An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Thu Jan 23 04:09:24 2020 +0000
Revision:
105:6a25bbfae1e4
Parent:
100:1ff35c07217c
Child:
111:42dc75fbe623
Fix AEDR-8300 reverse orientation option

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 17:ab3cec0c8bf4 1 // Pinscape Controller Configuration
mjr 17:ab3cec0c8bf4 2 //
mjr 87:8d35c74403af 3 // !!! ATTENTION !!!
mjr 87:8d35c74403af 4 // If you've come here on advice in a forum to change a GPIO setting or
mjr 87:8d35c74403af 5 // to #define a macro to enable the expansion boards, >>>STOP NOW<<<. The
mjr 87:8d35c74403af 6 // advice you found is out of date and no longer applies. You don't need
mjr 87:8d35c74403af 7 // to edit this file or recompile the firmware, and you shouldn't. Instead,
mjr 87:8d35c74403af 8 // use the standard firmware, and set options using the Pinscape Config Tool
mjr 87:8d35c74403af 9 // on your Windows PC. All options that were formerly configurable by
mjr 87:8d35c74403af 10 // editing this file can be selected with the Config Tool. That's much
mjr 87:8d35c74403af 11 // cleaner and easier than editing the source code, and it eliminates the
mjr 87:8d35c74403af 12 // problem of re-synchronizing a private copy of the source code with future
mjr 87:8d35c74403af 13 // updates. With the config tool, you only need the standard firmware build,
mjr 87:8d35c74403af 14 // so future updates are a simple matter of downloading the latest version.
mjr 35:e959ffba78fd 15 //
mjr 35:e959ffba78fd 16 //
mjr 87:8d35c74403af 17 // IN THE PAST (but NOT NOW - see above), configuration was handled mostly
mjr 87:8d35c74403af 18 // with #defines and #ifdefs. To customize the setup, you had to create a
mjr 87:8d35c74403af 19 // private forked copy of the source code, edit the constants defined in
mjr 87:8d35c74403af 20 // config.h, and compile a custom binary. That's no longer necessary because
mjr 87:8d35c74403af 21 // the config tool lets you set all configurable options dynamically. Of
mjr 87:8d35c74403af 22 // course, you're still free to create a custom version if you want to add
mjr 87:8d35c74403af 23 // entirely new features or make changes that go beyond the configurable
mjr 87:8d35c74403af 24 // options.
mjr 35:e959ffba78fd 25 //
mjr 87:8d35c74403af 26 #ifndef CONFIG_H
mjr 87:8d35c74403af 27 #define CONFIG_H
mjr 35:e959ffba78fd 28
mjr 90:aa4e571da8e8 29 #include "USBJoystick.h"
mjr 90:aa4e571da8e8 30
mjr 87:8d35c74403af 31
mjr 87:8d35c74403af 32 // TEST SETTINGS - FOR DEBUGGING PURPOSES ONLY. The macros below select
mjr 87:8d35c74403af 33 // special option combinations for debugging purposes.
mjr 55:4db125cd11a0 34 //
mjr 87:8d35c74403af 35 // IMPORTANT! If you're trying to create a custom configuration because
mjr 87:8d35c74403af 36 // you have a pin conflict or because you're using the expansion boards,
mjr 87:8d35c74403af 37 // DON'T modify this file, DON'T use these macros, and DON'T recompile
mjr 87:8d35c74403af 38 // the firmware. Use the Config Tool on your Windows PC instead.
mjr 55:4db125cd11a0 39 #define STANDARD_CONFIG 1 // standard settings, based on v1 base settings
mjr 55:4db125cd11a0 40 #define TEST_CONFIG_EXPAN 0 // configuration for the expansion boards
mjr 80:94dc2946871b 41 #define TEST_KEEP_PRINTF 0 // for debugging purposes, keep printf() enabled
mjr 55:4db125cd11a0 42 // by leaving the SDA UART GPIO pins unallocated
mjr 48:058ace2aed1d 43
mjr 35:e959ffba78fd 44 // Plunger type codes
mjr 35:e959ffba78fd 45 // NOTE! These values are part of the external USB interface. New
mjr 35:e959ffba78fd 46 // values can be added, but the meaning of an existing assigned number
mjr 35:e959ffba78fd 47 // should remain fixed to keep the PC-side config tool compatible across
mjr 35:e959ffba78fd 48 // versions.
mjr 35:e959ffba78fd 49 const int PlungerType_None = 0; // no plunger
mjr 82:4f6209cb5c33 50 const int PlungerType_TSL1410R = 1; // TSL1410R linear image sensor (1280x1 pixels, 400dpi), serial mode, edge detection
mjr 82:4f6209cb5c33 51 const int PlungerType_TSL1412S = 3; // TSL1412S linear image sensor (1536x1 pixels, 400dpi), serial mode, edge detection
mjr 35:e959ffba78fd 52 const int PlungerType_Pot = 5; // potentionmeter
mjr 35:e959ffba78fd 53 const int PlungerType_OptQuad = 6; // AEDR8300 optical quadrature sensor
mjr 35:e959ffba78fd 54 const int PlungerType_MagQuad = 7; // AS5304 magnetic quadrature sensor
mjr 100:1ff35c07217c 55 const int PlungerType_TSL1401CL = 8; // TSL1401CL linear image sensor (128x1 pixels, 400dpi), bar code reader
mjr 82:4f6209cb5c33 56 const int PlungerType_VL6180X = 9; // VL6180X time-of-flight distance sensor
mjr 100:1ff35c07217c 57 const int PlungerType_AEAT6012 = 10; // AEAT-6012-A06 magnetic rotary encoder; absolute angle sensing, 12-bit precision
mjr 100:1ff35c07217c 58 const int PlungerType_TCD1103 = 11; // Toshiba TCD1103GFG linear image sensor (1500x1 pixels, ~4600dpi), edge detection
mjr 82:4f6209cb5c33 59
mjr 82:4f6209cb5c33 60 // Plunger auto-zero flags
mjr 82:4f6209cb5c33 61 const int PlungerAutoZeroEnabled = 0x01; // auto-zeroing enabled
mjr 21:5048e16cc9ef 62
mjr 35:e959ffba78fd 63 // Accelerometer orientation codes
mjr 35:e959ffba78fd 64 // These values are part of the external USB interface
mjr 35:e959ffba78fd 65 const int OrientationFront = 0; // USB ports pointed toward front of cabinet
mjr 35:e959ffba78fd 66 const int OrientationLeft = 1; // ports pointed toward left side of cabinet
mjr 35:e959ffba78fd 67 const int OrientationRight = 2; // ports pointed toward right side of cabinet
mjr 35:e959ffba78fd 68 const int OrientationRear = 3; // ports pointed toward back of cabinet
mjr 25:e22b88bd783a 69
mjr 77:0b96f6867312 70 // Accelerometer dynamic range codes
mjr 77:0b96f6867312 71 const int AccelRange1G = 0; // +/-1G
mjr 77:0b96f6867312 72 const int AccelRange2G = 1; // +/-2G
mjr 77:0b96f6867312 73 const int AccelRange4G = 2; // +/-4G
mjr 77:0b96f6867312 74 const int AccelRange8G = 3; // +/-8G
mjr 77:0b96f6867312 75
mjr 35:e959ffba78fd 76 // input button types
mjr 53:9b2611964afc 77 const int BtnTypeNone = 0; // unused
mjr 35:e959ffba78fd 78 const int BtnTypeJoystick = 1; // joystick button
mjr 53:9b2611964afc 79 const int BtnTypeKey = 2; // keyboard key
mjr 67:c39e66c4e000 80 const int BtnTypeMedia = 3; // media control key
mjr 38:091e511ce8a0 81
mjr 38:091e511ce8a0 82 // input button flags
mjr 38:091e511ce8a0 83 const uint8_t BtnFlagPulse = 0x01; // pulse mode - reports each change in the physical switch state
mjr 38:091e511ce8a0 84 // as a brief press of the logical button/keyboard key
mjr 40:cc0d9814522b 85
mjr 40:cc0d9814522b 86 // button setup structure
mjr 40:cc0d9814522b 87 struct ButtonCfg
mjr 40:cc0d9814522b 88 {
mjr 66:2e3583fbd2f4 89 // physical GPIO pin - a Wire-to-PinName mapping index
mjr 66:2e3583fbd2f4 90 uint8_t pin;
mjr 66:2e3583fbd2f4 91
mjr 66:2e3583fbd2f4 92 // Key type and value reported to the PC
mjr 40:cc0d9814522b 93 uint8_t typ; // key type reported to PC - a BtnTypeXxx value
mjr 53:9b2611964afc 94 uint8_t val; // key value reported - meaning depends on 'typ' value:
mjr 53:9b2611964afc 95 // none -> no PC input reports (val is unused)
mjr 53:9b2611964afc 96 // joystick -> val is joystick button number (1..32)
mjr 53:9b2611964afc 97 // keyboard -> val is USB scan code
mjr 77:0b96f6867312 98 uint8_t IRCommand; // IR command to send when the button is pressed, as
mjr 77:0b96f6867312 99 // an IR command slot number: 1..MAX_IR_CODES, or 0
mjr 77:0b96f6867312 100 // if no IR command is to be sent
mjr 66:2e3583fbd2f4 101
mjr 66:2e3583fbd2f4 102 // Shifted key type and value. These used when the button is pressed
mjr 66:2e3583fbd2f4 103 // while the Local Shift Button is being held down. We send the key
mjr 66:2e3583fbd2f4 104 // code given here instead of the regular typ/val code in this case.
