An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Fri Feb 03 20:50:02 2017 +0000
Revision:
76:7f5912b6340e
Parent:
75:677892300e7a
Child:
77:0b96f6867312
Rework flash driver to make it truly stable (hopefully to 100% reliability); host-loaded configuration; performance improvements; more performance diagnostics.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 38:091e511ce8a0 55 // Note VP has built-in support for plunger devices like this one, but some VP
mjr 38:091e511ce8a0 56 // tables can't use it without some additional scripting work. The Build Guide has
mjr 38:091e511ce8a0 57 // advice on adjusting tables to add plunger support when necessary.
mjr 5:a70c0bce770d 58 //
mjr 6:cc35eb643e8f 59 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 60 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 61 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 62 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 63 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 64 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 65 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 66 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 67 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 68 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 69 //
mjr 17:ab3cec0c8bf4 70 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 71 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 72 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 73 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 74 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 75 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 76 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 77 //
mjr 13:72dda449c3c0 78 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 38:091e511ce8a0 79 // for buttons and switches. You can wire each input to a physical pinball-style
mjr 38:091e511ce8a0 80 // button or switch, such as flipper buttons, Start buttons, coin chute switches,
mjr 38:091e511ce8a0 81 // tilt bobs, and service buttons. Each button can be configured to be reported
mjr 38:091e511ce8a0 82 // to the PC as a joystick button or as a keyboard key (you can select which key
mjr 38:091e511ce8a0 83 // is used for each button).
mjr 13:72dda449c3c0 84 //
mjr 53:9b2611964afc 85 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 86 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 87 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 88 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 89 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 90 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 91 // attached devices without any modifications.
mjr 5:a70c0bce770d 92 //
mjr 53:9b2611964afc 93 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 94 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 95 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 96 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 97 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 98 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 99 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 100 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 101 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 102 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 103 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 104 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 105 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 106 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 107 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 108 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 109 //
mjr 26:cb71c4af2912 110 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 111 // external PWM controller chips for controlling device outputs, instead of using
mjr 53:9b2611964afc 112 // the on-board GPIO ports as described above. The software can control a set of
mjr 53:9b2611964afc 113 // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just
mjr 53:9b2611964afc 114 // need two of them to get the full complement of 32 output ports of a real LedWiz.
mjr 53:9b2611964afc 115 // You can hook up even more, though. Four chips gives you 64 ports, which should
mjr 53:9b2611964afc 116 // be plenty for nearly any virtual pinball project. To accommodate the larger
mjr 53:9b2611964afc 117 // supply of ports possible with the PWM chips, the controller software provides
mjr 53:9b2611964afc 118 // a custom, extended version of the LedWiz protocol that can handle up to 128
mjr 53:9b2611964afc 119 // ports. PC software designed only for the real LedWiz obviously won't know
mjr 53:9b2611964afc 120 // about the extended protocol and won't be able to take advantage of its extra
mjr 53:9b2611964afc 121 // capabilities, but the latest version of DOF (DirectOutput Framework) *does*
mjr 53:9b2611964afc 122 // know the new language and can take full advantage. Older software will still
mjr 53:9b2611964afc 123 // work, though - the new extensions are all backward compatible, so old software
mjr 53:9b2611964afc 124 // that only knows about the original LedWiz protocol will still work, with the
mjr 53:9b2611964afc 125 // obvious limitation that it can only access the first 32 ports.
mjr 53:9b2611964afc 126 //
mjr 53:9b2611964afc 127 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 128 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 129 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 130 // outputs with full PWM control and power handling for high-current devices
mjr 53:9b2611964afc 131 // built in to the boards.
mjr 26:cb71c4af2912 132 //
mjr 38:091e511ce8a0 133 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 134 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 135 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 136 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 137 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 138 //
mjr 38:091e511ce8a0 139 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 140 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 141 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 142 // To use this feature, you have to build some external circuitry to allow the
mjr 38:091e511ce8a0 143 // software to sense the power supply status, and you have to run wires to your
mjr 38:091e511ce8a0 144 // TV's on/off button, which requires opening the case on your TV. The Build
mjr 38:091e511ce8a0 145 // Guide has details on the necessary circuitry and connections to the TV.
mjr 38:091e511ce8a0 146 //
mjr 35:e959ffba78fd 147 //
mjr 35:e959ffba78fd 148 //
mjr 33:d832bcab089e 149 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 150 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 151 //
mjr 48:058ace2aed1d 152 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 153 //
mjr 48:058ace2aed1d 154 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 155 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 156 // has been established)
mjr 48:058ace2aed1d 157 //
mjr 48:058ace2aed1d 158 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 159 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 160 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 161 //
mjr 38:091e511ce8a0 162 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 163 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 164 // transmissions are failing.
mjr 38:091e511ce8a0 165 //
mjr 73:4e8ce0b18915 166 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 167 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 168 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 169 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 170 // enabled.
mjr 73:4e8ce0b18915 171 //
mjr 6:cc35eb643e8f 172 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 173 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 174 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 175 // no plunger sensor configured.
mjr 6:cc35eb643e8f 176 //
mjr 38:091e511ce8a0 177 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 178 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 179 //
mjr 48:058ace2aed1d 180 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 181 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 182 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 183 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 184 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 185 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 186 //
mjr 48:058ace2aed1d 187 //
mjr 48:058ace2aed1d 188 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 189 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 190 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 191 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 192 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 193 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 194 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 195 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 196
mjr 33:d832bcab089e 197
mjr 0:5acbbe3f4cf4 198 #include "mbed.h"
mjr 6:cc35eb643e8f 199 #include "math.h"
mjr 74:822a92bc11d2 200 #include "diags.h"
mjr 48:058ace2aed1d 201 #include "pinscape.h"
mjr 0:5acbbe3f4cf4 202 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 203 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 204 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 205 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 206 #include "crc32.h"
mjr 26:cb71c4af2912 207 #include "TLC5940.h"
mjr 34:6b981a2afab7 208 #include "74HC595.h"
mjr 35:e959ffba78fd 209 #include "nvm.h"
mjr 35:e959ffba78fd 210 #include "plunger.h"
mjr 35:e959ffba78fd 211 #include "ccdSensor.h"
mjr 35:e959ffba78fd 212 #include "potSensor.h"
mjr 35:e959ffba78fd 213 #include "nullSensor.h"
mjr 48:058ace2aed1d 214 #include "TinyDigitalIn.h"
mjr 74:822a92bc11d2 215
mjr 2:c174f9ee414a 216
mjr 21:5048e16cc9ef 217 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 218 #include "config.h"
mjr 17:ab3cec0c8bf4 219
mjr 76:7f5912b6340e 220 // forward declarations
mjr 76:7f5912b6340e 221 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 222
mjr 53:9b2611964afc 223 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 224 //
mjr 53:9b2611964afc 225 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 226 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 227 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 228 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 229 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 230 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 231 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 232 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 233 // interface.
mjr 53:9b2611964afc 234 //
mjr 53:9b2611964afc 235 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 236 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 237 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 238 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 239 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 240 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 241 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 242 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 243 //
mjr 53:9b2611964afc 244 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 245 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 246 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 247 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 248 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 249 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 250 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 251 //
mjr 53:9b2611964afc 252 const char *getOpenSDAID()
mjr 53:9b2611964afc 253 {
mjr 53:9b2611964afc 254 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 255 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 256 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 257
mjr 53:9b2611964afc 258 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 259 }
mjr 53:9b2611964afc 260
mjr 53:9b2611964afc 261 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 262 //
mjr 53:9b2611964afc 263 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 264 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 265 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 266 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 267 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 268 // want from this.
mjr 53:9b2611964afc 269 //
mjr 53:9b2611964afc 270 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 271 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 272 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 273 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 274 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 275 // macros.
mjr 53:9b2611964afc 276 //
mjr 53:9b2611964afc 277 const char *getBuildID()
mjr 53:9b2611964afc 278 {
mjr 53:9b2611964afc 279 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 280 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 281 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 282
mjr 53:9b2611964afc 283 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 284 }
mjr 53:9b2611964afc 285
mjr 74:822a92bc11d2 286 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 287 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 288 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 289 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 290 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 291 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 292 Timer mainLoopTimer;
mjr 76:7f5912b6340e 293 #endif
mjr 76:7f5912b6340e 294
mjr 53:9b2611964afc 295
mjr 48:058ace2aed1d 296 // --------------------------------------------------------------------------
mjr 48:058ace2aed1d 297 //
mjr 59:94eb9265b6d7 298 // Custom memory allocator. We use our own version of malloc() for more
mjr 59:94eb9265b6d7 299 // efficient memory usage, and to provide diagnostics if we run out of heap.
mjr 48:058ace2aed1d 300 //
mjr 59:94eb9265b6d7 301 // We can implement a more efficient malloc than the library can because we
mjr 59:94eb9265b6d7 302 // can make an assumption that the library can't: allocations are permanent.
mjr 59:94eb9265b6d7 303 // The normal malloc has to assume that allocations can be freed, so it has
mjr 59:94eb9265b6d7 304 // to track blocks individually. For the purposes of this program, though,
mjr 59:94eb9265b6d7 305 // we don't have to do this because virtually all of our allocations are
mjr 59:94eb9265b6d7 306 // de facto permanent. We only allocate dyanmic memory during setup, and
mjr 59:94eb9265b6d7 307 // once we set things up, we never delete anything. This means that we can
mjr 59:94eb9265b6d7 308 // allocate memory in bare blocks without any bookkeeping overhead.
mjr 59:94eb9265b6d7 309 //
mjr 59:94eb9265b6d7 310 // In addition, we can make a much larger overall pool of memory available
mjr 59:94eb9265b6d7 311 // in a custom allocator. The mbed library malloc() seems to have a pool
mjr 59:94eb9265b6d7 312 // of about 3K to work with, even though there's really about 9K of RAM
mjr 59:94eb9265b6d7 313 // left over after counting the static writable data and reserving space
mjr 59:94eb9265b6d7 314 // for a reasonable stack. I haven't looked at the mbed malloc to see why
mjr 59:94eb9265b6d7 315 // they're so stingy, but it appears from empirical testing that we can
mjr 59:94eb9265b6d7 316 // create a static array up to about 9K before things get crashy.
mjr 59:94eb9265b6d7 317
mjr 73:4e8ce0b18915 318 // Dynamic memory pool. We'll reserve space for all dynamic
mjr 73:4e8ce0b18915 319 // allocations by creating a simple C array of bytes. The size
mjr 73:4e8ce0b18915 320 // of this array is the maximum number of bytes we can allocate
mjr 73:4e8ce0b18915 321 // with malloc or operator 'new'.
mjr 73:4e8ce0b18915 322 //
mjr 73:4e8ce0b18915 323 // The maximum safe size for this array is, in essence, the
mjr 73:4e8ce0b18915 324 // amount of physical KL25Z RAM left over after accounting for
mjr 73:4e8ce0b18915 325 // static data throughout the rest of the program, the run-time
mjr 73:4e8ce0b18915 326 // stack, and any other space reserved for compiler or MCU
mjr 73:4e8ce0b18915 327 // overhead. Unfortunately, it's not straightforward to
mjr 73:4e8ce0b18915 328 // determine this analytically. The big complication is that
mjr 73:4e8ce0b18915 329 // the minimum stack size isn't easily predictable, as the stack
mjr 73:4e8ce0b18915 330 // grows according to what the program does. In addition, the
mjr 73:4e8ce0b18915 331 // mbed platform tools don't give us detailed data on the
mjr 73:4e8ce0b18915 332 // compiler/linker memory map. All we get is a generic total
mjr 73:4e8ce0b18915 333 // RAM requirement, which doesn't necessarily account for all
mjr 73:4e8ce0b18915 334 // overhead (e.g., gaps inserted to get proper alignment for
mjr 73:4e8ce0b18915 335 // particular memory blocks).
mjr 73:4e8ce0b18915 336 //
mjr 73:4e8ce0b18915 337 // A very rough estimate: the total RAM size reported by the
mjr 73:4e8ce0b18915 338 // linker is about 3.5K (currently - that can obviously change
mjr 73:4e8ce0b18915 339 // as the project evolves) out of 16K total. Assuming about a
mjr 73:4e8ce0b18915 340 // 3K stack, that leaves in the ballpark of 10K. Empirically,
mjr 73:4e8ce0b18915 341 // that seems pretty close. In testing, we start to see some
mjr 73:4e8ce0b18915 342 // instability at 10K, while 9K seems safe. To be conservative,
mjr 73:4e8ce0b18915 343 // we'll reduce this to 8K.
mjr 73:4e8ce0b18915 344 //
mjr 73:4e8ce0b18915 345 // Our measured total usage in the base configuration (22 GPIO
mjr 73:4e8ce0b18915 346 // output ports, TSL1410R plunger sensor) is about 4000 bytes.
mjr 73:4e8ce0b18915 347 // A pretty fully decked-out configuration (121 output ports,
mjr 73:4e8ce0b18915 348 // with 8 TLC5940 chips and 3 74HC595 chips, plus the TSL1412R
mjr 73:4e8ce0b18915 349 // sensor with the higher pixel count, and all expansion board
mjr 73:4e8ce0b18915 350 // features enabled) comes to about 6700 bytes. That leaves
mjr 73:4e8ce0b18915 351 // us with about 1.5K free out of our 8K, so we still have a
mjr 73:4e8ce0b18915 352 // little more headroom for future expansion.
mjr 73:4e8ce0b18915 353 //
mjr 73:4e8ce0b18915 354 // For comparison, the standard mbed malloc() runs out of
mjr 73:4e8ce0b18915 355 // memory at about 6K. That's what led to this custom malloc:
mjr 73:4e8ce0b18915 356 // we can just fit the base configuration into that 4K, but
mjr 73:4e8ce0b18915 357 // it's not enough space for more complex setups. There's
mjr 73:4e8ce0b18915 358 // still a little room for squeezing out unnecessary space
mjr 73:4e8ce0b18915 359 // from the mbed library code, but at this point I'd prefer
mjr 73:4e8ce0b18915 360 // to treat that as a last resort, since it would mean having
mjr 73:4e8ce0b18915 361 // to fork private copies of the libraries.
mjr 73:4e8ce0b18915 362 static const size_t XMALLOC_POOL_SIZE = 8*1024;
mjr 73:4e8ce0b18915 363 static char xmalloc_pool[XMALLOC_POOL_SIZE];
mjr 73:4e8ce0b18915 364 static char *xmalloc_nxt = xmalloc_pool;
mjr 73:4e8ce0b18915 365 static size_t xmalloc_rem = XMALLOC_POOL_SIZE;
mjr 73:4e8ce0b18915 366
mjr 48:058ace2aed1d 367 void *xmalloc(size_t siz)
mjr 48:058ace2aed1d 368 {
mjr 59:94eb9265b6d7 369 // align to a 4-byte increment
mjr 59:94eb9265b6d7 370 siz = (siz + 3) & ~3;
mjr 59:94eb9265b6d7 371
mjr 59:94eb9265b6d7 372 // If insufficient memory is available, halt and show a fast red/purple
mjr 59:94eb9265b6d7 373 // diagnostic flash. We don't want to return, since we assume throughout
mjr 59:94eb9265b6d7 374 // the program that all memory allocations must succeed. Note that this
mjr 59:94eb9265b6d7 375 // is generally considered bad programming practice in applications on
mjr 59:94eb9265b6d7 376 // "real" computers, but for the purposes of this microcontroller app,
mjr 59:94eb9265b6d7 377 // there's no point in checking for failed allocations individually
mjr 59:94eb9265b6d7 378 // because there's no way to recover from them. It's better in this
mjr 59:94eb9265b6d7 379 // context to handle failed allocations as fatal errors centrally. We
mjr 59:94eb9265b6d7 380 // can't recover from these automatically, so we have to resort to user
mjr 59:94eb9265b6d7 381 // intervention, which we signal with the diagnostic LED flashes.
mjr 73:4e8ce0b18915 382 if (siz > xmalloc_rem)
mjr 59:94eb9265b6d7 383 {
mjr 59:94eb9265b6d7 384 // halt with the diagnostic display (by looping forever)
mjr 59:94eb9265b6d7 385 for (;;)
mjr 59:94eb9265b6d7 386 {
mjr 59:94eb9265b6d7 387 diagLED(1, 0, 0);
mjr 59:94eb9265b6d7 388 wait_us(200000);
mjr 59:94eb9265b6d7 389 diagLED(1, 0, 1);
mjr 59:94eb9265b6d7 390 wait_us(200000);
mjr 59:94eb9265b6d7 391 }
mjr 59:94eb9265b6d7 392 }
mjr 48:058ace2aed1d 393
mjr 59:94eb9265b6d7 394 // get the next free location from the pool to return
mjr 73:4e8ce0b18915 395 char *ret = xmalloc_nxt;
mjr 59:94eb9265b6d7 396
mjr 59:94eb9265b6d7 397 // advance the pool pointer and decrement the remaining size counter
mjr 73:4e8ce0b18915 398 xmalloc_nxt += siz;
mjr 73:4e8ce0b18915 399 xmalloc_rem -= siz;
mjr 59:94eb9265b6d7 400
mjr 59:94eb9265b6d7 401 // return the allocated block
mjr 59:94eb9265b6d7 402 return ret;
mjr 73:4e8ce0b18915 403 };
mjr 73:4e8ce0b18915 404
mjr 73:4e8ce0b18915 405 // our malloc() replacement
mjr 48:058ace2aed1d 406
mjr 59:94eb9265b6d7 407 // Overload operator new to call our custom malloc. This ensures that
mjr 59:94eb9265b6d7 408 // all 'new' allocations throughout the program (including library code)
mjr 59:94eb9265b6d7 409 // go through our private allocator.
mjr 48:058ace2aed1d 410 void *operator new(size_t siz) { return xmalloc(siz); }
mjr 48:058ace2aed1d 411 void *operator new[](size_t siz) { return xmalloc(siz); }
mjr 5:a70c0bce770d 412
mjr 59:94eb9265b6d7 413 // Since we don't do bookkeeping to track released memory, 'delete' does
mjr 59:94eb9265b6d7 414 // nothing. In actual testing, this routine appears to never be called.
mjr 59:94eb9265b6d7 415 // If it *is* ever called, it will simply leave the block in place, which
mjr 59:94eb9265b6d7 416 // will make it unavailable for re-use but will otherwise be harmless.
mjr 59:94eb9265b6d7 417 void operator delete(void *ptr) { }
mjr 59:94eb9265b6d7 418
mjr 59:94eb9265b6d7 419
mjr 5:a70c0bce770d 420 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 421 //
mjr 38:091e511ce8a0 422 // Forward declarations
mjr 38:091e511ce8a0 423 //
mjr 38:091e511ce8a0 424 void setNightMode(bool on);
mjr 38:091e511ce8a0 425 void toggleNightMode();
mjr 38:091e511ce8a0 426
mjr 38:091e511ce8a0 427 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 428 // utilities
mjr 17:ab3cec0c8bf4 429
mjr 26:cb71c4af2912 430 // floating point square of a number
mjr 26:cb71c4af2912 431 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 432
mjr 26:cb71c4af2912 433 // floating point rounding
mjr 26:cb71c4af2912 434 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 435
mjr 17:ab3cec0c8bf4 436
mjr 33:d832bcab089e 437 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 438 //
mjr 40:cc0d9814522b 439 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 440 // the running state.
mjr 40:cc0d9814522b 441 //
mjr 40:cc0d9814522b 442 class Timer2: public Timer
mjr 40:cc0d9814522b 443 {
mjr 40:cc0d9814522b 444 public:
mjr 40:cc0d9814522b 445 Timer2() : running(false) { }
mjr 40:cc0d9814522b 446
mjr 40:cc0d9814522b 447 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 448 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 449
mjr 40:cc0d9814522b 450 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 451
mjr 40:cc0d9814522b 452 private:
mjr 40:cc0d9814522b 453 bool running;
mjr 40:cc0d9814522b 454 };
mjr 40:cc0d9814522b 455
mjr 53:9b2611964afc 456
mjr 53:9b2611964afc 457 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 458 //
mjr 53:9b2611964afc 459 // Reboot timer. When we have a deferred reboot operation pending, we
mjr 53:9b2611964afc 460 // set the target time and start the timer.
mjr 53:9b2611964afc 461 Timer2 rebootTimer;
mjr 53:9b2611964afc 462 long rebootTime_us;
mjr 53:9b2611964afc 463
mjr 40:cc0d9814522b 464 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 465 //
mjr 33:d832bcab089e 466 // USB product version number
mjr 5:a70c0bce770d 467 //
mjr 47:df7a88cd249c 468 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 469
mjr 33:d832bcab089e 470 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 471 //
mjr 6:cc35eb643e8f 472 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 473 //
mjr 6:cc35eb643e8f 474 #define JOYMAX 4096
mjr 6:cc35eb643e8f 475
mjr 9:fd65b0a94720 476
mjr 17:ab3cec0c8bf4 477 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 478 //
mjr 40:cc0d9814522b 479 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 480 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 481 //
mjr 35:e959ffba78fd 482
mjr 35:e959ffba78fd 483 // unsigned 16-bit integer
mjr 35:e959ffba78fd 484 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 485 {
mjr 35:e959ffba78fd 486 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 487 }
mjr 40:cc0d9814522b 488 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 489 {
mjr 40:cc0d9814522b 490 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 491 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 492 }
mjr 35:e959ffba78fd 493
mjr 35:e959ffba78fd 494 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 495 {
mjr 35:e959ffba78fd 496 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 497 }
mjr 40:cc0d9814522b 498 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 499 {
mjr 40:cc0d9814522b 500 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 501 }
mjr 35:e959ffba78fd 502
mjr 35:e959ffba78fd 503 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 504 {
mjr 35:e959ffba78fd 505 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 506 }
mjr 40:cc0d9814522b 507 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 508 {
mjr 40:cc0d9814522b 509 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 510 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 511 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 512 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 513 }
mjr 35:e959ffba78fd 514
mjr 35:e959ffba78fd 515 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 516 {
mjr 35:e959ffba78fd 517 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 518 }
mjr 35:e959ffba78fd 519
mjr 53:9b2611964afc 520 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 521 //
mjr 53:9b2611964afc 522 // The internal mbed PinName format is
mjr 53:9b2611964afc 523 //
mjr 53:9b2611964afc 524 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 525 //
mjr 53:9b2611964afc 526 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 527 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 528 //
mjr 53:9b2611964afc 529 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 530 // pin name fits in 8 bits:
mjr 53:9b2611964afc 531 //
mjr 53:9b2611964afc 532 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 533 //
mjr 53:9b2611964afc 534 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 535 //
mjr 53:9b2611964afc 536 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 537 //
mjr 53:9b2611964afc 538 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 539 {
mjr 53:9b2611964afc 540 if (c == 0xFF)
mjr 53:9b2611964afc 541 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 542 else
mjr 53:9b2611964afc 543 return PinName(
mjr 53:9b2611964afc 544 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 545 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 546 }
mjr 40:cc0d9814522b 547 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 548 {
mjr 53:9b2611964afc 549 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 550 }
mjr 35:e959ffba78fd 551
mjr 35:e959ffba78fd 552
mjr 35:e959ffba78fd 553 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 554 //
mjr 38:091e511ce8a0 555 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 556 //
mjr 38:091e511ce8a0 557 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 558 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 559 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 560 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 561 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 562 // SPI capability.
mjr 38:091e511ce8a0 563 //
mjr 38:091e511ce8a0 564 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 565
mjr 73:4e8ce0b18915 566 // Power on timer state for diagnostics. We flash the blue LED when
mjr 73:4e8ce0b18915 567 // nothing else is going on. State 0-1 = off, 2-3 = on
mjr 73:4e8ce0b18915 568 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 569
mjr 38:091e511ce8a0 570 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 571 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 572 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 573 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 574 {
mjr 73:4e8ce0b18915 575 // remember the new state
mjr 73:4e8ce0b18915 576 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 577
mjr 73:4e8ce0b18915 578 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 579 // applying it to the blue LED
mjr 73:4e8ce0b18915 580 if (diagLEDState == 0)
mjr 73:4e8ce0b18915 581 b = (powerTimerDiagState >= 2);
mjr 73:4e8ce0b18915 582
mjr 73:4e8ce0b18915 583 // set the new state
mjr 38:091e511ce8a0 584 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 585 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 586 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 587 }
mjr 38:091e511ce8a0 588
mjr 73:4e8ce0b18915 589 // update the LEDs with the current state
mjr 73:4e8ce0b18915 590 void diagLED(void)
mjr 73:4e8ce0b18915 591 {
mjr 73:4e8ce0b18915 592 diagLED(
mjr 73:4e8ce0b18915 593 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 594 (diagLEDState >> 1) & 0x01,
mjr 73:4e8ce0b18915 595 (diagLEDState >> 1) & 0x02);
mjr 73:4e8ce0b18915 596 }
mjr 73:4e8ce0b18915 597
mjr 38:091e511ce8a0 598 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 599 // an on-board LED segment
mjr 38:091e511ce8a0 600 struct LedSeg
mjr 38:091e511ce8a0 601 {
mjr 38:091e511ce8a0 602 bool r, g, b;
mjr 38:091e511ce8a0 603 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 604
mjr 38:091e511ce8a0 605 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 606 {
mjr 38:091e511ce8a0 607 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 608 // our on-board LED segments
mjr 38:091e511ce8a0 609 int t = pc.typ;
mjr 38:091e511ce8a0 610 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 611 {
mjr 38:091e511ce8a0 612 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 613 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 614 if (pin == LED1)
mjr 38:091e511ce8a0 615 r = true;
mjr 38:091e511ce8a0 616 else if (pin == LED2)
mjr 38:091e511ce8a0 617 g = true;
mjr 38:091e511ce8a0 618 else if (pin == LED3)
mjr 38:091e511ce8a0 619 b = true;
mjr 38:091e511ce8a0 620 }
mjr 38:091e511ce8a0 621 }
mjr 38:091e511ce8a0 622 };
mjr 38:091e511ce8a0 623
mjr 38:091e511ce8a0 624 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 625 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 626 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 627 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 628 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 629 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 630 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 631 {
mjr 38:091e511ce8a0 632 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 633 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 634 LedSeg l;
mjr 38:091e511ce8a0 635 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 636 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 637
mjr 38:091e511ce8a0 638 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 639 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 640 // LedWiz use.
mjr 38:091e511ce8a0 641 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 642 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 643 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 644 }
mjr 38:091e511ce8a0 645
mjr 38:091e511ce8a0 646
mjr 38:091e511ce8a0 647 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 648 //
mjr 76:7f5912b6340e 649 // LedWiz emulation
mjr 76:7f5912b6340e 650 //
mjr 76:7f5912b6340e 651
mjr 76:7f5912b6340e 652 // LedWiz output states.
mjr 76:7f5912b6340e 653 //
mjr 76:7f5912b6340e 654 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 655 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 656 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 657 // The two axes are independent.
mjr 76:7f5912b6340e 658 //
mjr 76:7f5912b6340e 659 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 660 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 661 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 662 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 663 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 664 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 665 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 666 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 667
mjr 76:7f5912b6340e 668 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 669 static uint8_t *wizOn;
mjr 76:7f5912b6340e 670
mjr 76:7f5912b6340e 671 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 672 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 673 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 674 //
mjr 76:7f5912b6340e 675 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 676 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 677 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 678 // 130 = flash on / off
mjr 76:7f5912b6340e 679 // 131 = on / ramp down
mjr 76:7f5912b6340e 680 // 132 = ramp up / on
mjr 5:a70c0bce770d 681 //
mjr 76:7f5912b6340e 682 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 683 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 684 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 685 static uint8_t *wizVal;
mjr 76:7f5912b6340e 686
mjr 76:7f5912b6340e 687 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 688 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 689 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 690 // by the extended protocol:
mjr 76:7f5912b6340e 691 //
mjr 76:7f5912b6340e 692 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 693 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 694 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 695 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 696 // if the brightness is non-zero.
mjr 76:7f5912b6340e 697 //
mjr 76:7f5912b6340e 698 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 699 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 700 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 701 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 702 // 0..255 range.
mjr 26:cb71c4af2912 703 //
mjr 76:7f5912b6340e 704 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 705 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 706 // level.
mjr 26:cb71c4af2912 707 //
mjr 76:7f5912b6340e 708 static uint8_t *outLevel;
mjr 76:7f5912b6340e 709
mjr 76:7f5912b6340e 710
mjr 76:7f5912b6340e 711 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 712 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 713 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 714 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 715 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 716 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 717 //
mjr 76:7f5912b6340e 718 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 719 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 720 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 721 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 722 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 723 // at the maximum size.
mjr 76:7f5912b6340e 724 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 725 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 726
mjr 26:cb71c4af2912 727 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 728 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 729 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 730 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 731 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 732
mjr 76:7f5912b6340e 733
mjr 76:7f5912b6340e 734 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 735 //
mjr 76:7f5912b6340e 736 // Output Ports
mjr 76:7f5912b6340e 737 //
mjr 76:7f5912b6340e 738 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 739 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 740 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 741 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 742 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 743 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 744 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 745 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 746 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 747 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 748 // you have to ration pins among features.
mjr 76:7f5912b6340e 749 //
mjr 76:7f5912b6340e 750 // To overcome some of these limitations, we also provide two types of
mjr 76:7f5912b6340e 751 // peripheral controllers that allow adding many more outputs, using only
mjr 76:7f5912b6340e 752 // a small number of GPIO pins to interface with the peripherals. First,
mjr 76:7f5912b6340e 753 // we support TLC5940 PWM controller chips. Each TLC5940 provides 16 ports
mjr 76:7f5912b6340e 754 // with full PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 76:7f5912b6340e 755 // chip only requires 5 GPIO pins for the interface, no matter how many
mjr 76:7f5912b6340e 756 // chips are in the chain, so it effectively converts 5 GPIO pins into
mjr 76:7f5912b6340e 757 // almost any number of PWM outputs. Second, we support 74HC595 chips.
mjr 76:7f5912b6340e 758 // These provide only digital outputs, but like the TLC5940 they can be
mjr 76:7f5912b6340e 759 // daisy-chained to provide almost unlimited outputs with a few GPIO pins
mjr 76:7f5912b6340e 760 // to control the whole chain.
mjr 76:7f5912b6340e 761 //
mjr 76:7f5912b6340e 762 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 763 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 764 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 765 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 766 //
mjr 76:7f5912b6340e 767 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 768 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 769 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 770 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 771 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 772 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 773 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 774 // of physical devices they're connected to.
mjr 76:7f5912b6340e 775
mjr 76:7f5912b6340e 776
mjr 26:cb71c4af2912 777 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 778 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 779 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 780 class LwOut
mjr 6:cc35eb643e8f 781 {
mjr 6:cc35eb643e8f 782 public:
mjr 40:cc0d9814522b 783 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 784 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 785 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 786 };
mjr 26:cb71c4af2912 787
mjr 35:e959ffba78fd 788 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 789 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 790 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 791 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 792 // numbering.
