
An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.
Dependencies: mbed FastIO FastPWM USBDevice
Fork of Pinscape_Controller by
This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.
In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.
A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.
You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.
Downloads
- Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
- Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.
Documentation
The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.
You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).
System Requirements
The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.
The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.
Main Features
Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.
Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.
Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.
Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.
Expansion Boards
There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".
In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.
The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.
Update notes
If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.
First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.
Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.
New Features
V2 has numerous new features. Here are some of the highlights...
Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.
Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.
Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.
Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.
Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.
Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.
IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.
Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.
More Downloads
- Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).
Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
- Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
- Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
- Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.
Copyright and License
The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.
Warning to VirtuaPin Kit Owners
This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.
main.cpp@72:884207c0aab0, 2017-01-04 (annotated)
- Committer:
- mjr
- Date:
- Wed Jan 04 20:14:12 2017 +0000
- Revision:
- 72:884207c0aab0
- Parent:
- 70:9f58735a1732
- Child:
- 73:4e8ce0b18915
Include shifted buttons when deciding whether or not to create a USB keyboard interface during initialization
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
mjr | 51:57eb311faafa | 1 | /* Copyright 2014, 2016 M J Roberts, MIT License |
mjr | 5:a70c0bce770d | 2 | * |
mjr | 5:a70c0bce770d | 3 | * Permission is hereby granted, free of charge, to any person obtaining a copy of this software |
mjr | 5:a70c0bce770d | 4 | * and associated documentation files (the "Software"), to deal in the Software without |
mjr | 5:a70c0bce770d | 5 | * restriction, including without limitation the rights to use, copy, modify, merge, publish, |
mjr | 5:a70c0bce770d | 6 | * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the |
mjr | 5:a70c0bce770d | 7 | * Software is furnished to do so, subject to the following conditions: |
mjr | 5:a70c0bce770d | 8 | * |
mjr | 5:a70c0bce770d | 9 | * The above copyright notice and this permission notice shall be included in all copies or |
mjr | 5:a70c0bce770d | 10 | * substantial portions of the Software. |
mjr | 5:a70c0bce770d | 11 | * |
mjr | 5:a70c0bce770d | 12 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING |
mjr | 48:058ace2aed1d | 13 | * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND |
mjr | 5:a70c0bce770d | 14 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, |
mjr | 5:a70c0bce770d | 15 | * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
mjr | 5:a70c0bce770d | 16 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
mjr | 5:a70c0bce770d | 17 | */ |
mjr | 5:a70c0bce770d | 18 | |
mjr | 5:a70c0bce770d | 19 | // |
mjr | 35:e959ffba78fd | 20 | // The Pinscape Controller |
mjr | 35:e959ffba78fd | 21 | // A comprehensive input/output controller for virtual pinball machines |
mjr | 5:a70c0bce770d | 22 | // |
mjr | 48:058ace2aed1d | 23 | // This project implements an I/O controller for virtual pinball cabinets. The |
mjr | 48:058ace2aed1d | 24 | // controller's function is to connect Visual Pinball (and other Windows pinball |
mjr | 48:058ace2aed1d | 25 | // emulators) with physical devices in the cabinet: buttons, sensors, and |
mjr | 48:058ace2aed1d | 26 | // feedback devices that create visual or mechanical effects during play. |
mjr | 38:091e511ce8a0 | 27 | // |
mjr | 48:058ace2aed1d | 28 | // The controller can perform several different functions, which can be used |
mjr | 38:091e511ce8a0 | 29 | // individually or in any combination: |
mjr | 5:a70c0bce770d | 30 | // |
mjr | 38:091e511ce8a0 | 31 | // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the |
mjr | 38:091e511ce8a0 | 32 | // motion of the cabinet when you nudge it. Visual Pinball and other pinball |
mjr | 38:091e511ce8a0 | 33 | // emulators on the PC have native handling for this type of input, so that |
mjr | 38:091e511ce8a0 | 34 | // physical nudges on the cabinet turn into simulated effects on the virtual |
mjr | 38:091e511ce8a0 | 35 | // ball. The KL25Z measures accelerations as analog readings and is quite |
mjr | 38:091e511ce8a0 | 36 | // sensitive, so the effect of a nudge on the simulation is proportional |
mjr | 38:091e511ce8a0 | 37 | // to the strength of the nudge. Accelerations are reported to the PC via a |
mjr | 38:091e511ce8a0 | 38 | // simulated joystick (using the X and Y axes); you just have to set some |
mjr | 38:091e511ce8a0 | 39 | // preferences in your pinball software to tell it that an accelerometer |
mjr | 38:091e511ce8a0 | 40 | // is attached. |
mjr | 5:a70c0bce770d | 41 | // |
mjr | 38:091e511ce8a0 | 42 | // - Plunger position sensing, with mulitple sensor options. To use this feature, |
mjr | 35:e959ffba78fd | 43 | // you need to choose a sensor and set it up, connect the sensor electrically to |
mjr | 35:e959ffba78fd | 44 | // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how |
mjr | 35:e959ffba78fd | 45 | // the sensor is hooked up. The Pinscape software monitors the sensor and sends |
mjr | 35:e959ffba78fd | 46 | // readings to Visual Pinball via the joystick Z axis. VP and other PC software |
mjr | 38:091e511ce8a0 | 47 | // have native support for this type of input; as with the nudge setup, you just |
mjr | 38:091e511ce8a0 | 48 | // have to set some options in VP to activate the plunger. |
mjr | 17:ab3cec0c8bf4 | 49 | // |
mjr | 35:e959ffba78fd | 50 | // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R |
mjr | 35:e959ffba78fd | 51 | // linear sensor arrays) as well as slide potentiometers. The specific equipment |
mjr | 35:e959ffba78fd | 52 | // that's supported, along with physical mounting and wiring details, can be found |
mjr | 35:e959ffba78fd | 53 | // in the Build Guide. |
mjr | 35:e959ffba78fd | 54 | // |
mjr | 38:091e511ce8a0 | 55 | // Note VP has built-in support for plunger devices like this one, but some VP |
mjr | 38:091e511ce8a0 | 56 | // tables can't use it without some additional scripting work. The Build Guide has |
mjr | 38:091e511ce8a0 | 57 | // advice on adjusting tables to add plunger support when necessary. |
mjr | 5:a70c0bce770d | 58 | // |
mjr | 6:cc35eb643e8f | 59 | // For best results, the plunger sensor should be calibrated. The calibration |
mjr | 6:cc35eb643e8f | 60 | // is stored in non-volatile memory on board the KL25Z, so it's only necessary |
mjr | 6:cc35eb643e8f | 61 | // to do the calibration once, when you first install everything. (You might |
mjr | 6:cc35eb643e8f | 62 | // also want to re-calibrate if you physically remove and reinstall the CCD |
mjr | 17:ab3cec0c8bf4 | 63 | // sensor or the mechanical plunger, since their alignment shift change slightly |
mjr | 17:ab3cec0c8bf4 | 64 | // when you put everything back together.) You can optionally install a |
mjr | 17:ab3cec0c8bf4 | 65 | // dedicated momentary switch or pushbutton to activate the calibration mode; |
mjr | 17:ab3cec0c8bf4 | 66 | // this is describe in the project documentation. If you don't want to bother |
mjr | 17:ab3cec0c8bf4 | 67 | // with the extra button, you can also trigger calibration using the Windows |
mjr | 17:ab3cec0c8bf4 | 68 | // setup software, which you can find on the Pinscape project page. |
mjr | 6:cc35eb643e8f | 69 | // |
mjr | 17:ab3cec0c8bf4 | 70 | // The calibration procedure is described in the project documentation. Briefly, |
mjr | 17:ab3cec0c8bf4 | 71 | // when you trigger calibration mode, the software will scan the CCD for about |
mjr | 17:ab3cec0c8bf4 | 72 | // 15 seconds, during which you should simply pull the physical plunger back |
mjr | 17:ab3cec0c8bf4 | 73 | // all the way, hold it for a moment, and then slowly return it to the rest |
mjr | 17:ab3cec0c8bf4 | 74 | // position. (DON'T just release it from the retracted position, since that |
mjr | 17:ab3cec0c8bf4 | 75 | // let it shoot forward too far. We want to measure the range from the park |
mjr | 17:ab3cec0c8bf4 | 76 | // position to the fully retracted position only.) |
mjr | 5:a70c0bce770d | 77 | // |
mjr | 13:72dda449c3c0 | 78 | // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs |
mjr | 38:091e511ce8a0 | 79 | // for buttons and switches. You can wire each input to a physical pinball-style |
mjr | 38:091e511ce8a0 | 80 | // button or switch, such as flipper buttons, Start buttons, coin chute switches, |
mjr | 38:091e511ce8a0 | 81 | // tilt bobs, and service buttons. Each button can be configured to be reported |
mjr | 38:091e511ce8a0 | 82 | // to the PC as a joystick button or as a keyboard key (you can select which key |
mjr | 38:091e511ce8a0 | 83 | // is used for each button). |
mjr | 13:72dda449c3c0 | 84 | // |
mjr | 53:9b2611964afc | 85 | // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets |
mjr | 53:9b2611964afc | 86 | // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the |
mjr | 53:9b2611964afc | 87 | // KL25Z, and lets PC software (such as Visual Pinball) control them during game |
mjr | 53:9b2611964afc | 88 | // play to create a more immersive playing experience. The Pinscape software |
mjr | 53:9b2611964afc | 89 | // presents itself to the host as an LedWiz device and accepts the full LedWiz |
mjr | 53:9b2611964afc | 90 | // command set, so software on the PC designed for real LedWiz'es can control |
mjr | 53:9b2611964afc | 91 | // attached devices without any modifications. |
mjr | 5:a70c0bce770d | 92 | // |
mjr | 53:9b2611964afc | 93 | // Even though the software provides a very thorough LedWiz emulation, the KL25Z |
mjr | 53:9b2611964afc | 94 | // GPIO hardware design imposes some serious limitations. The big one is that |
mjr | 53:9b2611964afc | 95 | // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have |
mjr | 53:9b2611964afc | 96 | // varying-intensity outputs (e.g., for controlling the brightness level of an |
mjr | 53:9b2611964afc | 97 | // LED or the speed or a motor). You can control more than 10 output ports, but |
mjr | 53:9b2611964afc | 98 | // only 10 can have PWM control; the rest are simple "digital" ports that can only |
mjr | 53:9b2611964afc | 99 | // be switched fully on or fully off. The second limitation is that the KL25Z |
mjr | 53:9b2611964afc | 100 | // just doesn't have that many GPIO ports overall. There are enough to populate |
mjr | 53:9b2611964afc | 101 | // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is |
mjr | 53:9b2611964afc | 102 | // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade |
mjr | 53:9b2611964afc | 103 | // off more outputs for fewer inputs, or vice versa. The third limitation is that |
mjr | 53:9b2611964afc | 104 | // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't |
mjr | 53:9b2611964afc | 105 | // even enough to control a small LED. So in order to connect any kind of feedback |
mjr | 53:9b2611964afc | 106 | // device to an output, you *must* build some external circuitry to boost the |
mjr | 53:9b2611964afc | 107 | // current handing. The Build Guide has a reference circuit design for this |
mjr | 53:9b2611964afc | 108 | // purpose that's simple and inexpensive to build. |
mjr | 6:cc35eb643e8f | 109 | // |
mjr | 26:cb71c4af2912 | 110 | // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach |
mjr | 26:cb71c4af2912 | 111 | // external PWM controller chips for controlling device outputs, instead of using |
mjr | 53:9b2611964afc | 112 | // the on-board GPIO ports as described above. The software can control a set of |
mjr | 53:9b2611964afc | 113 | // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just |
mjr | 53:9b2611964afc | 114 | // need two of them to get the full complement of 32 output ports of a real LedWiz. |
mjr | 53:9b2611964afc | 115 | // You can hook up even more, though. Four chips gives you 64 ports, which should |
mjr | 53:9b2611964afc | 116 | // be plenty for nearly any virtual pinball project. To accommodate the larger |
mjr | 53:9b2611964afc | 117 | // supply of ports possible with the PWM chips, the controller software provides |
mjr | 53:9b2611964afc | 118 | // a custom, extended version of the LedWiz protocol that can handle up to 128 |
mjr | 53:9b2611964afc | 119 | // ports. PC software designed only for the real LedWiz obviously won't know |
mjr | 53:9b2611964afc | 120 | // about the extended protocol and won't be able to take advantage of its extra |
mjr | 53:9b2611964afc | 121 | // capabilities, but the latest version of DOF (DirectOutput Framework) *does* |
mjr | 53:9b2611964afc | 122 | // know the new language and can take full advantage. Older software will still |
mjr | 53:9b2611964afc | 123 | // work, though - the new extensions are all backward compatible, so old software |
mjr | 53:9b2611964afc | 124 | // that only knows about the original LedWiz protocol will still work, with the |
mjr | 53:9b2611964afc | 125 | // obvious limitation that it can only access the first 32 ports. |
mjr | 53:9b2611964afc | 126 | // |
mjr | 53:9b2611964afc | 127 | // The Pinscape Expansion Board project (which appeared in early 2016) provides |
mjr | 53:9b2611964afc | 128 | // a reference hardware design, with EAGLE circuit board layouts, that takes full |
mjr | 53:9b2611964afc | 129 | // advantage of the TLC5940 capability. It lets you create a customized set of |
mjr | 53:9b2611964afc | 130 | // outputs with full PWM control and power handling for high-current devices |
mjr | 53:9b2611964afc | 131 | // built in to the boards. |
mjr | 26:cb71c4af2912 | 132 | // |
mjr | 38:091e511ce8a0 | 133 | // - Night Mode control for output devices. You can connect a switch or button |
mjr | 38:091e511ce8a0 | 134 | // to the controller to activate "Night Mode", which disables feedback devices |
mjr | 38:091e511ce8a0 | 135 | // that you designate as noisy. You can designate outputs individually as being |
mjr | 38:091e511ce8a0 | 136 | // included in this set or not. This is useful if you want to play a game on |
mjr | 38:091e511ce8a0 | 137 | // your cabinet late at night without waking the kids and annoying the neighbors. |
mjr | 38:091e511ce8a0 | 138 | // |
mjr | 38:091e511ce8a0 | 139 | // - TV ON switch. The controller can pulse a relay to turn on your TVs after |
mjr | 38:091e511ce8a0 | 140 | // power to the cabinet comes on, with a configurable delay timer. This feature |
mjr | 38:091e511ce8a0 | 141 | // is for TVs that don't turn themselves on automatically when first plugged in. |
mjr | 38:091e511ce8a0 | 142 | // To use this feature, you have to build some external circuitry to allow the |
mjr | 38:091e511ce8a0 | 143 | // software to sense the power supply status, and you have to run wires to your |
mjr | 38:091e511ce8a0 | 144 | // TV's on/off button, which requires opening the case on your TV. The Build |
mjr | 38:091e511ce8a0 | 145 | // Guide has details on the necessary circuitry and connections to the TV. |
mjr | 38:091e511ce8a0 | 146 | // |
mjr | 35:e959ffba78fd | 147 | // |
mjr | 35:e959ffba78fd | 148 | // |
mjr | 33:d832bcab089e | 149 | // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current |
mjr | 33:d832bcab089e | 150 | // device status. The flash patterns are: |
mjr | 6:cc35eb643e8f | 151 | // |
mjr | 48:058ace2aed1d | 152 | // short yellow flash = waiting to connect |
mjr | 6:cc35eb643e8f | 153 | // |
mjr | 48:058ace2aed1d | 154 | // short red flash = the connection is suspended (the host is in sleep |
mjr | 48:058ace2aed1d | 155 | // or suspend mode, the USB cable is unplugged after a connection |
mjr | 48:058ace2aed1d | 156 | // has been established) |
mjr | 48:058ace2aed1d | 157 | // |
mjr | 48:058ace2aed1d | 158 | // two short red flashes = connection lost (the device should immediately |
mjr | 48:058ace2aed1d | 159 | // go back to short-yellow "waiting to reconnect" mode when a connection |
mjr | 48:058ace2aed1d | 160 | // is lost, so this display shouldn't normally appear) |
mjr | 6:cc35eb643e8f | 161 | // |
mjr | 38:091e511ce8a0 | 162 | // long red/yellow = USB connection problem. The device still has a USB |
mjr | 48:058ace2aed1d | 163 | // connection to the host (or so it appears to the device), but data |
mjr | 48:058ace2aed1d | 164 | // transmissions are failing. |
mjr | 38:091e511ce8a0 | 165 | // |
mjr | 6:cc35eb643e8f | 166 | // long yellow/green = everything's working, but the plunger hasn't |
mjr | 38:091e511ce8a0 | 167 | // been calibrated. Follow the calibration procedure described in |
mjr | 38:091e511ce8a0 | 168 | // the project documentation. This flash mode won't appear if there's |
mjr | 38:091e511ce8a0 | 169 | // no plunger sensor configured. |
mjr | 6:cc35eb643e8f | 170 | // |
mjr | 38:091e511ce8a0 | 171 | // alternating blue/green = everything's working normally, and plunger |
mjr | 38:091e511ce8a0 | 172 | // calibration has been completed (or there's no plunger attached) |
mjr | 10:976666ffa4ef | 173 | // |
mjr | 48:058ace2aed1d | 174 | // fast red/purple = out of memory. The controller halts and displays |
mjr | 48:058ace2aed1d | 175 | // this diagnostic code until you manually reset it. If this happens, |
mjr | 48:058ace2aed1d | 176 | // it's probably because the configuration is too complex, in which |
mjr | 48:058ace2aed1d | 177 | // case the same error will occur after the reset. If it's stuck |
mjr | 48:058ace2aed1d | 178 | // in this cycle, you'll have to restore the default configuration |
mjr | 48:058ace2aed1d | 179 | // by re-installing the controller software (the Pinscape .bin file). |
mjr | 10:976666ffa4ef | 180 | // |
mjr | 48:058ace2aed1d | 181 | // |
mjr | 48:058ace2aed1d | 182 | // USB PROTOCOL: Most of our USB messaging is through standard USB HID |
mjr | 48:058ace2aed1d | 183 | // classes (joystick, keyboard). We also accept control messages on our |
mjr | 48:058ace2aed1d | 184 | // primary HID interface "OUT endpoint" using a custom protocol that's |
mjr | 48:058ace2aed1d | 185 | // not defined in any USB standards (we do have to provide a USB HID |
mjr | 48:058ace2aed1d | 186 | // Report Descriptor for it, but this just describes the protocol as |
mjr | 48:058ace2aed1d | 187 | // opaque vendor-defined bytes). The control protocol incorporates the |
mjr | 48:058ace2aed1d | 188 | // LedWiz protocol as a subset, and adds our own private extensions. |
mjr | 48:058ace2aed1d | 189 | // For full details, see USBProtocol.h. |
mjr | 33:d832bcab089e | 190 | |
mjr | 33:d832bcab089e | 191 | |
mjr | 0:5acbbe3f4cf4 | 192 | #include "mbed.h" |
mjr | 6:cc35eb643e8f | 193 | #include "math.h" |
mjr | 48:058ace2aed1d | 194 | #include "pinscape.h" |
mjr | 0:5acbbe3f4cf4 | 195 | #include "USBJoystick.h" |
mjr | 0:5acbbe3f4cf4 | 196 | #include "MMA8451Q.h" |
mjr | 1:d913e0afb2ac | 197 | #include "tsl1410r.h" |
mjr | 1:d913e0afb2ac | 198 | #include "FreescaleIAP.h" |
mjr | 2:c174f9ee414a | 199 | #include "crc32.h" |
mjr | 26:cb71c4af2912 | 200 | #include "TLC5940.h" |
mjr | 34:6b981a2afab7 | 201 | #include "74HC595.h" |
mjr | 35:e959ffba78fd | 202 | #include "nvm.h" |
mjr | 35:e959ffba78fd | 203 | #include "plunger.h" |
mjr | 35:e959ffba78fd | 204 | #include "ccdSensor.h" |
mjr | 35:e959ffba78fd | 205 | #include "potSensor.h" |
mjr | 35:e959ffba78fd | 206 | #include "nullSensor.h" |
mjr | 48:058ace2aed1d | 207 | #include "TinyDigitalIn.h" |
mjr | 64:ef7ca92dff36 | 208 | #include "FastPWM.h" |
mjr | 2:c174f9ee414a | 209 | |
mjr | 21:5048e16cc9ef | 210 | #define DECL_EXTERNS |
mjr | 17:ab3cec0c8bf4 | 211 | #include "config.h" |
mjr | 17:ab3cec0c8bf4 | 212 | |
mjr | 53:9b2611964afc | 213 | |
mjr | 53:9b2611964afc | 214 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 215 | // |
mjr | 53:9b2611964afc | 216 | // OpenSDA module identifier. This is for the benefit of the Windows |
mjr | 53:9b2611964afc | 217 | // configuration tool. When the config tool installs a .bin file onto |
mjr | 53:9b2611964afc | 218 | // the KL25Z, it will first find the sentinel string within the .bin file, |
mjr | 53:9b2611964afc | 219 | // and patch the "\0" bytes that follow the sentinel string with the |
mjr | 53:9b2611964afc | 220 | // OpenSDA module ID data. This allows us to report the OpenSDA |
mjr | 53:9b2611964afc | 221 | // identifiers back to the host system via USB, which in turn allows the |
mjr | 53:9b2611964afc | 222 | // config tool to figure out which OpenSDA MSD (mass storage device - a |
mjr | 53:9b2611964afc | 223 | // virtual disk drive) correlates to which Pinscape controller USB |
mjr | 53:9b2611964afc | 224 | // interface. |
mjr | 53:9b2611964afc | 225 | // |
mjr | 53:9b2611964afc | 226 | // This is only important if multiple Pinscape devices are attached to |
mjr | 53:9b2611964afc | 227 | // the same host. There doesn't seem to be any other way to figure out |
mjr | 53:9b2611964afc | 228 | // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA |
mjr | 53:9b2611964afc | 229 | // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't |
mjr | 53:9b2611964afc | 230 | // have any way to learn about the OpenSDA module it's connected to. The |
mjr | 53:9b2611964afc | 231 | // only way to pass this information to the KL25Z side that I can come up |
mjr | 53:9b2611964afc | 232 | // with is to have the Windows host embed it in the .bin file before |
mjr | 53:9b2611964afc | 233 | // downloading it to the OpenSDA MSD. |
mjr | 53:9b2611964afc | 234 | // |
mjr | 53:9b2611964afc | 235 | // We initialize the const data buffer (the part after the sentinel string) |
mjr | 53:9b2611964afc | 236 | // with all "\0" bytes, so that's what will be in the executable image that |
mjr | 53:9b2611964afc | 237 | // comes out of the mbed compiler. If you manually install the resulting |
