An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Sun Jan 29 19:04:47 2017 +0000
Revision:
75:677892300e7a
Parent:
74:822a92bc11d2
Child:
77:0b96f6867312
Added SBX/PBX-is-supported flag to configuration report

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 // USB Message Protocol
mjr 35:e959ffba78fd 2 //
mjr 74:822a92bc11d2 3 // This file is purely for documentation, to describe our USB protocol
mjr 74:822a92bc11d2 4 // for incoming messages (host to device). We use the standard HID setup
mjr 74:822a92bc11d2 5 // with one endpoint in each direction. See USBJoystick.cpp and .h for
mjr 74:822a92bc11d2 6 // the USB descriptors.
mjr 74:822a92bc11d2 7 //
mjr 74:822a92bc11d2 8 // Our incoming message protocol is an extended version of the protocol
mjr 74:822a92bc11d2 9 // used by the LedWiz. Our protocol is designed to be 100% backwards
mjr 74:822a92bc11d2 10 // compatible with clients using the original LedWiz wire protocol, as long
mjr 74:822a92bc11d2 11 // as they only send well-formed messages in the original protocol. The
mjr 74:822a92bc11d2 12 // "well-formed" part is an important condition, because our extensions to
mjr 74:822a92bc11d2 13 // the original protocol all consist of messages that aren't defined in the
mjr 74:822a92bc11d2 14 // original protocol and are meaningless to a real LedWiz.
mjr 35:e959ffba78fd 15 //
mjr 74:822a92bc11d2 16 // The protocol compatibility ensures that all original LedWiz clients can
mjr 74:822a92bc11d2 17 // also transparently access a Pinscape unit. Clients will simply think the
mjr 74:822a92bc11d2 18 // Pinscape unit is an LedWiz, thus they'll be able to operate 32 of our
mjr 74:822a92bc11d2 19 // ports. We designate the first 32 ports (ports 1-32) as the ones accessible
mjr 74:822a92bc11d2 20 // through the LedWiz protocol.
mjr 74:822a92bc11d2 21 //
mjr 74:822a92bc11d2 22 // In addition the wire-level protocol compatibility, we can provide legacy
mjr 74:822a92bc11d2 23 // LedWiz clients with access to more than 32 ports by emulating multiple
mjr 74:822a92bc11d2 24 // virtual LedWiz units. We can't do this across the wire protocol, since
mjr 74:822a92bc11d2 25 // the KL25Z USB interface constrains us to a single VID/PID (which is how
mjr 74:822a92bc11d2 26 // LedWiz clients distinguish units). However, virtuall all legacy LedWiz
mjr 74:822a92bc11d2 27 // clients access the device through a shared library, LEDWIZ.DLL, rather
mjr 74:822a92bc11d2 28 // than directly through USB. LEDWIZ.DLL is distributed by the LedWiz's
mjr 74:822a92bc11d2 29 // manufacturer and has a published client interface. We can thus provide
mjr 74:822a92bc11d2 30 // a replacement DLL that contains the logic needed to recognize a Pinscape
mjr 74:822a92bc11d2 31 // unit and represent it to clients as multiple LedWiz devices. This allows
mjr 74:822a92bc11d2 32 // old clients to access our full complement of ports without any changes
mjr 74:822a92bc11d2 33 // to the clients. We define some extended message types (SBX and PBX)
mjr 74:822a92bc11d2 34 // specifically to support this DLL feature.
mjr 74:822a92bc11d2 35 //
mjr 74:822a92bc11d2 36
mjr 35:e959ffba78fd 37
mjr 35:e959ffba78fd 38 // ------ OUTGOING MESSAGES (DEVICE TO HOST) ------
mjr 35:e959ffba78fd 39 //
mjr 47:df7a88cd249c 40 // General note: 16-bit and 32-bit fields in our reports are little-endian
mjr 47:df7a88cd249c 41 // unless otherwise specified.
mjr 47:df7a88cd249c 42 //
mjr 39:b3815a1c3802 43 // 1. Joystick reports
mjr 35:e959ffba78fd 44 // In most cases, our outgoing messages are HID joystick reports, using the
mjr 35:e959ffba78fd 45 // format defined in USBJoystick.cpp. This allows us to be installed on
mjr 35:e959ffba78fd 46 // Windows as a standard USB joystick, which all versions of Windows support
mjr 35:e959ffba78fd 47 // using in-the-box drivers. This allows a completely transparent, driverless,
mjr 39:b3815a1c3802 48 // plug-and-play installation experience on Windows. Our joystick report
mjr 39:b3815a1c3802 49 // looks like this (see USBJoystick.cpp for the formal HID report descriptor):
mjr 35:e959ffba78fd 50 //
mjr 55:4db125cd11a0 51 // ss status bits:
mjr 55:4db125cd11a0 52 // 0x01 -> plunger enabled
mjr 55:4db125cd11a0 53 // 0x02 -> night mode engaged
mjr 73:4e8ce0b18915 54 // 0x04,0x08,0x10 -> power sense status: meaningful only when
mjr 73:4e8ce0b18915 55 // the TV-on timer is used. Figure (ss>>2) & 0x07 to
mjr 73:4e8ce0b18915 56 // isolate the status bits. The resulting value is:
mjr 73:4e8ce0b18915 57 // 1 -> latch was on at last check
mjr 73:4e8ce0b18915 58 // 2 -> latch was off at last check, SET pin high
mjr 73:4e8ce0b18915 59 // 3 -> latch off, SET pin low, ready to check status
mjr 73:4e8ce0b18915 60 // 4 -> TV timer countdown in progress
mjr 73:4e8ce0b18915 61 // 5 -> TV relay is on
mjr 40:cc0d9814522b 62 // 00 2nd byte of status (reserved)
mjr 40:cc0d9814522b 63 // 00 3rd byte of status (reserved)
mjr 39:b3815a1c3802 64 // 00 always zero for joystick reports
mjr 40:cc0d9814522b 65 // bb joystick buttons, low byte (buttons 1-8, 1 bit per button)
mjr 40:cc0d9814522b 66 // bb joystick buttons, 2nd byte (buttons 9-16)
mjr 40:cc0d9814522b 67 // bb joystick buttons, 3rd byte (buttons 17-24)
mjr 40:cc0d9814522b 68 // bb joystick buttons, high byte (buttons 25-32)
mjr 39:b3815a1c3802 69 // xx low byte of X position = nudge/accelerometer X axis
mjr 39:b3815a1c3802 70 // xx high byte of X position
mjr 39:b3815a1c3802 71 // yy low byte of Y position = nudge/accelerometer Y axis
mjr 39:b3815a1c3802 72 // yy high byte of Y position
mjr 39:b3815a1c3802 73 // zz low byte of Z position = plunger position
mjr 39:b3815a1c3802 74 // zz high byte of Z position
mjr 39:b3815a1c3802 75 //
mjr 39:b3815a1c3802 76 // The X, Y, and Z values are 16-bit signed integers. The accelerometer
mjr 39:b3815a1c3802 77 // values are on an abstract scale, where 0 represents no acceleration,
mjr 39:b3815a1c3802 78 // negative maximum represents -1g on that axis, and positive maximum
mjr 39:b3815a1c3802 79 // represents +1g on that axis. For the plunger position, 0 is the park
mjr 39:b3815a1c3802 80 // position (the rest position of the plunger) and positive values represent
mjr 39:b3815a1c3802 81 // retracted (pulled back) positions. A negative value means that the plunger
mjr 39:b3815a1c3802 82 // is pushed forward of the park position.
mjr 39:b3815a1c3802 83 //
mjr 39:b3815a1c3802 84 // 2. Special reports
mjr 35:e959ffba78fd 85 // We subvert the joystick report format in certain cases to report other
mjr 35:e959ffba78fd 86 // types of information, when specifically requested by the host. This allows
mjr 35:e959ffba78fd 87 // our custom configuration UI on the Windows side to query additional
mjr 35:e959ffba78fd 88 // information that we don't normally send via the joystick reports. We
mjr 35:e959ffba78fd 89 // define a custom vendor-specific "status" field in the reports that we
mjr 35:e959ffba78fd 90 // use to identify these special reports, as described below.
mjr 35:e959ffba78fd 91 //
mjr 39:b3815a1c3802 92 // Normal joystick reports always have 0 in the high bit of the 2nd byte
mjr 35:e959ffba78fd 93 // of the report. Special non-joystick reports always have 1 in the high bit
mjr 35:e959ffba78fd 94 // of the first byte. (This byte is defined in the HID Report Descriptor
mjr 35:e959ffba78fd 95 // as an opaque vendor-defined value, so the joystick interface on the
mjr 35:e959ffba78fd 96 // Windows side simply ignores it.)
mjr 35:e959ffba78fd 97 //
mjr 52:8298b2a73eb2 98 // 2A. Plunger sensor status report
mjr 52:8298b2a73eb2 99 // Software on the PC can request a detailed status report from the plunger
mjr 52:8298b2a73eb2 100 // sensor. The status information is meant as an aid to installing and
mjr 52:8298b2a73eb2 101 // adjusting the sensor device for proper performance. For imaging sensor
mjr 52:8298b2a73eb2 102 // types, the status report includes a complete current image snapshot
mjr 52:8298b2a73eb2 103 // (an array of all of the pixels the sensor is currently imaging). For
mjr 52:8298b2a73eb2 104 // all sensor types, it includes the current plunger position registered
mjr 52:8298b2a73eb2 105 // on the sensor, and some timing information.
mjr 52:8298b2a73eb2 106 //
mjr 52:8298b2a73eb2 107 // To request the sensor status, the host sends custom protocol message 65 3
mjr 52:8298b2a73eb2 108 // (see below). The device replies with a message in this format:
mjr 52:8298b2a73eb2 109 //
mjr 52:8298b2a73eb2 110 // bytes 0:1 = 0x87FF
mjr 52:8298b2a73eb2 111 // byte 2 = 0 -> first (currently only) status report packet
mjr 52:8298b2a73eb2 112 // (additional packets could be added in the future if
mjr 52:8298b2a73eb2 113 // more fields need to be added)
mjr 52:8298b2a73eb2 114 // bytes 3:4 = number of pixels to be sent in following messages, as
mjr 52:8298b2a73eb2 115 // an unsigned 16-bit little-endian integer. This is 0 if
mjr 52:8298b2a73eb2 116 // the sensor isn't an imaging type.
mjr 52:8298b2a73eb2 117 // bytes 5:6 = current plunger position registered on the sensor.
mjr 52:8298b2a73eb2 118 // For imaging sensors, this is the pixel position, so it's
mjr 52:8298b2a73eb2 119 // scaled from 0 to number of pixels - 1. For non-imaging
mjr 52:8298b2a73eb2 120 // sensors, this uses the generic joystick scale 0..4095.
mjr 52:8298b2a73eb2 121 // The special value 0xFFFF means that the position couldn't
mjr 52:8298b2a73eb2 122 // be determined,
mjr 52:8298b2a73eb2 123 // byte 7 = bit flags:
mjr 52:8298b2a73eb2 124 // 0x01 = normal orientation detected
mjr 52:8298b2a73eb2 125 // 0x02 = reversed orientation detected
mjr 52:8298b2a73eb2 126 // 0x04 = calibration mode is active (no pixel packets
mjr 52:8298b2a73eb2 127 // are sent for this reading)
mjr 52:8298b2a73eb2 128 // bytes 8:9:10 = average time for each sensor read, in 10us units.
