An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Fri Feb 27 07:41:29 2015 +0000
Revision:
18:5e890ebd0023
Parent:
17:ab3cec0c8bf4
Child:
19:054f8af32fce
Old debounce about to be removed

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 5:a70c0bce770d 1 /* Copyright 2014 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 5:a70c0bce770d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 5:a70c0bce770d 20 // Pinscape Controller
mjr 5:a70c0bce770d 21 //
mjr 17:ab3cec0c8bf4 22 // "Pinscape" is the name of my custom-built virtual pinball cabinet, so I call this
mjr 17:ab3cec0c8bf4 23 // software the Pinscape Controller. I wrote it to handle several tasks that I needed
mjr 17:ab3cec0c8bf4 24 // for my cabinet. It runs on a Freescale KL25Z microcontroller, which is a small and
mjr 17:ab3cec0c8bf4 25 // inexpensive device that attaches to the cabinet PC via a USB cable, and can attach
mjr 17:ab3cec0c8bf4 26 // via custom wiring to sensors, buttons, and other devices in the cabinet.
mjr 5:a70c0bce770d 27 //
mjr 17:ab3cec0c8bf4 28 // I designed the software and hardware in this project especially for my own
mjr 17:ab3cec0c8bf4 29 // cabinet, but it uses standard interfaces in Windows and Visual Pinball, so it should
mjr 17:ab3cec0c8bf4 30 // work in any VP-based cabinet, as long as you're using the usual VP software suite.
mjr 17:ab3cec0c8bf4 31 // I've tried to document the hardware in enough detail for anyone else to duplicate
mjr 17:ab3cec0c8bf4 32 // the entire project, and the full software is open source.
mjr 5:a70c0bce770d 33 //
mjr 17:ab3cec0c8bf4 34 // The Freescale board appears to the host PC as a standard USB joystick. This works
mjr 17:ab3cec0c8bf4 35 // with the built-in Windows joystick device drivers, so there's no need to install any
mjr 17:ab3cec0c8bf4 36 // new drivers or other software on the PC. Windows should recognize the Freescale
mjr 17:ab3cec0c8bf4 37 // as a joystick when you plug it into the USB port, and Windows shouldn't ask you to
mjr 17:ab3cec0c8bf4 38 // install any drivers. If you bring up the Windows control panel for USB Game
mjr 17:ab3cec0c8bf4 39 // Controllers, this device will appear as "Pinscape Controller". *Don't* do any
mjr 17:ab3cec0c8bf4 40 // calibration with the Windows control panel or third-part calibration tools. The
mjr 17:ab3cec0c8bf4 41 // software calibrates the accelerometer portion automatically, and has its own special
mjr 17:ab3cec0c8bf4 42 // calibration procedure for the plunger sensor, if you're using that (see below).
mjr 5:a70c0bce770d 43 //
mjr 17:ab3cec0c8bf4 44 // This software provides a whole bunch of separate features. You can use any of these
mjr 17:ab3cec0c8bf4 45 // features individually or all together. If you're not using a particular feature, you
mjr 17:ab3cec0c8bf4 46 // can simply omit the extra wiring and/or hardware for that feature. You can use
mjr 17:ab3cec0c8bf4 47 // the nudging feature by itself without any extra hardware attached, since the
mjr 17:ab3cec0c8bf4 48 // accelerometer is built in to the KL25Z board.
mjr 5:a70c0bce770d 49 //
mjr 17:ab3cec0c8bf4 50 // - Nudge sensing via the KL25Z's on-board accelerometer. Nudging the cabinet
mjr 17:ab3cec0c8bf4 51 // causes small accelerations that the accelerometer can detect; these are sent to
mjr 17:ab3cec0c8bf4 52 // Visual Pinball via the joystick interface so that VP can simulate the effect
mjr 17:ab3cec0c8bf4 53 // of the real physical nudges on its simulated ball. VP has native handling for
mjr 17:ab3cec0c8bf4 54 // this type of input, so all you have to do is set some preferences in VP to tell
mjr 17:ab3cec0c8bf4 55 // it that an accelerometer is attached.
mjr 5:a70c0bce770d 56 //
mjr 5:a70c0bce770d 57 // - Plunger position sensing via an attached TAOS TSL 1410R CCD linear array sensor.
mjr 17:ab3cec0c8bf4 58 // To use this feature, you need to buy the TAOS device (it's not built in to the
mjr 17:ab3cec0c8bf4 59 // KL25Z, obviously), wire it to the KL25Z (5 wire connections between the two
mjr 17:ab3cec0c8bf4 60 // devices are required), and mount the TAOS sensor in your cabinet so that it's
mjr 17:ab3cec0c8bf4 61 // positioned properly to capture images of the physical plunger shooter rod.