mjr 35:e959ffba78fd 793 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 794 {
mjr 33:d832bcab089e 795 public:
mjr 35:e959ffba78fd 796 LwVirtualOut() { }
mjr 40:cc0d9814522b 797 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 798 };
mjr 26:cb71c4af2912 799
mjr 34:6b981a2afab7 800 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 801 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 802 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 803 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 804 {
mjr 34:6b981a2afab7 805 public:
mjr 34:6b981a2afab7 806 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 807 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 808
mjr 34:6b981a2afab7 809 private:
mjr 53:9b2611964afc 810 // underlying physical output
mjr 34:6b981a2afab7 811 LwOut *out;
mjr 34:6b981a2afab7 812 };
mjr 34:6b981a2afab7 813
mjr 53:9b2611964afc 814 // Global ZB Launch Ball state
mjr 53:9b2611964afc 815 bool zbLaunchOn = false;
mjr 53:9b2611964afc 816
mjr 53:9b2611964afc 817 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 818 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 819 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 820 {
mjr 53:9b2611964afc 821 public:
mjr 53:9b2611964afc 822 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 823 virtual void set(uint8_t val)
mjr 53:9b2611964afc 824 {
mjr 53:9b2611964afc 825 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 826 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 827
mjr 53:9b2611964afc 828 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 829 out->set(val);
mjr 53:9b2611964afc 830 }
mjr 53:9b2611964afc 831
mjr 53:9b2611964afc 832 private:
mjr 53:9b2611964afc 833 // underlying physical or virtual output
mjr 53:9b2611964afc 834 LwOut *out;
mjr 53:9b2611964afc 835 };
mjr 53:9b2611964afc 836
mjr 53:9b2611964afc 837
mjr 40:cc0d9814522b 838 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 839 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 840 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 841 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 842 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 843 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 844 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 845 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 846 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 847 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 848 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 849 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 850 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 851 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 852 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 853 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 854 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 855 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 856 };
mjr 40:cc0d9814522b 857
mjr 40:cc0d9814522b 858 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 859 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 860 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 861 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 862 {
mjr 40:cc0d9814522b 863 public:
mjr 40:cc0d9814522b 864 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 865 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 866
mjr 40:cc0d9814522b 867 private:
mjr 40:cc0d9814522b 868 LwOut *out;
mjr 40:cc0d9814522b 869 };
mjr 40:cc0d9814522b 870
mjr 53:9b2611964afc 871 // global night mode flag
mjr 53:9b2611964afc 872 static bool nightMode = false;
mjr 53:9b2611964afc 873
mjr 40:cc0d9814522b 874 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 875 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 876 // mode is engaged.
mjr 40:cc0d9814522b 877 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 878 {
mjr 40:cc0d9814522b 879 public:
mjr 40:cc0d9814522b 880 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 881 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 882
mjr 53:9b2611964afc 883 private:
mjr 53:9b2611964afc 884 LwOut *out;
mjr 53:9b2611964afc 885 };
mjr 53:9b2611964afc 886
mjr 53:9b2611964afc 887 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 888 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 889 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 890 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 891 {
mjr 53:9b2611964afc 892 public:
mjr 53:9b2611964afc 893 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 894 virtual void set(uint8_t)
mjr 53:9b2611964afc 895 {
mjr 53:9b2611964afc 896 // ignore the host value and simply show the current
mjr 53:9b2611964afc 897 // night mode setting
mjr 53:9b2611964afc 898 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 899 }
mjr 40:cc0d9814522b 900
mjr 40:cc0d9814522b 901 private:
mjr 40:cc0d9814522b 902 LwOut *out;
mjr 40:cc0d9814522b 903 };
mjr 40:cc0d9814522b 904
mjr 26:cb71c4af2912 905
mjr 35:e959ffba78fd 906 //
mjr 35:e959ffba78fd 907 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 908 // assignments set in config.h.
mjr 33:d832bcab089e 909 //
mjr 35:e959ffba78fd 910 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 911 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 912 {
mjr 35:e959ffba78fd 913 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 914 {
mjr 53:9b2611964afc 915 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 916 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 917 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 918 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 919 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 920 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 921 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 922 }
mjr 35:e959ffba78fd 923 }
mjr 26:cb71c4af2912 924
mjr 40:cc0d9814522b 925 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 926 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 927 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 928 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 929 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 930 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 931 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 932 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 933 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 934 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 935 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 936 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 937 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 938 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 939 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 940 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 941 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 942 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 943 };
mjr 40:cc0d9814522b 944
mjr 40:cc0d9814522b 945 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 946 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 947 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 948 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 949 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 950 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 951 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 952 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 953 // are always 8 bits.
mjr 40:cc0d9814522b 954 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 955 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 956 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 957 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 958 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 959 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 960 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 961 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 962 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 963 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 964 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 965 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 966 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 967 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 968 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 969 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 970 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 971 };
mjr 40:cc0d9814522b 972
mjr 26:cb71c4af2912 973 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 974 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 975 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 976 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 977 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 978 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 979 {
mjr 26:cb71c4af2912 980 public:
mjr 60:f38da020aa13 981 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 982 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 983 {
mjr 26:cb71c4af2912 984 if (val != prv)
mjr 40:cc0d9814522b 985 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 986 }
mjr 60:f38da020aa13 987 uint8_t idx;
mjr 40:cc0d9814522b 988 uint8_t prv;
mjr 26:cb71c4af2912 989 };
mjr 26:cb71c4af2912 990
mjr 40:cc0d9814522b 991 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 992 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 993 {
mjr 40:cc0d9814522b 994 public:
mjr 60:f38da020aa13 995 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 996 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 997 {
mjr 40:cc0d9814522b 998 if (val != prv)
mjr 40:cc0d9814522b 999 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1000 }
mjr 60:f38da020aa13 1001 uint8_t idx;
mjr 40:cc0d9814522b 1002 uint8_t prv;
mjr 40:cc0d9814522b 1003 };
mjr 40:cc0d9814522b 1004
mjr 40:cc0d9814522b 1005
mjr 33:d832bcab089e 1006
mjr 34:6b981a2afab7 1007 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1008 // config.h.
mjr 35:e959ffba78fd 1009 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1010
mjr 35:e959ffba78fd 1011 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1012 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1013 {
mjr 35:e959ffba78fd 1014 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1015 {
mjr 53:9b2611964afc 1016 hc595 = new HC595(
mjr 53:9b2611964afc 1017 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1018 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1019 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1020 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1021 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1022 hc595->init();
mjr 35:e959ffba78fd 1023 hc595->update();
mjr 35:e959ffba78fd 1024 }
mjr 35:e959ffba78fd 1025 }
mjr 34:6b981a2afab7 1026
mjr 34:6b981a2afab7 1027 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1028 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1029 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1030 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1031 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1032 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1033 {
mjr 33:d832bcab089e 1034 public:
mjr 60:f38da020aa13 1035 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1036 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1037 {
mjr 34:6b981a2afab7 1038 if (val != prv)
mjr 40:cc0d9814522b 1039 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1040 }
mjr 60:f38da020aa13 1041 uint8_t idx;
mjr 40:cc0d9814522b 1042 uint8_t prv;
mjr 33:d832bcab089e 1043 };
mjr 33:d832bcab089e 1044
mjr 26:cb71c4af2912 1045
mjr 40:cc0d9814522b 1046
mjr 64:ef7ca92dff36 1047 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1048 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1049 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1050 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1051 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1052 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1053 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1054 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1055 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1056 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1057 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1058 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1059 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1060 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1061 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1062 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1063 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1064 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1065 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1066 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1067 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1068 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1069 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1070 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1071 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1072 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1073 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1074 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1075 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1076 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1077 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1078 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1079 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1080 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1081 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1082 };
mjr 26:cb71c4af2912 1083
mjr 64:ef7ca92dff36 1084
mjr 64:ef7ca92dff36 1085 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 1086 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 1087 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 1088 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 1089 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 1090 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1091 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1092 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1093 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1094 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1095 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1096 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1097 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1098 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1099 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1100 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1101 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1102 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1103 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1104 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1105 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1106 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1107 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1108 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1109 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1110 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1111 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1112 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1113 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1114 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1115 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1116 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1117 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1118 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1119 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1120 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1121 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1122 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1123 };
mjr 64:ef7ca92dff36 1124
mjr 74:822a92bc11d2 1125 // MyPwmOut - a slight customization of the base mbed PwmOut class. The
mjr 74:822a92bc11d2 1126 // mbed version of PwmOut.write() resets the PWM cycle counter on every
mjr 74:822a92bc11d2 1127 // update. That's problematic, because the counter reset interrupts the
mjr 74:822a92bc11d2 1128 // cycle in progress, causing a momentary drop in brightness that's visible
mjr 74:822a92bc11d2 1129 // to the eye if the output is connected to an LED or other light source.
mjr 74:822a92bc11d2 1130 // This is especially noticeable when making gradual changes consisting of
mjr 74:822a92bc11d2 1131 // many updates in a short time, such as a slow fade, because the light
mjr 74:822a92bc11d2 1132 // visibly flickers on every step of the transition. This customized
mjr 74:822a92bc11d2 1133 // version removes the cycle reset, which makes for glitch-free updates
mjr 74:822a92bc11d2 1134 // and nice smooth fades.
mjr 74:822a92bc11d2 1135 //
mjr 74:822a92bc11d2 1136 // Initially, I thought the counter reset in the mbed code was simply a
mjr 74:822a92bc11d2 1137 // bug. According to the KL25Z hardware reference, you update the duty
mjr 74:822a92bc11d2 1138 // cycle by writing to the "compare values" (CvN) register. There's no
mjr 74:822a92bc11d2 1139 // hint that you should reset the cycle counter, and indeed, the hardware
mjr 74:822a92bc11d2 1140 // goes out of its way to allow updates mid-cycle (as we'll see shortly).
mjr 74:822a92bc11d2 1141 // They went to lengths specifically so that you *don't* have to reset
mjr 74:822a92bc11d2 1142 // that counter. And there's no comment in the mbed code explaining the
mjr 74:822a92bc11d2 1143 // cycle reset, so it looked to me like something that must have been
mjr 74:822a92bc11d2 1144 // added by someone who didn't read the manual carefully enough and didn't
mjr 74:822a92bc11d2 1145 // test the result thoroughly enough to find the glitch it causes.
mjr 74:822a92bc11d2 1146 //
mjr 74:822a92bc11d2 1147 // After some experimentation, though, I've come to think the code was
mjr 74:822a92bc11d2 1148 // added intentionally, as a workaround for a rather nasty KL25Z hardware
mjr 74:822a92bc11d2 1149 // bug. Whoever wrote the code didn't add any comments explaning why it's
mjr 74:822a92bc11d2 1150 // there, so we can't know for sure, but it does happen to work around the
mjr 74:822a92bc11d2 1151 // bug, so it's a good bet the original programmer found the same hardware
mjr 74:822a92bc11d2 1152 // problem and came up with the counter reset as an imperfect solution.
mjr 74:822a92bc11d2 1153 //
mjr 74:822a92bc11d2 1154 // We'll get to the KL25Z hardware bug shortly, but first we need to look at
mjr 74:822a92bc11d2 1155 // how the hardware is *supposed* to work. The KL25Z is *supposed* to make
mjr 74:822a92bc11d2 1156 // it super easy for software to do glitch-free updates of the duty cycle of
mjr 74:822a92bc11d2 1157 // a PWM channel. With PWM hardware in general, you have to be careful to
mjr 74:822a92bc11d2 1158 // update the duty cycle counter between grayscale cycles, beacuse otherwise
mjr 74:822a92bc11d2 1159 // you might interrupt the cycle in progress and cause a brightness glitch.
mjr 74:822a92bc11d2 1160 // The KL25Z TPM simplifies this with a "staging" register for the duty
mjr 74:822a92bc11d2 1161 // cycle counter. At the end of each cycle, the TPM moves the value from
mjr 74:822a92bc11d2 1162 // the staging register into its internal register that actually controls
mjr 74:822a92bc11d2 1163 // the duty cycle. The idea is that the software can write a new value to
mjr 74:822a92bc11d2 1164 // the staging register at any time, and the hardware will take care of
mjr 74:822a92bc11d2 1165 // synchronizing the actual internal update with the grayscale cycle. In
mjr 74:822a92bc11d2 1166 // principle, this frees the software of any special timing considerations
mjr 74:822a92bc11d2 1167 // for PWM updates.
mjr 74:822a92bc11d2 1168 //
mjr 74:822a92bc11d2 1169 // Now for the bug. The staging register works as advertised, except for
mjr 74:822a92bc11d2 1170 // one little detail: it seems to be implemented as a one-element queue
mjr 74:822a92bc11d2 1171 // that won't accept a new write until the existing value has been read.
mjr 74:822a92bc11d2 1172 // The read only happens at the start of the new cycle. So the effect is
mjr 74:822a92bc11d2 1173 // that we can only write one update per cycle. Any writes after the first
mjr 74:822a92bc11d2 1174 // are simply dropped, lost forever. That causes even worse problems than
mjr 74:822a92bc11d2 1175 // the original glitch. For example, if we're doing a fade-out, the last
mjr 74:822a92bc11d2 1176 // couple of updates in the fade might get lost, leaving the output slightly
mjr 74:822a92bc11d2 1177 // on at the end, when it's supposed to be completely off.
mjr 74:822a92bc11d2 1178 //
mjr 74:822a92bc11d2 1179 // The mbed workaround of resetting the cycle counter fixes the lost-update
mjr 74:822a92bc11d2 1180 // problem, but it causes the constant glitching during fades. So we need
mjr 74:822a92bc11d2 1181 // a third way that works around the hardware problem without causing
mjr 74:822a92bc11d2 1182 // update glitches.
mjr 74:822a92bc11d2 1183 //
mjr 74:822a92bc11d2 1184 // Here's my solution: we basically implement our own staging register,
mjr 74:822a92bc11d2 1185 // using the same principle as the hardware staging register, but hopefully
mjr 74:822a92bc11d2 1186 // with an implementation that actually works! First, when we update a PWM
mjr 74:822a92bc11d2 1187 // output, we won't actually write the value to the hardware register.
mjr 74:822a92bc11d2 1188 // Instead, we'll just stash it internally, effectively in our own staging
mjr 74:822a92bc11d2 1189 // register (but actually just a member variable of this object). Then
mjr 74:822a92bc11d2 1190 // we'll periodically transfer these staged updates to the actual hardware
mjr 74:822a92bc11d2 1191 // registers, being careful to do this no more than once per PWM cycle.
mjr 74:822a92bc11d2 1192 // One way to do this would be to use an interrupt handler that fires at
mjr 74:822a92bc11d2 1193 // the end of the PWM cycle, but that would be fairly complex because we
mjr 74:822a92bc11d2 1194 // have many (up to 10) PWM channels. Instead, we'll just use polling:
mjr 74:822a92bc11d2 1195 // we'll call a routine periodically in our main loop, and we'll transfer
mjr 74:822a92bc11d2 1196 // updates for all of the channels that have been updated since the last
mjr 74:822a92bc11d2 1197 // pass. We can get away with this simple polling approach because the
mjr 74:822a92bc11d2 1198 // hardware design *partially* works: it does manage to free us from the
mjr 74:822a92bc11d2 1199 // need to synchronize updates with the exact end of a PWM cycle. As long
mjr 74:822a92bc11d2 1200 // as we do no more than one write per cycle, we're golden. That's easy
mjr 74:822a92bc11d2 1201 // to accomplish, too: all we need to do is make sure that our polling
mjr 74:822a92bc11d2 1202 // interval is slightly longer than the PWM period. That ensures that
mjr 74:822a92bc11d2 1203 // we can never have two updates during one PWM cycle. It does mean that
mjr 74:822a92bc11d2 1204 // we might have zero updates on some cycles, causing a one-cycle delay
mjr 74:822a92bc11d2 1205 // before an update is actually put into effect, but that shouldn't ever
mjr 74:822a92bc11d2 1206 // be noticeable since the cycles are so short. Specifically, we'll use
mjr 74:822a92bc11d2 1207 // the mbed default 20ms PWM period, and we'll do our update polling
mjr 74:822a92bc11d2 1208 // every 25ms.
mjr 74:822a92bc11d2 1209 class LessGlitchyPwmOut: public PwmOut
mjr 74:822a92bc11d2 1210 {
mjr 74:822a92bc11d2 1211 public:
mjr 74:822a92bc11d2 1212 LessGlitchyPwmOut(PinName pin) : PwmOut(pin) { }
mjr 74:822a92bc11d2 1213
mjr 74:822a92bc11d2 1214 void write(float value)
mjr 74:822a92bc11d2 1215 {
mjr 74:822a92bc11d2 1216 // Update the counter without resetting the counter.
mjr 74:822a92bc11d2 1217 //
mjr 74:822a92bc11d2 1218 // NB: this causes problems if there are multiple writes in one
mjr 74:822a92bc11d2 1219 // PWM cycle: the first write will be applied and later writes
mjr 74:822a92bc11d2 1220 // during the same cycle will be lost. Callers must take care
mjr 74:822a92bc11d2 1221 // to limit writes to one per cycle.
mjr 74:822a92bc11d2 1222 *_pwm.CnV = uint32_t((*_pwm.MOD + 1) * value);
mjr 74:822a92bc11d2 1223 }
mjr 74:822a92bc11d2 1224 };
mjr 74:822a92bc11d2 1225
mjr 74:822a92bc11d2 1226
mjr 74:822a92bc11d2 1227 // Collection of PwmOut objects to update on each polling cycle. The
mjr 74:822a92bc11d2 1228 // KL25Z has 10 physical PWM channels, so we need at most 10 polled outputs.
mjr 74:822a92bc11d2 1229 static int numPolledPwm;
mjr 74:822a92bc11d2 1230 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1231
mjr 74:822a92bc11d2 1232 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1233 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1234 {
mjr 6:cc35eb643e8f 1235 public:
mjr 43:7a6364d82a41 1236 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1237 {
mjr 74:822a92bc11d2 1238 // set the cycle time to 20ms
mjr 74:822a92bc11d2 1239 p.period_ms(20);
mjr 74:822a92bc11d2 1240
mjr 74:822a92bc11d2 1241 // add myself to the list of polled outputs for periodic updates
mjr 74:822a92bc11d2 1242 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1243 polledPwm[numPolledPwm++] = this;
mjr 74:822a92bc11d2 1244
mjr 74:822a92bc11d2 1245 // set the initial value, and an explicitly different previous value
mjr 74:822a92bc11d2 1246 prv = ~initVal;
mjr 43:7a6364d82a41 1247 set(initVal);
mjr 43:7a6364d82a41 1248 }
mjr 74:822a92bc11d2 1249
mjr 40:cc0d9814522b 1250 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1251 {
mjr 74:822a92bc11d2 1252 // on set, just save the value for a later 'commit'
mjr 74:822a92bc11d2 1253 this->val = val;
mjr 13:72dda449c3c0 1254 }
mjr 74:822a92bc11d2 1255
mjr 74:822a92bc11d2 1256 // handle periodic update polling
mjr 74:822a92bc11d2 1257 void poll()
mjr 74:822a92bc11d2 1258 {
mjr 74:822a92bc11d2 1259 // if the value has changed, commit it
mjr 74:822a92bc11d2 1260 if (val != prv)
mjr 74:822a92bc11d2 1261 {
mjr 74:822a92bc11d2 1262 prv = val;
mjr 74:822a92bc11d2 1263 commit(val);
mjr 74:822a92bc11d2 1264 }
mjr 74:822a92bc11d2 1265 }
mjr 74:822a92bc11d2 1266
mjr 74:822a92bc11d2 1267 protected:
mjr 74:822a92bc11d2 1268 virtual void commit(uint8_t v)
mjr 74:822a92bc11d2 1269 {
mjr 74:822a92bc11d2 1270 // write the current value to the PWM controller if it's changed
mjr 74:822a92bc11d2 1271 p.write(dof_to_pwm[v]);
mjr 74:822a92bc11d2 1272 }
mjr 74:822a92bc11d2 1273
mjr 74:822a92bc11d2 1274 LessGlitchyPwmOut p;
mjr 74:822a92bc11d2 1275 uint8_t val, prv;
mjr 6:cc35eb643e8f 1276 };
mjr 26:cb71c4af2912 1277
mjr 74:822a92bc11d2 1278 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1279 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1280 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1281 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1282 {
mjr 64:ef7ca92dff36 1283 public:
mjr 64:ef7ca92dff36 1284 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1285 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1286 {
mjr 64:ef7ca92dff36 1287 }
mjr 74:822a92bc11d2 1288
mjr 74:822a92bc11d2 1289 protected:
mjr 74:822a92bc11d2 1290 virtual void commit(uint8_t v)
mjr 64:ef7ca92dff36 1291 {
mjr 74:822a92bc11d2 1292 // write the current value to the PWM controller if it's changed
mjr 74:822a92bc11d2 1293 p.write(dof_to_gamma_pwm[v]);
mjr 64:ef7ca92dff36 1294 }
mjr 64:ef7ca92dff36 1295 };
mjr 64:ef7ca92dff36 1296
mjr 74:822a92bc11d2 1297 // poll the PWM outputs
mjr 74:822a92bc11d2 1298 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1299 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1300 void pollPwmUpdates()
mjr 74:822a92bc11d2 1301 {
mjr 74:822a92bc11d2 1302 // if it's been at least 25ms since the last update, do another update
mjr 74:822a92bc11d2 1303 if (polledPwmTimer.read_us() >= 25000)
mjr 74:822a92bc11d2 1304 {
mjr 74:822a92bc11d2 1305 // time the run for statistics collection
mjr 74:822a92bc11d2 1306 IF_DIAG(
mjr 74:822a92bc11d2 1307 Timer t;
mjr 74:822a92bc11d2 1308 t.start();
mjr 74:822a92bc11d2 1309 )
mjr 74:822a92bc11d2 1310
mjr 74:822a92bc11d2 1311 // poll each output
mjr 74:822a92bc11d2 1312 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1313 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1314
mjr 74:822a92bc11d2 1315 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1316 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1317
mjr 74:822a92bc11d2 1318 // collect statistics
mjr 74:822a92bc11d2 1319 IF_DIAG(
mjr 76:7f5912b6340e 1320 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1321 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1322 )
mjr 74:822a92bc11d2 1323 }
mjr 74:822a92bc11d2 1324 }
mjr 64:ef7ca92dff36 1325
mjr 26:cb71c4af2912 1326 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1327 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1328 {
mjr 6:cc35eb643e8f 1329 public:
mjr 43:7a6364d82a41 1330 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1331 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1332 {
mjr 13:72dda449c3c0 1333 if (val != prv)
mjr 40:cc0d9814522b 1334 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1335 }
mjr 6:cc35eb643e8f 1336 DigitalOut p;
mjr 40:cc0d9814522b 1337 uint8_t prv;
mjr 6:cc35eb643e8f 1338 };
mjr 26:cb71c4af2912 1339
mjr 29:582472d0bc57 1340 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1341 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1342 // port n (0-based).
mjr 35:e959ffba78fd 1343 //
mjr 35:e959ffba78fd 1344 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1345 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1346 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1347 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1348 // 74HC595 ports).
mjr 33:d832bcab089e 1349 static int numOutputs;
mjr 33:d832bcab089e 1350 static LwOut **lwPin;
mjr 33:d832bcab089e 1351
mjr 38:091e511ce8a0 1352 // create a single output pin
mjr 53:9b2611964afc 1353 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1354 {
mjr 38:091e511ce8a0 1355 // get this item's values
mjr 38:091e511ce8a0 1356 int typ = pc.typ;
mjr 38:091e511ce8a0 1357 int pin = pc.pin;
mjr 38:091e511ce8a0 1358 int flags = pc.flags;
mjr 40:cc0d9814522b 1359 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1360 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1361 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1362
mjr 38:091e511ce8a0 1363 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1364 LwOut *lwp;
mjr 38:091e511ce8a0 1365 switch (typ)
mjr 38:091e511ce8a0 1366 {
mjr 38:091e511ce8a0 1367 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1368 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1369 if (pin != 0)
mjr 64:ef7ca92dff36 1370 {
mjr 64:ef7ca92dff36 1371 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1372 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1373 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1374 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1375 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1376 {
mjr 64:ef7ca92dff36 1377 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1378 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1379
mjr 64:ef7ca92dff36 1380 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1381 gamma = false;
mjr 64:ef7ca92dff36 1382 }
mjr 64:ef7ca92dff36 1383 else
mjr 64:ef7ca92dff36 1384 {
mjr 64:ef7ca92dff36 1385 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1386 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1387 }
mjr 64:ef7ca92dff36 1388 }
mjr 48:058ace2aed1d 1389 else
mjr 48:058ace2aed1d 1390 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1391 break;
mjr 38:091e511ce8a0 1392
mjr 38:091e511ce8a0 1393 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1394 // Digital GPIO port
mjr 48:058ace2aed1d 1395 if (pin != 0)
mjr 48:058ace2aed1d 1396 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1397 else
mjr 48:058ace2aed1d 1398 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1399 break;
mjr 38:091e511ce8a0 1400
mjr 38:091e511ce8a0 1401 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1402 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1403 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1404 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1405 {
mjr 40:cc0d9814522b 1406 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1407 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1408 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1409 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1410 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1411 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1412 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1413 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1414 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1415 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1416 // for this unlikely case.
mjr 40:cc0d9814522b 1417 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1418 {
mjr 40:cc0d9814522b 1419 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1420 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1421
mjr 40:cc0d9814522b 1422 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1423 gamma = false;
mjr 40:cc0d9814522b 1424 }
mjr 40:cc0d9814522b 1425 else
mjr 40:cc0d9814522b 1426 {
mjr 40:cc0d9814522b 1427 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1428 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1429 }
mjr 40:cc0d9814522b 1430 }
mjr 38:091e511ce8a0 1431 else
mjr 40:cc0d9814522b 1432 {
mjr 40:cc0d9814522b 1433 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1434 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1435 }
mjr 38:091e511ce8a0 1436 break;
mjr 38:091e511ce8a0 1437
mjr 38:091e511ce8a0 1438 case PortType74HC595:
mjr 38:091e511ce8a0 1439 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 1440 // output number, create a virtual port)
mjr 38:091e511ce8a0 1441 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1442 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1443 else
mjr 38:091e511ce8a0 1444 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1445 break;
mjr 38:091e511ce8a0 1446
mjr 38:091e511ce8a0 1447 case PortTypeVirtual:
mjr 43:7a6364d82a41 1448 case PortTypeDisabled:
mjr 38:091e511ce8a0 1449 default:
mjr 38:091e511ce8a0 1450 // virtual or unknown
mjr 38:091e511ce8a0 1451 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1452 break;
mjr 38:091e511ce8a0 1453 }
mjr 38:091e511ce8a0 1454
mjr 40:cc0d9814522b 1455 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1456 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1457 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1458 if (activeLow)
mjr 38:091e511ce8a0 1459 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1460
mjr 40:cc0d9814522b 1461 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1462 // needs to be
mjr 40:cc0d9814522b 1463 if (noisy)
mjr 40:cc0d9814522b 1464 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1465
mjr 40:cc0d9814522b 1466 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1467 if (gamma)
mjr 40:cc0d9814522b 1468 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1469
mjr 53:9b2611964afc 1470 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1471 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1472 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1473 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1474 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1475
mjr 53:9b2611964afc 1476 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1477 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1478 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1479
mjr 38:091e511ce8a0 1480 // turn it off initially
mjr 38:091e511ce8a0 1481 lwp->set(0);
mjr 38:091e511ce8a0 1482
mjr 38:091e511ce8a0 1483 // return the pin
mjr 38:091e511ce8a0 1484 return lwp;
mjr 38:091e511ce8a0 1485 }
mjr 38:091e511ce8a0 1486
mjr 6:cc35eb643e8f 1487 // initialize the output pin array
mjr 35:e959ffba78fd 1488 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1489 {
mjr 35:e959ffba78fd 1490 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1491 // total number of ports.
mjr 35:e959ffba78fd 1492 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1493 int i;
mjr 35:e959ffba78fd 1494 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1495 {
mjr 35:e959ffba78fd 1496 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1497 {
mjr 35:e959ffba78fd 1498 numOutputs = i;
mjr 34:6b981a2afab7 1499 break;
mjr 34:6b981a2afab7 1500 }
mjr 33:d832bcab089e 1501 }
mjr 33:d832bcab089e 1502
mjr 73:4e8ce0b18915 1503 // allocate the pin array
mjr 73:4e8ce0b18915 1504 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1505
mjr 73:4e8ce0b18915 1506 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1507 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1508
mjr 73:4e8ce0b18915 1509 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1510 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1511 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1512
mjr 73:4e8ce0b18915 1513 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1514 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1515 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1516
mjr 73:4e8ce0b18915 1517 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1518 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1519 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1520
mjr 35:e959ffba78fd 1521 // create the pin interface object for each port
mjr 35:e959ffba78fd 1522 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1523 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1524 }
mjr 6:cc35eb643e8f 1525
mjr 76:7f5912b6340e 1526 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1527 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1528 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1529 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1530 // equivalent to 48.
mjr 40:cc0d9814522b 1531 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1532 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1533 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1534 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1535 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1536 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1537 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1538 255, 255
mjr 40:cc0d9814522b 1539 };
mjr 40:cc0d9814522b 1540
mjr 76:7f5912b6340e 1541 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1542 // level (1..48)
mjr 76:7f5912b6340e 1543 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1544 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1545 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1546 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1547 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1548 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1549 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1550 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1551 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1552 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1553 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1554 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1555 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1556 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1557 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1558 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1559 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1560 };
mjr 76:7f5912b6340e 1561
mjr 74:822a92bc11d2 1562 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1563 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1564 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1565 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1566 //
mjr 74:822a92bc11d2 1567 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1568 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1569 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1570 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1571 //
mjr 74:822a92bc11d2 1572 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1573 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1574 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1575 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1576 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1577 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1578 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1579 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1580 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1581 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1582 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1583 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1584 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1585 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1586 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1587 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1588 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1589 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1590 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1591 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1592
mjr 74:822a92bc11d2 1593 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1594 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1595 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1596 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1597 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1598 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1599 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1600 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1601 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1602 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1603 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1604 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1605 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1606 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1607 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1608 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1609 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1610
mjr 74:822a92bc11d2 1611 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1612 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1613 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1614 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1615 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1616 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1617 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1618 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1619 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1620 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1621 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1622 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1623 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1624 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1625 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1626 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1627 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1628
mjr 74:822a92bc11d2 1629 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1630 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1631 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1632 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1633 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1634 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1635 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1636 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1637 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1638 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1639 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1640 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1641 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1642 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1643 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1644 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1645 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1646 };
mjr 74:822a92bc11d2 1647
mjr 74:822a92bc11d2 1648 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1649 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1650 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1651
mjr 76:7f5912b6340e 1652 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1653 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1654
mjr 76:7f5912b6340e 1655 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1656 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1657 // outputs on each cycle.
mjr 29:582472d0bc57 1658 static void wizPulse()
mjr 29:582472d0bc57 1659 {
mjr 76:7f5912b6340e 1660 // current bank
mjr 76:7f5912b6340e 1661 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1662
mjr 76:7f5912b6340e 1663 // start a timer for statistics collection
mjr 76:7f5912b6340e 1664 IF_DIAG(
mjr 76:7f5912b6340e 1665 Timer t;
mjr 76:7f5912b6340e 1666 t.start();
mjr 76:7f5912b6340e 1667 )
mjr 76:7f5912b6340e 1668
mjr 76:7f5912b6340e 1669 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1670 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1671 //
mjr 76:7f5912b6340e 1672 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1673 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1674 //
mjr 76:7f5912b6340e 1675 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1676 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1677 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1678 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1679 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1680 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1681 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1682 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1683 // current cycle.
mjr 76:7f5912b6340e 1684 //
mjr 76:7f5912b6340e 1685 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1686 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1687 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1688 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1689 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1690 //
mjr 76:7f5912b6340e 1691 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1692 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1693 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1694 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1695 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1696 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1697 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1698 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1699 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1700 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1701 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1702 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1703 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1704 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1705 // bit counts.
mjr 76:7f5912b6340e 1706 //
mjr 76:7f5912b6340e 1707 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1708 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1709 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1710 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1711 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1712 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1713 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1714 // one division for another!
mjr 76:7f5912b6340e 1715 //
mjr 76:7f5912b6340e 1716 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1717 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1718 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1719 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1720 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1721 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1722 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1723 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1724 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1725 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1726 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1727 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1728 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1729 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1730 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1731 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1732 // remainder calculation anyway.
mjr 76:7f5912b6340e 1733 //
mjr 76:7f5912b6340e 1734 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1735 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1736 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1737 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1738 //
mjr 76:7f5912b6340e 1739 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1740 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1741 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1742 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1743 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1744 // the result, since we started with 32.