mjr 52:8298b2a73eb2 129 // This is the average time it takes to complete the I/O
mjr 52:8298b2a73eb2 130 // operation to read the sensor, to obtain the raw sensor
mjr 52:8298b2a73eb2 131 // data for instantaneous plunger position reading. For
mjr 52:8298b2a73eb2 132 // an imaging sensor, this is the time it takes for the
mjr 52:8298b2a73eb2 133 // sensor to capture the image and transfer it to the
mjr 52:8298b2a73eb2 134 // microcontroller. For an analog sensor (e.g., an LVDT
mjr 52:8298b2a73eb2 135 // or potentiometer), it's the time to complete an ADC
mjr 52:8298b2a73eb2 136 // sample.
mjr 52:8298b2a73eb2 137 // bytes 11:12:13 = time it took to process the current frame, in 10us
mjr 52:8298b2a73eb2 138 // units. This is the software processing time that was
mjr 52:8298b2a73eb2 139 // needed to analyze the raw data read from the sensor.
mjr 52:8298b2a73eb2 140 // This is typically only non-zero for imaging sensors,
mjr 52:8298b2a73eb2 141 // where it reflects the time required to scan the pixel
mjr 52:8298b2a73eb2 142 // array to find the indicated plunger position. The time
mjr 52:8298b2a73eb2 143 // is usually zero or negligible for analog sensor types,
mjr 52:8298b2a73eb2 144 // since the only "analysis" is a multiplication to rescale
mjr 52:8298b2a73eb2 145 // the ADC sample.
mjr 52:8298b2a73eb2 146 //
mjr 52:8298b2a73eb2 147 // If the sensor is an imaging sensor type, this will be followed by a
mjr 52:8298b2a73eb2 148 // series of pixel messages. The imaging sensor types have too many pixels
mjr 52:8298b2a73eb2 149 // to send in a single USB transaction, so the device breaks up the array
mjr 52:8298b2a73eb2 150 // into as many packets as needed and sends them in sequence. For non-
mjr 52:8298b2a73eb2 151 // imaging sensors, the "number of pixels" field in the lead packet is
mjr 52:8298b2a73eb2 152 // zero, so obviously no pixel packets will follow. If the "calibration
mjr 52:8298b2a73eb2 153 // active" bit in the flags byte is set, no pixel packets are sent even
mjr 52:8298b2a73eb2 154 // if the sensor is an imaging type, since the transmission time for the
mjr 52:8298b2a73eb2 155 // pixels would intefere with the calibration process. If pixels are sent,
mjr 52:8298b2a73eb2 156 // they're sent in order starting at the first pixel. The format of each
mjr 52:8298b2a73eb2 157 // pixel packet is:
mjr 35:e959ffba78fd 158 //
mjr 35:e959ffba78fd 159 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 48:058ace2aed1d 160 // example, 0x8004 (encoded little endian as 0x04 0x80)
mjr 48:058ace2aed1d 161 // indicates index 4. This is the starting pixel number
mjr 48:058ace2aed1d 162 // in the report. The first report will be 0x00 0x80 to
mjr 48:058ace2aed1d 163 // indicate pixel #0.
mjr 47:df7a88cd249c 164 // bytes 2 = 8-bit unsigned int brightness level of pixel at index
mjr 47:df7a88cd249c 165 // bytes 3 = brightness of pixel at index+1
mjr 35:e959ffba78fd 166 // etc for the rest of the packet
mjr 35:e959ffba78fd 167 //
mjr 52:8298b2a73eb2 168 // Note that we currently only support one-dimensional imaging sensors
mjr 52:8298b2a73eb2 169 // (i.e., pixel arrays that are 1 pixel wide). The report format doesn't
mjr 52:8298b2a73eb2 170 // have any provision for a two-dimensional layout. The KL25Z probably
mjr 52:8298b2a73eb2 171 // isn't powerful enough to do real-time image analysis on a 2D image
mjr 52:8298b2a73eb2 172 // anyway, so it's unlikely that we'd be able to make 2D sensors work at
mjr 52:8298b2a73eb2 173 // all, but if we ever add such a thing we'll have to upgrade the report
mjr 52:8298b2a73eb2 174 // format here accordingly.
mjr 51:57eb311faafa 175 //
mjr 51:57eb311faafa 176 //
mjr 53:9b2611964afc 177 // 2B. Configuration report.
mjr 39:b3815a1c3802 178 // This is requested by sending custom protocol message 65 4 (see below).
mjr 39:b3815a1c3802 179 // In reponse, the device sends one report to the host using this format:
mjr 35:e959ffba78fd 180 //
mjr 35:e959ffba78fd 181 // bytes 0:1 = 0x8800. This has the bit pattern 10001 in the high
mjr 35:e959ffba78fd 182 // 5 bits, which distinguishes it from regular joystick
mjr 40:cc0d9814522b 183 // reports and from other special report types.
mjr 74:822a92bc11d2 184 // bytes 2:3 = total number of configured outputs, little endian. This
mjr 74:822a92bc11d2 185 // is the number of outputs with assigned functions in the
mjr 74:822a92bc11d2 186 // active configuration.
mjr 75:677892300e7a 187 // byte 4 = Pinscape unit number (0-15), little endian
mjr 75:677892300e7a 188 // byte 5 = reserved (currently always zero)
mjr 40:cc0d9814522b 189 // bytes 6:7 = plunger calibration zero point, little endian
mjr 40:cc0d9814522b 190 // bytes 8:9 = plunger calibration maximum point, little endian
mjr 52:8298b2a73eb2 191 // byte 10 = plunger calibration release time, in milliseconds
mjr 52:8298b2a73eb2 192 // byte 11 = bit flags:
mjr 40:cc0d9814522b 193 // 0x01 -> configuration loaded; 0 in this bit means that
mjr 40:cc0d9814522b 194 // the firmware has been loaded but no configuration
mjr 40:cc0d9814522b 195 // has been sent from the host
mjr 74:822a92bc11d2 196 // 0x02 -> SBX/PBX extension features: 1 in this bit means
mjr 74:822a92bc11d2 197 // that these features are present in this version.
mjr 73:4e8ce0b18915 198 // bytes 12:13 = available RAM, in bytes, little endian. This is the amount
mjr 73:4e8ce0b18915 199 // of unused heap (malloc'able) memory. The firmware generally
mjr 73:4e8ce0b18915 200 // allocates all of the dynamic memory it needs during startup,
mjr 73:4e8ce0b18915 201 // so the free memory figure doesn't tend to fluctuate during
mjr 73:4e8ce0b18915 202 // normal operation. The dynamic memory used is a function of
mjr 73:4e8ce0b18915 203 // the set of features enabled.
mjr 35:e959ffba78fd 204 //
mjr 53:9b2611964afc 205 // 2C. Device ID report.
mjr 40:cc0d9814522b 206 // This is requested by sending custom protocol message 65 7 (see below).
mjr 40:cc0d9814522b 207 // In response, the device sends one report to the host using this format:
mjr 40:cc0d9814522b 208 //
mjr 52:8298b2a73eb2 209 // bytes 0:1 = 0x9000. This has bit pattern 10010 in the high 5 bits
mjr 52:8298b2a73eb2 210 // to distinguish this from other report types.
mjr 53:9b2611964afc 211 // byte 2 = ID type. This is the same ID type sent in the request.
mjr 53:9b2611964afc 212 // bytes 3-12 = requested ID. The ID is 80 bits in big-endian byte
mjr 53:9b2611964afc 213 // order. For IDs longer than 80 bits, we truncate to the
mjr 53:9b2611964afc 214 // low-order 80 bits (that is, the last 80 bits).
mjr 53:9b2611964afc 215 //
mjr 53:9b2611964afc 216 // ID type 1 = CPU ID. This is the globally unique CPU ID
mjr 53:9b2611964afc 217 // stored in the KL25Z CPU.
mjr 35:e959ffba78fd 218 //
mjr 53:9b2611964afc 219 // ID type 2 = OpenSDA ID. This is the globally unique ID
mjr 53:9b2611964afc 220 // for the connected OpenSDA controller, if known. This
mjr 53:9b2611964afc 221 // allow the host to figure out which USB MSD (virtual
mjr 53:9b2611964afc 222 // disk drive), if any, represents the OpenSDA module for
mjr 53:9b2611964afc 223 // this Pinscape USB interface. This is primarily useful
mjr 53:9b2611964afc 224 // to determine which MSD to write in order to update the
mjr 53:9b2611964afc 225 // firmware on a given Pinscape unit.
mjr 53:9b2611964afc 226 //
mjr 53:9b2611964afc 227 // 2D. Configuration variable report.
mjr 52:8298b2a73eb2 228 // This is requested by sending custom protocol message 65 9 (see below).
mjr 52:8298b2a73eb2 229 // In response, the device sends one report to the host using this format:
mjr 52:8298b2a73eb2 230 //
mjr 52:8298b2a73eb2 231 // bytes 0:1 = 0x9800. This has bit pattern 10011 in the high 5 bits
mjr 52:8298b2a73eb2 232 // to distinguish this from other report types.
mjr 52:8298b2a73eb2 233 // byte 2 = Variable ID. This is the same variable ID sent in the
mjr 52:8298b2a73eb2 234 // query message, to relate the reply to the request.
mjr 52:8298b2a73eb2 235 // bytes 3-8 = Current value of the variable, in the format for the
mjr 52:8298b2a73eb2 236 // individual variable type. The variable formats are
mjr 52:8298b2a73eb2 237 // described in the CONFIGURATION VARIABLES section below.
mjr 52:8298b2a73eb2 238 //
mjr 53:9b2611964afc 239 // 2E. Software build information report.
mjr 53:9b2611964afc 240 // This is requested by sending custom protocol message 65 10 (see below).
mjr 53:9b2611964afc 241 // In response, the device sends one report using this format:
mjr 53:9b2611964afc 242 //
mjr 73:4e8ce0b18915 243 // bytes 0:1 = 0xA000. This has bit pattern 10100 in the high 5 bits
mjr 53:9b2611964afc 244 // to distinguish it from other report types.
mjr 53:9b2611964afc 245 // bytes 2:5 = Build date. This is returned as a 32-bit integer,
mjr 53:9b2611964afc 246 // little-endian as usual, encoding a decimal value
mjr 53:9b2611964afc 247 // in the format YYYYMMDD giving the date of the build.
mjr 53:9b2611964afc 248 // E.g., Feb 16 2016 is encoded as 20160216 (decimal).
mjr 53:9b2611964afc 249 // bytes 6:9 = Build time. This is a 32-bit integer, little-endian,
mjr 53:9b2611964afc 250 // encoding a decimal value in the format HHMMSS giving
mjr 53:9b2611964afc 251 // build time on a 24-hour clock.
mjr 53:9b2611964afc 252 //
mjr 73:4e8ce0b18915 253 // 2F. Button status report.
mjr 73:4e8ce0b18915 254 // This is requested by sending custom protocol message 65 13 (see below).
mjr 73:4e8ce0b18915 255 // In response, the device sends one report using this format:
mjr 73:4e8ce0b18915 256 //
mjr 73:4e8ce0b18915 257 // bytes 0:1 = 0xA1. This has bit pattern 10101 in the high 5 bits
mjr 73:4e8ce0b18915 258 // to distinguish it from other report types.
mjr 73:4e8ce0b18915 259 // byte 2 = number of button reports
mjr 73:4e8ce0b18915 260 // byte 3 = Physical status of buttons 1-8, 1 bit each. The low-order
mjr 73:4e8ce0b18915 261 // bit (0x01) is button 1. Each bit is 0 if the button is off,
mjr 73:4e8ce0b18915 262 // 1 if on. This reflects the physical status of the button
mjr 73:4e8ce0b18915 263 // input pins, after debouncing but before any logical state
mjr 73:4e8ce0b18915 264 // processing. Pulse mode and shifting have no effect on the
mjr 73:4e8ce0b18915 265 // physical state; this simply indicates whether the button is
mjr 73:4e8ce0b18915 266 // electrically on (shorted to GND) or off (open circuit).