mjr | 53:9b2611964afc | 238 | // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes |
mjr | 53:9b2611964afc | 239 | // will stay this way and read as all 0's at run-time. Since a real TUID |
mjr | 53:9b2611964afc | 240 | // would never be all 0's, that tells us that we were never patched and |
mjr | 53:9b2611964afc | 241 | // thus don't have any information on the OpenSDA module. |
mjr | 53:9b2611964afc | 242 | // |
mjr | 53:9b2611964afc | 243 | const char *getOpenSDAID() |
mjr | 53:9b2611964afc | 244 | { |
mjr | 53:9b2611964afc | 245 | #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///" |
mjr | 53:9b2611964afc | 246 | static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///"; |
mjr | 53:9b2611964afc | 247 | const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1; |
mjr | 53:9b2611964afc | 248 | |
mjr | 53:9b2611964afc | 249 | return OpenSDA + OpenSDA_prefix_length; |
mjr | 53:9b2611964afc | 250 | } |
mjr | 53:9b2611964afc | 251 | |
mjr | 53:9b2611964afc | 252 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 253 | // |
mjr | 53:9b2611964afc | 254 | // Build ID. We use the date and time of compiling the program as a build |
mjr | 53:9b2611964afc | 255 | // identifier. It would be a little nicer to use a simple serial number |
mjr | 53:9b2611964afc | 256 | // instead, but the mbed platform doesn't have a way to automate that. The |
mjr | 53:9b2611964afc | 257 | // timestamp is a pretty good proxy for a serial number in that it will |
mjr | 53:9b2611964afc | 258 | // naturally increase on each new build, which is the primary property we |
mjr | 53:9b2611964afc | 259 | // want from this. |
mjr | 53:9b2611964afc | 260 | // |
mjr | 53:9b2611964afc | 261 | // As with the embedded OpenSDA ID, we store the build timestamp with a |
mjr | 53:9b2611964afc | 262 | // sentinel string prefix, to allow automated tools to find the static data |
mjr | 53:9b2611964afc | 263 | // in the .bin file by searching for the sentinel string. In contrast to |
mjr | 53:9b2611964afc | 264 | // the OpenSDA ID, the value we store here is for tools to extract rather |
mjr | 53:9b2611964afc | 265 | // than store, since we automatically populate it via the preprocessor |
mjr | 53:9b2611964afc | 266 | // macros. |
mjr | 53:9b2611964afc | 267 | // |
mjr | 53:9b2611964afc | 268 | const char *getBuildID() |
mjr | 53:9b2611964afc | 269 | { |
mjr | 53:9b2611964afc | 270 | #define BUILDID_PREFIX "///Pinscape.Build.ID///" |
mjr | 53:9b2611964afc | 271 | static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///"; |
mjr | 53:9b2611964afc | 272 | const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1; |
mjr | 53:9b2611964afc | 273 | |
mjr | 53:9b2611964afc | 274 | return BuildID + BuildID_prefix_length; |
mjr | 53:9b2611964afc | 275 | } |
mjr | 53:9b2611964afc | 276 | |
mjr | 53:9b2611964afc | 277 | |
mjr | 48:058ace2aed1d | 278 | // -------------------------------------------------------------------------- |
mjr | 48:058ace2aed1d | 279 | // |
mjr | 59:94eb9265b6d7 | 280 | // Custom memory allocator. We use our own version of malloc() for more |
mjr | 59:94eb9265b6d7 | 281 | // efficient memory usage, and to provide diagnostics if we run out of heap. |
mjr | 48:058ace2aed1d | 282 | // |
mjr | 59:94eb9265b6d7 | 283 | // We can implement a more efficient malloc than the library can because we |
mjr | 59:94eb9265b6d7 | 284 | // can make an assumption that the library can't: allocations are permanent. |
mjr | 59:94eb9265b6d7 | 285 | // The normal malloc has to assume that allocations can be freed, so it has |
mjr | 59:94eb9265b6d7 | 286 | // to track blocks individually. For the purposes of this program, though, |
mjr | 59:94eb9265b6d7 | 287 | // we don't have to do this because virtually all of our allocations are |
mjr | 59:94eb9265b6d7 | 288 | // de facto permanent. We only allocate dyanmic memory during setup, and |
mjr | 59:94eb9265b6d7 | 289 | // once we set things up, we never delete anything. This means that we can |
mjr | 59:94eb9265b6d7 | 290 | // allocate memory in bare blocks without any bookkeeping overhead. |
mjr | 59:94eb9265b6d7 | 291 | // |
mjr | 59:94eb9265b6d7 | 292 | // In addition, we can make a much larger overall pool of memory available |
mjr | 59:94eb9265b6d7 | 293 | // in a custom allocator. The mbed library malloc() seems to have a pool |
mjr | 59:94eb9265b6d7 | 294 | // of about 3K to work with, even though there's really about 9K of RAM |
mjr | 59:94eb9265b6d7 | 295 | // left over after counting the static writable data and reserving space |
mjr | 59:94eb9265b6d7 | 296 | // for a reasonable stack. I haven't looked at the mbed malloc to see why |
mjr | 59:94eb9265b6d7 | 297 | // they're so stingy, but it appears from empirical testing that we can |
mjr | 59:94eb9265b6d7 | 298 | // create a static array up to about 9K before things get crashy. |
mjr | 59:94eb9265b6d7 | 299 | |
mjr | 48:058ace2aed1d | 300 | void *xmalloc(size_t siz) |
mjr | 48:058ace2aed1d | 301 | { |
mjr | 59:94eb9265b6d7 | 302 | // Dynamic memory pool. We'll reserve space for all dynamic |
mjr | 59:94eb9265b6d7 | 303 | // allocations by creating a simple C array of bytes. The size |
mjr | 59:94eb9265b6d7 | 304 | // of this array is the maximum number of bytes we can allocate |
mjr | 59:94eb9265b6d7 | 305 | // with malloc or operator 'new'. |
mjr | 59:94eb9265b6d7 | 306 | // |
mjr | 59:94eb9265b6d7 | 307 | // The maximum safe size for this array is, in essence, the |
mjr | 59:94eb9265b6d7 | 308 | // amount of physical KL25Z RAM left over after accounting for |
mjr | 59:94eb9265b6d7 | 309 | // static data throughout the rest of the program, the run-time |
mjr | 59:94eb9265b6d7 | 310 | // stack, and any other space reserved for compiler or MCU |
mjr | 59:94eb9265b6d7 | 311 | // overhead. Unfortunately, it's not straightforward to |
mjr | 59:94eb9265b6d7 | 312 | // determine this analytically. The big complication is that |
mjr | 59:94eb9265b6d7 | 313 | // the minimum stack size isn't easily predictable, as the stack |
mjr | 59:94eb9265b6d7 | 314 | // grows according to what the program does. In addition, the |
mjr | 59:94eb9265b6d7 | 315 | // mbed platform tools don't give us detailed data on the |
mjr | 59:94eb9265b6d7 | 316 | // compiler/linker memory map. All we get is a generic total |
mjr | 59:94eb9265b6d7 | 317 | // RAM requirement, which doesn't necessarily account for all |
mjr | 59:94eb9265b6d7 | 318 | // overhead (e.g., gaps inserted to get proper alignment for |
mjr | 59:94eb9265b6d7 | 319 | // particular memory blocks). |
mjr | 59:94eb9265b6d7 | 320 | // |
mjr | 59:94eb9265b6d7 | 321 | // A very rough estimate: the total RAM size reported by the |
mjr | 59:94eb9265b6d7 | 322 | // linker is about 3.5K (currently - that can obviously change |
mjr | 59:94eb9265b6d7 | 323 | // as the project evolves) out of 16K total. Assuming about a |
mjr | 59:94eb9265b6d7 | 324 | // 3K stack, that leaves in the ballpark of 10K. Empirically, |
mjr | 59:94eb9265b6d7 | 325 | // that seems pretty close. In testing, we start to see some |
mjr | 59:94eb9265b6d7 | 326 | // instability at 10K, while 9K seems safe. To be conservative, |
mjr | 59:94eb9265b6d7 | 327 | // we'll reduce this to 8K. |
mjr | 59:94eb9265b6d7 | 328 | // |
mjr | 59:94eb9265b6d7 | 329 | // Our measured total usage in the base configuration (22 GPIO |
mjr | 59:94eb9265b6d7 | 330 | // output ports, TSL1410R plunger sensor) is about 4000 bytes. |
mjr | 59:94eb9265b6d7 | 331 | // A pretty fully decked-out configuration (121 output ports, |
mjr | 59:94eb9265b6d7 | 332 | // with 8 TLC5940 chips and 3 74HC595 chips, plus the TSL1412R |
mjr | 59:94eb9265b6d7 | 333 | // sensor with the higher pixel count, and all expansion board |
mjr | 59:94eb9265b6d7 | 334 | // features enabled) comes to about 6700 bytes. That leaves |
mjr | 59:94eb9265b6d7 | 335 | // us with about 1.5K free out of our 8K, so we still have a |
mjr | 59:94eb9265b6d7 | 336 | // little more headroom for future expansion. |
mjr | 59:94eb9265b6d7 | 337 | // |
mjr | 59:94eb9265b6d7 | 338 | // For comparison, the standard mbed malloc() runs out of |
mjr | 59:94eb9265b6d7 | 339 | // memory at about 6K. That's what led to this custom malloc: |
mjr | 59:94eb9265b6d7 | 340 | // we can just fit the base configuration into that 4K, but |
mjr | 59:94eb9265b6d7 | 341 | // it's not enough space for more complex setups. There's |
mjr | 59:94eb9265b6d7 | 342 | // still a little room for squeezing out unnecessary space |
mjr | 59:94eb9265b6d7 | 343 | // from the mbed library code, but at this point I'd prefer |
mjr | 59:94eb9265b6d7 | 344 | // to treat that as a last resort, since it would mean having |
mjr | 59:94eb9265b6d7 | 345 | // to fork private copies of the libraries. |
mjr | 59:94eb9265b6d7 | 346 | static char pool[8*1024]; |
mjr | 59:94eb9265b6d7 | 347 | static char *nxt = pool; |
mjr | 59:94eb9265b6d7 | 348 | static size_t rem = sizeof(pool); |
mjr | 59:94eb9265b6d7 | 349 | |
mjr | 59:94eb9265b6d7 | 350 | // align to a 4-byte increment |
mjr | 59:94eb9265b6d7 | 351 | siz = (siz + 3) & ~3; |
mjr | 59:94eb9265b6d7 | 352 | |
mjr | 59:94eb9265b6d7 | 353 | // If insufficient memory is available, halt and show a fast red/purple |
mjr | 59:94eb9265b6d7 | 354 | // diagnostic flash. We don't want to return, since we assume throughout |
mjr | 59:94eb9265b6d7 | 355 | // the program that all memory allocations must succeed. Note that this |
mjr | 59:94eb9265b6d7 | 356 | // is generally considered bad programming practice in applications on |
mjr | 59:94eb9265b6d7 | 357 | // "real" computers, but for the purposes of this microcontroller app, |
mjr | 59:94eb9265b6d7 | 358 | // there's no point in checking for failed allocations individually |
mjr | 59:94eb9265b6d7 | 359 | // because there's no way to recover from them. It's better in this |
mjr | 59:94eb9265b6d7 | 360 | // context to handle failed allocations as fatal errors centrally. We |
mjr | 59:94eb9265b6d7 | 361 | // can't recover from these automatically, so we have to resort to user |
mjr | 59:94eb9265b6d7 | 362 | // intervention, which we signal with the diagnostic LED flashes. |
mjr | 59:94eb9265b6d7 | 363 | if (siz > rem) |
mjr | 59:94eb9265b6d7 | 364 | { |
mjr | 59:94eb9265b6d7 | 365 | // halt with the diagnostic display (by looping forever) |
mjr | 59:94eb9265b6d7 | 366 | for (;;) |
mjr | 59:94eb9265b6d7 | 367 | { |
mjr | 59:94eb9265b6d7 | 368 | diagLED(1, 0, 0); |
mjr | 59:94eb9265b6d7 | 369 | wait_us(200000); |
mjr | 59:94eb9265b6d7 | 370 | diagLED(1, 0, 1); |
mjr | 59:94eb9265b6d7 | 371 | wait_us(200000); |
mjr | 59:94eb9265b6d7 | 372 | } |
mjr | 59:94eb9265b6d7 | 373 | } |
mjr | 48:058ace2aed1d | 374 | |
mjr | 59:94eb9265b6d7 | 375 | // get the next free location from the pool to return |
mjr | 59:94eb9265b6d7 | 376 | char *ret = nxt; |
mjr | 59:94eb9265b6d7 | 377 | |
mjr | 59:94eb9265b6d7 | 378 | // advance the pool pointer and decrement the remaining size counter |
mjr | 59:94eb9265b6d7 | 379 | nxt += siz; |
mjr | 59:94eb9265b6d7 | 380 | rem -= siz; |
mjr | 59:94eb9265b6d7 | 381 | |
mjr | 59:94eb9265b6d7 | 382 | // return the allocated block |
mjr | 59:94eb9265b6d7 | 383 | return ret; |
mjr | 48:058ace2aed1d | 384 | } |
mjr | 48:058ace2aed1d | 385 | |
mjr | 59:94eb9265b6d7 | 386 | // Overload operator new to call our custom malloc. This ensures that |
mjr | 59:94eb9265b6d7 | 387 | // all 'new' allocations throughout the program (including library code) |
mjr | 59:94eb9265b6d7 | 388 | // go through our private allocator. |
mjr | 48:058ace2aed1d | 389 | void *operator new(size_t siz) { return xmalloc(siz); } |
mjr | 48:058ace2aed1d | 390 | void *operator new[](size_t siz) { return xmalloc(siz); } |
mjr | 5:a70c0bce770d | 391 | |
mjr | 59:94eb9265b6d7 | 392 | // Since we don't do bookkeeping to track released memory, 'delete' does |
mjr | 59:94eb9265b6d7 | 393 | // nothing. In actual testing, this routine appears to never be called. |
mjr | 59:94eb9265b6d7 | 394 | // If it *is* ever called, it will simply leave the block in place, which |
mjr | 59:94eb9265b6d7 | 395 | // will make it unavailable for re-use but will otherwise be harmless. |
mjr | 59:94eb9265b6d7 | 396 | void operator delete(void *ptr) { } |
mjr | 59:94eb9265b6d7 | 397 | |
mjr | 59:94eb9265b6d7 | 398 | |
mjr | 5:a70c0bce770d | 399 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 400 | // |
mjr | 38:091e511ce8a0 | 401 | // Forward declarations |
mjr | 38:091e511ce8a0 | 402 | // |
mjr | 38:091e511ce8a0 | 403 | void setNightMode(bool on); |
mjr | 38:091e511ce8a0 | 404 | void toggleNightMode(); |
mjr | 38:091e511ce8a0 | 405 | |
mjr | 38:091e511ce8a0 | 406 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 407 | // utilities |
mjr | 17:ab3cec0c8bf4 | 408 | |
mjr | 26:cb71c4af2912 | 409 | // floating point square of a number |
mjr | 26:cb71c4af2912 | 410 | inline float square(float x) { return x*x; } |
mjr | 26:cb71c4af2912 | 411 | |
mjr | 26:cb71c4af2912 | 412 | // floating point rounding |
mjr | 26:cb71c4af2912 | 413 | inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); } |
mjr | 26:cb71c4af2912 | 414 | |
mjr | 17:ab3cec0c8bf4 | 415 | |
mjr | 33:d832bcab089e | 416 | // -------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 417 | // |
mjr | 40:cc0d9814522b | 418 | // Extended verison of Timer class. This adds the ability to interrogate |
mjr | 40:cc0d9814522b | 419 | // the running state. |
mjr | 40:cc0d9814522b | 420 | // |
mjr | 40:cc0d9814522b | 421 | class Timer2: public Timer |
mjr | 40:cc0d9814522b | 422 | { |
mjr | 40:cc0d9814522b | 423 | public: |
mjr | 40:cc0d9814522b | 424 | Timer2() : running(false) { } |
mjr | 40:cc0d9814522b | 425 | |
mjr | 40:cc0d9814522b | 426 | void start() { running = true; Timer::start(); } |
mjr | 40:cc0d9814522b | 427 | void stop() { running = false; Timer::stop(); } |
mjr | 40:cc0d9814522b | 428 | |
mjr | 40:cc0d9814522b | 429 | bool isRunning() const { return running; } |
mjr | 40:cc0d9814522b | 430 | |
mjr | 40:cc0d9814522b | 431 | private: |
mjr | 40:cc0d9814522b | 432 | bool running; |
mjr | 40:cc0d9814522b | 433 | }; |
mjr | 40:cc0d9814522b | 434 | |
mjr | 53:9b2611964afc | 435 | |
mjr | 53:9b2611964afc | 436 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 437 | // |
mjr | 53:9b2611964afc | 438 | // Reboot timer. When we have a deferred reboot operation pending, we |
mjr | 53:9b2611964afc | 439 | // set the target time and start the timer. |
mjr | 53:9b2611964afc | 440 | Timer2 rebootTimer; |
mjr | 53:9b2611964afc | 441 | long rebootTime_us; |
mjr | 53:9b2611964afc | 442 | |
mjr | 40:cc0d9814522b | 443 | // -------------------------------------------------------------------------- |
mjr | 40:cc0d9814522b | 444 | // |
mjr | 33:d832bcab089e | 445 | // USB product version number |
mjr | 5:a70c0bce770d | 446 | // |
mjr | 47:df7a88cd249c | 447 | const uint16_t USB_VERSION_NO = 0x000A; |
mjr | 33:d832bcab089e | 448 | |
mjr | 33:d832bcab089e | 449 | // -------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 450 | // |
mjr | 6:cc35eb643e8f | 451 | // Joystick axis report range - we report from -JOYMAX to +JOYMAX |
mjr | 33:d832bcab089e | 452 | // |
mjr | 6:cc35eb643e8f | 453 | #define JOYMAX 4096 |
mjr | 6:cc35eb643e8f | 454 | |
mjr | 9:fd65b0a94720 | 455 | |
mjr | 17:ab3cec0c8bf4 | 456 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 457 | // |
mjr | 40:cc0d9814522b | 458 | // Wire protocol value translations. These translate byte values to and |
mjr | 40:cc0d9814522b | 459 | // from the USB protocol to local native format. |
mjr | 35:e959ffba78fd | 460 | // |
mjr | 35:e959ffba78fd | 461 | |
mjr | 35:e959ffba78fd | 462 | // unsigned 16-bit integer |
mjr | 35:e959ffba78fd | 463 | inline uint16_t wireUI16(const uint8_t *b) |
mjr | 35:e959ffba78fd | 464 | { |
mjr | 35:e959ffba78fd | 465 | return b[0] | ((uint16_t)b[1] << 8); |
mjr | 35:e959ffba78fd | 466 | } |
mjr | 40:cc0d9814522b | 467 | inline void ui16Wire(uint8_t *b, uint16_t val) |
mjr | 40:cc0d9814522b | 468 | { |
mjr | 40:cc0d9814522b | 469 | b[0] = (uint8_t)(val & 0xff); |
mjr | 40:cc0d9814522b | 470 | b[1] = (uint8_t)((val >> 8) & 0xff); |
mjr | 40:cc0d9814522b | 471 | } |
mjr | 35:e959ffba78fd | 472 | |
mjr | 35:e959ffba78fd | 473 | inline int16_t wireI16(const uint8_t *b) |
mjr | 35:e959ffba78fd | 474 | { |
mjr | 35:e959ffba78fd | 475 | return (int16_t)wireUI16(b); |
mjr | 35:e959ffba78fd | 476 | } |
mjr | 40:cc0d9814522b | 477 | inline void i16Wire(uint8_t *b, int16_t val) |
mjr | 40:cc0d9814522b | 478 | { |
mjr | 40:cc0d9814522b | 479 | ui16Wire(b, (uint16_t)val); |
mjr | 40:cc0d9814522b | 480 | } |
mjr | 35:e959ffba78fd | 481 | |
mjr | 35:e959ffba78fd | 482 | inline uint32_t wireUI32(const uint8_t *b) |
mjr | 35:e959ffba78fd | 483 | { |
mjr | 35:e959ffba78fd | 484 | return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24); |
mjr | 35:e959ffba78fd | 485 | } |
mjr | 40:cc0d9814522b | 486 | inline void ui32Wire(uint8_t *b, uint32_t val) |
mjr | 40:cc0d9814522b | 487 | { |
mjr | 40:cc0d9814522b | 488 | b[0] = (uint8_t)(val & 0xff); |
mjr | 40:cc0d9814522b | 489 | b[1] = (uint8_t)((val >> 8) & 0xff); |
mjr | 40:cc0d9814522b | 490 | b[2] = (uint8_t)((val >> 16) & 0xff); |
mjr | 40:cc0d9814522b | 491 | b[3] = (uint8_t)((val >> 24) & 0xff); |
mjr | 40:cc0d9814522b | 492 | } |
mjr | 35:e959ffba78fd | 493 | |
mjr | 35:e959ffba78fd | 494 | inline int32_t wireI32(const uint8_t *b) |
mjr | 35:e959ffba78fd | 495 | { |
mjr | 35:e959ffba78fd | 496 | return (int32_t)wireUI32(b); |
mjr | 35:e959ffba78fd | 497 | } |
mjr | 35:e959ffba78fd | 498 | |
mjr | 53:9b2611964afc | 499 | // Convert "wire" (USB) pin codes to/from PinName values. |
mjr | 53:9b2611964afc | 500 | // |
mjr | 53:9b2611964afc | 501 | // The internal mbed PinName format is |
mjr | 53:9b2611964afc | 502 | // |
mjr | 53:9b2611964afc | 503 | // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT |
mjr | 53:9b2611964afc | 504 | // |
mjr | 53:9b2611964afc | 505 | // where 'port' is 0-4 for Port A to Port E, and 'pin' is |
mjr | 53:9b2611964afc | 506 | // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2). |
mjr | 53:9b2611964afc | 507 | // |
mjr | 53:9b2611964afc | 508 | // We remap this to our more compact wire format where each |
mjr | 53:9b2611964afc | 509 | // pin name fits in 8 bits: |
mjr | 53:9b2611964afc | 510 | // |
mjr | 53:9b2611964afc | 511 | // ((port) << 5) | pin) // WIRE FORMAT |
mjr | 53:9b2611964afc | 512 | // |
mjr | 53:9b2611964afc | 513 | // E.g., E31 is (4 << 5) | 31. |
mjr | 53:9b2611964afc | 514 | // |
mjr | 53:9b2611964afc | 515 | // Wire code FF corresponds to PinName NC (not connected). |
mjr | 53:9b2611964afc | 516 | // |
mjr | 53:9b2611964afc | 517 | inline PinName wirePinName(uint8_t c) |
mjr | 35:e959ffba78fd | 518 | { |
mjr | 53:9b2611964afc | 519 | if (c == 0xFF) |
mjr | 53:9b2611964afc | 520 | return NC; // 0xFF -> NC |
mjr | 53:9b2611964afc | 521 | else |
mjr | 53:9b2611964afc | 522 | return PinName( |
mjr | 53:9b2611964afc | 523 | (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port |
mjr | 53:9b2611964afc | 524 | | (int(c & 0x1F) << 2)); // bottom five bits are pin |
mjr | 40:cc0d9814522b | 525 | } |
mjr | 40:cc0d9814522b | 526 | inline void pinNameWire(uint8_t *b, PinName n) |
mjr | 40:cc0d9814522b | 527 | { |
mjr | 53:9b2611964afc | 528 | *b = PINNAME_TO_WIRE(n); |
mjr | 35:e959ffba78fd | 529 | } |
mjr | 35:e959ffba78fd | 530 | |
mjr | 35:e959ffba78fd | 531 | |
mjr | 35:e959ffba78fd | 532 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 533 | // |
mjr | 38:091e511ce8a0 | 534 | // On-board RGB LED elements - we use these for diagnostic displays. |
mjr | 38:091e511ce8a0 | 535 | // |
mjr | 38:091e511ce8a0 | 536 | // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1, |
mjr | 38:091e511ce8a0 | 537 | // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard |
mjr | 38:091e511ce8a0 | 538 | // input or a device output). This is kind of unfortunate in that it's |
mjr | 38:091e511ce8a0 | 539 | // one of only two ports exposed on the jumper pins that can be muxed to |
mjr | 38:091e511ce8a0 | 540 | // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the |
mjr | 38:091e511ce8a0 | 541 | // SPI capability. |
mjr | 38:091e511ce8a0 | 542 | // |
mjr | 38:091e511ce8a0 | 543 | DigitalOut *ledR, *ledG, *ledB; |
mjr | 38:091e511ce8a0 | 544 | |
mjr | 38:091e511ce8a0 | 545 | // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is |
mjr | 38:091e511ce8a0 | 546 | // on, and -1 is no change (leaves the current setting intact). |
mjr | 38:091e511ce8a0 | 547 | void diagLED(int r, int g, int b) |
mjr | 38:091e511ce8a0 | 548 | { |
mjr | 38:091e511ce8a0 | 549 | if (ledR != 0 && r != -1) ledR->write(!r); |
mjr | 38:091e511ce8a0 | 550 | if (ledG != 0 && g != -1) ledG->write(!g); |
mjr | 38:091e511ce8a0 | 551 | if (ledB != 0 && b != -1) ledB->write(!b); |
mjr | 38:091e511ce8a0 | 552 | } |
mjr | 38:091e511ce8a0 | 553 | |
mjr | 38:091e511ce8a0 | 554 | // check an output port assignment to see if it conflicts with |
mjr | 38:091e511ce8a0 | 555 | // an on-board LED segment |
mjr | 38:091e511ce8a0 | 556 | struct LedSeg |
mjr | 38:091e511ce8a0 | 557 | { |
mjr | 38:091e511ce8a0 | 558 | bool r, g, b; |
mjr | 38:091e511ce8a0 | 559 | LedSeg() { r = g = b = false; } |
mjr | 38:091e511ce8a0 | 560 | |
mjr | 38:091e511ce8a0 | 561 | void check(LedWizPortCfg &pc) |
mjr | 38:091e511ce8a0 | 562 | { |
mjr | 38:091e511ce8a0 | 563 | // if it's a GPIO, check to see if it's assigned to one of |
mjr | 38:091e511ce8a0 | 564 | // our on-board LED segments |
mjr | 38:091e511ce8a0 | 565 | int t = pc.typ; |
mjr | 38:091e511ce8a0 | 566 | if (t == PortTypeGPIOPWM || t == PortTypeGPIODig) |
mjr | 38:091e511ce8a0 | 567 | { |
mjr | 38:091e511ce8a0 | 568 | // it's a GPIO port - check for a matching pin assignment |
mjr | 38:091e511ce8a0 | 569 | PinName pin = wirePinName(pc.pin); |
mjr | 38:091e511ce8a0 | 570 | if (pin == LED1) |
mjr | 38:091e511ce8a0 | 571 | r = true; |
mjr | 38:091e511ce8a0 | 572 | else if (pin == LED2) |
mjr | 38:091e511ce8a0 | 573 | g = true; |
mjr | 38:091e511ce8a0 | 574 | else if (pin == LED3) |
mjr | 38:091e511ce8a0 | 575 | b = true; |
mjr | 38:091e511ce8a0 | 576 | } |
mjr | 38:091e511ce8a0 | 577 | } |
mjr | 38:091e511ce8a0 | 578 | }; |
mjr | 38:091e511ce8a0 | 579 | |
mjr | 38:091e511ce8a0 | 580 | // Initialize the diagnostic LEDs. By default, we use the on-board |
mjr | 38:091e511ce8a0 | 581 | // RGB LED to display the microcontroller status. However, we allow |
mjr | 38:091e511ce8a0 | 582 | // the user to commandeer the on-board LED as an LedWiz output device, |
mjr | 38:091e511ce8a0 | 583 | // which can be useful for testing a new installation. So we'll check |
mjr | 38:091e511ce8a0 | 584 | // for LedWiz outputs assigned to the on-board LED segments, and turn |
mjr | 38:091e511ce8a0 | 585 | // off the diagnostic use for any so assigned. |
mjr | 38:091e511ce8a0 | 586 | void initDiagLEDs(Config &cfg) |
mjr | 38:091e511ce8a0 | 587 | { |
mjr | 38:091e511ce8a0 | 588 | // run through the configuration list and cross off any of the |