mjr 66:2e3583fbd2f4 105 // If typ2 is BtnTypeNone, we use the regular typ/val code whether or
mjr 66:2e3583fbd2f4 106 // not the shift button is being held.
mjr 66:2e3583fbd2f4 107 uint8_t typ2; // shifted key type
mjr 66:2e3583fbd2f4 108 uint8_t val2; // shifted key value
mjr 77:0b96f6867312 109 uint8_t IRCommand2; // IR command to send when shifted button is pressed
mjr 66:2e3583fbd2f4 110
mjr 66:2e3583fbd2f4 111 // key flags - a bitwise combination of BtnFlagXxx values
mjr 66:2e3583fbd2f4 112 uint8_t flags;
mjr 40:cc0d9814522b 113
mjr 40:cc0d9814522b 114 void set(uint8_t pin, uint8_t typ, uint8_t val, uint8_t flags = 0)
mjr 40:cc0d9814522b 115 {
mjr 40:cc0d9814522b 116 this->pin = pin;
mjr 40:cc0d9814522b 117 this->typ = typ;
mjr 40:cc0d9814522b 118 this->val = val;
mjr 77:0b96f6867312 119 this->IRCommand = 0;
mjr 40:cc0d9814522b 120 this->flags = flags;
mjr 77:0b96f6867312 121 this->typ2 = 0;
mjr 77:0b96f6867312 122 this->val2 = 0;
mjr 77:0b96f6867312 123 this->IRCommand2 = 0;
mjr 40:cc0d9814522b 124 }
mjr 40:cc0d9814522b 125
mjr 40:cc0d9814522b 126 } __attribute__((packed));
mjr 40:cc0d9814522b 127
mjr 33:d832bcab089e 128
mjr 65:739875521aae 129 // maximum number of input button mappings in configuration
mjr 65:739875521aae 130 const int MAX_BUTTONS = 48;
mjr 65:739875521aae 131
mjr 65:739875521aae 132 // extra slots for virtual buttons (ZB Launch Ball)
mjr 89:c43cd923401c 133 const int VIRTUAL_BUTTONS = 1; // total number of buttons
mjr 89:c43cd923401c 134 const int ZBL_BUTTON_CFG = MAX_BUTTONS; // index of ZB Launch Ball slot
mjr 33:d832bcab089e 135
mjr 35:e959ffba78fd 136 // LedWiz output port type codes
mjr 35:e959ffba78fd 137 // These values are part of the external USB interface
mjr 89:c43cd923401c 138 const int PortTypeDisabled = 0; // port is disabled - not visible to LedWiz/DOF host
mjr 89:c43cd923401c 139 const int PortTypeGPIOPWM = 1; // GPIO port, PWM enabled
mjr 89:c43cd923401c 140 const int PortTypeGPIODig = 2; // GPIO port, digital out
mjr 89:c43cd923401c 141 const int PortTypeTLC5940 = 3; // TLC5940 port
mjr 89:c43cd923401c 142 const int PortType74HC595 = 4; // 74HC595 port
mjr 89:c43cd923401c 143 const int PortTypeVirtual = 5; // Virtual port - visible to host software, but not connected
mjr 89:c43cd923401c 144 // to a physical output
mjr 89:c43cd923401c 145 const int PortTypeTLC59116 = 6; // TLC59116 port
mjr 17:ab3cec0c8bf4 146
mjr 35:e959ffba78fd 147 // LedWiz output port flag bits
mjr 89:c43cd923401c 148 const uint8_t PortFlagActiveLow = 0x01; // physical output is active-low
mjr 89:c43cd923401c 149 const uint8_t PortFlagNoisemaker = 0x02; // noisemaker device - disable when night mode is engaged
mjr 89:c43cd923401c 150 const uint8_t PortFlagGamma = 0x04; // apply gamma correction to this output
mjr 89:c43cd923401c 151 const uint8_t PortFlagFlipperLogic = 0x08; // enable Flipper Logic on the port (timed power limitation)
mjr 99:8139b0c274f4 152 const uint8_t PortFlagChimeLogic = 0x10; // enable Chime Logic on this port (min/max time limits)
mjr 35:e959ffba78fd 153
mjr 35:e959ffba78fd 154 // maximum number of output ports
mjr 48:058ace2aed1d 155 const int MAX_OUT_PORTS = 128;
mjr 33:d832bcab089e 156
mjr 38:091e511ce8a0 157 // port configuration data
mjr 38:091e511ce8a0 158 struct LedWizPortCfg
mjr 38:091e511ce8a0 159 {
mjr 89:c43cd923401c 160 // port type: a PortTypeXxx value
mjr 89:c43cd923401c 161 uint8_t typ;
mjr 40:cc0d9814522b 162
mjr 89:c43cd923401c 163 // physical output pin:
mjr 89:c43cd923401c 164 //
mjr 89:c43cd923401c 165 // - for a GPIO port, this is an index in the
mjr 89:c43cd923401c 166 // USB-to-PinName mapping list
mjr 89:c43cd923401c 167 //
mjr 89:c43cd923401c 168 // - for a TLC5940 or 74HC595 port, it's the output
mjr 89:c43cd923401c 169 // number in the overall daisy chain, starting
mjr 89:c43cd923401c 170 // from 0 for OUT0 on the first chip in the chain
mjr 89:c43cd923401c 171 //
mjr 89:c43cd923401c 172 // - for a TLC59116, the high 4 bits are the chip
mjr 89:c43cd923401c 173 // address (the low 4 bits of the address only),
mjr 89:c43cd923401c 174 // and the low 4 bits are the output number on
mjr 89:c43cd923401c 175 // the chip
mjr 89:c43cd923401c 176 //
mjr 89:c43cd923401c 177 // - for inactive and virtual ports, this is unused
mjr 89:c43cd923401c 178 //
mjr 89:c43cd923401c 179 uint8_t pin;
mjr 89:c43cd923401c 180
mjr 89:c43cd923401c 181 // flags: a combination of PortFlagXxx values
mjr 89:c43cd923401c 182 uint8_t flags;
mjr 89:c43cd923401c 183
mjr 89:c43cd923401c 184 // flipper logic properties:
mjr 89:c43cd923401c 185 //
mjr 98:4df3c0f7e707 186 // - high 4 bits (0xF0) give full-power time
mjr 89:c43cd923401c 187 //
mjr 89:c43cd923401c 188 // - low 4 bits (0x0F) give reduced power level (used
mjr 89:c43cd923401c 189 // after full-power time expires), in 6.66% units
mjr 89:c43cd923401c 190 //
mjr 89:c43cd923401c 191 uint8_t flipperLogic;
mjr 89:c43cd923401c 192
mjr 99:8139b0c274f4 193 void set(uint8_t typ, uint8_t pin, uint8_t flags = 0, uint8_t flipperLogic = 0)
mjr 40:cc0d9814522b 194 {
mjr 40:cc0d9814522b 195 this->typ = typ;
mjr 40:cc0d9814522b 196 this->pin = pin;
mjr 40:cc0d9814522b 197 this->flags = flags;
mjr 89:c43cd923401c 198 this->flipperLogic = flipperLogic;
mjr 40:cc0d9814522b 199 }
mjr 40:cc0d9814522b 200
mjr 77:0b96f6867312 201 } __attribute__ ((packed));
mjr 77:0b96f6867312 202
mjr 77:0b96f6867312 203 // IR command configuration flags
mjr 77:0b96f6867312 204 const uint8_t IRFlagTVON = 0x01; // send command at TV ON time
mjr 77:0b96f6867312 205 const uint8_t IRFlagDittos = 0x02; // use "ditto" codes on send
mjr 77:0b96f6867312 206
mjr 77:0b96f6867312 207 // IR command configuration data
mjr 77:0b96f6867312 208 struct IRCommandCfg
mjr 77:0b96f6867312 209 {
mjr 77:0b96f6867312 210 uint8_t flags; // flags: a combination of IRFlagXxx values
mjr 77:0b96f6867312 211 uint8_t keytype; // key type to send when IR command is received
mjr 77:0b96f6867312 212 uint8_t keycode; // key code to send when IR command is received
mjr 77:0b96f6867312 213 uint8_t protocol; // IR protocol ID (see IRRemote/IRProtocolID.h)
mjr 77:0b96f6867312 214 struct
mjr 77:0b96f6867312 215 {
mjr 77:0b96f6867312 216 uint32_t lo; // low 32 bits of code
mjr 77:0b96f6867312 217 uint32_t hi; // high 32 bits of code
mjr 77:0b96f6867312 218 } code; // 64-bit command code (protocol-specific; see IRProtocols.h)
mjr 77:0b96f6867312 219 } __attribute__ ((packed));
mjr 77:0b96f6867312 220
mjr 77:0b96f6867312 221 // Maximum number of IR commands
mjr 77:0b96f6867312 222 const int MAX_IR_CODES = 16;
mjr 38:091e511ce8a0 223
mjr 38:091e511ce8a0 224
mjr 53:9b2611964afc 225 // Convert a physical pin name to a wire pin name
mjr 53:9b2611964afc 226 #define PINNAME_TO_WIRE(p) \
mjr 53:9b2611964afc 227 uint8_t((p) == NC ? 0xFF : \
mjr 53:9b2611964afc 228 (((p) & 0xF000 ) >> (PORT_SHIFT - 5)) | (((p) & 0xFF) >> 2))
mjr 53:9b2611964afc 229
mjr 35:e959ffba78fd 230 struct Config
mjr 35:e959ffba78fd 231 {
mjr 35:e959ffba78fd 232 // set all values to factory defaults
mjr 35:e959ffba78fd 233 void setFactoryDefaults()
mjr 35:e959ffba78fd 234 {
mjr 35:e959ffba78fd 235 // By default, pretend to be LedWiz unit #8. This can be from 1 to 16. Real
mjr 35:e959ffba78fd 236 // LedWiz units have their unit number set at the factory, and the vast majority
mjr 35:e959ffba78fd 237 // are set up as unit #1, since that's the default for anyone who doesn't ask
mjr 35:e959ffba78fd 238 // for a different setting. It seems rare for anyone to use more than one unit
mjr 35:e959ffba78fd 239 // in a pin cab, but for the few who do, the others will probably be numbered
mjr 35:e959ffba78fd 240 // sequentially as #2, #3, etc. It seems safe to assume that no one out there
mjr 48:058ace2aed1d 241 // has a unit #8, so we'll use that as our default. This can be changed from
mjr 48:058ace2aed1d 242 // the config tool, but for the sake of convenience, it's better to pick a
mjr 48:058ace2aed1d 243 // default that most people won't have to change.
