403af 480 }
mjr 87:8d35c74403af 481
mjr 87:8d35c74403af 482 protected:
mjr 87:8d35c74403af 483 // process an image to read the plunger position
mjr 87:8d35c74403af 484 virtual bool process(const uint8_t *pix, int npix, int &rawPos, ProcessResult &res) = 0;
mjr 87:8d35c74403af 485
mjr 87:8d35c74403af 486 // send extra status headers, following the standard headers (types 0 and 1)
mjr 87:8d35c74403af 487 virtual void extraStatusHeaders(USBJoystick &js, ProcessResult &res) { }
mjr 87:8d35c74403af 488
mjr 87:8d35c74403af 489 // get the detected orientation
mjr 87:8d35c74403af 490 virtual int getOrientation() const { return 0; }
mjr 87:8d35c74403af 491
mjr 87:8d35c74403af 492 // underlying hardware sensor interface
mjr 87:8d35c74403af 493 PlungerSensorImageInterface &sensor;
mjr 87:8d35c74403af 494
mjr 87:8d35c74403af 495 // number of pixels
mjr 87:8d35c74403af 496 int native_npix;
mjr 87:8d35c74403af 497
mjr 87:8d35c74403af 498 // auto-exposure time
mjr 87:8d35c74403af 499 uint32_t axcTime;
mjr 87:8d35c74403af 500 };
mjr 87:8d35c74403af 501
mjr 87:8d35c74403af 502
mjr 82:4f6209cb5c33 503 #endif /* PLUNGER_H */