mjr | 38:091e511ce8a0 | 589 | // LED segments assigned to LedWiz ports |
mjr | 38:091e511ce8a0 | 590 | LedSeg l; |
mjr | 38:091e511ce8a0 | 591 | for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i) |
mjr | 38:091e511ce8a0 | 592 | l.check(cfg.outPort[i]); |
mjr | 38:091e511ce8a0 | 593 | |
mjr | 38:091e511ce8a0 | 594 | // We now know which segments are taken for LedWiz use and which |
mjr | 38:091e511ce8a0 | 595 | // are free. Create diagnostic ports for the ones not claimed for |
mjr | 38:091e511ce8a0 | 596 | // LedWiz use. |
mjr | 38:091e511ce8a0 | 597 | if (!l.r) ledR = new DigitalOut(LED1, 1); |
mjr | 38:091e511ce8a0 | 598 | if (!l.g) ledG = new DigitalOut(LED2, 1); |
mjr | 38:091e511ce8a0 | 599 | if (!l.b) ledB = new DigitalOut(LED3, 1); |
mjr | 38:091e511ce8a0 | 600 | } |
mjr | 38:091e511ce8a0 | 601 | |
mjr | 38:091e511ce8a0 | 602 | |
mjr | 38:091e511ce8a0 | 603 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 604 | // |
mjr | 29:582472d0bc57 | 605 | // LedWiz emulation, and enhanced TLC5940 output controller |
mjr | 5:a70c0bce770d | 606 | // |
mjr | 26:cb71c4af2912 | 607 | // There are two modes for this feature. The default mode uses the on-board |
mjr | 26:cb71c4af2912 | 608 | // GPIO ports to implement device outputs - each LedWiz software port is |
mjr | 26:cb71c4af2912 | 609 | // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10 |
mjr | 26:cb71c4af2912 | 610 | // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the |
mjr | 26:cb71c4af2912 | 611 | // rest are strictly on/off. The KL25Z also has a limited number of GPIO |
mjr | 26:cb71c4af2912 | 612 | // ports overall - not enough for the full complement of 32 LedWiz ports |
mjr | 26:cb71c4af2912 | 613 | // and 24 VP joystick inputs, so it's necessary to trade one against the |
mjr | 26:cb71c4af2912 | 614 | // other if both features are to be used. |
mjr | 26:cb71c4af2912 | 615 | // |
mjr | 26:cb71c4af2912 | 616 | // The alternative, enhanced mode uses external TLC5940 PWM controller |
mjr | 26:cb71c4af2912 | 617 | // chips to control device outputs. In this mode, each LedWiz software |
mjr | 26:cb71c4af2912 | 618 | // port is mapped to an output on one of the external TLC5940 chips. |
mjr | 26:cb71c4af2912 | 619 | // Two 5940s is enough for the full set of 32 LedWiz ports, and we can |
mjr | 26:cb71c4af2912 | 620 | // support even more chips for even more outputs (although doing so requires |
mjr | 26:cb71c4af2912 | 621 | // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired |
mjr | 26:cb71c4af2912 | 622 | // for 32 outputs). Every port in this mode has full PWM support. |
mjr | 26:cb71c4af2912 | 623 | // |
mjr | 5:a70c0bce770d | 624 | |
mjr | 29:582472d0bc57 | 625 | |
mjr | 26:cb71c4af2912 | 626 | // Current starting output index for "PBA" messages from the PC (using |
mjr | 26:cb71c4af2912 | 627 | // the LedWiz USB protocol). Each PBA message implicitly uses the |
mjr | 26:cb71c4af2912 | 628 | // current index as the starting point for the ports referenced in |
mjr | 26:cb71c4af2912 | 629 | // the message, and increases it (by 8) for the next call. |
mjr | 0:5acbbe3f4cf4 | 630 | static int pbaIdx = 0; |
mjr | 0:5acbbe3f4cf4 | 631 | |
mjr | 26:cb71c4af2912 | 632 | // Generic LedWiz output port interface. We create a cover class to |
mjr | 26:cb71c4af2912 | 633 | // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external |
mjr | 26:cb71c4af2912 | 634 | // TLC5940 outputs, and give them all a common interface. |
mjr | 6:cc35eb643e8f | 635 | class LwOut |
mjr | 6:cc35eb643e8f | 636 | { |
mjr | 6:cc35eb643e8f | 637 | public: |
mjr | 40:cc0d9814522b | 638 | // Set the output intensity. 'val' is 0 for fully off, 255 for |
mjr | 40:cc0d9814522b | 639 | // fully on, with values in between signifying lower intensity. |
mjr | 40:cc0d9814522b | 640 | virtual void set(uint8_t val) = 0; |
mjr | 6:cc35eb643e8f | 641 | }; |
mjr | 26:cb71c4af2912 | 642 | |
mjr | 35:e959ffba78fd | 643 | // LwOut class for virtual ports. This type of port is visible to |
mjr | 35:e959ffba78fd | 644 | // the host software, but isn't connected to any physical output. |
mjr | 35:e959ffba78fd | 645 | // This can be used for special software-only ports like the ZB |
mjr | 35:e959ffba78fd | 646 | // Launch Ball output, or simply for placeholders in the LedWiz port |
mjr | 35:e959ffba78fd | 647 | // numbering. |
mjr | 35:e959ffba78fd | 648 | class LwVirtualOut: public LwOut |
mjr | 33:d832bcab089e | 649 | { |
mjr | 33:d832bcab089e | 650 | public: |
mjr | 35:e959ffba78fd | 651 | LwVirtualOut() { } |
mjr | 40:cc0d9814522b | 652 | virtual void set(uint8_t ) { } |
mjr | 33:d832bcab089e | 653 | }; |
mjr | 26:cb71c4af2912 | 654 | |
mjr | 34:6b981a2afab7 | 655 | // Active Low out. For any output marked as active low, we layer this |
mjr | 34:6b981a2afab7 | 656 | // on top of the physical pin interface. This simply inverts the value of |
mjr | 40:cc0d9814522b | 657 | // the output value, so that 255 means fully off and 0 means fully on. |
mjr | 34:6b981a2afab7 | 658 | class LwInvertedOut: public LwOut |
mjr | 34:6b981a2afab7 | 659 | { |
mjr | 34:6b981a2afab7 | 660 | public: |
mjr | 34:6b981a2afab7 | 661 | LwInvertedOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 662 | virtual void set(uint8_t val) { out->set(255 - val); } |
mjr | 34:6b981a2afab7 | 663 | |
mjr | 34:6b981a2afab7 | 664 | private: |
mjr | 53:9b2611964afc | 665 | // underlying physical output |
mjr | 34:6b981a2afab7 | 666 | LwOut *out; |
mjr | 34:6b981a2afab7 | 667 | }; |
mjr | 34:6b981a2afab7 | 668 | |
mjr | 53:9b2611964afc | 669 | // Global ZB Launch Ball state |
mjr | 53:9b2611964afc | 670 | bool zbLaunchOn = false; |
mjr | 53:9b2611964afc | 671 | |
mjr | 53:9b2611964afc | 672 | // ZB Launch Ball output. This is layered on a port (physical or virtual) |
mjr | 53:9b2611964afc | 673 | // to track the ZB Launch Ball signal. |
mjr | 53:9b2611964afc | 674 | class LwZbLaunchOut: public LwOut |
mjr | 53:9b2611964afc | 675 | { |
mjr | 53:9b2611964afc | 676 | public: |
mjr | 53:9b2611964afc | 677 | LwZbLaunchOut(LwOut *o) : out(o) { } |
mjr | 53:9b2611964afc | 678 | virtual void set(uint8_t val) |
mjr | 53:9b2611964afc | 679 | { |
mjr | 53:9b2611964afc | 680 | // update the global ZB Launch Ball state |
mjr | 53:9b2611964afc | 681 | zbLaunchOn = (val != 0); |
mjr | 53:9b2611964afc | 682 | |
mjr | 53:9b2611964afc | 683 | // pass it along to the underlying port, in case it's a physical output |
mjr | 53:9b2611964afc | 684 | out->set(val); |
mjr | 53:9b2611964afc | 685 | } |
mjr | 53:9b2611964afc | 686 | |
mjr | 53:9b2611964afc | 687 | private: |
mjr | 53:9b2611964afc | 688 | // underlying physical or virtual output |
mjr | 53:9b2611964afc | 689 | LwOut *out; |
mjr | 53:9b2611964afc | 690 | }; |
mjr | 53:9b2611964afc | 691 | |
mjr | 53:9b2611964afc | 692 | |
mjr | 40:cc0d9814522b | 693 | // Gamma correction table for 8-bit input values |
mjr | 40:cc0d9814522b | 694 | static const uint8_t gamma[] = { |
mjr | 40:cc0d9814522b | 695 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
mjr | 40:cc0d9814522b | 696 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, |
mjr | 40:cc0d9814522b | 697 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, |
mjr | 40:cc0d9814522b | 698 | 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, |
mjr | 40:cc0d9814522b | 699 | 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, |
mjr | 40:cc0d9814522b | 700 | 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, |
mjr | 40:cc0d9814522b | 701 | 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, |
mjr | 40:cc0d9814522b | 702 | 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, |
mjr | 40:cc0d9814522b | 703 | 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, |
mjr | 40:cc0d9814522b | 704 | 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, |
mjr | 40:cc0d9814522b | 705 | 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, |
mjr | 40:cc0d9814522b | 706 | 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114, |
mjr | 40:cc0d9814522b | 707 | 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142, |
mjr | 40:cc0d9814522b | 708 | 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175, |
mjr | 40:cc0d9814522b | 709 | 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, |
mjr | 40:cc0d9814522b | 710 | 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255 |
mjr | 40:cc0d9814522b | 711 | }; |
mjr | 40:cc0d9814522b | 712 | |
mjr | 40:cc0d9814522b | 713 | // Gamma-corrected out. This is a filter object that we layer on top |
mjr | 40:cc0d9814522b | 714 | // of a physical pin interface. This applies gamma correction to the |
mjr | 40:cc0d9814522b | 715 | // input value and then passes it along to the underlying pin object. |
mjr | 40:cc0d9814522b | 716 | class LwGammaOut: public LwOut |
mjr | 40:cc0d9814522b | 717 | { |
mjr | 40:cc0d9814522b | 718 | public: |
mjr | 40:cc0d9814522b | 719 | LwGammaOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 720 | virtual void set(uint8_t val) { out->set(gamma[val]); } |
mjr | 40:cc0d9814522b | 721 | |
mjr | 40:cc0d9814522b | 722 | private: |
mjr | 40:cc0d9814522b | 723 | LwOut *out; |
mjr | 40:cc0d9814522b | 724 | }; |
mjr | 40:cc0d9814522b | 725 | |
mjr | 53:9b2611964afc | 726 | // global night mode flag |
mjr | 53:9b2611964afc | 727 | static bool nightMode = false; |
mjr | 53:9b2611964afc | 728 | |
mjr | 40:cc0d9814522b | 729 | // Noisy output. This is a filter object that we layer on top of |
mjr | 40:cc0d9814522b | 730 | // a physical pin output. This filter disables the port when night |
mjr | 40:cc0d9814522b | 731 | // mode is engaged. |
mjr | 40:cc0d9814522b | 732 | class LwNoisyOut: public LwOut |
mjr | 40:cc0d9814522b | 733 | { |
mjr | 40:cc0d9814522b | 734 | public: |
mjr | 40:cc0d9814522b | 735 | LwNoisyOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 736 | virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); } |
mjr | 40:cc0d9814522b | 737 | |
mjr | 53:9b2611964afc | 738 | private: |
mjr | 53:9b2611964afc | 739 | LwOut *out; |
mjr | 53:9b2611964afc | 740 | }; |
mjr | 53:9b2611964afc | 741 | |
mjr | 53:9b2611964afc | 742 | // Night Mode indicator output. This is a filter object that we |
mjr | 53:9b2611964afc | 743 | // layer on top of a physical pin output. This filter ignores the |
mjr | 53:9b2611964afc | 744 | // host value and simply shows the night mode status. |
mjr | 53:9b2611964afc | 745 | class LwNightModeIndicatorOut: public LwOut |
mjr | 53:9b2611964afc | 746 | { |
mjr | 53:9b2611964afc | 747 | public: |
mjr | 53:9b2611964afc | 748 | LwNightModeIndicatorOut(LwOut *o) : out(o) { } |
mjr | 53:9b2611964afc | 749 | virtual void set(uint8_t) |
mjr | 53:9b2611964afc | 750 | { |
mjr | 53:9b2611964afc | 751 | // ignore the host value and simply show the current |
mjr | 53:9b2611964afc | 752 | // night mode setting |
mjr | 53:9b2611964afc | 753 | out->set(nightMode ? 255 : 0); |
mjr | 53:9b2611964afc | 754 | } |
mjr | 40:cc0d9814522b | 755 | |
mjr | 40:cc0d9814522b | 756 | private: |
mjr | 40:cc0d9814522b | 757 | LwOut *out; |
mjr | 40:cc0d9814522b | 758 | }; |
mjr | 40:cc0d9814522b | 759 | |
mjr | 26:cb71c4af2912 | 760 | |
mjr | 35:e959ffba78fd | 761 | // |
mjr | 35:e959ffba78fd | 762 | // The TLC5940 interface object. We'll set this up with the port |
mjr | 35:e959ffba78fd | 763 | // assignments set in config.h. |
mjr | 33:d832bcab089e | 764 | // |
mjr | 35:e959ffba78fd | 765 | TLC5940 *tlc5940 = 0; |
mjr | 35:e959ffba78fd | 766 | void init_tlc5940(Config &cfg) |
mjr | 35:e959ffba78fd | 767 | { |
mjr | 35:e959ffba78fd | 768 | if (cfg.tlc5940.nchips != 0) |
mjr | 35:e959ffba78fd | 769 | { |
mjr | 53:9b2611964afc | 770 | tlc5940 = new TLC5940( |
mjr | 53:9b2611964afc | 771 | wirePinName(cfg.tlc5940.sclk), |
mjr | 53:9b2611964afc | 772 | wirePinName(cfg.tlc5940.sin), |
mjr | 53:9b2611964afc | 773 | wirePinName(cfg.tlc5940.gsclk), |
mjr | 53:9b2611964afc | 774 | wirePinName(cfg.tlc5940.blank), |
mjr | 53:9b2611964afc | 775 | wirePinName(cfg.tlc5940.xlat), |
mjr | 53:9b2611964afc | 776 | cfg.tlc5940.nchips); |
mjr | 35:e959ffba78fd | 777 | } |
mjr | 35:e959ffba78fd | 778 | } |
mjr | 26:cb71c4af2912 | 779 | |
mjr | 40:cc0d9814522b | 780 | // Conversion table for 8-bit DOF level to 12-bit TLC5940 level |
mjr | 40:cc0d9814522b | 781 | static const uint16_t dof_to_tlc[] = { |
mjr | 40:cc0d9814522b | 782 | 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241, |
mjr | 40:cc0d9814522b | 783 | 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498, |
mjr | 40:cc0d9814522b | 784 | 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755, |
mjr | 40:cc0d9814522b | 785 | 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012, |
mjr | 40:cc0d9814522b | 786 | 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269, |
mjr | 40:cc0d9814522b | 787 | 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526, |
mjr | 40:cc0d9814522b | 788 | 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783, |
mjr | 40:cc0d9814522b | 789 | 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039, |
mjr | 40:cc0d9814522b | 790 | 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296, |
mjr | 40:cc0d9814522b | 791 | 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553, |
mjr | 40:cc0d9814522b | 792 | 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810, |
mjr | 40:cc0d9814522b | 793 | 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067, |
mjr | 40:cc0d9814522b | 794 | 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324, |
mjr | 40:cc0d9814522b | 795 | 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581, |
mjr | 40:cc0d9814522b | 796 | 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838, |
mjr | 40:cc0d9814522b | 797 | 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095 |
mjr | 40:cc0d9814522b | 798 | }; |
mjr | 40:cc0d9814522b | 799 | |
mjr | 40:cc0d9814522b | 800 | // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with |
mjr | 40:cc0d9814522b | 801 | // gamma correction. Note that the output layering scheme can handle |
mjr | 40:cc0d9814522b | 802 | // this without a separate table, by first applying gamma to the DOF |
mjr | 40:cc0d9814522b | 803 | // level to produce an 8-bit gamma-corrected value, then convert that |
mjr | 40:cc0d9814522b | 804 | // to the 12-bit TLC5940 value. But we get better precision by doing |
mjr | 40:cc0d9814522b | 805 | // the gamma correction in the 12-bit TLC5940 domain. We can only |
mjr | 40:cc0d9814522b | 806 | // get the 12-bit domain by combining both steps into one layering |
mjr | 40:cc0d9814522b | 807 | // object, though, since the intermediate values in the layering system |
mjr | 40:cc0d9814522b | 808 | // are always 8 bits. |
mjr | 40:cc0d9814522b | 809 | static const uint16_t dof_to_gamma_tlc[] = { |
mjr | 40:cc0d9814522b | 810 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, |
mjr | 40:cc0d9814522b | 811 | 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11, |
mjr | 40:cc0d9814522b | 812 | 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36, |
mjr | 40:cc0d9814522b | 813 | 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82, |
mjr | 40:cc0d9814522b | 814 | 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154, |
mjr | 40:cc0d9814522b | 815 | 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258, |
mjr | 40:cc0d9814522b | 816 | 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399, |
mjr | 40:cc0d9814522b | 817 | 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582, |
mjr | 40:cc0d9814522b | 818 | 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811, |
mjr | 40:cc0d9814522b | 819 | 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091, |
mjr | 40:cc0d9814522b | 820 | 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427, |
mjr | 40:cc0d9814522b | 821 | 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823, |
mjr | 40:cc0d9814522b | 822 | 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284, |
mjr | 40:cc0d9814522b | 823 | 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813, |
mjr | 40:cc0d9814522b | 824 | 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416, |
mjr | 40:cc0d9814522b | 825 | 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095 |
mjr | 40:cc0d9814522b | 826 | }; |
mjr | 40:cc0d9814522b | 827 | |
mjr | 26:cb71c4af2912 | 828 | // LwOut class for TLC5940 outputs. These are fully PWM capable. |
mjr | 26:cb71c4af2912 | 829 | // The 'idx' value in the constructor is the output index in the |
mjr | 26:cb71c4af2912 | 830 | // daisy-chained TLC5940 array. 0 is output #0 on the first chip, |
mjr | 26:cb71c4af2912 | 831 | // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is |
mjr | 26:cb71c4af2912 | 832 | // #0 on the second chip, 32 is #0 on the third chip, etc. |
mjr | 26:cb71c4af2912 | 833 | class Lw5940Out: public LwOut |
mjr | 26:cb71c4af2912 | 834 | { |
mjr | 26:cb71c4af2912 | 835 | public: |
mjr | 60:f38da020aa13 | 836 | Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 837 | virtual void set(uint8_t val) |
mjr | 26:cb71c4af2912 | 838 | { |
mjr | 26:cb71c4af2912 | 839 | if (val != prv) |
mjr | 40:cc0d9814522b | 840 | tlc5940->set(idx, dof_to_tlc[prv = val]); |
mjr | 26:cb71c4af2912 | 841 | } |
mjr | 60:f38da020aa13 | 842 | uint8_t idx; |
mjr | 40:cc0d9814522b | 843 | uint8_t prv; |
mjr | 26:cb71c4af2912 | 844 | }; |
mjr | 26:cb71c4af2912 | 845 | |
mjr | 40:cc0d9814522b | 846 | // LwOut class for TLC5940 gamma-corrected outputs. |
mjr | 40:cc0d9814522b | 847 | class Lw5940GammaOut: public LwOut |
mjr | 40:cc0d9814522b | 848 | { |
mjr | 40:cc0d9814522b | 849 | public: |
mjr | 60:f38da020aa13 | 850 | Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 851 | virtual void set(uint8_t val) |
mjr | 40:cc0d9814522b | 852 | { |
mjr | 40:cc0d9814522b | 853 | if (val != prv) |
mjr | 40:cc0d9814522b | 854 | tlc5940->set(idx, dof_to_gamma_tlc[prv = val]); |
mjr | 40:cc0d9814522b | 855 | } |
mjr | 60:f38da020aa13 | 856 | uint8_t idx; |
mjr | 40:cc0d9814522b | 857 | uint8_t prv; |
mjr | 40:cc0d9814522b | 858 | }; |
mjr | 40:cc0d9814522b | 859 | |
mjr | 40:cc0d9814522b | 860 | |
mjr | 33:d832bcab089e | 861 | |
mjr | 34:6b981a2afab7 | 862 | // 74HC595 interface object. Set this up with the port assignments in |
mjr | 34:6b981a2afab7 | 863 | // config.h. |
mjr | 35:e959ffba78fd | 864 | HC595 *hc595 = 0; |
mjr | 35:e959ffba78fd | 865 | |
mjr | 35:e959ffba78fd | 866 | // initialize the 74HC595 interface |
mjr | 35:e959ffba78fd | 867 | void init_hc595(Config &cfg) |
mjr | 35:e959ffba78fd | 868 | { |
mjr | 35:e959ffba78fd | 869 | if (cfg.hc595.nchips != 0) |
mjr | 35:e959ffba78fd | 870 | { |
mjr | 53:9b2611964afc | 871 | hc595 = new HC595( |
mjr | 53:9b2611964afc | 872 | wirePinName(cfg.hc595.nchips), |
mjr | 53:9b2611964afc | 873 | wirePinName(cfg.hc595.sin), |
mjr | 53:9b2611964afc | 874 | wirePinName(cfg.hc595.sclk), |
mjr | 53:9b2611964afc | 875 | wirePinName(cfg.hc595.latch), |
mjr | 53:9b2611964afc | 876 | wirePinName(cfg.hc595.ena)); |
mjr | 35:e959ffba78fd | 877 | hc595->init(); |
mjr | 35:e959ffba78fd | 878 | hc595->update(); |
mjr | 35:e959ffba78fd | 879 | } |
mjr | 35:e959ffba78fd | 880 | } |
mjr | 34:6b981a2afab7 | 881 | |
mjr | 34:6b981a2afab7 | 882 | // LwOut class for 74HC595 outputs. These are simple digial outs. |
mjr | 34:6b981a2afab7 | 883 | // The 'idx' value in the constructor is the output index in the |
mjr | 34:6b981a2afab7 | 884 | // daisy-chained 74HC595 array. 0 is output #0 on the first chip, |
mjr | 34:6b981a2afab7 | 885 | // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is |
mjr | 34:6b981a2afab7 | 886 | // #0 on the second chip, etc. |
mjr | 34:6b981a2afab7 | 887 | class Lw595Out: public LwOut |
mjr | 33:d832bcab089e | 888 | { |
mjr | 33:d832bcab089e | 889 | public: |
mjr | 60:f38da020aa13 | 890 | Lw595Out(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 891 | virtual void set(uint8_t val) |
mjr | 34:6b981a2afab7 | 892 | { |
mjr | 34:6b981a2afab7 | 893 | if (val != prv) |
mjr | 40:cc0d9814522b | 894 | hc595->set(idx, (prv = val) == 0 ? 0 : 1); |
mjr | 34:6b981a2afab7 | 895 | } |
mjr | 60:f38da020aa13 | 896 | uint8_t idx; |
mjr | 40:cc0d9814522b | 897 | uint8_t prv; |
mjr | 33:d832bcab089e | 898 | }; |
mjr | 33:d832bcab089e | 899 | |
mjr | 26:cb71c4af2912 | 900 | |
mjr | 40:cc0d9814522b | 901 | |
mjr | 64:ef7ca92dff36 | 902 | // Conversion table - 8-bit DOF output level to PWM duty cycle, |
mjr | 64:ef7ca92dff36 | 903 | // normalized to 0.0 to 1.0 scale. |
mjr | 40:cc0d9814522b | 904 | static const float pwm_level[] = { |
mjr | 64:ef7ca92dff36 | 905 | 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f, |
mjr | 64:ef7ca92dff36 | 906 | 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f, |
mjr | 64:ef7ca92dff36 | 907 | 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f, |
mjr | 64:ef7ca92dff36 | 908 | 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f, |
mjr | 64:ef7ca92dff36 | 909 | 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f, |
mjr | 64:ef7ca92dff36 | 910 | 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f, |
mjr | 64:ef7ca92dff36 | 911 | 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f, |
mjr | 64:ef7ca92dff36 | 912 | 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f, |
mjr | 64:ef7ca92dff36 | 913 | 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f, |
mjr | 64:ef7ca92dff36 | 914 | 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f, |
mjr | 64:ef7ca92dff36 | 915 | 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f, |
mjr | 64:ef7ca92dff36 | 916 | 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f, |
mjr | 64:ef7ca92dff36 | 917 | 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f, |
mjr | 64:ef7ca92dff36 | 918 | 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f, |
mjr | 64:ef7ca92dff36 | 919 | 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f, |
mjr | 64:ef7ca92dff36 | 920 | 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f, |
mjr | 64:ef7ca92dff36 | 921 | 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f, |
mjr | 64:ef7ca92dff36 | 922 | 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f, |
mjr | 64:ef7ca92dff36 | 923 | 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f, |
mjr | 64:ef7ca92dff36 | 924 | 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f, |
mjr | 64:ef7ca92dff36 | 925 | 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f, |
mjr | 64:ef7ca92dff36 | 926 | 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f, |
mjr | 64:ef7ca92dff36 | 927 | 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f, |
mjr | 64:ef7ca92dff36 | 928 | 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f, |
mjr | 64:ef7ca92dff36 | 929 | 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f, |
mjr | 64:ef7ca92dff36 | 930 | 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f, |
mjr | 64:ef7ca92dff36 | 931 | 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f, |
mjr | 64:ef7ca92dff36 | 932 | 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f, |