mjr 54:fd77a6b2f76c 244 usbVendorID = 0xFAFA; // LedWiz vendor code
mjr 48:058ace2aed1d 245 usbProductID = 0x00F7; // LedWiz product code for unit #8
mjr 61:3c7e6e9ec355 246
mjr 55:4db125cd11a0 247 // Set the default Pinscape unit number to #1. This is a separate identifier
mjr 55:4db125cd11a0 248 // from the LedWiz ID, so you don't have to worry about making this different
mjr 55:4db125cd11a0 249 // from your LedWiz units. Each Pinscape unit should have a unique value for
mjr 55:4db125cd11a0 250 // this ID, though.
mjr 55:4db125cd11a0 251 //
mjr 55:4db125cd11a0 252 // Note that Pinscape unit #1 corresponds to DOF Pinscape #51, PS 2 -> DOF 52,
mjr 55:4db125cd11a0 253 // and so on - just add 50 to get the DOF ID.
mjr 55:4db125cd11a0 254 psUnitNo = 1;
mjr 35:e959ffba78fd 255
mjr 51:57eb311faafa 256 // set a disconnect reboot timeout of 10 seconds by default
mjr 55:4db125cd11a0 257 disconnectRebootTimeout = 10;
mjr 51:57eb311faafa 258
mjr 35:e959ffba78fd 259 // enable joystick reports
mjr 35:e959ffba78fd 260 joystickEnabled = true;
mjr 35:e959ffba78fd 261
mjr 90:aa4e571da8e8 262 // use the XYZ axis format
mjr 90:aa4e571da8e8 263 joystickAxisFormat = USBJoystick::AXIS_FORMAT_XYZ;
mjr 90:aa4e571da8e8 264
mjr 92:f264fbaa1be5 265 // send reports every 8.33ms by default (120 Hz, 2X the typical video
mjr 92:f264fbaa1be5 266 // refresh rate)
mjr 92:f264fbaa1be5 267 jsReportInterval_us = 8333;
mjr 92:f264fbaa1be5 268
mjr 35:e959ffba78fd 269 // assume standard orientation, with USB ports toward front of cabinet
mjr 78:1e00b3fa11af 270 accel.orientation = OrientationFront;
mjr 78:1e00b3fa11af 271
mjr 78:1e00b3fa11af 272 // default dynamic range +/-1G
mjr 78:1e00b3fa11af 273 accel.range = AccelRange1G;
mjr 78:1e00b3fa11af 274
mjr 78:1e00b3fa11af 275 // default auto-centering time
mjr 78:1e00b3fa11af 276 accel.autoCenterTime = 0;
mjr 92:f264fbaa1be5 277
mjr 92:f264fbaa1be5 278 // take a new accelerometer reading on every other joystick report
mjr 92:f264fbaa1be5 279 accel.stutter = 2;
mjr 25:e22b88bd783a 280
mjr 52:8298b2a73eb2 281 // assume a basic setup with no expansion boards
mjr 53:9b2611964afc 282 expan.typ = 0;
mjr 53:9b2611964afc 283 expan.vsn = 0;
mjr 53:9b2611964afc 284 memset(expan.ext, 0, sizeof(expan.ext));
mjr 52:8298b2a73eb2 285
mjr 35:e959ffba78fd 286 // assume no plunger is attached
mjr 77:0b96f6867312 287 plunger.enabled = 0x00;
mjr 35:e959ffba78fd 288 plunger.sensorType = PlungerType_None;
mjr 35:e959ffba78fd 289
mjr 91:ae9be42652bf 290 // no jitter filter
mjr 91:ae9be42652bf 291 plunger.jitterWindow = 0;
mjr 91:ae9be42652bf 292
mjr 91:ae9be42652bf 293 // normal orientation
mjr 91:ae9be42652bf 294 plunger.reverseOrientation = false;
mjr 91:ae9be42652bf 295
mjr 55:4db125cd11a0 296 #if TEST_CONFIG_EXPAN || STANDARD_CONFIG
mjr 77:0b96f6867312 297 plunger.enabled = 0x01;
mjr 82:4f6209cb5c33 298 plunger.sensorType = PlungerType_TSL1410R;
mjr 53:9b2611964afc 299 plunger.sensorPin[0] = PINNAME_TO_WIRE(PTE20); // SI
mjr 53:9b2611964afc 300 plunger.sensorPin[1] = PINNAME_TO_WIRE(PTE21); // SCLK
mjr 53:9b2611964afc 301 plunger.sensorPin[2] = PINNAME_TO_WIRE(PTB0); // AO1 = PTB0 = ADC0_SE8
mjr 53:9b2611964afc 302 plunger.sensorPin[3] = PINNAME_TO_WIRE(PTE22); // AO2 (parallel mode) = PTE22 = ADC0_SE3
mjr 43:7a6364d82a41 303 #endif
mjr 43:7a6364d82a41 304
mjr 48:058ace2aed1d 305 // default plunger calibration button settings
mjr 55:4db125cd11a0 306 plunger.cal.features = 0x03; // 0x01 = enable button, 0x02 = enable indicator lamp
mjr 55:4db125cd11a0 307 plunger.cal.btn = PINNAME_TO_WIRE(PTE29); // button input (DigitalIn port)
mjr 55:4db125cd11a0 308 plunger.cal.led = PINNAME_TO_WIRE(PTE23); // button output (DigitalOut port)
mjr 35:e959ffba78fd 309
mjr 44:b5ac89b9cd5d 310 // set the default plunger calibration
mjr 44:b5ac89b9cd5d 311 plunger.cal.setDefaults();
mjr 35:e959ffba78fd 312
mjr 35:e959ffba78fd 313 // disable the ZB Launch Ball by default
mjr 53:9b2611964afc 314 plunger.zbLaunchBall.port = 0; // 0 = disabled
mjr 65:739875521aae 315 plunger.zbLaunchBall.keytype = BtnTypeKey; // keyboard key
mjr 61:3c7e6e9ec355 316 plunger.zbLaunchBall.keycode = 0x28; // USB keyboard scan code for Enter key
mjr 61:3c7e6e9ec355 317 plunger.zbLaunchBall.pushDistance = 63; // 63/1000 in == .063" == about 1/16"
mjr 35:e959ffba78fd 318
mjr 35:e959ffba78fd 319 // assume no TV ON switch
mjr 53:9b2611964afc 320 TVON.statusPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 321 TVON.latchPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 322 TVON.relayPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 323 TVON.delayTime = 700; // 7 seconds
mjr 55:4db125cd11a0 324
mjr 55:4db125cd11a0 325 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 326 // expansion board TV ON wiring
mjr 53:9b2611964afc 327 TVON.statusPin = PINNAME_TO_WIRE(PTD2);
mjr 53:9b2611964afc 328 TVON.latchPin = PINNAME_TO_WIRE(PTE0);
mjr 53:9b2611964afc 329 TVON.relayPin = PINNAME_TO_WIRE(PTD3);
mjr 53:9b2611964afc 330 TVON.delayTime = 700; // 7 seconds
mjr 38:091e511ce8a0 331 #endif
mjr 53:9b2611964afc 332
mjr 53:9b2611964afc 333 // assume no night mode switch or indicator lamp
mjr 53:9b2611964afc 334 nightMode.btn = 0;
mjr 53:9b2611964afc 335 nightMode.flags = 0;
mjr 53:9b2611964afc 336 nightMode.port = 0;
mjr 35:e959ffba78fd 337
mjr 35:e959ffba78fd 338 // assume no TLC5940 chips
mjr 35:e959ffba78fd 339 tlc5940.nchips = 0;
mjr 55:4db125cd11a0 340
mjr 55:4db125cd11a0 341 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 342 // for expansion board testing purposes, assume the common setup
mjr 55:4db125cd11a0 343 // with one main board and one power board
mjr 48:058ace2aed1d 344 tlc5940.nchips = 4;
mjr 38:091e511ce8a0 345 #endif
mjr 38:091e511ce8a0 346
mjr 55:4db125cd11a0 347 // Default TLC5940 pin assignments. Note that it's harmless to set
mjr 55:4db125cd11a0 348 // these to valid pins even if no TLC5940 chips are actually present,
mjr 55:4db125cd11a0 349 // since the main program won't allocate the connections if 'nchips'
mjr 55:4db125cd11a0 350 // is zero. This means that the pins are free to be used for other
mjr 55:4db125cd11a0 351 // purposes (such as output ports) if not using TLC5940 chips.