mjr 76:7f5912b6340e 1745 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1746 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1747 };
mjr 76:7f5912b6340e 1748 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1749
mjr 76:7f5912b6340e 1750 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1751 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1752 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1753 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1754 toPort = numOutputs;
mjr 76:7f5912b6340e 1755
mjr 76:7f5912b6340e 1756 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1757 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1758 {
mjr 76:7f5912b6340e 1759 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1760 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1761 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1762 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1763 if (wizOn[i])
mjr 29:582472d0bc57 1764 {
mjr 76:7f5912b6340e 1765 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 1766 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 1767 {
mjr 76:7f5912b6340e 1768 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 1769 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 1770 }
mjr 29:582472d0bc57 1771 }
mjr 76:7f5912b6340e 1772 }
mjr 76:7f5912b6340e 1773
mjr 34:6b981a2afab7 1774 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1775 if (hc595 != 0)
mjr 35:e959ffba78fd 1776 hc595->update();
mjr 76:7f5912b6340e 1777
mjr 76:7f5912b6340e 1778 // switch to the next bank
mjr 76:7f5912b6340e 1779 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 1780 wizPulseBank = 0;
mjr 76:7f5912b6340e 1781
mjr 76:7f5912b6340e 1782 // collect timing statistics
mjr 76:7f5912b6340e 1783 IF_DIAG(
mjr 76:7f5912b6340e 1784 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 1785 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 1786 )
mjr 1:d913e0afb2ac 1787 }
mjr 38:091e511ce8a0 1788
mjr 76:7f5912b6340e 1789 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 1790 static void updateLwPort(int port)
mjr 38:091e511ce8a0 1791 {
mjr 76:7f5912b6340e 1792 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 1793 if (wizOn[port])
mjr 76:7f5912b6340e 1794 {
mjr 76:7f5912b6340e 1795 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 1796 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 1797 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 1798 // it on the next cycle.
mjr 76:7f5912b6340e 1799 int val = wizVal[port];
mjr 76:7f5912b6340e 1800 if (val <= 49)
mjr 76:7f5912b6340e 1801 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 1802 }
mjr 76:7f5912b6340e 1803 else
mjr 76:7f5912b6340e 1804 {
mjr 76:7f5912b6340e 1805 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 1806 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 1807 }
mjr 73:4e8ce0b18915 1808 }
mjr 73:4e8ce0b18915 1809
mjr 73:4e8ce0b18915 1810 // Turn off all outputs and restore everything to the default LedWiz
mjr 73:4e8ce0b18915 1811 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 73:4e8ce0b18915 1812 // brightness) and switch state Off, sets all extended outputs (#33
mjr 73:4e8ce0b18915 1813 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 73:4e8ce0b18915 1814 // This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 1815 //
mjr 73:4e8ce0b18915 1816 void allOutputsOff()
mjr 73:4e8ce0b18915 1817 {
mjr 73:4e8ce0b18915 1818 // reset all LedWiz outputs to OFF/48
mjr 73:4e8ce0b18915 1819 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 1820 {
mjr 73:4e8ce0b18915 1821 outLevel[i] = 0;
mjr 73:4e8ce0b18915 1822 wizOn[i] = 0;
mjr 73:4e8ce0b18915 1823 wizVal[i] = 48;
mjr 73:4e8ce0b18915 1824 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 1825 }
mjr 73:4e8ce0b18915 1826
mjr 73:4e8ce0b18915 1827 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 1828 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1829 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 1830
mjr 73:4e8ce0b18915 1831 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 1832 if (hc595 != 0)
mjr 38:091e511ce8a0 1833 hc595->update();
mjr 38:091e511ce8a0 1834 }
mjr 38:091e511ce8a0 1835
mjr 74:822a92bc11d2 1836 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 1837 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 1838 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 1839 // address any port group.
mjr 74:822a92bc11d2 1840 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 1841 {
mjr 76:7f5912b6340e 1842 // update all on/off states in the group
mjr 74:822a92bc11d2 1843 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 1844 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 1845 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 1846 {
mjr 74:822a92bc11d2 1847 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 1848 if (bit == 0x100) {
mjr 74:822a92bc11d2 1849 bit = 1;
mjr 74:822a92bc11d2 1850 ++imsg;
mjr 74:822a92bc11d2 1851 }
mjr 74:822a92bc11d2 1852
mjr 74:822a92bc11d2 1853 // set the on/off state
mjr 76:7f5912b6340e 1854 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 1855
mjr 76:7f5912b6340e 1856 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 1857 updateLwPort(port);
mjr 74:822a92bc11d2 1858 }
mjr 74:822a92bc11d2 1859
mjr 74:822a92bc11d2 1860 // set the flash speed for the port group
mjr 74:822a92bc11d2 1861 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 1862 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 1863
mjr 76:7f5912b6340e 1864 // update 74HC959 outputs
mjr 76:7f5912b6340e 1865 if (hc595 != 0)
mjr 76:7f5912b6340e 1866 hc595->update();
mjr 74:822a92bc11d2 1867 }
mjr 74:822a92bc11d2 1868
mjr 74:822a92bc11d2 1869 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 1870 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 1871 {
mjr 74:822a92bc11d2 1872 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 1873 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 1874 {
mjr 74:822a92bc11d2 1875 // get the value
mjr 74:822a92bc11d2 1876 uint8_t v = data[i];
mjr 74:822a92bc11d2 1877
mjr 74:822a92bc11d2 1878 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 1879 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 1880 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 1881 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 1882 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 1883 // as such.
mjr 74:822a92bc11d2 1884 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 1885 v = 48;
mjr 74:822a92bc11d2 1886
mjr 74:822a92bc11d2 1887 // store it
mjr 76:7f5912b6340e 1888 wizVal[port] = v;
mjr 76:7f5912b6340e 1889
mjr 76:7f5912b6340e 1890 // update the port
mjr 76:7f5912b6340e 1891 updateLwPort(port);
mjr 74:822a92bc11d2 1892 }
mjr 74:822a92bc11d2 1893
mjr 76:7f5912b6340e 1894 // update 74HC595 outputs
mjr 76:7f5912b6340e 1895 if (hc595 != 0)
mjr 76:7f5912b6340e 1896 hc595->update();
mjr 74:822a92bc11d2 1897 }
mjr 74:822a92bc11d2 1898
mjr 74:822a92bc11d2 1899
mjr 11:bd9da7088e6e 1900 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 1901 //
mjr 11:bd9da7088e6e 1902 // Button input
mjr 11:bd9da7088e6e 1903 //
mjr 11:bd9da7088e6e 1904
mjr 18:5e890ebd0023 1905 // button state
mjr 18:5e890ebd0023 1906 struct ButtonState
mjr 18:5e890ebd0023 1907 {
mjr 38:091e511ce8a0 1908 ButtonState()
mjr 38:091e511ce8a0 1909 {
mjr 53:9b2611964afc 1910 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 1911 virtState = 0;
mjr 53:9b2611964afc 1912 dbState = 0;
mjr 38:091e511ce8a0 1913 pulseState = 0;
mjr 53:9b2611964afc 1914 pulseTime = 0;
mjr 38:091e511ce8a0 1915 }
mjr 35:e959ffba78fd 1916
mjr 53:9b2611964afc 1917 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 1918 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 1919 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 1920 //
mjr 53:9b2611964afc 1921 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 1922 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 1923 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 1924 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 1925 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 1926 void virtPress(bool on)
mjr 53:9b2611964afc 1927 {
mjr 53:9b2611964afc 1928 // Increment or decrement the current state
mjr 53:9b2611964afc 1929 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 1930 }
mjr 53:9b2611964afc 1931
mjr 53:9b2611964afc 1932 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 1933 TinyDigitalIn di;
mjr 38:091e511ce8a0 1934
mjr 65:739875521aae 1935 // Time of last pulse state transition.
mjr 65:739875521aae 1936 //
mjr 65:739875521aae 1937 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 1938 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 1939 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 1940 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 1941 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 1942 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 1943 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 1944 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 1945 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 1946 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 1947 // This software system can't be fooled that way.)
mjr 65:739875521aae 1948 uint32_t pulseTime;
mjr 18:5e890ebd0023 1949
mjr 65:739875521aae 1950 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 1951 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 1952 uint8_t cfgIndex;
mjr 53:9b2611964afc 1953
mjr 53:9b2611964afc 1954 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 1955 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 1956 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 1957 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 1958 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 1959 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 1960 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 1961 // and physical source states.
mjr 53:9b2611964afc 1962 uint8_t virtState;
mjr 38:091e511ce8a0 1963
mjr 38:091e511ce8a0 1964 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 1965 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 1966 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 1967 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 1968 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 1969 uint8_t dbState;
mjr 38:091e511ce8a0 1970
mjr 65:739875521aae 1971 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 1972 uint8_t physState : 1;
mjr 65:739875521aae 1973
mjr 65:739875521aae 1974 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 1975 uint8_t logState : 1;
mjr 65:739875521aae 1976
mjr 65:739875521aae 1977 // previous logical on/off state, when keys were last processed for USB
mjr 65:739875521aae 1978 // reports and local effects
mjr 65:739875521aae 1979 uint8_t prevLogState : 1;
mjr 65:739875521aae 1980
mjr 65:739875521aae 1981 // Pulse state
mjr 65:739875521aae 1982 //
mjr 65:739875521aae 1983 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 1984 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 1985 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 1986 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 1987 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 1988 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 1989 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 1990 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 1991 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 1992 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 1993 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 65:739875521aae 1994 // option brdiges this gap by generating a toggle key event each time
mjr 65:739875521aae 1995 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 1996 //
mjr 38:091e511ce8a0 1997 // Pulse state:
mjr 38:091e511ce8a0 1998 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 1999 // 1 -> off
mjr 38:091e511ce8a0 2000 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2001 // 3 -> on
mjr 38:091e511ce8a0 2002 // 4 -> transitioning on-off
mjr 65:739875521aae 2003 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2004
mjr 65:739875521aae 2005 } __attribute__((packed));
mjr 65:739875521aae 2006
mjr 65:739875521aae 2007 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2008 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2009 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2010
mjr 66:2e3583fbd2f4 2011 // Shift button state
mjr 66:2e3583fbd2f4 2012 struct
mjr 66:2e3583fbd2f4 2013 {
mjr 66:2e3583fbd2f4 2014 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 66:2e3583fbd2f4 2015 uint8_t state : 2; // current shift state:
mjr 66:2e3583fbd2f4 2016 // 0 = not shifted
mjr 66:2e3583fbd2f4 2017 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2018 // 2 = shift button down, key pressed
mjr 66:2e3583fbd2f4 2019 uint8_t pulse : 1; // sending pulsed keystroke on release
mjr 66:2e3583fbd2f4 2020 uint32_t pulseTime; // time of start of pulsed keystroke
mjr 66:2e3583fbd2f4 2021 }
mjr 66:2e3583fbd2f4 2022 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2023
mjr 38:091e511ce8a0 2024 // Button data
mjr 38:091e511ce8a0 2025 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2026
mjr 38:091e511ce8a0 2027 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2028 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2029 // modifier keys.
mjr 38:091e511ce8a0 2030 struct
mjr 38:091e511ce8a0 2031 {
mjr 38:091e511ce8a0 2032 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2033 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2034 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2035 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2036 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2037
mjr 38:091e511ce8a0 2038 // Media key state
mjr 38:091e511ce8a0 2039 struct
mjr 38:091e511ce8a0 2040 {
mjr 38:091e511ce8a0 2041 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2042 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2043 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2044
mjr 38:091e511ce8a0 2045 // button scan interrupt ticker
mjr 38:091e511ce8a0 2046 Ticker buttonTicker;
mjr 38:091e511ce8a0 2047
mjr 38:091e511ce8a0 2048 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2049 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2050 void scanButtons()
mjr 38:091e511ce8a0 2051 {
mjr 38:091e511ce8a0 2052 // scan all button input pins
mjr 73:4e8ce0b18915 2053 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2054 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2055 {
mjr 73:4e8ce0b18915 2056 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2057 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2058 bs->dbState = db;
mjr 73:4e8ce0b18915 2059
mjr 73:4e8ce0b18915 2060 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2061 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2062 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2063 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2064 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2065 db &= stable;
mjr 73:4e8ce0b18915 2066 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2067 bs->physState = !db;
mjr 38:091e511ce8a0 2068 }
mjr 38:091e511ce8a0 2069 }
mjr 38:091e511ce8a0 2070
mjr 38:091e511ce8a0 2071 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2072 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2073 // in the physical button state.
mjr 38:091e511ce8a0 2074 Timer buttonTimer;
mjr 12:669df364a565 2075
mjr 65:739875521aae 2076 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2077 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2078 {
mjr 65:739875521aae 2079 // count it
mjr 65:739875521aae 2080 ++nButtons;
mjr 65:739875521aae 2081
mjr 67:c39e66c4e000 2082 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2083 // keyboard interface
mjr 72:884207c0aab0 2084 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2085 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2086 kbKeys = true;
mjr 65:739875521aae 2087 }
mjr 65:739875521aae 2088
mjr 11:bd9da7088e6e 2089 // initialize the button inputs
mjr 35:e959ffba78fd 2090 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2091 {
mjr 35:e959ffba78fd 2092 // presume we'll find no keyboard keys
mjr 35:e959ffba78fd 2093 kbKeys = false;
mjr 35:e959ffba78fd 2094
mjr 66:2e3583fbd2f4 2095 // presume no shift key
mjr 66:2e3583fbd2f4 2096 shiftButton.index = -1;
mjr 66:2e3583fbd2f4 2097
mjr 65:739875521aae 2098 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2099 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2100 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2101 nButtons = 0;
mjr 65:739875521aae 2102 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2103 {
mjr 65:739875521aae 2104 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2105 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 2106 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 2107 }
mjr 65:739875521aae 2108
mjr 65:739875521aae 2109 // Count virtual buttons
mjr 65:739875521aae 2110
mjr 65:739875521aae 2111 // ZB Launch
mjr 65:739875521aae 2112 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 2113 {
mjr 65:739875521aae 2114 // valid - remember the live button index
mjr 65:739875521aae 2115 zblButtonIndex = nButtons;
mjr 65:739875521aae 2116
mjr 65:739875521aae 2117 // count it
mjr 72:884207c0aab0 2118 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 2119 }
mjr 65:739875521aae 2120
mjr 65:739875521aae 2121 // Allocate the live button slots
mjr 65:739875521aae 2122 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 2123
mjr 65:739875521aae 2124 // Configure the physical inputs
mjr 65:739875521aae 2125 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2126 {
mjr 65:739875521aae 2127 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 2128 if (pin != NC)
mjr 65:739875521aae 2129 {
mjr 65:739875521aae 2130 // point back to the config slot for the keyboard data
mjr 65:739875521aae 2131 bs->cfgIndex = i;
mjr 65:739875521aae 2132
mjr 65:739875521aae 2133 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 2134 bs->di.assignPin(pin);
mjr 65:739875521aae 2135
mjr 65:739875521aae 2136 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 2137 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 2138 bs->pulseState = 1;
mjr 65:739875521aae 2139
mjr 66:2e3583fbd2f4 2140 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 2141 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 2142 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 2143 // config slots are left unused.
mjr 66:2e3583fbd2f4 2144 if (cfg.shiftButton == i+1)
mjr 66:2e3583fbd2f4 2145 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 2146
mjr 65:739875521aae 2147 // advance to the next button
mjr 65:739875521aae 2148 ++bs;
mjr 65:739875521aae 2149 }
mjr 65:739875521aae 2150 }
mjr 65:739875521aae 2151
mjr 53:9b2611964afc 2152 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 2153 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 2154 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 2155 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 2156
mjr 53:9b2611964afc 2157 // ZB Launch Ball button
mjr 65:739875521aae 2158 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 2159 {
mjr 65:739875521aae 2160 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 2161 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 2162 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 2163 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 2164 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 2165 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 2166 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 2167 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 2168
mjr 66:2e3583fbd2f4 2169 // advance to the next button
mjr 65:739875521aae 2170 ++bs;
mjr 11:bd9da7088e6e 2171 }
mjr 12:669df364a565 2172
mjr 38:091e511ce8a0 2173 // start the button scan thread
mjr 38:091e511ce8a0 2174 buttonTicker.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 2175
mjr 38:091e511ce8a0 2176 // start the button state transition timer
mjr 12:669df364a565 2177 buttonTimer.start();
mjr 11:bd9da7088e6e 2178 }
mjr 11:bd9da7088e6e 2179
mjr 67:c39e66c4e000 2180 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 2181 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 2182 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 2183 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 2184 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 2185 //
mjr 67:c39e66c4e000 2186 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 2187 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 2188 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 2189 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 2190 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 2191 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 2192 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 2193 //
mjr 67:c39e66c4e000 2194 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 2195 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 2196 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 2197 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 2198 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 2199 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 2200 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 2201 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 2202 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 2203 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 2204 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 2205 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 2206 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 2207 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 2208 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 2209 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 2210 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 67:c39e66c4e000 2211 };
mjr 67:c39e66c4e000 2212
mjr 67:c39e66c4e000 2213
mjr 38:091e511ce8a0 2214 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 2215 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 2216 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 2217 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 2218 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 2219 {
mjr 35:e959ffba78fd 2220 // start with an empty list of USB key codes
mjr 35:e959ffba78fd 2221 uint8_t modkeys = 0;
mjr 35:e959ffba78fd 2222 uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 };
mjr 35:e959ffba78fd 2223 int nkeys = 0;
mjr 11:bd9da7088e6e 2224
mjr 35:e959ffba78fd 2225 // clear the joystick buttons
mjr 36:b9747461331e 2226 uint32_t newjs = 0;
mjr 35:e959ffba78fd 2227
mjr 35:e959ffba78fd 2228 // start with no media keys pressed
mjr 35:e959ffba78fd 2229 uint8_t mediakeys = 0;
mjr 38:091e511ce8a0 2230
mjr 38:091e511ce8a0 2231 // calculate the time since the last run
mjr 53:9b2611964afc 2232 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 2233 buttonTimer.reset();
mjr 66:2e3583fbd2f4 2234
mjr 66:2e3583fbd2f4 2235 // check the shift button state
mjr 66:2e3583fbd2f4 2236 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 2237 {
mjr 66:2e3583fbd2f4 2238 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 66:2e3583fbd2f4 2239 switch (shiftButton.state)
mjr 66:2e3583fbd2f4 2240 {
mjr 66:2e3583fbd2f4 2241 case 0:
mjr 66:2e3583fbd2f4 2242 // Not shifted. Check if the button is now down: if so,
mjr 66:2e3583fbd2f4 2243 // switch to state 1 (shift button down, no key pressed yet).
mjr 66:2e3583fbd2f4 2244 if (sbs->physState)
mjr 66:2e3583fbd2f4 2245 shiftButton.state = 1;
mjr 66:2e3583fbd2f4 2246 break;
mjr 66:2e3583fbd2f4 2247
mjr 66:2e3583fbd2f4 2248 case 1:
mjr 66:2e3583fbd2f4 2249 // Shift button down, no key pressed yet. If the button is
mjr 66:2e3583fbd2f4 2250 // now up, it counts as an ordinary button press instead of
mjr 66:2e3583fbd2f4 2251 // a shift button press, since the shift function was never
mjr 66:2e3583fbd2f4 2252 // used. Return to unshifted state and start a timed key
mjr 66:2e3583fbd2f4 2253 // pulse event.
mjr 66:2e3583fbd2f4 2254 if (!sbs->physState)
mjr 66:2e3583fbd2f4 2255 {
mjr 66:2e3583fbd2f4 2256 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2257 shiftButton.pulse = 1;
mjr 66:2e3583fbd2f4 2258 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 66:2e3583fbd2f4 2259 }
mjr 66:2e3583fbd2f4 2260 break;
mjr 66:2e3583fbd2f4 2261
mjr 66:2e3583fbd2f4 2262 case 2:
mjr 66:2e3583fbd2f4 2263 // Shift button down, other key was pressed. If the button is
mjr 66:2e3583fbd2f4 2264 // now up, simply clear the shift state without sending a key
mjr 66:2e3583fbd2f4 2265 // press for the shift button itself to the PC. The shift
mjr 66:2e3583fbd2f4 2266 // function was used, so its ordinary key press function is
mjr 66:2e3583fbd2f4 2267 // suppressed.
mjr 66:2e3583fbd2f4 2268 if (!sbs->physState)
mjr 66:2e3583fbd2f4 2269 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2270 break;
mjr 66:2e3583fbd2f4 2271 }
mjr 66:2e3583fbd2f4 2272 }
mjr 38:091e511ce8a0 2273
mjr 11:bd9da7088e6e 2274 // scan the button list
mjr 18:5e890ebd0023 2275 ButtonState *bs = buttonState;
mjr 65:739875521aae 2276 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 2277 {
mjr 66:2e3583fbd2f4 2278 // Check the button type:
mjr 66:2e3583fbd2f4 2279 // - shift button
mjr 66:2e3583fbd2f4 2280 // - pulsed button
mjr 66:2e3583fbd2f4 2281 // - regular button
mjr 66:2e3583fbd2f4 2282 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 2283 {
mjr 66:2e3583fbd2f4 2284 // This is the shift button. Its logical state for key
mjr 66:2e3583fbd2f4 2285 // reporting purposes is controlled by the shift buttton
mjr 66:2e3583fbd2f4 2286 // pulse timer. If we're in a pulse, its logical state
mjr 66:2e3583fbd2f4 2287 // is pressed.
mjr 66:2e3583fbd2f4 2288 if (shiftButton.pulse)
mjr 66:2e3583fbd2f4 2289 {
mjr 66:2e3583fbd2f4 2290 // deduct the current interval from the pulse time, ending
mjr 66:2e3583fbd2f4 2291 // the pulse if the time has expired
mjr 66:2e3583fbd2f4 2292 if (shiftButton.pulseTime > dt)
mjr 66:2e3583fbd2f4 2293 shiftButton.pulseTime -= dt;
mjr 66:2e3583fbd2f4 2294 else
mjr 66:2e3583fbd2f4 2295 shiftButton.pulse = 0;
mjr 66:2e3583fbd2f4 2296 }
mjr 66:2e3583fbd2f4 2297
mjr 66:2e3583fbd2f4 2298 // the button is logically pressed if we're in a pulse
mjr 66:2e3583fbd2f4 2299 bs->logState = shiftButton.pulse;
mjr 66:2e3583fbd2f4 2300 }
mjr 66:2e3583fbd2f4 2301 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 2302 {
mjr 38:091e511ce8a0 2303 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 2304 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 2305 {
mjr 53:9b2611964afc 2306 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 2307 bs->pulseTime -= dt;
mjr 53:9b2611964afc 2308 }
mjr 53:9b2611964afc 2309 else
mjr 53:9b2611964afc 2310 {
mjr 53:9b2611964afc 2311 // pulse time expired - check for a state change
mjr 53:9b2611964afc 2312 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 2313 switch (bs->pulseState)
mjr 18:5e890ebd0023 2314 {
mjr 38:091e511ce8a0 2315 case 1:
mjr 38:091e511ce8a0 2316 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 2317 if (bs->physState)
mjr 53:9b2611964afc 2318 {
mjr 38:091e511ce8a0 2319 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2320 bs->pulseState = 2;
mjr 53:9b2611964afc 2321 bs->logState = 1;
mjr 38:091e511ce8a0 2322 }
mjr 38:091e511ce8a0 2323 break;
mjr 18:5e890ebd0023 2324
mjr 38:091e511ce8a0 2325 case 2:
mjr 38:091e511ce8a0 2326 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 2327 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 2328 // change in state in the logical button
mjr 38:091e511ce8a0 2329 bs->pulseState = 3;
mjr 38:091e511ce8a0 2330 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2331 bs->logState = 0;
mjr 38:091e511ce8a0 2332 break;
mjr 38:091e511ce8a0 2333
mjr 38:091e511ce8a0 2334 case 3:
mjr 38:091e511ce8a0 2335 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 2336 if (!bs->physState)
mjr 53:9b2611964afc 2337 {
mjr 38:091e511ce8a0 2338 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2339 bs->pulseState = 4;
mjr 53:9b2611964afc 2340 bs->logState = 1;
mjr 38:091e511ce8a0 2341 }
mjr 38:091e511ce8a0 2342 break;
mjr 38:091e511ce8a0 2343
mjr 38:091e511ce8a0 2344 case 4:
mjr 38:091e511ce8a0 2345 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 2346 bs->pulseState = 1;
mjr 38:091e511ce8a0 2347 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2348 bs->logState = 0;
mjr 38:091e511ce8a0 2349 break;
mjr 18:5e890ebd0023 2350 }
mjr 18:5e890ebd0023 2351 }
mjr 38:091e511ce8a0 2352 }
mjr 38:091e511ce8a0 2353 else
mjr 38:091e511ce8a0 2354 {
mjr 38:091e511ce8a0 2355 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 2356 bs->logState = bs->physState;
mjr 38:091e511ce8a0 2357 }
mjr 35:e959ffba78fd 2358
mjr 38:091e511ce8a0 2359 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 2360 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 2361 {
mjr 38:091e511ce8a0 2362 // check for special key transitions
mjr 53:9b2611964afc 2363 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 2364 {
mjr 53:9b2611964afc 2365 // Check the switch type in the config flags. If flag 0x01 is set,
mjr 53:9b2611964afc 2366 // it's a persistent on/off switch, so the night mode state simply
mjr 53:9b2611964afc 2367 // follows the current state of the switch. Otherwise, it's a
mjr 53:9b2611964afc 2368 // momentary button, so each button push (i.e., each transition from
mjr 53:9b2611964afc 2369 // logical state OFF to ON) toggles the current night mode state.
mjr 53:9b2611964afc 2370 if (cfg.nightMode.flags & 0x01)
mjr 53:9b2611964afc 2371 {
mjr 69:cc5039284fac 2372 // on/off switch - when the button changes state, change
mjr 53:9b2611964afc 2373 // night mode to match the new state
mjr 53:9b2611964afc 2374 setNightMode(bs->logState);
mjr 53:9b2611964afc 2375 }
mjr 53:9b2611964afc 2376 else
mjr 53:9b2611964afc 2377 {
mjr 66:2e3583fbd2f4 2378 // Momentary switch - toggle the night mode state when the
mjr 53:9b2611964afc 2379 // physical button is pushed (i.e., when its logical state
mjr 66:2e3583fbd2f4 2380 // transitions from OFF to ON).
mjr 66:2e3583fbd2f4 2381 //
mjr 66:2e3583fbd2f4 2382 // In momentary mode, night mode flag 0x02 makes it the
mjr 66:2e3583fbd2f4 2383 // shifted version of the button. In this case, only
mjr 66:2e3583fbd2f4 2384 // proceed if the shift button is pressed.
mjr 66:2e3583fbd2f4 2385 bool pressed = bs->logState;
mjr 66:2e3583fbd2f4 2386 if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 2387 {
mjr 66:2e3583fbd2f4 2388 // if the shift button is pressed but hasn't been used
mjr 66:2e3583fbd2f4 2389 // as a shift yet, mark it as used, so that it doesn't
mjr 66:2e3583fbd2f4 2390 // also generate its own key code on release
mjr 66:2e3583fbd2f4 2391 if (shiftButton.state == 1)
mjr 66:2e3583fbd2f4 2392 shiftButton.state = 2;
mjr 66:2e3583fbd2f4 2393
mjr 66:2e3583fbd2f4 2394 // if the shift button isn't even pressed
mjr 66:2e3583fbd2f4 2395 if (shiftButton.state == 0)
mjr 66:2e3583fbd2f4 2396 pressed = false;
mjr 66:2e3583fbd2f4 2397 }
mjr 66:2e3583fbd2f4 2398
mjr 66:2e3583fbd2f4 2399 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 2400 // toggle night mode
mjr 66:2e3583fbd2f4 2401 if (pressed)
mjr 53:9b2611964afc 2402 toggleNightMode();
mjr 53:9b2611964afc 2403 }
mjr 35:e959ffba78fd 2404 }
mjr 38:091e511ce8a0 2405
mjr 38:091e511ce8a0 2406 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 2407 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 2408 }
mjr 38:091e511ce8a0 2409
mjr 53:9b2611964afc 2410 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 2411 // key state list
mjr 53:9b2611964afc 2412 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 2413 {
mjr 70:9f58735a1732 2414 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 2415 // going to use the normal unshifted meaning.
mjr 65:739875521aae 2416 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 70:9f58735a1732 2417 uint8_t typ = bc->typ;
mjr 70:9f58735a1732 2418 uint8_t val = bc->val;
mjr 70:9f58735a1732 2419
mjr 70:9f58735a1732 2420 // If the shift button is down, check for a shifted meaning.
mjr 70:9f58735a1732 2421 if (shiftButton.state)
mjr 66:2e3583fbd2f4 2422 {
mjr 70:9f58735a1732 2423 // assume there's no shifted meaning
mjr 70:9f58735a1732 2424 bool useShift = false;
mjr 66:2e3583fbd2f4 2425
mjr 70:9f58735a1732 2426 // If the button has a shifted meaning, use that. The
mjr 70:9f58735a1732 2427 // meaning might be a keyboard key or joystick button,
mjr 70:9f58735a1732 2428 // but it could also be as the Night Mode toggle.
mjr 70:9f58735a1732 2429 //
mjr 70:9f58735a1732 2430 // The condition to check if it's the Night Mode toggle
mjr 70:9f58735a1732 2431 // is a little complicated. First, the easy part: our
mjr 70:9f58735a1732 2432 // button index has to match the Night Mode button index.
mjr 70:9f58735a1732 2433 // Now the hard part: the Night Mode button flags have
mjr 70:9f58735a1732 2434 // to be set to 0x01 OFF and 0x02 ON: toggle mode (not
mjr 70:9f58735a1732 2435 // switch mode, 0x01), and shift mode, 0x02. So AND the
mjr 70:9f58735a1732 2436 // flags with 0x03 to get these two bits, and check that
mjr 70:9f58735a1732 2437 // the result is 0x02, meaning that only shift mode is on.
mjr 70:9f58735a1732 2438 if (bc->typ2 != BtnTypeNone)
mjr 70:9f58735a1732 2439 {
mjr 70:9f58735a1732 2440 // there's a shifted key assignment - use it
mjr 70:9f58735a1732 2441 typ = bc->typ2;
mjr 70:9f58735a1732 2442 val = bc->val2;
mjr 70:9f58735a1732 2443 useShift = true;
mjr 70:9f58735a1732 2444 }
mjr 70:9f58735a1732 2445 else if (cfg.nightMode.btn == i+1
mjr 70:9f58735a1732 2446 && (cfg.nightMode.flags & 0x03) == 0x02)
mjr 70:9f58735a1732 2447 {
mjr 70:9f58735a1732 2448 // shift+button = night mode toggle
mjr 70:9f58735a1732 2449 typ = BtnTypeNone;
mjr 70:9f58735a1732 2450 val = 0;
mjr 70:9f58735a1732 2451 useShift = true;
mjr 70:9f58735a1732 2452 }
mjr 70:9f58735a1732 2453
mjr 70:9f58735a1732 2454 // If there's a shifted meaning, advance the shift
mjr 70:9f58735a1732 2455 // button state from 1 to 2 if applicable. This signals
mjr 70:9f58735a1732 2456 // that we've "consumed" the shift button press as the
mjr 70:9f58735a1732 2457 // shift button, so it shouldn't generate its own key
mjr 70:9f58735a1732 2458 // code event when released.
mjr 70:9f58735a1732 2459 if (useShift && shiftButton.state == 1)
mjr 66:2e3583fbd2f4 2460 shiftButton.state = 2;
mjr 66:2e3583fbd2f4 2461 }
mjr 66:2e3583fbd2f4 2462
mjr 70:9f58735a1732 2463 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 2464 // the keyboard or joystick event.