mjr 17:ab3cec0c8bf4 62 //
mjr 17:ab3cec0c8bf4 63 // The physical mounting and wiring details are desribed in the project
mjr 17:ab3cec0c8bf4 64 // documentation.
mjr 17:ab3cec0c8bf4 65 //
mjr 17:ab3cec0c8bf4 66 // If the CCD is attached, the software constantly captures images from the CCD
mjr 17:ab3cec0c8bf4 67 // and analyzes them to determine how far back the plunger is pulled. It reports
mjr 17:ab3cec0c8bf4 68 // this to Visual Pinball via the joystick interface. This allows VP to make the
mjr 17:ab3cec0c8bf4 69 // simulated on-screen plunger track the motion of the physical plunger in real
mjr 17:ab3cec0c8bf4 70 // time. As with the nudge data, VP has native handling for the plunger input,
mjr 17:ab3cec0c8bf4 71 // so you just need to set the VP preferences to tell it that an analog plunger
mjr 17:ab3cec0c8bf4 72 // device is attached. One caveat, though: although VP itself has built-in
mjr 17:ab3cec0c8bf4 73 // support for an analog plunger, not all existing tables take advantage of it.
mjr 17:ab3cec0c8bf4 74 // Many existing tables have their own custom plunger scripting that doesn't
mjr 17:ab3cec0c8bf4 75 // cooperate with the VP plunger input. All tables *can* be made to work with
mjr 17:ab3cec0c8bf4 76 // the plunger, and in most cases it only requires some simple script editing,
mjr 17:ab3cec0c8bf4 77 // but in some cases it requires some more extensive surgery.
mjr 5:a70c0bce770d 78 //
mjr 6:cc35eb643e8f 79 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 80 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 81 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 82 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 83 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 84 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 85 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 86 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 87 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 88 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 89 //
mjr 17:ab3cec0c8bf4 90 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 91 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 92 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 93 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 94 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 95 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 96 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 97 //
mjr 13:72dda449c3c0 98 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 13:72dda449c3c0 99 // for buttons and switches. The software reports these as joystick buttons when
mjr 13:72dda449c3c0 100 // it sends reports to the PC. These can be used to wire physical pinball-style
mjr 13:72dda449c3c0 101 // buttons in the cabinet (e.g., flipper buttons, the Start button) and miscellaneous
mjr 13:72dda449c3c0 102 // switches (such as a tilt bob) to the PC. Visual Pinball can use joystick buttons
mjr 13:72dda449c3c0 103 // for input - you just have to assign a VP function to each button using VP's
mjr 13:72dda449c3c0 104 // keyboard options dialog. To wire a button physically, connect one terminal of
mjr 13:72dda449c3c0 105 // the button switch to the KL25Z ground, and connect the other terminal to the
mjr 13:72dda449c3c0 106 // the GPIO port you wish to assign to the button. See the buttonMap[] array
mjr 13:72dda449c3c0 107 // below for the available GPIO ports and their assigned joystick button numbers.
mjr 13:72dda449c3c0 108 // If you're not using a GPIO port, you can just leave it unconnected - the digital
mjr 13:72dda449c3c0 109 // inputs have built-in pull-up resistors, so an unconnected port is the same as
mjr 13:72dda449c3c0 110 // an open switch (an "off" state for the button).
mjr 13:72dda449c3c0 111 //
mjr 5:a70c0bce770d 112 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 113 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 114 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 5:a70c0bce770d 115 // of ports. (The KL25Z can only provide 6 PWM ports. Intensity level settings on
mjr 5:a70c0bce770d 116 // other ports is ignored, so non-PWM ports can only be used for simple on/off
mjr 5:a70c0bce770d 117 // devices such as contactors and solenoids.) The KL25Z can only supply 4mA on its
mjr 5:a70c0bce770d 118 // output ports, so external hardware is required to take advantage of the LedWiz
mjr 5:a70c0bce770d 119 // emulation. Many different hardware designs are possible, but there's a simple
mjr 5:a70c0bce770d 120 // reference design in the documentation that uses a Darlington array IC to
mjr 5:a70c0bce770d 121 // increase the output from each port to 500mA (the same level as the LedWiz),
mjr 5:a70c0bce770d 122 // plus an extended design that adds an optocoupler and MOSFET to provide very
mjr 5:a70c0bce770d 123 // high power handling, up to about 45A or 150W, with voltages up to 100V.
mjr 5:a70c0bce770d 124 // That will handle just about any DC device directly (wtihout relays or other
mjr 5:a70c0bce770d 125 // amplifiers), and switches fast enough to support PWM devices.
mjr 5:a70c0bce770d 126 //
mjr 5:a70c0bce770d 127 // The device can report any desired LedWiz unit number to the host, which makes
mjr 5:a70c0bce770d 128 // it possible to use the LedWiz emulation on a machine that also has one or more
mjr 5:a70c0bce770d 129 // actual LedWiz devices intalled. The LedWiz design allows for up to 16 units
mjr 5:a70c0bce770d 130 // to be installed in one machine - each one is invidually addressable by its
mjr 5:a70c0bce770d 131 // distinct unit number.
