An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Thu Mar 23 05:19:05 2017 +0000
Revision:
79:682ae3171a08
Parent:
78:1e00b3fa11af
Child:
80:94dc2946871b
FTFA/Ticker issue fixed (by removing Ticker, changing to Timeout); new "flash write succeeded" status flag; optical plunger rounding improvements

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 77:0b96f6867312 55 // Note that VP has built-in support for plunger devices like this one, but
mjr 77:0b96f6867312 56 // some VP tables can't use it without some additional scripting work. The
mjr 77:0b96f6867312 57 // Build Guide has advice on adjusting tables to add plunger support when
mjr 77:0b96f6867312 58 // necessary.
mjr 5:a70c0bce770d 59 //
mjr 6:cc35eb643e8f 60 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 61 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 62 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 63 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 64 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 65 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 66 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 67 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 68 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 69 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 70 //
mjr 17:ab3cec0c8bf4 71 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 72 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 73 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 74 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 75 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 76 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 77 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 78 //
mjr 77:0b96f6867312 79 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 80 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 81 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 82 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 83 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 84 //
mjr 53:9b2611964afc 85 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 86 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 87 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 88 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 89 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 90 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 91 // attached devices without any modifications.
mjr 5:a70c0bce770d 92 //
mjr 53:9b2611964afc 93 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 94 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 95 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 96 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 97 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 98 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 99 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 100 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 101 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 102 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 103 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 104 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 105 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 106 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 107 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 108 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 109 //
mjr 26:cb71c4af2912 110 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 111 // external PWM controller chips for controlling device outputs, instead of using
mjr 53:9b2611964afc 112 // the on-board GPIO ports as described above. The software can control a set of
mjr 53:9b2611964afc 113 // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just
mjr 53:9b2611964afc 114 // need two of them to get the full complement of 32 output ports of a real LedWiz.
mjr 53:9b2611964afc 115 // You can hook up even more, though. Four chips gives you 64 ports, which should
mjr 53:9b2611964afc 116 // be plenty for nearly any virtual pinball project. To accommodate the larger
mjr 53:9b2611964afc 117 // supply of ports possible with the PWM chips, the controller software provides
mjr 53:9b2611964afc 118 // a custom, extended version of the LedWiz protocol that can handle up to 128
mjr 53:9b2611964afc 119 // ports. PC software designed only for the real LedWiz obviously won't know
mjr 53:9b2611964afc 120 // about the extended protocol and won't be able to take advantage of its extra
mjr 53:9b2611964afc 121 // capabilities, but the latest version of DOF (DirectOutput Framework) *does*
mjr 53:9b2611964afc 122 // know the new language and can take full advantage. Older software will still
mjr 53:9b2611964afc 123 // work, though - the new extensions are all backward compatible, so old software
mjr 53:9b2611964afc 124 // that only knows about the original LedWiz protocol will still work, with the
mjr 53:9b2611964afc 125 // obvious limitation that it can only access the first 32 ports.
mjr 53:9b2611964afc 126 //
mjr 53:9b2611964afc 127 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 128 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 129 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 130 // outputs with full PWM control and power handling for high-current devices
mjr 53:9b2611964afc 131 // built in to the boards.
mjr 26:cb71c4af2912 132 //
mjr 38:091e511ce8a0 133 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 134 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 135 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 136 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 137 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 138 //
mjr 38:091e511ce8a0 139 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 140 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 141 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 142 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 143 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 144 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 145 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 146 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 147 // remote control transmitter feature below.
mjr 77:0b96f6867312 148 //
mjr 77:0b96f6867312 149 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 150 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 151 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 152 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 153 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 154 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 155 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 156 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 157 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 158 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 159 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 160 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 161 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 162 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 163 //
mjr 35:e959ffba78fd 164 //
mjr 35:e959ffba78fd 165 //
mjr 33:d832bcab089e 166 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 167 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 168 //
mjr 48:058ace2aed1d 169 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 170 //
mjr 48:058ace2aed1d 171 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 172 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 173 // has been established)
mjr 48:058ace2aed1d 174 //
mjr 48:058ace2aed1d 175 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 176 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 177 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 178 //
mjr 38:091e511ce8a0 179 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 180 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 181 // transmissions are failing.
mjr 38:091e511ce8a0 182 //
mjr 73:4e8ce0b18915 183 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 184 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 185 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 186 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 187 // enabled.
mjr 73:4e8ce0b18915 188 //
mjr 6:cc35eb643e8f 189 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 190 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 191 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 192 // no plunger sensor configured.
mjr 6:cc35eb643e8f 193 //
mjr 38:091e511ce8a0 194 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 195 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 196 //
mjr 48:058ace2aed1d 197 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 198 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 199 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 200 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 201 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 202 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 203 //
mjr 48:058ace2aed1d 204 //
mjr 48:058ace2aed1d 205 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 206 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 207 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 208 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 209 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 210 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 211 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 212 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 213
mjr 33:d832bcab089e 214
mjr 0:5acbbe3f4cf4 215 #include "mbed.h"
mjr 6:cc35eb643e8f 216 #include "math.h"
mjr 74:822a92bc11d2 217 #include "diags.h"
mjr 48:058ace2aed1d 218 #include "pinscape.h"
mjr 79:682ae3171a08 219 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 220 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 221 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 222 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 223 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 224 #include "crc32.h"
mjr 26:cb71c4af2912 225 #include "TLC5940.h"
mjr 34:6b981a2afab7 226 #include "74HC595.h"
mjr 35:e959ffba78fd 227 #include "nvm.h"
mjr 35:e959ffba78fd 228 #include "plunger.h"
mjr 35:e959ffba78fd 229 #include "ccdSensor.h"
mjr 35:e959ffba78fd 230 #include "potSensor.h"
mjr 35:e959ffba78fd 231 #include "nullSensor.h"
mjr 48:058ace2aed1d 232 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 233 #include "IRReceiver.h"
mjr 77:0b96f6867312 234 #include "IRTransmitter.h"
mjr 77:0b96f6867312 235 #include "NewPwm.h"
mjr 74:822a92bc11d2 236
mjr 2:c174f9ee414a 237
mjr 21:5048e16cc9ef 238 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 239 #include "config.h"
mjr 17:ab3cec0c8bf4 240
mjr 76:7f5912b6340e 241 // forward declarations
mjr 76:7f5912b6340e 242 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 243
mjr 53:9b2611964afc 244 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 245 //
mjr 53:9b2611964afc 246 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 247 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 248 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 249 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 250 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 251 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 252 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 253 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 254 // interface.
mjr 53:9b2611964afc 255 //
mjr 53:9b2611964afc 256 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 257 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 258 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 259 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 260 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 261 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 262 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 263 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 264 //
mjr 53:9b2611964afc 265 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 266 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 267 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 268 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 269 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 270 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 271 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 272 //
mjr 53:9b2611964afc 273 const char *getOpenSDAID()
mjr 53:9b2611964afc 274 {
mjr 53:9b2611964afc 275 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 276 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 277 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 278
mjr 53:9b2611964afc 279 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 280 }
mjr 53:9b2611964afc 281
mjr 53:9b2611964afc 282 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 283 //
mjr 53:9b2611964afc 284 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 285 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 286 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 287 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 288 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 289 // want from this.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 292 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 293 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 294 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 295 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 296 // macros.
mjr 53:9b2611964afc 297 //
mjr 53:9b2611964afc 298 const char *getBuildID()
mjr 53:9b2611964afc 299 {
mjr 53:9b2611964afc 300 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 301 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 302 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 303
mjr 53:9b2611964afc 304 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 305 }
mjr 53:9b2611964afc 306
mjr 74:822a92bc11d2 307 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 308 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 309 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 310 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 311 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 312 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 313 Timer mainLoopTimer;
mjr 76:7f5912b6340e 314 #endif
mjr 76:7f5912b6340e 315
mjr 53:9b2611964afc 316
mjr 5:a70c0bce770d 317 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 318 //
mjr 38:091e511ce8a0 319 // Forward declarations
mjr 38:091e511ce8a0 320 //
mjr 38:091e511ce8a0 321 void setNightMode(bool on);
mjr 38:091e511ce8a0 322 void toggleNightMode();
mjr 38:091e511ce8a0 323
mjr 38:091e511ce8a0 324 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 325 // utilities
mjr 17:ab3cec0c8bf4 326
mjr 77:0b96f6867312 327 // int/float point square of a number
mjr 77:0b96f6867312 328 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 329 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 330
mjr 26:cb71c4af2912 331 // floating point rounding
mjr 26:cb71c4af2912 332 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 333
mjr 17:ab3cec0c8bf4 334
mjr 33:d832bcab089e 335 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 336 //
mjr 40:cc0d9814522b 337 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 338 // the running state.