mjr 53:9b2611964afc 352 tlc5940.sin = PINNAME_TO_WIRE(PTC6);
mjr 53:9b2611964afc 353 tlc5940.sclk = PINNAME_TO_WIRE(PTC5);
mjr 53:9b2611964afc 354 tlc5940.xlat = PINNAME_TO_WIRE(PTC10);
mjr 59:94eb9265b6d7 355 tlc5940.blank = PINNAME_TO_WIRE(PTC7);
mjr 59:94eb9265b6d7 356 #if TEST_KEEP_PRINTF
mjr 59:94eb9265b6d7 357 tlc5940.gsclk = PINNAME_TO_WIRE(PTA13); // PTA1 is reserved for SDA printf()
mjr 59:94eb9265b6d7 358 #else
mjr 53:9b2611964afc 359 tlc5940.gsclk = PINNAME_TO_WIRE(PTA1);
mjr 59:94eb9265b6d7 360 #endif
mjr 35:e959ffba78fd 361
mjr 35:e959ffba78fd 362 // assume no 74HC595 chips
mjr 35:e959ffba78fd 363 hc595.nchips = 0;
mjr 55:4db125cd11a0 364
mjr 55:4db125cd11a0 365 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 366 // for expansion board testing purposes, assume one chime board
mjr 48:058ace2aed1d 367 hc595.nchips = 1;
mjr 40:cc0d9814522b 368 #endif
mjr 40:cc0d9814522b 369
mjr 55:4db125cd11a0 370 // Default 74HC595 pin assignments. As with the TLC5940 pins, it's
mjr 55:4db125cd11a0 371 // harmless to assign pins here even if no 74HC595 chips are used,
mjr 55:4db125cd11a0 372 // since the main program won't actually allocate the pins if 'nchips'
mjr 55:4db125cd11a0 373 // is zero.
mjr 53:9b2611964afc 374 hc595.sin = PINNAME_TO_WIRE(PTA5);
mjr 53:9b2611964afc 375 hc595.sclk = PINNAME_TO_WIRE(PTA4);
mjr 53:9b2611964afc 376 hc595.latch = PINNAME_TO_WIRE(PTA12);
mjr 53:9b2611964afc 377 hc595.ena = PINNAME_TO_WIRE(PTD4);
mjr 38:091e511ce8a0 378
mjr 87:8d35c74403af 379 // disable all TLC59116 chips by default
mjr 87:8d35c74403af 380 tlc59116.chipMask = 0;
mjr 87:8d35c74403af 381
mjr 87:8d35c74403af 382 // Default TLC59116 pin assignments
mjr 87:8d35c74403af 383 tlc59116.sda = PINNAME_TO_WIRE(PTC6);
mjr 87:8d35c74403af 384 tlc59116.scl = PINNAME_TO_WIRE(PTC5);
mjr 87:8d35c74403af 385 tlc59116.reset = PINNAME_TO_WIRE(PTC10);
mjr 77:0b96f6867312 386
mjr 77:0b96f6867312 387 // Default IR hardware pin assignments. On the expansion boards,
mjr 77:0b96f6867312 388 // the sensor is connected to PTA13, and the emitter LED is on PTC9.
mjr 77:0b96f6867312 389 #if TEST_CONFIG_EXPAN
mjr 77:0b96f6867312 390 IR.sensor = PINNAME_TO_WIRE(PTA13);
mjr 77:0b96f6867312 391 IR.emitter = PINNAME_TO_WIRE(PTC9);
mjr 77:0b96f6867312 392 #else
mjr 77:0b96f6867312 393 IR.sensor = PINNAME_TO_WIRE(NC);
mjr 77:0b96f6867312 394 IR.emitter = PINNAME_TO_WIRE(NC);
mjr 77:0b96f6867312 395 #endif
mjr 77:0b96f6867312 396
mjr 77:0b96f6867312 397 // clear out all IR slots
mjr 77:0b96f6867312 398 memset(IRCommand, 0, sizeof(IRCommand));
mjr 77:0b96f6867312 399 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 400 {
mjr 77:0b96f6867312 401 IRCommand[i].protocol = 0;
mjr 77:0b96f6867312 402 IRCommand[i].keytype = BtnTypeNone;
mjr 77:0b96f6867312 403 }
mjr 77:0b96f6867312 404
mjr 35:e959ffba78fd 405 // initially configure with no LedWiz output ports
mjr 35:e959ffba78fd 406 outPort[0].typ = PortTypeDisabled;
mjr 66:2e3583fbd2f4 407
mjr 66:2e3583fbd2f4 408 // initially configure with no shift key
mjr 78:1e00b3fa11af 409 shiftButton.idx = 0;
mjr 78:1e00b3fa11af 410 shiftButton.mode = 0;
mjr 53:9b2611964afc 411
mjr 35:e959ffba78fd 412 // initially configure with no input buttons
mjr 35:e959ffba78fd 413 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 53:9b2611964afc 414 button[i].set(PINNAME_TO_WIRE(NC), BtnTypeNone, 0);
mjr 38:091e511ce8a0 415
mjr 55:4db125cd11a0 416 #if STANDARD_CONFIG | TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 417 // For the standard configuration, assign 24 input ports to
mjr 55:4db125cd11a0 418 // joystick buttons 1-24. Assign the same GPIO pins used
mjr 55:4db125cd11a0 419 // in the original v1 default configuration. For expansion
mjr 55:4db125cd11a0 420 // board testing purposes, also assign the input ports, with
mjr 55:4db125cd11a0 421 // the noted differences.
mjr 38:091e511ce8a0 422 for (int i = 0 ; i < 24 ; ++i) {
mjr 55:4db125cd11a0 423 static const int bp[] = {
mjr 53:9b2611964afc 424 PINNAME_TO_WIRE(PTC2), // 1
mjr 53:9b2611964afc 425 PINNAME_TO_WIRE(PTB3), // 2
mjr 53:9b2611964afc 426 PINNAME_TO_WIRE(PTB2), // 3
mjr 53:9b2611964afc 427 PINNAME_TO_WIRE(PTB1), // 4
mjr 53:9b2611964afc 428 PINNAME_TO_WIRE(PTE30), // 5
mjr 48:058ace2aed1d 429 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 430 PINNAME_TO_WIRE(PTC11), // 6 - expansion boards use PTC11 for this, since PTE22
mjr 55:4db125cd11a0 431 // is reserved for a plunger connection
mjr 55:4db125cd11a0 432 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 433 PINNAME_TO_WIRE(PTE22), // 6 - original standalone setup uses PTE22
mjr 48:058ace2aed1d 434 #endif
mjr 53:9b2611964afc 435 PINNAME_TO_WIRE(PTE5), // 7
mjr 53:9b2611964afc 436 PINNAME_TO_WIRE(PTE4), // 8
mjr 53:9b2611964afc 437 PINNAME_TO_WIRE(PTE3), // 9
mjr 53:9b2611964afc 438 PINNAME_TO_WIRE(PTE2), // 10
mjr 53:9b2611964afc 439 PINNAME_TO_WIRE(PTB11), // 11
mjr 53:9b2611964afc 440 PINNAME_TO_WIRE(PTB10), // 12
mjr 53:9b2611964afc 441 PINNAME_TO_WIRE(PTB9), // 13
mjr 53:9b2611964afc 442 PINNAME_TO_WIRE(PTB8), // 14
mjr 53:9b2611964afc 443 PINNAME_TO_WIRE(PTC12), // 15
mjr 53:9b2611964afc 444 PINNAME_TO_WIRE(PTC13), // 16
mjr 53:9b2611964afc 445 PINNAME_TO_WIRE(PTC16), // 17
mjr 53:9b2611964afc 446 PINNAME_TO_WIRE(PTC17), // 18
mjr 53:9b2611964afc 447 PINNAME_TO_WIRE(PTA16), // 19
mjr 53:9b2611964afc 448 PINNAME_TO_WIRE(PTA17), // 20
mjr 53:9b2611964afc 449 PINNAME_TO_WIRE(PTE31), // 21
mjr 53:9b2611964afc 450 PINNAME_TO_WIRE(PTD6), // 22
mjr 53:9b2611964afc 451 PINNAME_TO_WIRE(PTD7), // 23
mjr 53:9b2611964afc 452 PINNAME_TO_WIRE(PTE1) // 24
mjr 40:cc0d9814522b 453 };
mjr 48:058ace2aed1d 454 button[i].set(bp[i],
mjr 48:058ace2aed1d 455 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 456 // For expansion board testing only, assign the inputs
mjr 55:4db125cd11a0 457 // to keyboard keys A, B, etc. This isn't useful; it's
mjr 55:4db125cd11a0 458 // just for testing purposes. Note that the USB key code
mjr 55:4db125cd11a0 459 // for "A" is 4, "B" is 5, and so on sequentially through
mjr 55:4db125cd11a0 460 // the alphabet.
mjr 55:4db125cd11a0 461 BtnTypeKey, i+4);
mjr 55:4db125cd11a0 462 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 463 // For the standard configuration, assign the input to
mjr 55:4db125cd11a0 464 // joystick buttons 1-24, as in the original v1 default
mjr 55:4db125cd11a0 465 // configuration.