mjr 73:4e8ce0b18915 267 // byte 4 = buttons 9-16
mjr 73:4e8ce0b18915 268 // byte 5 = buttons 17-24
mjr 73:4e8ce0b18915 269 // byte 6 = buttons 25-32
mjr 73:4e8ce0b18915 270 // byte 7 = buttons 33-40
mjr 73:4e8ce0b18915 271 // byte 8 = buttons 41-48
mjr 73:4e8ce0b18915 272 //
mjr 52:8298b2a73eb2 273 //
mjr 35:e959ffba78fd 274 // WHY WE USE THIS HACKY APPROACH TO DIFFERENT REPORT TYPES
mjr 35:e959ffba78fd 275 //
mjr 35:e959ffba78fd 276 // The HID report system was specifically designed to provide a clean,
mjr 35:e959ffba78fd 277 // structured way for devices to describe the data they send to the host.
mjr 35:e959ffba78fd 278 // Our approach isn't clean or structured; it ignores the promises we
mjr 35:e959ffba78fd 279 // make about the contents of our report via the HID Report Descriptor
mjr 35:e959ffba78fd 280 // and stuffs our own different data format into the same structure.
mjr 35:e959ffba78fd 281 //
mjr 35:e959ffba78fd 282 // We use this hacky approach only because we can't use the official
mjr 35:e959ffba78fd 283 // mechanism, due to the constraint that we want to emulate the LedWiz.
mjr 35:e959ffba78fd 284 // The right way to send different report types is to declare different
mjr 35:e959ffba78fd 285 // report types via extra HID Report Descriptors, then send each report
mjr 35:e959ffba78fd 286 // using one of the types we declared. If it weren't for the LedWiz
mjr 35:e959ffba78fd 287 // constraint, we'd simply define the pixel dump and config query reports
mjr 35:e959ffba78fd 288 // as their own separate HID Report types, each consisting of opaque
mjr 35:e959ffba78fd 289 // blocks of bytes. But we can't do this. The snag is that some versions
mjr 35:e959ffba78fd 290 // of the LedWiz Windows host software parse the USB HID descriptors as part
mjr 35:e959ffba78fd 291 // of identifying a device as a valid LedWiz unit, and will only recognize
mjr 35:e959ffba78fd 292 // the device if it matches certain particulars about the descriptor
mjr 35:e959ffba78fd 293 // structure of a real LedWiz. One of the features that's important to
mjr 35:e959ffba78fd 294 // some versions of the software is the descriptor link structure, which
mjr 35:e959ffba78fd 295 // is affected by the layout of HID Report Descriptor entries. In order
mjr 35:e959ffba78fd 296 // to match the expected layout, we can only define a single kind of output
mjr 35:e959ffba78fd 297 // report. Since we have to use Joystick reports for the sake of VP and
mjr 35:e959ffba78fd 298 // other pinball software, and we're only allowed the one report type, we
mjr 35:e959ffba78fd 299 // have to make that one report type the Joystick type. That's why we
mjr 35:e959ffba78fd 300 // overload the joystick reports with other meanings. It's a hack, but
mjr 35:e959ffba78fd 301 // at least it's a fairly reliable and isolated hack, iun that our special
mjr 35:e959ffba78fd 302 // reports are only generated when clients specifically ask for them.
mjr 35:e959ffba78fd 303 // Plus, even if a client who doesn't ask for a special report somehow
mjr 35:e959ffba78fd 304 // gets one, the worst that happens is that they get a momentary spurious
mjr 35:e959ffba78fd 305 // reading from the accelerometer and plunger.
mjr 35:e959ffba78fd 306
mjr 35:e959ffba78fd 307
mjr 35:e959ffba78fd 308
mjr 35:e959ffba78fd 309 // ------- INCOMING MESSAGES (HOST TO DEVICE) -------
mjr 35:e959ffba78fd 310 //
mjr 35:e959ffba78fd 311 // For LedWiz compatibility, our incoming message format conforms to the
mjr 35:e959ffba78fd 312 // basic USB format used by real LedWiz units. This is simply 8 data
mjr 35:e959ffba78fd 313 // bytes, all private vendor-specific values (meaning that the Windows HID
mjr 35:e959ffba78fd 314 // driver treats them as opaque and doesn't attempt to parse them).
mjr 35:e959ffba78fd 315 //
mjr 35:e959ffba78fd 316 // Within this basic 8-byte format, we recognize the full protocol used
mjr 35:e959ffba78fd 317 // by real LedWiz units, plus an extended protocol that we define privately.
mjr 35:e959ffba78fd 318 // The LedWiz protocol leaves a large part of the potential protocol space
mjr 35:e959ffba78fd 319 // undefined, so we take advantage of this undefined region for our
mjr 35:e959ffba78fd 320 // extensions. This ensures that we can properly recognize all messages
mjr 35:e959ffba78fd 321 // intended for a real LedWiz unit, as well as messages from custom host
mjr 35:e959ffba78fd 322 // software that knows it's talking to a Pinscape unit.
mjr 35:e959ffba78fd 323
mjr 35:e959ffba78fd 324 // --- REAL LED WIZ MESSAGES ---
mjr 35:e959ffba78fd 325 //
mjr 74:822a92bc11d2 326 // The real LedWiz protocol has two message types, "SBA" and "PBA". The
mjr 74:822a92bc11d2 327 // message type can be determined from the first byte of the 8-byte message
mjr 74:822a92bc11d2 328 // packet: if the first byte 64 (0x40), it's an SBA message. If the first
mjr 74:822a92bc11d2 329 // byte is 0-49 or 129-132, it's a PBA message. All other byte values are
mjr 74:822a92bc11d2 330 // invalid in the original protocol and have undefined behavior if sent to
mjr 74:822a92bc11d2 331 // a real LedWiz. We take advantage of this to extend the protocol with
mjr 74:822a92bc11d2 332 // our new features by assigning new meanings to byte patterns that have no
mjr 74:822a92bc11d2 333 // meaning in the original protocol.
mjr 35:e959ffba78fd 334 //
mjr 74:822a92bc11d2 335 // "SBA" message: 64 xx xx xx xx ss 00 00
mjr 74:822a92bc11d2 336 // xx = on/off bit mask for 8 outputs
mjr 74:822a92bc11d2 337 // ss = global flash speed setting (valid values 1-7)
mjr 74:822a92bc11d2 338 // 00 = unused/reserved; client should set to zero (not enforced, but
mjr 74:822a92bc11d2 339 // strongly recommended in case of future additions)
mjr 35:e959ffba78fd 340 //
mjr 35:e959ffba78fd 341 // If the first byte has value 64 (0x40), it's an SBA message. This type of
mjr 35:e959ffba78fd 342 // message sets all 32 outputs individually ON or OFF according to the next
mjr 35:e959ffba78fd 343 // 32 bits (4 bytes) of the message, and sets the flash speed to the value in
mjr 74:822a92bc11d2 344 // the sixth byte. The flash speed sets the global cycle rate for flashing
mjr 74:822a92bc11d2 345 // outputs - outputs with their values set to the range 128-132. The speed
mjr 74:822a92bc11d2 346 // parameter is in ad hoc units that aren't documented in the LedWiz API, but
mjr 74:822a92bc11d2 347 // observations of real LedWiz units show that the "speed" is actually the
mjr 74:822a92bc11d2 348 // period, each unit representing 0.25s: so speed 1 is a 0.25s period, or 4Hz,
mjr 74:822a92bc11d2 349 // speed 2 is a 0.5s period or 2Hz, etc., up to speed 7 as a 1.75s period or
mjr 74:822a92bc11d2 350 // 0.57Hz. The period is the full waveform cycle time.
mjr 74:822a92bc11d2 351 //
mjr 35:e959ffba78fd 352 //
mjr 74:822a92bc11d2 353 // "PBA" message: bb bb bb bb bb bb bb bb
mjr 74:822a92bc11d2 354 // bb = brightness level, 0-49 or 128-132
mjr 35:e959ffba78fd 355 //
mjr 74:822a92bc11d2 356 // Note that there's no prefix byte indicating this message type. This
mjr 74:822a92bc11d2 357 // message is indicated simply by the first byte being in one of the valid
mjr 74:822a92bc11d2 358 // ranges.
mjr 74:822a92bc11d2 359 //
mjr 74:822a92bc11d2 360 // Each byte gives the new brightness level or flash pattern for one part.
mjr 74:822a92bc11d2 361 // The valid values are:
mjr 35:e959ffba78fd 362 //
mjr 35:e959ffba78fd 363 // 0-48 = fixed brightness level, linearly from 0% to 100% intensity
mjr 35:e959ffba78fd 364 // 49 = fixed brightness level at 100% intensity (same as 48)
mjr 35:e959ffba78fd 365 // 129 = flashing pattern, fade up / fade down (sawtooth wave)
mjr 35:e959ffba78fd 366 // 130 = flashing pattern, on / off (square wave)
mjr 35:e959ffba78fd 367 // 131 = flashing pattern, on for 50% duty cycle / fade down
mjr 35:e959ffba78fd 368 // 132 = flashing pattern, fade up / on for 50% duty cycle
mjr 35:e959ffba78fd 369 //
mjr 74:822a92bc11d2 370 // This message sets new brightness/flash settings for 8 ports. There's
mjr 74:822a92bc11d2 371 // no port number specified in the message; instead, the port is given by
mjr 74:822a92bc11d2 372 // the protocol state. Specifically, the device has an internal register
mjr 74:822a92bc11d2 373 // containing the base port for PBA messages. On reset AND after any SBA
mjr 74:822a92bc11d2 374 // message is received, the base port is set to 0. After any PBA message
mjr 74:822a92bc11d2 375 // is received and processed, the base port is incremented by 8, resetting
mjr 74:822a92bc11d2 376 // to 0 when it reaches 32. The bytes of the message set the brightness
mjr 74:822a92bc11d2 377 // levels for the base port, base port + 1, ..., base port + 7 respectively.
mjr 35:e959ffba78fd 378 //
mjr 74:822a92bc11d2 379 //
mjr 35:e959ffba78fd 380
mjr 35:e959ffba78fd 381 // --- PRIVATE EXTENDED MESSAGES ---
mjr 35:e959ffba78fd 382 //
mjr 35:e959ffba78fd 383 // All of our extended protocol messages are identified by the first byte:
mjr 35:e959ffba78fd 384 //
mjr 35:e959ffba78fd 385 // 65 -> Miscellaneous control message. The second byte specifies the specific
mjr 35:e959ffba78fd 386 // operation:
mjr 35:e959ffba78fd 387 //
mjr 39:b3815a1c3802 388 // 0 -> No Op - does nothing. (This can be used to send a test message on the
mjr 39:b3815a1c3802 389 // USB endpoint.)
mjr 39:b3815a1c3802 390 //
mjr 35:e959ffba78fd 391 // 1 -> Set device unit number and plunger status, and save the changes immediately
mjr 35:e959ffba78fd 392 // to flash. The device will automatically reboot after the changes are saved.
mjr 35:e959ffba78fd 393 // The additional bytes of the message give the parameters:
mjr 35:e959ffba78fd 394 //
mjr 35:e959ffba78fd 395 // third byte = new unit number (0-15, corresponding to nominal unit numbers 1-16)
mjr 35:e959ffba78fd 396 // fourth byte = plunger on/off (0=disabled, 1=enabled)
mjr 35:e959ffba78fd 397 //
mjr 35:e959ffba78fd 398 // 2 -> Begin plunger calibration mode. The device stays in this mode for about
mjr 35:e959ffba78fd 399 // 15 seconds, and sets the zero point and maximum retraction points to the
mjr 35:e959ffba78fd 400 // observed endpoints of sensor readings while the mode is running. After
mjr 35:e959ffba78fd 401 // the time limit elapses, the device automatically stores the results in
mjr 35:e959ffba78fd 402 // non-volatile flash memory and exits the mode.