mjr 5:a70c0bce770d 132 //
mjr 5:a70c0bce770d 133 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 134 // build any of the external port hardware (or attach anything to the output
mjr 5:a70c0bce770d 135 // ports at all) if the LedWiz features aren't needed. Most people won't have
mjr 5:a70c0bce770d 136 // any use for the LedWiz features. I built them mostly as a learning exercise,
mjr 5:a70c0bce770d 137 // but with a slight practical need for a handful of extra ports (I'm using the
mjr 5:a70c0bce770d 138 // cutting-edge 10-contactor setup, so my real LedWiz is full!).
mjr 6:cc35eb643e8f 139 //
mjr 6:cc35eb643e8f 140 // The on-board LED on the KL25Z flashes to indicate the current device status:
mjr 6:cc35eb643e8f 141 //
mjr 6:cc35eb643e8f 142 // two short red flashes = the device is powered but hasn't successfully
mjr 6:cc35eb643e8f 143 // connected to the host via USB (either it's not physically connected
mjr 6:cc35eb643e8f 144 // to the USB port, or there was a problem with the software handshake
mjr 6:cc35eb643e8f 145 // with the USB device driver on the computer)
mjr 6:cc35eb643e8f 146 //
mjr 6:cc35eb643e8f 147 // short red flash = the host computer is in sleep/suspend mode
mjr 6:cc35eb643e8f 148 //
mjr 6:cc35eb643e8f 149 // long red/green = the LedWiz unti number has been changed, so a reset
mjr 6:cc35eb643e8f 150 // is needed. You can simply unplug the device and plug it back in,
mjr 6:cc35eb643e8f 151 // or presss and hold the reset button on the device for a few seconds.
mjr 6:cc35eb643e8f 152 //
mjr 6:cc35eb643e8f 153 // long yellow/green = everything's working, but the plunger hasn't
mjr 6:cc35eb643e8f 154 // been calibrated; follow the calibration procedure described above.
mjr 6:cc35eb643e8f 155 // This flash mode won't appear if the CCD has been disabled. Note
mjr 18:5e890ebd0023 156 // that the device can't tell whether a CCD is physically attached;
mjr 18:5e890ebd0023 157 // if you don't have a CCD attached, you can set the appropriate option
mjr 18:5e890ebd0023 158 // in config.h or use the Windows config tool to disable the CCD
mjr 18:5e890ebd0023 159 // software features.
mjr 6:cc35eb643e8f 160 //
mjr 6:cc35eb643e8f 161 // alternating blue/green = everything's working
mjr 6:cc35eb643e8f 162 //
mjr 6:cc35eb643e8f 163 // Software configuration: you can change option settings by sending special
mjr 6:cc35eb643e8f 164 // USB commands from the PC. I've provided a Windows program for this purpose;
mjr 6:cc35eb643e8f 165 // refer to the documentation for details. For reference, here's the format
mjr 6:cc35eb643e8f 166 // of the USB command for option changes:
mjr 6:cc35eb643e8f 167 //
mjr 6:cc35eb643e8f 168 // length of report = 8 bytes
mjr 6:cc35eb643e8f 169 // byte 0 = 65 (0x41)
mjr 6:cc35eb643e8f 170 // byte 1 = 1 (0x01)
mjr 6:cc35eb643e8f 171 // byte 2 = new LedWiz unit number, 0x01 to 0x0f
mjr 6:cc35eb643e8f 172 // byte 3 = feature enable bit mask:
mjr 6:cc35eb643e8f 173 // 0x01 = enable CCD (default = on)
mjr 9:fd65b0a94720 174 //
mjr 9:fd65b0a94720 175 // Plunger calibration mode: the host can activate plunger calibration mode
mjr 9:fd65b0a94720 176 // by sending this packet. This has the same effect as pressing and holding
mjr 9:fd65b0a94720 177 // the plunger calibration button for two seconds, to allow activating this
mjr 9:fd65b0a94720 178 // mode without attaching a physical button.
mjr 9:fd65b0a94720 179 //
mjr 9:fd65b0a94720 180 // length = 8 bytes
mjr 9:fd65b0a94720 181 // byte 0 = 65 (0x41)
mjr 9:fd65b0a94720 182 // byte 1 = 2 (0x02)
mjr 9:fd65b0a94720 183 //
mjr 10:976666ffa4ef 184 // Exposure reports: the host can request a report of the full set of pixel
mjr 10:976666ffa4ef 185 // values for the next frame by sending this special packet:
mjr 10:976666ffa4ef 186 //
mjr 10:976666ffa4ef 187 // length = 8 bytes
mjr 10:976666ffa4ef 188 // byte 0 = 65 (0x41)
mjr 10:976666ffa4ef 189 // byte 1 = 3 (0x03)
mjr 10:976666ffa4ef 190 //
mjr 10:976666ffa4ef 191 // We'll respond with a series of special reports giving the exposure status.