mjr 66:2e3583fbd2f4 2465 switch (typ)
mjr 53:9b2611964afc 2466 {
mjr 53:9b2611964afc 2467 case BtnTypeJoystick:
mjr 53:9b2611964afc 2468 // joystick button
mjr 53:9b2611964afc 2469 newjs |= (1 << (val - 1));
mjr 53:9b2611964afc 2470 break;
mjr 53:9b2611964afc 2471
mjr 53:9b2611964afc 2472 case BtnTypeKey:
mjr 67:c39e66c4e000 2473 // Keyboard key. The USB keyboard report encodes regular
mjr 67:c39e66c4e000 2474 // keys and modifier keys separately, so we need to check
mjr 67:c39e66c4e000 2475 // which type we have. Note that past versions mapped the
mjr 67:c39e66c4e000 2476 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 67:c39e66c4e000 2477 // Mute keys to the corresponding Media keys. We no longer
mjr 67:c39e66c4e000 2478 // do this; instead, we have the separate BtnTypeMedia for
mjr 67:c39e66c4e000 2479 // explicitly using media keys if desired.
mjr 67:c39e66c4e000 2480 if (val >= 0xE0 && val <= 0xE7)
mjr 53:9b2611964afc 2481 {
mjr 67:c39e66c4e000 2482 // It's a modifier key. These are represented in the USB
mjr 67:c39e66c4e000 2483 // reports with a bit mask. We arrange the mask bits in
mjr 67:c39e66c4e000 2484 // the same order as the scan codes, so we can figure the
mjr 67:c39e66c4e000 2485 // appropriate bit with a simple shift.
mjr 53:9b2611964afc 2486 modkeys |= (1 << (val - 0xE0));
mjr 53:9b2611964afc 2487 }
mjr 53:9b2611964afc 2488 else
mjr 53:9b2611964afc 2489 {
mjr 67:c39e66c4e000 2490 // It's a regular key. Make sure it's not already in the
mjr 67:c39e66c4e000 2491 // list, and that the list isn't full. If neither of these
mjr 67:c39e66c4e000 2492 // apply, add the key to the key array.
mjr 53:9b2611964afc 2493 if (nkeys < 7)
mjr 53:9b2611964afc 2494 {
mjr 57:cc03231f676b 2495 bool found = false;
mjr 53:9b2611964afc 2496 for (int j = 0 ; j < nkeys ; ++j)
mjr 53:9b2611964afc 2497 {
mjr 53:9b2611964afc 2498 if (keys[j] == val)
mjr 53:9b2611964afc 2499 {
mjr 53:9b2611964afc 2500 found = true;
mjr 53:9b2611964afc 2501 break;
mjr 53:9b2611964afc 2502 }
mjr 53:9b2611964afc 2503 }
mjr 53:9b2611964afc 2504 if (!found)
mjr 53:9b2611964afc 2505 keys[nkeys++] = val;
mjr 53:9b2611964afc 2506 }
mjr 53:9b2611964afc 2507 }
mjr 53:9b2611964afc 2508 break;
mjr 67:c39e66c4e000 2509
mjr 67:c39e66c4e000 2510 case BtnTypeMedia:
mjr 67:c39e66c4e000 2511 // Media control key. The media keys are mapped in the USB
mjr 67:c39e66c4e000 2512 // report to bits, whereas the key codes are specified in the
mjr 67:c39e66c4e000 2513 // config with their USB usage numbers. E.g., the config val
mjr 67:c39e66c4e000 2514 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 67:c39e66c4e000 2515 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 67:c39e66c4e000 2516 // from the USB usage number to the mask bit. If the key isn't
mjr 67:c39e66c4e000 2517 // among the subset we support, the mapped bit will be zero, so
mjr 67:c39e66c4e000 2518 // the "|=" will have no effect and the key will be ignored.
mjr 67:c39e66c4e000 2519 mediakeys |= mediaKeyMap[val];
mjr 67:c39e66c4e000 2520 break;
mjr 53:9b2611964afc 2521 }
mjr 18:5e890ebd0023 2522 }
mjr 11:bd9da7088e6e 2523 }
mjr 36:b9747461331e 2524
mjr 36:b9747461331e 2525 // check for joystick button changes
mjr 36:b9747461331e 2526 if (jsButtons != newjs)
mjr 36:b9747461331e 2527 jsButtons = newjs;
mjr 11:bd9da7088e6e 2528
mjr 35:e959ffba78fd 2529 // Check for changes to the keyboard keys
mjr 35:e959ffba78fd 2530 if (kbState.data[0] != modkeys
mjr 35:e959ffba78fd 2531 || kbState.nkeys != nkeys
mjr 35:e959ffba78fd 2532 || memcmp(keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 2533 {
mjr 35:e959ffba78fd 2534 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 2535 kbState.changed = true;
mjr 35:e959ffba78fd 2536 kbState.data[0] = modkeys;
mjr 35:e959ffba78fd 2537 if (nkeys <= 6) {
mjr 35:e959ffba78fd 2538 // 6 or fewer simultaneous keys - report the key codes
mjr 35:e959ffba78fd 2539 kbState.nkeys = nkeys;
mjr 35:e959ffba78fd 2540 memcpy(&kbState.data[2], keys, 6);
mjr 35:e959ffba78fd 2541 }
mjr 35:e959ffba78fd 2542 else {
mjr 35:e959ffba78fd 2543 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 2544 kbState.nkeys = 6;
mjr 35:e959ffba78fd 2545 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 2546 }
mjr 35:e959ffba78fd 2547 }
mjr 35:e959ffba78fd 2548
mjr 35:e959ffba78fd 2549 // Check for changes to media keys
mjr 35:e959ffba78fd 2550 if (mediaState.data != mediakeys)
mjr 35:e959ffba78fd 2551 {
mjr 35:e959ffba78fd 2552 mediaState.changed = true;
mjr 35:e959ffba78fd 2553 mediaState.data = mediakeys;
mjr 35:e959ffba78fd 2554 }
mjr 11:bd9da7088e6e 2555 }
mjr 11:bd9da7088e6e 2556
mjr 73:4e8ce0b18915 2557 // Send a button status report
mjr 73:4e8ce0b18915 2558 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 2559 {
mjr 73:4e8ce0b18915 2560 // start with all buttons off
mjr 73:4e8ce0b18915 2561 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 2562 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 2563
mjr 73:4e8ce0b18915 2564 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 2565 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 2566 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 2567 {
mjr 73:4e8ce0b18915 2568 // get the physical state
mjr 73:4e8ce0b18915 2569 int b = bs->physState;
mjr 73:4e8ce0b18915 2570
mjr 73:4e8ce0b18915 2571 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 2572 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 2573 int si = idx / 8;
mjr 73:4e8ce0b18915 2574 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 2575 state[si] |= b << shift;
mjr 73:4e8ce0b18915 2576 }
mjr 73:4e8ce0b18915 2577
mjr 73:4e8ce0b18915 2578 // send the report
mjr 73:4e8ce0b18915 2579 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 2580 }
mjr 73:4e8ce0b18915 2581
mjr 5:a70c0bce770d 2582 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 2583 //
mjr 5:a70c0bce770d 2584 // Customization joystick subbclass
mjr 5:a70c0bce770d 2585 //
mjr 5:a70c0bce770d 2586
mjr 5:a70c0bce770d 2587 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 2588 {
mjr 5:a70c0bce770d 2589 public:
mjr 35:e959ffba78fd 2590 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 2591 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 2592 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 2593 {
mjr 54:fd77a6b2f76c 2594 sleeping_ = false;
mjr 54:fd77a6b2f76c 2595 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 2596 timer_.start();
mjr 54:fd77a6b2f76c 2597 }
mjr 54:fd77a6b2f76c 2598
mjr 54:fd77a6b2f76c 2599 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 2600 void diagFlash()
mjr 54:fd77a6b2f76c 2601 {
mjr 54:fd77a6b2f76c 2602 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 2603 {
mjr 54:fd77a6b2f76c 2604 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 2605 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 2606 {
mjr 54:fd77a6b2f76c 2607 // short red flash
mjr 54:fd77a6b2f76c 2608 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 2609 wait_us(50000);
mjr 54:fd77a6b2f76c 2610 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 2611 wait_us(50000);
mjr 54:fd77a6b2f76c 2612 }
mjr 54:fd77a6b2f76c 2613 }
mjr 5:a70c0bce770d 2614 }
mjr 5:a70c0bce770d 2615
mjr 5:a70c0bce770d 2616 // are we connected?
mjr 5:a70c0bce770d 2617 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 2618
mjr 54:fd77a6b2f76c 2619 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 2620 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 2621 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 2622 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 2623 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 2624
mjr 54:fd77a6b2f76c 2625 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 2626 //
mjr 54:fd77a6b2f76c 2627 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 2628 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 2629 // other way.
mjr 54:fd77a6b2f76c 2630 //
mjr 54:fd77a6b2f76c 2631 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 2632 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 2633 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 2634 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 2635 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 2636 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 2637 //
mjr 54:fd77a6b2f76c 2638 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 2639 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 2640 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 2641 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 2642 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 2643 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 2644 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 2645 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 2646 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 2647 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 2648 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 2649 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 2650 // is effectively dead.
mjr 54:fd77a6b2f76c 2651 //
mjr 54:fd77a6b2f76c 2652 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 2653 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 2654 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 2655 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 2656 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 2657 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 2658 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 2659 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 2660 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 2661 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 2662 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 2663 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 2664 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 2665 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 2666 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 2667 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 2668 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 2669 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 2670 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 2671 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 2672 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 2673 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 2674 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 2675 // a disconnect.
mjr 54:fd77a6b2f76c 2676 //
mjr 54:fd77a6b2f76c 2677 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 2678 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 2679 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 2680 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 2681 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 2682 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 2683 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 2684 //
mjr 54:fd77a6b2f76c 2685 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 2686 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 2687 //
mjr 54:fd77a6b2f76c 2688 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 2689 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 2690 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 2691 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 2692 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 2693 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 2694 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 2695 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 2696 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 2697 // reliable in practice.
mjr 54:fd77a6b2f76c 2698 //
mjr 54:fd77a6b2f76c 2699 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 2700 //
mjr 54:fd77a6b2f76c 2701 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 2702 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 2703 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 2704 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 2705 // return.
mjr 54:fd77a6b2f76c 2706 //
mjr 54:fd77a6b2f76c 2707 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 2708 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 2709 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 2710 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 2711 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 2712 //
mjr 54:fd77a6b2f76c 2713 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 2714 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 2715 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 2716 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 2717 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 2718 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 2719 //
mjr 54:fd77a6b2f76c 2720 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 2721 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 2722 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 2723 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 2724 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 2725 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 2726 // freezes over.
mjr 54:fd77a6b2f76c 2727 //
mjr 54:fd77a6b2f76c 2728 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 2729 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 2730 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 2731 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 2732 // less than second with this code in place.
mjr 54:fd77a6b2f76c 2733 void recoverConnection()
mjr 54:fd77a6b2f76c 2734 {
mjr 54:fd77a6b2f76c 2735 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 2736 if (reconnectPending_)
mjr 54:fd77a6b2f76c 2737 {
mjr 54:fd77a6b2f76c 2738 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 2739 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 2740 {
mjr 54:fd77a6b2f76c 2741 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 2742 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 2743 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 2744 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 2745 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 2746 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 2747 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 2748 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 2749 __disable_irq();
mjr 54:fd77a6b2f76c 2750 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 2751 {
mjr 54:fd77a6b2f76c 2752 connect(false);
mjr 54:fd77a6b2f76c 2753 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 2754 done = true;
mjr 54:fd77a6b2f76c 2755 }
mjr 54:fd77a6b2f76c 2756 __enable_irq();
mjr 54:fd77a6b2f76c 2757 }
mjr 54:fd77a6b2f76c 2758 }
mjr 54:fd77a6b2f76c 2759 }
mjr 5:a70c0bce770d 2760
mjr 5:a70c0bce770d 2761 protected:
mjr 54:fd77a6b2f76c 2762 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 2763 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 2764 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 2765 //
mjr 54:fd77a6b2f76c 2766 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 2767 //
mjr 54:fd77a6b2f76c 2768 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 2769 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 2770 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 2771 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 2772 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 2773 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 2774 {
mjr 54:fd77a6b2f76c 2775 // note the new state
mjr 54:fd77a6b2f76c 2776 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 2777
mjr 54:fd77a6b2f76c 2778 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 2779 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 2780 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 2781 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 2782 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 2783 {
mjr 54:fd77a6b2f76c 2784 disconnect();
mjr 54:fd77a6b2f76c 2785 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 2786 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 2787 }
mjr 54:fd77a6b2f76c 2788 }
mjr 54:fd77a6b2f76c 2789
mjr 54:fd77a6b2f76c 2790 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 2791 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 2792
mjr 54:fd77a6b2f76c 2793 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 2794 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 2795
mjr 54:fd77a6b2f76c 2796 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 2797 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 2798
mjr 54:fd77a6b2f76c 2799 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 2800 Timer timer_;
mjr 5:a70c0bce770d 2801 };
mjr 5:a70c0bce770d 2802
mjr 5:a70c0bce770d 2803 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 2804 //
mjr 5:a70c0bce770d 2805 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 2806 //
mjr 5:a70c0bce770d 2807
mjr 5:a70c0bce770d 2808 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 2809 //
mjr 5:a70c0bce770d 2810 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 2811 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 2812 // automatic calibration.
mjr 5:a70c0bce770d 2813 //
mjr 5:a70c0bce770d 2814 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 2815 // interrupt to ensure that we fetch each sample immediately when it
mjr 74:822a92bc11d2 2816 // becomes available. The accelerometer data rate is fairly high
mjr 6:cc35eb643e8f 2817 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 2818 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 2819 // every sample.
mjr 5:a70c0bce770d 2820 //
mjr 6:cc35eb643e8f 2821 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 2822 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 2823 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 2824 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 2825 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 2826 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 2827 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 2828 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 2829 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 2830 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 2831 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 2832 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 2833 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 2834 // of nudging, say).
mjr 5:a70c0bce770d 2835 //
mjr 5:a70c0bce770d 2836
mjr 17:ab3cec0c8bf4 2837 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 2838 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 2839
mjr 17:ab3cec0c8bf4 2840 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 2841 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 2842 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 2843
mjr 17:ab3cec0c8bf4 2844 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 2845 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 2846 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 2847 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 2848
mjr 17:ab3cec0c8bf4 2849
mjr 6:cc35eb643e8f 2850 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 2851 struct AccHist
mjr 5:a70c0bce770d 2852 {
mjr 6:cc35eb643e8f 2853 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 2854 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 2855 {
mjr 6:cc35eb643e8f 2856 // save the raw position
mjr 6:cc35eb643e8f 2857 this->x = x;
mjr 6:cc35eb643e8f 2858 this->y = y;
mjr 6:cc35eb643e8f 2859 this->d = distance(prv);
mjr 6:cc35eb643e8f 2860 }
mjr 6:cc35eb643e8f 2861
mjr 6:cc35eb643e8f 2862 // reading for this entry
mjr 5:a70c0bce770d 2863 float x, y;
mjr 5:a70c0bce770d 2864
mjr 6:cc35eb643e8f 2865 // distance from previous entry
mjr 6:cc35eb643e8f 2866 float d;
mjr 5:a70c0bce770d 2867
mjr 6:cc35eb643e8f 2868 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 2869 float xtot, ytot;
mjr 6:cc35eb643e8f 2870 int cnt;
mjr 6:cc35eb643e8f 2871
mjr 6:cc35eb643e8f 2872 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 2873 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 2874 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 2875 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 2876
mjr 6:cc35eb643e8f 2877 float distance(AccHist *p)
mjr 6:cc35eb643e8f 2878 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 2879 };
mjr 5:a70c0bce770d 2880
mjr 5:a70c0bce770d 2881 // accelerometer wrapper class
mjr 3:3514575d4f86 2882 class Accel
mjr 3:3514575d4f86 2883 {
mjr 3:3514575d4f86 2884 public:
mjr 3:3514575d4f86 2885 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 2886 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 2887 {
mjr 5:a70c0bce770d 2888 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 2889 irqPin_ = irqPin;
mjr 5:a70c0bce770d 2890
mjr 5:a70c0bce770d 2891 // reset and initialize
mjr 5:a70c0bce770d 2892 reset();
mjr 5:a70c0bce770d 2893 }
mjr 5:a70c0bce770d 2894
mjr 5:a70c0bce770d 2895 void reset()
mjr 5:a70c0bce770d 2896 {
mjr 6:cc35eb643e8f 2897 // clear the center point
mjr 6:cc35eb643e8f 2898 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 2899
mjr 6:cc35eb643e8f 2900 // start the calibration timer
mjr 5:a70c0bce770d 2901 tCenter_.start();
mjr 5:a70c0bce770d 2902 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 2903
mjr 5:a70c0bce770d 2904 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 2905 mma_.init();
mjr 6:cc35eb643e8f 2906
mjr 6:cc35eb643e8f 2907 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 2908 vx_ = vy_ = 0;
mjr 3:3514575d4f86 2909
mjr 6:cc35eb643e8f 2910 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 2911 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 2912 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 2913
mjr 3:3514575d4f86 2914 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 2915 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 2916
mjr 3:3514575d4f86 2917 // start our timers
mjr 3:3514575d4f86 2918 tGet_.start();
mjr 3:3514575d4f86 2919 tInt_.start();
mjr 3:3514575d4f86 2920 }
mjr 3:3514575d4f86 2921
mjr 76:7f5912b6340e 2922 void disableInterrupts()
mjr 76:7f5912b6340e 2923 {
mjr 76:7f5912b6340e 2924 mma_.clearInterruptMode();
mjr 76:7f5912b6340e 2925 }
mjr 76:7f5912b6340e 2926
mjr 9:fd65b0a94720 2927 void get(int &x, int &y)
mjr 3:3514575d4f86 2928 {
mjr 3:3514575d4f86 2929 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 2930 __disable_irq();
mjr 3:3514575d4f86 2931
mjr 3:3514575d4f86 2932 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 2933 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 2934 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 2935
mjr 6:cc35eb643e8f 2936 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 2937 vx_ = vy_ = 0;
mjr 3:3514575d4f86 2938
mjr 3:3514575d4f86 2939 // get the time since the last get() sample
mjr 73:4e8ce0b18915 2940 int dtus = tGet_.read_us();
mjr 3:3514575d4f86 2941 tGet_.reset();
mjr 3:3514575d4f86 2942
mjr 3:3514575d4f86 2943 // done manipulating the shared data
mjr 3:3514575d4f86 2944 __enable_irq();
mjr 3:3514575d4f86 2945
mjr 6:cc35eb643e8f 2946 // adjust the readings for the integration time
mjr 73:4e8ce0b18915 2947 float dt = dtus/1000000.0f;
mjr 6:cc35eb643e8f 2948 vx /= dt;
mjr 6:cc35eb643e8f 2949 vy /= dt;
mjr 6:cc35eb643e8f 2950
mjr 6:cc35eb643e8f 2951 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 2952 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 2953 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 2954
mjr 5:a70c0bce770d 2955 // check for auto-centering every so often
mjr 48:058ace2aed1d 2956 if (tCenter_.read_us() > 1000000)
mjr 5:a70c0bce770d 2957 {
mjr 5:a70c0bce770d 2958 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 2959 AccHist *prv = p;
mjr 5:a70c0bce770d 2960 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 2961 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 2962 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 2963
mjr 5:a70c0bce770d 2964 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 2965 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 2966 {
mjr 5:a70c0bce770d 2967 // check if we've been stable for all recent samples
mjr 75:677892300e7a 2968 static const float accTol = .01f;
mjr 6:cc35eb643e8f 2969 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 2970 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 2971 && p0[1].d < accTol
mjr 6:cc35eb643e8f 2972 && p0[2].d < accTol
mjr 6:cc35eb643e8f 2973 && p0[3].d < accTol
mjr 6:cc35eb643e8f 2974 && p0[4].d < accTol)
mjr 5:a70c0bce770d 2975 {
mjr 6:cc35eb643e8f 2976 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 2977 // the samples over the rest period
mjr 75:677892300e7a 2978 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0f;
mjr 75:677892300e7a 2979 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0f;
mjr 5:a70c0bce770d 2980 }
mjr 5:a70c0bce770d 2981 }
mjr 5:a70c0bce770d 2982 else
mjr 5:a70c0bce770d 2983 {
mjr 5:a70c0bce770d 2984 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 2985 ++nAccPrv_;
mjr 5:a70c0bce770d 2986 }
mjr 6:cc35eb643e8f 2987
mjr 6:cc35eb643e8f 2988 // clear the new item's running totals
mjr 6:cc35eb643e8f 2989 p->clearAvg();
mjr 5:a70c0bce770d 2990
mjr 5:a70c0bce770d 2991 // reset the timer
mjr 5:a70c0bce770d 2992 tCenter_.reset();
mjr 39:b3815a1c3802 2993
mjr 39:b3815a1c3802 2994 // If we haven't seen an interrupt in a while, do an explicit read to
mjr 39:b3815a1c3802 2995 // "unstick" the device. The device can become stuck - which is to say,
mjr 39:b3815a1c3802 2996 // it will stop delivering data-ready interrupts - if we fail to service
mjr 39:b3815a1c3802 2997 // one data-ready interrupt before the next one occurs. Reading a sample
mjr 39:b3815a1c3802 2998 // will clear up this overrun condition and allow normal interrupt
mjr 39:b3815a1c3802 2999 // generation to continue.
mjr 39:b3815a1c3802 3000 //
mjr 76:7f5912b6340e 3001 // Note that this stuck condition *shouldn't* ever occur, because if only
mjr 76:7f5912b6340e 3002 // happens if we're spending a long period with interrupts disabled (in
mjr 76:7f5912b6340e 3003 // a critical section or in another interrupt handler), which will likely
mjr 76:7f5912b6340e 3004 // cause other, worse problems beyond the sticky accelerometer. Even so,
mjr 76:7f5912b6340e 3005 // it's easy to detect and correct, so we'll do so for the sake of making
mjr 76:7f5912b6340e 3006 // the system a little more fault-tolerant.
mjr 76:7f5912b6340e 3007 if (tInt_.read_us() > 1000000)
mjr 39:b3815a1c3802 3008 {
mjr 39:b3815a1c3802 3009 float x, y, z;
mjr 39:b3815a1c3802 3010 mma_.getAccXYZ(x, y, z);
mjr 39:b3815a1c3802 3011 }
mjr 5:a70c0bce770d 3012 }
mjr 5:a70c0bce770d 3013
mjr 6:cc35eb643e8f 3014 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 3015 x = rawToReport(vx);
mjr 6:cc35eb643e8f 3016 y = rawToReport(vy);
mjr 5:a70c0bce770d 3017
mjr 6:cc35eb643e8f 3018 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 3019 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 3020 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 3021 #endif
mjr 3:3514575d4f86 3022 }
mjr 29:582472d0bc57 3023
mjr 3:3514575d4f86 3024 private:
mjr 6:cc35eb643e8f 3025 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 3026 int rawToReport(float v)
mjr 5:a70c0bce770d 3027 {
mjr 6:cc35eb643e8f 3028 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 3029 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 3030
mjr 6:cc35eb643e8f 3031 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 3032 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 3033 static const int filter[] = {
mjr 6:cc35eb643e8f 3034 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 3035 0,
mjr 6:cc35eb643e8f 3036 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 3037 };
mjr 6:cc35eb643e8f 3038 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 3039 }
mjr 5:a70c0bce770d 3040
mjr 3:3514575d4f86 3041 // interrupt handler
mjr 3:3514575d4f86 3042 void isr()
mjr 3:3514575d4f86 3043 {
mjr 3:3514575d4f86 3044 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 3045 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 3046 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 3047 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 3048 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 3049 float x, y, z;
mjr 5:a70c0bce770d 3050 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 3051
mjr 3:3514575d4f86 3052 // calculate the time since the last interrupt
mjr 39:b3815a1c3802 3053 float dt = tInt_.read();
mjr 3:3514575d4f86 3054 tInt_.reset();
mjr 6:cc35eb643e8f 3055
mjr 6:cc35eb643e8f 3056 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 3057 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 3058 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 3059
mjr 6:cc35eb643e8f 3060 // store the updates
mjr 6:cc35eb643e8f 3061 ax_ = x;
mjr 6:cc35eb643e8f 3062 ay_ = y;
mjr 6:cc35eb643e8f 3063 az_ = z;
mjr 3:3514575d4f86 3064 }
mjr 3:3514575d4f86 3065
mjr 3:3514575d4f86 3066 // underlying accelerometer object
mjr 3:3514575d4f86 3067 MMA8451Q mma_;
mjr 3:3514575d4f86 3068
mjr 5:a70c0bce770d 3069 // last raw acceleration readings
mjr 6:cc35eb643e8f 3070 float ax_, ay_, az_;
mjr 5:a70c0bce770d 3071
mjr 6:cc35eb643e8f 3072 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 3073 float vx_, vy_;
mjr 6:cc35eb643e8f 3074
mjr 3:3514575d4f86 3075 // timer for measuring time between get() samples
mjr 3:3514575d4f86 3076 Timer tGet_;
mjr 3:3514575d4f86 3077
mjr 3:3514575d4f86 3078 // timer for measuring time between interrupts
mjr 3:3514575d4f86 3079 Timer tInt_;
mjr 5:a70c0bce770d 3080
mjr 6:cc35eb643e8f 3081 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 3082 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 3083 // at rest.
mjr 6:cc35eb643e8f 3084 float cx_, cy_;
mjr 5:a70c0bce770d 3085
mjr 5:a70c0bce770d 3086 // timer for atuo-centering
mjr 5:a70c0bce770d 3087 Timer tCenter_;
mjr 6:cc35eb643e8f 3088
mjr 6:cc35eb643e8f 3089 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 3090 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 3091 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 3092 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 3093 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 3094 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 3095 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 3096 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 3097 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 3098 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 3099 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 3100 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 3101 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 3102 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 3103 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 3104
mjr 5:a70c0bce770d 3105 // interurupt pin name
mjr 5:a70c0bce770d 3106 PinName irqPin_;
mjr 5:a70c0bce770d 3107
mjr 5:a70c0bce770d 3108 // interrupt router
mjr 5:a70c0bce770d 3109 InterruptIn intIn_;
mjr 3:3514575d4f86 3110 };
mjr 3:3514575d4f86 3111
mjr 5:a70c0bce770d 3112 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3113 //
mjr 14:df700b22ca08 3114 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 3115 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 3116 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 3117 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 3118 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 3119 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 3120 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 3121 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 3122 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 3123 //
mjr 14:df700b22ca08 3124 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 3125 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 3126 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 3127 //
mjr 5:a70c0bce770d 3128 void clear_i2c()
mjr 5:a70c0bce770d 3129 {
mjr 38:091e511ce8a0 3130 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 3131 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 3132 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 3133
mjr 5:a70c0bce770d 3134 // clock the SCL 9 times
mjr 5:a70c0bce770d 3135 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 3136 {
mjr 5:a70c0bce770d 3137 scl = 1;
mjr 5:a70c0bce770d 3138 wait_us(20);
mjr 5:a70c0bce770d 3139 scl = 0;
mjr 5:a70c0bce770d 3140 wait_us(20);
mjr 5:a70c0bce770d 3141 }
mjr 5:a70c0bce770d 3142 }
mjr 76:7f5912b6340e 3143
mjr 76:7f5912b6340e 3144
mjr 14:df700b22ca08 3145 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 3146 //
mjr 33:d832bcab089e 3147 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 3148 // for a given interval before allowing an update.
mjr 33:d832bcab089e 3149 //
mjr 33:d832bcab089e 3150 class Debouncer
mjr 33:d832bcab089e 3151 {
mjr 33:d832bcab089e 3152 public:
mjr 33:d832bcab089e 3153 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 3154 {
mjr 33:d832bcab089e 3155 t.start();
mjr 33:d832bcab089e 3156 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 3157 this->tmin = tmin;
mjr 33:d832bcab089e 3158 }
mjr 33:d832bcab089e 3159
mjr 33:d832bcab089e 3160 // Get the current stable value
mjr 33:d832bcab089e 3161 bool val() const { return stable; }
mjr 33:d832bcab089e 3162
mjr 33:d832bcab089e 3163 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 3164 // input device.
mjr 33:d832bcab089e 3165 void sampleIn(bool val)
mjr 33:d832bcab089e 3166 {
mjr 33:d832bcab089e 3167 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 3168 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 3169 // on the sample reader.
mjr 33:d832bcab089e 3170 if (val != prv)
mjr 33:d832bcab089e 3171 {
mjr 33:d832bcab089e 3172 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 3173 t.reset();
mjr 33:d832bcab089e 3174
mjr 33:d832bcab089e 3175 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 3176 prv = val;
mjr 33:d832bcab089e 3177 }
mjr 33:d832bcab089e 3178 else if (val != stable)
mjr 33:d832bcab089e 3179 {
mjr 33:d832bcab089e 3180 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 3181 // and different from the stable value. This means that
mjr 33:d832bcab089e 3182 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 3183 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 3184 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 3185 if (t.read() > tmin)
mjr 33:d832bcab089e 3186 stable = val;
mjr 33:d832bcab089e 3187 }
mjr 33:d832bcab089e 3188 }
mjr 33:d832bcab089e 3189
mjr 33:d832bcab089e 3190 private:
mjr 33:d832bcab089e 3191 // current stable value
mjr 33:d832bcab089e 3192 bool stable;
mjr 33:d832bcab089e 3193
mjr 33:d832bcab089e 3194 // last raw sample value
mjr 33:d832bcab089e 3195 bool prv;
mjr 33:d832bcab089e 3196
mjr 33:d832bcab089e 3197 // elapsed time since last raw input change
mjr 33:d832bcab089e 3198 Timer t;
mjr 33:d832bcab089e 3199
mjr 33:d832bcab089e 3200 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 3201 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 3202 float tmin;
mjr 33:d832bcab089e 3203 };
mjr 33:d832bcab089e 3204
mjr 33:d832bcab089e 3205
mjr 33:d832bcab089e 3206 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 3207 //
mjr 33:d832bcab089e 3208 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 3209 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 3210 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 3211 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 3212 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 3213 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 3214 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 3215 //
mjr 33:d832bcab089e 3216 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 3217 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 3218 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 3219 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 3220 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 3221 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 3222 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 3223 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 3224 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 3225 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 3226 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 3227 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 3228 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 3229 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 3230 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 3231 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 3232 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 3233 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 3234 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 3235 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 3236 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 3237 //
mjr 40:cc0d9814522b 3238 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 3239 // of tricky but likely scenarios:
mjr 33:d832bcab089e 3240 //
mjr 33:d832bcab089e 3241 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 3242 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 3243 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 3244 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 3245 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 3246 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 3247 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 3248 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 3249 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 3250 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 3251 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 3252 //
mjr 33:d832bcab089e 3253 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 3254 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 3255 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 3256 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 3257 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 3258 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 3259 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 3260 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 3261 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 3262 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 3263 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 3264 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 3265 // first check.