mjr 35:e959ffba78fd 403 //
mjr 51:57eb311faafa 404 // 3 -> Send pixel dump. The device sends one complete image snapshot from the
mjr 51:57eb311faafa 405 // plunger sensor, as as series of pixel dump messages. (The message format
mjr 51:57eb311faafa 406 // isn't big enough to allow the whole image to be sent in one message, so
mjr 53:9b2611964afc 407 // the image is broken up into as many messages as necessary.) The device
mjr 53:9b2611964afc 408 // then resumes sending normal joystick messages. If the plunger sensor
mjr 53:9b2611964afc 409 // isn't an imaging type, or no sensor is installed, no pixel messages are
mjr 53:9b2611964afc 410 // sent. Parameters:
mjr 48:058ace2aed1d 411 //
mjr 48:058ace2aed1d 412 // third byte = bit flags:
mjr 51:57eb311faafa 413 // 0x01 = low res mode. The device rescales the sensor pixel array
mjr 51:57eb311faafa 414 // sent in the dump messages to a low-resolution subset. The
mjr 51:57eb311faafa 415 // size of the subset is determined by the device. This has
mjr 51:57eb311faafa 416 // no effect on the sensor operation; it merely reduces the
mjr 51:57eb311faafa 417 // USB transmission time to allow for a faster frame rate for
mjr 51:57eb311faafa 418 // viewing in the config tool.
mjr 35:e959ffba78fd 419 //
mjr 53:9b2611964afc 420 // fourth byte = extra exposure time in 100us (.1ms) increments. For
mjr 53:9b2611964afc 421 // imaging sensors, we'll add this delay to the minimum exposure
mjr 53:9b2611964afc 422 // time. This allows the caller to explicitly adjust the exposure
mjr 53:9b2611964afc 423 // level for calibration purposes.
mjr 53:9b2611964afc 424 //
mjr 35:e959ffba78fd 425 // 4 -> Query configuration. The device sends a special configuration report,
mjr 40:cc0d9814522b 426 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 427 // joystick reports.
mjr 35:e959ffba78fd 428 //
mjr 74:822a92bc11d2 429 // 5 -> Turn all outputs off and restore LedWiz defaults. Sets all output
mjr 74:822a92bc11d2 430 // ports to OFF and LedWiz brightness/mode setting 48, and sets the LedWiz
mjr 74:822a92bc11d2 431 // global flash speed to 2.
mjr 35:e959ffba78fd 432 //
mjr 35:e959ffba78fd 433 // 6 -> Save configuration to flash. This saves all variable updates sent via
mjr 35:e959ffba78fd 434 // type 66 messages since the last reboot, then automatically reboots the
mjr 35:e959ffba78fd 435 // device to put the changes into effect.
mjr 35:e959ffba78fd 436 //
mjr 53:9b2611964afc 437 // third byte = delay time in seconds. The device will wait this long
mjr 53:9b2611964afc 438 // before disconnecting, to allow the PC to perform any cleanup tasks
mjr 53:9b2611964afc 439 // while the device is still attached (e.g., modifying Windows device
mjr 53:9b2611964afc 440 // driver settings)
mjr 53:9b2611964afc 441 //
mjr 40:cc0d9814522b 442 // 7 -> Query device ID. The device replies with a special device ID report
mjr 40:cc0d9814522b 443 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 444 // joystick reports.
mjr 40:cc0d9814522b 445 //
mjr 53:9b2611964afc 446 // The third byte of the message is the ID index to retrieve:
mjr 53:9b2611964afc 447 //
mjr 53:9b2611964afc 448 // 1 = CPU ID: returns the KL25Z globally unique CPU ID.
mjr 53:9b2611964afc 449 //
mjr 53:9b2611964afc 450 // 2 = OpenSDA ID: returns the OpenSDA TUID. This must be patched
mjr 53:9b2611964afc 451 // into the firmware by the PC host when the .bin file is
mjr 53:9b2611964afc 452 // installed onto the device. This will return all 'X' bytes
mjr 53:9b2611964afc 453 // if the value wasn't patched at install time.
mjr 53:9b2611964afc 454 //
mjr 40:cc0d9814522b 455 // 8 -> Engage/disengage night mode. The third byte of the message is 1 to
mjr 55:4db125cd11a0 456 // engage night mode, 0 to disengage night mode. The current mode isn't
mjr 55:4db125cd11a0 457 // stored persistently; night mode is always off after a reset.
mjr 40:cc0d9814522b 458 //
mjr 52:8298b2a73eb2 459 // 9 -> Query configuration variable. The second byte is the config variable
mjr 52:8298b2a73eb2 460 // number (see the CONFIGURATION VARIABLES section below). For the array
mjr 52:8298b2a73eb2 461 // variables (button assignments, output ports), the third byte is the
mjr 52:8298b2a73eb2 462 // array index. The device replies with a configuration variable report
mjr 52:8298b2a73eb2 463 // (see above) with the current setting for the requested variable.
mjr 52:8298b2a73eb2 464 //
mjr 53:9b2611964afc 465 // 10 -> Query software build information. No parameters. This replies with
mjr 53:9b2611964afc 466 // the software build information report (see above).
mjr 53:9b2611964afc 467 //
mjr 73:4e8ce0b18915 468 // 11 -> TV ON relay manual control. This allows testing and operating the
mjr 73:4e8ce0b18915 469 // relay from the PC. This doesn't change the power-up configuration;
mjr 73:4e8ce0b18915 470 // it merely allows the relay to be controlled directly.
mjr 73:4e8ce0b18915 471 //
mjr 73:4e8ce0b18915 472 // 0 = turn relay off
mjr 73:4e8ce0b18915 473 // 1 = turn relay on
mjr 73:4e8ce0b18915 474 // 2 = pulse the relay as though the power-on delay timer fired
mjr 73:4e8ce0b18915 475 //
mjr 74:822a92bc11d2 476 // 12 -> Unused
mjr 73:4e8ce0b18915 477 //
mjr 73:4e8ce0b18915 478 // 13 -> Get button status report. The device sends one button status report
mjr 73:4e8ce0b18915 479 // in response (see section "2F" above).
mjr 73:4e8ce0b18915 480 //
mjr 35:e959ffba78fd 481 // 66 -> Set configuration variable. The second byte of the message is the config
mjr 35:e959ffba78fd 482 // variable number, and the remaining bytes give the new value for the variable.
mjr 53:9b2611964afc 483 // The value format is specific to each variable; see the CONFIGURATION VARIABLES
mjr 53:9b2611964afc 484 // section below for a list of the variables and their formats. This command
mjr 53:9b2611964afc 485 // only sets the value in RAM; it doesn't write the value to flash and doesn't
mjr 53:9b2611964afc 486 // put the change into effect. To save the new settings, the host must send a
mjr 53:9b2611964afc 487 // type 65 subtype 6 message (see above). That saves the settings to flash and
mjr 53:9b2611964afc 488 // reboots the device, which makes the new settings active.
mjr 35:e959ffba78fd 489 //
mjr 74:822a92bc11d2 490 // 67 -> "SBX". This is an extended form of the original LedWiz SBA message. This
mjr 74:822a92bc11d2 491 // version is specifically designed to support a replacement LEDWIZ.DLL on the
mjr 74:822a92bc11d2 492 // host that exposes one Pinscape device as multiple virtual LedWiz devices,
mjr 74:822a92bc11d2 493 // in order to give legacy clients access to more than 32 ports. Each virtual
mjr 74:822a92bc11d2 494 // LedWiz represents a block of 32 ports. The format of this message is the
mjr 74:822a92bc11d2 495 // same as for the original SBA, with the addition of one byte:
mjr 74:822a92bc11d2 496 //
mjr 74:822a92bc11d2 497 // 67 xx xx xx xx ss pp 00
mjr 74:822a92bc11d2 498 // xx = on/off switches for 8 ports, one bit per port
mjr 74:822a92bc11d2 499 // ss = global flash speed setting for this bank of ports, 1-7
mjr 74:822a92bc11d2 500 // pp = port group: 0 for ports 1-32, 1 for ports 33-64, etc
mjr 74:822a92bc11d2 501 // 00 = unused/reserved; client should set to zero
mjr 74:822a92bc11d2 502 //
mjr 74:822a92bc11d2 503 // As with SBA, this sets the on/off switch states for a block of 32 ports.
mjr 74:822a92bc11d2 504 // SBA always addresses ports 1-32; SBX can address any set of 32 ports.
mjr 74:822a92bc11d2 505 //
mjr 74:822a92bc11d2 506 // We keep a separate speed setting for each group of 32 ports. The purpose
mjr 74:822a92bc11d2 507 // of the SBX extension is to allow a custom LEDWIZ.DLL to expose multiple
mjr 74:822a92bc11d2 508 // virtual LedWiz units to legacy clients, so clients will expect each unit
mjr 74:822a92bc11d2 509 // to have its separate flash speed setting. Each block of 32 ports maps to
mjr 74:822a92bc11d2 510 // a virtual unit on the client side, so each block needs its own speed state.
mjr 74:822a92bc11d2 511 //
mjr 74:822a92bc11d2 512 // 68 -> "PBX". This is an extended form of the original LedWiz PBA message; it's
mjr 74:822a92bc11d2 513 // the PBA equivalent of our SBX extension above.
mjr 74:822a92bc11d2 514 //
mjr 74:822a92bc11d2 515 // 68 pp ee ee ee ee ee ee
mjr 74:822a92bc11d2 516 // pp = port group: 0 for ports 1-8, 1 for 9-16, etc
mjr 74:822a92bc11d2 517 // qq = sequence number: 0 for the first 8 ports in the group, etc
mjr 74:822a92bc11d2 518 // ee = brightness/flash values, 6 bits per port, packed into the bytes
mjr 74:822a92bc11d2 519 //
mjr 74:822a92bc11d2 520 // The port group 'pp' selects a group of 8 ports. Note that, unlike PBA,
mjr 74:822a92bc11d2 521 // the port group being updated is explicitly coded in the message, which makes
mjr 74:822a92bc11d2 522 // the message stateless. This eliminates any possibility of the client and
mjr 74:822a92bc11d2 523 // host getting out of sync as to which ports they're talking about. This
mjr 74:822a92bc11d2 524 // message doesn't affect the PBA port address state.