mjr 10:976666ffa4ef 192 // Each report has the following structure:
mjr 10:976666ffa4ef 193 //
mjr 10:976666ffa4ef 194 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 10:976666ffa4ef 195 // example, 0x04 0x80 indicates index 4. This is the
mjr 10:976666ffa4ef 196 // starting pixel number in the report. The first report
mjr 10:976666ffa4ef 197 // will be 0x00 0x80 to indicate pixel #0.
mjr 10:976666ffa4ef 198 // bytes 2:3 = 16-bit unsigned int brightness level of pixel at index
mjr 10:976666ffa4ef 199 // bytes 4:5 = brightness of pixel at index+1
mjr 10:976666ffa4ef 200 // etc for the rest of the packet
mjr 10:976666ffa4ef 201 //
mjr 10:976666ffa4ef 202 // This still has the form of a joystick packet at the USB level, but
mjr 10:976666ffa4ef 203 // can be differentiated by the host via the status bits. It would have
mjr 10:976666ffa4ef 204 // been cleaner to use a different Report ID at the USB level, but this
mjr 10:976666ffa4ef 205 // would have necessitated a different container structure in the report
mjr 10:976666ffa4ef 206 // descriptor, which would have broken LedWiz compatibility. Given that
mjr 10:976666ffa4ef 207 // constraint, we have to re-use the joystick report type, making for
mjr 10:976666ffa4ef 208 // this somewhat kludgey approach.
mjr 6:cc35eb643e8f 209
mjr 0:5acbbe3f4cf4 210 #include "mbed.h"
mjr 6:cc35eb643e8f 211 #include "math.h"
mjr 0:5acbbe3f4cf4 212 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 213 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 214 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 215 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 216 #include "crc32.h"
mjr 2:c174f9ee414a 217
mjr 17:ab3cec0c8bf4 218 // our local configuration file
mjr 17:ab3cec0c8bf4 219 #include "config.h"
mjr 17:ab3cec0c8bf4 220
mjr 5:a70c0bce770d 221
mjr 5:a70c0bce770d 222 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 223 // utilities
mjr 17:ab3cec0c8bf4 224
mjr 17:ab3cec0c8bf4 225 // number of elements in an array
mjr 17:ab3cec0c8bf4 226 #define countof(x) (sizeof(x)/sizeof((x)[0]))
mjr 17:ab3cec0c8bf4 227
mjr 17:ab3cec0c8bf4 228
mjr 17:ab3cec0c8bf4 229 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 230 // USB device vendor ID, product ID, and version.
mjr 5:a70c0bce770d 231 //
mjr 5:a70c0bce770d 232 // We use the vendor ID for the LedWiz, so that the PC-side software can
mjr 5:a70c0bce770d 233 // identify us as capable of performing LedWiz commands. The LedWiz uses
mjr 5:a70c0bce770d 234 // a product ID value from 0xF0 to 0xFF; the last four bits identify the
mjr 5:a70c0bce770d 235 // unit number (e.g., product ID 0xF7 means unit #7). This allows multiple
mjr 5:a70c0bce770d 236 // LedWiz units to be installed in a single PC; the software on the PC side
mjr 5:a70c0bce770d 237 // uses the unit number to route commands to the devices attached to each
mjr 5:a70c0bce770d 238 // unit. On the real LedWiz, the unit number must be set in the firmware
mjr 5:a70c0bce770d 239 // at the factory; it's not configurable by the end user. Most LedWiz's
mjr 5:a70c0bce770d 240 // ship with the unit number set to 0, but the vendor will set different
mjr 5:a70c0bce770d 241 // unit numbers if requested at the time of purchase. So if you have a
mjr 5:a70c0bce770d 242 // single LedWiz already installed in your cabinet, and you didn't ask for
mjr 5:a70c0bce770d 243 // a non-default unit number, your existing LedWiz will be unit 0.
mjr 5:a70c0bce770d 244 //
mjr 6:cc35eb643e8f 245 // Note that the USB_PRODUCT_ID value set here omits the unit number. We
mjr 6:cc35eb643e8f 246 // take the unit number from the saved configuration. We provide a
mjr 6:cc35eb643e8f 247 // configuration command that can be sent via the USB connection to change
mjr 6:cc35eb643e8f 248 // the unit number, so that users can select the unit number without having
mjr 6:cc35eb643e8f 249 // to install a different version of the software. We'll combine the base
mjr 6:cc35eb643e8f 250 // product ID here with the unit number to get the actual product ID that
mjr 6:cc35eb643e8f 251 // we send to the USB controller.