mjr 40:cc0d9814522b 339 //
mjr 77:0b96f6867312 340 class ExtTimer: public Timer
mjr 40:cc0d9814522b 341 {
mjr 40:cc0d9814522b 342 public:
mjr 77:0b96f6867312 343 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 344
mjr 40:cc0d9814522b 345 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 346 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 347
mjr 40:cc0d9814522b 348 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 349
mjr 40:cc0d9814522b 350 private:
mjr 40:cc0d9814522b 351 bool running;
mjr 40:cc0d9814522b 352 };
mjr 40:cc0d9814522b 353
mjr 53:9b2611964afc 354
mjr 53:9b2611964afc 355 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 356 //
mjr 33:d832bcab089e 357 // USB product version number
mjr 5:a70c0bce770d 358 //
mjr 47:df7a88cd249c 359 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 6:cc35eb643e8f 363 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 364 //
mjr 6:cc35eb643e8f 365 #define JOYMAX 4096
mjr 6:cc35eb643e8f 366
mjr 9:fd65b0a94720 367
mjr 17:ab3cec0c8bf4 368 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 369 //
mjr 40:cc0d9814522b 370 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 371 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 372 //
mjr 35:e959ffba78fd 373
mjr 35:e959ffba78fd 374 // unsigned 16-bit integer
mjr 35:e959ffba78fd 375 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 376 {
mjr 35:e959ffba78fd 377 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 378 }
mjr 40:cc0d9814522b 379 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 380 {
mjr 40:cc0d9814522b 381 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 382 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 383 }
mjr 35:e959ffba78fd 384
mjr 35:e959ffba78fd 385 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 386 {
mjr 35:e959ffba78fd 387 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 388 }
mjr 40:cc0d9814522b 389 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 390 {
mjr 40:cc0d9814522b 391 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 392 }
mjr 35:e959ffba78fd 393
mjr 35:e959ffba78fd 394 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 395 {
mjr 35:e959ffba78fd 396 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 397 }
mjr 40:cc0d9814522b 398 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 399 {
mjr 40:cc0d9814522b 400 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 401 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 402 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 403 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 404 }
mjr 35:e959ffba78fd 405
mjr 35:e959ffba78fd 406 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 407 {
mjr 35:e959ffba78fd 408 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 409 }
mjr 35:e959ffba78fd 410
mjr 53:9b2611964afc 411 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 412 //
mjr 53:9b2611964afc 413 // The internal mbed PinName format is
mjr 53:9b2611964afc 414 //
mjr 53:9b2611964afc 415 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 416 //
mjr 53:9b2611964afc 417 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 418 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 419 //
mjr 53:9b2611964afc 420 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 421 // pin name fits in 8 bits:
mjr 53:9b2611964afc 422 //
mjr 53:9b2611964afc 423 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 424 //
mjr 53:9b2611964afc 425 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 426 //
mjr 53:9b2611964afc 427 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 428 //
mjr 53:9b2611964afc 429 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 430 {
mjr 53:9b2611964afc 431 if (c == 0xFF)
mjr 53:9b2611964afc 432 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 433 else
mjr 53:9b2611964afc 434 return PinName(
mjr 53:9b2611964afc 435 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 436 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 437 }
mjr 40:cc0d9814522b 438 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 439 {
mjr 53:9b2611964afc 440 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 441 }
mjr 35:e959ffba78fd 442
mjr 35:e959ffba78fd 443
mjr 35:e959ffba78fd 444 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 445 //
mjr 38:091e511ce8a0 446 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 447 //
mjr 38:091e511ce8a0 448 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 449 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 450 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 451 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 452 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 453 // SPI capability.
mjr 38:091e511ce8a0 454 //
mjr 38:091e511ce8a0 455 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 456
mjr 73:4e8ce0b18915 457 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 458 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 459 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 460 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 461
mjr 38:091e511ce8a0 462 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 463 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 464 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 465 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 466 {
mjr 73:4e8ce0b18915 467 // remember the new state
mjr 73:4e8ce0b18915 468 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 469
mjr 73:4e8ce0b18915 470 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 471 // applying it to the blue LED
mjr 73:4e8ce0b18915 472 if (diagLEDState == 0)
mjr 77:0b96f6867312 473 {
mjr 77:0b96f6867312 474 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 475 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 476 }
mjr 73:4e8ce0b18915 477
mjr 73:4e8ce0b18915 478 // set the new state
mjr 38:091e511ce8a0 479 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 480 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 481 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 482 }
mjr 38:091e511ce8a0 483
mjr 73:4e8ce0b18915 484 // update the LEDs with the current state
mjr 73:4e8ce0b18915 485 void diagLED(void)
mjr 73:4e8ce0b18915 486 {
mjr 73:4e8ce0b18915 487 diagLED(
mjr 73:4e8ce0b18915 488 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 489 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 490 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 491 }
mjr 73:4e8ce0b18915 492
mjr 38:091e511ce8a0 493 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 494 // an on-board LED segment
mjr 38:091e511ce8a0 495 struct LedSeg
mjr 38:091e511ce8a0 496 {
mjr 38:091e511ce8a0 497 bool r, g, b;
mjr 38:091e511ce8a0 498 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 499
mjr 38:091e511ce8a0 500 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 501 {
mjr 38:091e511ce8a0 502 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 503 // our on-board LED segments
mjr 38:091e511ce8a0 504 int t = pc.typ;
mjr 38:091e511ce8a0 505 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 506 {
mjr 38:091e511ce8a0 507 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 508 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 509 if (pin == LED1)
mjr 38:091e511ce8a0 510 r = true;
mjr 38:091e511ce8a0 511 else if (pin == LED2)
mjr 38:091e511ce8a0 512 g = true;
mjr 38:091e511ce8a0 513 else if (pin == LED3)
mjr 38:091e511ce8a0 514 b = true;
mjr 38:091e511ce8a0 515 }
mjr 38:091e511ce8a0 516 }
mjr 38:091e511ce8a0 517 };
mjr 38:091e511ce8a0 518
mjr 38:091e511ce8a0 519 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 520 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 521 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 522 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 523 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 524 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 525 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 526 {
mjr 38:091e511ce8a0 527 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 528 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 529 LedSeg l;
mjr 38:091e511ce8a0 530 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 531 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 532
mjr 38:091e511ce8a0 533 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 534 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 535 // LedWiz use.
mjr 38:091e511ce8a0 536 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 537 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 538 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 539 }
mjr 38:091e511ce8a0 540
mjr 38:091e511ce8a0 541
mjr 38:091e511ce8a0 542 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 543 //
mjr 76:7f5912b6340e 544 // LedWiz emulation
mjr 76:7f5912b6340e 545 //
mjr 76:7f5912b6340e 546
mjr 76:7f5912b6340e 547 // LedWiz output states.
mjr 76:7f5912b6340e 548 //
mjr 76:7f5912b6340e 549 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 550 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 551 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 552 // The two axes are independent.
mjr 76:7f5912b6340e 553 //
mjr 76:7f5912b6340e 554 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 555 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 556 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 557 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 558 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 559 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 560 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 561 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 562
mjr 76:7f5912b6340e 563 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 564 static uint8_t *wizOn;
mjr 76:7f5912b6340e 565
mjr 76:7f5912b6340e 566 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 567 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 568 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 569 //
mjr 76:7f5912b6340e 570 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 571 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 572 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 573 // 130 = flash on / off
mjr 76:7f5912b6340e 574 // 131 = on / ramp down
mjr 76:7f5912b6340e 575 // 132 = ramp up / on
mjr 5:a70c0bce770d 576 //
mjr 76:7f5912b6340e 577 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 578 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 579 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 580 static uint8_t *wizVal;
mjr 76:7f5912b6340e 581
mjr 76:7f5912b6340e 582 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 583 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 584 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 585 // by the extended protocol:
mjr 76:7f5912b6340e 586 //
mjr 76:7f5912b6340e 587 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 588 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 589 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 590 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 591 // if the brightness is non-zero.
mjr 76:7f5912b6340e 592 //
mjr 76:7f5912b6340e 593 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 594 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 595 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 596 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 597 // 0..255 range.
mjr 26:cb71c4af2912 598 //
mjr 76:7f5912b6340e 599 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 600 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 601 // level.
mjr 26:cb71c4af2912 602 //
mjr 76:7f5912b6340e 603 static uint8_t *outLevel;
mjr 76:7f5912b6340e 604
mjr 76:7f5912b6340e 605
mjr 76:7f5912b6340e 606 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 607 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 608 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 609 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 610 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 611 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 612 //
mjr 76:7f5912b6340e 613 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 614 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 615 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 616 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 617 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 618 // at the maximum size.
mjr 76:7f5912b6340e 619 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 620 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 621
mjr 26:cb71c4af2912 622 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 623 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 624 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 625 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 626 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 627
mjr 76:7f5912b6340e 628
mjr 76:7f5912b6340e 629 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 630 //
mjr 76:7f5912b6340e 631 // Output Ports
mjr 76:7f5912b6340e 632 //
mjr 76:7f5912b6340e 633 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 634 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 635 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 636 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 637 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 638 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 639 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 640 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 641 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 642 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 643 // you have to ration pins among features.
mjr 76:7f5912b6340e 644 //
mjr 76:7f5912b6340e 645 // To overcome some of these limitations, we also provide two types of
mjr 76:7f5912b6340e 646 // peripheral controllers that allow adding many more outputs, using only
mjr 76:7f5912b6340e 647 // a small number of GPIO pins to interface with the peripherals. First,
mjr 76:7f5912b6340e 648 // we support TLC5940 PWM controller chips. Each TLC5940 provides 16 ports
mjr 76:7f5912b6340e 649 // with full PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 76:7f5912b6340e 650 // chip only requires 5 GPIO pins for the interface, no matter how many
mjr 76:7f5912b6340e 651 // chips are in the chain, so it effectively converts 5 GPIO pins into
mjr 76:7f5912b6340e 652 // almost any number of PWM outputs. Second, we support 74HC595 chips.
mjr 76:7f5912b6340e 653 // These provide only digital outputs, but like the TLC5940 they can be
mjr 76:7f5912b6340e 654 // daisy-chained to provide almost unlimited outputs with a few GPIO pins
mjr 76:7f5912b6340e 655 // to control the whole chain.
mjr 76:7f5912b6340e 656 //
mjr 76:7f5912b6340e 657 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 658 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 659 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 660 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 661 //
mjr 76:7f5912b6340e 662 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 663 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 664 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 665 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 666 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 667 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 668 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 669 // of physical devices they're connected to.
mjr 76:7f5912b6340e 670
mjr 76:7f5912b6340e 671
mjr 26:cb71c4af2912 672 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 673 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 674 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 675 class LwOut
mjr 6:cc35eb643e8f 676 {
mjr 6:cc35eb643e8f 677 public:
mjr 40:cc0d9814522b 678 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 679 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 680 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 681 };
mjr 26:cb71c4af2912 682
mjr 35:e959ffba78fd 683 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 684 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 685 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 686 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 687 // numbering.