mjr 33:d832bcab089e 3266 //
mjr 33:d832bcab089e 3267 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 3268 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 3269 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 3270 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 3271 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 3272 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 3273 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 3274 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 3275 //
mjr 33:d832bcab089e 3276
mjr 33:d832bcab089e 3277 // Current PSU2 state:
mjr 33:d832bcab089e 3278 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 3279 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 3280 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 3281 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 3282 // 5 -> TV relay on
mjr 73:4e8ce0b18915 3283 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 3284
mjr 73:4e8ce0b18915 3285 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 3286 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 3287 // separate state for each:
mjr 73:4e8ce0b18915 3288 //
mjr 73:4e8ce0b18915 3289 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 3290 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 3291 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 3292 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 3293 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 3294
mjr 73:4e8ce0b18915 3295 // TV ON switch relay control
mjr 73:4e8ce0b18915 3296 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 3297
mjr 35:e959ffba78fd 3298 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 3299 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 3300 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 3301
mjr 73:4e8ce0b18915 3302 // Apply the current TV relay state
mjr 73:4e8ce0b18915 3303 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 3304 {
mjr 73:4e8ce0b18915 3305 // update the state
mjr 73:4e8ce0b18915 3306 if (state)
mjr 73:4e8ce0b18915 3307 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 3308 else
mjr 73:4e8ce0b18915 3309 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 3310
mjr 73:4e8ce0b18915 3311 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 3312 if (tv_relay != 0)
mjr 73:4e8ce0b18915 3313 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 3314 }
mjr 35:e959ffba78fd 3315
mjr 35:e959ffba78fd 3316 // Timer interrupt
mjr 35:e959ffba78fd 3317 Ticker tv_ticker;
mjr 35:e959ffba78fd 3318 float tv_delay_time;
mjr 33:d832bcab089e 3319 void TVTimerInt()
mjr 33:d832bcab089e 3320 {
mjr 35:e959ffba78fd 3321 // time since last state change
mjr 35:e959ffba78fd 3322 static Timer tv_timer;
mjr 35:e959ffba78fd 3323
mjr 33:d832bcab089e 3324 // Check our internal state
mjr 33:d832bcab089e 3325 switch (psu2_state)
mjr 33:d832bcab089e 3326 {
mjr 33:d832bcab089e 3327 case 1:
mjr 33:d832bcab089e 3328 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 3329 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 3330 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 3331 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 3332 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 3333 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 3334 {
mjr 33:d832bcab089e 3335 // switch to OFF state
mjr 33:d832bcab089e 3336 psu2_state = 2;
mjr 33:d832bcab089e 3337
mjr 33:d832bcab089e 3338 // try setting the latch
mjr 35:e959ffba78fd 3339 psu2_status_set->write(1);
mjr 33:d832bcab089e 3340 }
mjr 33:d832bcab089e 3341 break;
mjr 33:d832bcab089e 3342
mjr 33:d832bcab089e 3343 case 2:
mjr 33:d832bcab089e 3344 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 3345 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 3346 psu2_status_set->write(0);
mjr 33:d832bcab089e 3347 psu2_state = 3;
mjr 33:d832bcab089e 3348 break;
mjr 33:d832bcab089e 3349
mjr 33:d832bcab089e 3350 case 3:
mjr 33:d832bcab089e 3351 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 3352 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 3353 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 3354 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 3355 if (psu2_status_sense->read())
mjr 33:d832bcab089e 3356 {
mjr 33:d832bcab089e 3357 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 3358 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 3359 tv_timer.reset();
mjr 33:d832bcab089e 3360 tv_timer.start();
mjr 33:d832bcab089e 3361 psu2_state = 4;
mjr 73:4e8ce0b18915 3362
mjr 73:4e8ce0b18915 3363 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 3364 powerTimerDiagState = 2;
mjr 73:4e8ce0b18915 3365 diagLED();
mjr 33:d832bcab089e 3366 }
mjr 33:d832bcab089e 3367 else
mjr 33:d832bcab089e 3368 {
mjr 33:d832bcab089e 3369 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 3370 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 3371 // was turned on since the last check.
mjr 35:e959ffba78fd 3372 psu2_status_set->write(1);
mjr 33:d832bcab089e 3373 psu2_state = 2;
mjr 33:d832bcab089e 3374 }
mjr 33:d832bcab089e 3375 break;
mjr 33:d832bcab089e 3376
mjr 33:d832bcab089e 3377 case 4:
mjr 33:d832bcab089e 3378 // TV timer countdown in progress. If we've reached the
mjr 33:d832bcab089e 3379 // delay time, pulse the relay.
mjr 35:e959ffba78fd 3380 if (tv_timer.read() >= tv_delay_time)
mjr 33:d832bcab089e 3381 {
mjr 33:d832bcab089e 3382 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 3383 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 3384 psu2_state = 5;
mjr 33:d832bcab089e 3385 }
mjr 73:4e8ce0b18915 3386
mjr 73:4e8ce0b18915 3387 // flash the power time diagnostic every two interrupts
mjr 73:4e8ce0b18915 3388 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 73:4e8ce0b18915 3389 diagLED();
mjr 33:d832bcab089e 3390 break;
mjr 33:d832bcab089e 3391
mjr 33:d832bcab089e 3392 case 5:
mjr 33:d832bcab089e 3393 // TV timer relay on. We pulse this for one interval, so
mjr 33:d832bcab089e 3394 // it's now time to turn it off and return to the default state.
mjr 73:4e8ce0b18915 3395 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 33:d832bcab089e 3396 psu2_state = 1;
mjr 73:4e8ce0b18915 3397
mjr 73:4e8ce0b18915 3398 // done with the diagnostic flashes
mjr 73:4e8ce0b18915 3399 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 3400 diagLED();
mjr 33:d832bcab089e 3401 break;
mjr 33:d832bcab089e 3402 }
mjr 33:d832bcab089e 3403 }
mjr 33:d832bcab089e 3404
mjr 35:e959ffba78fd 3405 // Start the TV ON checker. If the status sense circuit is enabled in
mjr 35:e959ffba78fd 3406 // the configuration, we'll set up the pin connections and start the
mjr 35:e959ffba78fd 3407 // interrupt handler that periodically checks the status. Does nothing
mjr 35:e959ffba78fd 3408 // if any of the pins are configured as NC.
mjr 35:e959ffba78fd 3409 void startTVTimer(Config &cfg)
mjr 35:e959ffba78fd 3410 {
mjr 55:4db125cd11a0 3411 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 3412 // time is nonzero
mjr 55:4db125cd11a0 3413 if (cfg.TVON.delayTime != 0
mjr 55:4db125cd11a0 3414 && cfg.TVON.statusPin != 0xFF
mjr 53:9b2611964afc 3415 && cfg.TVON.latchPin != 0xFF
mjr 53:9b2611964afc 3416 && cfg.TVON.relayPin != 0xFF)
mjr 35:e959ffba78fd 3417 {
mjr 53:9b2611964afc 3418 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 3419 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 53:9b2611964afc 3420 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 73:4e8ce0b18915 3421 tv_delay_time = cfg.TVON.delayTime/100.0f;
mjr 35:e959ffba78fd 3422
mjr 35:e959ffba78fd 3423 // Set up our time routine to run every 1/4 second.
mjr 35:e959ffba78fd 3424 tv_ticker.attach(&TVTimerInt, 0.25);
mjr 35:e959ffba78fd 3425 }
mjr 35:e959ffba78fd 3426 }
mjr 35:e959ffba78fd 3427
mjr 73:4e8ce0b18915 3428 // TV relay manual control timer. This lets us pulse the TV relay
mjr 73:4e8ce0b18915 3429 // under manual control, separately from the TV ON timer.
mjr 73:4e8ce0b18915 3430 Ticker tv_manualTicker;
mjr 73:4e8ce0b18915 3431 void TVManualInt()
mjr 73:4e8ce0b18915 3432 {
mjr 73:4e8ce0b18915 3433 tv_manualTicker.detach();
mjr 73:4e8ce0b18915 3434 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 3435 }
mjr 73:4e8ce0b18915 3436
mjr 73:4e8ce0b18915 3437 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 3438 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 3439 //
mjr 73:4e8ce0b18915 3440 // Mode:
mjr 73:4e8ce0b18915 3441 // 0 = turn relay off
mjr 73:4e8ce0b18915 3442 // 1 = turn relay on
mjr 73:4e8ce0b18915 3443 // 2 = pulse relay
mjr 73:4e8ce0b18915 3444 void TVRelay(int mode)
mjr 73:4e8ce0b18915 3445 {
mjr 73:4e8ce0b18915 3446 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 3447 if (tv_relay == 0)
mjr 73:4e8ce0b18915 3448 return;
mjr 73:4e8ce0b18915 3449
mjr 73:4e8ce0b18915 3450 switch (mode)
mjr 73:4e8ce0b18915 3451 {
mjr 73:4e8ce0b18915 3452 case 0:
mjr 73:4e8ce0b18915 3453 // relay off
mjr 73:4e8ce0b18915 3454 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 3455 break;
mjr 73:4e8ce0b18915 3456
mjr 73:4e8ce0b18915 3457 case 1:
mjr 73:4e8ce0b18915 3458 // relay on
mjr 73:4e8ce0b18915 3459 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 3460 break;
mjr 73:4e8ce0b18915 3461
mjr 73:4e8ce0b18915 3462 case 2:
mjr 73:4e8ce0b18915 3463 // Pulse the relay. Turn it on, then set our timer for 250ms.
mjr 73:4e8ce0b18915 3464 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 3465 tv_manualTicker.attach(&TVManualInt, 0.25);
mjr 73:4e8ce0b18915 3466 break;
mjr 73:4e8ce0b18915 3467 }
mjr 73:4e8ce0b18915 3468 }
mjr 73:4e8ce0b18915 3469
mjr 73:4e8ce0b18915 3470
mjr 35:e959ffba78fd 3471 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3472 //
mjr 35:e959ffba78fd 3473 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 3474 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 3475 //
mjr 35:e959ffba78fd 3476 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 3477 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 3478 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 3479 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 3480 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 3481 // again each time the firmware is updated.
mjr 35:e959ffba78fd 3482 //
mjr 35:e959ffba78fd 3483 NVM nvm;
mjr 35:e959ffba78fd 3484
mjr 35:e959ffba78fd 3485 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 3486 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 3487
mjr 35:e959ffba78fd 3488 // flash memory controller interface
mjr 35:e959ffba78fd 3489 FreescaleIAP iap;
mjr 35:e959ffba78fd 3490
mjr 76:7f5912b6340e 3491 // NVM structure in memory. This has to be aliend on a sector boundary,
mjr 76:7f5912b6340e 3492 // since we have to be able to erase its page(s) in order to write it.
mjr 76:7f5912b6340e 3493 // Further, we have to ensure that nothing else occupies any space within
mjr 76:7f5912b6340e 3494 // the same pages, since we'll erase that entire space whenever we write.
mjr 76:7f5912b6340e 3495 static const union
mjr 76:7f5912b6340e 3496 {
mjr 76:7f5912b6340e 3497 NVM nvm; // the NVM structure
mjr 76:7f5912b6340e 3498 char guard[((sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE)*SECTOR_SIZE];
mjr 76:7f5912b6340e 3499 }
mjr 76:7f5912b6340e 3500 flash_nvm_memory __attribute__ ((aligned(SECTOR_SIZE))) = { };
mjr 76:7f5912b6340e 3501
mjr 35:e959ffba78fd 3502 // figure the flash address as a pointer along with the number of sectors
mjr 35:e959ffba78fd 3503 // required to store the structure
mjr 35:e959ffba78fd 3504 NVM *configFlashAddr(int &addr, int &numSectors)
mjr 35:e959ffba78fd 3505 {
mjr 35:e959ffba78fd 3506 // figure how many flash sectors we span, rounding up to whole sectors
mjr 35:e959ffba78fd 3507 numSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 35:e959ffba78fd 3508
mjr 35:e959ffba78fd 3509 // figure the address - this is the highest flash address where the
mjr 35:e959ffba78fd 3510 // structure will fit with the start aligned on a sector boundary
mjr 76:7f5912b6340e 3511 addr = (int)&flash_nvm_memory;
mjr 35:e959ffba78fd 3512
mjr 35:e959ffba78fd 3513 // return the address as a pointer
mjr 35:e959ffba78fd 3514 return (NVM *)addr;
mjr 35:e959ffba78fd 3515 }
mjr 35:e959ffba78fd 3516
mjr 35:e959ffba78fd 3517 // figure the flash address as a pointer
mjr 35:e959ffba78fd 3518 NVM *configFlashAddr()
mjr 35:e959ffba78fd 3519 {
mjr 35:e959ffba78fd 3520 int addr, numSectors;
mjr 35:e959ffba78fd 3521 return configFlashAddr(addr, numSectors);
mjr 35:e959ffba78fd 3522 }
mjr 35:e959ffba78fd 3523
mjr 76:7f5912b6340e 3524 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 3525 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 3526 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 3527 // in either case.
mjr 76:7f5912b6340e 3528 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 3529 {
mjr 35:e959ffba78fd 3530 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 3531 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 3532 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 3533 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 3534 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 3535 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 3536 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 3537 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 3538 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 3539 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 3540 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 3541 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 3542 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 3543 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 3544 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 3545 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 3546
mjr 35:e959ffba78fd 3547 // Figure how many sectors we need for our structure
mjr 35:e959ffba78fd 3548 NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 3549
mjr 35:e959ffba78fd 3550 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 3551 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 3552 if (nvm_valid)
mjr 35:e959ffba78fd 3553 {
mjr 35:e959ffba78fd 3554 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 3555 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 3556 }
mjr 35:e959ffba78fd 3557 else
mjr 35:e959ffba78fd 3558 {
mjr 76:7f5912b6340e 3559 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 3560 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 3561 }
mjr 76:7f5912b6340e 3562
mjr 76:7f5912b6340e 3563 // tell the caller what happened
mjr 76:7f5912b6340e 3564 return nvm_valid;
mjr 35:e959ffba78fd 3565 }
mjr 35:e959ffba78fd 3566
mjr 35:e959ffba78fd 3567 void saveConfigToFlash()
mjr 33:d832bcab089e 3568 {
mjr 76:7f5912b6340e 3569 // make sure the plunger sensor isn't busy
mjr 76:7f5912b6340e 3570 waitPlungerIdle();
mjr 76:7f5912b6340e 3571
mjr 76:7f5912b6340e 3572 // get the config block location in the flash memory
mjr 35:e959ffba78fd 3573 int addr, sectors;
mjr 35:e959ffba78fd 3574 configFlashAddr(addr, sectors);
mjr 76:7f5912b6340e 3575
mjr 76:7f5912b6340e 3576 // loop until we save it successfully
mjr 76:7f5912b6340e 3577 for (int i = 0 ; i < 5 ; ++i)
mjr 76:7f5912b6340e 3578 {
mjr 76:7f5912b6340e 3579 // show cyan while writing
mjr 76:7f5912b6340e 3580 diagLED(0, 1, 1);
mjr 76:7f5912b6340e 3581
mjr 76:7f5912b6340e 3582 // save the data
mjr 76:7f5912b6340e 3583 nvm.save(iap, addr);
mjr 76:7f5912b6340e 3584
mjr 76:7f5912b6340e 3585 // diagnostic lights off
mjr 76:7f5912b6340e 3586 diagLED(0, 0, 0);
mjr 76:7f5912b6340e 3587
mjr 76:7f5912b6340e 3588 // verify the data
mjr 76:7f5912b6340e 3589 if (nvm.verify(addr))
mjr 76:7f5912b6340e 3590 {
mjr 76:7f5912b6340e 3591 // show a diagnostic success flash
mjr 76:7f5912b6340e 3592 for (int j = 0 ; j < 3 ; ++j)
mjr 76:7f5912b6340e 3593 {
mjr 76:7f5912b6340e 3594 diagLED(0, 1, 1);
mjr 76:7f5912b6340e 3595 wait_us(50000);
mjr 76:7f5912b6340e 3596 diagLED(0, 0, 0);
mjr 76:7f5912b6340e 3597 wait_us(50000);
mjr 76:7f5912b6340e 3598 }
mjr 76:7f5912b6340e 3599
mjr 76:7f5912b6340e 3600 // success - no need to write again
mjr 76:7f5912b6340e 3601 break;
mjr 76:7f5912b6340e 3602 }
mjr 76:7f5912b6340e 3603 else
mjr 76:7f5912b6340e 3604 {
mjr 76:7f5912b6340e 3605 // Write failed. For diagnostic purposes, flash red a few times.
mjr 76:7f5912b6340e 3606 // Then go back through the loop to make another attempt at the
mjr 76:7f5912b6340e 3607 // write.
mjr 76:7f5912b6340e 3608 for (int j = 0 ; j < 5 ; ++j)
mjr 76:7f5912b6340e 3609 {
mjr 76:7f5912b6340e 3610 diagLED(1, 0, 0);
mjr 76:7f5912b6340e 3611 wait_us(50000);
mjr 76:7f5912b6340e 3612 diagLED(0, 0, 0);
mjr 76:7f5912b6340e 3613 wait_us(50000);
mjr 76:7f5912b6340e 3614 }
mjr 76:7f5912b6340e 3615 }
mjr 76:7f5912b6340e 3616 }
mjr 76:7f5912b6340e 3617 }
mjr 76:7f5912b6340e 3618
mjr 76:7f5912b6340e 3619 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 3620 //
mjr 76:7f5912b6340e 3621 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 3622 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 3623 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 3624 // downloading it to the device.
mjr 76:7f5912b6340e 3625 //
mjr 76:7f5912b6340e 3626 // Ideally, we'd use the host-loaded memory for all configuration updates,
mjr 76:7f5912b6340e 3627 // because the KL25Z doesn't seem to be 100% reliable writing flash itself.
mjr 76:7f5912b6340e 3628 // There seems to be a chance of memory bus contention while a write is in
mjr 76:7f5912b6340e 3629 // progress, which can either corrupt the write or cause the CPU to lock up
mjr 76:7f5912b6340e 3630 // before the write is completed. It seems more reliable to program the
mjr 76:7f5912b6340e 3631 // flash externally, via the OpenSDA connection. Unfortunately, none of
mjr 76:7f5912b6340e 3632 // the available OpenSDA versions are capable of programming specific flash
mjr 76:7f5912b6340e 3633 // sectors; they always erase the entire flash memory space. We *could*
mjr 76:7f5912b6340e 3634 // make the Windows config program simply re-download the entire firmware
mjr 76:7f5912b6340e 3635 // for every configuration update, but I'd rather not because of the extra
mjr 76:7f5912b6340e 3636 // wear this would put on the flash. So, as a compromise, we'll use the
mjr 76:7f5912b6340e 3637 // host-loaded config whenever the user explicitly updates the firmware,
mjr 76:7f5912b6340e 3638 // but we'll use the on-board writer when only making a config change.
mjr 76:7f5912b6340e 3639 //
mjr 76:7f5912b6340e 3640 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 3641 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 3642 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 3643 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 3644 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 3645 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 3646 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 3647 //
mjr 76:7f5912b6340e 3648 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 3649 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 3650 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 3651 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 3652 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 3653 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 3654 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 3655 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 3656 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 3657 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 3658
mjr 76:7f5912b6340e 3659 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 3660 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 3661 {
mjr 76:7f5912b6340e 3662 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 3663 // 32-byte signature header
mjr 76:7f5912b6340e 3664 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 3665 };
mjr 76:7f5912b6340e 3666
mjr 76:7f5912b6340e 3667 // forward reference to config var store function
mjr 76:7f5912b6340e 3668 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 3669
mjr 76:7f5912b6340e 3670 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 3671 // configuration object.
mjr 76:7f5912b6340e 3672 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 3673 {
mjr 76:7f5912b6340e 3674 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 3675 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 3676 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 3677 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 3678 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 3679 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 3680 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 3681 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 3682 {
mjr 76:7f5912b6340e 3683 // load this variable
mjr 76:7f5912b6340e 3684 configVarSet(p);
mjr 76:7f5912b6340e 3685 }
mjr 35:e959ffba78fd 3686 }
mjr 35:e959ffba78fd 3687
mjr 35:e959ffba78fd 3688 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3689 //
mjr 55:4db125cd11a0 3690 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 3691 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 3692 //
mjr 55:4db125cd11a0 3693 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 3694 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 3695 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 3696
mjr 55:4db125cd11a0 3697
mjr 55:4db125cd11a0 3698
mjr 55:4db125cd11a0 3699 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 3700 //
mjr 40:cc0d9814522b 3701 // Night mode setting updates
mjr 40:cc0d9814522b 3702 //
mjr 38:091e511ce8a0 3703
mjr 38:091e511ce8a0 3704 // Turn night mode on or off
mjr 38:091e511ce8a0 3705 static void setNightMode(bool on)
mjr 38:091e511ce8a0 3706 {
mjr 40:cc0d9814522b 3707 // set the new night mode flag in the noisy output class
mjr 53:9b2611964afc 3708 nightMode = on;
mjr 55:4db125cd11a0 3709
mjr 40:cc0d9814522b 3710 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 3711 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 3712 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 3713 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 3714
mjr 76:7f5912b6340e 3715 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 3716 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 3717 // mode change.
mjr 76:7f5912b6340e 3718 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 3719 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 3720
mjr 76:7f5912b6340e 3721 // update 74HC595 outputs
mjr 76:7f5912b6340e 3722 if (hc595 != 0)
mjr 76:7f5912b6340e 3723 hc595->update();
mjr 38:091e511ce8a0 3724 }
mjr 38:091e511ce8a0 3725
mjr 38:091e511ce8a0 3726 // Toggle night mode
mjr 38:091e511ce8a0 3727 static void toggleNightMode()
mjr 38:091e511ce8a0 3728 {
mjr 53:9b2611964afc 3729 setNightMode(!nightMode);
mjr 38:091e511ce8a0 3730 }
mjr 38:091e511ce8a0 3731
mjr 38:091e511ce8a0 3732
mjr 38:091e511ce8a0 3733 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 3734 //
mjr 35:e959ffba78fd 3735 // Plunger Sensor
mjr 35:e959ffba78fd 3736 //
mjr 35:e959ffba78fd 3737
mjr 35:e959ffba78fd 3738 // the plunger sensor interface object
mjr 35:e959ffba78fd 3739 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 3740
mjr 76:7f5912b6340e 3741 // wait for the plunger sensor to complete any outstanding read
mjr 76:7f5912b6340e 3742 static void waitPlungerIdle(void)
mjr 76:7f5912b6340e 3743 {
mjr 76:7f5912b6340e 3744 while (!plungerSensor->ready()) { }
mjr 76:7f5912b6340e 3745 }
mjr 76:7f5912b6340e 3746
mjr 35:e959ffba78fd 3747 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 3748 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 3749 void createPlunger()
mjr 35:e959ffba78fd 3750 {
mjr 35:e959ffba78fd 3751 // create the new sensor object according to the type
mjr 35:e959ffba78fd 3752 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 3753 {
mjr 35:e959ffba78fd 3754 case PlungerType_TSL1410RS:
mjr 69:cc5039284fac 3755 // TSL1410R, serial mode (all pixels read in one file)
mjr 35:e959ffba78fd 3756 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 3757 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 3758 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 3759 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 3760 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 3761 NC);
mjr 35:e959ffba78fd 3762 break;
mjr 35:e959ffba78fd 3763
mjr 35:e959ffba78fd 3764 case PlungerType_TSL1410RP:
mjr 69:cc5039284fac 3765 // TSL1410R, parallel mode (each half-sensor's pixels read separately)
mjr 35:e959ffba78fd 3766 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 3767 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 3768 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 3769 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 3770 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 3771 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 3772 break;
mjr 35:e959ffba78fd 3773
mjr 69:cc5039284fac 3774 case PlungerType_TSL1412SS:
mjr 69:cc5039284fac 3775 // TSL1412S, serial mode
mjr 35:e959ffba78fd 3776 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 3777 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 3778 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 3779 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 3780 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 3781 NC);
mjr 35:e959ffba78fd 3782 break;
mjr 35:e959ffba78fd 3783
mjr 69:cc5039284fac 3784 case PlungerType_TSL1412SP:
mjr 69:cc5039284fac 3785 // TSL1412S, parallel mode
mjr 35:e959ffba78fd 3786 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 3787 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 3788 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 3789 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 3790 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 3791 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 3792 break;
mjr 35:e959ffba78fd 3793
mjr 35:e959ffba78fd 3794 case PlungerType_Pot:
mjr 35:e959ffba78fd 3795 // pins are: AO
mjr 53:9b2611964afc 3796 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 3797 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 3798 break;
mjr 35:e959ffba78fd 3799
mjr 35:e959ffba78fd 3800 case PlungerType_None:
mjr 35:e959ffba78fd 3801 default:
mjr 35:e959ffba78fd 3802 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 3803 break;
mjr 35:e959ffba78fd 3804 }
mjr 33:d832bcab089e 3805 }
mjr 33:d832bcab089e 3806
mjr 52:8298b2a73eb2 3807 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 3808 bool plungerCalMode;
mjr 52:8298b2a73eb2 3809
mjr 48:058ace2aed1d 3810 // Plunger reader
mjr 51:57eb311faafa 3811 //
mjr 51:57eb311faafa 3812 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 3813 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 3814 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 3815 //
mjr 51:57eb311faafa 3816 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 3817 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 3818 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 3819 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 3820 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 3821 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 3822 // firing motion.
mjr 51:57eb311faafa 3823 //
mjr 51:57eb311faafa 3824 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 3825 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 3826 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 3827 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 3828 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 3829 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 3830 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 3831 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 3832 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 3833 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 3834 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 3835 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 3836 // a classic digital aliasing effect.
mjr 51:57eb311faafa 3837 //
mjr 51:57eb311faafa 3838 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 3839 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 3840 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 3841 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 3842 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 3843 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 3844 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 3845 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 3846 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 3847 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 3848 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 3849 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 3850 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 3851 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 3852 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 3853 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 3854 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 3855 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 3856 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 3857 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 3858 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 3859 //
mjr 48:058ace2aed1d 3860 class PlungerReader
mjr 48:058ace2aed1d 3861 {
mjr 48:058ace2aed1d 3862 public:
mjr 48:058ace2aed1d 3863 PlungerReader()
mjr 48:058ace2aed1d 3864 {
mjr 48:058ace2aed1d 3865 // not in a firing event yet
mjr 48:058ace2aed1d 3866 firing = 0;
mjr 48:058ace2aed1d 3867
mjr 48:058ace2aed1d 3868 // no history yet
mjr 48:058ace2aed1d 3869 histIdx = 0;
mjr 55:4db125cd11a0 3870
mjr 55:4db125cd11a0 3871 // initialize the filter
mjr 55:4db125cd11a0 3872 initFilter();
mjr 48:058ace2aed1d 3873 }
mjr 76:7f5912b6340e 3874
mjr 48:058ace2aed1d 3875 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 3876 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 3877 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 3878 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 3879 void read()
mjr 48:058ace2aed1d 3880 {
mjr 76:7f5912b6340e 3881 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 3882 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 3883 return;
mjr 76:7f5912b6340e 3884
mjr 48:058ace2aed1d 3885 // Read a sample from the sensor
mjr 48:058ace2aed1d 3886 PlungerReading r;
mjr 48:058ace2aed1d 3887 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 3888 {
mjr 69:cc5039284fac 3889 // filter the raw sensor reading
mjr 69:cc5039284fac 3890 applyPreFilter(r);
mjr 69:cc5039284fac 3891
mjr 51:57eb311faafa 3892 // Pull the previous reading from the history
mjr 50:40015764bbe6 3893 const PlungerReading &prv = nthHist(0);
mjr 48:058ace2aed1d 3894
mjr 69:cc5039284fac 3895 // If the new reading is within 1ms of the previous reading,
mjr 48:058ace2aed1d 3896 // ignore it. We require a minimum time between samples to
mjr 48:058ace2aed1d 3897 // ensure that we have a usable amount of precision in the
mjr 48:058ace2aed1d 3898 // denominator (the time interval) for calculating the plunger
mjr 69:cc5039284fac 3899 // velocity. The CCD sensor hardware takes about 2.5ms to
mjr 69:cc5039284fac 3900 // read, so it will never be affected by this, but other sensor
mjr 69:cc5039284fac 3901 // types don't all have the same hardware cycle time, so we need
mjr 69:cc5039284fac 3902 // to throttle them artificially. E.g., the potentiometer only
mjr 69:cc5039284fac 3903 // needs one ADC sample per reading, which only takes about 15us.
mjr 69:cc5039284fac 3904 // We don't need to check which sensor type we have here; we
mjr 69:cc5039284fac 3905 // just ignore readings until the minimum interval has passed,
mjr 69:cc5039284fac 3906 // so if the sensor is already slower than this, we'll end up
mjr 69:cc5039284fac 3907 // using all of its readings.
mjr 69:cc5039284fac 3908 if (uint32_t(r.t - prv.t) < 1000UL)
mjr 48:058ace2aed1d 3909 return;
mjr 53:9b2611964afc 3910
mjr 53:9b2611964afc 3911 // check for calibration mode
mjr 53:9b2611964afc 3912 if (plungerCalMode)
mjr 53:9b2611964afc 3913 {
mjr 53:9b2611964afc 3914 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 3915 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 3916 // expand the envelope to include this new value.
mjr 53:9b2611964afc 3917 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 3918 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 3919 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 3920 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 3921
mjr 76:7f5912b6340e 3922 // update our cached calibration data
mjr 76:7f5912b6340e 3923 onUpdateCal();
mjr 50:40015764bbe6 3924
mjr 53:9b2611964afc 3925 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 3926 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 3927 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 3928 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 3929 if (calState == 0)
mjr 53:9b2611964afc 3930 {
mjr 53:9b2611964afc 3931 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 3932 {
mjr 53:9b2611964afc 3933 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 3934 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 3935 {
mjr 53:9b2611964afc 3936 // we've been at rest long enough - count it
mjr 53:9b2611964afc 3937 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 3938 calZeroPosN += 1;
mjr 53:9b2611964afc 3939
mjr 53:9b2611964afc 3940 // update the zero position from the new average
mjr 53:9b2611964afc 3941 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 3942 onUpdateCal();
mjr 53:9b2611964afc 3943
mjr 53:9b2611964afc 3944 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 3945 calState = 1;
mjr 53:9b2611964afc 3946 }
mjr 53:9b2611964afc 3947 }
mjr 53:9b2611964afc 3948 else
mjr 53:9b2611964afc 3949 {
mjr 53:9b2611964afc 3950 // we're not close to the last position - start again here
mjr 53:9b2611964afc 3951 calZeroStart = r;
mjr 53:9b2611964afc 3952 }
mjr 53:9b2611964afc 3953 }
mjr 53:9b2611964afc 3954
mjr 53:9b2611964afc 3955 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 3956 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 3957 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 3958 r.pos = int(
mjr 53:9b2611964afc 3959 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 3960 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 3961 }
mjr 53:9b2611964afc 3962 else
mjr 53:9b2611964afc 3963 {
mjr 53:9b2611964afc 3964 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 3965 // rescale to the joystick range.
mjr 76:7f5912b6340e 3966 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 3967
mjr 53:9b2611964afc 3968 // limit the result to the valid joystick range
mjr 53:9b2611964afc 3969 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 3970 r.pos = JOYMAX;
mjr 53:9b2611964afc 3971 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 3972 r.pos = -JOYMAX;
mjr 53:9b2611964afc 3973 }
mjr 50:40015764bbe6 3974
mjr 50:40015764bbe6 3975 // Calculate the velocity from the second-to-last reading
mjr 50:40015764bbe6 3976 // to here, in joystick distance units per microsecond.
mjr 50:40015764bbe6 3977 // Note that we use the second-to-last reading rather than
mjr 50:40015764bbe6 3978 // the very last reading to give ourselves a little longer
mjr 50:40015764bbe6 3979 // time base. The time base is so short between consecutive
mjr 50:40015764bbe6 3980 // readings that the error bars in the position would be too
mjr 50:40015764bbe6 3981 // large.
mjr 50:40015764bbe6 3982 //
mjr 50:40015764bbe6 3983 // For reference, the physical plunger velocity ranges up
mjr 50:40015764bbe6 3984 // to about 100,000 joystick distance units/sec. This is
mjr 50:40015764bbe6 3985 // based on empirical measurements. The typical time for
mjr 50:40015764bbe6 3986 // a real plunger to travel the full distance when released
mjr 50:40015764bbe6 3987 // from full retraction is about 85ms, so the average velocity
mjr 50:40015764bbe6 3988 // covering this distance is about 56,000 units/sec. The
mjr 50:40015764bbe6 3989 // peak is probably about twice that. In real-world units,
mjr 50:40015764bbe6 3990 // this translates to an average speed of about .75 m/s and
mjr 50:40015764bbe6 3991 // a peak of about 1.5 m/s.