mjr 5:a70c0bce770d 252 const uint16_t USB_VENDOR_ID = 0xFAFA;
mjr 6:cc35eb643e8f 253 const uint16_t USB_PRODUCT_ID = 0x00F0;
mjr 6:cc35eb643e8f 254 const uint16_t USB_VERSION_NO = 0x0006;
mjr 0:5acbbe3f4cf4 255
mjr 5:a70c0bce770d 256
mjr 6:cc35eb643e8f 257 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 6:cc35eb643e8f 258 #define JOYMAX 4096
mjr 6:cc35eb643e8f 259
mjr 5:a70c0bce770d 260
mjr 17:ab3cec0c8bf4 261 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 262 //
mjr 17:ab3cec0c8bf4 263 // Potentiometer configuration
mjr 17:ab3cec0c8bf4 264 //
mjr 17:ab3cec0c8bf4 265 #ifdef POT_SENSOR_ENABLED
mjr 17:ab3cec0c8bf4 266 #define IF_POT(x) x
mjr 17:ab3cec0c8bf4 267 #else
mjr 17:ab3cec0c8bf4 268 #define IF_POT(x)
mjr 17:ab3cec0c8bf4 269 #endif
mjr 9:fd65b0a94720 270
mjr 17:ab3cec0c8bf4 271
mjr 17:ab3cec0c8bf4 272 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 273 //
mjr 17:ab3cec0c8bf4 274 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 17:ab3cec0c8bf4 275 //
mjr 17:ab3cec0c8bf4 276 DigitalOut ledR(LED1), ledG(LED2), ledB(LED3);
mjr 17:ab3cec0c8bf4 277
mjr 9:fd65b0a94720 278
mjr 9:fd65b0a94720 279 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 280 //
mjr 5:a70c0bce770d 281 // LedWiz emulation
mjr 5:a70c0bce770d 282 //
mjr 5:a70c0bce770d 283
mjr 0:5acbbe3f4cf4 284 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 285
mjr 6:cc35eb643e8f 286 // LedWiz output pin interface. We create a cover class to virtualize
mjr 6:cc35eb643e8f 287 // digital vs PWM outputs and give them a common interface. The KL25Z
mjr 6:cc35eb643e8f 288 // unfortunately doesn't have enough hardware PWM channels to support
mjr 6:cc35eb643e8f 289 // PWM on all 32 LedWiz outputs, so we provide as many PWM channels as
mjr 6:cc35eb643e8f 290 // we can (10), and fill out the rest of the outputs with plain digital
mjr 6:cc35eb643e8f 291 // outs.
mjr 6:cc35eb643e8f 292 class LwOut
mjr 6:cc35eb643e8f 293 {
mjr 6:cc35eb643e8f 294 public:
mjr 6:cc35eb643e8f 295 virtual void set(float val) = 0;
mjr 6:cc35eb643e8f 296 };
mjr 6:cc35eb643e8f 297 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 298 {
mjr 6:cc35eb643e8f 299 public:
mjr 13:72dda449c3c0 300 LwPwmOut(PinName pin) : p(pin) { prv = -1; }
mjr 13:72dda449c3c0 301 virtual void set(float val)
mjr 13:72dda449c3c0 302 {
mjr 13:72dda449c3c0 303 if (val != prv)
mjr 13:72dda449c3c0 304 p.write(prv = val);
mjr 13:72dda449c3c0 305 }
mjr 6:cc35eb643e8f 306 PwmOut p;
mjr 13:72dda449c3c0 307 float prv;
mjr 6:cc35eb643e8f 308 };
mjr 6:cc35eb643e8f 309 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 310 {
mjr 6:cc35eb643e8f 311 public:
mjr 13:72dda449c3c0 312 LwDigOut(PinName pin) : p(pin) { prv = -1; }
mjr 13:72dda449c3c0 313 virtual void set(float val)
mjr 13:72dda449c3c0 314 {
mjr 13:72dda449c3c0 315 if (val != prv)
mjr 13:72dda449c3c0 316 p.write((prv = val) == 0.0 ? 0 : 1);
mjr 13:72dda449c3c0 317 }
mjr 6:cc35eb643e8f 318 DigitalOut p;
mjr 13:72dda449c3c0 319 float prv;
mjr 6:cc35eb643e8f 320 };
mjr 11:bd9da7088e6e 321 class LwUnusedOut: public LwOut
mjr 11:bd9da7088e6e 322 {
mjr 11:bd9da7088e6e 323 public:
mjr 11:bd9da7088e6e 324 LwUnusedOut() { }
mjr 11:bd9da7088e6e 325 virtual void set(float val) { }
mjr 11:bd9da7088e6e 326 };
mjr 6:cc35eb643e8f 327
mjr 6:cc35eb643e8f 328 // output pin array
mjr 6:cc35eb643e8f 329 static LwOut *lwPin[32];
mjr 6:cc35eb643e8f 330
mjr 6:cc35eb643e8f 331 // initialize the output pin array
mjr 6:cc35eb643e8f 332 void initLwOut()
mjr 6:cc35eb643e8f 333 {
mjr 9:fd65b0a94720 334 for (int i = 0 ; i < countof(lwPin) ; ++i)
mjr 6:cc35eb643e8f 335 {
mjr 11:bd9da7088e6e 336 PinName p = (i < countof(ledWizPortMap) ? ledWizPortMap[i].pin : NC);