mjr | 64:ef7ca92dff36 | 933 | 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f, |
mjr | 64:ef7ca92dff36 | 934 | 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f, |
mjr | 64:ef7ca92dff36 | 935 | 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f, |
mjr | 64:ef7ca92dff36 | 936 | 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f |
mjr | 40:cc0d9814522b | 937 | }; |
mjr | 26:cb71c4af2912 | 938 | |
mjr | 64:ef7ca92dff36 | 939 | |
mjr | 64:ef7ca92dff36 | 940 | // Conversion table for 8-bit DOF level to pulse width in microseconds, |
mjr | 64:ef7ca92dff36 | 941 | // with gamma correction. We could use the layered gamma output on top |
mjr | 64:ef7ca92dff36 | 942 | // of the regular LwPwmOut class for this, but we get better precision |
mjr | 64:ef7ca92dff36 | 943 | // with a dedicated table, because we apply gamma correction to the |
mjr | 64:ef7ca92dff36 | 944 | // 32-bit microsecond values rather than the 8-bit DOF levels. |
mjr | 64:ef7ca92dff36 | 945 | static const float dof_to_gamma_pwm[] = { |
mjr | 64:ef7ca92dff36 | 946 | 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f, |
mjr | 64:ef7ca92dff36 | 947 | 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f, |
mjr | 64:ef7ca92dff36 | 948 | 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f, |
mjr | 64:ef7ca92dff36 | 949 | 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f, |
mjr | 64:ef7ca92dff36 | 950 | 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f, |
mjr | 64:ef7ca92dff36 | 951 | 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f, |
mjr | 64:ef7ca92dff36 | 952 | 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f, |
mjr | 64:ef7ca92dff36 | 953 | 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f, |
mjr | 64:ef7ca92dff36 | 954 | 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f, |
mjr | 64:ef7ca92dff36 | 955 | 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f, |
mjr | 64:ef7ca92dff36 | 956 | 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f, |
mjr | 64:ef7ca92dff36 | 957 | 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f, |
mjr | 64:ef7ca92dff36 | 958 | 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f, |
mjr | 64:ef7ca92dff36 | 959 | 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f, |
mjr | 64:ef7ca92dff36 | 960 | 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f, |
mjr | 64:ef7ca92dff36 | 961 | 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f, |
mjr | 64:ef7ca92dff36 | 962 | 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f, |
mjr | 64:ef7ca92dff36 | 963 | 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f, |
mjr | 64:ef7ca92dff36 | 964 | 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f, |
mjr | 64:ef7ca92dff36 | 965 | 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f, |
mjr | 64:ef7ca92dff36 | 966 | 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f, |
mjr | 64:ef7ca92dff36 | 967 | 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f, |
mjr | 64:ef7ca92dff36 | 968 | 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f, |
mjr | 64:ef7ca92dff36 | 969 | 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f, |
mjr | 64:ef7ca92dff36 | 970 | 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f, |
mjr | 64:ef7ca92dff36 | 971 | 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f, |
mjr | 64:ef7ca92dff36 | 972 | 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f, |
mjr | 64:ef7ca92dff36 | 973 | 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f, |
mjr | 64:ef7ca92dff36 | 974 | 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f, |
mjr | 64:ef7ca92dff36 | 975 | 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f, |
mjr | 64:ef7ca92dff36 | 976 | 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f, |
mjr | 64:ef7ca92dff36 | 977 | 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f |
mjr | 64:ef7ca92dff36 | 978 | }; |
mjr | 64:ef7ca92dff36 | 979 | |
mjr | 64:ef7ca92dff36 | 980 | // LwOut class for a PWM-capable GPIO port. Note that we use FastPWM for |
mjr | 64:ef7ca92dff36 | 981 | // the underlying port interface. This isn't because we need the "fast" |
mjr | 64:ef7ca92dff36 | 982 | // part; it's because FastPWM fixes a bug in the base mbed PwmOut class |
mjr | 64:ef7ca92dff36 | 983 | // that makes it look ugly for fades. The base PwmOut class resets |
mjr | 64:ef7ca92dff36 | 984 | // the cycle counter when changing the duty cycle, which makes the output |
mjr | 64:ef7ca92dff36 | 985 | // reset immediately on every change. For an output connected to a lamp |
mjr | 64:ef7ca92dff36 | 986 | // or LED, this causes obvious flickering when performing a rapid series |
mjr | 64:ef7ca92dff36 | 987 | // of writes, such as during a fade. The KL25Z TPM hardware is specifically |
mjr | 64:ef7ca92dff36 | 988 | // designed to make it easy for software to avoid this kind of flickering |
mjr | 64:ef7ca92dff36 | 989 | // when used correctly: it has an internal staging register for the duty |
mjr | 64:ef7ca92dff36 | 990 | // cycle register that gets latched at the start of the next cycle, ensuring |
mjr | 64:ef7ca92dff36 | 991 | // that the duty cycle setting never changes mid-cycle. The mbed PwmOut |
mjr | 64:ef7ca92dff36 | 992 | // defeats this by resetting the cycle counter on every write, which aborts |
mjr | 64:ef7ca92dff36 | 993 | // the current cycle at the moment of the write, causing an effectively random |
mjr | 64:ef7ca92dff36 | 994 | // drop in brightness on each write (by artificially shortening a cycle). |
mjr | 64:ef7ca92dff36 | 995 | // Fortunately, we can fix this by switching to the API-compatible FastPWM |
mjr | 64:ef7ca92dff36 | 996 | // class, which does the write right (heh). |
mjr | 6:cc35eb643e8f | 997 | class LwPwmOut: public LwOut |
mjr | 6:cc35eb643e8f | 998 | { |
mjr | 6:cc35eb643e8f | 999 | public: |
mjr | 43:7a6364d82a41 | 1000 | LwPwmOut(PinName pin, uint8_t initVal) : p(pin) |
mjr | 43:7a6364d82a41 | 1001 | { |
mjr | 43:7a6364d82a41 | 1002 | prv = initVal ^ 0xFF; |
mjr | 43:7a6364d82a41 | 1003 | set(initVal); |
mjr | 43:7a6364d82a41 | 1004 | } |
mjr | 40:cc0d9814522b | 1005 | virtual void set(uint8_t val) |
mjr | 13:72dda449c3c0 | 1006 | { |
mjr | 13:72dda449c3c0 | 1007 | if (val != prv) |
mjr | 40:cc0d9814522b | 1008 | p.write(pwm_level[prv = val]); |
mjr | 13:72dda449c3c0 | 1009 | } |
mjr | 64:ef7ca92dff36 | 1010 | FastPWM p; |
mjr | 40:cc0d9814522b | 1011 | uint8_t prv; |
mjr | 6:cc35eb643e8f | 1012 | }; |
mjr | 26:cb71c4af2912 | 1013 | |
mjr | 64:ef7ca92dff36 | 1014 | // Gamma corrected PWM GPIO output |
mjr | 64:ef7ca92dff36 | 1015 | class LwPwmGammaOut: public LwPwmOut |
mjr | 64:ef7ca92dff36 | 1016 | { |
mjr | 64:ef7ca92dff36 | 1017 | public: |
mjr | 64:ef7ca92dff36 | 1018 | LwPwmGammaOut(PinName pin, uint8_t initVal) |
mjr | 64:ef7ca92dff36 | 1019 | : LwPwmOut(pin, initVal) |
mjr | 64:ef7ca92dff36 | 1020 | { |
mjr | 64:ef7ca92dff36 | 1021 | } |
mjr | 64:ef7ca92dff36 | 1022 | virtual void set(uint8_t val) |
mjr | 64:ef7ca92dff36 | 1023 | { |
mjr | 64:ef7ca92dff36 | 1024 | if (val != prv) |
mjr | 64:ef7ca92dff36 | 1025 | p.write(dof_to_gamma_pwm[prv = val]); |
mjr | 64:ef7ca92dff36 | 1026 | } |
mjr | 64:ef7ca92dff36 | 1027 | }; |
mjr | 64:ef7ca92dff36 | 1028 | |
mjr | 64:ef7ca92dff36 | 1029 | |
mjr | 26:cb71c4af2912 | 1030 | // LwOut class for a Digital-Only (Non-PWM) GPIO port |
mjr | 6:cc35eb643e8f | 1031 | class LwDigOut: public LwOut |
mjr | 6:cc35eb643e8f | 1032 | { |
mjr | 6:cc35eb643e8f | 1033 | public: |
mjr | 43:7a6364d82a41 | 1034 | LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; } |
mjr | 40:cc0d9814522b | 1035 | virtual void set(uint8_t val) |
mjr | 13:72dda449c3c0 | 1036 | { |
mjr | 13:72dda449c3c0 | 1037 | if (val != prv) |
mjr | 40:cc0d9814522b | 1038 | p.write((prv = val) == 0 ? 0 : 1); |
mjr | 13:72dda449c3c0 | 1039 | } |
mjr | 6:cc35eb643e8f | 1040 | DigitalOut p; |
mjr | 40:cc0d9814522b | 1041 | uint8_t prv; |
mjr | 6:cc35eb643e8f | 1042 | }; |
mjr | 26:cb71c4af2912 | 1043 | |
mjr | 29:582472d0bc57 | 1044 | // Array of output physical pin assignments. This array is indexed |
mjr | 29:582472d0bc57 | 1045 | // by LedWiz logical port number - lwPin[n] is the maping for LedWiz |
mjr | 35:e959ffba78fd | 1046 | // port n (0-based). |
mjr | 35:e959ffba78fd | 1047 | // |
mjr | 35:e959ffba78fd | 1048 | // Each pin is handled by an interface object for the physical output |
mjr | 35:e959ffba78fd | 1049 | // type for the port, as set in the configuration. The interface |
mjr | 35:e959ffba78fd | 1050 | // objects handle the specifics of addressing the different hardware |
mjr | 35:e959ffba78fd | 1051 | // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and |
mjr | 35:e959ffba78fd | 1052 | // 74HC595 ports). |
mjr | 33:d832bcab089e | 1053 | static int numOutputs; |
mjr | 33:d832bcab089e | 1054 | static LwOut **lwPin; |
mjr | 33:d832bcab089e | 1055 | |
mjr | 38:091e511ce8a0 | 1056 | |
mjr | 35:e959ffba78fd | 1057 | // Number of LedWiz emulation outputs. This is the number of ports |
mjr | 35:e959ffba78fd | 1058 | // accessible through the standard (non-extended) LedWiz protocol |
mjr | 35:e959ffba78fd | 1059 | // messages. The protocol has a fixed set of 32 outputs, but we |
mjr | 35:e959ffba78fd | 1060 | // might have fewer actual outputs. This is therefore set to the |
mjr | 35:e959ffba78fd | 1061 | // lower of 32 or the actual number of outputs. |
mjr | 35:e959ffba78fd | 1062 | static int numLwOutputs; |
mjr | 35:e959ffba78fd | 1063 | |
mjr | 63:5cd1a5f3a41b | 1064 | // Current absolute brightness levels for all outputs. These are |
mjr | 63:5cd1a5f3a41b | 1065 | // DOF brightness level value, from 0 for fully off to 255 for fully |
mjr | 63:5cd1a5f3a41b | 1066 | // on. These are always used for extended ports (33 and above), and |
mjr | 63:5cd1a5f3a41b | 1067 | // are used for LedWiz ports (1-32) when we're in extended protocol |
mjr | 63:5cd1a5f3a41b | 1068 | // mode (i.e., ledWizMode == false). |
mjr | 40:cc0d9814522b | 1069 | static uint8_t *outLevel; |
mjr | 38:091e511ce8a0 | 1070 | |
mjr | 38:091e511ce8a0 | 1071 | // create a single output pin |
mjr | 53:9b2611964afc | 1072 | LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg) |
mjr | 38:091e511ce8a0 | 1073 | { |
mjr | 38:091e511ce8a0 | 1074 | // get this item's values |
mjr | 38:091e511ce8a0 | 1075 | int typ = pc.typ; |
mjr | 38:091e511ce8a0 | 1076 | int pin = pc.pin; |
mjr | 38:091e511ce8a0 | 1077 | int flags = pc.flags; |
mjr | 40:cc0d9814522b | 1078 | int noisy = flags & PortFlagNoisemaker; |
mjr | 38:091e511ce8a0 | 1079 | int activeLow = flags & PortFlagActiveLow; |
mjr | 40:cc0d9814522b | 1080 | int gamma = flags & PortFlagGamma; |
mjr | 38:091e511ce8a0 | 1081 | |
mjr | 38:091e511ce8a0 | 1082 | // create the pin interface object according to the port type |
mjr | 38:091e511ce8a0 | 1083 | LwOut *lwp; |
mjr | 38:091e511ce8a0 | 1084 | switch (typ) |
mjr | 38:091e511ce8a0 | 1085 | { |
mjr | 38:091e511ce8a0 | 1086 | case PortTypeGPIOPWM: |
mjr | 48:058ace2aed1d | 1087 | // PWM GPIO port - assign if we have a valid pin |
mjr | 48:058ace2aed1d | 1088 | if (pin != 0) |
mjr | 64:ef7ca92dff36 | 1089 | { |
mjr | 64:ef7ca92dff36 | 1090 | // If gamma correction is to be used, and we're not inverting the output, |
mjr | 64:ef7ca92dff36 | 1091 | // use the combined Pwmout + Gamma output class; otherwise use the plain |
mjr | 64:ef7ca92dff36 | 1092 | // PwmOut class. We can't use the combined class for inverted outputs |
mjr | 64:ef7ca92dff36 | 1093 | // because we have to apply gamma correction before the inversion. |
mjr | 64:ef7ca92dff36 | 1094 | if (gamma && !activeLow) |
mjr | 64:ef7ca92dff36 | 1095 | { |
mjr | 64:ef7ca92dff36 | 1096 | // use the gamma-corrected PwmOut type |
mjr | 64:ef7ca92dff36 | 1097 | lwp = new LwPwmGammaOut(wirePinName(pin), 0); |
mjr | 64:ef7ca92dff36 | 1098 | |
mjr | 64:ef7ca92dff36 | 1099 | // don't apply further gamma correction to this output |
mjr | 64:ef7ca92dff36 | 1100 | gamma = false; |
mjr | 64:ef7ca92dff36 | 1101 | } |
mjr | 64:ef7ca92dff36 | 1102 | else |
mjr | 64:ef7ca92dff36 | 1103 | { |
mjr | 64:ef7ca92dff36 | 1104 | // no gamma correction - use the standard PwmOut class |
mjr | 64:ef7ca92dff36 | 1105 | lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0); |
mjr | 64:ef7ca92dff36 | 1106 | } |
mjr | 64:ef7ca92dff36 | 1107 | } |
mjr | 48:058ace2aed1d | 1108 | else |
mjr | 48:058ace2aed1d | 1109 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1110 | break; |
mjr | 38:091e511ce8a0 | 1111 | |
mjr | 38:091e511ce8a0 | 1112 | case PortTypeGPIODig: |
mjr | 38:091e511ce8a0 | 1113 | // Digital GPIO port |
mjr | 48:058ace2aed1d | 1114 | if (pin != 0) |
mjr | 48:058ace2aed1d | 1115 | lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0); |
mjr | 48:058ace2aed1d | 1116 | else |
mjr | 48:058ace2aed1d | 1117 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1118 | break; |
mjr | 38:091e511ce8a0 | 1119 | |
mjr | 38:091e511ce8a0 | 1120 | case PortTypeTLC5940: |
mjr | 38:091e511ce8a0 | 1121 | // TLC5940 port (if we don't have a TLC controller object, or it's not a valid |
mjr | 38:091e511ce8a0 | 1122 | // output port number on the chips we have, create a virtual port) |
mjr | 38:091e511ce8a0 | 1123 | if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16) |
mjr | 40:cc0d9814522b | 1124 | { |
mjr | 40:cc0d9814522b | 1125 | // If gamma correction is to be used, and we're not inverting the output, |
mjr | 40:cc0d9814522b | 1126 | // use the combined TLC4950 + Gamma output class. Otherwise use the plain |
mjr | 40:cc0d9814522b | 1127 | // TLC5940 output. We skip the combined class if the output is inverted |
mjr | 40:cc0d9814522b | 1128 | // because we need to apply gamma BEFORE the inversion to get the right |
mjr | 40:cc0d9814522b | 1129 | // results, but the combined class would apply it after because of the |
mjr | 40:cc0d9814522b | 1130 | // layering scheme - the combined class is a physical device output class, |
mjr | 40:cc0d9814522b | 1131 | // and a physical device output class is necessarily at the bottom of |
mjr | 40:cc0d9814522b | 1132 | // the stack. We don't have a combined inverted+gamma+TLC class, because |
mjr | 40:cc0d9814522b | 1133 | // inversion isn't recommended for TLC5940 chips in the first place, so |
mjr | 40:cc0d9814522b | 1134 | // it's not worth the extra memory footprint to have a dedicated table |
mjr | 40:cc0d9814522b | 1135 | // for this unlikely case. |
mjr | 40:cc0d9814522b | 1136 | if (gamma && !activeLow) |
mjr | 40:cc0d9814522b | 1137 | { |
mjr | 40:cc0d9814522b | 1138 | // use the gamma-corrected 5940 output mapper |
mjr | 40:cc0d9814522b | 1139 | lwp = new Lw5940GammaOut(pin); |
mjr | 40:cc0d9814522b | 1140 | |
mjr | 40:cc0d9814522b | 1141 | // DON'T apply further gamma correction to this output |
mjr | 40:cc0d9814522b | 1142 | gamma = false; |
mjr | 40:cc0d9814522b | 1143 | } |
mjr | 40:cc0d9814522b | 1144 | else |
mjr | 40:cc0d9814522b | 1145 | { |
mjr | 40:cc0d9814522b | 1146 | // no gamma - use the plain (linear) 5940 output class |
mjr | 40:cc0d9814522b | 1147 | lwp = new Lw5940Out(pin); |
mjr | 40:cc0d9814522b | 1148 | } |
mjr | 40:cc0d9814522b | 1149 | } |
mjr | 38:091e511ce8a0 | 1150 | else |
mjr | 40:cc0d9814522b | 1151 | { |
mjr | 40:cc0d9814522b | 1152 | // no TLC5940 chips, or invalid port number - use a virtual out |
mjr | 38:091e511ce8a0 | 1153 | lwp = new LwVirtualOut(); |
mjr | 40:cc0d9814522b | 1154 | } |
mjr | 38:091e511ce8a0 | 1155 | break; |
mjr | 38:091e511ce8a0 | 1156 | |
mjr | 38:091e511ce8a0 | 1157 | case PortType74HC595: |
mjr | 38:091e511ce8a0 | 1158 | // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid |
mjr | 38:091e511ce8a0 | 1159 | // output number, create a virtual port) |
mjr | 38:091e511ce8a0 | 1160 | if (hc595 != 0 && pin < cfg.hc595.nchips*8) |
mjr | 38:091e511ce8a0 | 1161 | lwp = new Lw595Out(pin); |
mjr | 38:091e511ce8a0 | 1162 | else |
mjr | 38:091e511ce8a0 | 1163 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1164 | break; |
mjr | 38:091e511ce8a0 | 1165 | |
mjr | 38:091e511ce8a0 | 1166 | case PortTypeVirtual: |
mjr | 43:7a6364d82a41 | 1167 | case PortTypeDisabled: |
mjr | 38:091e511ce8a0 | 1168 | default: |
mjr | 38:091e511ce8a0 | 1169 | // virtual or unknown |
mjr | 38:091e511ce8a0 | 1170 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1171 | break; |
mjr | 38:091e511ce8a0 | 1172 | } |
mjr | 38:091e511ce8a0 | 1173 | |
mjr | 40:cc0d9814522b | 1174 | // If it's Active Low, layer on an inverter. Note that an inverter |
mjr | 40:cc0d9814522b | 1175 | // needs to be the bottom-most layer, since all of the other filters |
mjr | 40:cc0d9814522b | 1176 | // assume that they're working with normal (non-inverted) values. |
mjr | 38:091e511ce8a0 | 1177 | if (activeLow) |
mjr | 38:091e511ce8a0 | 1178 | lwp = new LwInvertedOut(lwp); |
mjr | 40:cc0d9814522b | 1179 | |
mjr | 40:cc0d9814522b | 1180 | // If it's a noisemaker, layer on a night mode switch. Note that this |
mjr | 40:cc0d9814522b | 1181 | // needs to be |
mjr | 40:cc0d9814522b | 1182 | if (noisy) |
mjr | 40:cc0d9814522b | 1183 | lwp = new LwNoisyOut(lwp); |
mjr | 40:cc0d9814522b | 1184 | |
mjr | 40:cc0d9814522b | 1185 | // If it's gamma-corrected, layer on a gamma corrector |
mjr | 40:cc0d9814522b | 1186 | if (gamma) |
mjr | 40:cc0d9814522b | 1187 | lwp = new LwGammaOut(lwp); |
mjr | 53:9b2611964afc | 1188 | |
mjr | 53:9b2611964afc | 1189 | // If this is the ZB Launch Ball port, layer a monitor object. Note |
mjr | 64:ef7ca92dff36 | 1190 | // that the nominal port numbering in the config starts at 1, but we're |
mjr | 53:9b2611964afc | 1191 | // using an array index, so test against portno+1. |
mjr | 53:9b2611964afc | 1192 | if (portno + 1 == cfg.plunger.zbLaunchBall.port) |
mjr | 53:9b2611964afc | 1193 | lwp = new LwZbLaunchOut(lwp); |
mjr | 53:9b2611964afc | 1194 | |
mjr | 53:9b2611964afc | 1195 | // If this is the Night Mode indicator port, layer a night mode object. |
mjr | 53:9b2611964afc | 1196 | if (portno + 1 == cfg.nightMode.port) |
mjr | 53:9b2611964afc | 1197 | lwp = new LwNightModeIndicatorOut(lwp); |
mjr | 38:091e511ce8a0 | 1198 | |
mjr | 38:091e511ce8a0 | 1199 | // turn it off initially |
mjr | 38:091e511ce8a0 | 1200 | lwp->set(0); |
mjr | 38:091e511ce8a0 | 1201 | |
mjr | 38:091e511ce8a0 | 1202 | // return the pin |
mjr | 38:091e511ce8a0 | 1203 | return lwp; |
mjr | 38:091e511ce8a0 | 1204 | } |
mjr | 38:091e511ce8a0 | 1205 | |
mjr | 6:cc35eb643e8f | 1206 | // initialize the output pin array |
mjr | 35:e959ffba78fd | 1207 | void initLwOut(Config &cfg) |
mjr | 6:cc35eb643e8f | 1208 | { |
mjr | 35:e959ffba78fd | 1209 | // Count the outputs. The first disabled output determines the |
mjr | 35:e959ffba78fd | 1210 | // total number of ports. |
mjr | 35:e959ffba78fd | 1211 | numOutputs = MAX_OUT_PORTS; |
mjr | 33:d832bcab089e | 1212 | int i; |
mjr | 35:e959ffba78fd | 1213 | for (i = 0 ; i < MAX_OUT_PORTS ; ++i) |
mjr | 6:cc35eb643e8f | 1214 | { |
mjr | 35:e959ffba78fd | 1215 | if (cfg.outPort[i].typ == PortTypeDisabled) |
mjr | 34:6b981a2afab7 | 1216 | { |
mjr | 35:e959ffba78fd | 1217 | numOutputs = i; |
mjr | 34:6b981a2afab7 | 1218 | break; |
mjr | 34:6b981a2afab7 | 1219 | } |
mjr | 33:d832bcab089e | 1220 | } |
mjr | 33:d832bcab089e | 1221 | |
mjr | 35:e959ffba78fd | 1222 | // the real LedWiz protocol can access at most 32 ports, or the |
mjr | 35:e959ffba78fd | 1223 | // actual number of outputs, whichever is lower |
mjr | 35:e959ffba78fd | 1224 | numLwOutputs = (numOutputs < 32 ? numOutputs : 32); |
mjr | 35:e959ffba78fd | 1225 | |
mjr | 33:d832bcab089e | 1226 | // allocate the pin array |
mjr | 33:d832bcab089e | 1227 | lwPin = new LwOut*[numOutputs]; |
mjr | 33:d832bcab089e | 1228 | |
mjr | 38:091e511ce8a0 | 1229 | // Allocate the current brightness array. For these, allocate at |
mjr | 38:091e511ce8a0 | 1230 | // least 32, so that we have enough for all LedWiz messages, but |
mjr | 38:091e511ce8a0 | 1231 | // allocate the full set of actual ports if we have more than the |
mjr | 38:091e511ce8a0 | 1232 | // LedWiz complement. |
mjr | 38:091e511ce8a0 | 1233 | int minOuts = numOutputs < 32 ? 32 : numOutputs; |
mjr | 40:cc0d9814522b | 1234 | outLevel = new uint8_t[minOuts]; |
mjr | 33:d832bcab089e | 1235 | |
mjr | 35:e959ffba78fd | 1236 | // create the pin interface object for each port |
mjr | 35:e959ffba78fd | 1237 | for (i = 0 ; i < numOutputs ; ++i) |
mjr | 53:9b2611964afc | 1238 | lwPin[i] = createLwPin(i, cfg.outPort[i], cfg); |
mjr | 6:cc35eb643e8f | 1239 | } |
mjr | 6:cc35eb643e8f | 1240 | |
mjr | 63:5cd1a5f3a41b | 1241 | // LedWiz/Extended protocol mode. |
mjr | 63:5cd1a5f3a41b | 1242 | // |
mjr | 63:5cd1a5f3a41b | 1243 | // We implement output port control using both the legacy LedWiz |
mjr | 63:5cd1a5f3a41b | 1244 | // protocol and a private extended protocol (which is 100% backwards |
mjr | 63:5cd1a5f3a41b | 1245 | // compatible with the LedWiz protocol: we recognize all valid legacy |
mjr | 63:5cd1a5f3a41b | 1246 | // protocol commands and handle them the same way a real LedWiz does). |
mjr | 63:5cd1a5f3a41b | 1247 | // The legacy protocol can access the first 32 ports; the extended |
mjr | 63:5cd1a5f3a41b | 1248 | // protocol can access all ports, including the first 32 as well as |
mjr | 63:5cd1a5f3a41b | 1249 | // the higher numbered ports. This means that the first 32 ports |
mjr | 63:5cd1a5f3a41b | 1250 | // can be addressed with either protocol, which muddies the waters |
mjr | 63:5cd1a5f3a41b | 1251 | // a bit because of the different approaches the two protocols take. |
mjr | 63:5cd1a5f3a41b | 1252 | // The legacy protocol separates the brightness/flash state of an |
mjr | 63:5cd1a5f3a41b | 1253 | // output (which it calls the "profile" state) from the on/off state. |
mjr | 63:5cd1a5f3a41b | 1254 | // The extended protocol doesn't; "off" is simply represented as |
mjr | 63:5cd1a5f3a41b | 1255 | // brightness 0. |
mjr | 63:5cd1a5f3a41b | 1256 | // |
mjr | 63:5cd1a5f3a41b | 1257 | // To deal with the different approaches, we use this flag to keep |
mjr | 63:5cd1a5f3a41b | 1258 | // track of the global protocol state. Each time we get an output |
mjr | 63:5cd1a5f3a41b | 1259 | // port command, we switch the protocol state to the protocol that |
mjr | 63:5cd1a5f3a41b | 1260 | // was used in the command. On a legacy SBA or PBA, we switch to |
mjr | 63:5cd1a5f3a41b | 1261 | // LedWiz mode; on an extended output set message, we switch to |
mjr | 63:5cd1a5f3a41b | 1262 | // extended mode. We remember the LedWiz and extended output state |
mjr | 63:5cd1a5f3a41b | 1263 | // for each LW ports (1-32) separately. Any time the mode changes, |
mjr | 63:5cd1a5f3a41b | 1264 | // we set ports 1-32 back to the state for the new mode. |
mjr | 63:5cd1a5f3a41b | 1265 | // |
mjr | 63:5cd1a5f3a41b | 1266 | // The reasoning here is that any given client (on the PC) will use |
mjr | 63:5cd1a5f3a41b | 1267 | // one mode or the other, and won't mix the two. An older program |
mjr | 63:5cd1a5f3a41b | 1268 | // that only knows about the LedWiz protocol will use the legacy |