mjr 35:e959ffba78fd 688 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 689 {
mjr 33:d832bcab089e 690 public:
mjr 35:e959ffba78fd 691 LwVirtualOut() { }
mjr 40:cc0d9814522b 692 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 693 };
mjr 26:cb71c4af2912 694
mjr 34:6b981a2afab7 695 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 696 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 697 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 698 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 699 {
mjr 34:6b981a2afab7 700 public:
mjr 34:6b981a2afab7 701 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 702 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 703
mjr 34:6b981a2afab7 704 private:
mjr 53:9b2611964afc 705 // underlying physical output
mjr 34:6b981a2afab7 706 LwOut *out;
mjr 34:6b981a2afab7 707 };
mjr 34:6b981a2afab7 708
mjr 53:9b2611964afc 709 // Global ZB Launch Ball state
mjr 53:9b2611964afc 710 bool zbLaunchOn = false;
mjr 53:9b2611964afc 711
mjr 53:9b2611964afc 712 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 713 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 714 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 715 {
mjr 53:9b2611964afc 716 public:
mjr 53:9b2611964afc 717 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 718 virtual void set(uint8_t val)
mjr 53:9b2611964afc 719 {
mjr 53:9b2611964afc 720 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 721 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 722
mjr 53:9b2611964afc 723 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 724 out->set(val);
mjr 53:9b2611964afc 725 }
mjr 53:9b2611964afc 726
mjr 53:9b2611964afc 727 private:
mjr 53:9b2611964afc 728 // underlying physical or virtual output
mjr 53:9b2611964afc 729 LwOut *out;
mjr 53:9b2611964afc 730 };
mjr 53:9b2611964afc 731
mjr 53:9b2611964afc 732
mjr 40:cc0d9814522b 733 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 734 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 735 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 736 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 737 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 738 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 739 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 740 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 741 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 742 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 743 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 744 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 745 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 746 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 747 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 748 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 749 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 750 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 751 };
mjr 40:cc0d9814522b 752
mjr 40:cc0d9814522b 753 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 754 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 755 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 756 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 757 {
mjr 40:cc0d9814522b 758 public:
mjr 40:cc0d9814522b 759 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 760 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 761
mjr 40:cc0d9814522b 762 private:
mjr 40:cc0d9814522b 763 LwOut *out;
mjr 40:cc0d9814522b 764 };
mjr 40:cc0d9814522b 765
mjr 77:0b96f6867312 766 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 767 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 768 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 769 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 770
mjr 40:cc0d9814522b 771 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 772 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 773 // mode is engaged.
mjr 40:cc0d9814522b 774 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 775 {
mjr 40:cc0d9814522b 776 public:
mjr 40:cc0d9814522b 777 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 778 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 779
mjr 53:9b2611964afc 780 private:
mjr 53:9b2611964afc 781 LwOut *out;
mjr 53:9b2611964afc 782 };
mjr 53:9b2611964afc 783
mjr 53:9b2611964afc 784 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 785 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 786 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 787 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 788 {
mjr 53:9b2611964afc 789 public:
mjr 53:9b2611964afc 790 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 791 virtual void set(uint8_t)
mjr 53:9b2611964afc 792 {
mjr 53:9b2611964afc 793 // ignore the host value and simply show the current
mjr 53:9b2611964afc 794 // night mode setting
mjr 53:9b2611964afc 795 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 796 }
mjr 40:cc0d9814522b 797
mjr 40:cc0d9814522b 798 private:
mjr 40:cc0d9814522b 799 LwOut *out;
mjr 40:cc0d9814522b 800 };
mjr 40:cc0d9814522b 801
mjr 26:cb71c4af2912 802
mjr 35:e959ffba78fd 803 //
mjr 35:e959ffba78fd 804 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 805 // assignments set in config.h.
mjr 33:d832bcab089e 806 //
mjr 35:e959ffba78fd 807 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 808 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 809 {
mjr 35:e959ffba78fd 810 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 811 {
mjr 53:9b2611964afc 812 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 813 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 814 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 815 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 816 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 817 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 818 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 819 }
mjr 35:e959ffba78fd 820 }
mjr 26:cb71c4af2912 821
mjr 40:cc0d9814522b 822 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 823 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 824 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 825 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 826 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 827 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 828 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 829 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 830 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 831 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 832 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 833 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 834 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 835 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 836 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 837 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 838 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 839 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 840 };
mjr 40:cc0d9814522b 841
mjr 40:cc0d9814522b 842 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 843 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 844 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 845 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 846 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 847 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 848 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 849 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 850 // are always 8 bits.
mjr 40:cc0d9814522b 851 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 852 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 853 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 854 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 855 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 856 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 857 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 858 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 859 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 860 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 861 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 862 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 863 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 864 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 865 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 866 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 867 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 868 };
mjr 40:cc0d9814522b 869
mjr 26:cb71c4af2912 870 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 871 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 872 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 873 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 874 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 875 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 876 {
mjr 26:cb71c4af2912 877 public:
mjr 60:f38da020aa13 878 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 879 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 880 {
mjr 26:cb71c4af2912 881 if (val != prv)
mjr 40:cc0d9814522b 882 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 883 }
mjr 60:f38da020aa13 884 uint8_t idx;
mjr 40:cc0d9814522b 885 uint8_t prv;
mjr 26:cb71c4af2912 886 };
mjr 26:cb71c4af2912 887
mjr 40:cc0d9814522b 888 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 889 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 890 {
mjr 40:cc0d9814522b 891 public:
mjr 60:f38da020aa13 892 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 893 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 894 {
mjr 40:cc0d9814522b 895 if (val != prv)
mjr 40:cc0d9814522b 896 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 897 }
mjr 60:f38da020aa13 898 uint8_t idx;
mjr 40:cc0d9814522b 899 uint8_t prv;
mjr 40:cc0d9814522b 900 };
mjr 40:cc0d9814522b 901
mjr 40:cc0d9814522b 902
mjr 33:d832bcab089e 903
mjr 34:6b981a2afab7 904 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 905 // config.h.
mjr 35:e959ffba78fd 906 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 907
mjr 35:e959ffba78fd 908 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 909 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 910 {
mjr 35:e959ffba78fd 911 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 912 {
mjr 53:9b2611964afc 913 hc595 = new HC595(
mjr 53:9b2611964afc 914 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 915 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 916 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 917 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 918 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 919 hc595->init();
mjr 35:e959ffba78fd 920 hc595->update();
mjr 35:e959ffba78fd 921 }
mjr 35:e959ffba78fd 922 }
mjr 34:6b981a2afab7 923
mjr 34:6b981a2afab7 924 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 925 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 926 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 927 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 928 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 929 class Lw595Out: public LwOut
mjr 33:d832bcab089e 930 {
mjr 33:d832bcab089e 931 public:
mjr 60:f38da020aa13 932 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 933 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 934 {
mjr 34:6b981a2afab7 935 if (val != prv)
mjr 40:cc0d9814522b 936 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 937 }
mjr 60:f38da020aa13 938 uint8_t idx;
mjr 40:cc0d9814522b 939 uint8_t prv;
mjr 33:d832bcab089e 940 };
mjr 33:d832bcab089e 941
mjr 26:cb71c4af2912 942
mjr 40:cc0d9814522b 943
mjr 64:ef7ca92dff36 944 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 945 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 946 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 947 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 948 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 949 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 950 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 951 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 952 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 953 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 954 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 955 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 956 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 957 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 958 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 959 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 960 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 961 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 962 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 963 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 964 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 965 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 966 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 967 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 968 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 969 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 970 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 971 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 972 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 973 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 974 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 975 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 976 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 977 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 978 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 979 };
mjr 26:cb71c4af2912 980
mjr 64:ef7ca92dff36 981
mjr 64:ef7ca92dff36 982 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 983 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 984 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 985 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 986 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 987 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 988 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 989 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 990 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 991 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 992 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 993 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 994 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 995 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 996 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 997 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 998 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 999 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1000 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1001 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1002 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1003 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1004 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1005 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1006 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1007 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1008 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1009 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1010 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1011 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1012 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1013 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1014 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1015 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1016 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1017 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1018 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1019 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1020 };
mjr 64:ef7ca92dff36 1021
mjr 77:0b96f6867312 1022 // Polled-update PWM output list
mjr 74:822a92bc11d2 1023 //
mjr 77:0b96f6867312 1024 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1025 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1026 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1027 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1028 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1029 //
mjr 77:0b96f6867312 1030 // Our solution is to simply repeat all PWM updates periodically. If a write
mjr 77:0b96f6867312 1031 // is lost on one cycle, it'll eventually be applied on a subseuqent periodic
mjr 77:0b96f6867312 1032 // update. For low overhead, we do these repeat updates periodically during
mjr 77:0b96f6867312 1033 // the main loop.
mjr 74:822a92bc11d2 1034 //
mjr 77:0b96f6867312 1035 // The mbed library has its own solution to this bug, but it creates a
mjr 77:0b96f6867312 1036 // separate problem of its own. The mbed solution is to write the value
mjr 77:0b96f6867312 1037 // register immediately, and then also reset the "count" register in the
mjr 77:0b96f6867312 1038 // TPM unit containing the output. The count reset truncates the current
mjr 77:0b96f6867312 1039 // PWM cycle, which avoids the hardware problem with more than one write per
mjr 77:0b96f6867312 1040 // cycle. The problem is that the truncated cycle causes visible flicker if
mjr 77:0b96f6867312 1041 // the output is connected to an LED. This is particularly noticeable during
mjr 77:0b96f6867312 1042 // fades, when we're updating the value register repeatedly and rapidly: an
mjr 77:0b96f6867312 1043 // attempt to fade from fully on to fully off causes rapid fluttering and
mjr 77:0b96f6867312 1044 // flashing rather than a smooth brightness fade.