mjr 55:4db125cd11a0 466 BtnTypeJoystick, i+1);
mjr 48:058ace2aed1d 467 #endif
mjr 48:058ace2aed1d 468
mjr 38:091e511ce8a0 469 }
mjr 38:091e511ce8a0 470 #endif
mjr 38:091e511ce8a0 471
mjr 55:4db125cd11a0 472 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 473 // For testing purposes, configure the basic complement of
mjr 55:4db125cd11a0 474 // expansion board ports. AS MENTIONED ABOVE, THIS IS PURELY FOR
mjr 55:4db125cd11a0 475 // TESTING. DON'T USE THIS METHOD TO CONFIGURE YOUR EXPANSION
mjr 55:4db125cd11a0 476 // BOARDS FOR ACTUAL DEPLOYMENT. It's much easier and cleaner
mjr 55:4db125cd11a0 477 // to use the unmodified standard build, and customize your
mjr 55:4db125cd11a0 478 // installation with the Pinscape Config Tool on Windows.
mjr 40:cc0d9814522b 479 //
mjr 55:4db125cd11a0 480 // For this testing setup, we'll configure one main board, one
mjr 55:4db125cd11a0 481 // power board, and one chime board. The *physical* ports on
mjr 55:4db125cd11a0 482 // the board are shown below. The logical (LedWiz/DOF) numbering
mjr 55:4db125cd11a0 483 // ISN'T sequential through the physical ports, because we want
mjr 55:4db125cd11a0 484 // to arrange the DOF ports so that the most important and most
mjr 55:4db125cd11a0 485 // common toys are assigned to ports 1-32. Those ports are
mjr 55:4db125cd11a0 486 // special because they're accessible to ALL software on the PC,
mjr 55:4db125cd11a0 487 // including older LedWiz-only software such as Future Pinball.
mjr 55:4db125cd11a0 488 // Ports above 32 are accessible only to modern DOF software,
mjr 55:4db125cd11a0 489 // like Visual Pinball and PinballX.
mjr 40:cc0d9814522b 490 //
mjr 40:cc0d9814522b 491 // Main board
mjr 40:cc0d9814522b 492 // TLC ports 0-15 -> flashers
mjr 40:cc0d9814522b 493 // TLC ports 16 -> strobe
mjr 40:cc0d9814522b 494 // TLC ports 17-31 -> flippers
mjr 40:cc0d9814522b 495 // Dig GPIO PTC8 -> knocker (timer-protected outputs)
mjr 40:cc0d9814522b 496 //
mjr 40:cc0d9814522b 497 // Power board:
mjr 40:cc0d9814522b 498 // TLC ports 32-63 -> general purpose outputs
mjr 40:cc0d9814522b 499 //
mjr 40:cc0d9814522b 500 // Chime board:
mjr 40:cc0d9814522b 501 // HC595 ports 0-7 -> timer-protected outputs
mjr 40:cc0d9814522b 502 //
mjr 38:091e511ce8a0 503 {
mjr 38:091e511ce8a0 504 int n = 0;
mjr 40:cc0d9814522b 505
mjr 40:cc0d9814522b 506 // 1-15 = flashers (TLC ports 0-15)
mjr 40:cc0d9814522b 507 // 16 = strobe (TLC port 15)
mjr 40:cc0d9814522b 508 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 509 outPort[n++].set(PortTypeTLC5940, i, PortFlagGamma);
mjr 40:cc0d9814522b 510
mjr 53:9b2611964afc 511 // 17 = knocker (PTC8)
mjr 53:9b2611964afc 512 outPort[n++].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8));
mjr 35:e959ffba78fd 513
mjr 40:cc0d9814522b 514 // 18-49 = power board outputs 1-32 (TLC ports 32-63)
mjr 40:cc0d9814522b 515 for (int i = 0 ; i < 32 ; ++i)
mjr 40:cc0d9814522b 516 outPort[n++].set(PortTypeTLC5940, i+32);
mjr 40:cc0d9814522b 517
mjr 40:cc0d9814522b 518 // 50-65 = flipper RGB (TLC ports 16-31)
mjr 40:cc0d9814522b 519 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 520 outPort[n++].set(PortTypeTLC5940, i+16, PortFlagGamma);
mjr 59:94eb9265b6d7 521
mjr 40:cc0d9814522b 522 // 66-73 = chime board ports 1-8 (74HC595 ports 0-7)
mjr 40:cc0d9814522b 523 for (int i = 0 ; i < 8 ; ++i)
mjr 40:cc0d9814522b 524 outPort[n++].set(PortType74HC595, i);
mjr 59:94eb9265b6d7 525
mjr 40:cc0d9814522b 526 // set Disabled to signify end of configured outputs
mjr 38:091e511ce8a0 527 outPort[n].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 528 }
mjr 38:091e511ce8a0 529 #endif
mjr 48:058ace2aed1d 530
mjr 55:4db125cd11a0 531 #if STANDARD_CONFIG
mjr 55:4db125cd11a0 532 //
mjr 55:4db125cd11a0 533 // For the standard build, set up the original complement
mjr 55:4db125cd11a0 534 // of 22 ports from the v1 default onfiguration.
mjr 55:4db125cd11a0 535 //
mjr 55:4db125cd11a0 536 // IMPORTANT! As mentioned above, don't edit this file to
mjr 55:4db125cd11a0 537 // customize this for your machine. Instead, use the unmodified
mjr 55:4db125cd11a0 538 // standard build, and customize your installation using the
mjr 55:4db125cd11a0 539 // Pinscape Config Tool on Windows.
mjr 55:4db125cd11a0 540 //
mjr 48:058ace2aed1d 541 #if TEST_KEEP_PRINTF
mjr 55:4db125cd11a0 542 outPort[ 0].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 1 = NC to keep debug printf (PTA1 is SDA UART)
mjr 55:4db125cd11a0 543 outPort[ 1].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 2 = NC to keep debug printf (PTA2 is SDA UART)
mjr 48:058ace2aed1d 544 #else
mjr 53:9b2611964afc 545 outPort[ 0].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA1)); // port 1 = PTA1
mjr 53:9b2611964afc 546 outPort[ 1].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA2)); // port 2 = PTA2
mjr 48:058ace2aed1d 547 #endif
mjr 53:9b2611964afc 548 outPort[ 2].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD4)); // port 3 = PTD4
mjr 53:9b2611964afc 549 outPort[ 3].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA12)); // port 4 = PTA12
mjr 53:9b2611964afc 550 outPort[ 4].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA4)); // port 5 = PTA4
mjr 53:9b2611964afc 551 outPort[ 5].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA5)); // port 6 = PTA5
mjr 53:9b2611964afc 552 outPort[ 6].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA13)); // port 7 = PTA13
mjr 53:9b2611964afc 553 outPort[ 7].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD5)); // port 8 = PTD5
mjr 53:9b2611964afc 554 outPort[ 8].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD0)); // port 9 = PTD0
mjr 53:9b2611964afc 555 outPort[ 9].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD3)); // port 10 = PTD3
mjr 53:9b2611964afc 556 outPort[10].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTD2)); // port 11 = PTD2
mjr 53:9b2611964afc 557 outPort[11].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8)); // port 12 = PTC8
mjr 53:9b2611964afc 558 outPort[12].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC9)); // port 13 = PTC9
mjr 53:9b2611964afc 559 outPort[13].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC7)); // port 14 = PTC7
mjr 53:9b2611964afc 560 outPort[14].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC0)); // port 15 = PTC0
mjr 53:9b2611964afc 561 outPort[15].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC3)); // port 16 = PTC3
mjr 53:9b2611964afc 562 outPort[16].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC4)); // port 17 = PTC4
mjr 53:9b2611964afc 563 outPort[17].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC5)); // port 18 = PTC5
mjr 53:9b2611964afc 564 outPort[18].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC6)); // port 19 = PTC6
mjr 53:9b2611964afc 565 outPort[19].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC10)); // port 20 = PTC10
mjr 53:9b2611964afc 566 outPort[20].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC11)); // port 21 = PTC11
mjr 53:9b2611964afc 567 outPort[21].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTE0)); // port 22 = PTE0
mjr 48:058ace2aed1d 568 #endif
mjr 35:e959ffba78fd 569 }
mjr 35:e959ffba78fd 570
mjr 35:e959ffba78fd 571 // --- USB DEVICE CONFIGURATION ---
mjr 35:e959ffba78fd 572
mjr 35:e959ffba78fd 573 // USB device identification - vendor ID and product ID. For LedLWiz
mjr 35:e959ffba78fd 574 // emulation, use vendor ID 0xFAFA and product ID 0x00EF + unit#, where
mjr 35:e959ffba78fd 575 // unit# is the nominal LedWiz unit number from 1 to 16. Alternatively,
mjr 35:e959ffba78fd 576 // if LedWiz emulation isn't desired or causes any driver conflicts on
mjr 35:e959ffba78fd 577 // the host, we have a private Pinscape assignment as vendor ID 0x1209
mjr 35:e959ffba78fd 578 // and product ID 0xEAEA (registered with http://pid.codes, a registry
mjr 35:e959ffba78fd 579 // for open-source USB projects).
mjr 35:e959ffba78fd 580 uint16_t usbVendorID;
mjr 35:e959ffba78fd 581 uint16_t usbProductID;
mjr 35:e959ffba78fd 582
mjr 35:e959ffba78fd 583 // Pinscape Controller unit number. This is the nominal unit number,
mjr 35:e959ffba78fd 584 // from 1 to 16. We report this in the status query; DOF uses it to
mjr 53:9b2611964afc 585 // distinguish among Pinscape units. Note that this doesn't affect
mjr 35:e959ffba78fd 586 // the LedWiz unit numbering, which is implied by the USB Product ID.