mjr | 63:5cd1a5f3a41b | 1269 | // protocol only, and never send us an extended command. A DOF-based |
mjr | 63:5cd1a5f3a41b | 1270 | // program might use one or the other, according to how the user has |
mjr | 63:5cd1a5f3a41b | 1271 | // configured DOF. We have to be able to switch seamlessly between |
mjr | 63:5cd1a5f3a41b | 1272 | // the protocols to accommodate switching from one type of program |
mjr | 63:5cd1a5f3a41b | 1273 | // on the PC to the other, but we shouldn't have to worry about one |
mjr | 63:5cd1a5f3a41b | 1274 | // program switching back and forth. |
mjr | 63:5cd1a5f3a41b | 1275 | static uint8_t ledWizMode = true; |
mjr | 63:5cd1a5f3a41b | 1276 | |
mjr | 29:582472d0bc57 | 1277 | // LedWiz output states. |
mjr | 29:582472d0bc57 | 1278 | // |
mjr | 29:582472d0bc57 | 1279 | // The LedWiz protocol has two separate control axes for each output. |
mjr | 29:582472d0bc57 | 1280 | // One axis is its on/off state; the other is its "profile" state, which |
mjr | 29:582472d0bc57 | 1281 | // is either a fixed brightness or a blinking pattern for the light. |
mjr | 29:582472d0bc57 | 1282 | // The two axes are independent. |
mjr | 29:582472d0bc57 | 1283 | // |
mjr | 29:582472d0bc57 | 1284 | // Note that the LedWiz protocol can only address 32 outputs, so the |
mjr | 29:582472d0bc57 | 1285 | // wizOn and wizVal arrays have fixed sizes of 32 elements no matter |
mjr | 29:582472d0bc57 | 1286 | // how many physical outputs we're using. |
mjr | 29:582472d0bc57 | 1287 | |
mjr | 0:5acbbe3f4cf4 | 1288 | // on/off state for each LedWiz output |
mjr | 1:d913e0afb2ac | 1289 | static uint8_t wizOn[32]; |
mjr | 0:5acbbe3f4cf4 | 1290 | |
mjr | 40:cc0d9814522b | 1291 | // LedWiz "Profile State" (the LedWiz brightness level or blink mode) |
mjr | 40:cc0d9814522b | 1292 | // for each LedWiz output. If the output was last updated through an |
mjr | 40:cc0d9814522b | 1293 | // LedWiz protocol message, it will have one of these values: |
mjr | 29:582472d0bc57 | 1294 | // |
mjr | 29:582472d0bc57 | 1295 | // 0-48 = fixed brightness 0% to 100% |
mjr | 40:cc0d9814522b | 1296 | // 49 = fixed brightness 100% (equivalent to 48) |
mjr | 29:582472d0bc57 | 1297 | // 129 = ramp up / ramp down |
mjr | 29:582472d0bc57 | 1298 | // 130 = flash on / off |
mjr | 29:582472d0bc57 | 1299 | // 131 = on / ramp down |
mjr | 29:582472d0bc57 | 1300 | // 132 = ramp up / on |
mjr | 29:582472d0bc57 | 1301 | // |
mjr | 40:cc0d9814522b | 1302 | // (Note that value 49 isn't documented in the LedWiz spec, but real |
mjr | 40:cc0d9814522b | 1303 | // LedWiz units treat it as equivalent to 48, and some PC software uses |
mjr | 40:cc0d9814522b | 1304 | // it, so we need to accept it for compatibility.) |
mjr | 1:d913e0afb2ac | 1305 | static uint8_t wizVal[32] = { |
mjr | 13:72dda449c3c0 | 1306 | 48, 48, 48, 48, 48, 48, 48, 48, |
mjr | 13:72dda449c3c0 | 1307 | 48, 48, 48, 48, 48, 48, 48, 48, |
mjr | 13:72dda449c3c0 | 1308 | 48, 48, 48, 48, 48, 48, 48, 48, |
mjr | 13:72dda449c3c0 | 1309 | 48, 48, 48, 48, 48, 48, 48, 48 |
mjr | 0:5acbbe3f4cf4 | 1310 | }; |
mjr | 0:5acbbe3f4cf4 | 1311 | |
mjr | 29:582472d0bc57 | 1312 | // LedWiz flash speed. This is a value from 1 to 7 giving the pulse |
mjr | 29:582472d0bc57 | 1313 | // rate for lights in blinking states. |
mjr | 29:582472d0bc57 | 1314 | static uint8_t wizSpeed = 2; |
mjr | 29:582472d0bc57 | 1315 | |
mjr | 40:cc0d9814522b | 1316 | // Current LedWiz flash cycle counter. This runs from 0 to 255 |
mjr | 40:cc0d9814522b | 1317 | // during each cycle. |
mjr | 29:582472d0bc57 | 1318 | static uint8_t wizFlashCounter = 0; |
mjr | 29:582472d0bc57 | 1319 | |
mjr | 40:cc0d9814522b | 1320 | // translate an LedWiz brightness level (0-49) to a DOF brightness |
mjr | 40:cc0d9814522b | 1321 | // level (0-255) |
mjr | 40:cc0d9814522b | 1322 | static const uint8_t lw_to_dof[] = { |
mjr | 40:cc0d9814522b | 1323 | 0, 5, 11, 16, 21, 27, 32, 37, |
mjr | 40:cc0d9814522b | 1324 | 43, 48, 53, 58, 64, 69, 74, 80, |
mjr | 40:cc0d9814522b | 1325 | 85, 90, 96, 101, 106, 112, 117, 122, |
mjr | 40:cc0d9814522b | 1326 | 128, 133, 138, 143, 149, 154, 159, 165, |
mjr | 40:cc0d9814522b | 1327 | 170, 175, 181, 186, 191, 197, 202, 207, |
mjr | 40:cc0d9814522b | 1328 | 213, 218, 223, 228, 234, 239, 244, 250, |
mjr | 40:cc0d9814522b | 1329 | 255, 255 |
mjr | 40:cc0d9814522b | 1330 | }; |
mjr | 40:cc0d9814522b | 1331 | |
mjr | 40:cc0d9814522b | 1332 | // Translate an LedWiz output (ports 1-32) to a DOF brightness level. |
mjr | 40:cc0d9814522b | 1333 | static uint8_t wizState(int idx) |
mjr | 0:5acbbe3f4cf4 | 1334 | { |
mjr | 63:5cd1a5f3a41b | 1335 | // If we're in extended protocol mode, ignore the LedWiz setting |
mjr | 63:5cd1a5f3a41b | 1336 | // for the port and use the new protocol setting instead. |
mjr | 63:5cd1a5f3a41b | 1337 | if (!ledWizMode) |
mjr | 29:582472d0bc57 | 1338 | return outLevel[idx]; |
mjr | 29:582472d0bc57 | 1339 | |
mjr | 29:582472d0bc57 | 1340 | // if it's off, show at zero intensity |
mjr | 29:582472d0bc57 | 1341 | if (!wizOn[idx]) |
mjr | 29:582472d0bc57 | 1342 | return 0; |
mjr | 29:582472d0bc57 | 1343 | |
mjr | 29:582472d0bc57 | 1344 | // check the state |
mjr | 29:582472d0bc57 | 1345 | uint8_t val = wizVal[idx]; |
mjr | 40:cc0d9814522b | 1346 | if (val <= 49) |
mjr | 29:582472d0bc57 | 1347 | { |
mjr | 29:582472d0bc57 | 1348 | // PWM brightness/intensity level. Rescale from the LedWiz |
mjr | 29:582472d0bc57 | 1349 | // 0..48 integer range to our internal PwmOut 0..1 float range. |
mjr | 29:582472d0bc57 | 1350 | // Note that on the actual LedWiz, level 48 is actually about |
mjr | 29:582472d0bc57 | 1351 | // 98% on - contrary to the LedWiz documentation, level 49 is |
mjr | 29:582472d0bc57 | 1352 | // the true 100% level. (In the documentation, level 49 is |
mjr | 29:582472d0bc57 | 1353 | // simply not a valid setting.) Even so, we treat level 48 as |
mjr | 29:582472d0bc57 | 1354 | // 100% on to match the documentation. This won't be perfectly |
mjr | 29:582472d0bc57 | 1355 | // ocmpatible with the actual LedWiz, but it makes for such a |
mjr | 29:582472d0bc57 | 1356 | // small difference in brightness (if the output device is an |
mjr | 29:582472d0bc57 | 1357 | // LED, say) that no one should notice. It seems better to |
mjr | 29:582472d0bc57 | 1358 | // err in this direction, because while the difference in |
mjr | 29:582472d0bc57 | 1359 | // brightness when attached to an LED won't be noticeable, the |
mjr | 29:582472d0bc57 | 1360 | // difference in duty cycle when attached to something like a |
mjr | 29:582472d0bc57 | 1361 | // contactor *can* be noticeable - anything less than 100% |
mjr | 29:582472d0bc57 | 1362 | // can cause a contactor or relay to chatter. There's almost |
mjr | 29:582472d0bc57 | 1363 | // never a situation where you'd want values other than 0% and |
mjr | 29:582472d0bc57 | 1364 | // 100% for a contactor or relay, so treating level 48 as 100% |
mjr | 29:582472d0bc57 | 1365 | // makes us work properly with software that's expecting the |
mjr | 29:582472d0bc57 | 1366 | // documented LedWiz behavior and therefore uses level 48 to |
mjr | 29:582472d0bc57 | 1367 | // turn a contactor or relay fully on. |
mjr | 40:cc0d9814522b | 1368 | // |
mjr | 40:cc0d9814522b | 1369 | // Note that value 49 is undefined in the LedWiz documentation, |
mjr | 40:cc0d9814522b | 1370 | // but real LedWiz units treat it as 100%, equivalent to 48. |
mjr | 40:cc0d9814522b | 1371 | // Some software on the PC side uses this, so we need to treat |
mjr | 40:cc0d9814522b | 1372 | // it the same way for compatibility. |
mjr | 40:cc0d9814522b | 1373 | return lw_to_dof[val]; |
mjr | 29:582472d0bc57 | 1374 | } |
mjr | 29:582472d0bc57 | 1375 | else if (val == 129) |
mjr | 29:582472d0bc57 | 1376 | { |
mjr | 40:cc0d9814522b | 1377 | // 129 = ramp up / ramp down |
mjr | 30:6e9902f06f48 | 1378 | return wizFlashCounter < 128 |
mjr | 40:cc0d9814522b | 1379 | ? wizFlashCounter*2 + 1 |
mjr | 40:cc0d9814522b | 1380 | : (255 - wizFlashCounter)*2; |
mjr | 29:582472d0bc57 | 1381 | } |
mjr | 29:582472d0bc57 | 1382 | else if (val == 130) |
mjr | 29:582472d0bc57 | 1383 | { |
mjr | 40:cc0d9814522b | 1384 | // 130 = flash on / off |
mjr | 40:cc0d9814522b | 1385 | return wizFlashCounter < 128 ? 255 : 0; |
mjr | 29:582472d0bc57 | 1386 | } |
mjr | 29:582472d0bc57 | 1387 | else if (val == 131) |
mjr | 29:582472d0bc57 | 1388 | { |
mjr | 40:cc0d9814522b | 1389 | // 131 = on / ramp down |
mjr | 40:cc0d9814522b | 1390 | return wizFlashCounter < 128 ? 255 : (255 - wizFlashCounter)*2; |
mjr | 0:5acbbe3f4cf4 | 1391 | } |
mjr | 29:582472d0bc57 | 1392 | else if (val == 132) |
mjr | 29:582472d0bc57 | 1393 | { |
mjr | 40:cc0d9814522b | 1394 | // 132 = ramp up / on |
mjr | 40:cc0d9814522b | 1395 | return wizFlashCounter < 128 ? wizFlashCounter*2 : 255; |
mjr | 29:582472d0bc57 | 1396 | } |
mjr | 29:582472d0bc57 | 1397 | else |
mjr | 13:72dda449c3c0 | 1398 | { |
mjr | 29:582472d0bc57 | 1399 | // Other values are undefined in the LedWiz documentation. Hosts |
mjr | 29:582472d0bc57 | 1400 | // *should* never send undefined values, since whatever behavior an |
mjr | 29:582472d0bc57 | 1401 | // LedWiz unit exhibits in response is accidental and could change |
mjr | 29:582472d0bc57 | 1402 | // in a future version. We'll treat all undefined values as equivalent |
mjr | 29:582472d0bc57 | 1403 | // to 48 (fully on). |
mjr | 40:cc0d9814522b | 1404 | return 255; |
mjr | 0:5acbbe3f4cf4 | 1405 | } |
mjr | 0:5acbbe3f4cf4 | 1406 | } |
mjr | 0:5acbbe3f4cf4 | 1407 | |
mjr | 29:582472d0bc57 | 1408 | // LedWiz flash timer pulse. This fires periodically to update |
mjr | 29:582472d0bc57 | 1409 | // LedWiz flashing outputs. At the slowest pulse speed set via |
mjr | 29:582472d0bc57 | 1410 | // the SBA command, each waveform cycle has 256 steps, so we |
mjr | 29:582472d0bc57 | 1411 | // choose the pulse time base so that the slowest cycle completes |
mjr | 29:582472d0bc57 | 1412 | // in 2 seconds. This seems to roughly match the real LedWiz |
mjr | 29:582472d0bc57 | 1413 | // behavior. We run the pulse timer at the same rate regardless |
mjr | 29:582472d0bc57 | 1414 | // of the pulse speed; at higher pulse speeds, we simply use |
mjr | 29:582472d0bc57 | 1415 | // larger steps through the cycle on each interrupt. Running |
mjr | 29:582472d0bc57 | 1416 | // every 1/127 of a second = 8ms seems to be a pretty light load. |
mjr | 29:582472d0bc57 | 1417 | Timeout wizPulseTimer; |
mjr | 38:091e511ce8a0 | 1418 | #define WIZ_PULSE_TIME_BASE (1.0f/127.0f) |
mjr | 29:582472d0bc57 | 1419 | static void wizPulse() |
mjr | 29:582472d0bc57 | 1420 | { |
mjr | 29:582472d0bc57 | 1421 | // increase the counter by the speed increment, and wrap at 256 |
mjr | 29:582472d0bc57 | 1422 | wizFlashCounter += wizSpeed; |
mjr | 29:582472d0bc57 | 1423 | wizFlashCounter &= 0xff; |
mjr | 29:582472d0bc57 | 1424 | |
mjr | 29:582472d0bc57 | 1425 | // if we have any flashing lights, update them |
mjr | 29:582472d0bc57 | 1426 | int ena = false; |
mjr | 35:e959ffba78fd | 1427 | for (int i = 0 ; i < numLwOutputs ; ++i) |
mjr | 29:582472d0bc57 | 1428 | { |
mjr | 29:582472d0bc57 | 1429 | if (wizOn[i]) |
mjr | 29:582472d0bc57 | 1430 | { |
mjr | 29:582472d0bc57 | 1431 | uint8_t s = wizVal[i]; |
mjr | 29:582472d0bc57 | 1432 | if (s >= 129 && s <= 132) |
mjr | 29:582472d0bc57 | 1433 | { |
mjr | 40:cc0d9814522b | 1434 | lwPin[i]->set(wizState(i)); |
mjr | 29:582472d0bc57 | 1435 | ena = true; |
mjr | 29:582472d0bc57 | 1436 | } |
mjr | 29:582472d0bc57 | 1437 | } |
mjr | 29:582472d0bc57 | 1438 | } |
mjr | 29:582472d0bc57 | 1439 | |
mjr | 29:582472d0bc57 | 1440 | // Set up the next timer pulse only if we found anything flashing. |
mjr | 29:582472d0bc57 | 1441 | // To minimize overhead from this feature, we only enable the interrupt |
mjr | 29:582472d0bc57 | 1442 | // when we need it. This eliminates any performance penalty to other |
mjr | 29:582472d0bc57 | 1443 | // features when the host software doesn't care about the flashing |
mjr | 29:582472d0bc57 | 1444 | // modes. For example, DOF never uses these modes, so there's no |
mjr | 29:582472d0bc57 | 1445 | // need for them when running Visual Pinball. |
mjr | 29:582472d0bc57 | 1446 | if (ena) |
mjr | 29:582472d0bc57 | 1447 | wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE); |
mjr | 29:582472d0bc57 | 1448 | } |
mjr | 29:582472d0bc57 | 1449 | |
mjr | 29:582472d0bc57 | 1450 | // Update the physical outputs connected to the LedWiz ports. This is |
mjr | 29:582472d0bc57 | 1451 | // called after any update from an LedWiz protocol message. |
mjr | 1:d913e0afb2ac | 1452 | static void updateWizOuts() |
mjr | 1:d913e0afb2ac | 1453 | { |
mjr | 29:582472d0bc57 | 1454 | // update each output |
mjr | 29:582472d0bc57 | 1455 | int pulse = false; |
mjr | 35:e959ffba78fd | 1456 | for (int i = 0 ; i < numLwOutputs ; ++i) |
mjr | 29:582472d0bc57 | 1457 | { |
mjr | 29:582472d0bc57 | 1458 | pulse |= (wizVal[i] >= 129 && wizVal[i] <= 132); |
mjr | 40:cc0d9814522b | 1459 | lwPin[i]->set(wizState(i)); |
mjr | 29:582472d0bc57 | 1460 | } |
mjr | 29:582472d0bc57 | 1461 | |
mjr | 29:582472d0bc57 | 1462 | // if any outputs are set to flashing mode, and the pulse timer |
mjr | 29:582472d0bc57 | 1463 | // isn't running, turn it on |
mjr | 29:582472d0bc57 | 1464 | if (pulse) |
mjr | 29:582472d0bc57 | 1465 | wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE); |
mjr | 34:6b981a2afab7 | 1466 | |
mjr | 34:6b981a2afab7 | 1467 | // flush changes to 74HC595 chips, if attached |
mjr | 35:e959ffba78fd | 1468 | if (hc595 != 0) |
mjr | 35:e959ffba78fd | 1469 | hc595->update(); |
mjr | 1:d913e0afb2ac | 1470 | } |
mjr | 38:091e511ce8a0 | 1471 | |
mjr | 38:091e511ce8a0 | 1472 | // Update all physical outputs. This is called after a change to a global |
mjr | 38:091e511ce8a0 | 1473 | // setting that affects all outputs, such as engaging or canceling Night Mode. |
mjr | 38:091e511ce8a0 | 1474 | static void updateAllOuts() |
mjr | 38:091e511ce8a0 | 1475 | { |
mjr | 38:091e511ce8a0 | 1476 | // uddate each LedWiz output |
mjr | 38:091e511ce8a0 | 1477 | for (int i = 0 ; i < numLwOutputs ; ++i) |
mjr | 40:cc0d9814522b | 1478 | lwPin[i]->set(wizState(i)); |
mjr | 34:6b981a2afab7 | 1479 | |
mjr | 38:091e511ce8a0 | 1480 | // update each extended output |
mjr | 63:5cd1a5f3a41b | 1481 | for (int i = numLwOutputs ; i < numOutputs ; ++i) |
mjr | 40:cc0d9814522b | 1482 | lwPin[i]->set(outLevel[i]); |
mjr | 38:091e511ce8a0 | 1483 | |
mjr | 38:091e511ce8a0 | 1484 | // flush 74HC595 changes, if necessary |
mjr | 38:091e511ce8a0 | 1485 | if (hc595 != 0) |
mjr | 38:091e511ce8a0 | 1486 | hc595->update(); |
mjr | 38:091e511ce8a0 | 1487 | } |
mjr | 38:091e511ce8a0 | 1488 | |
mjr | 11:bd9da7088e6e | 1489 | // --------------------------------------------------------------------------- |
mjr | 11:bd9da7088e6e | 1490 | // |
mjr | 11:bd9da7088e6e | 1491 | // Button input |
mjr | 11:bd9da7088e6e | 1492 | // |
mjr | 11:bd9da7088e6e | 1493 | |
mjr | 18:5e890ebd0023 | 1494 | // button state |
mjr | 18:5e890ebd0023 | 1495 | struct ButtonState |
mjr | 18:5e890ebd0023 | 1496 | { |
mjr | 38:091e511ce8a0 | 1497 | ButtonState() |
mjr | 38:091e511ce8a0 | 1498 | { |
mjr | 38:091e511ce8a0 | 1499 | di = NULL; |
mjr | 53:9b2611964afc | 1500 | physState = logState = prevLogState = 0; |
mjr | 53:9b2611964afc | 1501 | virtState = 0; |
mjr | 53:9b2611964afc | 1502 | dbState = 0; |
mjr | 38:091e511ce8a0 | 1503 | pulseState = 0; |
mjr | 53:9b2611964afc | 1504 | pulseTime = 0; |
mjr | 38:091e511ce8a0 | 1505 | } |
mjr | 35:e959ffba78fd | 1506 | |
mjr | 53:9b2611964afc | 1507 | // "Virtually" press or un-press the button. This can be used to |
mjr | 53:9b2611964afc | 1508 | // control the button state via a software (virtual) source, such as |
mjr | 53:9b2611964afc | 1509 | // the ZB Launch Ball feature. |
mjr | 53:9b2611964afc | 1510 | // |
mjr | 53:9b2611964afc | 1511 | // To allow sharing of one button by multiple virtual sources, each |
mjr | 53:9b2611964afc | 1512 | // virtual source must keep track of its own state internally, and |
mjr | 53:9b2611964afc | 1513 | // only call this routine to CHANGE the state. This is because calls |
mjr | 53:9b2611964afc | 1514 | // to this routine are additive: turning the button ON twice will |
mjr | 53:9b2611964afc | 1515 | // require turning it OFF twice before it actually turns off. |
mjr | 53:9b2611964afc | 1516 | void virtPress(bool on) |
mjr | 53:9b2611964afc | 1517 | { |
mjr | 53:9b2611964afc | 1518 | // Increment or decrement the current state |
mjr | 53:9b2611964afc | 1519 | virtState += on ? 1 : -1; |
mjr | 53:9b2611964afc | 1520 | } |
mjr | 53:9b2611964afc | 1521 | |
mjr | 53:9b2611964afc | 1522 | // DigitalIn for the button, if connected to a physical input |
mjr | 48:058ace2aed1d | 1523 | TinyDigitalIn *di; |
mjr | 38:091e511ce8a0 | 1524 | |
mjr | 65:739875521aae | 1525 | // Time of last pulse state transition. |
mjr | 65:739875521aae | 1526 | // |
mjr | 65:739875521aae | 1527 | // Each state change sticks for a minimum period; when the timer expires, |
mjr | 65:739875521aae | 1528 | // if the underlying physical switch is in a different state, we switch |
mjr | 65:739875521aae | 1529 | // to the next state and restart the timer. pulseTime is the time remaining |
mjr | 65:739875521aae | 1530 | // remaining before we can make another state transition, in microseconds. |
mjr | 65:739875521aae | 1531 | // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...; |
mjr | 65:739875521aae | 1532 | // this guarantees that the parity of the pulse count always matches the |
mjr | 65:739875521aae | 1533 | // current physical switch state when the latter is stable, which makes |
mjr | 65:739875521aae | 1534 | // it impossible to "trick" the host by rapidly toggling the switch state. |
mjr | 65:739875521aae | 1535 | // (On my original Pinscape cabinet, I had a hardware pulse generator |
mjr | 65:739875521aae | 1536 | // for coin door, and that *was* possible to trick by rapid toggling. |
mjr | 65:739875521aae | 1537 | // This software system can't be fooled that way.) |
mjr | 65:739875521aae | 1538 | uint32_t pulseTime; |
mjr | 18:5e890ebd0023 | 1539 | |
mjr | 65:739875521aae | 1540 | // Config key index. This points to the ButtonCfg structure in the |
mjr | 65:739875521aae | 1541 | // configuration that contains the PC key mapping for the button. |
mjr | 65:739875521aae | 1542 | uint8_t cfgIndex; |
mjr | 53:9b2611964afc | 1543 | |
mjr | 53:9b2611964afc | 1544 | // Virtual press state. This is used to simulate pressing the button via |
mjr | 53:9b2611964afc | 1545 | // software inputs rather than physical inputs. To allow one button to be |
mjr | 53:9b2611964afc | 1546 | // controlled by mulitple software sources, each source should keep track |
mjr | 53:9b2611964afc | 1547 | // of its own virtual state for the button independently, and then INCREMENT |
mjr | 53:9b2611964afc | 1548 | // this variable when the source's state transitions from off to on, and |
mjr | 53:9b2611964afc | 1549 | // DECREMENT it when the source's state transitions from on to off. That |
mjr | 53:9b2611964afc | 1550 | // will make the button's pressed state the logical OR of all of the virtual |
mjr | 53:9b2611964afc | 1551 | // and physical source states. |
mjr | 53:9b2611964afc | 1552 | uint8_t virtState; |
mjr | 38:091e511ce8a0 | 1553 | |
mjr | 38:091e511ce8a0 | 1554 | // Debounce history. On each scan, we shift in a 1 bit to the lsb if |
mjr | 38:091e511ce8a0 | 1555 | // the physical key is reporting ON, and shift in a 0 bit if the physical |
mjr | 38:091e511ce8a0 | 1556 | // key is reporting OFF. We consider the key to have a new stable state |
mjr | 38:091e511ce8a0 | 1557 | // if we have N consecutive 0's or 1's in the low N bits (where N is |
mjr | 38:091e511ce8a0 | 1558 | // a parameter that determines how long we wait for transients to settle). |
mjr | 53:9b2611964afc | 1559 | uint8_t dbState; |
mjr | 38:091e511ce8a0 | 1560 | |
mjr | 65:739875521aae | 1561 | // current PHYSICAL on/off state, after debouncing |
mjr | 65:739875521aae | 1562 | uint8_t physState : 1; |
mjr | 65:739875521aae | 1563 | |
mjr | 65:739875521aae | 1564 | // current LOGICAL on/off state as reported to the host. |
mjr | 65:739875521aae | 1565 | uint8_t logState : 1; |
mjr | 65:739875521aae | 1566 | |
mjr | 65:739875521aae | 1567 | // previous logical on/off state, when keys were last processed for USB |
mjr | 65:739875521aae | 1568 | // reports and local effects |
mjr | 65:739875521aae | 1569 | uint8_t prevLogState : 1; |
mjr | 65:739875521aae | 1570 | |
mjr | 65:739875521aae | 1571 | // Pulse state |
mjr | 65:739875521aae | 1572 | // |
mjr | 65:739875521aae | 1573 | // A button in pulse mode (selected via the config flags for the button) |
mjr | 65:739875521aae | 1574 | // transmits a brief logical button press and release each time the attached |
mjr | 65:739875521aae | 1575 | // physical switch changes state. This is useful for cases where the host |
mjr | 65:739875521aae | 1576 | // expects a key press for each change in the state of the physical switch. |
mjr | 65:739875521aae | 1577 | // The canonical example is the Coin Door switch in VPinMAME, which requires |
mjr | 65:739875521aae | 1578 | // pressing the END key to toggle the open/closed state. This software design |
mjr | 65:739875521aae | 1579 | // isn't easily implemented in a physical coin door, though; the simplest |
mjr | 65:739875521aae | 1580 | // physical sensor for the coin door state is a switch that's on when the |
mjr | 65:739875521aae | 1581 | // door is open and off when the door is closed (or vice versa, but in either |
mjr | 65:739875521aae | 1582 | // case, the switch state corresponds to the current state of the door at any |
mjr | 65:739875521aae | 1583 | // given time, rather than pulsing on state changes). The "pulse mode" |
mjr | 65:739875521aae | 1584 | // option brdiges this gap by generating a toggle key event each time |
mjr | 65:739875521aae | 1585 | // there's a change to the physical switch's state. |
mjr | 38:091e511ce8a0 | 1586 | // |
mjr | 38:091e511ce8a0 | 1587 | // Pulse state: |
mjr | 38:091e511ce8a0 | 1588 | // 0 -> not a pulse switch - logical key state equals physical switch state |
mjr | 38:091e511ce8a0 | 1589 | // 1 -> off |
mjr | 38:091e511ce8a0 | 1590 | // 2 -> transitioning off-on |
mjr | 38:091e511ce8a0 | 1591 | // 3 -> on |
mjr | 38:091e511ce8a0 | 1592 | // 4 -> transitioning on-off |
mjr | 65:739875521aae | 1593 | uint8_t pulseState : 3; // 5 states -> we need 3 bits |
mjr | 65:739875521aae | 1594 | |
mjr | 65:739875521aae | 1595 | } __attribute__((packed)); |
mjr | 65:739875521aae | 1596 | |
mjr | 65:739875521aae | 1597 | ButtonState *buttonState; // live button slots, allocated on startup |
mjr | 65:739875521aae | 1598 | int8_t nButtons; // number of live button slots allocated |
mjr | 65:739875521aae | 1599 | int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused |
mjr | 18:5e890ebd0023 | 1600 | |