mjr 74:822a92bc11d2 1045 //
mjr 77:0b96f6867312 1046 // The hardware bug is a case of good intentions gone bad. The hardware is
mjr 77:0b96f6867312 1047 // *supposed* to make it easy for software to avoid glitching during PWM
mjr 77:0b96f6867312 1048 // updates, by providing a staging register in front of the real value
mjr 77:0b96f6867312 1049 // register. The software actually writes to the staging register, which
mjr 77:0b96f6867312 1050 // holds updates until the end of the cycle, at which point the hardware
mjr 77:0b96f6867312 1051 // automatically moves the value from the staging register into the real
mjr 77:0b96f6867312 1052 // register. This ensures that the real register is always updated exactly
mjr 77:0b96f6867312 1053 // at a cycle boundary, which in turn ensures that there's no flicker when
mjr 77:0b96f6867312 1054 // values are updated. A great design - except that it doesn't quite work.
mjr 77:0b96f6867312 1055 // The problem is that the staging register actually seems to be implemented
mjr 77:0b96f6867312 1056 // as a one-element FIFO in "stop when full" mode. That is, when you write
mjr 77:0b96f6867312 1057 // the FIFO, it becomes full. When the cycle ends and the hardware reads it
mjr 77:0b96f6867312 1058 // to move the staged value into the real register, the FIFO becomes empty.
mjr 77:0b96f6867312 1059 // But if you try to write the FIFO twice before the hardware reads it and
mjr 77:0b96f6867312 1060 // empties it, the second write fails, leaving the first value in the queue.
mjr 77:0b96f6867312 1061 // There doesn't seem to be any way to clear the FIFO from software, so you
mjr 77:0b96f6867312 1062 // just have to wait for the cycle to end before writing another update.
mjr 77:0b96f6867312 1063 // That more or less defeats the purpose of the staging register, whose whole
mjr 77:0b96f6867312 1064 // point is to free software from worrying about timing considerations with
mjr 77:0b96f6867312 1065 // updates. It frees us of the need to align our timing on cycle boundaries,
mjr 77:0b96f6867312 1066 // but it leaves us with the need to limit writes to once per cycle.
mjr 74:822a92bc11d2 1067 //
mjr 77:0b96f6867312 1068 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1069 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1070 // of polled items.
mjr 74:822a92bc11d2 1071 static int numPolledPwm;
mjr 74:822a92bc11d2 1072 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1073
mjr 74:822a92bc11d2 1074 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1075 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1076 {
mjr 6:cc35eb643e8f 1077 public:
mjr 43:7a6364d82a41 1078 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1079 {
mjr 77:0b96f6867312 1080 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1081 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1082 polledPwm[numPolledPwm++] = this;
mjr 77:0b96f6867312 1083
mjr 77:0b96f6867312 1084 // set the initial value
mjr 77:0b96f6867312 1085 set(initVal);
mjr 43:7a6364d82a41 1086 }
mjr 74:822a92bc11d2 1087
mjr 40:cc0d9814522b 1088 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1089 {
mjr 77:0b96f6867312 1090 // save the new value
mjr 74:822a92bc11d2 1091 this->val = val;
mjr 77:0b96f6867312 1092
mjr 77:0b96f6867312 1093 // commit it to the hardware
mjr 77:0b96f6867312 1094 commit();
mjr 13:72dda449c3c0 1095 }
mjr 74:822a92bc11d2 1096
mjr 74:822a92bc11d2 1097 // handle periodic update polling
mjr 74:822a92bc11d2 1098 void poll()
mjr 74:822a92bc11d2 1099 {
mjr 77:0b96f6867312 1100 commit();
mjr 74:822a92bc11d2 1101 }
mjr 74:822a92bc11d2 1102
mjr 74:822a92bc11d2 1103 protected:
mjr 77:0b96f6867312 1104 virtual void commit()
mjr 74:822a92bc11d2 1105 {
mjr 74:822a92bc11d2 1106 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1107 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1108 }
mjr 74:822a92bc11d2 1109
mjr 77:0b96f6867312 1110 NewPwmOut p;
mjr 77:0b96f6867312 1111 uint8_t val;
mjr 6:cc35eb643e8f 1112 };
mjr 26:cb71c4af2912 1113
mjr 74:822a92bc11d2 1114 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1115 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1116 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1117 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1118 {
mjr 64:ef7ca92dff36 1119 public:
mjr 64:ef7ca92dff36 1120 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1121 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1122 {
mjr 64:ef7ca92dff36 1123 }
mjr 74:822a92bc11d2 1124
mjr 74:822a92bc11d2 1125 protected:
mjr 77:0b96f6867312 1126 virtual void commit()
mjr 64:ef7ca92dff36 1127 {
mjr 74:822a92bc11d2 1128 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1129 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1130 }
mjr 64:ef7ca92dff36 1131 };
mjr 64:ef7ca92dff36 1132
mjr 74:822a92bc11d2 1133 // poll the PWM outputs
mjr 74:822a92bc11d2 1134 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1135 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1136 void pollPwmUpdates()
mjr 74:822a92bc11d2 1137 {
mjr 74:822a92bc11d2 1138 // if it's been at least 25ms since the last update, do another update
mjr 74:822a92bc11d2 1139 if (polledPwmTimer.read_us() >= 25000)
mjr 74:822a92bc11d2 1140 {
mjr 74:822a92bc11d2 1141 // time the run for statistics collection
mjr 74:822a92bc11d2 1142 IF_DIAG(
mjr 74:822a92bc11d2 1143 Timer t;
mjr 74:822a92bc11d2 1144 t.start();
mjr 74:822a92bc11d2 1145 )
mjr 74:822a92bc11d2 1146
mjr 74:822a92bc11d2 1147 // poll each output
mjr 74:822a92bc11d2 1148 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1149 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1150
mjr 74:822a92bc11d2 1151 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1152 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1153
mjr 74:822a92bc11d2 1154 // collect statistics
mjr 74:822a92bc11d2 1155 IF_DIAG(
mjr 76:7f5912b6340e 1156 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1157 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1158 )
mjr 74:822a92bc11d2 1159 }
mjr 74:822a92bc11d2 1160 }
mjr 64:ef7ca92dff36 1161
mjr 26:cb71c4af2912 1162 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1163 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1164 {
mjr 6:cc35eb643e8f 1165 public:
mjr 43:7a6364d82a41 1166 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1167 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1168 {
mjr 13:72dda449c3c0 1169 if (val != prv)
mjr 40:cc0d9814522b 1170 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1171 }
mjr 6:cc35eb643e8f 1172 DigitalOut p;
mjr 40:cc0d9814522b 1173 uint8_t prv;
mjr 6:cc35eb643e8f 1174 };
mjr 26:cb71c4af2912 1175
mjr 29:582472d0bc57 1176 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1177 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1178 // port n (0-based).
mjr 35:e959ffba78fd 1179 //
mjr 35:e959ffba78fd 1180 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1181 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1182 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1183 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1184 // 74HC595 ports).
mjr 33:d832bcab089e 1185 static int numOutputs;
mjr 33:d832bcab089e 1186 static LwOut **lwPin;
mjr 33:d832bcab089e 1187
mjr 38:091e511ce8a0 1188 // create a single output pin
mjr 53:9b2611964afc 1189 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1190 {
mjr 38:091e511ce8a0 1191 // get this item's values
mjr 38:091e511ce8a0 1192 int typ = pc.typ;
mjr 38:091e511ce8a0 1193 int pin = pc.pin;
mjr 38:091e511ce8a0 1194 int flags = pc.flags;
mjr 40:cc0d9814522b 1195 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1196 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1197 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1198
mjr 38:091e511ce8a0 1199 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1200 LwOut *lwp;
mjr 38:091e511ce8a0 1201 switch (typ)
mjr 38:091e511ce8a0 1202 {
mjr 38:091e511ce8a0 1203 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1204 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1205 if (pin != 0)
mjr 64:ef7ca92dff36 1206 {
mjr 64:ef7ca92dff36 1207 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1208 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1209 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1210 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1211 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1212 {
mjr 64:ef7ca92dff36 1213 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1214 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1215
mjr 64:ef7ca92dff36 1216 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1217 gamma = false;
mjr 64:ef7ca92dff36 1218 }
mjr 64:ef7ca92dff36 1219 else
mjr 64:ef7ca92dff36 1220 {
mjr 64:ef7ca92dff36 1221 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1222 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1223 }
mjr 64:ef7ca92dff36 1224 }
mjr 48:058ace2aed1d 1225 else
mjr 48:058ace2aed1d 1226 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1227 break;
mjr 38:091e511ce8a0 1228
mjr 38:091e511ce8a0 1229 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1230 // Digital GPIO port
mjr 48:058ace2aed1d 1231 if (pin != 0)
mjr 48:058ace2aed1d 1232 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1233 else
mjr 48:058ace2aed1d 1234 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1235 break;
mjr 38:091e511ce8a0 1236
mjr 38:091e511ce8a0 1237 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1238 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1239 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1240 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1241 {
mjr 40:cc0d9814522b 1242 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1243 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1244 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1245 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1246 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1247 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1248 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1249 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1250 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1251 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1252 // for this unlikely case.