mjr 35:e959ffba78fd 587 uint8_t psUnitNo;
mjr 35:e959ffba78fd 588
mjr 35:e959ffba78fd 589 // Are joystick reports enabled? Joystick reports can be turned off, to
mjr 35:e959ffba78fd 590 // use the device as purely an output controller.
mjr 77:0b96f6867312 591 uint8_t joystickEnabled;
mjr 35:e959ffba78fd 592
mjr 90:aa4e571da8e8 593 // Joystick axis report format, as a USBJoystick::AXIS_FORMAT_xxx value.
mjr 90:aa4e571da8e8 594 uint8_t joystickAxisFormat;
mjr 90:aa4e571da8e8 595
mjr 92:f264fbaa1be5 596 // Joystick report timing. This is the minimum time between joystick
mjr 92:f264fbaa1be5 597 // reports, in microseconds.
mjr 92:f264fbaa1be5 598 uint32_t jsReportInterval_us;
mjr 92:f264fbaa1be5 599
mjr 51:57eb311faafa 600 // Timeout for rebooting the KL25Z when the connection is lost. On some
mjr 51:57eb311faafa 601 // hosts, the mbed USB stack has problems reconnecting after an initial
mjr 51:57eb311faafa 602 // connection is dropped. As a workaround, we can automatically reboot
mjr 51:57eb311faafa 603 // the KL25Z when it detects that it's no longer connected, after the
mjr 51:57eb311faafa 604 // interval set here expires. The timeout is in seconds; setting this
mjr 51:57eb311faafa 605 // to 0 disables the automatic reboot.
mjr 51:57eb311faafa 606 uint8_t disconnectRebootTimeout;
mjr 35:e959ffba78fd 607
mjr 35:e959ffba78fd 608 // --- ACCELEROMETER ---
mjr 78:1e00b3fa11af 609 struct
mjr 78:1e00b3fa11af 610 {
mjr 78:1e00b3fa11af 611 // accelerometer orientation (OrientationXxx value)
mjr 78:1e00b3fa11af 612 uint8_t orientation;
mjr 35:e959ffba78fd 613
mjr 78:1e00b3fa11af 614 // dynamic range (AccelRangeXxx value)
mjr 78:1e00b3fa11af 615 uint8_t range;
mjr 77:0b96f6867312 616
mjr 78:1e00b3fa11af 617 // Auto-centering mode:
mjr 78:1e00b3fa11af 618 // 0 = auto-centering on, 5-second timer
mjr 78:1e00b3fa11af 619 // 1-60 = auto-centering on with the given timer in seconds
mjr 78:1e00b3fa11af 620 // 255 = auto-centering off
mjr 78:1e00b3fa11af 621 uint8_t autoCenterTime;
mjr 92:f264fbaa1be5 622
mjr 92:f264fbaa1be5 623 // Accelerometer report "stuttering". This is the number of times
mjr 92:f264fbaa1be5 624 // that each accelerometer reading is repeated in the joystick
mjr 92:f264fbaa1be5 625 // reports. If this is set to 1 (or 0), a new accelerometer reading
mjr 92:f264fbaa1be5 626 // is taken on every joystick report. If set to 2, a new reading
mjr 92:f264fbaa1be5 627 // is taken on every other report, and the previous reading is
mjr 92:f264fbaa1be5 628 // repeated on the alternating reports. If set to 3, we take a
mjr 92:f264fbaa1be5 629 // new reading on each third report, and so on. The purpose is
mjr 92:f264fbaa1be5 630 // to slow down accelerometer readings for the benefit of Visual
mjr 92:f264fbaa1be5 631 // Pinball, which will miss readings if taken faster than the
mjr 92:f264fbaa1be5 632 // video refresh rate, while sending joystick reports at a
mjr 92:f264fbaa1be5 633 // faster rate for lower button input latency.
mjr 92:f264fbaa1be5 634 uint8_t stutter;
mjr 78:1e00b3fa11af 635
mjr 78:1e00b3fa11af 636 } accel;
mjr 35:e959ffba78fd 637
mjr 35:e959ffba78fd 638
mjr 52:8298b2a73eb2 639 // --- EXPANSION BOARDS ---
mjr 52:8298b2a73eb2 640 struct
mjr 52:8298b2a73eb2 641 {
mjr 53:9b2611964afc 642 uint8_t typ; // expansion board set type:
mjr 105:6a25bbfae1e4 643 // 1 -> Pinscape Expansion Boards
mjr 105:6a25bbfae1e4 644 // 2 -> Pinscape All-In-One (AIO)
mjr 53:9b2611964afc 645 uint8_t vsn; // board set interface version
mjr 53:9b2611964afc 646 uint8_t ext[3]; // board set type-specific extended data
mjr 52:8298b2a73eb2 647
mjr 52:8298b2a73eb2 648 } expan;
mjr 52:8298b2a73eb2 649
mjr 52:8298b2a73eb2 650
mjr 35:e959ffba78fd 651 // --- PLUNGER CONFIGURATION ---
mjr 35:e959ffba78fd 652 struct
mjr 35:e959ffba78fd 653 {
mjr 77:0b96f6867312 654 // Plunger enabled/disabled. Note that we use the status flag
mjr 77:0b96f6867312 655 // bit 0x01 if enabled, 0x00 if disabled. This conveniently
mjr 77:0b96f6867312 656 // can be tested as though it's a bool, but should always be
mjr 77:0b96f6867312 657 // stored as 0x01 or 0x00 so that it can be OR'ed into the
mjr 77:0b96f6867312 658 // status report flag bits.
mjr 77:0b96f6867312 659 uint8_t enabled;
mjr 33:d832bcab089e 660
mjr 35:e959ffba78fd 661 // plunger sensor type
mjr 77:0b96f6867312 662 uint8_t sensorType;
mjr 35:e959ffba78fd 663
mjr 35:e959ffba78fd 664 // Plunger sensor pins. To accommodate a wide range of sensor types,
mjr 35:e959ffba78fd 665 // we keep a generic list of 4 pin assignments. The use of each pin
mjr 35:e959ffba78fd 666 // varies by sensor. The lists below are in order of the generic
mjr 35:e959ffba78fd 667 // pins; NC means that the pin isn't used by the sensor. Each pin's
mjr 35:e959ffba78fd 668 // GPIO usage is also listed. Certain usages limit which physical
mjr 35:e959ffba78fd 669 // pins can be assigned (e.g., AnalogIn or PwmOut).
mjr 35:e959ffba78fd 670 //
mjr 82:4f6209cb5c33 671 // TSL1410R/1412S/1401CL: SI (GPIO), CLK (GPIO), AO (AnalogIn), NC
mjr 35:e959ffba78fd 672 // Potentiometer: AO (AnalogIn), NC, NC, NC
mjr 35:e959ffba78fd 673 // AEDR8300: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 674 // AS5304: A (InterruptIn), B (InterruptIn), NC, NC
mjr 82:4f6209cb5c33 675 // VL6180X: SDA (GPIO), SCL (GPIO), GPIO0/CE (GPIO)
mjr 53:9b2611964afc 676 //
mjr 53:9b2611964afc 677 // Note! These are stored in uint8_t WIRE format, not PinName format.
mjr 53:9b2611964afc 678 uint8_t sensorPin[4];
mjr 35:e959ffba78fd 679
mjr 82:4f6209cb5c33 680 // Automatic zeroing. If enabled, we'll reset the plunger position to
mjr 82:4f6209cb5c33 681 // the park position after a period of inactivity. This only applies
mjr 82:4f6209cb5c33 682 // to certain sensor types; sensors that don't use it simply ignore it.
mjr 82:4f6209cb5c33 683 struct
mjr 82:4f6209cb5c33 684 {
mjr 82:4f6209cb5c33 685 uint8_t flags; // flags bits - combination of PlungerAutoZeroXxx flags
mjr 82:4f6209cb5c33 686 uint8_t t; // inactivity time in seconds
mjr 82:4f6209cb5c33 687 } autoZero;
mjr 82:4f6209cb5c33 688
mjr 85:3c28aee81cde 689 // Jitter filter. This is the size of the hysteresis window, in joystick
mjr 85:3c28aee81cde 690 // units (-4095..+4095). One joystick unit is approximately 1/10000" of
mjr 85:3c28aee81cde 691 // physical travel. Zero disables the jitter filter.
mjr 85:3c28aee81cde 692 uint16_t jitterWindow;
mjr 85:3c28aee81cde 693
mjr 91:ae9be42652bf 694 // Plunger sensor reverse orientation flags. This is a bit mask:
mjr 91:ae9be42652bf 695 //
mjr 91:ae9be42652bf 696 // 0x01 = Reverse orientation enabled. We invert the plunger sensor
mjr 91:ae9be42652bf 697 // readings, as though the sensor were physically flipped
mjr 91:ae9be42652bf 698 // around. This can be used to correct for installing the
mjr 91:ae9be42652bf 699 // sensor backwards without having to change the hardware.
mjr 91:ae9be42652bf 700 //
mjr 91:ae9be42652bf 701 // 0x80 = READ-ONLY feature flag. This always reads as set if the
mjr 91:ae9be42652bf 702 // feature is enabled. Note that the USB data exchanger always
mjr 91:ae9be42652bf 703 // sets the bit on read, so it's not necessary to actually
mjr 91:ae9be42652bf 704 // store it.