mjr 74:822a92bc11d2 525 //
mjr 74:822a92bc11d2 526 // The brightness values are *almost* the same as in PBA, but not quite. We
mjr 74:822a92bc11d2 527 // remap the flashing state values as follows:
mjr 74:822a92bc11d2 528 //
mjr 74:822a92bc11d2 529 // 0-48 = brightness level, 0% to 100%, on a linear scale
mjr 74:822a92bc11d2 530 // 49 = brightness level 100% (redundant with 48)
mjr 74:822a92bc11d2 531 // 60 = PBA 129 equivalent, sawtooth
mjr 74:822a92bc11d2 532 // 61 = PBA 130 equivalent, square wave (on/off)
mjr 74:822a92bc11d2 533 // 62 = PBA 131 equivalent, on/fade down
mjr 74:822a92bc11d2 534 // 63 = PBA 132 equivalent, fade up/on
mjr 74:822a92bc11d2 535 //
mjr 74:822a92bc11d2 536 // We reassign the brightness levels like this because it allows us to pack
mjr 74:822a92bc11d2 537 // every possible value into 6 bits. This allows us to fit 8 port settings
mjr 74:822a92bc11d2 538 // into six bytes. The 6-bit fields are packed into the 8 bytes consecutively
mjr 74:822a92bc11d2 539 // starting with the low-order bit of the first byte. An efficient way to
mjr 74:822a92bc11d2 540 // pack the 'ee' fields given the brightness values is to shift each group of
mjr 74:822a92bc11d2 541 // four bytes into a uint, then shift the uint into three 'ee' bytes:
mjr 74:822a92bc11d2 542 //
mjr 74:822a92bc11d2 543 // unsigned int tmp1 = bri[0] | (bri[1]<<6) | (bri[2]<<12) | (bri[3]<<18);
mjr 74:822a92bc11d2 544 // unsigned int tmp2 = bri[4] | (bri[5]<<6) | (bri[6]<<12) | (bri[7]<<18);
mjr 74:822a92bc11d2 545 // unsigned char port_group = FIRST_PORT_TO_ADDRESS / 8;
mjr 74:822a92bc11d2 546 // unsigned char msg[8] = {
mjr 74:822a92bc11d2 547 // 68, pp,
mjr 74:822a92bc11d2 548 // tmp1 & 0xFF, (tmp1 >> 8) & 0xFF, (tmp1 >> 16) & 0xFF,
mjr 74:822a92bc11d2 549 // tmp2 & 0xFF, (tmp2 >> 8) & 0xFF, (tmp2 >> 16) & 0xFF
mjr 74:822a92bc11d2 550 // };
mjr 74:822a92bc11d2 551 //
mjr 35:e959ffba78fd 552 // 200-228 -> Set extended output brightness. This sets outputs N to N+6 to the
mjr 35:e959ffba78fd 553 // respective brightness values in the 2nd through 8th bytes of the message
mjr 35:e959ffba78fd 554 // (output N is set to the 2nd byte value, N+1 is set to the 3rd byte value,
mjr 35:e959ffba78fd 555 // etc). Each brightness level is a linear brightness level from 0-255,
mjr 35:e959ffba78fd 556 // where 0 is 0% brightness and 255 is 100% brightness. N is calculated as
mjr 35:e959ffba78fd 557 // (first byte - 200)*7 + 1:
mjr 35:e959ffba78fd 558 //
mjr 35:e959ffba78fd 559 // 200 = outputs 1-7
mjr 35:e959ffba78fd 560 // 201 = outputs 8-14
mjr 35:e959ffba78fd 561 // 202 = outputs 15-21
mjr 35:e959ffba78fd 562 // ...
mjr 35:e959ffba78fd 563 // 228 = outputs 197-203
mjr 35:e959ffba78fd 564 //
mjr 53:9b2611964afc 565 // This message is the way to address ports 33 and higher. Original LedWiz
mjr 53:9b2611964afc 566 // protocol messages can't access ports above 32, since the protocol is
mjr 53:9b2611964afc 567 // hard-wired for exactly 32 ports.
mjr 35:e959ffba78fd 568 //
mjr 53:9b2611964afc 569 // Note that the extended output messages differ from regular LedWiz commands
mjr 35:e959ffba78fd 570 // in two ways. First, the brightness is the ONLY attribute when an output is
mjr 53:9b2611964afc 571 // set using this mode. There's no separate ON/OFF state per output as there
mjr 35:e959ffba78fd 572 // is with the SBA/PBA messages. To turn an output OFF with this message, set
mjr 35:e959ffba78fd 573 // the intensity to 0. Setting a non-zero intensity turns it on immediately
mjr 35:e959ffba78fd 574 // without regard to the SBA status for the port. Second, the brightness is
mjr 35:e959ffba78fd 575 // on a full 8-bit scale (0-255) rather than the LedWiz's approximately 5-bit
mjr 35:e959ffba78fd 576 // scale, because there are no parts of the range reserved for flashing modes.
mjr 35:e959ffba78fd 577 //
mjr 35:e959ffba78fd 578 // Outputs 1-32 can be controlled by EITHER the regular LedWiz SBA/PBA messages
mjr 35:e959ffba78fd 579 // or by the extended messages. The latest setting for a given port takes
mjr 35:e959ffba78fd 580 // precedence. If an SBA/PBA message was the last thing sent to a port, the
mjr 35:e959ffba78fd 581 // normal LedWiz combination of ON/OFF and brightness/flash mode status is used
mjr 35:e959ffba78fd 582 // to determine the port's physical output setting. If an extended brightness
mjr 35:e959ffba78fd 583 // message was the last thing sent to a port, the LedWiz ON/OFF status and
mjr 35:e959ffba78fd 584 // flash modes are ignored, and the fixed brightness is set. Outputs 33 and
mjr 35:e959ffba78fd 585 // higher inherently can't be addressed or affected by SBA/PBA messages.
mjr 53:9b2611964afc 586 //
mjr 53:9b2611964afc 587 // (The precedence scheme is designed to accommodate a mix of legacy and DOF
mjr 53:9b2611964afc 588 // software transparently. The behavior described is really just to ensure
mjr 53:9b2611964afc 589 // transparent interoperability; it's not something that host software writers
mjr 53:9b2611964afc 590 // should have to worry about. We expect that anyone writing new software will
mjr 53:9b2611964afc 591 // just use the extended protocol and ignore the old LedWiz commands, since
mjr 53:9b2611964afc 592 // the extended protocol is easier to use and more powerful.)
mjr 35:e959ffba78fd 593
mjr 35:e959ffba78fd 594
mjr 35:e959ffba78fd 595 // ------- CONFIGURATION VARIABLES -------
mjr 35:e959ffba78fd 596 //
mjr 35:e959ffba78fd 597 // Message type 66 (see above) sets one configuration variable. The second byte
mjr 35:e959ffba78fd 598 // of the message is the variable ID, and the rest of the bytes give the new
mjr 35:e959ffba78fd 599 // value, in a variable-specific format. 16-bit values are little endian.
mjr 55:4db125cd11a0 600 // Any bytes at the end of the message not otherwise specified are reserved
mjr 55:4db125cd11a0 601 // for future use and should always be set to 0 in the message data.
mjr 35:e959ffba78fd 602 //
mjr 53:9b2611964afc 603 // 0 -> QUERY ONLY: Describe the configuration variables. The device
mjr 53:9b2611964afc 604 // sends a config variable query report with the following fields:
mjr 53:9b2611964afc 605 //
mjr 53:9b2611964afc 606 // byte 3 -> number of scalar (non-array) variables (these are
mjr 53:9b2611964afc 607 // numbered sequentially from 1 to N)
mjr 53:9b2611964afc 608 // byte 4 -> number of array variables (these are numbered
mjr 53:9b2611964afc 609 // sequentially from 256-N to 255)
mjr 53:9b2611964afc 610 //
mjr 53:9b2611964afc 611 // The description query is meant to allow the host to capture all
mjr 53:9b2611964afc 612 // configuration settings on the device without having to know what
mjr 53:9b2611964afc 613 // the variables mean or how many there are. This is useful for
mjr 53:9b2611964afc 614 // backing up the settings in a file on the PC, for example, or for
mjr 53:9b2611964afc 615 // capturing them to restore after a firmware update. This allows
mjr 53:9b2611964afc 616 // more flexible interoperability between unsynchronized versions
mjr 53:9b2611964afc 617 // of the firmware and the host software.
mjr 53:9b2611964afc 618 //
mjr 53:9b2611964afc 619 // 1 -> USB device ID. This sets the USB vendor and product ID codes
mjr 53:9b2611964afc 620 // to use when connecting to the PC. For LedWiz emulation, use
mjr 35:e959ffba78fd 621 // vendor 0xFAFA and product 0x00EF + unit# (where unit# is the
mjr 53:9b2611964afc 622 // nominal LedWiz unit number, from 1 to 16). If you have any
mjr 53:9b2611964afc 623 // REAL LedWiz units in your system, we recommend starting the
mjr 53:9b2611964afc 624 // Pinscape LedWiz numbering at 8 to avoid conflicts with the
mjr 53:9b2611964afc 625 // real LedWiz units. If you don't have any real LedWiz units,
mjr 53:9b2611964afc 626 // you can number your Pinscape units starting from 1.
mjr 35:e959ffba78fd 627 //
mjr 53:9b2611964afc 628 // If LedWiz emulation isn't desired or causes host conflicts,
mjr 53:9b2611964afc 629 // use our private ID: Vendor 0x1209, product 0xEAEA. (These IDs
mjr 53:9b2611964afc 630 // are registered with http://pid.codes, a registry for open-source
mjr 53:9b2611964afc 631 // USB devices, so they're guaranteed to be free of conflicts with
mjr 53:9b2611964afc 632 // other properly registered devices). The device will NOT appear
mjr 53:9b2611964afc 633 // as an LedWiz if you use the private ID codes, but DOF (R3 or
mjr 53:9b2611964afc 634 // later) will still recognize it as a Pinscape controller.
mjr 53:9b2611964afc 635 //
mjr 53:9b2611964afc 636 // bytes 3:4 -> USB Vendor ID
mjr 53:9b2611964afc 637 // bytes 5:6 -> USB Product ID
mjr 53:9b2611964afc 638 //
mjr 53:9b2611964afc 639 // 2 -> Pinscape Controller unit number for DOF. The Pinscape unit
mjr 53:9b2611964afc 640 // number is independent of the LedWiz unit number, and indepedent
mjr 53:9b2611964afc 641 // of the USB vendor/product IDs. DOF (R3 and later) uses this to
mjr 53:9b2611964afc 642 // identify the unit for the extended Pinscape functionality.
mjr 53:9b2611964afc 643 // For easiest DOF configuration, we recommend numbering your
mjr 53:9b2611964afc 644 // units sequentially starting at 1 (regardless of whether or not
mjr 53:9b2611964afc 645 // you have any real LedWiz units).
mjr 53:9b2611964afc 646 //
mjr 53:9b2611964afc 647 // byte 3 -> unit number, from 1 to 16
mjr 35:e959ffba78fd 648 //
mjr 55:4db125cd11a0 649 // 3 -> Enable/disable joystick reports.
mjr 55:4db125cd11a0 650 //
mjr 55:4db125cd11a0 651 // byte 2 -> 1 to enable, 0 to disable
mjr 35:e959ffba78fd 652 //
mjr 55:4db125cd11a0 653 // When joystick reports are disabled, the device registers as a generic HID
mjr 55:4db125cd11a0 654 // device, and only sends the private report types used by the Windows config
mjr 55:4db125cd11a0 655 // tool. It won't appear to Windows as a USB game controller or joystick.
mjr 55:4db125cd11a0 656 //
mjr 55:4db125cd11a0 657 // Note that this doesn't affect whether the device also registers a keyboard
mjr 55:4db125cd11a0 658 // interface. A keyboard interface will appear if and only if any buttons
mjr 55:4db125cd11a0 659 // (including virtual buttons, such as the ZB Launch Ball feature) are assigned
mjr 55:4db125cd11a0 660 // to generate keyboard key input.
mjr 55:4db125cd11a0 661 //
mjr 55:4db125cd11a0 662 // 4 -> Accelerometer orientation.
mjr 35:e959ffba78fd 663 //
mjr 55:4db125cd11a0 664 // byte 3 -> orientation:
mjr 55:4db125cd11a0 665 // 0 = ports at front (USB ports pointing towards front of cabinet)
mjr 55:4db125cd11a0 666 // 1 = ports at left
mjr 55:4db125cd11a0 667 // 2 = ports at right
mjr 55:4db125cd11a0 668 // 3 = ports at rear
mjr 55:4db125cd11a0 669 //
mjr 55:4db125cd11a0 670 // 5 -> Plunger sensor type.