mjr 40:cc0d9814522b 1253 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1254 {
mjr 40:cc0d9814522b 1255 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1256 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1257
mjr 40:cc0d9814522b 1258 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1259 gamma = false;
mjr 40:cc0d9814522b 1260 }
mjr 40:cc0d9814522b 1261 else
mjr 40:cc0d9814522b 1262 {
mjr 40:cc0d9814522b 1263 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1264 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1265 }
mjr 40:cc0d9814522b 1266 }
mjr 38:091e511ce8a0 1267 else
mjr 40:cc0d9814522b 1268 {
mjr 40:cc0d9814522b 1269 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1270 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1271 }
mjr 38:091e511ce8a0 1272 break;
mjr 38:091e511ce8a0 1273
mjr 38:091e511ce8a0 1274 case PortType74HC595:
mjr 38:091e511ce8a0 1275 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 1276 // output number, create a virtual port)
mjr 38:091e511ce8a0 1277 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1278 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1279 else
mjr 38:091e511ce8a0 1280 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1281 break;
mjr 38:091e511ce8a0 1282
mjr 38:091e511ce8a0 1283 case PortTypeVirtual:
mjr 43:7a6364d82a41 1284 case PortTypeDisabled:
mjr 38:091e511ce8a0 1285 default:
mjr 38:091e511ce8a0 1286 // virtual or unknown
mjr 38:091e511ce8a0 1287 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1288 break;
mjr 38:091e511ce8a0 1289 }
mjr 38:091e511ce8a0 1290
mjr 40:cc0d9814522b 1291 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1292 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1293 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1294 if (activeLow)
mjr 38:091e511ce8a0 1295 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1296
mjr 40:cc0d9814522b 1297 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1298 // needs to be
mjr 40:cc0d9814522b 1299 if (noisy)
mjr 40:cc0d9814522b 1300 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1301
mjr 40:cc0d9814522b 1302 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1303 if (gamma)
mjr 40:cc0d9814522b 1304 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1305
mjr 53:9b2611964afc 1306 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1307 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1308 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1309 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1310 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1311
mjr 53:9b2611964afc 1312 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1313 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1314 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1315
mjr 38:091e511ce8a0 1316 // turn it off initially
mjr 38:091e511ce8a0 1317 lwp->set(0);
mjr 38:091e511ce8a0 1318
mjr 38:091e511ce8a0 1319 // return the pin
mjr 38:091e511ce8a0 1320 return lwp;
mjr 38:091e511ce8a0 1321 }
mjr 38:091e511ce8a0 1322
mjr 6:cc35eb643e8f 1323 // initialize the output pin array
mjr 35:e959ffba78fd 1324 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1325 {
mjr 35:e959ffba78fd 1326 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1327 // total number of ports.
mjr 35:e959ffba78fd 1328 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1329 int i;
mjr 35:e959ffba78fd 1330 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1331 {
mjr 35:e959ffba78fd 1332 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1333 {
mjr 35:e959ffba78fd 1334 numOutputs = i;
mjr 34:6b981a2afab7 1335 break;
mjr 34:6b981a2afab7 1336 }
mjr 33:d832bcab089e 1337 }
mjr 33:d832bcab089e 1338
mjr 73:4e8ce0b18915 1339 // allocate the pin array
mjr 73:4e8ce0b18915 1340 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1341
mjr 73:4e8ce0b18915 1342 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1343 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1344
mjr 73:4e8ce0b18915 1345 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1346 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1347 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1348
mjr 73:4e8ce0b18915 1349 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1350 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1351 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1352
mjr 73:4e8ce0b18915 1353 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1354 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1355 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1356
mjr 35:e959ffba78fd 1357 // create the pin interface object for each port
mjr 35:e959ffba78fd 1358 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1359 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1360 }
mjr 6:cc35eb643e8f 1361
mjr 76:7f5912b6340e 1362 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1363 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1364 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1365 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1366 // equivalent to 48.
mjr 40:cc0d9814522b 1367 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1368 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1369 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1370 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1371 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1372 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1373 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1374 255, 255
mjr 40:cc0d9814522b 1375 };
mjr 40:cc0d9814522b 1376
mjr 76:7f5912b6340e 1377 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1378 // level (1..48)
mjr 76:7f5912b6340e 1379 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1380 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1381 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1382 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1383 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1384 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1385 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1386 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1387 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1388 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1389 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1390 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1391 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1392 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1393 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1394 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1395 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1396 };
mjr 76:7f5912b6340e 1397
mjr 74:822a92bc11d2 1398 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1399 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1400 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1401 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1402 //
mjr 74:822a92bc11d2 1403 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1404 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1405 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1406 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1407 //
mjr 74:822a92bc11d2 1408 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1409 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1410 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1411 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1412 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1413 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1414 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1415 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1416 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1417 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1418 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1419 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1420 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1421 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1422 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1423 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1424 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1425 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1426 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1427 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1428
mjr 74:822a92bc11d2 1429 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1430 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1431 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1432 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1433 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1434 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1435 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1436 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1437 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1438 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1439 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1440 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1441 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1442 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1443 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1444 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1445 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1446
mjr 74:822a92bc11d2 1447 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1448 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1449 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1450 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1451 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1452 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1453 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1454 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1455 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1456 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1457 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1458 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1459 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1460 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1461 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1462 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1463 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1464
mjr 74:822a92bc11d2 1465 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1466 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1467 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1468 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1469 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1470 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1471 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1472 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1473 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1474 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1475 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1476 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1477 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1478 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1479 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1480 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1481 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1482 };
mjr 74:822a92bc11d2 1483
mjr 74:822a92bc11d2 1484 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1485 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1486 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1487
mjr 76:7f5912b6340e 1488 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1489 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1490
mjr 76:7f5912b6340e 1491 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1492 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1493 // outputs on each cycle.
mjr 29:582472d0bc57 1494 static void wizPulse()
mjr 29:582472d0bc57 1495 {
mjr 76:7f5912b6340e 1496 // current bank
mjr 76:7f5912b6340e 1497 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1498
mjr 76:7f5912b6340e 1499 // start a timer for statistics collection
mjr 76:7f5912b6340e 1500 IF_DIAG(
mjr 76:7f5912b6340e 1501 Timer t;
mjr 76:7f5912b6340e 1502 t.start();
mjr 76:7f5912b6340e 1503 )
mjr 76:7f5912b6340e 1504
mjr 76:7f5912b6340e 1505 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1506 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1507 //
mjr 76:7f5912b6340e 1508 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1509 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1510 //
mjr 76:7f5912b6340e 1511 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1512 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1513 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1514 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1515 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1516 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1517 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1518 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1519 // current cycle.
mjr 76:7f5912b6340e 1520 //
mjr 76:7f5912b6340e 1521 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1522 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1523 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1524 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1525 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1526 //
mjr 76:7f5912b6340e 1527 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1528 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1529 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1530 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1531 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1532 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1533 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1534 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1535 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1536 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1537 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1538 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1539 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1540 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1541 // bit counts.
mjr 76:7f5912b6340e 1542 //
mjr 76:7f5912b6340e 1543 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1544 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1545 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1546 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1547 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1548 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1549 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1550 // one division for another!
mjr 76:7f5912b6340e 1551 //
mjr 76:7f5912b6340e 1552 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1553 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1554 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1555 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1556 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1557 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1558 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1559 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1560 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1561 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1562 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1563 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1564 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1565 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1566 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1567 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1568 // remainder calculation anyway.
mjr 76:7f5912b6340e 1569 //
mjr 76:7f5912b6340e 1570 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1571 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1572 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1573 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1574 //
mjr 76:7f5912b6340e 1575 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1576 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1577 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1578 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1579 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1580 // the result, since we started with 32.
mjr 76:7f5912b6340e 1581 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1582 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1583 };
mjr 76:7f5912b6340e 1584 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1585
mjr 76:7f5912b6340e 1586 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1587 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1588 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1589 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1590 toPort = numOutputs;
mjr 76:7f5912b6340e 1591
mjr 76:7f5912b6340e 1592 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1593 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1594 {
mjr 76:7f5912b6340e 1595 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1596 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1597 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1598 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1599 if (wizOn[i])
mjr 29:582472d0bc57 1600 {
mjr 76:7f5912b6340e 1601 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 1602 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 1603 {
mjr 76:7f5912b6340e 1604 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 1605 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 1606 }
mjr 29:582472d0bc57 1607 }
mjr 76:7f5912b6340e 1608 }
mjr 76:7f5912b6340e 1609
mjr 34:6b981a2afab7 1610 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1611 if (hc595 != 0)
mjr 35:e959ffba78fd 1612 hc595->update();
mjr 76:7f5912b6340e 1613
mjr 76:7f5912b6340e 1614 // switch to the next bank
mjr 76:7f5912b6340e 1615 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 1616 wizPulseBank = 0;
mjr 76:7f5912b6340e 1617
mjr 76:7f5912b6340e 1618 // collect timing statistics
mjr 76:7f5912b6340e 1619 IF_DIAG(
mjr 76:7f5912b6340e 1620 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 1621 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 1622 )
mjr 1:d913e0afb2ac 1623 }
mjr 38:091e511ce8a0 1624
mjr 76:7f5912b6340e 1625 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 1626 static void updateLwPort(int port)
mjr 38:091e511ce8a0 1627 {
mjr 76:7f5912b6340e 1628 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 1629 if (wizOn[port])
mjr 76:7f5912b6340e 1630 {
mjr 76:7f5912b6340e 1631 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 1632 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 1633 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 1634 // it on the next cycle.