mjr 91:ae9be42652bf 705 //
mjr 91:ae9be42652bf 706 uint8_t reverseOrientation;
mjr 91:ae9be42652bf 707
mjr 87:8d35c74403af 708 // bar code sensor parameters
mjr 87:8d35c74403af 709 struct
mjr 87:8d35c74403af 710 {
mjr 87:8d35c74403af 711 uint16_t startPix; // starting pixel offset
mjr 87:8d35c74403af 712 } barCode;
mjr 87:8d35c74403af 713
mjr 53:9b2611964afc 714 // ZB LAUNCH BALL button setup.
mjr 35:e959ffba78fd 715 //
mjr 35:e959ffba78fd 716 // This configures the "ZB Launch Ball" feature in DOF, based on Zeb's (of
mjr 35:e959ffba78fd 717 // zebsboards.com) scheme for using a mechanical plunger as a Launch button.
mjr 35:e959ffba78fd 718 // Set the port to 0 to disable the feature.
mjr 35:e959ffba78fd 719 //
mjr 35:e959ffba78fd 720 // The port number is an LedWiz port number that we monitor for activation.
mjr 53:9b2611964afc 721 // This port isn't meant to be connected to a physical device, although it
mjr 53:9b2611964afc 722 // can be if desired. It's primarily to let the host tell the controller
mjr 53:9b2611964afc 723 // when the ZB Launch feature is active. The port numbering starts at 1;
mjr 53:9b2611964afc 724 // set this to zero to disable the feature.
mjr 35:e959ffba78fd 725 //
mjr 53:9b2611964afc 726 // The key type and code has the same meaning as for a button mapping. This
mjr 53:9b2611964afc 727 // sets the key input sent to the PC when the plunger triggers a launch when
mjr 53:9b2611964afc 728 // the mode is active. For example, set keytype=2 and keycode=0x28 to send
mjr 53:9b2611964afc 729 // the Enter key (which is the key almost all PC pinball software uses for
mjr 53:9b2611964afc 730 // plunger and Launch button input).
mjr 35:e959ffba78fd 731 //
mjr 40:cc0d9814522b 732 // The "push distance" is the distance, in 1/1000 inch units, for registering a
mjr 40:cc0d9814522b 733 // push on the plunger as a button push. If the player pushes the plunger
mjr 40:cc0d9814522b 734 // forward of the rest position by this amount, we'll treat it as pushing the
mjr 40:cc0d9814522b 735 // button, even if the player didn't pull back the plunger first. This lets
mjr 40:cc0d9814522b 736 // the player treat the plunger knob as a button for games where it's meaningful
mjr 35:e959ffba78fd 737 // to hold down the Launch button for specific intervals (e.g., "Championship
mjr 35:e959ffba78fd 738 // Pub").
mjr 35:e959ffba78fd 739 struct
mjr 35:e959ffba78fd 740 {
mjr 53:9b2611964afc 741 uint8_t port;
mjr 53:9b2611964afc 742 uint8_t keytype;
mjr 53:9b2611964afc 743 uint8_t keycode;
mjr 53:9b2611964afc 744 uint16_t pushDistance;
mjr 35:e959ffba78fd 745
mjr 35:e959ffba78fd 746 } zbLaunchBall;
mjr 35:e959ffba78fd 747
mjr 35:e959ffba78fd 748 // --- PLUNGER CALIBRATION ---
mjr 35:e959ffba78fd 749 struct
mjr 35:e959ffba78fd 750 {
mjr 35:e959ffba78fd 751 // has the plunger been calibrated?
mjr 53:9b2611964afc 752 bool calibrated;
mjr 55:4db125cd11a0 753
mjr 55:4db125cd11a0 754 // Feature enable mask:
mjr 55:4db125cd11a0 755 //
mjr 55:4db125cd11a0 756 // 0x01 = calibration button enabled
mjr 55:4db125cd11a0 757 // 0x02 = indicator light enabled
mjr 55:4db125cd11a0 758 uint8_t features;
mjr 35:e959ffba78fd 759
mjr 35:e959ffba78fd 760 // calibration button switch pin
mjr 53:9b2611964afc 761 uint8_t btn;
mjr 35:e959ffba78fd 762
mjr 35:e959ffba78fd 763 // calibration button indicator light pin
mjr 53:9b2611964afc 764 uint8_t led;
mjr 35:e959ffba78fd 765
mjr 48:058ace2aed1d 766 // Plunger calibration min, zero, and max. These are in terms of the
mjr 48:058ace2aed1d 767 // unsigned 16-bit scale (0x0000..0xffff) that we use for the raw sensor
mjr 48:058ace2aed1d 768 // readings.
mjr 48:058ace2aed1d 769 //
mjr 48:058ace2aed1d 770 // The zero point is the rest position (aka park position), where the
mjr 48:058ace2aed1d 771 // plunger is in equilibrium between the main spring and the barrel
mjr 48:058ace2aed1d 772 // spring. In the standard setup, the plunger can travel a small
mjr 48:058ace2aed1d 773 // distance forward of the rest position, because the barrel spring
mjr 48:058ace2aed1d 774 // can be compressed a bit. The minimum is the maximum forward point
mjr 48:058ace2aed1d 775 // where the barrel spring can't be compressed any further.
mjr 48:058ace2aed1d 776 uint16_t min;
mjr 48:058ace2aed1d 777 uint16_t zero;
mjr 48:058ace2aed1d 778 uint16_t max;
mjr 52:8298b2a73eb2 779
mjr 100:1ff35c07217c 780 // Raw calibration data. Some sensors need to keep track of raw
mjr 100:1ff35c07217c 781 // sensor data for calibration, in addition to the processed
mjr 100:1ff35c07217c 782 // range information that the generic code maintains. We
mjr 100:1ff35c07217c 783 // provide three uint16 slots for the specific sensor subclass's
mjr 100:1ff35c07217c 784 // use, with the meanings defined by the subclass.
mjr 100:1ff35c07217c 785 uint16_t raw0;
mjr 100:1ff35c07217c 786 uint16_t raw1;
mjr 100:1ff35c07217c 787 uint16_t raw2;
mjr 100:1ff35c07217c 788
mjr 52:8298b2a73eb2 789 // Measured release time, in milliseconds.
mjr 52:8298b2a73eb2 790 uint8_t tRelease;
mjr 35:e959ffba78fd 791
mjr 44:b5ac89b9cd5d 792 // Reset the plunger calibration
mjr 44:b5ac89b9cd5d 793 void setDefaults()
mjr 35:e959ffba78fd 794 {
mjr 44:b5ac89b9cd5d 795 calibrated = false; // not calibrated
mjr 48:058ace2aed1d 796 min = 0; // assume we can go all the way forward...
mjr 48:058ace2aed1d 797 max = 0xffff; // ...and all the way back
mjr 48:058ace2aed1d 798 zero = max/6; // the rest position is usually around 1/2" back = 1/6 of total travel
mjr 52:8298b2a73eb2 799 tRelease = 65; // standard 65ms release time
mjr 100:1ff35c07217c 800 raw0 = raw1 = raw2 = 0; // clear the raw sensor data items
mjr 44:b5ac89b9cd5d 801 }
mjr 44:b5ac89b9cd5d 802
mjr 44:b5ac89b9cd5d 803 // Begin calibration. This sets each limit to the worst
mjr 44:b5ac89b9cd5d 804 // case point - for example, we set the retracted position
mjr 44:b5ac89b9cd5d 805 // to all the way forward. Each actual reading that comes
mjr 44:b5ac89b9cd5d 806 // in is then checked against the current limit, and if it's
mjr 44:b5ac89b9cd5d 807 // outside of the limit, we reset the limit to the new reading.
mjr 44:b5ac89b9cd5d 808 void begin()
mjr 44:b5ac89b9cd5d 809 {
mjr 48:058ace2aed1d 810 min = 0; // we don't calibrate the maximum forward position, so keep this at zero
mjr 48:058ace2aed1d 811 zero = 0xffff; // set the zero position all the way back
mjr 48:058ace2aed1d 812 max = 0; // set the retracted position all the way forward
mjr 52:8298b2a73eb2 813 tRelease = 65; // revert to a default release time
mjr 35:e959ffba78fd 814 }
mjr 17:ab3cec0c8bf4 815
mjr 35:e959ffba78fd 816 } cal;
mjr 18:5e890ebd0023 817
mjr 35:e959ffba78fd 818 } plunger;
mjr 29:582472d0bc57 819
mjr 35:e959ffba78fd 820
mjr 35:e959ffba78fd 821 // --- TV ON SWITCH ---
mjr 35:e959ffba78fd 822 //
mjr 35:e959ffba78fd 823 // To use the TV ON switch feature, the special power sensing circuitry
mjr 35:e959ffba78fd 824 // implemented on the Expansion Board must be attached (or an equivalent
mjr 35:e959ffba78fd 825 // circuit, as described in the Build Guide). The circuitry lets us
mjr 35:e959ffba78fd 826 // detect power state changes on the secondary power supply.
mjr 35:e959ffba78fd 827 struct
mjr 35:e959ffba78fd 828 {
mjr 35:e959ffba78fd 829 // PSU2 power status sense (DigitalIn pin). This pin goes LOW when the
mjr 35:e959ffba78fd 830 // secondary power supply is turned off, and remains LOW until the LATCH
mjr 35:e959ffba78fd 831 // pin is raised high AND the secondary PSU is turned on. Once HIGH,
mjr 35:e959ffba78fd 832 // it remains HIGH as long as the secondary PSU is on.