mjr 35:e959ffba78fd 671 //
mjr 55:4db125cd11a0 672 // byte 3 -> plunger type:
mjr 55:4db125cd11a0 673 // 0 = none (disabled)
mjr 55:4db125cd11a0 674 // 1 = TSL1410R linear image sensor, 1280x1 pixels, serial mode
mjr 55:4db125cd11a0 675 // *2 = TSL1410R, parallel mode
mjr 55:4db125cd11a0 676 // 3 = TSL1412R linear image sensor, 1536x1 pixels, serial mode
mjr 55:4db125cd11a0 677 // *4 = TSL1412R, parallel mode
mjr 55:4db125cd11a0 678 // 5 = Potentiometer with linear taper, or any other device that
mjr 55:4db125cd11a0 679 // represents the position reading with a single analog voltage
mjr 55:4db125cd11a0 680 // *6 = AEDR8300 optical quadrature sensor, 75lpi
mjr 55:4db125cd11a0 681 // *7 = AS5304 magnetic quadrature sensor, 160 steps per 2mm
mjr 55:4db125cd11a0 682 //
mjr 55:4db125cd11a0 683 // * The sensor types marked with asterisks (*) are reserved for types
mjr 55:4db125cd11a0 684 // that aren't currently implemented but could be added in the future.
mjr 55:4db125cd11a0 685 // Selecting these types will effectively disable the plunger.
mjr 55:4db125cd11a0 686 //
mjr 55:4db125cd11a0 687 // 6 -> Plunger pin assignments.
mjr 47:df7a88cd249c 688 //
mjr 55:4db125cd11a0 689 // byte 3 -> pin assignment 1
mjr 55:4db125cd11a0 690 // byte 4 -> pin assignment 2
mjr 55:4db125cd11a0 691 // byte 5 -> pin assignment 3
mjr 55:4db125cd11a0 692 // byte 6 -> pin assignment 4
mjr 55:4db125cd11a0 693 //
mjr 55:4db125cd11a0 694 // All of the pins use the standard GPIO port format (see "GPIO pin number
mjr 55:4db125cd11a0 695 // mappings" below). The actual use of the four pins depends on the plunger
mjr 55:4db125cd11a0 696 // type, as shown below. "NC" means that the pin isn't used at all for the
mjr 55:4db125cd11a0 697 // corresponding plunger type.
mjr 35:e959ffba78fd 698 //
mjr 55:4db125cd11a0 699 // Plunger Type Pin 1 Pin 2 Pin 3 Pin 4
mjr 35:e959ffba78fd 700 //
mjr 55:4db125cd11a0 701 // TSL1410R/1412R, serial SI (DigitalOut) CLK (DigitalOut) AO (AnalogIn) NC
mjr 55:4db125cd11a0 702 // TSL1410R/1412R, parallel SI (DigitalOut) CLK (DigitalOut) AO1 (AnalogIn) AO2 (AnalogIn)
mjr 55:4db125cd11a0 703 // Potentiometer AO (AnalogIn) NC NC NC
mjr 55:4db125cd11a0 704 // AEDR8300 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 705 // AS5304 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 706 //
mjr 55:4db125cd11a0 707 // 7 -> Plunger calibration button pin assignments.
mjr 35:e959ffba78fd 708 //
mjr 55:4db125cd11a0 709 // byte 3 -> features enabled/disabled: bit mask consisting of:
mjr 55:4db125cd11a0 710 // 0x01 button input is enabled
mjr 55:4db125cd11a0 711 // 0x02 lamp output is enabled
mjr 55:4db125cd11a0 712 // byte 4 -> DigitalIn pin for the button switch
mjr 55:4db125cd11a0 713 // byte 5 -> DigitalOut pin for the indicator lamp
mjr 55:4db125cd11a0 714 //
mjr 55:4db125cd11a0 715 // Note that setting a pin to NC (Not Connected) will disable it even if the
mjr 55:4db125cd11a0 716 // corresponding feature enable bit (in byte 3) is set.
mjr 35:e959ffba78fd 717 //
mjr 55:4db125cd11a0 718 // 8 -> ZB Launch Ball setup. This configures the ZB Launch Ball feature.
mjr 55:4db125cd11a0 719 //
mjr 55:4db125cd11a0 720 // byte 3 -> LedWiz port number (1-255) mapped to "ZB Launch Ball" in DOF
mjr 55:4db125cd11a0 721 // byte 4 -> key type
mjr 55:4db125cd11a0 722 // byte 5 -> key code
mjr 55:4db125cd11a0 723 // bytes 6:7 -> "push" distance, in 1/1000 inch increments (16 bit little endian)
mjr 55:4db125cd11a0 724 //
mjr 55:4db125cd11a0 725 // Set the port number to 0 to disable the feature. The key type and key code
mjr 55:4db125cd11a0 726 // fields use the same conventions as for a button mapping (see below). The
mjr 55:4db125cd11a0 727 // recommended push distance is 63, which represents .063" ~ 1/16".
mjr 35:e959ffba78fd 728 //
mjr 35:e959ffba78fd 729 // 9 -> TV ON relay setup. This requires external circuitry implemented on the
mjr 35:e959ffba78fd 730 // Expansion Board (or an equivalent circuit as described in the Build Guide).
mjr 55:4db125cd11a0 731 //
mjr 55:4db125cd11a0 732 // byte 3 -> "power status" input pin (DigitalIn)
mjr 55:4db125cd11a0 733 // byte 4 -> "latch" output (DigitalOut)
mjr 55:4db125cd11a0 734 // byte 5 -> relay trigger output (DigitalOut)
mjr 55:4db125cd11a0 735 // bytes 6:7 -> delay time in 10ms increments (16 bit little endian);
mjr 55:4db125cd11a0 736 // e.g., 550 (0x26 0x02) represents 5.5 seconds
mjr 55:4db125cd11a0 737 //
mjr 55:4db125cd11a0 738 // Set the delay time to 0 to disable the feature. The pin assignments will
mjr 55:4db125cd11a0 739 // be ignored if the feature is disabled.
mjr 35:e959ffba78fd 740 //
mjr 35:e959ffba78fd 741 // 10 -> TLC5940NT setup. This chip is an external PWM controller, with 32 outputs
mjr 35:e959ffba78fd 742 // per chip and a serial data interface that allows the chips to be daisy-
mjr 35:e959ffba78fd 743 // chained. We can use these chips to add an arbitrary number of PWM output
mjr 55:4db125cd11a0 744 // ports for the LedWiz emulation.
mjr 55:4db125cd11a0 745 //
mjr 35:e959ffba78fd 746 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 747 // byte 4 = SIN pin - Serial data (must connect to SPIO MOSI -> PTC6 or PTD2)
mjr 35:e959ffba78fd 748 // byte 5 = SCLK pin - Serial clock (must connect to SPIO SCLK -> PTC5 or PTD1)
mjr 35:e959ffba78fd 749 // byte 6 = XLAT pin - XLAT (latch) signal (any GPIO pin)
mjr 35:e959ffba78fd 750 // byte 7 = BLANK pin - BLANK signal (any GPIO pin)
mjr 35:e959ffba78fd 751 // byte 8 = GSCLK pin - Grayscale clock signal (must be a PWM-out capable pin)
mjr 35:e959ffba78fd 752 //
mjr 55:4db125cd11a0 753 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 754 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 755 //
mjr 35:e959ffba78fd 756 // 11 -> 74HC595 setup. This chip is an external shift register, with 8 outputs per
mjr 35:e959ffba78fd 757 // chip and a serial data interface that allows daisy-chaining. We use this
mjr 35:e959ffba78fd 758 // chips to add extra digital outputs for the LedWiz emulation. In particular,
mjr 35:e959ffba78fd 759 // the Chime Board (part of the Expansion Board suite) uses these to add timer-
mjr 55:4db125cd11a0 760 // protected outputs for coil devices (knockers, chimes, bells, etc).
mjr 55:4db125cd11a0 761 //
mjr 35:e959ffba78fd 762 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 763 // byte 4 = SIN pin - Serial data (any GPIO pin)
mjr 35:e959ffba78fd 764 // byte 5 = SCLK pin - Serial clock (any GPIO pin)
mjr 35:e959ffba78fd 765 // byte 6 = LATCH pin - LATCH signal (any GPIO pin)
mjr 35:e959ffba78fd 766 // byte 7 = ENA pin - ENABLE signal (any GPIO pin)
mjr 35:e959ffba78fd 767 //
mjr 55:4db125cd11a0 768 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 769 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 770 //
mjr 53:9b2611964afc 771 // 12 -> Disconnect reboot timeout. The reboot timeout allows the controller software
mjr 51:57eb311faafa 772 // to automatically reboot the KL25Z after it detects that the USB connection is
mjr 51:57eb311faafa 773 // broken. On some hosts, the device isn't able to reconnect after the initial
mjr 51:57eb311faafa 774 // connection is lost. The reboot timeout is a workaround for these cases. When
mjr 51:57eb311faafa 775 // the software detects that the connection is no longer active, it will reboot
mjr 51:57eb311faafa 776 // the KL25Z automatically if a new connection isn't established within the
mjr 55:4db125cd11a0 777 // timeout period. Set the timeout to 0 to disable the feature (i.e., the device
mjr 55:4db125cd11a0 778 // will never automatically reboot itself on a broken connection).
mjr 55:4db125cd11a0 779 //
mjr 55:4db125cd11a0 780 // byte 3 -> reboot timeout in seconds; 0 = disabled
mjr 51:57eb311faafa 781 //
mjr 53:9b2611964afc 782 // 13 -> Plunger calibration. In most cases, the calibration is set internally by the
mjr 52:8298b2a73eb2 783 // device by running the calibration procedure. However, it's sometimes useful
mjr 52:8298b2a73eb2 784 // for the host to be able to get and set the calibration, such as to back up
mjr 52:8298b2a73eb2 785 // the device settings on the PC, or to save and restore the current settings
mjr 52:8298b2a73eb2 786 // when installing a software update.
mjr 52:8298b2a73eb2 787 //
mjr 52:8298b2a73eb2 788 // bytes 3:4 = rest position (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 789 // bytes 5:6 = maximum retraction point (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 790 // byte 7 = measured plunger release travel time in milliseconds
mjr 52:8298b2a73eb2 791 //
mjr 53:9b2611964afc 792 // 14 -> Expansion board configuration. This doesn't affect the controller behavior
mjr 52:8298b2a73eb2 793 // directly; the individual options related to the expansion boards (such as
mjr 52:8298b2a73eb2 794 // the TLC5940 and 74HC595 setup) still need to be set separately. This is
mjr 52:8298b2a73eb2 795 // stored so that the PC config UI can store and recover the information to
mjr 52:8298b2a73eb2 796 // present in the UI. For the "classic" KL25Z-only configuration, simply set
mjr 52:8298b2a73eb2 797 // all of the fields to zero.
mjr 52:8298b2a73eb2 798 //
mjr 53:9b2611964afc 799 // byte 3 = board set type. At the moment, the Pinscape expansion boards
mjr 53:9b2611964afc 800 // are the only ones supported in the software. This allows for
mjr 53:9b2611964afc 801 // adding new designs or independent designs in the future.
mjr 53:9b2611964afc 802 // 0 = Standalone KL25Z (no expansion boards)
mjr 53:9b2611964afc 803 // 1 = Pinscape expansion boards
mjr 53:9b2611964afc 804 //
mjr 53:9b2611964afc 805 // byte 4 = board set interface revision. This *isn't* the version number
mjr 53:9b2611964afc 806 // of the board itself, but rather of its software interface. In
mjr 53:9b2611964afc 807 // other words, this doesn't change every time the EAGLE layout
mjr 53:9b2611964afc 808 // for the board changes. It only changes when a revision is made
mjr 53:9b2611964afc 809 // that affects the software, such as a GPIO pin assignment.