mjr 76:7f5912b6340e 1635 int val = wizVal[port];
mjr 76:7f5912b6340e 1636 if (val <= 49)
mjr 76:7f5912b6340e 1637 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 1638 }
mjr 76:7f5912b6340e 1639 else
mjr 76:7f5912b6340e 1640 {
mjr 76:7f5912b6340e 1641 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 1642 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 1643 }
mjr 73:4e8ce0b18915 1644 }
mjr 73:4e8ce0b18915 1645
mjr 73:4e8ce0b18915 1646 // Turn off all outputs and restore everything to the default LedWiz
mjr 73:4e8ce0b18915 1647 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 73:4e8ce0b18915 1648 // brightness) and switch state Off, sets all extended outputs (#33
mjr 73:4e8ce0b18915 1649 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 73:4e8ce0b18915 1650 // This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 1651 //
mjr 73:4e8ce0b18915 1652 void allOutputsOff()
mjr 73:4e8ce0b18915 1653 {
mjr 73:4e8ce0b18915 1654 // reset all LedWiz outputs to OFF/48
mjr 73:4e8ce0b18915 1655 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 1656 {
mjr 73:4e8ce0b18915 1657 outLevel[i] = 0;
mjr 73:4e8ce0b18915 1658 wizOn[i] = 0;
mjr 73:4e8ce0b18915 1659 wizVal[i] = 48;
mjr 73:4e8ce0b18915 1660 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 1661 }
mjr 73:4e8ce0b18915 1662
mjr 73:4e8ce0b18915 1663 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 1664 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1665 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 1666
mjr 73:4e8ce0b18915 1667 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 1668 if (hc595 != 0)
mjr 38:091e511ce8a0 1669 hc595->update();
mjr 38:091e511ce8a0 1670 }
mjr 38:091e511ce8a0 1671
mjr 74:822a92bc11d2 1672 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 1673 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 1674 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 1675 // address any port group.
mjr 74:822a92bc11d2 1676 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 1677 {
mjr 76:7f5912b6340e 1678 // update all on/off states in the group
mjr 74:822a92bc11d2 1679 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 1680 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 1681 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 1682 {
mjr 74:822a92bc11d2 1683 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 1684 if (bit == 0x100) {
mjr 74:822a92bc11d2 1685 bit = 1;
mjr 74:822a92bc11d2 1686 ++imsg;
mjr 74:822a92bc11d2 1687 }
mjr 74:822a92bc11d2 1688
mjr 74:822a92bc11d2 1689 // set the on/off state
mjr 76:7f5912b6340e 1690 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 1691
mjr 76:7f5912b6340e 1692 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 1693 updateLwPort(port);
mjr 74:822a92bc11d2 1694 }
mjr 74:822a92bc11d2 1695
mjr 74:822a92bc11d2 1696 // set the flash speed for the port group
mjr 74:822a92bc11d2 1697 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 1698 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 1699
mjr 76:7f5912b6340e 1700 // update 74HC959 outputs
mjr 76:7f5912b6340e 1701 if (hc595 != 0)
mjr 76:7f5912b6340e 1702 hc595->update();
mjr 74:822a92bc11d2 1703 }
mjr 74:822a92bc11d2 1704
mjr 74:822a92bc11d2 1705 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 1706 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 1707 {
mjr 74:822a92bc11d2 1708 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 1709 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 1710 {
mjr 74:822a92bc11d2 1711 // get the value
mjr 74:822a92bc11d2 1712 uint8_t v = data[i];
mjr 74:822a92bc11d2 1713
mjr 74:822a92bc11d2 1714 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 1715 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 1716 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 1717 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 1718 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 1719 // as such.
mjr 74:822a92bc11d2 1720 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 1721 v = 48;
mjr 74:822a92bc11d2 1722
mjr 74:822a92bc11d2 1723 // store it
mjr 76:7f5912b6340e 1724 wizVal[port] = v;
mjr 76:7f5912b6340e 1725
mjr 76:7f5912b6340e 1726 // update the port
mjr 76:7f5912b6340e 1727 updateLwPort(port);
mjr 74:822a92bc11d2 1728 }
mjr 74:822a92bc11d2 1729
mjr 76:7f5912b6340e 1730 // update 74HC595 outputs
mjr 76:7f5912b6340e 1731 if (hc595 != 0)
mjr 76:7f5912b6340e 1732 hc595->update();
mjr 74:822a92bc11d2 1733 }
mjr 74:822a92bc11d2 1734
mjr 77:0b96f6867312 1735 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 1736 //
mjr 77:0b96f6867312 1737 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 1738 //
mjr 77:0b96f6867312 1739
mjr 77:0b96f6867312 1740 // receiver
mjr 77:0b96f6867312 1741 IRReceiver *ir_rx;
mjr 77:0b96f6867312 1742
mjr 77:0b96f6867312 1743 // transmitter
mjr 77:0b96f6867312 1744 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 1745
mjr 77:0b96f6867312 1746 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 1747 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 1748 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 1749 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 1750 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 1751 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 1752 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 1753 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 1754 // configuration slot n
mjr 77:0b96f6867312 1755 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 1756
mjr 78:1e00b3fa11af 1757 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 1758 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 1759 // protocol.
mjr 78:1e00b3fa11af 1760 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 1761
mjr 78:1e00b3fa11af 1762 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 1763 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 1764 // while waiting for the rest.
mjr 78:1e00b3fa11af 1765 static struct
mjr 78:1e00b3fa11af 1766 {
mjr 78:1e00b3fa11af 1767 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 1768 uint64_t code; // code
mjr 78:1e00b3fa11af 1769 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 1770 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 1771 } IRAdHocCmd;
mjr 78:1e00b3fa11af 1772
mjr 77:0b96f6867312 1773
mjr 77:0b96f6867312 1774 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 1775 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 1776 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 1777 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 1778 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 1779 // amount of time.
mjr 77:0b96f6867312 1780 Timer IRTimer;
mjr 77:0b96f6867312 1781
mjr 77:0b96f6867312 1782 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 1783 // The states are:
mjr 77:0b96f6867312 1784 //
mjr 77:0b96f6867312 1785 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 1786 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 1787 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 1788 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 1789 //
mjr 77:0b96f6867312 1790 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 1791 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 1792 // received within a reasonable time.
mjr 77:0b96f6867312 1793 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 1794
mjr 77:0b96f6867312 1795 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 1796 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 1797 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 1798 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 1799 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 1800 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 1801 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 1802 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 1803 IRCommand learnedIRCode;
mjr 77:0b96f6867312 1804
mjr 78:1e00b3fa11af 1805 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 1806 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 1807 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 1808 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 1809 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 1810 // index; 0 represents no command.
mjr 77:0b96f6867312 1811 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 1812
mjr 77:0b96f6867312 1813 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 1814 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 1815 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 1816 // command we received.
mjr 77:0b96f6867312 1817 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 1818
mjr 77:0b96f6867312 1819 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 1820 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 1821 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 1822 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 1823 // distinct key press.
mjr 77:0b96f6867312 1824 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 1825
mjr 78:1e00b3fa11af 1826
mjr 77:0b96f6867312 1827 // initialize
mjr 77:0b96f6867312 1828 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 1829 {
mjr 77:0b96f6867312 1830 PinName pin;
mjr 77:0b96f6867312 1831
mjr 77:0b96f6867312 1832 // start the IR timer
mjr 77:0b96f6867312 1833 IRTimer.start();
mjr 77:0b96f6867312 1834
mjr 77:0b96f6867312 1835 // if there's a transmitter, set it up
mjr 77:0b96f6867312 1836 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 1837 {
mjr 77:0b96f6867312 1838 // no virtual buttons yet
mjr 77:0b96f6867312 1839 int nVirtualButtons = 0;
mjr 77:0b96f6867312 1840 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 1841
mjr 77:0b96f6867312 1842 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 1843 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1844 {
mjr 77:0b96f6867312 1845 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 1846 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 1847 }
mjr 77:0b96f6867312 1848
mjr 77:0b96f6867312 1849 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 1850 // real button inputs
mjr 77:0b96f6867312 1851 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 1852 {
mjr 77:0b96f6867312 1853 // get the button
mjr 77:0b96f6867312 1854 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 1855
mjr 77:0b96f6867312 1856 // check the unshifted button
mjr 77:0b96f6867312 1857 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 1858 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1859 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1860 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1861
mjr 77:0b96f6867312 1862 // check the shifted button
mjr 77:0b96f6867312 1863 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 1864 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1865 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1866 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1867 }
mjr 77:0b96f6867312 1868
mjr 77:0b96f6867312 1869 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 1870 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 1871 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 1872
mjr 77:0b96f6867312 1873 // create the transmitter
mjr 77:0b96f6867312 1874 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 1875
mjr 77:0b96f6867312 1876 // program the commands into the virtual button slots
mjr 77:0b96f6867312 1877 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1878 {
mjr 77:0b96f6867312 1879 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 1880 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 1881 if (vb != 0xFF)
mjr 77:0b96f6867312 1882 {
mjr 77:0b96f6867312 1883 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1884 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 1885 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 1886 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 1887 }
mjr 77:0b96f6867312 1888 }
mjr 77:0b96f6867312 1889 }
mjr 77:0b96f6867312 1890
mjr 77:0b96f6867312 1891 // if there's a receiver, set it up
mjr 77:0b96f6867312 1892 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 1893 {
mjr 77:0b96f6867312 1894 // create the receiver
mjr 77:0b96f6867312 1895 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 1896
mjr 77:0b96f6867312 1897 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 1898 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 1899 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 1900
mjr 77:0b96f6867312 1901 // enable it
mjr 77:0b96f6867312 1902 ir_rx->enable();
mjr 77:0b96f6867312 1903
mjr 77:0b96f6867312 1904 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 1905 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 1906 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 1907 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1908 {
mjr 77:0b96f6867312 1909 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1910 if (cb.protocol != 0
mjr 77:0b96f6867312 1911 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 1912 {
mjr 77:0b96f6867312 1913 kbKeys = true;
mjr 77:0b96f6867312 1914 break;
mjr 77:0b96f6867312 1915 }
mjr 77:0b96f6867312 1916 }
mjr 77:0b96f6867312 1917 }
mjr 77:0b96f6867312 1918 }
mjr 77:0b96f6867312 1919
mjr 77:0b96f6867312 1920 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 1921 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 1922 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 1923 {
mjr 77:0b96f6867312 1924 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 1925 if (ir_tx != 0)
mjr 77:0b96f6867312 1926 {
mjr 77:0b96f6867312 1927 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 1928 int slot = cmd - 1;
mjr 77:0b96f6867312 1929
mjr 77:0b96f6867312 1930 // press or release the virtual button
mjr 77:0b96f6867312 1931 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 1932 }
mjr 77:0b96f6867312 1933 }
mjr 77:0b96f6867312 1934
mjr 78:1e00b3fa11af 1935 // Process IR input and output
mjr 77:0b96f6867312 1936 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 1937 {
mjr 78:1e00b3fa11af 1938 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 1939 if (ir_tx != 0)
mjr 77:0b96f6867312 1940 {
mjr 78:1e00b3fa11af 1941 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 1942 // is ready to send, send it.