mjr | 66:2e3583fbd2f4 | 1601 | // Shift button state |
mjr | 66:2e3583fbd2f4 | 1602 | struct |
mjr | 66:2e3583fbd2f4 | 1603 | { |
mjr | 66:2e3583fbd2f4 | 1604 | int8_t index; // buttonState[] index of shift button; -1 if none |
mjr | 66:2e3583fbd2f4 | 1605 | uint8_t state : 2; // current shift state: |
mjr | 66:2e3583fbd2f4 | 1606 | // 0 = not shifted |
mjr | 66:2e3583fbd2f4 | 1607 | // 1 = shift button down, no key pressed yet |
mjr | 66:2e3583fbd2f4 | 1608 | // 2 = shift button down, key pressed |
mjr | 66:2e3583fbd2f4 | 1609 | uint8_t pulse : 1; // sending pulsed keystroke on release |
mjr | 66:2e3583fbd2f4 | 1610 | uint32_t pulseTime; // time of start of pulsed keystroke |
mjr | 66:2e3583fbd2f4 | 1611 | } |
mjr | 66:2e3583fbd2f4 | 1612 | __attribute__((packed)) shiftButton; |
mjr | 38:091e511ce8a0 | 1613 | |
mjr | 38:091e511ce8a0 | 1614 | // Button data |
mjr | 38:091e511ce8a0 | 1615 | uint32_t jsButtons = 0; |
mjr | 38:091e511ce8a0 | 1616 | |
mjr | 38:091e511ce8a0 | 1617 | // Keyboard report state. This tracks the USB keyboard state. We can |
mjr | 38:091e511ce8a0 | 1618 | // report at most 6 simultaneous non-modifier keys here, plus the 8 |
mjr | 38:091e511ce8a0 | 1619 | // modifier keys. |
mjr | 38:091e511ce8a0 | 1620 | struct |
mjr | 38:091e511ce8a0 | 1621 | { |
mjr | 38:091e511ce8a0 | 1622 | bool changed; // flag: changed since last report sent |
mjr | 48:058ace2aed1d | 1623 | uint8_t nkeys; // number of active keys in the list |
mjr | 38:091e511ce8a0 | 1624 | uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask, |
mjr | 38:091e511ce8a0 | 1625 | // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes |
mjr | 38:091e511ce8a0 | 1626 | } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } }; |
mjr | 38:091e511ce8a0 | 1627 | |
mjr | 38:091e511ce8a0 | 1628 | // Media key state |
mjr | 38:091e511ce8a0 | 1629 | struct |
mjr | 38:091e511ce8a0 | 1630 | { |
mjr | 38:091e511ce8a0 | 1631 | bool changed; // flag: changed since last report sent |
mjr | 38:091e511ce8a0 | 1632 | uint8_t data; // key state byte for USB reports |
mjr | 38:091e511ce8a0 | 1633 | } mediaState = { false, 0 }; |
mjr | 38:091e511ce8a0 | 1634 | |
mjr | 38:091e511ce8a0 | 1635 | // button scan interrupt ticker |
mjr | 38:091e511ce8a0 | 1636 | Ticker buttonTicker; |
mjr | 38:091e511ce8a0 | 1637 | |
mjr | 38:091e511ce8a0 | 1638 | // Button scan interrupt handler. We call this periodically via |
mjr | 38:091e511ce8a0 | 1639 | // a timer interrupt to scan the physical button states. |
mjr | 38:091e511ce8a0 | 1640 | void scanButtons() |
mjr | 38:091e511ce8a0 | 1641 | { |
mjr | 38:091e511ce8a0 | 1642 | // scan all button input pins |
mjr | 38:091e511ce8a0 | 1643 | ButtonState *bs = buttonState; |
mjr | 65:739875521aae | 1644 | for (int i = 0 ; i < nButtons ; ++i, ++bs) |
mjr | 38:091e511ce8a0 | 1645 | { |
mjr | 53:9b2611964afc | 1646 | // if this logical button is connected to a physical input, check |
mjr | 53:9b2611964afc | 1647 | // the GPIO pin state |
mjr | 38:091e511ce8a0 | 1648 | if (bs->di != NULL) |
mjr | 38:091e511ce8a0 | 1649 | { |
mjr | 38:091e511ce8a0 | 1650 | // Shift the new state into the debounce history. Note that |
mjr | 38:091e511ce8a0 | 1651 | // the physical pin inputs are active low (0V/GND = ON), so invert |
mjr | 38:091e511ce8a0 | 1652 | // the reading by XOR'ing the low bit with 1. And of course we |
mjr | 38:091e511ce8a0 | 1653 | // only want the low bit (since the history is effectively a bit |
mjr | 38:091e511ce8a0 | 1654 | // vector), so mask the whole thing with 0x01 as well. |
mjr | 53:9b2611964afc | 1655 | uint8_t db = bs->dbState; |
mjr | 38:091e511ce8a0 | 1656 | db <<= 1; |
mjr | 38:091e511ce8a0 | 1657 | db |= (bs->di->read() & 0x01) ^ 0x01; |
mjr | 53:9b2611964afc | 1658 | bs->dbState = db; |
mjr | 38:091e511ce8a0 | 1659 | |
mjr | 38:091e511ce8a0 | 1660 | // if we have all 0's or 1's in the history for the required |
mjr | 38:091e511ce8a0 | 1661 | // debounce period, the key state is stable - check for a change |
mjr | 38:091e511ce8a0 | 1662 | // to the last stable state |
mjr | 38:091e511ce8a0 | 1663 | const uint8_t stable = 0x1F; // 00011111b -> 5 stable readings |
mjr | 38:091e511ce8a0 | 1664 | db &= stable; |
mjr | 38:091e511ce8a0 | 1665 | if (db == 0 || db == stable) |
mjr | 53:9b2611964afc | 1666 | bs->physState = db & 1; |
mjr | 38:091e511ce8a0 | 1667 | } |
mjr | 38:091e511ce8a0 | 1668 | } |
mjr | 38:091e511ce8a0 | 1669 | } |
mjr | 38:091e511ce8a0 | 1670 | |
mjr | 38:091e511ce8a0 | 1671 | // Button state transition timer. This is used for pulse buttons, to |
mjr | 38:091e511ce8a0 | 1672 | // control the timing of the logical key presses generated by transitions |
mjr | 38:091e511ce8a0 | 1673 | // in the physical button state. |
mjr | 38:091e511ce8a0 | 1674 | Timer buttonTimer; |
mjr | 12:669df364a565 | 1675 | |
mjr | 65:739875521aae | 1676 | // Count a button during the initial setup scan |
mjr | 72:884207c0aab0 | 1677 | void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys) |
mjr | 65:739875521aae | 1678 | { |
mjr | 65:739875521aae | 1679 | // count it |
mjr | 65:739875521aae | 1680 | ++nButtons; |
mjr | 65:739875521aae | 1681 | |
mjr | 67:c39e66c4e000 | 1682 | // if it's a keyboard key or media key, note that we need a USB |
mjr | 67:c39e66c4e000 | 1683 | // keyboard interface |
mjr | 72:884207c0aab0 | 1684 | if (typ == BtnTypeKey || typ == BtnTypeMedia |
mjr | 72:884207c0aab0 | 1685 | || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia) |
mjr | 65:739875521aae | 1686 | kbKeys = true; |
mjr | 65:739875521aae | 1687 | } |
mjr | 65:739875521aae | 1688 | |
mjr | 11:bd9da7088e6e | 1689 | // initialize the button inputs |
mjr | 35:e959ffba78fd | 1690 | void initButtons(Config &cfg, bool &kbKeys) |
mjr | 11:bd9da7088e6e | 1691 | { |
mjr | 35:e959ffba78fd | 1692 | // presume we'll find no keyboard keys |
mjr | 35:e959ffba78fd | 1693 | kbKeys = false; |
mjr | 35:e959ffba78fd | 1694 | |
mjr | 66:2e3583fbd2f4 | 1695 | // presume no shift key |
mjr | 66:2e3583fbd2f4 | 1696 | shiftButton.index = -1; |
mjr | 66:2e3583fbd2f4 | 1697 | |
mjr | 65:739875521aae | 1698 | // Count up how many button slots we'll need to allocate. Start |
mjr | 65:739875521aae | 1699 | // with assigned buttons from the configuration, noting that we |
mjr | 65:739875521aae | 1700 | // only need to create slots for buttons that are actually wired. |
mjr | 65:739875521aae | 1701 | nButtons = 0; |
mjr | 65:739875521aae | 1702 | for (int i = 0 ; i < MAX_BUTTONS ; ++i) |
mjr | 65:739875521aae | 1703 | { |
mjr | 65:739875521aae | 1704 | // it's valid if it's wired to a real input pin |
mjr | 65:739875521aae | 1705 | if (wirePinName(cfg.button[i].pin) != NC) |
mjr | 72:884207c0aab0 | 1706 | countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys); |
mjr | 65:739875521aae | 1707 | } |
mjr | 65:739875521aae | 1708 | |
mjr | 65:739875521aae | 1709 | // Count virtual buttons |
mjr | 65:739875521aae | 1710 | |
mjr | 65:739875521aae | 1711 | // ZB Launch |
mjr | 65:739875521aae | 1712 | if (cfg.plunger.zbLaunchBall.port != 0) |
mjr | 65:739875521aae | 1713 | { |
mjr | 65:739875521aae | 1714 | // valid - remember the live button index |
mjr | 65:739875521aae | 1715 | zblButtonIndex = nButtons; |
mjr | 65:739875521aae | 1716 | |
mjr | 65:739875521aae | 1717 | // count it |
mjr | 72:884207c0aab0 | 1718 | countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys); |
mjr | 65:739875521aae | 1719 | } |
mjr | 65:739875521aae | 1720 | |
mjr | 65:739875521aae | 1721 | // Allocate the live button slots |
mjr | 65:739875521aae | 1722 | ButtonState *bs = buttonState = new ButtonState[nButtons]; |
mjr | 65:739875521aae | 1723 | |
mjr | 65:739875521aae | 1724 | // Configure the physical inputs |
mjr | 65:739875521aae | 1725 | for (int i = 0 ; i < MAX_BUTTONS ; ++i) |
mjr | 65:739875521aae | 1726 | { |
mjr | 65:739875521aae | 1727 | PinName pin = wirePinName(cfg.button[i].pin); |
mjr | 65:739875521aae | 1728 | if (pin != NC) |
mjr | 65:739875521aae | 1729 | { |
mjr | 65:739875521aae | 1730 | // point back to the config slot for the keyboard data |
mjr | 65:739875521aae | 1731 | bs->cfgIndex = i; |
mjr | 65:739875521aae | 1732 | |
mjr | 65:739875521aae | 1733 | // set up the GPIO input pin for this button |
mjr | 65:739875521aae | 1734 | bs->di = new TinyDigitalIn(pin); |
mjr | 65:739875521aae | 1735 | |
mjr | 65:739875521aae | 1736 | // if it's a pulse mode button, set the initial pulse state to Off |
mjr | 65:739875521aae | 1737 | if (cfg.button[i].flags & BtnFlagPulse) |
mjr | 65:739875521aae | 1738 | bs->pulseState = 1; |
mjr | 65:739875521aae | 1739 | |
mjr | 66:2e3583fbd2f4 | 1740 | // If this is the shift button, note its buttonState[] index. |
mjr | 66:2e3583fbd2f4 | 1741 | // We have to figure the buttonState[] index separately from |
mjr | 66:2e3583fbd2f4 | 1742 | // the config index, because the indices can differ if some |
mjr | 66:2e3583fbd2f4 | 1743 | // config slots are left unused. |
mjr | 66:2e3583fbd2f4 | 1744 | if (cfg.shiftButton == i+1) |
mjr | 66:2e3583fbd2f4 | 1745 | shiftButton.index = bs - buttonState; |
mjr | 66:2e3583fbd2f4 | 1746 | |
mjr | 65:739875521aae | 1747 | // advance to the next button |
mjr | 65:739875521aae | 1748 | ++bs; |
mjr | 65:739875521aae | 1749 | } |
mjr | 65:739875521aae | 1750 | } |
mjr | 65:739875521aae | 1751 | |
mjr | 53:9b2611964afc | 1752 | // Configure the virtual buttons. These are buttons controlled via |
mjr | 53:9b2611964afc | 1753 | // software triggers rather than physical GPIO inputs. The virtual |
mjr | 53:9b2611964afc | 1754 | // buttons have the same control structures as regular buttons, but |
mjr | 53:9b2611964afc | 1755 | // they get their configuration data from other config variables. |
mjr | 53:9b2611964afc | 1756 | |
mjr | 53:9b2611964afc | 1757 | // ZB Launch Ball button |
mjr | 65:739875521aae | 1758 | if (cfg.plunger.zbLaunchBall.port != 0) |
mjr | 11:bd9da7088e6e | 1759 | { |
mjr | 65:739875521aae | 1760 | // Point back to the config slot for the keyboard data. |
mjr | 66:2e3583fbd2f4 | 1761 | // We use a special extra slot for virtual buttons, |
mjr | 66:2e3583fbd2f4 | 1762 | // so we also need to set up the slot data by copying |
mjr | 66:2e3583fbd2f4 | 1763 | // the ZBL config data to our virtual button slot. |
mjr | 65:739875521aae | 1764 | bs->cfgIndex = ZBL_BUTTON_CFG; |
mjr | 65:739875521aae | 1765 | cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC); |
mjr | 65:739875521aae | 1766 | cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype; |
mjr | 65:739875521aae | 1767 | cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode; |
mjr | 65:739875521aae | 1768 | |
mjr | 66:2e3583fbd2f4 | 1769 | // advance to the next button |
mjr | 65:739875521aae | 1770 | ++bs; |
mjr | 11:bd9da7088e6e | 1771 | } |
mjr | 12:669df364a565 | 1772 | |
mjr | 38:091e511ce8a0 | 1773 | // start the button scan thread |
mjr | 38:091e511ce8a0 | 1774 | buttonTicker.attach_us(scanButtons, 1000); |
mjr | 38:091e511ce8a0 | 1775 | |
mjr | 38:091e511ce8a0 | 1776 | // start the button state transition timer |
mjr | 12:669df364a565 | 1777 | buttonTimer.start(); |
mjr | 11:bd9da7088e6e | 1778 | } |
mjr | 11:bd9da7088e6e | 1779 | |
mjr | 67:c39e66c4e000 | 1780 | // Media key mapping. This maps from an 8-bit USB media key |
mjr | 67:c39e66c4e000 | 1781 | // code to the corresponding bit in our USB report descriptor. |
mjr | 67:c39e66c4e000 | 1782 | // The USB key code is the index, and the value at the index |
mjr | 67:c39e66c4e000 | 1783 | // is the report descriptor bit. See joystick.cpp for the |
mjr | 67:c39e66c4e000 | 1784 | // media descriptor details. Our currently mapped keys are: |
mjr | 67:c39e66c4e000 | 1785 | // |
mjr | 67:c39e66c4e000 | 1786 | // 0xE2 -> Mute -> 0x01 |
mjr | 67:c39e66c4e000 | 1787 | // 0xE9 -> Volume Up -> 0x02 |
mjr | 67:c39e66c4e000 | 1788 | // 0xEA -> Volume Down -> 0x04 |
mjr | 67:c39e66c4e000 | 1789 | // 0xB5 -> Next Track -> 0x08 |
mjr | 67:c39e66c4e000 | 1790 | // 0xB6 -> Previous Track -> 0x10 |
mjr | 67:c39e66c4e000 | 1791 | // 0xB7 -> Stop -> 0x20 |
mjr | 67:c39e66c4e000 | 1792 | // 0xCD -> Play / Pause -> 0x40 |
mjr | 67:c39e66c4e000 | 1793 | // |
mjr | 67:c39e66c4e000 | 1794 | static const uint8_t mediaKeyMap[] = { |
mjr | 67:c39e66c4e000 | 1795 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F |
mjr | 67:c39e66c4e000 | 1796 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F |
mjr | 67:c39e66c4e000 | 1797 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F |
mjr | 67:c39e66c4e000 | 1798 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F |
mjr | 67:c39e66c4e000 | 1799 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F |
mjr | 67:c39e66c4e000 | 1800 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F |
mjr | 67:c39e66c4e000 | 1801 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F |
mjr | 67:c39e66c4e000 | 1802 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F |
mjr | 67:c39e66c4e000 | 1803 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F |
mjr | 67:c39e66c4e000 | 1804 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F |
mjr | 67:c39e66c4e000 | 1805 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF |
mjr | 67:c39e66c4e000 | 1806 | 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF |
mjr | 67:c39e66c4e000 | 1807 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF |
mjr | 67:c39e66c4e000 | 1808 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF |
mjr | 67:c39e66c4e000 | 1809 | 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF |
mjr | 67:c39e66c4e000 | 1810 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF |
mjr | 67:c39e66c4e000 | 1811 | }; |
mjr | 67:c39e66c4e000 | 1812 | |
mjr | 67:c39e66c4e000 | 1813 | |
mjr | 38:091e511ce8a0 | 1814 | // Process the button state. This sets up the joystick, keyboard, and |
mjr | 38:091e511ce8a0 | 1815 | // media control descriptors with the current state of keys mapped to |
mjr | 38:091e511ce8a0 | 1816 | // those HID interfaces, and executes the local effects for any keys |
mjr | 38:091e511ce8a0 | 1817 | // mapped to special device functions (e.g., Night Mode). |
mjr | 53:9b2611964afc | 1818 | void processButtons(Config &cfg) |
mjr | 35:e959ffba78fd | 1819 | { |
mjr | 35:e959ffba78fd | 1820 | // start with an empty list of USB key codes |
mjr | 35:e959ffba78fd | 1821 | uint8_t modkeys = 0; |
mjr | 35:e959ffba78fd | 1822 | uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 }; |
mjr | 35:e959ffba78fd | 1823 | int nkeys = 0; |
mjr | 11:bd9da7088e6e | 1824 | |
mjr | 35:e959ffba78fd | 1825 | // clear the joystick buttons |
mjr | 36:b9747461331e | 1826 | uint32_t newjs = 0; |
mjr | 35:e959ffba78fd | 1827 | |
mjr | 35:e959ffba78fd | 1828 | // start with no media keys pressed |
mjr | 35:e959ffba78fd | 1829 | uint8_t mediakeys = 0; |
mjr | 38:091e511ce8a0 | 1830 | |
mjr | 38:091e511ce8a0 | 1831 | // calculate the time since the last run |
mjr | 53:9b2611964afc | 1832 | uint32_t dt = buttonTimer.read_us(); |
mjr | 18:5e890ebd0023 | 1833 | buttonTimer.reset(); |
mjr | 66:2e3583fbd2f4 | 1834 | |
mjr | 66:2e3583fbd2f4 | 1835 | // check the shift button state |
mjr | 66:2e3583fbd2f4 | 1836 | if (shiftButton.index != -1) |
mjr | 66:2e3583fbd2f4 | 1837 | { |
mjr | 66:2e3583fbd2f4 | 1838 | ButtonState *sbs = &buttonState[shiftButton.index]; |
mjr | 66:2e3583fbd2f4 | 1839 | switch (shiftButton.state) |
mjr | 66:2e3583fbd2f4 | 1840 | { |
mjr | 66:2e3583fbd2f4 | 1841 | case 0: |
mjr | 66:2e3583fbd2f4 | 1842 | // Not shifted. Check if the button is now down: if so, |
mjr | 66:2e3583fbd2f4 | 1843 | // switch to state 1 (shift button down, no key pressed yet). |
mjr | 66:2e3583fbd2f4 | 1844 | if (sbs->physState) |
mjr | 66:2e3583fbd2f4 | 1845 | shiftButton.state = 1; |
mjr | 66:2e3583fbd2f4 | 1846 | break; |
mjr | 66:2e3583fbd2f4 | 1847 | |
mjr | 66:2e3583fbd2f4 | 1848 | case 1: |
mjr | 66:2e3583fbd2f4 | 1849 | // Shift button down, no key pressed yet. If the button is |
mjr | 66:2e3583fbd2f4 | 1850 | // now up, it counts as an ordinary button press instead of |
mjr | 66:2e3583fbd2f4 | 1851 | // a shift button press, since the shift function was never |
mjr | 66:2e3583fbd2f4 | 1852 | // used. Return to unshifted state and start a timed key |
mjr | 66:2e3583fbd2f4 | 1853 | // pulse event. |
mjr | 66:2e3583fbd2f4 | 1854 | if (!sbs->physState) |
mjr | 66:2e3583fbd2f4 | 1855 | { |
mjr | 66:2e3583fbd2f4 | 1856 | shiftButton.state = 0; |
mjr | 66:2e3583fbd2f4 | 1857 | shiftButton.pulse = 1; |
mjr | 66:2e3583fbd2f4 | 1858 | shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse |
mjr | 66:2e3583fbd2f4 | 1859 | } |
mjr | 66:2e3583fbd2f4 | 1860 | break; |
mjr | 66:2e3583fbd2f4 | 1861 | |
mjr | 66:2e3583fbd2f4 | 1862 | case 2: |
mjr | 66:2e3583fbd2f4 | 1863 | // Shift button down, other key was pressed. If the button is |
mjr | 66:2e3583fbd2f4 | 1864 | // now up, simply clear the shift state without sending a key |
mjr | 66:2e3583fbd2f4 | 1865 | // press for the shift button itself to the PC. The shift |
mjr | 66:2e3583fbd2f4 | 1866 | // function was used, so its ordinary key press function is |
mjr | 66:2e3583fbd2f4 | 1867 | // suppressed. |
mjr | 66:2e3583fbd2f4 | 1868 | if (!sbs->physState) |
mjr | 66:2e3583fbd2f4 | 1869 | shiftButton.state = 0; |
mjr | 66:2e3583fbd2f4 | 1870 | break; |
mjr | 66:2e3583fbd2f4 | 1871 | } |
mjr | 66:2e3583fbd2f4 | 1872 | } |
mjr | 38:091e511ce8a0 | 1873 | |
mjr | 11:bd9da7088e6e | 1874 | // scan the button list |
mjr | 18:5e890ebd0023 | 1875 | ButtonState *bs = buttonState; |
mjr | 65:739875521aae | 1876 | for (int i = 0 ; i < nButtons ; ++i, ++bs) |
mjr | 11:bd9da7088e6e | 1877 | { |
mjr | 66:2e3583fbd2f4 | 1878 | // Check the button type: |
mjr | 66:2e3583fbd2f4 | 1879 | // - shift button |
mjr | 66:2e3583fbd2f4 | 1880 | // - pulsed button |
mjr | 66:2e3583fbd2f4 | 1881 | // - regular button |
mjr | 66:2e3583fbd2f4 | 1882 | if (shiftButton.index == i) |
mjr | 66:2e3583fbd2f4 | 1883 | { |
mjr | 66:2e3583fbd2f4 | 1884 | // This is the shift button. Its logical state for key |
mjr | 66:2e3583fbd2f4 | 1885 | // reporting purposes is controlled by the shift buttton |
mjr | 66:2e3583fbd2f4 | 1886 | // pulse timer. If we're in a pulse, its logical state |
mjr | 66:2e3583fbd2f4 | 1887 | // is pressed. |
mjr | 66:2e3583fbd2f4 | 1888 | if (shiftButton.pulse) |
mjr | 66:2e3583fbd2f4 | 1889 | { |
mjr | 66:2e3583fbd2f4 | 1890 | // deduct the current interval from the pulse time, ending |
mjr | 66:2e3583fbd2f4 | 1891 | // the pulse if the time has expired |
mjr | 66:2e3583fbd2f4 | 1892 | if (shiftButton.pulseTime > dt) |
mjr | 66:2e3583fbd2f4 | 1893 | shiftButton.pulseTime -= dt; |
mjr | 66:2e3583fbd2f4 | 1894 | else |
mjr | 66:2e3583fbd2f4 | 1895 | shiftButton.pulse = 0; |
mjr | 66:2e3583fbd2f4 | 1896 | } |
mjr | 66:2e3583fbd2f4 | 1897 | |
mjr | 66:2e3583fbd2f4 | 1898 | // the button is logically pressed if we're in a pulse |
mjr | 66:2e3583fbd2f4 | 1899 | bs->logState = shiftButton.pulse; |
mjr | 66:2e3583fbd2f4 | 1900 | } |
mjr | 66:2e3583fbd2f4 | 1901 | else if (bs->pulseState != 0) |
mjr | 18:5e890ebd0023 | 1902 | { |
mjr | 38:091e511ce8a0 | 1903 | // if the timer has expired, check for state changes |
mjr | 53:9b2611964afc | 1904 | if (bs->pulseTime > dt) |
mjr | 18:5e890ebd0023 | 1905 | { |
mjr | 53:9b2611964afc | 1906 | // not expired yet - deduct the last interval |
mjr | 53:9b2611964afc | 1907 | bs->pulseTime -= dt; |
mjr | 53:9b2611964afc | 1908 | } |
mjr | 53:9b2611964afc | 1909 | else |
mjr | 53:9b2611964afc | 1910 | { |
mjr | 53:9b2611964afc | 1911 | // pulse time expired - check for a state change |
mjr | 53:9b2611964afc | 1912 | const uint32_t pulseLength = 200000UL; // 200 milliseconds |
mjr | 38:091e511ce8a0 | 1913 | switch (bs->pulseState) |
mjr | 18:5e890ebd0023 | 1914 | { |
mjr | 38:091e511ce8a0 | 1915 | case 1: |
mjr | 38:091e511ce8a0 | 1916 | // off - if the physical switch is now on, start a button pulse |
mjr | 53:9b2611964afc | 1917 | if (bs->physState) |
mjr | 53:9b2611964afc | 1918 | { |
mjr | 38:091e511ce8a0 | 1919 | bs->pulseTime = pulseLength; |
mjr | 38:091e511ce8a0 | 1920 | bs->pulseState = 2; |
mjr | 53:9b2611964afc | 1921 | bs->logState = 1; |
mjr | 38:091e511ce8a0 | 1922 | } |
mjr | 38:091e511ce8a0 | 1923 | break; |
mjr | 18:5e890ebd0023 | 1924 | |
mjr | 38:091e511ce8a0 | 1925 | case 2: |
mjr | 38:091e511ce8a0 | 1926 | // transitioning off to on - end the pulse, and start a gap |
mjr | 38:091e511ce8a0 | 1927 | // equal to the pulse time so that the host can observe the |
mjr | 38:091e511ce8a0 | 1928 | // change in state in the logical button |
mjr | 38:091e511ce8a0 | 1929 | bs->pulseState = 3; |
mjr | 38:091e511ce8a0 | 1930 | bs->pulseTime = pulseLength; |
mjr | 53:9b2611964afc | 1931 | bs->logState = 0; |
mjr | 38:091e511ce8a0 | 1932 | break; |
mjr | 38:091e511ce8a0 | 1933 | |
mjr | 38:091e511ce8a0 | 1934 | case 3: |
mjr | 38:091e511ce8a0 | 1935 | // on - if the physical switch is now off, start a button pulse |
mjr | 53:9b2611964afc | 1936 | if (!bs->physState) |
mjr | 53:9b2611964afc | 1937 | { |
mjr | 38:091e511ce8a0 | 1938 | bs->pulseTime = pulseLength; |
mjr | 38:091e511ce8a0 | 1939 | bs->pulseState = 4; |
mjr | 53:9b2611964afc | 1940 | bs->logState = 1; |
mjr | 38:091e511ce8a0 | 1941 | } |
mjr | 38:091e511ce8a0 | 1942 | break; |
mjr | 38:091e511ce8a0 | 1943 | |
mjr | 38:091e511ce8a0 | 1944 | case 4: |
mjr | 38:091e511ce8a0 | 1945 | // transitioning on to off - end the pulse, and start a gap |
mjr | 38:091e511ce8a0 | 1946 | bs->pulseState = 1; |
mjr | 38:091e511ce8a0 | 1947 | bs->pulseTime = pulseLength; |
mjr | 53:9b2611964afc | 1948 | bs->logState = 0; |
mjr | 38:091e511ce8a0 | 1949 | break; |
mjr | 18:5e890ebd0023 | 1950 | } |
mjr | 18:5e890ebd0023 | 1951 | } |
mjr | 38:091e511ce8a0 | 1952 | } |
mjr | 38:091e511ce8a0 | 1953 | else |
mjr | 38:091e511ce8a0 | 1954 | { |
mjr | 38:091e511ce8a0 | 1955 | // not a pulse switch - the logical state is the same as the physical state |
mjr | 53:9b2611964afc | 1956 | bs->logState = bs->physState; |
mjr | 38:091e511ce8a0 | 1957 | } |
mjr | 35:e959ffba78fd | 1958 | |
mjr | 38:091e511ce8a0 | 1959 | // carry out any edge effects from buttons changing states |
mjr | 53:9b2611964afc | 1960 | if (bs->logState != bs->prevLogState) |
mjr | 38:091e511ce8a0 | 1961 | { |
mjr | 38:091e511ce8a0 | 1962 | // check for special key transitions |
mjr | 53:9b2611964afc | 1963 | if (cfg.nightMode.btn == i + 1) |
mjr | 35:e959ffba78fd | 1964 | { |
mjr | 53:9b2611964afc | 1965 | // Check the switch type in the config flags. If flag 0x01 is set, |
mjr | 53:9b2611964afc | 1966 | // it's a persistent on/off switch, so the night mode state simply |
mjr | 53:9b2611964afc | 1967 | // follows the current state of the switch. Otherwise, it's a |
mjr | 53:9b2611964afc | 1968 | // momentary button, so each button push (i.e., each transition from |
mjr | 53:9b2611964afc | 1969 | // logical state OFF to ON) toggles the current night mode state. |
mjr | 53:9b2611964afc | 1970 | if (cfg.nightMode.flags & 0x01) |