mjr 53:9b2611964afc 810 //
mjr 55:4db125cd11a0 811 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 812 // 0 = first release (Feb 2016)
mjr 53:9b2611964afc 813 //
mjr 55:4db125cd11a0 814 // bytes 5:8 = additional hardware-specific data. These slots are used
mjr 55:4db125cd11a0 815 // to store extra data specific to the expansion boards selected.
mjr 55:4db125cd11a0 816 //
mjr 55:4db125cd11a0 817 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 818 // byte 5 = number of main interface boards
mjr 55:4db125cd11a0 819 // byte 6 = number of MOSFET power boards
mjr 55:4db125cd11a0 820 // byte 7 = number of chime boards
mjr 53:9b2611964afc 821 //
mjr 53:9b2611964afc 822 // 15 -> Night mode setup.
mjr 53:9b2611964afc 823 //
mjr 53:9b2611964afc 824 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none. This selects
mjr 53:9b2611964afc 825 // a physically wired button that can be used to control night mode.
mjr 53:9b2611964afc 826 // The button can also be used as normal for PC input if desired.
mjr 55:4db125cd11a0 827 // Note that night mode can still be activated via a USB command
mjr 55:4db125cd11a0 828 // even if no button is assigned.
mjr 55:4db125cd11a0 829 //
mjr 53:9b2611964afc 830 // byte 4 = flags:
mjr 66:2e3583fbd2f4 831 //
mjr 66:2e3583fbd2f4 832 // 0x01 -> The wired input is an on/off switch: night mode will be
mjr 53:9b2611964afc 833 // active when the input is switched on. If this bit isn't
mjr 66:2e3583fbd2f4 834 // set, the input is a momentary button: pushing the button
mjr 53:9b2611964afc 835 // toggles night mode.
mjr 55:4db125cd11a0 836 //
mjr 66:2e3583fbd2f4 837 // 0x02 -> Night Mode is assigned to the SHIFTED button (see Shift
mjr 66:2e3583fbd2f4 838 // Button setup at variable 16). This can only be used
mjr 66:2e3583fbd2f4 839 // in momentary mode; it's ignored if flag bit 0x01 is set.
mjr 66:2e3583fbd2f4 840 // When the shift flag is set, the button only toggles
mjr 66:2e3583fbd2f4 841 // night mode when you press it while also holding down
mjr 66:2e3583fbd2f4 842 // the Shift button.
mjr 66:2e3583fbd2f4 843 //
mjr 53:9b2611964afc 844 // byte 5 = indicator output number - 1..MAX_OUT_PORTS, or 0 for none. This
mjr 53:9b2611964afc 845 // selects an output port that will be turned on when night mode is
mjr 53:9b2611964afc 846 // activated. Night mode activation overrides any setting made by
mjr 53:9b2611964afc 847 // the host.
mjr 53:9b2611964afc 848 //
mjr 66:2e3583fbd2f4 849 // 16 -> Shift Button setup. One button can be designated as a "Local Shift
mjr 66:2e3583fbd2f4 850 // Button" that can be pressed to select a secondary meaning for other
mjr 66:2e3583fbd2f4 851 // buttons. This isn't to be confused with the PC Shift keys; those can
mjr 66:2e3583fbd2f4 852 // be programmed using the USB key codes for Left Shift and Right Shift.
mjr 66:2e3583fbd2f4 853 // Rather, this applies a LOCAL shift feature in the cabinet button that
mjr 66:2e3583fbd2f4 854 // lets you select a secondary meaning. For example, you could assign
mjr 66:2e3583fbd2f4 855 // the Start button to the "1" key (VP "Start Game") normally, but have
mjr 66:2e3583fbd2f4 856 // its meaning change to the "5" key ("Insert Coin") when the shift
mjr 66:2e3583fbd2f4 857 // button is pressed. This provides access to more control functions
mjr 66:2e3583fbd2f4 858 // without adding more physical buttons.
mjr 66:2e3583fbd2f4 859 //
mjr 66:2e3583fbd2f4 860 // The shift button itself can also have a regular key assignment. If
mjr 66:2e3583fbd2f4 861 // it does, the key is only sent to the PC when you RELEASE the shift
mjr 66:2e3583fbd2f4 862 // button, and then only if no other key with a shifted key code assigned
mjr 66:2e3583fbd2f4 863 // was pressed while the shift button was being held down. If another
mjr 66:2e3583fbd2f4 864 // key was pressed, and it has a shifted meaning assigned, we assume that
mjr 66:2e3583fbd2f4 865 // the shift button was only pressed in the first place for its shifting
mjr 66:2e3583fbd2f4 866 // function rather than for its normal keystroke. This dual usage lets
mjr 66:2e3583fbd2f4 867 // you make the shifting function even more unobtrusive by assigning it
mjr 66:2e3583fbd2f4 868 // to an ordinary button that has its own purpose when not used as a
mjr 66:2e3583fbd2f4 869 // shift button. For example, you could assign the shift function to the
mjr 66:2e3583fbd2f4 870 // rarely used Extra Ball button. In those cases where you actually want
mjr 66:2e3583fbd2f4 871 // to use the Extra Ball feature, it's there, but you also get more
mjr 66:2e3583fbd2f4 872 // mileage out of the button by using it to select secondary mappings for
mjr 66:2e3583fbd2f4 873 // other buttons.
mjr 66:2e3583fbd2f4 874 //
mjr 66:2e3583fbd2f4 875 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none.
mjr 66:2e3583fbd2f4 876 //
mjr 53:9b2611964afc 877 //
mjr 74:822a92bc11d2 878 // SPECIAL DIAGNOSTICS VARIABLES: These work like the array variables below,
mjr 74:822a92bc11d2 879 // the only difference being that we don't report these in the number of array
mjr 74:822a92bc11d2 880 // variables reported in the "variable 0" query.
mjr 74:822a92bc11d2 881 //
mjr 74:822a92bc11d2 882 // 220 -> Performance/diagnostics variables. Items marked "read only" can't
mjr 74:822a92bc11d2 883 // be written; any SET VARIABLE messages on these are ignored. Items
mjr 74:822a92bc11d2 884 // marked "diagnostic only" refer to counters or statistics that are
mjr 74:822a92bc11d2 885 // collected only when the diagnostics are enabled via the diags.h
mjr 74:822a92bc11d2 886 // macro ENABLE_DIAGNOSTICS. These will simply return zero otherwise.
mjr 74:822a92bc11d2 887 //
mjr 74:822a92bc11d2 888 // byte 3 = diagnostic index (see below)
mjr 74:822a92bc11d2 889 //
mjr 74:822a92bc11d2 890 // Diagnostic index values:
mjr 74:822a92bc11d2 891 //
mjr 74:822a92bc11d2 892 // 1 -> Main loop cycle time [read only, diagnostic only]
mjr 74:822a92bc11d2 893 // Retrieves the average time of one iteration of the main
mjr 74:822a92bc11d2 894 // loop, in microseconds, as a uint32. This excludes the
mjr 74:822a92bc11d2 895 // time spent processing incoming messages, as well as any
mjr 74:822a92bc11d2 896 // time spent waiting for a dropped USB connection to be
mjr 74:822a92bc11d2 897 // restored. This includes all subroutine time and polled
mjr 74:822a92bc11d2 898 // task time, such as processing button and plunger input,
mjr 74:822a92bc11d2 899 // sending USB joystick reports, etc.
mjr 74:822a92bc11d2 900 //
mjr 74:822a92bc11d2 901 // 2 -> Main loop message read time [read only, diagnostic only]
mjr 74:822a92bc11d2 902 // Retrieves the average time spent processing incoming USB
mjr 74:822a92bc11d2 903 // messages per iteration of the main loop, in microseconds,
mjr 74:822a92bc11d2 904 // as a uint32. This only counts the processing time when
mjr 74:822a92bc11d2 905 // messages are actually present, so the average isn't reduced
mjr 74:822a92bc11d2 906 // by iterations of the main loop where no messages are found.
mjr 74:822a92bc11d2 907 // That is, if we run a million iterations of the main loop,
mjr 74:822a92bc11d2 908 // and only five of them have messages at all, the average time
mjr 74:822a92bc11d2 909 // includes only those five cycles with messages to process.
mjr 74:822a92bc11d2 910 //
mjr 74:822a92bc11d2 911 // 3 -> PWM update polling time [read only, diagnostic only]
mjr 74:822a92bc11d2 912 // Retrieves the average time, as a uint32 in microseconds,
mjr 74:822a92bc11d2 913 // spent in the PWM update polling routine.
mjr 74:822a92bc11d2 914 //
mjr 74:822a92bc11d2 915 // 4 -> LedWiz update polling time [read only, diagnostic only]
mjr 74:822a92bc11d2 916 // Retrieves the average time, as a uint32 in microseconds,
mjr 74:822a92bc11d2 917 // units, spent in the LedWiz flash cycle update routine.
mjr 74:822a92bc11d2 918 //
mjr 74:822a92bc11d2 919 //
mjr 53:9b2611964afc 920 // ARRAY VARIABLES: Each variable below is an array. For each get/set message,
mjr 53:9b2611964afc 921 // byte 3 gives the array index. These are grouped at the top end of the variable
mjr 53:9b2611964afc 922 // ID range to distinguish this special feature. On QUERY, set the index byte to 0
mjr 53:9b2611964afc 923 // to query the number of slots; the reply will be a report for the array index
mjr 53:9b2611964afc 924 // variable with index 0, with the first (and only) byte after that indicating
mjr 53:9b2611964afc 925 // the maximum array index.
mjr 53:9b2611964afc 926 //
mjr 66:2e3583fbd2f4 927 // 253 -> Extended input button setup. This adds on to the information set by
mjr 66:2e3583fbd2f4 928 // variable 254 below, accessing additional fields. The "shifted" key
mjr 66:2e3583fbd2f4 929 // type and code fields assign a secondary meaning to the button that's
mjr 66:2e3583fbd2f4 930 // used when the local Shift button is being held down. See variable 16
mjr 66:2e3583fbd2f4 931 // above for more details on the Shift button.
mjr 66:2e3583fbd2f4 932 //
mjr 66:2e3583fbd2f4 933 // byte 3 = Button number 91..MAX_BUTTONS
mjr 66:2e3583fbd2f4 934 // byte 4 = shifted key type (same codes as "key type" in var 254)
mjr 66:2e3583fbd2f4 935 // byte 5 = shifted key code (same meaning as "key code" in var 254)
mjr 66:2e3583fbd2f4 936 //
mjr 53:9b2611964afc 937 // 254 -> Input button setup. This sets up one button; it can be repeated for each
mjr 64:ef7ca92dff36 938 // button to be configured. There are MAX_EXT_BUTTONS button slots (see
mjr 64:ef7ca92dff36 939 // config.h for the constant definition), numbered 1..MAX_EXT_BUTTONS. Each
mjr 53:9b2611964afc 940 // slot can be configured as a joystick button, a regular keyboard key, or a
mjr 53:9b2611964afc 941 // media control key (mute, volume up, volume down).