mjr 53:9b2611964afc 833 uint8_t statusPin;
mjr 35:e959ffba78fd 834
mjr 35:e959ffba78fd 835 // PSU2 power status latch (DigitalOut pin)
mjr 53:9b2611964afc 836 uint8_t latchPin;
mjr 35:e959ffba78fd 837
mjr 35:e959ffba78fd 838 // TV ON relay pin (DigitalOut pin). This pin controls the TV switch
mjr 35:e959ffba78fd 839 // relay. Raising the pin HIGH turns the relay ON (energizes the coil).
mjr 53:9b2611964afc 840 uint8_t relayPin;
mjr 35:e959ffba78fd 841
mjr 40:cc0d9814522b 842 // TV ON delay time, in 1/100 second units. This is the interval between
mjr 40:cc0d9814522b 843 // sensing that the secondary power supply has turned on and pulsing the
mjr 40:cc0d9814522b 844 // TV ON switch relay.
mjr 40:cc0d9814522b 845 int delayTime;
mjr 35:e959ffba78fd 846
mjr 35:e959ffba78fd 847 } TVON;
mjr 35:e959ffba78fd 848
mjr 53:9b2611964afc 849 // --- Night Mode ---
mjr 53:9b2611964afc 850 struct
mjr 53:9b2611964afc 851 {
mjr 55:4db125cd11a0 852 uint8_t btn; // night mode button number (1..MAX_BUTTONS, 0 = no button)
mjr 53:9b2611964afc 853 uint8_t flags; // flags:
mjr 53:9b2611964afc 854 // 0x01 = on/off switch (if not set, it's a momentary button)
mjr 55:4db125cd11a0 855 uint8_t port; // indicator output port number (1..MAX_OUT_PORTS, 0 = no indicator)
mjr 53:9b2611964afc 856 } nightMode;
mjr 53:9b2611964afc 857
mjr 29:582472d0bc57 858
mjr 35:e959ffba78fd 859 // --- TLC5940NT PWM Controller Chip Setup ---
mjr 35:e959ffba78fd 860 struct
mjr 35:e959ffba78fd 861 {
mjr 35:e959ffba78fd 862 // number of TLC5940NT chips connected in daisy chain
mjr 87:8d35c74403af 863 uint8_t nchips;
mjr 35:e959ffba78fd 864
mjr 53:9b2611964afc 865 // pin connections (wire pin IDs)
mjr 53:9b2611964afc 866 uint8_t sin; // Serial data - must connect to SPIO MOSI -> PTC6 or PTD2
mjr 53:9b2611964afc 867 uint8_t sclk; // Serial clock - must connect to SPIO SCLK -> PTC5 or PTD1
mjr 35:e959ffba78fd 868 // (but don't use PTD1, since it's hard-wired to the on-board blue LED)
mjr 53:9b2611964afc 869 uint8_t xlat; // XLAT (latch) signal - connect to any GPIO pin
mjr 53:9b2611964afc 870 uint8_t blank; // BLANK signal - connect to any GPIO pin
mjr 53:9b2611964afc 871 uint8_t gsclk; // Grayscale clock - must connect to a PWM-out capable pin
mjr 29:582472d0bc57 872
mjr 35:e959ffba78fd 873 } tlc5940;
mjr 35:e959ffba78fd 874
mjr 35:e959ffba78fd 875
mjr 35:e959ffba78fd 876 // --- 74HC595 Shift Register Setup ---
mjr 35:e959ffba78fd 877 struct
mjr 35:e959ffba78fd 878 {
mjr 35:e959ffba78fd 879 // number of 74HC595 chips attached in daisy chain
mjr 87:8d35c74403af 880 uint8_t nchips;
mjr 35:e959ffba78fd 881
mjr 35:e959ffba78fd 882 // pin connections
mjr 53:9b2611964afc 883 uint8_t sin; // Serial data - use any GPIO pin
mjr 53:9b2611964afc 884 uint8_t sclk; // Serial clock - use any GPIO pin
mjr 53:9b2611964afc 885 uint8_t latch; // Latch - use any GPIO pin
mjr 53:9b2611964afc 886 uint8_t ena; // Enable signal - use any GPIO pin
mjr 35:e959ffba78fd 887
mjr 35:e959ffba78fd 888 } hc595;
mjr 77:0b96f6867312 889
mjr 87:8d35c74403af 890 // --- TLC59116 PWM Controller Chip Setup --
mjr 87:8d35c74403af 891 struct
mjr 87:8d35c74403af 892 {
mjr 87:8d35c74403af 893 // Chip mask. Each bit represents an enabled chip at the
mjr 87:8d35c74403af 894 // corresponding 4-bit address (i.e., bit 1<<addr represents
mjr 87:8d35c74403af 895 // the chip at 'addr').
mjr 87:8d35c74403af 896 uint16_t chipMask;
mjr 87:8d35c74403af 897
mjr 87:8d35c74403af 898 // pin connections
mjr 87:8d35c74403af 899 uint8_t sda; // I2C SDA
mjr 87:8d35c74403af 900 uint8_t scl; // I2C SCL
mjr 87:8d35c74403af 901 uint8_t reset; // !RESET (hardware reset line, active low)
mjr 87:8d35c74403af 902
mjr 87:8d35c74403af 903 } tlc59116;
mjr 87:8d35c74403af 904
mjr 77:0b96f6867312 905
mjr 77:0b96f6867312 906 // --- IR Remote Control Hardware Setup ---
mjr 77:0b96f6867312 907 struct
mjr 77:0b96f6867312 908 {
mjr 77:0b96f6867312 909 // sensor (receiver) GPIO input pin; must be interrupt-capable
mjr 77:0b96f6867312 910 uint8_t sensor;
mjr 77:0b96f6867312 911
mjr 77:0b96f6867312 912 // IR emitter LED GPIO output pin; must be PWM-capable
mjr 77:0b96f6867312 913 uint8_t emitter;
mjr 77:0b96f6867312 914 } IR;
mjr 77:0b96f6867312 915
mjr 77:0b96f6867312 916
mjr 35:e959ffba78fd 917 // --- Button Input Setup ---
mjr 65:739875521aae 918 ButtonCfg button[MAX_BUTTONS + VIRTUAL_BUTTONS] __attribute__((packed));
mjr 66:2e3583fbd2f4 919
mjr 78:1e00b3fa11af 920 // Shift button. This can be used to give each physical button a
mjr 78:1e00b3fa11af 921 // second meaning.
mjr 78:1e00b3fa11af 922 struct
mjr 78:1e00b3fa11af 923 {
mjr 78:1e00b3fa11af 924 // Shift button index, 1..MAX_BUTTONS. If this is zero, there's
mjr 78:1e00b3fa11af 925 // no shift button.
mjr 78:1e00b3fa11af 926 uint8_t idx;
mjr 78:1e00b3fa11af 927
mjr 78:1e00b3fa11af 928 // Shift button mode. If the shift button has a key mapping or
mjr 78:1e00b3fa11af 929 // IR command assigned, this determines what happens when the
mjr 78:1e00b3fa11af 930 // shift button is pressed in combination with another key.
mjr 78:1e00b3fa11af 931 //
mjr 78:1e00b3fa11af 932 // 0 = Shift OR Key mode. In this mode, when you initially press
mjr 78:1e00b3fa11af 933 // the shift button, nothing happens. Instead, we wait to see if
mjr 78:1e00b3fa11af 934 // any other buttons are pressed. If so, we use the shifted meaning
mjr 78:1e00b3fa11af 935 // of the other button, and we DON'T send the shift button's key or
mjr 78:1e00b3fa11af 936 // IR command at all.
mjr 78:1e00b3fa11af 937 //
mjr 78:1e00b3fa11af 938 // 1 = Shift AND Key mode. In this mode, the shift button acts like
mjr 78:1e00b3fa11af 939 // any other button: its assigned key is sent to the PC as soon as
mjr 78:1e00b3fa11af 940 // you press it. If you also press another button while the shift
mjr 78:1e00b3fa11af 941 // button is down, the shifted meaning of the other button is used.
mjr 78:1e00b3fa11af 942 //
mjr 78:1e00b3fa11af 943 // Mode 0, the "OR" mode, is the default. This allows a button with
mjr 78:1e00b3fa11af 944 // a key assignment to do double duty as the shift button without
mjr 78:1e00b3fa11af 945 // creating any confusing situations where the shift button's own
mjr 78:1e00b3fa11af 946 // key is also sent to the PC during shift usage.
mjr 78:1e00b3fa11af 947 uint8_t mode;
mjr 78:1e00b3fa11af 948
mjr 78:1e00b3fa11af 949 } shiftButton;
mjr 17:ab3cec0c8bf4 950
mjr 35:e959ffba78fd 951 // --- LedWiz Output Port Setup ---
mjr 77:0b96f6867312 952 LedWizPortCfg outPort[MAX_OUT_PORTS] __attribute__ ((packed)); // LedWiz & extended output ports
mjr 48:058ace2aed1d 953
mjr 77:0b96f6867312 954 // --- IR Command Slots ---
mjr 77:0b96f6867312 955 IRCommandCfg IRCommand[MAX_IR_CODES] __attribute__ ((packed));
mjr 17:ab3cec0c8bf4 956 };
mjr 17:ab3cec0c8bf4 957
mjr 35:e959ffba78fd 958 #endif