mjr 11:bd9da7088e6e 337 if (p == NC)
mjr 11:bd9da7088e6e 338 lwPin[i] = new LwUnusedOut();
mjr 11:bd9da7088e6e 339 else if (ledWizPortMap[i].isPWM)
mjr 11:bd9da7088e6e 340 lwPin[i] = new LwPwmOut(p);
mjr 11:bd9da7088e6e 341 else
mjr 11:bd9da7088e6e 342 lwPin[i] = new LwDigOut(p);
mjr 6:cc35eb643e8f 343 }
mjr 6:cc35eb643e8f 344 }
mjr 6:cc35eb643e8f 345
mjr 0:5acbbe3f4cf4 346 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 347 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 348
mjr 0:5acbbe3f4cf4 349 // profile (brightness/blink) state for each LedWiz output
mjr 1:d913e0afb2ac 350 static uint8_t wizVal[32] = {
mjr 13:72dda449c3c0 351 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 352 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 353 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 354 48, 48, 48, 48, 48, 48, 48, 48
mjr 0:5acbbe3f4cf4 355 };
mjr 0:5acbbe3f4cf4 356
mjr 1:d913e0afb2ac 357 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 358 {
mjr 13:72dda449c3c0 359 if (wizOn[idx])
mjr 13:72dda449c3c0 360 {
mjr 0:5acbbe3f4cf4 361 // on - map profile brightness state to PWM level
mjr 1:d913e0afb2ac 362 uint8_t val = wizVal[idx];
mjr 13:72dda449c3c0 363 if (val <= 48)
mjr 13:72dda449c3c0 364 {
mjr 15:944bbc29c4dd 365 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 15:944bbc29c4dd 366 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 15:944bbc29c4dd 367 // Note that on the actual LedWiz, level 48 is actually about
mjr 15:944bbc29c4dd 368 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 15:944bbc29c4dd 369 // the true 100% level. (In the documentation, level 49 is
mjr 15:944bbc29c4dd 370 // simply not a valid setting.) Even so, we treat level 48 as
mjr 15:944bbc29c4dd 371 // 100% on to match the documentation. This won't be perfectly
mjr 15:944bbc29c4dd 372 // ocmpatible with the actual LedWiz, but it makes for such a
mjr 15:944bbc29c4dd 373 // small difference in brightness (if the output device is an
mjr 15:944bbc29c4dd 374 // LED, say) that no one should notice. It seems better to
mjr 15:944bbc29c4dd 375 // err in this direction, because while the difference in
mjr 15:944bbc29c4dd 376 // brightness when attached to an LED won't be noticeable, the
mjr 15:944bbc29c4dd 377 // difference in duty cycle when attached to something like a
mjr 15:944bbc29c4dd 378 // contactor *can* be noticeable - anything less than 100%
mjr 15:944bbc29c4dd 379 // can cause a contactor or relay to chatter. There's almost
mjr 15:944bbc29c4dd 380 // never a situation where you'd want values other than 0% and
mjr 15:944bbc29c4dd 381 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 15:944bbc29c4dd 382 // makes us work properly with software that's expecting the
mjr 15:944bbc29c4dd 383 // documented LedWiz behavior and therefore uses level 48 to
mjr 15:944bbc29c4dd 384 // turn a contactor or relay fully on.
mjr 13:72dda449c3c0 385 return val/48.0;
mjr 13:72dda449c3c0 386 }
mjr 13:72dda449c3c0 387 else if (val == 49)
mjr 13:72dda449c3c0 388 {
mjr 15:944bbc29c4dd 389 // 49 is undefined in the LedWiz documentation, but actually
mjr 15:944bbc29c4dd 390 // means 100% on. The documentation says that levels 1-48 are
mjr 15:944bbc29c4dd 391 // the full PWM range, but empirically it appears that the real
mjr 15:944bbc29c4dd 392 // range implemented in the firmware is 1-49. Some software on
mjr 15:944bbc29c4dd 393 // the PC side (notably DOF) is aware of this and uses level 49
mjr 15:944bbc29c4dd 394 // to mean "100% on". To ensure compatibility with existing
mjr 15:944bbc29c4dd 395 // PC-side software, we need to recognize level 49.