mjr 53:9b2611964afc 942 //
mjr 53:9b2611964afc 943 // The bytes of the message are:
mjr 66:2e3583fbd2f4 944 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 64:ef7ca92dff36 945 // byte 4 = GPIO pin for the button input; mapped as a DigitalIn port
mjr 53:9b2611964afc 946 // byte 5 = key type reported to PC when button is pushed:
mjr 53:9b2611964afc 947 // 0 = none (no PC input reported when button pushed)
mjr 53:9b2611964afc 948 // 1 = joystick button -> byte 6 is the button number, 1-32
mjr 53:9b2611964afc 949 // 2 = regular keyboard key -> byte 6 is the USB key code (see below)
mjr 67:c39e66c4e000 950 // 3 = media key -> byte 6 is the USB media control code (see below)
mjr 53:9b2611964afc 951 // byte 6 = key code, which depends on the key type in byte 5
mjr 53:9b2611964afc 952 // byte 7 = flags - a combination of these bit values:
mjr 53:9b2611964afc 953 // 0x01 = pulse mode. This reports a physical on/off switch's state
mjr 53:9b2611964afc 954 // to the host as a brief key press whenever the switch changes
mjr 53:9b2611964afc 955 // state. This is useful for the VPinMAME Coin Door button,
mjr 53:9b2611964afc 956 // which requires the End key to be pressed each time the
mjr 53:9b2611964afc 957 // door changes state.
mjr 53:9b2611964afc 958 //
mjr 53:9b2611964afc 959 // 255 -> LedWiz output port setup. This sets up one output port; it can be repeated
mjr 53:9b2611964afc 960 // for each port to be configured. There are 128 possible slots for output ports,
mjr 53:9b2611964afc 961 // numbered 1 to 128. The number of ports atcually active is determined by
mjr 53:9b2611964afc 962 // the first DISABLED port (type 0). For example, if ports 1-32 are set as GPIO
mjr 53:9b2611964afc 963 // outputs and port 33 is disabled, we'll report to the host that we have 32 ports,
mjr 53:9b2611964afc 964 // regardless of the settings for post 34 and higher.
mjr 53:9b2611964afc 965 //
mjr 53:9b2611964afc 966 // The bytes of the message are:
mjr 53:9b2611964afc 967 // byte 3 = LedWiz port number (1 to MAX_OUT_PORTS)
mjr 53:9b2611964afc 968 // byte 4 = physical output type:
mjr 53:9b2611964afc 969 // 0 = Disabled. This output isn't used, and isn't visible to the
mjr 53:9b2611964afc 970 // LedWiz/DOF software on the host. The FIRST disabled port
mjr 53:9b2611964afc 971 // determines the number of ports visible to the host - ALL ports
mjr 53:9b2611964afc 972 // after the first disabled port are also implicitly disabled.
mjr 53:9b2611964afc 973 // 1 = GPIO PWM output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 974 // operating in PWM mode. Note that only a subset of KL25Z GPIO
mjr 53:9b2611964afc 975 // ports are PWM-capable.
mjr 53:9b2611964afc 976 // 2 = GPIO Digital output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 977 // operating in digital mode. Digital ports can only be set ON
mjr 53:9b2611964afc 978 // or OFF, with no brightness/intensity control. All pins can be
mjr 53:9b2611964afc 979 // used in this mode.
mjr 53:9b2611964afc 980 // 3 = TLC5940 port: connected to TLC5940 output port number specified
mjr 53:9b2611964afc 981 // in byte 5. Ports are numbered sequentially starting from port 0
mjr 53:9b2611964afc 982 // for the first output (OUT0) on the first chip in the daisy chain.
mjr 53:9b2611964afc 983 // 4 = 74HC595 port: connected to 74HC595 output port specified in byte 5.
mjr 53:9b2611964afc 984 // As with the TLC5940 outputs, ports are numbered sequentially from 0
mjr 53:9b2611964afc 985 // for the first output on the first chip in the daisy chain.
mjr 53:9b2611964afc 986 // 5 = Virtual output: this output port exists for the purposes of the
mjr 53:9b2611964afc 987 // LedWiz/DOF software on the host, but isn't physically connected
mjr 53:9b2611964afc 988 // to any output device. This can be used to create a virtual output
mjr 53:9b2611964afc 989 // for the DOF ZB Launch Ball signal, for example, or simply as a
mjr 53:9b2611964afc 990 // placeholder in the LedWiz port numbering. The physical output ID
mjr 53:9b2611964afc 991 // (byte 5) is ignored for this port type.
mjr 53:9b2611964afc 992 // byte 5 = physical output port, interpreted according to the value in byte 4
mjr 53:9b2611964afc 993 // byte 6 = flags: a combination of these bit values:
mjr 53:9b2611964afc 994 // 0x01 = active-high output (0V on output turns attached device ON)
mjr 53:9b2611964afc 995 // 0x02 = noisemaker device: disable this output when "night mode" is engaged
mjr 53:9b2611964afc 996 // 0x04 = apply gamma correction to this output
mjr 53:9b2611964afc 997 //
mjr 53:9b2611964afc 998 // Note that the on-board LED segments can be used as LedWiz output ports. This
mjr 53:9b2611964afc 999 // is useful for testing a new installation with DOF or other PC software without
mjr 53:9b2611964afc 1000 // having to connect any external devices. Assigning the on-board LED segments to
mjr 53:9b2611964afc 1001 // output ports overrides their normal status/diagnostic display use, so the normal
mjr 53:9b2611964afc 1002 // status flash pattern won't appear when they're used this way.
mjr 52:8298b2a73eb2 1003 //
mjr 35:e959ffba78fd 1004
mjr 35:e959ffba78fd 1005
mjr 55:4db125cd11a0 1006 // --- GPIO PIN NUMBER MAPPINGS ---
mjr 35:e959ffba78fd 1007 //
mjr 53:9b2611964afc 1008 // In USB messages that specify GPIO pin assignments, pins are identified by
mjr 53:9b2611964afc 1009 // 8-bit integers. The special value 0xFF means NC (not connected). All actual
mjr 53:9b2611964afc 1010 // pins are mapped with the port number in the top 3 bits and the pin number in
mjr 53:9b2611964afc 1011 // the bottom 5 bits. Port A=0, B=1, ..., E=4. For example, PTC7 is port C (2)
mjr 53:9b2611964afc 1012 // pin 7, so it's represented as (2 << 5) | 7.
mjr 53:9b2611964afc 1013
mjr 35:e959ffba78fd 1014
mjr 35:e959ffba78fd 1015 // --- USB KEYBOARD SCAN CODES ---
mjr 35:e959ffba78fd 1016 //
mjr 53:9b2611964afc 1017 // For regular keyboard keys, we use the standard USB HID scan codes
mjr 53:9b2611964afc 1018 // for the US keyboard layout. The scan codes are defined by the USB
mjr 53:9b2611964afc 1019 // HID specifications; you can find a full list in the official USB
mjr 53:9b2611964afc 1020 // specs. Some common codes are listed below as a quick reference.
mjr 35:e959ffba78fd 1021 //
mjr 53:9b2611964afc 1022 // Key name -> USB scan code (hex)
mjr 53:9b2611964afc 1023 // A-Z -> 04-1D
mjr 53:9b2611964afc 1024 // top row 1!->0) -> 1E-27
mjr 53:9b2611964afc 1025 // Return -> 28
mjr 53:9b2611964afc 1026 // Escape -> 29
mjr 53:9b2611964afc 1027 // Backspace -> 2A
mjr 53:9b2611964afc 1028 // Tab -> 2B
mjr 53:9b2611964afc 1029 // Spacebar -> 2C
mjr 53:9b2611964afc 1030 // -_ -> 2D
mjr 53:9b2611964afc 1031 // =+ -> 2E
mjr 53:9b2611964afc 1032 // [{ -> 2F
mjr 53:9b2611964afc 1033 // ]} -> 30
mjr 53:9b2611964afc 1034 // \| -> 31
mjr 53:9b2611964afc 1035 // ;: -> 33
mjr 53:9b2611964afc 1036 // '" -> 34
mjr 53:9b2611964afc 1037 // `~ -> 35
mjr 53:9b2611964afc 1038 // ,< -> 36
mjr 53:9b2611964afc 1039 // .> -> 37
mjr 53:9b2611964afc 1040 // /? -> 38
mjr 53:9b2611964afc 1041 // Caps Lock -> 39
mjr 53:9b2611964afc 1042 // F1-F12 -> 3A-45
mjr 53:9b2611964afc 1043 // F13-F24 -> 68-73
mjr 53:9b2611964afc 1044 // Print Screen -> 46
mjr 53:9b2611964afc 1045 // Scroll Lock -> 47
mjr 53:9b2611964afc 1046 // Pause -> 48
mjr 53:9b2611964afc 1047 // Insert -> 49
mjr 53:9b2611964afc 1048 // Home -> 4A
mjr 53:9b2611964afc 1049 // Page Up -> 4B
mjr 53:9b2611964afc 1050 // Del -> 4C
mjr 53:9b2611964afc 1051 // End -> 4D
mjr 53:9b2611964afc 1052 // Page Down -> 4E
mjr 53:9b2611964afc 1053 // Right Arrow -> 4F
mjr 53:9b2611964afc 1054 // Left Arrow -> 50
mjr 53:9b2611964afc 1055 // Down Arrow -> 51
mjr 53:9b2611964afc 1056 // Up Arrow -> 52
mjr 53:9b2611964afc 1057 // Num Lock/Clear -> 53
mjr 53:9b2611964afc 1058 // Keypad / * - + -> 54 55 56 57
mjr 53:9b2611964afc 1059 // Keypad Enter -> 58
mjr 53:9b2611964afc 1060 // Keypad 1-9 -> 59-61
mjr 53:9b2611964afc 1061 // Keypad 0 -> 62
mjr 53:9b2611964afc 1062 // Keypad . -> 63
mjr 53:9b2611964afc 1063 // Mute -> 7F
mjr 53:9b2611964afc 1064 // Volume Up -> 80
mjr 53:9b2611964afc 1065 // Volume Down -> 81
mjr 53:9b2611964afc 1066 // Left Control -> E0
mjr 53:9b2611964afc 1067 // Left Shift -> E1
mjr 53:9b2611964afc 1068 // Left Alt -> E2
mjr 53:9b2611964afc 1069 // Left GUI -> E3
mjr 53:9b2611964afc 1070 // Right Control -> E4
mjr 53:9b2611964afc 1071 // Right Shift -> E5
mjr 53:9b2611964afc 1072 // Right Alt -> E6
mjr 53:9b2611964afc 1073 // Right GUI -> E7
mjr 53:9b2611964afc 1074 //
mjr 66:2e3583fbd2f4 1075 // Due to limitations in Windows, there's a limit of 6 regular keys
mjr 66:2e3583fbd2f4 1076 // pressed at the same time. The shift keys in the E0-E7 range don't
mjr 66:2e3583fbd2f4 1077 // count against this limit, though, since they're encoded as modifier
mjr 66:2e3583fbd2f4 1078 // keys; all of these can be pressed at the same time in addition to 6
mjr 67:c39e66c4e000 1079 // regular keys.
mjr 67:c39e66c4e000 1080
mjr 67:c39e66c4e000 1081 // --- USB MEDIA CONTROL SCAN CODES ---
mjr 67:c39e66c4e000 1082 //
mjr 67:c39e66c4e000 1083 // Buttons mapped to type 3 are Media Control buttons. These select
mjr 67:c39e66c4e000 1084 // a small set of common media control functions. We recognize the
mjr 67:c39e66c4e000 1085 // following type codes only:
mjr 67:c39e66c4e000 1086 //
mjr 67:c39e66c4e000 1087 // Mute -> E2
mjr 67:c39e66c4e000 1088 // Volume up -> E9
mjr 67:c39e66c4e000 1089 // Volume Down -> EA
mjr 67:c39e66c4e000 1090 // Next Track -> B5
mjr 67:c39e66c4e000 1091 // Previous Track -> B6
mjr 67:c39e66c4e000 1092 // Stop -> B7
mjr 67:c39e66c4e000 1093 // Play/Pause -> CD