mjr 50:40015764bbe6 3992 //
mjr 50:40015764bbe6 3993 // Note that we actually calculate the value here in units
mjr 50:40015764bbe6 3994 // per *microsecond* - the discussion above is in terms of
mjr 50:40015764bbe6 3995 // units/sec because that's more on a human scale. Our
mjr 50:40015764bbe6 3996 // choice of internal units here really isn't important,
mjr 50:40015764bbe6 3997 // since we only use the velocity for comparison purposes,
mjr 50:40015764bbe6 3998 // to detect acceleration trends. We therefore save ourselves
mjr 50:40015764bbe6 3999 // a little CPU time by using the natural units of our inputs.
mjr 76:7f5912b6340e 4000 //
mjr 76:7f5912b6340e 4001 // We don't care about the absolute velocity; this is a purely
mjr 76:7f5912b6340e 4002 // relative calculation. So to speed things up, calculate it
mjr 76:7f5912b6340e 4003 // in the integer domain, using a fixed-point representation
mjr 76:7f5912b6340e 4004 // with a 64K scale. In other words, with the stored values
mjr 76:7f5912b6340e 4005 // shifted left 16 bits from the actual values: the value 1
mjr 76:7f5912b6340e 4006 // is stored as 1<<16. The position readings are in the range
mjr 76:7f5912b6340e 4007 // -JOYMAX..JOYMAX, which fits in 16 bits, and the time
mjr 76:7f5912b6340e 4008 // differences will generally be on the scale of a few
mjr 76:7f5912b6340e 4009 // milliseconds = thousands of microseconds. So the velocity
mjr 76:7f5912b6340e 4010 // figures will fit nicely into a 32-bit fixed point value with
mjr 76:7f5912b6340e 4011 // a 64K scale factor.
mjr 51:57eb311faafa 4012 const PlungerReading &prv2 = nthHist(1);
mjr 76:7f5912b6340e 4013 int v = ((r.pos - prv2.pos) << 16)/(r.t - prv2.t);
mjr 50:40015764bbe6 4014
mjr 50:40015764bbe6 4015 // presume we'll report the latest instantaneous reading
mjr 50:40015764bbe6 4016 z = r.pos;
mjr 48:058ace2aed1d 4017
mjr 50:40015764bbe6 4018 // Check firing events
mjr 50:40015764bbe6 4019 switch (firing)
mjr 50:40015764bbe6 4020 {
mjr 50:40015764bbe6 4021 case 0:
mjr 50:40015764bbe6 4022 // Default state - not in a firing event.
mjr 50:40015764bbe6 4023
mjr 50:40015764bbe6 4024 // If we have forward motion from a position that's retracted
mjr 50:40015764bbe6 4025 // beyond a threshold, enter phase 1. If we're not pulled back
mjr 50:40015764bbe6 4026 // far enough, don't bother with this, as a release wouldn't
mjr 50:40015764bbe6 4027 // be strong enough to require the synthetic firing treatment.
mjr 50:40015764bbe6 4028 if (v < 0 && r.pos > JOYMAX/6)
mjr 50:40015764bbe6 4029 {
mjr 53:9b2611964afc 4030 // enter firing phase 1
mjr 50:40015764bbe6 4031 firingMode(1);
mjr 50:40015764bbe6 4032
mjr 53:9b2611964afc 4033 // if in calibration state 1 (at rest), switch to state 2 (not
mjr 53:9b2611964afc 4034 // at rest)
mjr 53:9b2611964afc 4035 if (calState == 1)
mjr 53:9b2611964afc 4036 calState = 2;
mjr 53:9b2611964afc 4037
mjr 50:40015764bbe6 4038 // we don't have a freeze position yet, but note the start time
mjr 50:40015764bbe6 4039 f1.pos = 0;
mjr 50:40015764bbe6 4040 f1.t = r.t;
mjr 50:40015764bbe6 4041
mjr 50:40015764bbe6 4042 // Figure the barrel spring "bounce" position in case we complete
mjr 50:40015764bbe6 4043 // the firing event. This is the amount that the forward momentum
mjr 50:40015764bbe6 4044 // of the plunger will compress the barrel spring at the peak of
mjr 50:40015764bbe6 4045 // the forward travel during the release. Assume that this is
mjr 50:40015764bbe6 4046 // linearly proportional to the starting retraction distance.
mjr 50:40015764bbe6 4047 // The barrel spring is about 1/6 the length of the main spring,
mjr 50:40015764bbe6 4048 // so figure it compresses by 1/6 the distance. (This is overly
mjr 53:9b2611964afc 4049 // simplistic and not very accurate, but it seems to give good
mjr 50:40015764bbe6 4050 // visual results, and that's all it's for.)
mjr 50:40015764bbe6 4051 f2.pos = -r.pos/6;
mjr 50:40015764bbe6 4052 }
mjr 50:40015764bbe6 4053 break;
mjr 50:40015764bbe6 4054
mjr 50:40015764bbe6 4055 case 1:
mjr 50:40015764bbe6 4056 // Phase 1 - acceleration. If we cross the zero point, trigger
mjr 50:40015764bbe6 4057 // the firing event. Otherwise, continue monitoring as long as we
mjr 50:40015764bbe6 4058 // see acceleration in the forward direction.
mjr 50:40015764bbe6 4059 if (r.pos <= 0)
mjr 50:40015764bbe6 4060 {
mjr 50:40015764bbe6 4061 // switch to the synthetic firing mode
mjr 50:40015764bbe6 4062 firingMode(2);
mjr 50:40015764bbe6 4063 z = f2.pos;
mjr 50:40015764bbe6 4064
mjr 50:40015764bbe6 4065 // note the start time for the firing phase
mjr 50:40015764bbe6 4066 f2.t = r.t;
mjr 53:9b2611964afc 4067
mjr 53:9b2611964afc 4068 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 4069 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 4070 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 4071 {
mjr 53:9b2611964afc 4072 // collect a new zero point for the average when we
mjr 53:9b2611964afc 4073 // come to rest
mjr 53:9b2611964afc 4074 calState = 0;
mjr 53:9b2611964afc 4075
mjr 53:9b2611964afc 4076 // collect average firing time statistics in millseconds, if
mjr 53:9b2611964afc 4077 // it's in range (20 to 255 ms)
mjr 53:9b2611964afc 4078 int dt = uint32_t(r.t - f1.t)/1000UL;
mjr 53:9b2611964afc 4079 if (dt >= 20 && dt <= 255)
mjr 53:9b2611964afc 4080 {
mjr 53:9b2611964afc 4081 calRlsTimeSum += dt;
mjr 53:9b2611964afc 4082 calRlsTimeN += 1;
mjr 53:9b2611964afc 4083 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 4084 }
mjr 53:9b2611964afc 4085 }
mjr 50:40015764bbe6 4086 }
mjr 50:40015764bbe6 4087 else if (v < vprv2)
mjr 50:40015764bbe6 4088 {
mjr 50:40015764bbe6 4089 // We're still accelerating, and we haven't crossed the zero
mjr 50:40015764bbe6 4090 // point yet - stay in phase 1. (Note that forward motion is
mjr 50:40015764bbe6 4091 // negative velocity, so accelerating means that the new
mjr 50:40015764bbe6 4092 // velocity is more negative than the previous one, which
mjr 50:40015764bbe6 4093 // is to say numerically less than - that's why the test
mjr 50:40015764bbe6 4094 // for acceleration is the seemingly backwards 'v < vprv'.)
mjr 50:40015764bbe6 4095
mjr 50:40015764bbe6 4096 // If we've been accelerating for at least 20ms, we're probably
mjr 50:40015764bbe6 4097 // really doing a release. Jump back to the recent local
mjr 50:40015764bbe6 4098 // maximum where the release *really* started. This is always
mjr 50:40015764bbe6 4099 // a bit before we started seeing sustained accleration, because
mjr 50:40015764bbe6 4100 // the plunger motion for the first few milliseconds is too slow
mjr 50:40015764bbe6 4101 // for our sensor precision to reliably detect acceleration.
mjr 50:40015764bbe6 4102 if (f1.pos != 0)
mjr 50:40015764bbe6 4103 {
mjr 50:40015764bbe6 4104 // we have a reset point - freeze there
mjr 50:40015764bbe6 4105 z = f1.pos;
mjr 50:40015764bbe6 4106 }
mjr 50:40015764bbe6 4107 else if (uint32_t(r.t - f1.t) >= 20000UL)
mjr 50:40015764bbe6 4108 {
mjr 50:40015764bbe6 4109 // it's been long enough - set a reset point.
mjr 50:40015764bbe6 4110 f1.pos = z = histLocalMax(r.t, 50000UL);
mjr 50:40015764bbe6 4111 }
mjr 50:40015764bbe6 4112 }
mjr 50:40015764bbe6 4113 else
mjr 50:40015764bbe6 4114 {
mjr 50:40015764bbe6 4115 // We're not accelerating. Cancel the firing event.
mjr 50:40015764bbe6 4116 firingMode(0);
mjr 53:9b2611964afc 4117 calState = 1;
mjr 50:40015764bbe6 4118 }
mjr 50:40015764bbe6 4119 break;
mjr 50:40015764bbe6 4120
mjr 50:40015764bbe6 4121 case 2:
mjr 50:40015764bbe6 4122 // Phase 2 - start of synthetic firing event. Report the fake
mjr 50:40015764bbe6 4123 // bounce for 25ms. VP polls the joystick about every 10ms, so
mjr 50:40015764bbe6 4124 // this should be enough time to guarantee that VP sees this
mjr 50:40015764bbe6 4125 // report at least once.
mjr 50:40015764bbe6 4126 if (uint32_t(r.t - f2.t) < 25000UL)
mjr 50:40015764bbe6 4127 {
mjr 50:40015764bbe6 4128 // report the bounce position
mjr 50:40015764bbe6 4129 z = f2.pos;
mjr 50:40015764bbe6 4130 }
mjr 50:40015764bbe6 4131 else
mjr 50:40015764bbe6 4132 {
mjr 50:40015764bbe6 4133 // it's been long enough - switch to phase 3, where we
mjr 50:40015764bbe6 4134 // report the park position until the real plunger comes
mjr 50:40015764bbe6 4135 // to rest
mjr 50:40015764bbe6 4136 firingMode(3);
mjr 50:40015764bbe6 4137 z = 0;
mjr 50:40015764bbe6 4138
mjr 50:40015764bbe6 4139 // set the start of the "stability window" to the rest position
mjr 50:40015764bbe6 4140 f3s.t = r.t;
mjr 50:40015764bbe6 4141 f3s.pos = 0;
mjr 50:40015764bbe6 4142
mjr 50:40015764bbe6 4143 // set the start of the "retraction window" to the actual position
mjr 50:40015764bbe6 4144 f3r = r;
mjr 50:40015764bbe6 4145 }
mjr 50:40015764bbe6 4146 break;
mjr 50:40015764bbe6 4147
mjr 50:40015764bbe6 4148 case 3:
mjr 50:40015764bbe6 4149 // Phase 3 - in synthetic firing event. Report the park position
mjr 50:40015764bbe6 4150 // until the plunger position stabilizes. Left to its own devices,
mjr 50:40015764bbe6 4151 // the plunger will usualy bounce off the barrel spring several
mjr 50:40015764bbe6 4152 // times before coming to rest, so we'll see oscillating motion
mjr 50:40015764bbe6 4153 // for a second or two. In the simplest case, we can aimply wait
mjr 50:40015764bbe6 4154 // for the plunger to stop moving for a short time. However, the
mjr 50:40015764bbe6 4155 // player might intervene by pulling the plunger back again, so
mjr 50:40015764bbe6 4156 // watch for that motion as well. If we're just bouncing freely,
mjr 50:40015764bbe6 4157 // we'll see the direction change frequently. If the player is
mjr 50:40015764bbe6 4158 // moving the plunger manually, the direction will be constant
mjr 50:40015764bbe6 4159 // for longer.
mjr 50:40015764bbe6 4160 if (v >= 0)
mjr 50:40015764bbe6 4161 {
mjr 50:40015764bbe6 4162 // We're moving back (or standing still). If this has been
mjr 50:40015764bbe6 4163 // going on for a while, the user must have taken control.
mjr 50:40015764bbe6 4164 if (uint32_t(r.t - f3r.t) > 65000UL)
mjr 50:40015764bbe6 4165 {
mjr 50:40015764bbe6 4166 // user has taken control - cancel firing mode
mjr 50:40015764bbe6 4167 firingMode(0);
mjr 50:40015764bbe6 4168 break;
mjr 50:40015764bbe6 4169 }
mjr 50:40015764bbe6 4170 }
mjr 50:40015764bbe6 4171 else
mjr 50:40015764bbe6 4172 {
mjr 50:40015764bbe6 4173 // forward motion - reset retraction window
mjr 50:40015764bbe6 4174 f3r.t = r.t;
mjr 50:40015764bbe6 4175 }
mjr 50:40015764bbe6 4176
mjr 53:9b2611964afc 4177 // Check if we're close to the last starting point. The joystick
mjr 53:9b2611964afc 4178 // positive axis range (0..4096) covers the retraction distance of
mjr 53:9b2611964afc 4179 // about 2.5", so 1" is about 1638 joystick units, hence 1/16" is
mjr 53:9b2611964afc 4180 // about 100 units.
mjr 53:9b2611964afc 4181 if (abs(r.pos - f3s.pos) < 100)
mjr 50:40015764bbe6 4182 {
mjr 53:9b2611964afc 4183 // It's at roughly the same position as the starting point.
mjr 53:9b2611964afc 4184 // Consider it stable if this has been true for 300ms.
mjr 50:40015764bbe6 4185 if (uint32_t(r.t - f3s.t) > 30000UL)
mjr 50:40015764bbe6 4186 {
mjr 50:40015764bbe6 4187 // we're done with the firing event
mjr 50:40015764bbe6 4188 firingMode(0);
mjr 50:40015764bbe6 4189 }
mjr 50:40015764bbe6 4190 else
mjr 50:40015764bbe6 4191 {
mjr 50:40015764bbe6 4192 // it's close to the last position but hasn't been
mjr 50:40015764bbe6 4193 // here long enough; stay in firing mode and continue
mjr 50:40015764bbe6 4194 // to report the park position
mjr 50:40015764bbe6 4195 z = 0;
mjr 50:40015764bbe6 4196 }
mjr 50:40015764bbe6 4197 }
mjr 50:40015764bbe6 4198 else
mjr 50:40015764bbe6 4199 {
mjr 50:40015764bbe6 4200 // It's not close enough to the last starting point, so use
mjr 50:40015764bbe6 4201 // this as a new starting point, and stay in firing mode.
mjr 50:40015764bbe6 4202 f3s = r;
mjr 50:40015764bbe6 4203 z = 0;
mjr 50:40015764bbe6 4204 }
mjr 50:40015764bbe6 4205 break;
mjr 50:40015764bbe6 4206 }
mjr 50:40015764bbe6 4207
mjr 50:40015764bbe6 4208 // save the velocity reading for next time
mjr 50:40015764bbe6 4209 vprv2 = vprv;
mjr 50:40015764bbe6 4210 vprv = v;
mjr 50:40015764bbe6 4211
mjr 50:40015764bbe6 4212 // add the new reading to the history
mjr 76:7f5912b6340e 4213 hist[histIdx] = r;
mjr 76:7f5912b6340e 4214 if (++histIdx > countof(hist))
mjr 76:7f5912b6340e 4215 histIdx = 0;
mjr 58:523fdcffbe6d 4216
mjr 69:cc5039284fac 4217 // apply the post-processing filter
mjr 69:cc5039284fac 4218 zf = applyPostFilter();
mjr 48:058ace2aed1d 4219 }
mjr 48:058ace2aed1d 4220 }
mjr 48:058ace2aed1d 4221
mjr 48:058ace2aed1d 4222 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 4223 int16_t getPosition()
mjr 58:523fdcffbe6d 4224 {
mjr 58:523fdcffbe6d 4225 // return the last filtered reading
mjr 58:523fdcffbe6d 4226 return zf;
mjr 55:4db125cd11a0 4227 }
mjr 58:523fdcffbe6d 4228
mjr 48:058ace2aed1d 4229 // get the timestamp of the current joystick report (microseconds)
mjr 50:40015764bbe6 4230 uint32_t getTimestamp() const { return nthHist(0).t; }
mjr 48:058ace2aed1d 4231
mjr 48:058ace2aed1d 4232 // Set calibration mode on or off
mjr 52:8298b2a73eb2 4233 void setCalMode(bool f)
mjr 48:058ace2aed1d 4234 {
mjr 52:8298b2a73eb2 4235 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 4236 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 4237 {
mjr 52:8298b2a73eb2 4238 // reset the calibration in the configuration
mjr 48:058ace2aed1d 4239 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 4240
mjr 52:8298b2a73eb2 4241 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 4242 calState = 0;
mjr 52:8298b2a73eb2 4243 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 4244 calZeroPosN = 0;
mjr 52:8298b2a73eb2 4245 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 4246 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 4247
mjr 52:8298b2a73eb2 4248 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 4249 PlungerReading r;
mjr 52:8298b2a73eb2 4250 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 4251 {
mjr 52:8298b2a73eb2 4252 // got a reading - use it as the initial zero point
mjr 69:cc5039284fac 4253 applyPreFilter(r);
mjr 52:8298b2a73eb2 4254 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 4255 onUpdateCal();
mjr 52:8298b2a73eb2 4256
mjr 52:8298b2a73eb2 4257 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 4258 calZeroStart = r;
mjr 52:8298b2a73eb2 4259 }
mjr 52:8298b2a73eb2 4260 else
mjr 52:8298b2a73eb2 4261 {
mjr 52:8298b2a73eb2 4262 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 4263 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 4264 onUpdateCal();
mjr 52:8298b2a73eb2 4265
mjr 52:8298b2a73eb2 4266 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 4267 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 4268 calZeroStart.t = 0;
mjr 53:9b2611964afc 4269 }
mjr 53:9b2611964afc 4270 }
mjr 53:9b2611964afc 4271 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 4272 {
mjr 53:9b2611964afc 4273 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 4274 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 4275 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 4276 // physically meaningless.
mjr 53:9b2611964afc 4277 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 4278 {
mjr 53:9b2611964afc 4279 // bad settings - reset to defaults
mjr 53:9b2611964afc 4280 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 4281 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 4282 onUpdateCal();
mjr 52:8298b2a73eb2 4283 }
mjr 52:8298b2a73eb2 4284 }
mjr 52:8298b2a73eb2 4285
mjr 48:058ace2aed1d 4286 // remember the new mode
mjr 52:8298b2a73eb2 4287 plungerCalMode = f;
mjr 48:058ace2aed1d 4288 }
mjr 48:058ace2aed1d 4289
mjr 76:7f5912b6340e 4290 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 4291 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 4292 // cached inverse is calculated as
mjr 76:7f5912b6340e 4293 //
mjr 76:7f5912b6340e 4294 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 4295 //
mjr 76:7f5912b6340e 4296 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 4297 //
mjr 76:7f5912b6340e 4298 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 4299 //
mjr 76:7f5912b6340e 4300 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 4301 int invCalRange;
mjr 76:7f5912b6340e 4302
mjr 76:7f5912b6340e 4303 // apply the calibration range to a reading
mjr 76:7f5912b6340e 4304 inline int applyCal(int reading)
mjr 76:7f5912b6340e 4305 {
mjr 76:7f5912b6340e 4306 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 4307 }
mjr 76:7f5912b6340e 4308
mjr 76:7f5912b6340e 4309 void onUpdateCal()
mjr 76:7f5912b6340e 4310 {
mjr 76:7f5912b6340e 4311 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 4312 }
mjr 76:7f5912b6340e 4313
mjr 48:058ace2aed1d 4314 // is a firing event in progress?
mjr 53:9b2611964afc 4315 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 4316
mjr 48:058ace2aed1d 4317 private:
mjr 52:8298b2a73eb2 4318
mjr 74:822a92bc11d2 4319 // Plunger data filtering mode: optionally apply filtering to the raw
mjr 74:822a92bc11d2 4320 // plunger sensor readings to try to reduce noise in the signal. This
mjr 74:822a92bc11d2 4321 // is designed for the TSL1410/12 optical sensors, where essentially all
mjr 74:822a92bc11d2 4322 // of the noise in the signal comes from lack of sharpness in the shadow
mjr 74:822a92bc11d2 4323 // edge. When the shadow is blurry, the edge detector has to pick a pixel,
mjr 74:822a92bc11d2 4324 // even though the edge is actually a gradient spanning several pixels.
mjr 74:822a92bc11d2 4325 // The edge detection algorithm decides on the exact pixel, but whatever
mjr 74:822a92bc11d2 4326 // the algorithm, the choice is going to be somewhat arbitrary given that
mjr 74:822a92bc11d2 4327 // there's really no one pixel that's "the edge" when the edge actually
mjr 74:822a92bc11d2 4328 // covers multiple pixels. This can make the choice of pixel sensitive to
mjr 74:822a92bc11d2 4329 // small changes in exposure and pixel respose from frame to frame, which
mjr 74:822a92bc11d2 4330 // means that the reported edge position can move by a pixel or two from
mjr 74:822a92bc11d2 4331 // one frame to the next even when the physical plunger is perfectly still.
mjr 74:822a92bc11d2 4332 // That's the noise we're talking about.
mjr 74:822a92bc11d2 4333 //
mjr 74:822a92bc11d2 4334 // We previously applied a mild hysteresis filter to the signal to try to
mjr 74:822a92bc11d2 4335 // eliminate this noise. The filter tracked the average over the last
mjr 74:822a92bc11d2 4336 // several samples, and rejected readings that wandered within a few
mjr 74:822a92bc11d2 4337 // pixels of the average. If a certain number of readings moved away from
mjr 74:822a92bc11d2 4338 // the average in the same direction, even by small amounts, the filter
mjr 74:822a92bc11d2 4339 // accepted the changes, on the assumption that they represented actual
mjr 74:822a92bc11d2 4340 // slow movement of the plunger. This filter was applied after the firing
mjr 74:822a92bc11d2 4341 // detection.
mjr 74:822a92bc11d2 4342 //
mjr 74:822a92bc11d2 4343 // I also tried a simpler filter that rejected changes that were too fast
mjr 74:822a92bc11d2 4344 // to be physically possible, as well as changes that were very close to
mjr 74:822a92bc11d2 4345 // the last reported position (i.e., simple hysteresis). The "too fast"
mjr 74:822a92bc11d2 4346 // filter was there to reject spurious readings where the edge detector
mjr 74:822a92bc11d2 4347 // mistook a bad pixel value as an edge.
mjr 74:822a92bc11d2 4348 //
mjr 74:822a92bc11d2 4349 // The new "mode 2" edge detector (see ccdSensor.h) seems to do a better
mjr 74:822a92bc11d2 4350 // job of rejecting pixel-level noise by itself than the older "mode 0"
mjr 74:822a92bc11d2 4351 // algorithm did, so I removed the filtering entirely. Any filtering has
mjr 74:822a92bc11d2 4352 // some downsides, so it's better to reduce noise in the underlying signal
mjr 74:822a92bc11d2 4353 // as much as possible first. It seems possible to get a very stable signal
mjr 74:822a92bc11d2 4354 // now with a combination of the mode 2 edge detector and optimizing the
mjr 74:822a92bc11d2 4355 // physical sensor arrangement, especially optimizing the light source to
mjr 74:822a92bc11d2 4356 // cast as sharp as shadow as possible and adjusting the brightness to
mjr 74:822a92bc11d2 4357 // maximize bright/dark contrast in the image.
mjr 74:822a92bc11d2 4358 //
mjr 74:822a92bc11d2 4359 // 0 = No filtering (current default)
mjr 74:822a92bc11d2 4360 // 1 = Filter the data after firing detection using moving average
mjr 74:822a92bc11d2 4361 // hysteresis filter (old version, used in most 2016 releases)
mjr 74:822a92bc11d2 4362 // 2 = Filter the data before firing detection using simple hysteresis
mjr 74:822a92bc11d2 4363 // plus spurious "too fast" motion rejection
mjr 74:822a92bc11d2 4364 //
mjr 73:4e8ce0b18915 4365 #define PLUNGER_FILTERING_MODE 0
mjr 73:4e8ce0b18915 4366
mjr 73:4e8ce0b18915 4367 #if PLUNGER_FILTERING_MODE == 0
mjr 69:cc5039284fac 4368 // Disable all filtering
mjr 74:822a92bc11d2 4369 inline void applyPreFilter(PlungerReading &r) { }
mjr 74:822a92bc11d2 4370 inline int applyPostFilter() { return z; }
mjr 73:4e8ce0b18915 4371 #elif PLUNGER_FILTERING_MODE == 1
mjr 73:4e8ce0b18915 4372 // Apply pre-processing filter. This filter is applied to the raw
mjr 73:4e8ce0b18915 4373 // value coming off the sensor, before calibration or fire-event
mjr 73:4e8ce0b18915 4374 // processing.
mjr 73:4e8ce0b18915 4375 void applyPreFilter(PlungerReading &r)
mjr 73:4e8ce0b18915 4376 {
mjr 73:4e8ce0b18915 4377 }
mjr 73:4e8ce0b18915 4378
mjr 73:4e8ce0b18915 4379 // Figure the next post-processing filtered value. This applies a
mjr 73:4e8ce0b18915 4380 // hysteresis filter to the last raw z value and returns the
mjr 73:4e8ce0b18915 4381 // filtered result.
mjr 73:4e8ce0b18915 4382 int applyPostFilter()
mjr 73:4e8ce0b18915 4383 {
mjr 73:4e8ce0b18915 4384 if (firing <= 1)
mjr 73:4e8ce0b18915 4385 {
mjr 73:4e8ce0b18915 4386 // Filter limit - 5 samples. Once we've been moving
mjr 73:4e8ce0b18915 4387 // in the same direction for this many samples, we'll
mjr 73:4e8ce0b18915 4388 // clear the history and start over.
mjr 73:4e8ce0b18915 4389 const int filterMask = 0x1f;
mjr 73:4e8ce0b18915 4390
mjr 73:4e8ce0b18915 4391 // figure the last average
mjr 73:4e8ce0b18915 4392 int lastAvg = int(filterSum / filterN);
mjr 73:4e8ce0b18915 4393
mjr 73:4e8ce0b18915 4394 // figure the direction of this sample relative to the average,
mjr 73:4e8ce0b18915 4395 // and shift it in to our bit mask of recent direction data
mjr 73:4e8ce0b18915 4396 if (z != lastAvg)
mjr 73:4e8ce0b18915 4397 {
mjr 73:4e8ce0b18915 4398 // shift the new direction bit into the vector
mjr 73:4e8ce0b18915 4399 filterDir <<= 1;
mjr 73:4e8ce0b18915 4400 if (z > lastAvg) filterDir |= 1;
mjr 73:4e8ce0b18915 4401 }
mjr 73:4e8ce0b18915 4402
mjr 73:4e8ce0b18915 4403 // keep only the last N readings, up to the filter limit
mjr 73:4e8ce0b18915 4404 filterDir &= filterMask;
mjr 73:4e8ce0b18915 4405
mjr 73:4e8ce0b18915 4406 // if we've been moving consistently in one direction (all 1's
mjr 73:4e8ce0b18915 4407 // or all 0's in the direction history vector), reset the average
mjr 73:4e8ce0b18915 4408 if (filterDir == 0x00 || filterDir == filterMask)
mjr 73:4e8ce0b18915 4409 {
mjr 73:4e8ce0b18915 4410 // motion away from the average - reset the average
mjr 73:4e8ce0b18915 4411 filterDir = 0x5555;
mjr 73:4e8ce0b18915 4412 filterN = 1;
mjr 73:4e8ce0b18915 4413 filterSum = (lastAvg + z)/2;
mjr 73:4e8ce0b18915 4414 return int16_t(filterSum);
mjr 73:4e8ce0b18915 4415 }
mjr 73:4e8ce0b18915 4416 else
mjr 73:4e8ce0b18915 4417 {
mjr 73:4e8ce0b18915 4418 // we're directionless - return the new average, with the
mjr 73:4e8ce0b18915 4419 // new sample included
mjr 73:4e8ce0b18915 4420 filterSum += z;
mjr 73:4e8ce0b18915 4421 ++filterN;
mjr 73:4e8ce0b18915 4422 return int16_t(filterSum / filterN);
mjr 73:4e8ce0b18915 4423 }
mjr 73:4e8ce0b18915 4424 }
mjr 73:4e8ce0b18915 4425 else
mjr 73:4e8ce0b18915 4426 {
mjr 73:4e8ce0b18915 4427 // firing mode - skip the filter
mjr 73:4e8ce0b18915 4428 filterN = 1;
mjr 73:4e8ce0b18915 4429 filterSum = z;
mjr 73:4e8ce0b18915 4430 filterDir = 0x5555;
mjr 73:4e8ce0b18915 4431 return z;
mjr 73:4e8ce0b18915 4432 }
mjr 73:4e8ce0b18915 4433 }
mjr 73:4e8ce0b18915 4434 #elif PLUNGER_FILTERING_MODE == 2
mjr 69:cc5039284fac 4435 // Apply pre-processing filter. This filter is applied to the raw
mjr 69:cc5039284fac 4436 // value coming off the sensor, before calibration or fire-event
mjr 69:cc5039284fac 4437 // processing.
mjr 69:cc5039284fac 4438 void applyPreFilter(PlungerReading &r)
mjr 69:cc5039284fac 4439 {
mjr 69:cc5039284fac 4440 // get the previous raw reading
mjr 69:cc5039284fac 4441 PlungerReading prv = pre.raw;
mjr 69:cc5039284fac 4442
mjr 69:cc5039284fac 4443 // the new reading is the previous raw reading next time, no
mjr 69:cc5039284fac 4444 // matter how we end up filtering it
mjr 69:cc5039284fac 4445 pre.raw = r;
mjr 69:cc5039284fac 4446
mjr 69:cc5039284fac 4447 // If it's too big an excursion from the previous raw reading,
mjr 69:cc5039284fac 4448 // ignore it and repeat the previous reported reading. This
mjr 69:cc5039284fac 4449 // filters out anomalous spikes where we suddenly jump to a
mjr 69:cc5039284fac 4450 // level that's too far away to be possible. Real plungers
mjr 69:cc5039284fac 4451 // take about 60ms to travel the full distance when released,
mjr 69:cc5039284fac 4452 // so assuming constant acceleration, the maximum realistic
mjr 69:cc5039284fac 4453 // speed is about 2.200 distance units (on our 0..0xffff scale)
mjr 69:cc5039284fac 4454 // per microsecond.
mjr 69:cc5039284fac 4455 //
mjr 69:cc5039284fac 4456 // On the other hand, if the new reading is too *close* to the
mjr 69:cc5039284fac 4457 // previous reading, use the previous reported reading. This
mjr 69:cc5039284fac 4458 // filters out jitter around a stationary position.