mjr 13:72dda449c3c0 396 return 1.0;
mjr 13:72dda449c3c0 397 }
mjr 0:5acbbe3f4cf4 398 else if (val >= 129 && val <= 132)
mjr 13:72dda449c3c0 399 {
mjr 13:72dda449c3c0 400 // Values of 129-132 select different flashing modes. We don't
mjr 13:72dda449c3c0 401 // support any of these. Instead, simply treat them as fully on.
mjr 13:72dda449c3c0 402 // Note that DOF doesn't ever use modes 129-132, as it implements
mjr 13:72dda449c3c0 403 // all flashing modes itself on the host side, so this limitation
mjr 13:72dda449c3c0 404 // won't have any effect on DOF users. You can observe it using
mjr 13:72dda449c3c0 405 // LedBlinky, though.
mjr 13:72dda449c3c0 406 return 1.0;
mjr 13:72dda449c3c0 407 }
mjr 0:5acbbe3f4cf4 408 else
mjr 13:72dda449c3c0 409 {
mjr 13:72dda449c3c0 410 // Other values are undefined in the LedWiz documentation. Hosts
mjr 13:72dda449c3c0 411 // *should* never send undefined values, since whatever behavior an
mjr 13:72dda449c3c0 412 // LedWiz unit exhibits in response is accidental and could change
mjr 13:72dda449c3c0 413 // in a future version. We'll treat all undefined values as equivalent
mjr 13:72dda449c3c0 414 // to 48 (fully on).
mjr 13:72dda449c3c0 415 //
mjr 13:72dda449c3c0 416 // NB: the 49 and 129-132 cases are broken out above for the sake
mjr 13:72dda449c3c0 417 // of documentation. We end up using 1.0 as the return value for
mjr 13:72dda449c3c0 418 // everything outside of the defined 0-48 range, so we could collapse
mjr 13:72dda449c3c0 419 // this whole thing to a single 'else' branch, but I wanted to call
mjr 13:72dda449c3c0 420 // out the specific reasons for handling the settings above as we do.
mjr 0:5acbbe3f4cf4 421 return 1.0;
mjr 13:72dda449c3c0 422 }
mjr 0:5acbbe3f4cf4 423 }
mjr 13:72dda449c3c0 424 else
mjr 13:72dda449c3c0 425 {
mjr 13:72dda449c3c0 426 // off - show at 0 intensity
mjr 13:72dda449c3c0 427 return 0.0;
mjr 0:5acbbe3f4cf4 428 }
mjr 0:5acbbe3f4cf4 429 }
mjr 0:5acbbe3f4cf4 430
mjr 1:d913e0afb2ac 431 static void updateWizOuts()
mjr 1:d913e0afb2ac 432 {
mjr 6:cc35eb643e8f 433 for (int i = 0 ; i < 32 ; ++i)
mjr 6:cc35eb643e8f 434 lwPin[i]->set(wizState(i));
mjr 1:d913e0afb2ac 435 }
mjr 1:d913e0afb2ac 436
mjr 11:bd9da7088e6e 437
mjr 11:bd9da7088e6e 438 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 439 //
mjr 11:bd9da7088e6e 440 // Button input
mjr 11:bd9da7088e6e 441 //
mjr 11:bd9da7088e6e 442
mjr 11:bd9da7088e6e 443 // button input map array
mjr 11:bd9da7088e6e 444 DigitalIn *buttonDigIn[32];
mjr 11:bd9da7088e6e 445
mjr 18:5e890ebd0023 446 // button state
mjr 18:5e890ebd0023 447 struct ButtonState
mjr 18:5e890ebd0023 448 {
mjr 18:5e890ebd0023 449 // current on/off state
mjr 18:5e890ebd0023 450 int pressed;
mjr 18:5e890ebd0023 451
mjr 18:5e890ebd0023 452 // Sticky time remaining for current state. When a
mjr 18:5e890ebd0023 453 // state transition occurs, we set this to a debounce
mjr 18:5e890ebd0023 454 // period. Future state transitions will be ignored
mjr 18:5e890ebd0023 455 // until the debounce time elapses.