mjr 78:1e00b3fa11af 1943 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 1944 {
mjr 78:1e00b3fa11af 1945 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 1946 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 1947 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 1948 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 1949
mjr 78:1e00b3fa11af 1950 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 1951 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 1952 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 1953
mjr 78:1e00b3fa11af 1954 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 1955 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 1956 }
mjr 77:0b96f6867312 1957 }
mjr 78:1e00b3fa11af 1958
mjr 78:1e00b3fa11af 1959 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 1960 if (ir_rx != 0)
mjr 77:0b96f6867312 1961 {
mjr 78:1e00b3fa11af 1962 // Time out any received command
mjr 78:1e00b3fa11af 1963 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 1964 {
mjr 78:1e00b3fa11af 1965 // Time out inter-key gap mode after 30ms; time out all
mjr 78:1e00b3fa11af 1966 // commands after 100ms.
mjr 78:1e00b3fa11af 1967 uint32_t t = IRTimer.read_us();
mjr 78:1e00b3fa11af 1968 if (t > 100000)
mjr 78:1e00b3fa11af 1969 IRCommandIn = 0;
mjr 78:1e00b3fa11af 1970 else if (t > 30000)
mjr 78:1e00b3fa11af 1971 IRKeyGap = false;
mjr 78:1e00b3fa11af 1972 }
mjr 78:1e00b3fa11af 1973
mjr 78:1e00b3fa11af 1974 // Check if we're in learning mode
mjr 78:1e00b3fa11af 1975 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 1976 {
mjr 78:1e00b3fa11af 1977 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 1978 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 1979 // limit.
mjr 78:1e00b3fa11af 1980 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 1981 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 1982 int n;
mjr 78:1e00b3fa11af 1983 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 1984
mjr 78:1e00b3fa11af 1985 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 1986 if (n != 0)
mjr 78:1e00b3fa11af 1987 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 1988
mjr 78:1e00b3fa11af 1989 // check for a command
mjr 78:1e00b3fa11af 1990 IRCommand c;
mjr 78:1e00b3fa11af 1991 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 1992 {
mjr 78:1e00b3fa11af 1993 // check the current learning state
mjr 78:1e00b3fa11af 1994 switch (IRLearningMode)
mjr 78:1e00b3fa11af 1995 {
mjr 78:1e00b3fa11af 1996 case 1:
mjr 78:1e00b3fa11af 1997 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 1998 // This is it.
mjr 78:1e00b3fa11af 1999 learnedIRCode = c;
mjr 78:1e00b3fa11af 2000
mjr 78:1e00b3fa11af 2001 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2002 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2003 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2004 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2005 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2006 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2007 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2008 break;
mjr 78:1e00b3fa11af 2009
mjr 78:1e00b3fa11af 2010 case 2:
mjr 78:1e00b3fa11af 2011 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2012 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2013 //
mjr 78:1e00b3fa11af 2014 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2015 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2016 //
mjr 78:1e00b3fa11af 2017 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2018 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2019 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2020 // them.
mjr 78:1e00b3fa11af 2021 //
mjr 78:1e00b3fa11af 2022 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2023 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2024 // over.
mjr 78:1e00b3fa11af 2025 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2026 && c.hasDittos
mjr 78:1e00b3fa11af 2027 && c.ditto)
mjr 78:1e00b3fa11af 2028 {
mjr 78:1e00b3fa11af 2029 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2030 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2031 }
mjr 78:1e00b3fa11af 2032 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2033 && c.hasDittos
mjr 78:1e00b3fa11af 2034 && !c.ditto
mjr 78:1e00b3fa11af 2035 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2036 {
mjr 78:1e00b3fa11af 2037 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2038 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2039 // protocol supports them
mjr 78:1e00b3fa11af 2040 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2041 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2042 }
mjr 78:1e00b3fa11af 2043 else
mjr 78:1e00b3fa11af 2044 {
mjr 78:1e00b3fa11af 2045 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2046 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2047 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2048 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2049 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2050 }
mjr 78:1e00b3fa11af 2051 break;
mjr 78:1e00b3fa11af 2052 }
mjr 77:0b96f6867312 2053
mjr 78:1e00b3fa11af 2054 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2055 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2056 // learning mode.
mjr 78:1e00b3fa11af 2057 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2058 {
mjr 78:1e00b3fa11af 2059 // figure the flags:
mjr 78:1e00b3fa11af 2060 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2061 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2062 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2063 flags |= 0x02;
mjr 78:1e00b3fa11af 2064
mjr 78:1e00b3fa11af 2065 // report the code
mjr 78:1e00b3fa11af 2066 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2067
mjr 78:1e00b3fa11af 2068 // exit learning mode
mjr 78:1e00b3fa11af 2069 IRLearningMode = 0;
mjr 77:0b96f6867312 2070 }
mjr 77:0b96f6867312 2071 }
mjr 77:0b96f6867312 2072
mjr 78:1e00b3fa11af 2073 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2074 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2075 {
mjr 78:1e00b3fa11af 2076 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2077 // zero data elements
mjr 78:1e00b3fa11af 2078 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2079
mjr 78:1e00b3fa11af 2080
mjr 78:1e00b3fa11af 2081 // cancel learning mode
mjr 77:0b96f6867312 2082 IRLearningMode = 0;
mjr 77:0b96f6867312 2083 }
mjr 77:0b96f6867312 2084 }
mjr 78:1e00b3fa11af 2085 else
mjr 77:0b96f6867312 2086 {
mjr 78:1e00b3fa11af 2087 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2088 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2089 ir_rx->process();
mjr 78:1e00b3fa11af 2090
mjr 78:1e00b3fa11af 2091 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2092 // have been read.
mjr 78:1e00b3fa11af 2093 IRCommand c;
mjr 78:1e00b3fa11af 2094 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2095 {
mjr 78:1e00b3fa11af 2096 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2097 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2098 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2099 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2100 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2101 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2102 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2103 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2104 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2105 //
mjr 78:1e00b3fa11af 2106 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2107 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2108 // command.
mjr 78:1e00b3fa11af 2109 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2110 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2111 {
mjr 78:1e00b3fa11af 2112 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2113 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2114 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2115 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2116 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2117 if (c.ditto)
mjr 78:1e00b3fa11af 2118 {
mjr 78:1e00b3fa11af 2119 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2120 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2121 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2122 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2123 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2124 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2125 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2126 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2127 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2128 }
mjr 78:1e00b3fa11af 2129 else
mjr 78:1e00b3fa11af 2130 {
mjr 78:1e00b3fa11af 2131 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2132 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2133 // prior command.
mjr 78:1e00b3fa11af 2134 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2135 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2136 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2137
mjr 78:1e00b3fa11af 2138 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2139 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2140 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2141 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2142 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2143 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2144 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2145 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2146 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2147 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2148 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2149 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2150 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2151 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2152 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2153 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2154 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2155 autoRepeat =
mjr 78:1e00b3fa11af 2156 repeat
mjr 78:1e00b3fa11af 2157 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2158 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2159 }
mjr 78:1e00b3fa11af 2160 }
mjr 78:1e00b3fa11af 2161
mjr 78:1e00b3fa11af 2162 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2163 if (repeat)
mjr 78:1e00b3fa11af 2164 {
mjr 78:1e00b3fa11af 2165 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2166 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2167 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2168 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2169 // key press event.
mjr 78:1e00b3fa11af 2170 if (!autoRepeat)
mjr 78:1e00b3fa11af 2171 IRKeyGap = true;
mjr 78:1e00b3fa11af 2172
mjr 78:1e00b3fa11af 2173 // restart the key-up timer
mjr 78:1e00b3fa11af 2174 IRTimer.reset();
mjr 78:1e00b3fa11af 2175 }
mjr 78:1e00b3fa11af 2176 else if (c.ditto)
mjr 78:1e00b3fa11af 2177 {
mjr 78:1e00b3fa11af 2178 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2179 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2180 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2181 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2182 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2183 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2184 // a full command for a new key press.
mjr 78:1e00b3fa11af 2185 IRCommandIn = 0;
mjr 77:0b96f6867312 2186 }
mjr 77:0b96f6867312 2187 else
mjr 77:0b96f6867312 2188 {
mjr 78:1e00b3fa11af 2189 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2190 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2191 // the new command).
mjr 78:1e00b3fa11af 2192 IRCommandIn = 0;
mjr 77:0b96f6867312 2193
mjr 78:1e00b3fa11af 2194 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2195 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2196 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2197 {
mjr 78:1e00b3fa11af 2198 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2199 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2200 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2201 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2202 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2203 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2204 {
mjr 78:1e00b3fa11af 2205 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2206 // remember the starting time.