mjr 69:cc5039284fac 4459 const float maxDist = 2.184f*uint32_t(r.t - prv.t);
mjr 69:cc5039284fac 4460 const int minDist = 256;
mjr 69:cc5039284fac 4461 const int delta = abs(r.pos - prv.pos);
mjr 69:cc5039284fac 4462 if (maxDist > minDist && delta > maxDist)
mjr 69:cc5039284fac 4463 {
mjr 69:cc5039284fac 4464 // too big an excursion - discard this reading by reporting
mjr 69:cc5039284fac 4465 // the last reported reading instead
mjr 69:cc5039284fac 4466 r.pos = pre.reported;
mjr 69:cc5039284fac 4467 }
mjr 69:cc5039284fac 4468 else if (delta < minDist)
mjr 69:cc5039284fac 4469 {
mjr 69:cc5039284fac 4470 // too close to the prior reading - apply hysteresis
mjr 69:cc5039284fac 4471 r.pos = pre.reported;
mjr 69:cc5039284fac 4472 }
mjr 69:cc5039284fac 4473 else
mjr 69:cc5039284fac 4474 {
mjr 69:cc5039284fac 4475 // the reading is in range - keep it, and remember it as
mjr 69:cc5039284fac 4476 // the last reported reading
mjr 69:cc5039284fac 4477 pre.reported = r.pos;
mjr 69:cc5039284fac 4478 }
mjr 69:cc5039284fac 4479 }
mjr 69:cc5039284fac 4480
mjr 69:cc5039284fac 4481 // pre-filter data
mjr 69:cc5039284fac 4482 struct PreFilterData {
mjr 69:cc5039284fac 4483 PreFilterData()
mjr 69:cc5039284fac 4484 : reported(0)
mjr 69:cc5039284fac 4485 {
mjr 69:cc5039284fac 4486 raw.t = 0;
mjr 69:cc5039284fac 4487 raw.pos = 0;
mjr 69:cc5039284fac 4488 }
mjr 69:cc5039284fac 4489 PlungerReading raw; // previous raw sensor reading
mjr 69:cc5039284fac 4490 int reported; // previous reported reading
mjr 69:cc5039284fac 4491 } pre;
mjr 69:cc5039284fac 4492
mjr 69:cc5039284fac 4493
mjr 69:cc5039284fac 4494 // Apply the post-processing filter. This filter is applied after
mjr 69:cc5039284fac 4495 // the fire-event processing. In the past, this used hysteresis to
mjr 69:cc5039284fac 4496 // try to smooth out jittering readings for a stationary plunger.
mjr 69:cc5039284fac 4497 // We've switched to a different approach that massages the readings
mjr 69:cc5039284fac 4498 // coming off the sensor before
mjr 69:cc5039284fac 4499 int applyPostFilter()
mjr 69:cc5039284fac 4500 {
mjr 69:cc5039284fac 4501 return z;
mjr 69:cc5039284fac 4502 }
mjr 69:cc5039284fac 4503 #endif
mjr 58:523fdcffbe6d 4504
mjr 58:523fdcffbe6d 4505 void initFilter()
mjr 58:523fdcffbe6d 4506 {
mjr 58:523fdcffbe6d 4507 filterSum = 0;
mjr 58:523fdcffbe6d 4508 filterN = 1;
mjr 58:523fdcffbe6d 4509 filterDir = 0x5555;
mjr 58:523fdcffbe6d 4510 }
mjr 58:523fdcffbe6d 4511 int64_t filterSum;
mjr 58:523fdcffbe6d 4512 int64_t filterN;
mjr 58:523fdcffbe6d 4513 uint16_t filterDir;
mjr 58:523fdcffbe6d 4514
mjr 58:523fdcffbe6d 4515
mjr 52:8298b2a73eb2 4516 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 4517 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 4518 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 4519 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 4520 // 0 = waiting to settle
mjr 52:8298b2a73eb2 4521 // 1 = at rest
mjr 52:8298b2a73eb2 4522 // 2 = retracting
mjr 52:8298b2a73eb2 4523 // 3 = possibly releasing
mjr 52:8298b2a73eb2 4524 uint8_t calState;
mjr 52:8298b2a73eb2 4525
mjr 52:8298b2a73eb2 4526 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 4527 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 4528 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 4529 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 4530 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 4531 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 4532 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 4533 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 4534 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 4535 long calZeroPosSum;
mjr 52:8298b2a73eb2 4536 int calZeroPosN;
mjr 52:8298b2a73eb2 4537
mjr 52:8298b2a73eb2 4538 // Calibration release time statistics.
mjr 52:8298b2a73eb2 4539 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 4540 long calRlsTimeSum;
mjr 52:8298b2a73eb2 4541 int calRlsTimeN;
mjr 52:8298b2a73eb2 4542
mjr 48:058ace2aed1d 4543 // set a firing mode
mjr 48:058ace2aed1d 4544 inline void firingMode(int m)
mjr 48:058ace2aed1d 4545 {
mjr 48:058ace2aed1d 4546 firing = m;
mjr 48:058ace2aed1d 4547 }
mjr 48:058ace2aed1d 4548
mjr 48:058ace2aed1d 4549 // Find the most recent local maximum in the history data, up to
mjr 48:058ace2aed1d 4550 // the given time limit.
mjr 48:058ace2aed1d 4551 int histLocalMax(uint32_t tcur, uint32_t dt)
mjr 48:058ace2aed1d 4552 {
mjr 48:058ace2aed1d 4553 // start with the prior entry
mjr 48:058ace2aed1d 4554 int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1;
mjr 48:058ace2aed1d 4555 int hi = hist[idx].pos;
mjr 48:058ace2aed1d 4556
mjr 48:058ace2aed1d 4557 // scan backwards for a local maximum
mjr 48:058ace2aed1d 4558 for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1)
mjr 48:058ace2aed1d 4559 {
mjr 48:058ace2aed1d 4560 // if this isn't within the time window, stop
mjr 48:058ace2aed1d 4561 if (uint32_t(tcur - hist[idx].t) > dt)
mjr 48:058ace2aed1d 4562 break;
mjr 48:058ace2aed1d 4563
mjr 48:058ace2aed1d 4564 // if this isn't above the current hith, stop
mjr 48:058ace2aed1d 4565 if (hist[idx].pos < hi)
mjr 48:058ace2aed1d 4566 break;
mjr 48:058ace2aed1d 4567
mjr 48:058ace2aed1d 4568 // this is the new high
mjr 48:058ace2aed1d 4569 hi = hist[idx].pos;
mjr 48:058ace2aed1d 4570 }
mjr 48:058ace2aed1d 4571
mjr 48:058ace2aed1d 4572 // return the local maximum
mjr 48:058ace2aed1d 4573 return hi;
mjr 48:058ace2aed1d 4574 }
mjr 48:058ace2aed1d 4575
mjr 50:40015764bbe6 4576 // velocity at previous reading, and the one before that
mjr 76:7f5912b6340e 4577 int vprv, vprv2;
mjr 48:058ace2aed1d 4578
mjr 48:058ace2aed1d 4579 // Circular buffer of recent readings. We keep a short history
mjr 48:058ace2aed1d 4580 // of readings to analyze during firing events. We can only identify
mjr 48:058ace2aed1d 4581 // a firing event once it's somewhat under way, so we need a little
mjr 48:058ace2aed1d 4582 // retrospective information to accurately determine after the fact
mjr 48:058ace2aed1d 4583 // exactly when it started. We throttle our readings to no more
mjr 74:822a92bc11d2 4584 // than one every 1ms, so we have at least N*1ms of history in this
mjr 48:058ace2aed1d 4585 // array.
mjr 74:822a92bc11d2 4586 PlungerReading hist[32];
mjr 48:058ace2aed1d 4587 int histIdx;
mjr 49:37bd97eb7688 4588
mjr 50:40015764bbe6 4589 // get the nth history item (0=last, 1=2nd to last, etc)
mjr 74:822a92bc11d2 4590 inline const PlungerReading &nthHist(int n) const
mjr 50:40015764bbe6 4591 {
mjr 50:40015764bbe6 4592 // histIdx-1 is the last written; go from there
mjr 50:40015764bbe6 4593 n = histIdx - 1 - n;
mjr 50:40015764bbe6 4594
mjr 50:40015764bbe6 4595 // adjust for wrapping
mjr 50:40015764bbe6 4596 if (n < 0)
mjr 50:40015764bbe6 4597 n += countof(hist);
mjr 50:40015764bbe6 4598
mjr 50:40015764bbe6 4599 // return the item
mjr 50:40015764bbe6 4600 return hist[n];
mjr 50:40015764bbe6 4601 }
mjr 48:058ace2aed1d 4602
mjr 48:058ace2aed1d 4603 // Firing event state.
mjr 48:058ace2aed1d 4604 //
mjr 48:058ace2aed1d 4605 // 0 - Default state. We report the real instantaneous plunger
mjr 48:058ace2aed1d 4606 // position to the joystick interface.
mjr 48:058ace2aed1d 4607 //
mjr 53:9b2611964afc 4608 // 1 - Moving forward
mjr 48:058ace2aed1d 4609 //
mjr 53:9b2611964afc 4610 // 2 - Accelerating
mjr 48:058ace2aed1d 4611 //
mjr 53:9b2611964afc 4612 // 3 - Firing. We report the rest position for a minimum interval,
mjr 53:9b2611964afc 4613 // or until the real plunger comes to rest somewhere.
mjr 48:058ace2aed1d 4614 //
mjr 48:058ace2aed1d 4615 int firing;
mjr 48:058ace2aed1d 4616
mjr 51:57eb311faafa 4617 // Position/timestamp at start of firing phase 1. When we see a
mjr 51:57eb311faafa 4618 // sustained forward acceleration, we freeze joystick reports at
mjr 51:57eb311faafa 4619 // the recent local maximum, on the assumption that this was the
mjr 51:57eb311faafa 4620 // start of the release. If this is zero, it means that we're
mjr 51:57eb311faafa 4621 // monitoring accelerating motion but haven't seen it for long
mjr 51:57eb311faafa 4622 // enough yet to be confident that a release is in progress.
mjr 48:058ace2aed1d 4623 PlungerReading f1;
mjr 48:058ace2aed1d 4624
mjr 48:058ace2aed1d 4625 // Position/timestamp at start of firing phase 2. The position is
mjr 48:058ace2aed1d 4626 // the fake "bounce" position we report during this phase, and the
mjr 48:058ace2aed1d 4627 // timestamp tells us when the phase began so that we can end it
mjr 48:058ace2aed1d 4628 // after enough time elapses.
mjr 48:058ace2aed1d 4629 PlungerReading f2;
mjr 48:058ace2aed1d 4630
mjr 48:058ace2aed1d 4631 // Position/timestamp of start of stability window during phase 3.
mjr 48:058ace2aed1d 4632 // We use this to determine when the plunger comes to rest. We set
mjr 51:57eb311faafa 4633 // this at the beginning of phase 3, and then reset it when the
mjr 48:058ace2aed1d 4634 // plunger moves too far from the last position.
mjr 48:058ace2aed1d 4635 PlungerReading f3s;
mjr 48:058ace2aed1d 4636
mjr 48:058ace2aed1d 4637 // Position/timestamp of start of retraction window during phase 3.
mjr 48:058ace2aed1d 4638 // We use this to determine if the user is drawing the plunger back.
mjr 48:058ace2aed1d 4639 // If we see retraction motion for more than about 65ms, we assume
mjr 48:058ace2aed1d 4640 // that the user has taken over, because we should see forward
mjr 48:058ace2aed1d 4641 // motion within this timeframe if the plunger is just bouncing
mjr 48:058ace2aed1d 4642 // freely.
mjr 48:058ace2aed1d 4643 PlungerReading f3r;
mjr 48:058ace2aed1d 4644
mjr 58:523fdcffbe6d 4645 // next raw (unfiltered) Z value to report to the joystick interface
mjr 58:523fdcffbe6d 4646 // (in joystick distance units)
mjr 48:058ace2aed1d 4647 int z;
mjr 48:058ace2aed1d 4648
mjr 58:523fdcffbe6d 4649 // next filtered Z value to report to the joystick interface
mjr 58:523fdcffbe6d 4650 int zf;
mjr 48:058ace2aed1d 4651 };
mjr 48:058ace2aed1d 4652
mjr 48:058ace2aed1d 4653 // plunger reader singleton
mjr 48:058ace2aed1d 4654 PlungerReader plungerReader;
mjr 48:058ace2aed1d 4655
mjr 48:058ace2aed1d 4656 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 4657 //
mjr 48:058ace2aed1d 4658 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 4659 //
mjr 48:058ace2aed1d 4660 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 4661 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 4662 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 4663 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 4664 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 4665 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 4666 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 4667 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 4668 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 4669 //
mjr 48:058ace2aed1d 4670 // This feature has two configuration components:
mjr 48:058ace2aed1d 4671 //
mjr 48:058ace2aed1d 4672 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 4673 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 4674 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 4675 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 4676 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 4677 // plunger/launch button connection.
mjr 48:058ace2aed1d 4678 //
mjr 48:058ace2aed1d 4679 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 4680 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 4681 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 4682 // position.
mjr 48:058ace2aed1d 4683 //
mjr 48:058ace2aed1d 4684 class ZBLaunchBall
mjr 48:058ace2aed1d 4685 {
mjr 48:058ace2aed1d 4686 public:
mjr 48:058ace2aed1d 4687 ZBLaunchBall()
mjr 48:058ace2aed1d 4688 {
mjr 48:058ace2aed1d 4689 // start in the default state
mjr 48:058ace2aed1d 4690 lbState = 0;
mjr 53:9b2611964afc 4691 btnState = false;
mjr 48:058ace2aed1d 4692 }
mjr 48:058ace2aed1d 4693
mjr 48:058ace2aed1d 4694 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 4695 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 4696 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 4697 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 4698 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 4699 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 4700 void update()
mjr 48:058ace2aed1d 4701 {
mjr 53:9b2611964afc 4702 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 4703 // plunger firing event
mjr 53:9b2611964afc 4704 if (zbLaunchOn)
mjr 48:058ace2aed1d 4705 {
mjr 53:9b2611964afc 4706 // note the new position
mjr 48:058ace2aed1d 4707 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 4708
mjr 53:9b2611964afc 4709 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 4710 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 4711
mjr 53:9b2611964afc 4712 // check the state
mjr 48:058ace2aed1d 4713 switch (lbState)
mjr 48:058ace2aed1d 4714 {
mjr 48:058ace2aed1d 4715 case 0:
mjr 53:9b2611964afc 4716 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 4717 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 4718 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 4719 // the button.
mjr 53:9b2611964afc 4720 if (plungerReader.isFiring())
mjr 53:9b2611964afc 4721 {
mjr 53:9b2611964afc 4722 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 4723 lbTimer.reset();
mjr 53:9b2611964afc 4724 lbTimer.start();
mjr 53:9b2611964afc 4725 setButton(true);
mjr 53:9b2611964afc 4726
mjr 53:9b2611964afc 4727 // switch to state 1
mjr 53:9b2611964afc 4728 lbState = 1;
mjr 53:9b2611964afc 4729 }
mjr 48:058ace2aed1d 4730 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 4731 {
mjr 53:9b2611964afc 4732 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 4733 // button as long as we're pushed forward
mjr 53:9b2611964afc 4734 setButton(true);
mjr 53:9b2611964afc 4735 }
mjr 53:9b2611964afc 4736 else
mjr 53:9b2611964afc 4737 {
mjr 53:9b2611964afc 4738 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 4739 setButton(false);
mjr 53:9b2611964afc 4740 }
mjr 48:058ace2aed1d 4741 break;
mjr 48:058ace2aed1d 4742
mjr 48:058ace2aed1d 4743 case 1:
mjr 53:9b2611964afc 4744 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 4745 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 4746 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 4747 {
mjr 53:9b2611964afc 4748 // timer expired - turn off the button
mjr 53:9b2611964afc 4749 setButton(false);
mjr 53:9b2611964afc 4750
mjr 53:9b2611964afc 4751 // switch to state 2
mjr 53:9b2611964afc 4752 lbState = 2;
mjr 53:9b2611964afc 4753 }
mjr 48:058ace2aed1d 4754 break;
mjr 48:058ace2aed1d 4755
mjr 48:058ace2aed1d 4756 case 2:
mjr 53:9b2611964afc 4757 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 4758 // plunger launch event to end.
mjr 53:9b2611964afc 4759 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 4760 {
mjr 53:9b2611964afc 4761 // firing event done - return to default state
mjr 53:9b2611964afc 4762 lbState = 0;
mjr 53:9b2611964afc 4763 }
mjr 48:058ace2aed1d 4764 break;
mjr 48:058ace2aed1d 4765 }
mjr 53:9b2611964afc 4766 }
mjr 53:9b2611964afc 4767 else
mjr 53:9b2611964afc 4768 {
mjr 53:9b2611964afc 4769 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 4770 setButton(false);
mjr 48:058ace2aed1d 4771
mjr 53:9b2611964afc 4772 // return to the default state
mjr 53:9b2611964afc 4773 lbState = 0;
mjr 48:058ace2aed1d 4774 }
mjr 48:058ace2aed1d 4775 }
mjr 53:9b2611964afc 4776
mjr 53:9b2611964afc 4777 // Set the button state
mjr 53:9b2611964afc 4778 void setButton(bool on)
mjr 53:9b2611964afc 4779 {
mjr 53:9b2611964afc 4780 if (btnState != on)
mjr 53:9b2611964afc 4781 {
mjr 53:9b2611964afc 4782 // remember the new state
mjr 53:9b2611964afc 4783 btnState = on;
mjr 53:9b2611964afc 4784
mjr 53:9b2611964afc 4785 // update the virtual button state
mjr 65:739875521aae 4786 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 4787 }
mjr 53:9b2611964afc 4788 }
mjr 53:9b2611964afc 4789
mjr 48:058ace2aed1d 4790 private:
mjr 48:058ace2aed1d 4791 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 4792 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 4793 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 4794 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 4795 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 4796 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 4797 //
mjr 48:058ace2aed1d 4798 // States:
mjr 48:058ace2aed1d 4799 // 0 = default
mjr 53:9b2611964afc 4800 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 4801 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 4802 // firing event to end)
mjr 53:9b2611964afc 4803 uint8_t lbState;
mjr 48:058ace2aed1d 4804
mjr 53:9b2611964afc 4805 // button state
mjr 53:9b2611964afc 4806 bool btnState;
mjr 48:058ace2aed1d 4807
mjr 48:058ace2aed1d 4808 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 4809 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 4810 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 4811 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 4812 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 4813 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 4814 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 4815 Timer lbTimer;
mjr 48:058ace2aed1d 4816 };
mjr 48:058ace2aed1d 4817
mjr 35:e959ffba78fd 4818 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4819 //
mjr 35:e959ffba78fd 4820 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 4821 //
mjr 54:fd77a6b2f76c 4822 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 4823 {
mjr 35:e959ffba78fd 4824 // disconnect from USB
mjr 54:fd77a6b2f76c 4825 if (disconnect)
mjr 54:fd77a6b2f76c 4826 js.disconnect();
mjr 35:e959ffba78fd 4827
mjr 35:e959ffba78fd 4828 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 4829 wait_us(pause_us);
mjr 35:e959ffba78fd 4830
mjr 35:e959ffba78fd 4831 // reset the device
mjr 35:e959ffba78fd 4832 NVIC_SystemReset();
mjr 35:e959ffba78fd 4833 while (true) { }
mjr 35:e959ffba78fd 4834 }
mjr 35:e959ffba78fd 4835
mjr 35:e959ffba78fd 4836 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4837 //
mjr 35:e959ffba78fd 4838 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 4839 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 4840 //
mjr 35:e959ffba78fd 4841 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 4842 {
mjr 35:e959ffba78fd 4843 int tmp;
mjr 35:e959ffba78fd 4844 switch (cfg.orientation)
mjr 35:e959ffba78fd 4845 {
mjr 35:e959ffba78fd 4846 case OrientationFront:
mjr 35:e959ffba78fd 4847 tmp = x;
mjr 35:e959ffba78fd 4848 x = y;
mjr 35:e959ffba78fd 4849 y = tmp;
mjr 35:e959ffba78fd 4850 break;
mjr 35:e959ffba78fd 4851
mjr 35:e959ffba78fd 4852 case OrientationLeft:
mjr 35:e959ffba78fd 4853 x = -x;
mjr 35:e959ffba78fd 4854 break;
mjr 35:e959ffba78fd 4855
mjr 35:e959ffba78fd 4856 case OrientationRight:
mjr 35:e959ffba78fd 4857 y = -y;
mjr 35:e959ffba78fd 4858 break;
mjr 35:e959ffba78fd 4859
mjr 35:e959ffba78fd 4860 case OrientationRear:
mjr 35:e959ffba78fd 4861 tmp = -x;
mjr 35:e959ffba78fd 4862 x = -y;
mjr 35:e959ffba78fd 4863 y = tmp;
mjr 35:e959ffba78fd 4864 break;
mjr 35:e959ffba78fd 4865 }
mjr 35:e959ffba78fd 4866 }
mjr 35:e959ffba78fd 4867
mjr 35:e959ffba78fd 4868 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4869 //
mjr 35:e959ffba78fd 4870 // Calibration button state:
mjr 35:e959ffba78fd 4871 // 0 = not pushed
mjr 35:e959ffba78fd 4872 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 4873 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 4874 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 4875 int calBtnState = 0;
mjr 35:e959ffba78fd 4876
mjr 35:e959ffba78fd 4877 // calibration button debounce timer
mjr 35:e959ffba78fd 4878 Timer calBtnTimer;
mjr 35:e959ffba78fd 4879
mjr 35:e959ffba78fd 4880 // calibration button light state
mjr 35:e959ffba78fd 4881 int calBtnLit = false;
mjr 35:e959ffba78fd 4882
mjr 35:e959ffba78fd 4883
mjr 35:e959ffba78fd 4884 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4885 //
mjr 40:cc0d9814522b 4886 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 4887 //
mjr 40:cc0d9814522b 4888
mjr 40:cc0d9814522b 4889 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 4890 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 4891 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 4892 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 53:9b2611964afc 4893 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 4894 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 4895 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 4896 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 4897 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 4898 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 4899
mjr 40:cc0d9814522b 4900 // redefine everything for the SET messages
mjr 40:cc0d9814522b 4901 #undef if_msg_valid
mjr 40:cc0d9814522b 4902 #undef v_byte
mjr 40:cc0d9814522b 4903 #undef v_ui16
mjr 40:cc0d9814522b 4904 #undef v_pin
mjr 53:9b2611964afc 4905 #undef v_byte_ro
mjr 74:822a92bc11d2 4906 #undef v_ui32_ro
mjr 74:822a92bc11d2 4907 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 4908 #undef v_func
mjr 38:091e511ce8a0 4909
mjr 40:cc0d9814522b 4910 // Handle GET messages - read variable values and return in USB message daa
mjr 40:cc0d9814522b 4911 #define if_msg_valid(test)
mjr 53:9b2611964afc 4912 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 4913 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 4914 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 4915 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 4916 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 4917 #define VAR_MODE_SET 0 // we're in GET mode
mjr 76:7f5912b6340e 4918 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 4919 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 4920
mjr 35:e959ffba78fd 4921
mjr 35:e959ffba78fd 4922 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4923 //
mjr 35:e959ffba78fd 4924 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 4925 // LedWiz protocol.
mjr 33:d832bcab089e 4926 //
mjr 48:058ace2aed1d 4927 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js)
mjr 35:e959ffba78fd 4928 {
mjr 38:091e511ce8a0 4929 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 4930 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 4931 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 4932 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 4933 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 4934 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 4935 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 4936 // So our full protocol is as follows:
mjr 38:091e511ce8a0 4937 //
mjr 38:091e511ce8a0 4938 // first byte =
mjr 74:822a92bc11d2 4939 // 0-48 -> PBA
mjr 74:822a92bc11d2 4940 // 64 -> SBA
mjr 38:091e511ce8a0 4941 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 4942 // 129-132 -> PBA
mjr 38:091e511ce8a0 4943 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 4944 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 4945 // other -> reserved for future use
mjr 38:091e511ce8a0 4946 //
mjr 39:b3815a1c3802 4947 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 4948 if (data[0] == 64)
mjr 35:e959ffba78fd 4949 {
mjr 74:822a92bc11d2 4950 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 4951 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 4952 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 4953 sba_sbx(0, data);
mjr 74:822a92bc11d2 4954
mjr 74:822a92bc11d2 4955 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 4956 pbaIdx = 0;
mjr 38:091e511ce8a0 4957 }
mjr 38:091e511ce8a0 4958 else if (data[0] == 65)
mjr 38:091e511ce8a0 4959 {
mjr 38:091e511ce8a0 4960 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 4961 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 4962 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 4963 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 4964 // message type.
mjr 39:b3815a1c3802 4965 switch (data[1])
mjr 38:091e511ce8a0 4966 {
mjr 39:b3815a1c3802 4967 case 0:
mjr 39:b3815a1c3802 4968 // No Op
mjr 39:b3815a1c3802 4969 break;
mjr 39:b3815a1c3802 4970
mjr 39:b3815a1c3802 4971 case 1:
mjr 38:091e511ce8a0 4972 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 4973 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 4974 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 4975 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 4976 {
mjr 39:b3815a1c3802 4977
mjr 39:b3815a1c3802 4978 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 4979 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 4980 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 4981
mjr 39:b3815a1c3802 4982 // we'll need a reset if the LedWiz unit number is changing
mjr 39:b3815a1c3802 4983 bool needReset = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 4984
mjr 39:b3815a1c3802 4985 // set the configuration parameters from the message
mjr 39:b3815a1c3802 4986 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 4987 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 4988
mjr 39:b3815a1c3802 4989 // save the configuration
mjr 39:b3815a1c3802 4990 saveConfigToFlash();
mjr 39:b3815a1c3802 4991
mjr 39:b3815a1c3802 4992 // reboot if necessary
mjr 39:b3815a1c3802 4993 if (needReset)
mjr 39:b3815a1c3802 4994 reboot(js);
mjr 39:b3815a1c3802 4995 }
mjr 39:b3815a1c3802 4996 break;
mjr 38:091e511ce8a0 4997
mjr 39:b3815a1c3802 4998 case 2:
mjr 38:091e511ce8a0 4999 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 5000 // (No parameters)
mjr 38:091e511ce8a0 5001
mjr 38:091e511ce8a0 5002 // enter calibration mode
mjr 38:091e511ce8a0 5003 calBtnState = 3;
mjr 52:8298b2a73eb2 5004 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 5005 calBtnTimer.reset();
mjr 39:b3815a1c3802 5006 break;
mjr 39:b3815a1c3802 5007
mjr 39:b3815a1c3802 5008 case 3:
mjr 52:8298b2a73eb2 5009 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 5010 // data[2] = flag bits
mjr 53:9b2611964afc 5011 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 5012 reportPlungerStat = true;
mjr 53:9b2611964afc 5013 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 5014 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 5015
mjr 38:091e511ce8a0 5016 // show purple until we finish sending the report
mjr 38:091e511ce8a0 5017 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 5018 break;
mjr 39:b3815a1c3802 5019
mjr 39:b3815a1c3802 5020 case 4:
mjr 38:091e511ce8a0 5021 // 4 = hardware configuration query
mjr 38:091e511ce8a0 5022 // (No parameters)
mjr 38:091e511ce8a0 5023 js.reportConfig(
mjr 38:091e511ce8a0 5024 numOutputs,
mjr 38:091e511ce8a0 5025 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 5026 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 5027 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 5028 true, // we support sbx/pbx extensions
mjr 75:677892300e7a 5029 xmalloc_rem); // remaining memory size
mjr 39:b3815a1c3802 5030 break;
mjr 39:b3815a1c3802 5031
mjr 39:b3815a1c3802 5032 case 5:
mjr 38:091e511ce8a0 5033 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 5034 allOutputsOff();
mjr 39:b3815a1c3802 5035 break;
mjr 39:b3815a1c3802 5036
mjr 39:b3815a1c3802 5037 case 6:
mjr 38:091e511ce8a0 5038 // 6 = Save configuration to flash.
mjr 38:091e511ce8a0 5039 saveConfigToFlash();
mjr 38:091e511ce8a0 5040
mjr 53:9b2611964afc 5041 // before disconnecting, pause for the delay time specified in
mjr 53:9b2611964afc 5042 // the parameter byte (in seconds)
mjr 53:9b2611964afc 5043 rebootTime_us = data[2] * 1000000L;
mjr 53:9b2611964afc 5044 rebootTimer.start();
mjr 39:b3815a1c3802 5045 break;
mjr 40:cc0d9814522b 5046
mjr 40:cc0d9814522b 5047 case 7:
mjr 40:cc0d9814522b 5048 // 7 = Device ID report
mjr 53:9b2611964afc 5049 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 5050 js.reportID(data[2]);
mjr 40:cc0d9814522b 5051 break;
mjr 40:cc0d9814522b 5052
mjr 40:cc0d9814522b 5053 case 8:
mjr 40:cc0d9814522b 5054 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 5055 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 5056 setNightMode(data[2]);
mjr 40:cc0d9814522b 5057 break;
mjr 52:8298b2a73eb2 5058
mjr 52:8298b2a73eb2 5059 case 9:
mjr 52:8298b2a73eb2 5060 // 9 = Config variable query.
mjr 52:8298b2a73eb2 5061 // data[2] = config var ID
mjr 52:8298b2a73eb2 5062 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 5063 {
mjr 53:9b2611964afc 5064 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 5065 // the rest of the buffer
mjr 52:8298b2a73eb2 5066 uint8_t reply[8];
mjr 52:8298b2a73eb2 5067 reply[1] = data[2];
mjr 52:8298b2a73eb2 5068 reply[2] = data[3];
mjr 53:9b2611964afc 5069 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 5070
mjr 52:8298b2a73eb2 5071 // query the value
mjr 52:8298b2a73eb2 5072 configVarGet(reply);
mjr 52:8298b2a73eb2 5073
mjr 52:8298b2a73eb2 5074 // send the reply
mjr 52:8298b2a73eb2 5075 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 5076 }
mjr 52:8298b2a73eb2 5077 break;
mjr 53:9b2611964afc 5078
mjr 53:9b2611964afc 5079 case 10:
mjr 53:9b2611964afc 5080 // 10 = Build ID query.
mjr 53:9b2611964afc 5081 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 5082 break;
mjr 73:4e8ce0b18915 5083
mjr 73:4e8ce0b18915 5084 case 11:
mjr 73:4e8ce0b18915 5085 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 5086 // data[2] = operation:
mjr 73:4e8ce0b18915 5087 // 0 = turn relay off
mjr 73:4e8ce0b18915 5088 // 1 = turn relay on
mjr 73:4e8ce0b18915 5089 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 5090 TVRelay(data[2]);
mjr 73:4e8ce0b18915 5091 break;
mjr 73:4e8ce0b18915 5092
mjr 73:4e8ce0b18915 5093 case 12:
mjr 74:822a92bc11d2 5094 // Unused
mjr 73:4e8ce0b18915 5095 break;
mjr 73:4e8ce0b18915 5096
mjr 73:4e8ce0b18915 5097 case 13:
mjr 73:4e8ce0b18915 5098 // 13 = Send button status report
mjr 73:4e8ce0b18915 5099 reportButtonStatus(js);
mjr 73:4e8ce0b18915 5100 break;
mjr 38:091e511ce8a0 5101 }
mjr 38:091e511ce8a0 5102 }
mjr 38:091e511ce8a0 5103 else if (data[0] == 66)
mjr 38:091e511ce8a0 5104 {
mjr 38:091e511ce8a0 5105 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 5106 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 5107 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 5108 // in a variable-dependent format.
mjr 40:cc0d9814522b 5109 configVarSet(data);
mjr 38:091e511ce8a0 5110 }
mjr 74:822a92bc11d2 5111 else if (data[0] == 67)
mjr 74:822a92bc11d2 5112 {
mjr 74:822a92bc11d2 5113 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 5114 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 5115 // to ports beyond the first 32.