mjr | 53:9b2611964afc | 1971 | { |
mjr | 69:cc5039284fac | 1972 | // on/off switch - when the button changes state, change |
mjr | 53:9b2611964afc | 1973 | // night mode to match the new state |
mjr | 53:9b2611964afc | 1974 | setNightMode(bs->logState); |
mjr | 53:9b2611964afc | 1975 | } |
mjr | 53:9b2611964afc | 1976 | else |
mjr | 53:9b2611964afc | 1977 | { |
mjr | 66:2e3583fbd2f4 | 1978 | // Momentary switch - toggle the night mode state when the |
mjr | 53:9b2611964afc | 1979 | // physical button is pushed (i.e., when its logical state |
mjr | 66:2e3583fbd2f4 | 1980 | // transitions from OFF to ON). |
mjr | 66:2e3583fbd2f4 | 1981 | // |
mjr | 66:2e3583fbd2f4 | 1982 | // In momentary mode, night mode flag 0x02 makes it the |
mjr | 66:2e3583fbd2f4 | 1983 | // shifted version of the button. In this case, only |
mjr | 66:2e3583fbd2f4 | 1984 | // proceed if the shift button is pressed. |
mjr | 66:2e3583fbd2f4 | 1985 | bool pressed = bs->logState; |
mjr | 66:2e3583fbd2f4 | 1986 | if ((cfg.nightMode.flags & 0x02) != 0) |
mjr | 66:2e3583fbd2f4 | 1987 | { |
mjr | 66:2e3583fbd2f4 | 1988 | // if the shift button is pressed but hasn't been used |
mjr | 66:2e3583fbd2f4 | 1989 | // as a shift yet, mark it as used, so that it doesn't |
mjr | 66:2e3583fbd2f4 | 1990 | // also generate its own key code on release |
mjr | 66:2e3583fbd2f4 | 1991 | if (shiftButton.state == 1) |
mjr | 66:2e3583fbd2f4 | 1992 | shiftButton.state = 2; |
mjr | 66:2e3583fbd2f4 | 1993 | |
mjr | 66:2e3583fbd2f4 | 1994 | // if the shift button isn't even pressed |
mjr | 66:2e3583fbd2f4 | 1995 | if (shiftButton.state == 0) |
mjr | 66:2e3583fbd2f4 | 1996 | pressed = false; |
mjr | 66:2e3583fbd2f4 | 1997 | } |
mjr | 66:2e3583fbd2f4 | 1998 | |
mjr | 66:2e3583fbd2f4 | 1999 | // if it's pressed (even after considering the shift mode), |
mjr | 66:2e3583fbd2f4 | 2000 | // toggle night mode |
mjr | 66:2e3583fbd2f4 | 2001 | if (pressed) |
mjr | 53:9b2611964afc | 2002 | toggleNightMode(); |
mjr | 53:9b2611964afc | 2003 | } |
mjr | 35:e959ffba78fd | 2004 | } |
mjr | 38:091e511ce8a0 | 2005 | |
mjr | 38:091e511ce8a0 | 2006 | // remember the new state for comparison on the next run |
mjr | 53:9b2611964afc | 2007 | bs->prevLogState = bs->logState; |
mjr | 38:091e511ce8a0 | 2008 | } |
mjr | 38:091e511ce8a0 | 2009 | |
mjr | 53:9b2611964afc | 2010 | // if it's pressed, physically or virtually, add it to the appropriate |
mjr | 53:9b2611964afc | 2011 | // key state list |
mjr | 53:9b2611964afc | 2012 | if (bs->logState || bs->virtState) |
mjr | 38:091e511ce8a0 | 2013 | { |
mjr | 70:9f58735a1732 | 2014 | // Get the key type and code. Start by assuming that we're |
mjr | 70:9f58735a1732 | 2015 | // going to use the normal unshifted meaning. |
mjr | 65:739875521aae | 2016 | ButtonCfg *bc = &cfg.button[bs->cfgIndex]; |
mjr | 70:9f58735a1732 | 2017 | uint8_t typ = bc->typ; |
mjr | 70:9f58735a1732 | 2018 | uint8_t val = bc->val; |
mjr | 70:9f58735a1732 | 2019 | |
mjr | 70:9f58735a1732 | 2020 | // If the shift button is down, check for a shifted meaning. |
mjr | 70:9f58735a1732 | 2021 | if (shiftButton.state) |
mjr | 66:2e3583fbd2f4 | 2022 | { |
mjr | 70:9f58735a1732 | 2023 | // assume there's no shifted meaning |
mjr | 70:9f58735a1732 | 2024 | bool useShift = false; |
mjr | 66:2e3583fbd2f4 | 2025 | |
mjr | 70:9f58735a1732 | 2026 | // If the button has a shifted meaning, use that. The |
mjr | 70:9f58735a1732 | 2027 | // meaning might be a keyboard key or joystick button, |
mjr | 70:9f58735a1732 | 2028 | // but it could also be as the Night Mode toggle. |
mjr | 70:9f58735a1732 | 2029 | // |
mjr | 70:9f58735a1732 | 2030 | // The condition to check if it's the Night Mode toggle |
mjr | 70:9f58735a1732 | 2031 | // is a little complicated. First, the easy part: our |
mjr | 70:9f58735a1732 | 2032 | // button index has to match the Night Mode button index. |
mjr | 70:9f58735a1732 | 2033 | // Now the hard part: the Night Mode button flags have |
mjr | 70:9f58735a1732 | 2034 | // to be set to 0x01 OFF and 0x02 ON: toggle mode (not |
mjr | 70:9f58735a1732 | 2035 | // switch mode, 0x01), and shift mode, 0x02. So AND the |
mjr | 70:9f58735a1732 | 2036 | // flags with 0x03 to get these two bits, and check that |
mjr | 70:9f58735a1732 | 2037 | // the result is 0x02, meaning that only shift mode is on. |
mjr | 70:9f58735a1732 | 2038 | if (bc->typ2 != BtnTypeNone) |
mjr | 70:9f58735a1732 | 2039 | { |
mjr | 70:9f58735a1732 | 2040 | // there's a shifted key assignment - use it |
mjr | 70:9f58735a1732 | 2041 | typ = bc->typ2; |
mjr | 70:9f58735a1732 | 2042 | val = bc->val2; |
mjr | 70:9f58735a1732 | 2043 | useShift = true; |
mjr | 70:9f58735a1732 | 2044 | } |
mjr | 70:9f58735a1732 | 2045 | else if (cfg.nightMode.btn == i+1 |
mjr | 70:9f58735a1732 | 2046 | && (cfg.nightMode.flags & 0x03) == 0x02) |
mjr | 70:9f58735a1732 | 2047 | { |
mjr | 70:9f58735a1732 | 2048 | // shift+button = night mode toggle |
mjr | 70:9f58735a1732 | 2049 | typ = BtnTypeNone; |
mjr | 70:9f58735a1732 | 2050 | val = 0; |
mjr | 70:9f58735a1732 | 2051 | useShift = true; |
mjr | 70:9f58735a1732 | 2052 | } |
mjr | 70:9f58735a1732 | 2053 | |
mjr | 70:9f58735a1732 | 2054 | // If there's a shifted meaning, advance the shift |
mjr | 70:9f58735a1732 | 2055 | // button state from 1 to 2 if applicable. This signals |
mjr | 70:9f58735a1732 | 2056 | // that we've "consumed" the shift button press as the |
mjr | 70:9f58735a1732 | 2057 | // shift button, so it shouldn't generate its own key |
mjr | 70:9f58735a1732 | 2058 | // code event when released. |
mjr | 70:9f58735a1732 | 2059 | if (useShift && shiftButton.state == 1) |
mjr | 66:2e3583fbd2f4 | 2060 | shiftButton.state = 2; |
mjr | 66:2e3583fbd2f4 | 2061 | } |
mjr | 66:2e3583fbd2f4 | 2062 | |
mjr | 70:9f58735a1732 | 2063 | // We've decided on the meaning of the button, so process |
mjr | 70:9f58735a1732 | 2064 | // the keyboard or joystick event. |
mjr | 66:2e3583fbd2f4 | 2065 | switch (typ) |
mjr | 53:9b2611964afc | 2066 | { |
mjr | 53:9b2611964afc | 2067 | case BtnTypeJoystick: |
mjr | 53:9b2611964afc | 2068 | // joystick button |
mjr | 53:9b2611964afc | 2069 | newjs |= (1 << (val - 1)); |
mjr | 53:9b2611964afc | 2070 | break; |
mjr | 53:9b2611964afc | 2071 | |
mjr | 53:9b2611964afc | 2072 | case BtnTypeKey: |
mjr | 67:c39e66c4e000 | 2073 | // Keyboard key. The USB keyboard report encodes regular |
mjr | 67:c39e66c4e000 | 2074 | // keys and modifier keys separately, so we need to check |
mjr | 67:c39e66c4e000 | 2075 | // which type we have. Note that past versions mapped the |
mjr | 67:c39e66c4e000 | 2076 | // Keyboard Volume Up, Keyboard Volume Down, and Keyboard |
mjr | 67:c39e66c4e000 | 2077 | // Mute keys to the corresponding Media keys. We no longer |
mjr | 67:c39e66c4e000 | 2078 | // do this; instead, we have the separate BtnTypeMedia for |
mjr | 67:c39e66c4e000 | 2079 | // explicitly using media keys if desired. |
mjr | 67:c39e66c4e000 | 2080 | if (val >= 0xE0 && val <= 0xE7) |
mjr | 53:9b2611964afc | 2081 | { |
mjr | 67:c39e66c4e000 | 2082 | // It's a modifier key. These are represented in the USB |
mjr | 67:c39e66c4e000 | 2083 | // reports with a bit mask. We arrange the mask bits in |
mjr | 67:c39e66c4e000 | 2084 | // the same order as the scan codes, so we can figure the |
mjr | 67:c39e66c4e000 | 2085 | // appropriate bit with a simple shift. |
mjr | 53:9b2611964afc | 2086 | modkeys |= (1 << (val - 0xE0)); |
mjr | 53:9b2611964afc | 2087 | } |
mjr | 53:9b2611964afc | 2088 | else |
mjr | 53:9b2611964afc | 2089 | { |
mjr | 67:c39e66c4e000 | 2090 | // It's a regular key. Make sure it's not already in the |
mjr | 67:c39e66c4e000 | 2091 | // list, and that the list isn't full. If neither of these |
mjr | 67:c39e66c4e000 | 2092 | // apply, add the key to the key array. |
mjr | 53:9b2611964afc | 2093 | if (nkeys < 7) |
mjr | 53:9b2611964afc | 2094 | { |
mjr | 57:cc03231f676b | 2095 | bool found = false; |
mjr | 53:9b2611964afc | 2096 | for (int j = 0 ; j < nkeys ; ++j) |
mjr | 53:9b2611964afc | 2097 | { |
mjr | 53:9b2611964afc | 2098 | if (keys[j] == val) |
mjr | 53:9b2611964afc | 2099 | { |
mjr | 53:9b2611964afc | 2100 | found = true; |
mjr | 53:9b2611964afc | 2101 | break; |
mjr | 53:9b2611964afc | 2102 | } |
mjr | 53:9b2611964afc | 2103 | } |
mjr | 53:9b2611964afc | 2104 | if (!found) |
mjr | 53:9b2611964afc | 2105 | keys[nkeys++] = val; |
mjr | 53:9b2611964afc | 2106 | } |
mjr | 53:9b2611964afc | 2107 | } |
mjr | 53:9b2611964afc | 2108 | break; |
mjr | 67:c39e66c4e000 | 2109 | |
mjr | 67:c39e66c4e000 | 2110 | case BtnTypeMedia: |
mjr | 67:c39e66c4e000 | 2111 | // Media control key. The media keys are mapped in the USB |
mjr | 67:c39e66c4e000 | 2112 | // report to bits, whereas the key codes are specified in the |
mjr | 67:c39e66c4e000 | 2113 | // config with their USB usage numbers. E.g., the config val |
mjr | 67:c39e66c4e000 | 2114 | // for Media Next Track is 0xB5, but we encode this in the USB |
mjr | 67:c39e66c4e000 | 2115 | // report as bit 0x08. The mediaKeyMap[] table translates |
mjr | 67:c39e66c4e000 | 2116 | // from the USB usage number to the mask bit. If the key isn't |
mjr | 67:c39e66c4e000 | 2117 | // among the subset we support, the mapped bit will be zero, so |
mjr | 67:c39e66c4e000 | 2118 | // the "|=" will have no effect and the key will be ignored. |
mjr | 67:c39e66c4e000 | 2119 | mediakeys |= mediaKeyMap[val]; |
mjr | 67:c39e66c4e000 | 2120 | break; |
mjr | 53:9b2611964afc | 2121 | } |
mjr | 18:5e890ebd0023 | 2122 | } |
mjr | 11:bd9da7088e6e | 2123 | } |
mjr | 36:b9747461331e | 2124 | |
mjr | 36:b9747461331e | 2125 | // check for joystick button changes |
mjr | 36:b9747461331e | 2126 | if (jsButtons != newjs) |
mjr | 36:b9747461331e | 2127 | jsButtons = newjs; |
mjr | 11:bd9da7088e6e | 2128 | |
mjr | 35:e959ffba78fd | 2129 | // Check for changes to the keyboard keys |
mjr | 35:e959ffba78fd | 2130 | if (kbState.data[0] != modkeys |
mjr | 35:e959ffba78fd | 2131 | || kbState.nkeys != nkeys |
mjr | 35:e959ffba78fd | 2132 | || memcmp(keys, &kbState.data[2], 6) != 0) |
mjr | 35:e959ffba78fd | 2133 | { |
mjr | 35:e959ffba78fd | 2134 | // we have changes - set the change flag and store the new key data |
mjr | 35:e959ffba78fd | 2135 | kbState.changed = true; |
mjr | 35:e959ffba78fd | 2136 | kbState.data[0] = modkeys; |
mjr | 35:e959ffba78fd | 2137 | if (nkeys <= 6) { |
mjr | 35:e959ffba78fd | 2138 | // 6 or fewer simultaneous keys - report the key codes |
mjr | 35:e959ffba78fd | 2139 | kbState.nkeys = nkeys; |
mjr | 35:e959ffba78fd | 2140 | memcpy(&kbState.data[2], keys, 6); |
mjr | 35:e959ffba78fd | 2141 | } |
mjr | 35:e959ffba78fd | 2142 | else { |
mjr | 35:e959ffba78fd | 2143 | // more than 6 simultaneous keys - report rollover (all '1' key codes) |
mjr | 35:e959ffba78fd | 2144 | kbState.nkeys = 6; |
mjr | 35:e959ffba78fd | 2145 | memset(&kbState.data[2], 1, 6); |
mjr | 35:e959ffba78fd | 2146 | } |
mjr | 35:e959ffba78fd | 2147 | } |
mjr | 35:e959ffba78fd | 2148 | |
mjr | 35:e959ffba78fd | 2149 | // Check for changes to media keys |
mjr | 35:e959ffba78fd | 2150 | if (mediaState.data != mediakeys) |
mjr | 35:e959ffba78fd | 2151 | { |
mjr | 35:e959ffba78fd | 2152 | mediaState.changed = true; |
mjr | 35:e959ffba78fd | 2153 | mediaState.data = mediakeys; |
mjr | 35:e959ffba78fd | 2154 | } |
mjr | 11:bd9da7088e6e | 2155 | } |
mjr | 11:bd9da7088e6e | 2156 | |
mjr | 5:a70c0bce770d | 2157 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 2158 | // |
mjr | 5:a70c0bce770d | 2159 | // Customization joystick subbclass |
mjr | 5:a70c0bce770d | 2160 | // |
mjr | 5:a70c0bce770d | 2161 | |
mjr | 5:a70c0bce770d | 2162 | class MyUSBJoystick: public USBJoystick |
mjr | 5:a70c0bce770d | 2163 | { |
mjr | 5:a70c0bce770d | 2164 | public: |
mjr | 35:e959ffba78fd | 2165 | MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release, |
mjr | 35:e959ffba78fd | 2166 | bool waitForConnect, bool enableJoystick, bool useKB) |
mjr | 35:e959ffba78fd | 2167 | : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB) |
mjr | 5:a70c0bce770d | 2168 | { |
mjr | 54:fd77a6b2f76c | 2169 | sleeping_ = false; |
mjr | 54:fd77a6b2f76c | 2170 | reconnectPending_ = false; |
mjr | 54:fd77a6b2f76c | 2171 | timer_.start(); |
mjr | 54:fd77a6b2f76c | 2172 | } |
mjr | 54:fd77a6b2f76c | 2173 | |
mjr | 54:fd77a6b2f76c | 2174 | // show diagnostic LED feedback for connect state |
mjr | 54:fd77a6b2f76c | 2175 | void diagFlash() |
mjr | 54:fd77a6b2f76c | 2176 | { |
mjr | 54:fd77a6b2f76c | 2177 | if (!configured() || sleeping_) |
mjr | 54:fd77a6b2f76c | 2178 | { |
mjr | 54:fd77a6b2f76c | 2179 | // flash once if sleeping or twice if disconnected |
mjr | 54:fd77a6b2f76c | 2180 | for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j) |
mjr | 54:fd77a6b2f76c | 2181 | { |
mjr | 54:fd77a6b2f76c | 2182 | // short red flash |
mjr | 54:fd77a6b2f76c | 2183 | diagLED(1, 0, 0); |
mjr | 54:fd77a6b2f76c | 2184 | wait_us(50000); |
mjr | 54:fd77a6b2f76c | 2185 | diagLED(0, 0, 0); |
mjr | 54:fd77a6b2f76c | 2186 | wait_us(50000); |
mjr | 54:fd77a6b2f76c | 2187 | } |
mjr | 54:fd77a6b2f76c | 2188 | } |
mjr | 5:a70c0bce770d | 2189 | } |
mjr | 5:a70c0bce770d | 2190 | |
mjr | 5:a70c0bce770d | 2191 | // are we connected? |
mjr | 5:a70c0bce770d | 2192 | int isConnected() { return configured(); } |
mjr | 5:a70c0bce770d | 2193 | |
mjr | 54:fd77a6b2f76c | 2194 | // Are we in sleep mode? If true, this means that the hardware has |
mjr | 54:fd77a6b2f76c | 2195 | // detected no activity on the bus for 3ms. This happens when the |
mjr | 54:fd77a6b2f76c | 2196 | // cable is physically disconnected, the computer is turned off, or |
mjr | 54:fd77a6b2f76c | 2197 | // the connection is otherwise disabled. |
mjr | 54:fd77a6b2f76c | 2198 | bool isSleeping() const { return sleeping_; } |
mjr | 54:fd77a6b2f76c | 2199 | |
mjr | 54:fd77a6b2f76c | 2200 | // If necessary, attempt to recover from a broken connection. |
mjr | 54:fd77a6b2f76c | 2201 | // |
mjr | 54:fd77a6b2f76c | 2202 | // This is a hack, to work around an apparent timing bug in the |
mjr | 54:fd77a6b2f76c | 2203 | // KL25Z USB implementation that I haven't been able to solve any |
mjr | 54:fd77a6b2f76c | 2204 | // other way. |
mjr | 54:fd77a6b2f76c | 2205 | // |
mjr | 54:fd77a6b2f76c | 2206 | // The issue: when we have an established connection, and the |
mjr | 54:fd77a6b2f76c | 2207 | // connection is broken by physically unplugging the cable or by |
mjr | 54:fd77a6b2f76c | 2208 | // rebooting the PC, the KL25Z sometimes fails to reconnect when |
mjr | 54:fd77a6b2f76c | 2209 | // the physical connection is re-established. The failure is |
mjr | 54:fd77a6b2f76c | 2210 | // sporadic; I'd guess it happens about 25% of the time, but I |
mjr | 54:fd77a6b2f76c | 2211 | // haven't collected any real statistics on it. |
mjr | 54:fd77a6b2f76c | 2212 | // |
mjr | 54:fd77a6b2f76c | 2213 | // The proximate cause of the failure is a deadlock in the SETUP |
mjr | 54:fd77a6b2f76c | 2214 | // protocol between the host and device that happens around the |
mjr | 54:fd77a6b2f76c | 2215 | // point where the PC is requesting the configuration descriptor. |
mjr | 54:fd77a6b2f76c | 2216 | // The exact point in the protocol where this occurs varies slightly; |
mjr | 54:fd77a6b2f76c | 2217 | // it can occur a message or two before or after the Get Config |
mjr | 54:fd77a6b2f76c | 2218 | // Descriptor packet. No matter where it happens, the nature of |
mjr | 54:fd77a6b2f76c | 2219 | // the deadlock is the same: the PC thinks it sees a STALL on EP0 |
mjr | 54:fd77a6b2f76c | 2220 | // from the device, so it terminates the connection attempt, which |
mjr | 54:fd77a6b2f76c | 2221 | // stops further traffic on the cable. The KL25Z USB hardware sees |
mjr | 54:fd77a6b2f76c | 2222 | // the lack of traffic and triggers a SLEEP interrupt (a misnomer |
mjr | 54:fd77a6b2f76c | 2223 | // for what should have been called a BROKEN CONNECTION interrupt). |
mjr | 54:fd77a6b2f76c | 2224 | // Both sides simply stop talking at this point, so the connection |
mjr | 54:fd77a6b2f76c | 2225 | // is effectively dead. |
mjr | 54:fd77a6b2f76c | 2226 | // |
mjr | 54:fd77a6b2f76c | 2227 | // The strange thing is that, as far as I can tell, the KL25Z isn't |
mjr | 54:fd77a6b2f76c | 2228 | // doing anything to trigger the STALL on its end. Both the PC |
mjr | 54:fd77a6b2f76c | 2229 | // and the KL25Z are happy up until the very point of the failure |
mjr | 54:fd77a6b2f76c | 2230 | // and show no signs of anything wrong in the protocol exchange. |
mjr | 54:fd77a6b2f76c | 2231 | // In fact, every detail of the protocol exchange up to this point |
mjr | 54:fd77a6b2f76c | 2232 | // is identical to every successful exchange that does finish the |
mjr | 54:fd77a6b2f76c | 2233 | // whole setup process successfully, on both the KL25Z and Windows |
mjr | 54:fd77a6b2f76c | 2234 | // sides of the connection. I can't find any point of difference |
mjr | 54:fd77a6b2f76c | 2235 | // between successful and unsuccessful sequences that suggests why |
mjr | 54:fd77a6b2f76c | 2236 | // the fateful message fails. This makes me suspect that whatever |
mjr | 54:fd77a6b2f76c | 2237 | // is going wrong is inside the KL25Z USB hardware module, which |
mjr | 54:fd77a6b2f76c | 2238 | // is a pretty substantial black box - it has a lot of internal |
mjr | 54:fd77a6b2f76c | 2239 | // state that's inaccessible to the software. Further bolstering |
mjr | 54:fd77a6b2f76c | 2240 | // this theory is a little experiment where I found that I could |
mjr | 54:fd77a6b2f76c | 2241 | // reproduce the exact sequence of events of a failed reconnect |
mjr | 54:fd77a6b2f76c | 2242 | // attempt in an *initial* connection, which is otherwise 100% |
mjr | 54:fd77a6b2f76c | 2243 | // reliable, by inserting a little bit of artifical time padding |
mjr | 54:fd77a6b2f76c | 2244 | // (200us per event) into the SETUP interrupt handler. My |
mjr | 54:fd77a6b2f76c | 2245 | // hypothesis is that the STALL event happens because the KL25Z |
mjr | 54:fd77a6b2f76c | 2246 | // USB hardware is too slow to respond to a message. I'm not |
mjr | 54:fd77a6b2f76c | 2247 | // sure why this would only happen after a disconnect and not |
mjr | 54:fd77a6b2f76c | 2248 | // during the initial connection; maybe there's some reset work |
mjr | 54:fd77a6b2f76c | 2249 | // in the hardware that takes a substantial amount of time after |
mjr | 54:fd77a6b2f76c | 2250 | // a disconnect. |
mjr | 54:fd77a6b2f76c | 2251 | // |
mjr | 54:fd77a6b2f76c | 2252 | // The solution: the problem happens during the SETUP exchange, |
mjr | 54:fd77a6b2f76c | 2253 | // after we've been assigned a bus address. It only happens on |
mjr | 54:fd77a6b2f76c | 2254 | // some percentage of connection requests, so if we can simply |
mjr | 54:fd77a6b2f76c | 2255 | // start over when the failure occurs, we'll eventually succeed |
mjr | 54:fd77a6b2f76c | 2256 | // simply because not every attempt fails. The ideal would be |
mjr | 54:fd77a6b2f76c | 2257 | // to get the success rate up to 100%, but I can't figure out how |
mjr | 54:fd77a6b2f76c | 2258 | // to fix the underlying problem, so this is the next best thing. |
mjr | 54:fd77a6b2f76c | 2259 | // |
mjr | 54:fd77a6b2f76c | 2260 | // We can detect when the failure occurs by noticing when a SLEEP |
mjr | 54:fd77a6b2f76c | 2261 | // interrupt happens while we have an assigned bus address. |
mjr | 54:fd77a6b2f76c | 2262 | // |
mjr | 54:fd77a6b2f76c | 2263 | // To start a new connection attempt, we have to make the *host* |
mjr | 54:fd77a6b2f76c | 2264 | // try again. The logical connection is initiated solely by the |
mjr | 54:fd77a6b2f76c | 2265 | // host. Fortunately, it's easy to get the host to initiate the |
mjr | 54:fd77a6b2f76c | 2266 | // process: if we disconnect on the device side, it effectively |
mjr | 54:fd77a6b2f76c | 2267 | // makes the device look to the PC like it's electrically unplugged. |
mjr | 54:fd77a6b2f76c | 2268 | // When we reconnect on the device side, the PC thinks a new device |
mjr | 54:fd77a6b2f76c | 2269 | // has been plugged in and initiates the logical connection setup. |
mjr | 54:fd77a6b2f76c | 2270 | // We have to remain disconnected for a macroscopic interval for |
mjr | 54:fd77a6b2f76c | 2271 | // this to happen - 5ms seems to do the trick. |
mjr | 54:fd77a6b2f76c | 2272 | // |
mjr | 54:fd77a6b2f76c | 2273 | // Here's the full algorithm: |
mjr | 54:fd77a6b2f76c | 2274 | // |
mjr | 54:fd77a6b2f76c | 2275 | // 1. In the SLEEP interrupt handler, if we have a bus address, |
mjr | 54:fd77a6b2f76c | 2276 | // we disconnect the device. This happens in ISR context, so we |
mjr | 54:fd77a6b2f76c | 2277 | // can't wait around for 5ms. Instead, we simply set a flag noting |
mjr | 54:fd77a6b2f76c | 2278 | // that the connection has been broken, and we note the time and |
mjr | 54:fd77a6b2f76c | 2279 | // return. |
mjr | 54:fd77a6b2f76c | 2280 | // |
mjr | 54:fd77a6b2f76c | 2281 | // 2. In our main loop, whenever we find that we're disconnected, |
mjr | 54:fd77a6b2f76c | 2282 | // we call recoverConnection(). The main loop's job is basically a |
mjr | 54:fd77a6b2f76c | 2283 | // bunch of device polling. We're just one more device to poll, so |
mjr | 54:fd77a6b2f76c | 2284 | // recoverConnection() will be called soon after a disconnect, and |
mjr | 54:fd77a6b2f76c | 2285 | // then will be called in a loop for as long as we're disconnected. |
mjr | 54:fd77a6b2f76c | 2286 | // |
mjr | 54:fd77a6b2f76c | 2287 | // 3. In recoverConnection(), we check the flag we set in the SLEEP |
mjr | 54:fd77a6b2f76c | 2288 | // handler. If set, we wait until 5ms has elapsed from the SLEEP |
mjr | 54:fd77a6b2f76c | 2289 | // event time that we noted, then we'll reconnect and clear the flag. |
mjr | 54:fd77a6b2f76c | 2290 | // This gives us the required 5ms (or longer) delay between the |
mjr | 54:fd77a6b2f76c | 2291 | // disconnect and reconnect, ensuring that the PC will notice and |
mjr | 54:fd77a6b2f76c | 2292 | // will start over with the connection protocol. |
mjr | 54:fd77a6b2f76c | 2293 | // |
mjr | 54:fd77a6b2f76c | 2294 | // 4. The main loop keeps calling recoverConnection() in a loop for |
mjr | 54:fd77a6b2f76c | 2295 | // as long as we're disconnected, so if the new connection attempt |
mjr | 54:fd77a6b2f76c | 2296 | // triggered in step 3 fails, the SLEEP interrupt will happen again, |
mjr | 54:fd77a6b2f76c | 2297 | // we'll disconnect again, the flag will get set again, and |
mjr | 54:fd77a6b2f76c | 2298 | // recoverConnection() will reconnect again after another suitable |
mjr | 54:fd77a6b2f76c | 2299 | // delay. This will repeat until the connection succeeds or hell |
mjr | 54:fd77a6b2f76c | 2300 | // freezes over. |
mjr | 54:fd77a6b2f76c | 2301 | // |
mjr | 54:fd77a6b2f76c | 2302 | // Each disconnect happens immediately when a reconnect attempt |
mjr | 54:fd77a6b2f76c | 2303 | // fails, and an entire successful connection only takes about 25ms, |
mjr | 54:fd77a6b2f76c | 2304 | // so our loop can retry at more than 30 attempts per second. |