mjr 78:1e00b3fa11af 2207 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2208 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2209 IRTimer.reset();
mjr 78:1e00b3fa11af 2210
mjr 78:1e00b3fa11af 2211 // no need to keep searching
mjr 78:1e00b3fa11af 2212 break;
mjr 78:1e00b3fa11af 2213 }
mjr 77:0b96f6867312 2214 }
mjr 77:0b96f6867312 2215 }
mjr 77:0b96f6867312 2216 }
mjr 77:0b96f6867312 2217 }
mjr 77:0b96f6867312 2218 }
mjr 77:0b96f6867312 2219 }
mjr 77:0b96f6867312 2220
mjr 74:822a92bc11d2 2221
mjr 11:bd9da7088e6e 2222 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2223 //
mjr 11:bd9da7088e6e 2224 // Button input
mjr 11:bd9da7088e6e 2225 //
mjr 11:bd9da7088e6e 2226
mjr 18:5e890ebd0023 2227 // button state
mjr 18:5e890ebd0023 2228 struct ButtonState
mjr 18:5e890ebd0023 2229 {
mjr 38:091e511ce8a0 2230 ButtonState()
mjr 38:091e511ce8a0 2231 {
mjr 53:9b2611964afc 2232 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2233 virtState = 0;
mjr 53:9b2611964afc 2234 dbState = 0;
mjr 38:091e511ce8a0 2235 pulseState = 0;
mjr 53:9b2611964afc 2236 pulseTime = 0;
mjr 38:091e511ce8a0 2237 }
mjr 35:e959ffba78fd 2238
mjr 53:9b2611964afc 2239 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2240 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2241 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2242 //
mjr 53:9b2611964afc 2243 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2244 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2245 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2246 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2247 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2248 void virtPress(bool on)
mjr 53:9b2611964afc 2249 {
mjr 53:9b2611964afc 2250 // Increment or decrement the current state
mjr 53:9b2611964afc 2251 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2252 }
mjr 53:9b2611964afc 2253
mjr 53:9b2611964afc 2254 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2255 TinyDigitalIn di;
mjr 38:091e511ce8a0 2256
mjr 65:739875521aae 2257 // Time of last pulse state transition.
mjr 65:739875521aae 2258 //
mjr 65:739875521aae 2259 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2260 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2261 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2262 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2263 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2264 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2265 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2266 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2267 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2268 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2269 // This software system can't be fooled that way.)
mjr 65:739875521aae 2270 uint32_t pulseTime;
mjr 18:5e890ebd0023 2271
mjr 65:739875521aae 2272 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2273 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2274 uint8_t cfgIndex;
mjr 53:9b2611964afc 2275
mjr 53:9b2611964afc 2276 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2277 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2278 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2279 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2280 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2281 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2282 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2283 // and physical source states.
mjr 53:9b2611964afc 2284 uint8_t virtState;
mjr 38:091e511ce8a0 2285
mjr 38:091e511ce8a0 2286 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2287 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2288 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2289 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2290 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2291 uint8_t dbState;
mjr 38:091e511ce8a0 2292
mjr 65:739875521aae 2293 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2294 uint8_t physState : 1;
mjr 65:739875521aae 2295
mjr 65:739875521aae 2296 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2297 uint8_t logState : 1;
mjr 65:739875521aae 2298
mjr 79:682ae3171a08 2299 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 2300 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 2301 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 2302 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 2303 uint8_t prevLogState : 1;
mjr 65:739875521aae 2304
mjr 65:739875521aae 2305 // Pulse state
mjr 65:739875521aae 2306 //
mjr 65:739875521aae 2307 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2308 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2309 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2310 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2311 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2312 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2313 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2314 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2315 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2316 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2317 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 2318 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 2319 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2320 //
mjr 38:091e511ce8a0 2321 // Pulse state:
mjr 38:091e511ce8a0 2322 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2323 // 1 -> off
mjr 38:091e511ce8a0 2324 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2325 // 3 -> on
mjr 38:091e511ce8a0 2326 // 4 -> transitioning on-off
mjr 65:739875521aae 2327 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2328
mjr 65:739875521aae 2329 } __attribute__((packed));
mjr 65:739875521aae 2330
mjr 65:739875521aae 2331 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2332 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2333 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2334
mjr 66:2e3583fbd2f4 2335 // Shift button state
mjr 66:2e3583fbd2f4 2336 struct
mjr 66:2e3583fbd2f4 2337 {
mjr 66:2e3583fbd2f4 2338 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 2339 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 2340 // 0 = not shifted
mjr 66:2e3583fbd2f4 2341 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2342 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 2343 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 2344 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 2345 }
mjr 66:2e3583fbd2f4 2346 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2347
mjr 38:091e511ce8a0 2348 // Button data
mjr 38:091e511ce8a0 2349 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2350
mjr 38:091e511ce8a0 2351 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2352 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2353 // modifier keys.
mjr 38:091e511ce8a0 2354 struct
mjr 38:091e511ce8a0 2355 {
mjr 38:091e511ce8a0 2356 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2357 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2358 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2359 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2360 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2361
mjr 38:091e511ce8a0 2362 // Media key state
mjr 38:091e511ce8a0 2363 struct
mjr 38:091e511ce8a0 2364 {
mjr 38:091e511ce8a0 2365 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2366 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2367 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2368
mjr 79:682ae3171a08 2369 // button scan interrupt timer
mjr 79:682ae3171a08 2370 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 2371
mjr 38:091e511ce8a0 2372 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2373 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2374 void scanButtons()
mjr 38:091e511ce8a0 2375 {
mjr 79:682ae3171a08 2376 // schedule the next interrupt
mjr 79:682ae3171a08 2377 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 2378
mjr 38:091e511ce8a0 2379 // scan all button input pins
mjr 73:4e8ce0b18915 2380 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2381 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2382 {
mjr 73:4e8ce0b18915 2383 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2384 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2385 bs->dbState = db;
mjr 73:4e8ce0b18915 2386
mjr 73:4e8ce0b18915 2387 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2388 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2389 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2390 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2391 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2392 db &= stable;
mjr 73:4e8ce0b18915 2393 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2394 bs->physState = !db;
mjr 38:091e511ce8a0 2395 }
mjr 38:091e511ce8a0 2396 }
mjr 38:091e511ce8a0 2397
mjr 38:091e511ce8a0 2398 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2399 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2400 // in the physical button state.
mjr 38:091e511ce8a0 2401 Timer buttonTimer;
mjr 12:669df364a565 2402
mjr 65:739875521aae 2403 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2404 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2405 {
mjr 65:739875521aae 2406 // count it
mjr 65:739875521aae 2407 ++nButtons;
mjr 65:739875521aae 2408
mjr 67:c39e66c4e000 2409 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2410 // keyboard interface
mjr 72:884207c0aab0 2411 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2412 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2413 kbKeys = true;
mjr 65:739875521aae 2414 }
mjr 65:739875521aae 2415
mjr 11:bd9da7088e6e 2416 // initialize the button inputs
mjr 35:e959ffba78fd 2417 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2418 {
mjr 66:2e3583fbd2f4 2419 // presume no shift key
mjr 66:2e3583fbd2f4 2420 shiftButton.index = -1;
mjr 66:2e3583fbd2f4 2421
mjr 65:739875521aae 2422 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2423 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2424 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2425 nButtons = 0;
mjr 65:739875521aae 2426 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2427 {
mjr 65:739875521aae 2428 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2429 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 2430 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 2431 }
mjr 65:739875521aae 2432
mjr 65:739875521aae 2433 // Count virtual buttons
mjr 65:739875521aae 2434
mjr 65:739875521aae 2435 // ZB Launch
mjr 65:739875521aae 2436 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 2437 {
mjr 65:739875521aae 2438 // valid - remember the live button index
mjr 65:739875521aae 2439 zblButtonIndex = nButtons;
mjr 65:739875521aae 2440
mjr 65:739875521aae 2441 // count it
mjr 72:884207c0aab0 2442 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 2443 }
mjr 65:739875521aae 2444
mjr 65:739875521aae 2445 // Allocate the live button slots
mjr 65:739875521aae 2446 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 2447
mjr 65:739875521aae 2448 // Configure the physical inputs
mjr 65:739875521aae 2449 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2450 {
mjr 65:739875521aae 2451 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 2452 if (pin != NC)
mjr 65:739875521aae 2453 {
mjr 65:739875521aae 2454 // point back to the config slot for the keyboard data
mjr 65:739875521aae 2455 bs->cfgIndex = i;
mjr 65:739875521aae 2456
mjr 65:739875521aae 2457 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 2458 bs->di.assignPin(pin);
mjr 65:739875521aae 2459
mjr 65:739875521aae 2460 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 2461 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 2462 bs->pulseState = 1;
mjr 65:739875521aae 2463
mjr 66:2e3583fbd2f4 2464 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 2465 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 2466 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 2467 // config slots are left unused.
mjr 78:1e00b3fa11af 2468 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 2469 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 2470
mjr 65:739875521aae 2471 // advance to the next button
mjr 65:739875521aae 2472 ++bs;
mjr 65:739875521aae 2473 }
mjr 65:739875521aae 2474 }
mjr 65:739875521aae 2475
mjr 53:9b2611964afc 2476 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 2477 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 2478 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 2479 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 2480
mjr 53:9b2611964afc 2481 // ZB Launch Ball button
mjr 65:739875521aae 2482 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 2483 {
mjr 65:739875521aae 2484 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 2485 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 2486 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 2487 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 2488 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 2489 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 2490 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 2491 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 2492
mjr 66:2e3583fbd2f4 2493 // advance to the next button
mjr 65:739875521aae 2494 ++bs;
mjr 11:bd9da7088e6e 2495 }
mjr 12:669df364a565 2496
mjr 38:091e511ce8a0 2497 // start the button scan thread
mjr 79:682ae3171a08 2498 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 2499
mjr 38:091e511ce8a0 2500 // start the button state transition timer
mjr 12:669df364a565 2501 buttonTimer.start();
mjr 11:bd9da7088e6e 2502 }
mjr 11:bd9da7088e6e 2503
mjr 67:c39e66c4e000 2504 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 2505 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 2506 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 2507 // is the re