mjr 74:822a92bc11d2 5116 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 5117 }
mjr 74:822a92bc11d2 5118 else if (data[0] == 68)
mjr 74:822a92bc11d2 5119 {
mjr 74:822a92bc11d2 5120 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 5121 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 5122 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 5123
mjr 74:822a92bc11d2 5124 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 5125 int portGroup = data[1];
mjr 74:822a92bc11d2 5126
mjr 74:822a92bc11d2 5127 // unpack the brightness values
mjr 74:822a92bc11d2 5128 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 5129 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 5130 uint8_t bri[8] = {
mjr 74:822a92bc11d2 5131 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 5132 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 5133 };
mjr 74:822a92bc11d2 5134
mjr 74:822a92bc11d2 5135 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 5136 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 5137 {
mjr 74:822a92bc11d2 5138 if (bri[i] >= 60)
mjr 74:822a92bc11d2 5139 bri[i] += 129-60;
mjr 74:822a92bc11d2 5140 }
mjr 74:822a92bc11d2 5141
mjr 74:822a92bc11d2 5142 // Carry out the PBA
mjr 74:822a92bc11d2 5143 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 5144 }
mjr 38:091e511ce8a0 5145 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 5146 {
mjr 38:091e511ce8a0 5147 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 5148 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 5149 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 5150 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 5151 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 5152 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 5153 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 5154 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 5155 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 5156 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 5157 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 5158 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 5159 //
mjr 38:091e511ce8a0 5160 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 5161 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 5162 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 5163 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 5164 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 5165 // address those ports anyway.
mjr 63:5cd1a5f3a41b 5166
mjr 63:5cd1a5f3a41b 5167 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 5168 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 5169 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 5170
mjr 63:5cd1a5f3a41b 5171 // update each port
mjr 38:091e511ce8a0 5172 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 5173 {
mjr 38:091e511ce8a0 5174 // set the brightness level for the output
mjr 40:cc0d9814522b 5175 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 5176 outLevel[i] = b;
mjr 38:091e511ce8a0 5177
mjr 74:822a92bc11d2 5178 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 5179 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 5180 // LedWiz mode on a future update
mjr 76:7f5912b6340e 5181 if (b != 0)
mjr 76:7f5912b6340e 5182 {
mjr 76:7f5912b6340e 5183 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 5184 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 5185 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 5186 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 5187 // forward unchanged.
mjr 76:7f5912b6340e 5188 wizOn[i] = 1;
mjr 76:7f5912b6340e 5189 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 5190 }
mjr 76:7f5912b6340e 5191 else
mjr 76:7f5912b6340e 5192 {
mjr 76:7f5912b6340e 5193 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 5194 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 5195 wizOn[i] = 0;
mjr 76:7f5912b6340e 5196 }
mjr 74:822a92bc11d2 5197
mjr 38:091e511ce8a0 5198 // set the output
mjr 40:cc0d9814522b 5199 lwPin[i]->set(b);
mjr 38:091e511ce8a0 5200 }
mjr 38:091e511ce8a0 5201
mjr 38:091e511ce8a0 5202 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 5203 if (hc595 != 0)
mjr 38:091e511ce8a0 5204 hc595->update();
mjr 38:091e511ce8a0 5205 }
mjr 38:091e511ce8a0 5206 else
mjr 38:091e511ce8a0 5207 {
mjr 74:822a92bc11d2 5208 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 5209 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 5210 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 5211 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 5212 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 5213 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 5214 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 5215 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 5216 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 5217 //
mjr 38:091e511ce8a0 5218 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 5219 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 5220 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 5221 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 5222 // protocol mode.
mjr 38:091e511ce8a0 5223 //
mjr 38:091e511ce8a0 5224 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 5225 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 5226
mjr 74:822a92bc11d2 5227 // carry out the PBA
mjr 74:822a92bc11d2 5228 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 5229
mjr 74:822a92bc11d2 5230 // update the PBX index state for the next message
mjr 74:822a92bc11d2 5231 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 5232 }
mjr 38:091e511ce8a0 5233 }
mjr 35:e959ffba78fd 5234
mjr 38:091e511ce8a0 5235 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5236 //
mjr 5:a70c0bce770d 5237 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 5238 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 5239 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 5240 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 5241 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 5242 // port outputs.
mjr 5:a70c0bce770d 5243 //
mjr 0:5acbbe3f4cf4 5244 int main(void)
mjr 0:5acbbe3f4cf4 5245 {
mjr 60:f38da020aa13 5246 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 5247 printf("\r\nPinscape Controller starting\r\n");
mjr 60:f38da020aa13 5248
mjr 60:f38da020aa13 5249 // debugging: print memory config info
mjr 59:94eb9265b6d7 5250 // -> no longer very useful, since we use our own custom malloc/new allocator (see xmalloc() above)
mjr 60:f38da020aa13 5251 // {int *a = new int; printf("Stack=%lx, heap=%lx, free=%ld\r\n", (long)&a, (long)a, (long)&a - (long)a);}
mjr 1:d913e0afb2ac 5252
mjr 76:7f5912b6340e 5253 // clear the I2C connection
mjr 35:e959ffba78fd 5254 clear_i2c();
mjr 38:091e511ce8a0 5255
mjr 76:7f5912b6340e 5256 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 5257 // configuration data:
mjr 76:7f5912b6340e 5258 //
mjr 76:7f5912b6340e 5259 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 5260 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 5261 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 5262 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 5263 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 5264 // to store user settings updates.
mjr 76:7f5912b6340e 5265 //
mjr 76:7f5912b6340e 5266 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 5267 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 5268 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 5269 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 5270 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 5271 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 5272 // without a separate download of the config data.
mjr 76:7f5912b6340e 5273 //
mjr 76:7f5912b6340e 5274 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 5275 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 5276 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 5277 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 5278 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 5279 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 5280 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 5281 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 5282 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 5283 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 5284 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 5285 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 5286 loadHostLoadedConfig();
mjr 35:e959ffba78fd 5287
mjr 38:091e511ce8a0 5288 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 5289 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 5290
mjr 33:d832bcab089e 5291 // we're not connected/awake yet
mjr 33:d832bcab089e 5292 bool connected = false;
mjr 40:cc0d9814522b 5293 Timer connectChangeTimer;
mjr 33:d832bcab089e 5294
mjr 35:e959ffba78fd 5295 // create the plunger sensor interface
mjr 35:e959ffba78fd 5296 createPlunger();
mjr 76:7f5912b6340e 5297
mjr 76:7f5912b6340e 5298 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 5299 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 5300
mjr 60:f38da020aa13 5301 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 5302 init_tlc5940(cfg);
mjr 34:6b981a2afab7 5303
mjr 60:f38da020aa13 5304 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 5305 init_hc595(cfg);
mjr 6:cc35eb643e8f 5306
mjr 54:fd77a6b2f76c 5307 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 5308 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 5309 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 5310 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 5311 initLwOut(cfg);
mjr 48:058ace2aed1d 5312
mjr 60:f38da020aa13 5313 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 5314 if (tlc5940 != 0)
mjr 35:e959ffba78fd 5315 tlc5940->start();
mjr 35:e959ffba78fd 5316
mjr 40:cc0d9814522b 5317 // start the TV timer, if applicable
mjr 40:cc0d9814522b 5318 startTVTimer(cfg);
mjr 48:058ace2aed1d 5319
mjr 35:e959ffba78fd 5320 // initialize the button input ports
mjr 35:e959ffba78fd 5321 bool kbKeys = false;
mjr 35:e959ffba78fd 5322 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 5323
mjr 60:f38da020aa13 5324 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 5325 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 5326 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 5327 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 5328 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 5329 // to the joystick interface.
mjr 51:57eb311faafa 5330 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 51:57eb311faafa 5331 cfg.joystickEnabled, kbKeys);
mjr 51:57eb311faafa 5332
mjr 60:f38da020aa13 5333 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 5334 // flash pattern while waiting.
mjr 70:9f58735a1732 5335 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 5336 connTimeoutTimer.start();
mjr 70:9f58735a1732 5337 connFlashTimer.start();
mjr 51:57eb311faafa 5338 while (!js.configured())
mjr 51:57eb311faafa 5339 {
mjr 51:57eb311faafa 5340 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 5341 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 5342 {
mjr 51:57eb311faafa 5343 // short yellow flash
mjr 51:57eb311faafa 5344 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 5345 wait_us(50000);
mjr 51:57eb311faafa 5346 diagLED(0, 0, 0);
mjr 51:57eb311faafa 5347
mjr 51:57eb311faafa 5348 // reset the flash timer
mjr 70:9f58735a1732 5349 connFlashTimer.reset();
mjr 51:57eb311faafa 5350 }
mjr 70:9f58735a1732 5351
mjr 70:9f58735a1732 5352 if (cfg.disconnectRebootTimeout != 0
mjr 70:9f58735a1732 5353 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout)
mjr 70:9f58735a1732 5354 reboot(js, false, 0);
mjr 51:57eb311faafa 5355 }
mjr 60:f38da020aa13 5356
mjr 60:f38da020aa13 5357 // we're now connected to the host
mjr 54:fd77a6b2f76c 5358 connected = true;
mjr 40:cc0d9814522b 5359
mjr 60:f38da020aa13 5360 // Last report timer for the joytick interface. We use this timer to
mjr 60:f38da020aa13 5361 // throttle the report rate to a pace that's suitable for VP. Without
mjr 60:f38da020aa13 5362 // any artificial delays, we could generate data to send on the joystick
mjr 60:f38da020aa13 5363 // interface on every loop iteration. The loop iteration time depends
mjr 60:f38da020aa13 5364 // on which devices are attached, since most of the work in our main
mjr 60:f38da020aa13 5365 // loop is simply polling our devices. For typical setups, the loop
mjr 60:f38da020aa13 5366 // time ranges from about 0.25ms to 2.5ms; the biggest factor is the
mjr 60:f38da020aa13 5367 // plunger sensor. But VP polls for input about every 10ms, so there's
mjr 60:f38da020aa13 5368 // no benefit in sending data faster than that, and there's some harm,
mjr 60:f38da020aa13 5369 // in that it creates USB overhead (both on the wire and on the host
mjr 60:f38da020aa13 5370 // CPU). We therefore use this timer to pace our reports to roughly
mjr 60:f38da020aa13 5371 // the VP input polling rate. Note that there's no way to actually
mjr 60:f38da020aa13 5372 // synchronize with VP's polling, but there's also no need to, as the
mjr 60:f38da020aa13 5373 // input model is designed to reflect the overall current state at any
mjr 60:f38da020aa13 5374 // given time rather than events or deltas. If VP polls twice between
mjr 60:f38da020aa13 5375 // two updates, it simply sees no state change; if we send two updates
mjr 60:f38da020aa13 5376 // between VP polls, VP simply sees the latest state when it does get
mjr 60:f38da020aa13 5377 // around to polling.
mjr 38:091e511ce8a0 5378 Timer jsReportTimer;
mjr 38:091e511ce8a0 5379 jsReportTimer.start();
mjr 38:091e511ce8a0 5380
mjr 60:f38da020aa13 5381 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 5382 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 5383 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 5384 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 5385 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 5386 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 5387 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 5388 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 5389 Timer jsOKTimer;
mjr 38:091e511ce8a0 5390 jsOKTimer.start();
mjr 35:e959ffba78fd 5391
mjr 55:4db125cd11a0 5392 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 5393 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 5394 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 5395 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 5396 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 5397
mjr 55:4db125cd11a0 5398 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 5399 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 5400 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 5401
mjr 55:4db125cd11a0 5402 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 5403 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 5404 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 5405
mjr 35:e959ffba78fd 5406 // initialize the calibration button
mjr 1:d913e0afb2ac 5407 calBtnTimer.start();
mjr 35:e959ffba78fd 5408 calBtnState = 0;
mjr 1:d913e0afb2ac 5409
mjr 1:d913e0afb2ac 5410 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 5411 Timer hbTimer;
mjr 1:d913e0afb2ac 5412 hbTimer.start();
mjr 1:d913e0afb2ac 5413 int hb = 0;
mjr 5:a70c0bce770d 5414 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 5415
mjr 1:d913e0afb2ac 5416 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 5417 Timer acTimer;
mjr 1:d913e0afb2ac 5418 acTimer.start();
mjr 1:d913e0afb2ac 5419
mjr 0:5acbbe3f4cf4 5420 // create the accelerometer object
mjr 5:a70c0bce770d 5421 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 76:7f5912b6340e 5422
mjr 17:ab3cec0c8bf4 5423 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 5424 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 5425 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 5426
mjr 48:058ace2aed1d 5427 // initialize the plunger sensor
mjr 35:e959ffba78fd 5428 plungerSensor->init();
mjr 10:976666ffa4ef 5429
mjr 48:058ace2aed1d 5430 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 5431 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 5432
mjr 54:fd77a6b2f76c 5433 // enable the peripheral chips
mjr 54:fd77a6b2f76c 5434 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 5435 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 5436 if (hc595 != 0)
mjr 54:fd77a6b2f76c 5437 hc595->enable(true);
mjr 74:822a92bc11d2 5438
mjr 76:7f5912b6340e 5439 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 5440 wizCycleTimer.start();
mjr 74:822a92bc11d2 5441
mjr 74:822a92bc11d2 5442 // start the PWM update polling timer
mjr 74:822a92bc11d2 5443 polledPwmTimer.start();
mjr 43:7a6364d82a41 5444
mjr 1:d913e0afb2ac 5445 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 5446 // host requests
mjr 0:5acbbe3f4cf4 5447 for (;;)
mjr 0:5acbbe3f4cf4 5448 {
mjr 74:822a92bc11d2 5449 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 5450 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 74:822a92bc11d2 5451
mjr 48:058ace2aed1d 5452 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 5453 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 5454 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 5455 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 5456 LedWizMsg lwm;
mjr 48:058ace2aed1d 5457 Timer lwt;
mjr 48:058ace2aed1d 5458 lwt.start();
mjr 74:822a92bc11d2 5459 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 5460 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 5461 {
mjr 48:058ace2aed1d 5462 handleInputMsg(lwm, js);
mjr 74:822a92bc11d2 5463 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 5464 }
mjr 74:822a92bc11d2 5465
mjr 74:822a92bc11d2 5466 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 5467 IF_DIAG(
mjr 74:822a92bc11d2 5468 if (msgCount != 0)
mjr 74:822a92bc11d2 5469 {
mjr 76:7f5912b6340e 5470 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 5471 mainLoopMsgCount++;
mjr 74:822a92bc11d2 5472 }
mjr 74:822a92bc11d2 5473 )
mjr 74:822a92bc11d2 5474
mjr 74:822a92bc11d2 5475 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 5476 wizPulse();
mjr 74:822a92bc11d2 5477
mjr 74:822a92bc11d2 5478 // update PWM outputs
mjr 74:822a92bc11d2 5479 pollPwmUpdates();
mjr 55:4db125cd11a0 5480
mjr 76:7f5912b6340e 5481 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 5482 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 5483
mjr 55:4db125cd11a0 5484 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 5485 if (tlc5940 != 0)
mjr 55:4db125cd11a0 5486 tlc5940->send();
mjr 1:d913e0afb2ac 5487
mjr 76:7f5912b6340e 5488 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 5489 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 5490
mjr 1:d913e0afb2ac 5491 // check for plunger calibration
mjr 17:ab3cec0c8bf4 5492 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 5493 {
mjr 1:d913e0afb2ac 5494 // check the state
mjr 1:d913e0afb2ac 5495 switch (calBtnState)
mjr 0:5acbbe3f4cf4 5496 {
mjr 1:d913e0afb2ac 5497 case 0:
mjr 1:d913e0afb2ac 5498 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 5499 calBtnTimer.reset();
mjr 1:d913e0afb2ac 5500 calBtnState = 1;
mjr 1:d913e0afb2ac 5501 break;
mjr 1:d913e0afb2ac 5502
mjr 1:d913e0afb2ac 5503 case 1:
mjr 1:d913e0afb2ac 5504 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 5505 // passed, start the hold period
mjr 48:058ace2aed1d 5506 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 5507 calBtnState = 2;
mjr 1:d913e0afb2ac 5508 break;
mjr 1:d913e0afb2ac 5509
mjr 1:d913e0afb2ac 5510 case 2:
mjr 1:d913e0afb2ac 5511 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 5512 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 5513 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 5514 {
mjr 1:d913e0afb2ac 5515 // enter calibration mode
mjr 1:d913e0afb2ac 5516 calBtnState = 3;
mjr 9:fd65b0a94720 5517 calBtnTimer.reset();
mjr 35:e959ffba78fd 5518
mjr 44:b5ac89b9cd5d 5519 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 5520 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 5521 }
mjr 1:d913e0afb2ac 5522 break;
mjr 2:c174f9ee414a 5523
mjr 2:c174f9ee414a 5524 case 3:
mjr 9:fd65b0a94720 5525 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 5526 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 5527 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 5528 break;
mjr 0:5acbbe3f4cf4 5529 }
mjr 0:5acbbe3f4cf4 5530 }
mjr 1:d913e0afb2ac 5531 else
mjr 1:d913e0afb2ac 5532 {
mjr 2:c174f9ee414a 5533 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 5534 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 5535 // and save the results to flash.
mjr 2:c174f9ee414a 5536 //
mjr 2:c174f9ee414a 5537 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 5538 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 5539 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 5540 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 5541 {
mjr 2:c174f9ee414a 5542 // exit calibration mode
mjr 1:d913e0afb2ac 5543 calBtnState = 0;
mjr 52:8298b2a73eb2 5544 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 5545
mjr 6:cc35eb643e8f 5546 // save the updated configuration
mjr 35:e959ffba78fd 5547 cfg.plunger.cal.calibrated = 1;
mjr 35:e959ffba78fd 5548 saveConfigToFlash();
mjr 2:c174f9ee414a 5549 }
mjr 2:c174f9ee414a 5550 else if (calBtnState != 3)
mjr 2:c174f9ee414a 5551 {
mjr 2:c174f9ee414a 5552 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 5553 calBtnState = 0;
mjr 2:c174f9ee414a 5554 }
mjr 1:d913e0afb2ac 5555 }
mjr 1:d913e0afb2ac 5556
mjr 1:d913e0afb2ac 5557 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 5558 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 5559 switch (calBtnState)
mjr 0:5acbbe3f4cf4 5560 {
mjr 1:d913e0afb2ac 5561 case 2:
mjr 1:d913e0afb2ac 5562 // in the hold period - flash the light
mjr 48:058ace2aed1d 5563 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 5564 break;
mjr 1:d913e0afb2ac 5565
mjr 1:d913e0afb2ac 5566 case 3:
mjr 1:d913e0afb2ac 5567 // calibration mode - show steady on
mjr 1:d913e0afb2ac 5568 newCalBtnLit = true;
mjr 1:d913e0afb2ac 5569 break;
mjr 1:d913e0afb2ac 5570
mjr 1:d913e0afb2ac 5571 default:
mjr 1:d913e0afb2ac 5572 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 5573 newCalBtnLit = false;
mjr 1:d913e0afb2ac 5574 break;
mjr 1:d913e0afb2ac 5575 }
mjr 3:3514575d4f86 5576
mjr 3:3514575d4f86 5577 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 5578 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 5579 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 5580 {
mjr 1:d913e0afb2ac 5581 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 5582 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 5583 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 5584 calBtnLed->write(1);
mjr 38:091e511ce8a0 5585 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 5586 }
mjr 2:c174f9ee414a 5587 else {
mjr 17:ab3cec0c8bf4 5588 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 5589 calBtnLed->write(0);
mjr 38:091e511ce8a0 5590 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 5591 }
mjr 1:d913e0afb2ac 5592 }
mjr 35:e959ffba78fd 5593
mjr 76:7f5912b6340e 5594 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 5595 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 5596
mjr 48:058ace2aed1d 5597 // read the plunger sensor
mjr 48:058ace2aed1d 5598 plungerReader.read();
mjr 48:058ace2aed1d 5599
mjr 76:7f5912b6340e 5600 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 5601 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 5602
mjr 53:9b2611964afc 5603 // update the ZB Launch Ball status
mjr 53:9b2611964afc 5604 zbLaunchBall.update();
mjr 37:ed52738445fc 5605
mjr 76:7f5912b6340e 5606 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 5607 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 5608
mjr 53:9b2611964afc 5609 // process button updates
mjr 53:9b2611964afc 5610 processButtons(cfg);
mjr 53:9b2611964afc 5611
mjr 76:7f5912b6340e 5612 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 5613 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 5614
mjr 38:091e511ce8a0 5615 // send a keyboard report if we have new data
mjr 37:ed52738445fc 5616 if (kbState.changed)
mjr 37:ed52738445fc 5617 {
mjr 38:091e511ce8a0 5618 // send a keyboard report
mjr 37:ed52738445fc 5619 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 5620 kbState.changed = false;
mjr 37:ed52738445fc 5621 }
mjr 38:091e511ce8a0 5622
mjr 38:091e511ce8a0 5623 // likewise for the media controller
mjr 37:ed52738445fc 5624 if (mediaState.changed)
mjr 37:ed52738445fc 5625 {
mjr 38:091e511ce8a0 5626 // send a media report
mjr 37:ed52738445fc 5627 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 5628 mediaState.changed = false;
mjr 37:ed52738445fc 5629 }
mjr 38:091e511ce8a0 5630
mjr 76:7f5912b6340e 5631 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 5632 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 5633
mjr 38:091e511ce8a0 5634 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 5635 bool jsOK = false;
mjr 55:4db125cd11a0 5636
mjr 55:4db125cd11a0 5637 // figure the current status flags for joystick reports
mjr 55:4db125cd11a0 5638 uint16_t statusFlags =
mjr 55:4db125cd11a0 5639 (cfg.plunger.enabled ? 0x01 : 0x00)
mjr 73:4e8ce0b18915 5640 | (nightMode ? 0x02 : 0x00)
mjr 73:4e8ce0b18915 5641 | ((psu2_state & 0x07) << 2);
mjr 17:ab3cec0c8bf4 5642
mjr 50:40015764bbe6 5643 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 5644 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 5645 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 5646 // More frequent reporting would only add USB I/O overhead.
mjr 50:40015764bbe6 5647 if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 17:ab3cec0c8bf4 5648 {
mjr 17:ab3cec0c8bf4 5649 // read the accelerometer
mjr 17:ab3cec0c8bf4 5650 int xa, ya;
mjr 17:ab3cec0c8bf4 5651 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 5652
mjr 17:ab3cec0c8bf4 5653 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 5654 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 5655 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 5656 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 5657 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 5658
mjr 17:ab3cec0c8bf4 5659 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 5660 x = xa;
mjr 17:ab3cec0c8bf4 5661 y = ya;
mjr 17:ab3cec0c8bf4 5662
mjr 48:058ace2aed1d 5663 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 5664 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 5665 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 5666 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 5667 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 5668 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 5669 // regular plunger inputs.
mjr 48:058ace2aed1d 5670 int z = plungerReader.getPosition();
mjr 53:9b2611964afc 5671 int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z);
mjr 35:e959ffba78fd 5672
mjr 35:e959ffba78fd 5673 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 5674 accelRotate(x, y);
mjr 35:e959ffba78fd 5675
mjr 35:e959ffba78fd 5676 // send the joystick report
mjr 53:9b2611964afc 5677 jsOK = js.update(x, y, zrep, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 5678
mjr 17:ab3cec0c8bf4 5679 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 5680 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 5681 }
mjr 21:5048e16cc9ef 5682
mjr 52:8298b2a73eb2 5683 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 5684 if (reportPlungerStat)
mjr 10:976666ffa4ef 5685 {
mjr 17:ab3cec0c8bf4 5686 // send the report
mjr 53:9b2611964afc 5687 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 5688
mjr 10:976666ffa4ef 5689 // we have satisfied this request
mjr 52:8298b2a73eb2 5690 reportPlungerStat = false;
mjr 10:976666ffa4ef 5691 }
mjr 10:976666ffa4ef 5692
mjr 35:e959ffba78fd 5693 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 5694 // periodically for the sake of the Windows config tool.
mjr 55:4db125cd11a0 5695 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 5000)
mjr 21:5048e16cc9ef 5696 {
mjr 55:4db125cd11a0 5697 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 5698 jsReportTimer.reset();
mjr 38:091e511ce8a0 5699 }
mjr 38:091e511ce8a0 5700
mjr 38:091e511ce8a0 5701 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 5702 if (jsOK)
mjr 38:091e511ce8a0 5703 {
mjr 38:091e511ce8a0 5704 jsOKTimer.reset();
mjr 38:091e511ce8a0 5705 jsOKTimer.start();
mjr 21:5048e16cc9ef 5706 }
mjr 21:5048e16cc9ef 5707
mjr 76:7f5912b6340e 5708 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 5709 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 5710
mjr 6:cc35eb643e8f 5711 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 5712 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 5713 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 5714 #endif
mjr 6:cc35eb643e8f 5715
mjr 33:d832bcab089e 5716 // check for connection status changes
mjr 54:fd77a6b2f76c 5717 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 5718 if (newConnected != connected)
mjr 33:d832bcab089e 5719 {
mjr 54:fd77a6b2f76c 5720 // give it a moment to stabilize
mjr 40:cc0d9814522b 5721 connectChangeTimer.start();
mjr 55:4db125cd11a0 5722 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 5723 {
mjr 33:d832bcab089e 5724 // note the new status
mjr 33:d832bcab089e 5725 connected = newConnected;
mjr 40:cc0d9814522b 5726
mjr 40:cc0d9814522b 5727 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 5728 connectChangeTimer.stop();
mjr 40:cc0d9814522b 5729 connectChangeTimer.reset();
mjr 33:d832bcab089e 5730
mjr 54:fd77a6b2f76c 5731 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 5732 if (!connected)
mjr 40:cc0d9814522b 5733 {
mjr 54:fd77a6b2f76c 5734 // turn off all outputs
mjr 33:d832bcab089e 5735 allOutputsOff();
mjr 40:cc0d9814522b 5736
mjr 40:cc0d9814522b 5737 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 5738 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 5739 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 5740 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 5741 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 5742 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 5743 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 5744 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 5745 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 5746 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 5747 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 5748 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 5749 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 5750 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 5751 // the power first comes on.
mjr 40:cc0d9814522b 5752 if (tlc5940 != 0)
mjr 40:cc0d9814522b 5753 tlc5940->enable(false);
mjr 40:cc0d9814522b 5754 if (hc595 != 0)
mjr 40:cc0d9814522b 5755 hc595->enable(false);
mjr 40:cc0d9814522b 5756 }
mjr 33:d832bcab089e 5757 }
mjr 33:d832bcab089e 5758 }
mjr 48:058ace2aed1d 5759
mjr 53:9b2611964afc 5760 // if we have a reboot timer pending, check for completion
mjr 53:9b2611964afc 5761 if (rebootTimer.isRunning() && rebootTimer.read_us() > rebootTime_us)
mjr 53:9b2611964afc 5762 reboot(js);
mjr 53:9b2611964afc 5763
mjr 48:058ace2aed1d 5764 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 5765 if (!connected)
mjr 48:058ace2aed1d 5766 {
mjr 54:fd77a6b2f76c 5767 // show USB HAL debug events
mjr 54:fd77a6b2f76c 5768 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 5769 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 5770
mjr 54:fd77a6b2f76c 5771 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 5772 js.diagFlash();
mjr 54:fd77a6b2f76c 5773
mjr 54:fd77a6b2f76c 5774 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 5775 diagLED(0, 0, 0);
mjr 51:57eb311faafa 5776
mjr 51:57eb311faafa 5777 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 5778 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 5779 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 5780
mjr 54:fd77a6b2f76c 5781 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 5782 Timer diagTimer;
mjr 54:fd77a6b2f76c 5783 diagTimer.reset();
mjr 54:fd77a6b2f76c 5784 diagTimer.start();
mjr 74:822a92bc11d2 5785
mjr 74:822a92bc11d2 5786 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 5787 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 5788
mjr 54:fd77a6b2f76c 5789 // loop until we get our connection back
mjr 54:fd77a6b2f76c 5790 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 5791 {
mjr 54:fd77a6b2f76c 5792 // try to recover the connection
mjr 54:fd77a6b2f76c 5793 js.recoverConnection();
mjr 54:fd77a6b2f76c 5794
mjr 55:4db125cd11a0 5795 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 5796 if (tlc5940 != 0)
mjr 55:4db125cd11a0 5797 tlc5940->send();
mjr 55:4db125cd11a0 5798
mjr 54:fd77a6b2f76c 5799 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 5800 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 5801 {
mjr 54:fd77a6b2f76c 5802 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 5803 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 5804
mjr 54:fd77a6b2f76c 5805 // show diagnostic feedback
mjr 54:fd77a6b2f76c 5806 js.diagFlash();
mjr 51:57eb311faafa 5807
mjr 51:57eb311faafa 5808 // reset the flash timer
mjr 54:fd77a6b2f76c 5809 diagTimer.reset();
mjr 51:57eb311faafa 5810 }
mjr 51:57eb311faafa 5811
mjr 51:57eb311faafa 5812 // if the disconnect reboot timeout has expired, reboot
mjr 51:57eb311faafa 5813 if (cfg.disconnectRebootTimeout != 0
mjr 70:9f58735a1732 5814 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 5815 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 5816 }
mjr 54:fd77a6b2f76c 5817
mjr 74:822a92bc11d2 5818 // resume the main loop timer
mjr 74:822a92bc11d2 5819 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 5820
mjr 54:fd77a6b2f76c 5821 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 5822 connected = true;
mjr 54:fd77a6b2f76c 5823 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 5824
mjr 54:fd77a6b2f76c 5825 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 5826 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 5827 {
mjr 55:4db125cd11a0 5828 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 5829 tlc5940->update(true);
mjr 54:fd77a6b2f76c 5830 }
mjr 54:fd77a6b2f76c 5831 if (hc595 != 0)
mjr 54:fd77a6b2f76c 5832 {
mjr 55:4db125cd11a0 5833 hc595->enable(true);
mjr 54:fd77a6b2f76c 5834 hc595->update(true);
mjr 51:57eb311faafa 5835 }
mjr 48:058ace2aed1d 5836 }
mjr 43:7a6364d82a41 5837
mjr 6:cc35eb643e8f 5838 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 5839 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 5840 {
mjr 54:fd77a6b2f76c 5841 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 5842 {
mjr 39:b3815a1c3802 5843 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 5844 //
mjr 54:fd77a6b2f76c 5845 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 5846 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 5847 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 5848 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 5849 hb = !hb;
mjr 38:091e511ce8a0 5850 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 5851
mjr 54:fd77a6b2f76c 5852 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 5853 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 5854 // with the USB connection.
mjr 54:fd77a6b2f76c 5855 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 5856 {
mjr 54:fd77a6b2f76c 5857 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 5858 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 5859 // limit, keep running for now, and leave the OK timer running so
mjr 54:fd77a6b2f76c 5860 // that we can continue to monitor this.
mjr 54:fd77a6b2f76c 5861 if (jsOKTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 5862 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 5863 }
mjr 54:fd77a6b2f76c 5864 else
mjr 54:fd77a6b2f76c 5865 {
mjr 54:fd77a6b2f76c 5866 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 5867 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 5868 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 5869 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 5870 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 5871 }
mjr 38:091e511ce8a0 5872 }
mjr 73:4e8ce0b18915 5873 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 5874 {
mjr 73:4e8ce0b18915 5875 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 5876 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 5877 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 5878 }
mjr 35:e959ffba78fd 5879 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 5880 {
mjr 6:cc35eb643e8f 5881 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 5882 hb = !hb;
mjr 38:091e511ce8a0 5883 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 5884 }
mjr 6:cc35eb643e8f 5885 else
mjr 6:cc35eb643e8f 5886 {
mjr 6:cc35eb643e8f 5887 // connected - flash blue/green
mjr 2:c174f9ee414a 5888 hb = !hb;
mjr 38:091e511ce8a0 5889 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 5890 }
mjr 1:d913e0afb2ac 5891
mjr 1:d913e0afb2ac 5892 // reset the heartbeat timer
mjr 1:d913e0afb2ac 5893 hbTimer.reset();
mjr 5:a70c0bce770d 5894 ++hbcnt;
mjr 1:d913e0afb2ac 5895 }
mjr 74:822a92bc11d2 5896
mjr 74:822a92bc11d2 5897 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 5898 IF_DIAG(
mjr 76:7f5912b6340e 5899 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 5900 mainLoopIterCount++;
mjr 74:822a92bc11d2 5901 )
mjr 1:d913e0afb2ac 5902 }
mjr 0:5acbbe3f4cf4 5903 }