mjr | 54:fd77a6b2f76c | 2305 | // In my testing, lost connections almost always reconnect in |
mjr | 54:fd77a6b2f76c | 2306 | // less than second with this code in place. |
mjr | 54:fd77a6b2f76c | 2307 | void recoverConnection() |
mjr | 54:fd77a6b2f76c | 2308 | { |
mjr | 54:fd77a6b2f76c | 2309 | // if a reconnect is pending, reconnect |
mjr | 54:fd77a6b2f76c | 2310 | if (reconnectPending_) |
mjr | 54:fd77a6b2f76c | 2311 | { |
mjr | 54:fd77a6b2f76c | 2312 | // Loop until we reach 5ms after the last sleep event. |
mjr | 54:fd77a6b2f76c | 2313 | for (bool done = false ; !done ; ) |
mjr | 54:fd77a6b2f76c | 2314 | { |
mjr | 54:fd77a6b2f76c | 2315 | // If we've reached the target time, reconnect. Do the |
mjr | 54:fd77a6b2f76c | 2316 | // time check and flag reset atomically, so that we can't |
mjr | 54:fd77a6b2f76c | 2317 | // have another sleep event sneak in after we've verified |
mjr | 54:fd77a6b2f76c | 2318 | // the time. If another event occurs, it has to happen |
mjr | 54:fd77a6b2f76c | 2319 | // before we check, in which case it'll update the time |
mjr | 54:fd77a6b2f76c | 2320 | // before we check it, or after we clear the flag, in |
mjr | 54:fd77a6b2f76c | 2321 | // which case it will reset the flag and we'll do another |
mjr | 54:fd77a6b2f76c | 2322 | // round the next time we call this routine. |
mjr | 54:fd77a6b2f76c | 2323 | __disable_irq(); |
mjr | 54:fd77a6b2f76c | 2324 | if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000) |
mjr | 54:fd77a6b2f76c | 2325 | { |
mjr | 54:fd77a6b2f76c | 2326 | connect(false); |
mjr | 54:fd77a6b2f76c | 2327 | reconnectPending_ = false; |
mjr | 54:fd77a6b2f76c | 2328 | done = true; |
mjr | 54:fd77a6b2f76c | 2329 | } |
mjr | 54:fd77a6b2f76c | 2330 | __enable_irq(); |
mjr | 54:fd77a6b2f76c | 2331 | } |
mjr | 54:fd77a6b2f76c | 2332 | } |
mjr | 54:fd77a6b2f76c | 2333 | } |
mjr | 5:a70c0bce770d | 2334 | |
mjr | 5:a70c0bce770d | 2335 | protected: |
mjr | 54:fd77a6b2f76c | 2336 | // Handle a USB SLEEP interrupt. This interrupt signifies that the |
mjr | 54:fd77a6b2f76c | 2337 | // USB hardware module hasn't seen any token traffic for 3ms, which |
mjr | 54:fd77a6b2f76c | 2338 | // means that we're either physically or logically disconnected. |
mjr | 54:fd77a6b2f76c | 2339 | // |
mjr | 54:fd77a6b2f76c | 2340 | // Important: this runs in ISR context. |
mjr | 54:fd77a6b2f76c | 2341 | // |
mjr | 54:fd77a6b2f76c | 2342 | // Note that this is a specialized sense of "sleep" that's unrelated |
mjr | 54:fd77a6b2f76c | 2343 | // to the similarly named power modes on the PC. This has nothing |
mjr | 54:fd77a6b2f76c | 2344 | // to do with suspend/sleep mode on the PC, and it's not a low-power |
mjr | 54:fd77a6b2f76c | 2345 | // mode on the KL25Z. They really should have called this interrupt |
mjr | 54:fd77a6b2f76c | 2346 | // DISCONNECT or BROKEN CONNECTION.) |
mjr | 54:fd77a6b2f76c | 2347 | virtual void sleepStateChanged(unsigned int sleeping) |
mjr | 54:fd77a6b2f76c | 2348 | { |
mjr | 54:fd77a6b2f76c | 2349 | // note the new state |
mjr | 54:fd77a6b2f76c | 2350 | sleeping_ = sleeping; |
mjr | 54:fd77a6b2f76c | 2351 | |
mjr | 54:fd77a6b2f76c | 2352 | // If we have a non-zero bus address, we have at least a partial |
mjr | 54:fd77a6b2f76c | 2353 | // connection to the host (we've made it at least as far as the |
mjr | 54:fd77a6b2f76c | 2354 | // SETUP stage). Explicitly disconnect, and the pending reconnect |
mjr | 54:fd77a6b2f76c | 2355 | // flag, and remember the time of the sleep event. |
mjr | 54:fd77a6b2f76c | 2356 | if (USB0->ADDR != 0x00) |
mjr | 54:fd77a6b2f76c | 2357 | { |
mjr | 54:fd77a6b2f76c | 2358 | disconnect(); |
mjr | 54:fd77a6b2f76c | 2359 | lastSleepTime_ = timer_.read_us(); |
mjr | 54:fd77a6b2f76c | 2360 | reconnectPending_ = true; |
mjr | 54:fd77a6b2f76c | 2361 | } |
mjr | 54:fd77a6b2f76c | 2362 | } |
mjr | 54:fd77a6b2f76c | 2363 | |
mjr | 54:fd77a6b2f76c | 2364 | // is the USB connection asleep? |
mjr | 54:fd77a6b2f76c | 2365 | volatile bool sleeping_; |
mjr | 54:fd77a6b2f76c | 2366 | |
mjr | 54:fd77a6b2f76c | 2367 | // flag: reconnect pending after sleep event |
mjr | 54:fd77a6b2f76c | 2368 | volatile bool reconnectPending_; |
mjr | 54:fd77a6b2f76c | 2369 | |
mjr | 54:fd77a6b2f76c | 2370 | // time of last sleep event while connected |
mjr | 54:fd77a6b2f76c | 2371 | volatile uint32_t lastSleepTime_; |
mjr | 54:fd77a6b2f76c | 2372 | |
mjr | 54:fd77a6b2f76c | 2373 | // timer to keep track of interval since last sleep event |
mjr | 54:fd77a6b2f76c | 2374 | Timer timer_; |
mjr | 5:a70c0bce770d | 2375 | }; |
mjr | 5:a70c0bce770d | 2376 | |
mjr | 5:a70c0bce770d | 2377 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 2378 | // |
mjr | 5:a70c0bce770d | 2379 | // Accelerometer (MMA8451Q) |
mjr | 5:a70c0bce770d | 2380 | // |
mjr | 5:a70c0bce770d | 2381 | |
mjr | 5:a70c0bce770d | 2382 | // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer. |
mjr | 5:a70c0bce770d | 2383 | // |
mjr | 5:a70c0bce770d | 2384 | // This is a custom wrapper for the library code to interface to the |
mjr | 6:cc35eb643e8f | 2385 | // MMA8451Q. This class encapsulates an interrupt handler and |
mjr | 6:cc35eb643e8f | 2386 | // automatic calibration. |
mjr | 5:a70c0bce770d | 2387 | // |
mjr | 5:a70c0bce770d | 2388 | // We install an interrupt handler on the accelerometer "data ready" |
mjr | 6:cc35eb643e8f | 2389 | // interrupt to ensure that we fetch each sample immediately when it |
mjr | 6:cc35eb643e8f | 2390 | // becomes available. The accelerometer data rate is fiarly high |
mjr | 6:cc35eb643e8f | 2391 | // (800 Hz), so it's not practical to keep up with it by polling. |
mjr | 6:cc35eb643e8f | 2392 | // Using an interrupt handler lets us respond quickly and read |
mjr | 6:cc35eb643e8f | 2393 | // every sample. |
mjr | 5:a70c0bce770d | 2394 | // |
mjr | 6:cc35eb643e8f | 2395 | // We automatically calibrate the accelerometer so that it's not |
mjr | 6:cc35eb643e8f | 2396 | // necessary to get it exactly level when installing it, and so |
mjr | 6:cc35eb643e8f | 2397 | // that it's also not necessary to calibrate it manually. There's |
mjr | 6:cc35eb643e8f | 2398 | // lots of experience that tells us that manual calibration is a |
mjr | 6:cc35eb643e8f | 2399 | // terrible solution, mostly because cabinets tend to shift slightly |
mjr | 6:cc35eb643e8f | 2400 | // during use, requiring frequent recalibration. Instead, we |
mjr | 6:cc35eb643e8f | 2401 | // calibrate automatically. We continuously monitor the acceleration |
mjr | 6:cc35eb643e8f | 2402 | // data, watching for periods of constant (or nearly constant) values. |
mjr | 6:cc35eb643e8f | 2403 | // Any time it appears that the machine has been at rest for a while |
mjr | 6:cc35eb643e8f | 2404 | // (about 5 seconds), we'll average the readings during that rest |
mjr | 6:cc35eb643e8f | 2405 | // period and use the result as the level rest position. This is |
mjr | 6:cc35eb643e8f | 2406 | // is ongoing, so we'll quickly find the center point again if the |
mjr | 6:cc35eb643e8f | 2407 | // machine is moved during play (by an especially aggressive bout |
mjr | 6:cc35eb643e8f | 2408 | // of nudging, say). |
mjr | 5:a70c0bce770d | 2409 | // |
mjr | 5:a70c0bce770d | 2410 | |
mjr | 17:ab3cec0c8bf4 | 2411 | // I2C address of the accelerometer (this is a constant of the KL25Z) |
mjr | 17:ab3cec0c8bf4 | 2412 | const int MMA8451_I2C_ADDRESS = (0x1d<<1); |
mjr | 17:ab3cec0c8bf4 | 2413 | |
mjr | 17:ab3cec0c8bf4 | 2414 | // SCL and SDA pins for the accelerometer (constant for the KL25Z) |
mjr | 17:ab3cec0c8bf4 | 2415 | #define MMA8451_SCL_PIN PTE25 |
mjr | 17:ab3cec0c8bf4 | 2416 | #define MMA8451_SDA_PIN PTE24 |
mjr | 17:ab3cec0c8bf4 | 2417 | |
mjr | 17:ab3cec0c8bf4 | 2418 | // Digital in pin to use for the accelerometer interrupt. For the KL25Z, |
mjr | 17:ab3cec0c8bf4 | 2419 | // this can be either PTA14 or PTA15, since those are the pins physically |
mjr | 17:ab3cec0c8bf4 | 2420 | // wired on this board to the MMA8451 interrupt controller. |
mjr | 17:ab3cec0c8bf4 | 2421 | #define MMA8451_INT_PIN PTA15 |
mjr | 17:ab3cec0c8bf4 | 2422 | |
mjr | 17:ab3cec0c8bf4 | 2423 | |
mjr | 6:cc35eb643e8f | 2424 | // accelerometer input history item, for gathering calibration data |
mjr | 6:cc35eb643e8f | 2425 | struct AccHist |
mjr | 5:a70c0bce770d | 2426 | { |
mjr | 6:cc35eb643e8f | 2427 | AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; } |
mjr | 6:cc35eb643e8f | 2428 | void set(float x, float y, AccHist *prv) |
mjr | 6:cc35eb643e8f | 2429 | { |
mjr | 6:cc35eb643e8f | 2430 | // save the raw position |
mjr | 6:cc35eb643e8f | 2431 | this->x = x; |
mjr | 6:cc35eb643e8f | 2432 | this->y = y; |
mjr | 6:cc35eb643e8f | 2433 | this->d = distance(prv); |
mjr | 6:cc35eb643e8f | 2434 | } |
mjr | 6:cc35eb643e8f | 2435 | |
mjr | 6:cc35eb643e8f | 2436 | // reading for this entry |
mjr | 5:a70c0bce770d | 2437 | float x, y; |
mjr | 5:a70c0bce770d | 2438 | |
mjr | 6:cc35eb643e8f | 2439 | // distance from previous entry |
mjr | 6:cc35eb643e8f | 2440 | float d; |
mjr | 5:a70c0bce770d | 2441 | |
mjr | 6:cc35eb643e8f | 2442 | // total and count of samples averaged over this period |
mjr | 6:cc35eb643e8f | 2443 | float xtot, ytot; |
mjr | 6:cc35eb643e8f | 2444 | int cnt; |
mjr | 6:cc35eb643e8f | 2445 | |
mjr | 6:cc35eb643e8f | 2446 | void clearAvg() { xtot = ytot = 0.0; cnt = 0; } |
mjr | 6:cc35eb643e8f | 2447 | void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; } |
mjr | 6:cc35eb643e8f | 2448 | float xAvg() const { return xtot/cnt; } |
mjr | 6:cc35eb643e8f | 2449 | float yAvg() const { return ytot/cnt; } |
mjr | 5:a70c0bce770d | 2450 | |
mjr | 6:cc35eb643e8f | 2451 | float distance(AccHist *p) |
mjr | 6:cc35eb643e8f | 2452 | { return sqrt(square(p->x - x) + square(p->y - y)); } |
mjr | 5:a70c0bce770d | 2453 | }; |
mjr | 5:a70c0bce770d | 2454 | |
mjr | 5:a70c0bce770d | 2455 | // accelerometer wrapper class |
mjr | 3:3514575d4f86 | 2456 | class Accel |
mjr | 3:3514575d4f86 | 2457 | { |
mjr | 3:3514575d4f86 | 2458 | public: |
mjr | 3:3514575d4f86 | 2459 | Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin) |
mjr | 3:3514575d4f86 | 2460 | : mma_(sda, scl, i2cAddr), intIn_(irqPin) |
mjr | 3:3514575d4f86 | 2461 | { |
mjr | 5:a70c0bce770d | 2462 | // remember the interrupt pin assignment |
mjr | 5:a70c0bce770d | 2463 | irqPin_ = irqPin; |
mjr | 5:a70c0bce770d | 2464 | |
mjr | 5:a70c0bce770d | 2465 | // reset and initialize |
mjr | 5:a70c0bce770d | 2466 | reset(); |
mjr | 5:a70c0bce770d | 2467 | } |
mjr | 5:a70c0bce770d | 2468 | |
mjr | 5:a70c0bce770d | 2469 | void reset() |
mjr | 5:a70c0bce770d | 2470 | { |
mjr | 6:cc35eb643e8f | 2471 | // clear the center point |
mjr | 6:cc35eb643e8f | 2472 | cx_ = cy_ = 0.0; |
mjr | 6:cc35eb643e8f | 2473 | |
mjr | 6:cc35eb643e8f | 2474 | // start the calibration timer |
mjr | 5:a70c0bce770d | 2475 | tCenter_.start(); |
mjr | 5:a70c0bce770d | 2476 | iAccPrv_ = nAccPrv_ = 0; |
mjr | 6:cc35eb643e8f | 2477 | |
mjr | 5:a70c0bce770d | 2478 | // reset and initialize the MMA8451Q |
mjr | 5:a70c0bce770d | 2479 | mma_.init(); |
mjr | 6:cc35eb643e8f | 2480 | |
mjr | 6:cc35eb643e8f | 2481 | // set the initial integrated velocity reading to zero |
mjr | 6:cc35eb643e8f | 2482 | vx_ = vy_ = 0; |
mjr | 3:3514575d4f86 | 2483 | |
mjr | 6:cc35eb643e8f | 2484 | // set up our accelerometer interrupt handling |
mjr | 6:cc35eb643e8f | 2485 | intIn_.rise(this, &Accel::isr); |
mjr | 5:a70c0bce770d | 2486 | mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2); |
mjr | 3:3514575d4f86 | 2487 | |
mjr | 3:3514575d4f86 | 2488 | // read the current registers to clear the data ready flag |
mjr | 6:cc35eb643e8f | 2489 | mma_.getAccXYZ(ax_, ay_, az_); |
mjr | 3:3514575d4f86 | 2490 | |
mjr | 3:3514575d4f86 | 2491 | // start our timers |
mjr | 3:3514575d4f86 | 2492 | tGet_.start(); |
mjr | 3:3514575d4f86 | 2493 | tInt_.start(); |
mjr | 3:3514575d4f86 | 2494 | } |
mjr | 3:3514575d4f86 | 2495 | |
mjr | 9:fd65b0a94720 | 2496 | void get(int &x, int &y) |
mjr | 3:3514575d4f86 | 2497 | { |
mjr | 3:3514575d4f86 | 2498 | // disable interrupts while manipulating the shared data |
mjr | 3:3514575d4f86 | 2499 | __disable_irq(); |
mjr | 3:3514575d4f86 | 2500 | |
mjr | 3:3514575d4f86 | 2501 | // read the shared data and store locally for calculations |
mjr | 6:cc35eb643e8f | 2502 | float ax = ax_, ay = ay_; |
mjr | 6:cc35eb643e8f | 2503 | float vx = vx_, vy = vy_; |
mjr | 5:a70c0bce770d | 2504 | |
mjr | 6:cc35eb643e8f | 2505 | // reset the velocity sum for the next run |
mjr | 6:cc35eb643e8f | 2506 | vx_ = vy_ = 0; |
mjr | 3:3514575d4f86 | 2507 | |
mjr | 3:3514575d4f86 | 2508 | // get the time since the last get() sample |
mjr | 38:091e511ce8a0 | 2509 | float dt = tGet_.read_us()/1.0e6f; |
mjr | 3:3514575d4f86 | 2510 | tGet_.reset(); |
mjr | 3:3514575d4f86 | 2511 | |
mjr | 3:3514575d4f86 | 2512 | // done manipulating the shared data |
mjr | 3:3514575d4f86 | 2513 | __enable_irq(); |
mjr | 3:3514575d4f86 | 2514 | |
mjr | 6:cc35eb643e8f | 2515 | // adjust the readings for the integration time |
mjr | 6:cc35eb643e8f | 2516 | vx /= dt; |
mjr | 6:cc35eb643e8f | 2517 | vy /= dt; |
mjr | 6:cc35eb643e8f | 2518 | |
mjr | 6:cc35eb643e8f | 2519 | // add this sample to the current calibration interval's running total |
mjr | 6:cc35eb643e8f | 2520 | AccHist *p = accPrv_ + iAccPrv_; |
mjr | 6:cc35eb643e8f | 2521 | p->addAvg(ax, ay); |
mjr | 6:cc35eb643e8f | 2522 | |
mjr | 5:a70c0bce770d | 2523 | // check for auto-centering every so often |
mjr | 48:058ace2aed1d | 2524 | if (tCenter_.read_us() > 1000000) |
mjr | 5:a70c0bce770d | 2525 | { |
mjr | 5:a70c0bce770d | 2526 | // add the latest raw sample to the history list |
mjr | 6:cc35eb643e8f | 2527 | AccHist *prv = p; |
mjr | 5:a70c0bce770d | 2528 | iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv; |
mjr | 6:cc35eb643e8f | 2529 | p = accPrv_ + iAccPrv_; |
mjr | 6:cc35eb643e8f | 2530 | p->set(ax, ay, prv); |
mjr | 5:a70c0bce770d | 2531 | |
mjr | 5:a70c0bce770d | 2532 | // if we have a full complement, check for stability |
mjr | 5:a70c0bce770d | 2533 | if (nAccPrv_ >= maxAccPrv) |
mjr | 5:a70c0bce770d | 2534 | { |
mjr | 5:a70c0bce770d | 2535 | // check if we've been stable for all recent samples |
mjr | 6:cc35eb643e8f | 2536 | static const float accTol = .01; |
mjr | 6:cc35eb643e8f | 2537 | AccHist *p0 = accPrv_; |
mjr | 6:cc35eb643e8f | 2538 | if (p0[0].d < accTol |
mjr | 6:cc35eb643e8f | 2539 | && p0[1].d < accTol |
mjr | 6:cc35eb643e8f | 2540 | && p0[2].d < accTol |
mjr | 6:cc35eb643e8f | 2541 | && p0[3].d < accTol |
mjr | 6:cc35eb643e8f | 2542 | && p0[4].d < accTol) |
mjr | 5:a70c0bce770d | 2543 | { |
mjr | 6:cc35eb643e8f | 2544 | // Figure the new calibration point as the average of |
mjr | 6:cc35eb643e8f | 2545 | // the samples over the rest period |
mjr | 6:cc35eb643e8f | 2546 | cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0; |
mjr | 6:cc35eb643e8f | 2547 | cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0; |
mjr | 5:a70c0bce770d | 2548 | } |
mjr | 5:a70c0bce770d | 2549 | } |
mjr | 5:a70c0bce770d | 2550 | else |
mjr | 5:a70c0bce770d | 2551 | { |
mjr | 5:a70c0bce770d | 2552 | // not enough samples yet; just up the count |
mjr | 5:a70c0bce770d | 2553 | ++nAccPrv_; |
mjr | 5:a70c0bce770d | 2554 | } |
mjr | 6:cc35eb643e8f | 2555 | |
mjr | 6:cc35eb643e8f | 2556 | // clear the new item's running totals |
mjr | 6:cc35eb643e8f | 2557 | p->clearAvg(); |
mjr | 5:a70c0bce770d | 2558 | |
mjr | 5:a70c0bce770d | 2559 | // reset the timer |
mjr | 5:a70c0bce770d | 2560 | tCenter_.reset(); |
mjr | 39:b3815a1c3802 | 2561 | |
mjr | 39:b3815a1c3802 | 2562 | // If we haven't seen an interrupt in a while, do an explicit read to |
mjr | 39:b3815a1c3802 | 2563 | // "unstick" the device. The device can become stuck - which is to say, |
mjr | 39:b3815a1c3802 | 2564 | // it will stop delivering data-ready interrupts - if we fail to service |
mjr | 39:b3815a1c3802 | 2565 | // one data-ready interrupt before the next one occurs. Reading a sample |
mjr | 39:b3815a1c3802 | 2566 | // will clear up this overrun condition and allow normal interrupt |
mjr | 39:b3815a1c3802 | 2567 | // generation to continue. |
mjr | 39:b3815a1c3802 | 2568 | // |
mjr | 39:b3815a1c3802 | 2569 | // Note that this stuck condition *shouldn't* ever occur - if it does, |
mjr | 39:b3815a1c3802 | 2570 | // it means that we're spending a long period with interrupts disabled |
mjr | 39:b3815a1c3802 | 2571 | // (either in a critical section or in another interrupt handler), which |
mjr | 39:b3815a1c3802 | 2572 | // will likely cause other worse problems beyond the sticky accelerometer. |
mjr | 39:b3815a1c3802 | 2573 | // Even so, it's easy to detect and correct, so we'll do so for the sake |
mjr | 39:b3815a1c3802 | 2574 | // of making the system more fault-tolerant. |
mjr | 39:b3815a1c3802 | 2575 | if (tInt_.read() > 1.0f) |
mjr | 39:b3815a1c3802 | 2576 | { |
mjr | 39:b3815a1c3802 | 2577 | float x, y, z; |
mjr | 39:b3815a1c3802 | 2578 | mma_.getAccXYZ(x, y, z); |
mjr | 39:b3815a1c3802 | 2579 | } |
mjr | 5:a70c0bce770d | 2580 | } |
mjr | 5:a70c0bce770d | 2581 | |
mjr | 6:cc35eb643e8f | 2582 | // report our integrated velocity reading in x,y |
mjr | 6:cc35eb643e8f | 2583 | x = rawToReport(vx); |
mjr | 6:cc35eb643e8f | 2584 | y = rawToReport(vy); |
mjr | 5:a70c0bce770d | 2585 | |
mjr | 6:cc35eb643e8f | 2586 | #ifdef DEBUG_PRINTF |
mjr | 6:cc35eb643e8f | 2587 | if (x != 0 || y != 0) |
mjr | 6:cc35eb643e8f | 2588 | printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt); |
mjr | 6:cc35eb643e8f | 2589 | #endif |
mjr | 3:3514575d4f86 | 2590 | } |
mjr | 29:582472d0bc57 | 2591 | |
mjr | 3:3514575d4f86 | 2592 | private: |
mjr | 6:cc35eb643e8f | 2593 | // adjust a raw acceleration figure to a usb report value |
mjr | 6:cc35eb643e8f | 2594 | int rawToReport(float v) |
mjr | 5:a70c0bce770d | 2595 | { |
mjr | 6:cc35eb643e8f | 2596 | // scale to the joystick report range and round to integer |
mjr | 6:cc35eb643e8f | 2597 | int i = int(round(v*JOYMAX)); |
mjr | 5:a70c0bce770d | 2598 | |
mjr | 6:cc35eb643e8f | 2599 | // if it's near the center, scale it roughly as 20*(i/20)^2, |
mjr | 6:cc35eb643e8f | 2600 | // to suppress noise near the rest position |
mjr | 6:cc35eb643e8f | 2601 | static const int filter[] = { |
mjr | 6:cc35eb643e8f | 2602 | -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0, |
mjr | 6:cc35eb643e8f | 2603 | 0, |
mjr | 6:cc35eb643e8f | 2604 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18 |
mjr | 6:cc35eb643e8f | 2605 | }; |
mjr | 6:cc35eb643e8f | 2606 | return (i > 20 || i < -20 ? i : filter[i+20]); |
mjr | 5:a70c0bce770d | 2607 | } |
mjr | 5:a70c0bce770d | 2608 | |
mjr | 3:3514575d4f86 | 2609 | // interrupt handler |
mjr | 3:3514575d4f86 | 2610 | void isr() |
mjr | 3:3514575d4f86 | 2611 | { |
mjr | 3:3514575d4f86 | 2612 | // Read the axes. Note that we have to read all three axes |
mjr | 3:3514575d4f86 | 2613 | // (even though we only really use x and y) in order to clear |
mjr | 3:3514575d4f86 | 2614 | // the "data ready" status bit in the accelerometer. The |
mjr | 3:3514575d4f86 | 2615 | // interrupt only occurs when the "ready" bit transitions from |
mjr | 3:3514575d4f86 | 2616 | // off to on, so we have to make sure it's off. |
mjr | 5:a70c0bce770d | 2617 | float x, y, z; |
mjr | 5:a70c0bce770d | 2618 | mma_.getAccXYZ(x, y, z); |
mjr | 3:3514575d4f86 | 2619 | |
mjr | 3:3514575d4f86 | 2620 | // calculate the time since the last interrupt |
mjr | 39:b3815a1c3802 | 2621 | float dt = tInt_.read(); |
mjr | 3:3514575d4f86 | 2622 | tInt_.reset(); |
mjr | 6:cc35eb643e8f | 2623 | |
mjr | 6:cc35eb643e8f | 2624 | // integrate the time slice from the previous reading to this reading |
mjr | 6:cc35eb643e8f | 2625 | vx_ += (x + ax_ - 2*cx_)*dt/2; |
mjr | 6:cc35eb643e8f | 2626 | vy_ += (y + ay_ - 2*cy_)*dt/2; |
mjr | 3:3514575d4f86 | 2627 | |
mjr | 6:cc35eb643e8f | 2628 | // store the updates |
mjr | 6:cc35eb643e8f | 2629 | ax_ = x; |
mjr | 6:cc35eb643e8f | 2630 | ay_ = y; |
mjr | 6:cc35eb643e8f | 2631 | az_ = z; |
mjr | 3:3514575d4f86 | 2632 | } |
mjr | 3:3514575d4f86 | 2633 | |
mjr | 3:3514575d4f86 | 2634 | // underlying accelerometer object |
mjr | 3:3514575d4f86 | 2635 | MMA8451Q mma_; |
mjr | 3:3514575d4f86 | 2636 | |
mjr | 5:a70c0bce770d | 2637 | // last raw acceleration readings |
mjr | 6:cc35eb643e8f | 2638 | float ax_, ay_, az_; |
mjr | 5:a70c0bce770d | 2639 | |
mjr | 6:cc35eb643e8f | 2640 | // integrated velocity reading since last get() |
mjr | 6:cc35eb643e8f | 2641 | float vx_, vy_; |
mjr | 6:cc35eb643e8f | 2642 | |
mjr | 3:3514575d4f86 | 2643 | // timer for measuring time between get() samples |
mjr | 3:3514575d4f86 | 2644 | Timer tGet_; |
mjr | 3:3514575d4f86 | 2645 | |
mjr | 3:3514575d4f86 | 2646 | // timer for measuring time between interrupts |
mjr | 3:3514575d4f86 | 2647 | Timer tInt_; |
mjr | 5:a70c0bce770d | 2648 | |
mjr | 6:cc35eb643e8f | 2649 | // Calibration reference point for accelerometer. This is the |
mjr | 6:cc35eb643e8f | 2650 | // average reading on the accelerometer when in the neutral position |
mjr | 6:cc35eb643e8f | 2651 | // at rest. |
mjr | 6:cc35eb643e8f | 2652 | float cx_, cy_; |
mjr | 5:a70c0bce770d | 2653 | |
mjr | 5:a70c0bce770d | 2654 | // timer for atuo-centering |
mjr | 5:a70c0bce770d | 2655 | Timer tCenter_; |
mjr | 6:cc35eb643e8f | 2656 | |
mjr | 6:cc35eb643e8f | 2657 | // Auto-centering history. This is a separate history list that |
mjr | 6:cc35eb643e8f | 2658 | // records results spaced out sparesely over time, so that we can |
mjr | 6:cc35eb643e8f | 2659 | // watch for long-lasting periods of rest. When we observe nearly |
mjr | 6:cc35eb643e8f | 2660 | // no motion for an extended period (on the order of 5 seconds), we |
mjr | 6:cc35eb643e8f | 2661 | // take this to mean that the cabinet is at rest in its neutral |
mjr | 6:cc35eb643e8f | 2662 | // position, so we take this as the calibration zero point for the |
mjr | 6:cc35eb643e8f | 2663 | // accelerometer. We update this history continuously, which allows |
mjr | 6:cc35eb643e8f | 2664 | // us to continuously re-calibrate the accelerometer. This ensures |
mjr | 6:cc35eb643e8f | 2665 | // that we'll automatically adjust to any actual changes in the |
mjr | 6:cc35eb643e8f | 2666 | // cabinet's orientation (e.g., if it gets moved slightly by an |
mjr | 6:cc35eb643e8f | 2667 | // especially strong nudge) as well as any systematic drift in the |
mjr | 6:cc35eb643e8f | 2668 | // accelerometer measurement bias (e.g., from temperature changes). |
mjr | 5:a70c0bce770d | 2669 | int iAccPrv_, nAccPrv_; |
mjr | 5:a70c0bce770d | 2670 | static const int maxAccPrv = 5; |
mjr | 6:cc35eb643e8f | 2671 | AccHist accPrv_[maxAccPrv]; |
mjr | 6:cc35eb643e8f | 2672 | |
mjr | 5:a70c0bce770d | 2673 | // interurupt pin name |
mjr | 5:a70c0bce770d | 2674 | PinName irqPin_; |
mjr | 5:a70c0bce770d | 2675 | |
mjr | 5:a70c0bce770d | 2676 | // interrupt router |
mjr | 5:a70c0bce770d | 2677 | InterruptIn intIn_; |
mjr | 3:3514575d4f86 | 2678 | }; |
mjr | 3:3514575d4f86 | 2679 | |
mjr |