mjr 18:5e890ebd0023 456 int t;
mjr 18:5e890ebd0023 457 } buttonState[32];
mjr 18:5e890ebd0023 458
mjr 12:669df364a565 459 // timer for button reports
mjr 12:669df364a565 460 static Timer buttonTimer;
mjr 12:669df364a565 461
mjr 11:bd9da7088e6e 462 // initialize the button inputs
mjr 11:bd9da7088e6e 463 void initButtons()
mjr 11:bd9da7088e6e 464 {
mjr 11:bd9da7088e6e 465 // create the digital inputs
mjr 11:bd9da7088e6e 466 for (int i = 0 ; i < countof(buttonDigIn) ; ++i)
mjr 11:bd9da7088e6e 467 {
mjr 11:bd9da7088e6e 468 if (i < countof(buttonMap) && buttonMap[i] != NC)
mjr 11:bd9da7088e6e 469 buttonDigIn[i] = new DigitalIn(buttonMap[i]);
mjr 11:bd9da7088e6e 470 else
mjr 11:bd9da7088e6e 471 buttonDigIn[i] = 0;
mjr 11:bd9da7088e6e 472 }
mjr 12:669df364a565 473
mjr 12:669df364a565 474 // start the button timer
mjr 12:669df364a565 475 buttonTimer.start();
mjr 11:bd9da7088e6e 476 }
mjr 11:bd9da7088e6e 477
mjr 11:bd9da7088e6e 478
mjr 18:5e890ebd0023 479 // read the button input state
mjr 18:5e890ebd0023 480 uint32_t readButtons()
mjr 11:bd9da7088e6e 481 {
mjr 11:bd9da7088e6e 482 // start with all buttons off
mjr 11:bd9da7088e6e 483 uint32_t buttons = 0;
mjr 11:bd9da7088e6e 484
mjr 18:5e890ebd0023 485 // figure the time elapsed since the last scan
mjr 18:5e890ebd0023 486 int dt = buttonTimer.read_ms();
mjr 18:5e890ebd0023 487
mjr 18:5e890ebd0023 488 // reset the timef for the next scan
mjr 18:5e890ebd0023 489 buttonTimer.reset();
mjr 18:5e890ebd0023 490
mjr 11:bd9da7088e6e 491 // scan the button list
mjr 11:bd9da7088e6e 492 uint32_t bit = 1;
mjr 18:5e890ebd0023 493 DigitalIn **di = buttonDigIn;
mjr 18:5e890ebd0023 494 ButtonState *bs = buttonState;
mjr 18:5e890ebd0023 495 for (int i = 0 ; i < countof(buttonDigIn) ; ++i, ++di, ++bs, bit <<= 1)
mjr 11:bd9da7088e6e 496 {
mjr 18:5e890ebd0023 497 // read this button
mjr 18:5e890ebd0023 498 if (*di != 0)
mjr 18:5e890ebd0023 499 {
mjr 18:5e890ebd0023 500 // deduct the elapsed time since the last update
mjr 18:5e890ebd0023 501 // from the button's remaining sticky time
mjr 18:5e890ebd0023 502 bs->t -= dt;
mjr 18:5e890ebd0023 503 if (bs->t < 0)
mjr 18:5e890ebd0023 504 bs->t = 0;
mjr 18:5e890ebd0023 505
mjr 18:5e890ebd0023 506 // If the sticky time has elapsed, note the new physical
mjr 18:5e890ebd0023 507 // state of the button. If we still have sticky time
mjr 18:5e890ebd0023 508 // remaining, ignore the physical state; the last state
mjr 18:5e890ebd0023 509 // change persists until the sticky time elapses so that
mjr 18:5e890ebd0023 510 // we smooth out any "bounce" (electrical transients that
mjr 18:5e890ebd0023 511 // occur when the switch contact is opened or closed).
mjr 18:5e890ebd0023 512 if (bs->t == 0)
mjr 18:5e890ebd0023 513 {
mjr 18:5e890ebd0023 514 // get the new physical state
mjr 18:5e890ebd0023 515 int pressed = !(*di)->read();
mjr 18:5e890ebd0023 516
mjr 18:5e890ebd0023 517 // update the button's logical state if this is a change
mjr 18:5e890ebd0023 518 if (pressed != bs->pressed)
mjr 18:5e890ebd0023 519 {
mjr 18:5e890ebd0023 520 // store the new state
mjr 18:5e890ebd0023 521 bs->pressed = pressed;
mjr 18:5e890ebd0023 522
mjr 18:5e890ebd0023 523 // start a new sticky period for debouncing this
mjr 18:5e890ebd0023 524 // state change
mjr 18:5e890ebd0023 525 bs->t = 1000;
mjr 18:5e890ebd0023 526 }
mjr 18:5e890ebd0023 527 }
mjr 18:5e890ebd0023 528
mjr 18:5e890ebd0023 529 // if it's pressed, OR its bit into the state
mjr 18:5e890ebd0023 530 if (bs->pressed)
mjr 18:5e890ebd0023 531 buttons |= bit;
mjr 18:5e890ebd0023 532 }
mjr 11:bd9da7088e6e 533 }
mjr 11:bd9da7088e6e 534
mjr 18:5e890ebd0023 535 // return the new button list
mjr 11:bd9da7088e6e 536 return buttons;
mjr 11:bd9da7088e6e 537 }
mjr 11:bd9da7088e6e 538
mjr 18:5e890ebd0023 539 #if 0
mjr 17:ab3cec0c8bf4 540 // Read buttons with debouncing.
mjr 17:ab3cec0c8bf4 541 //
mjr 17:ab3cec0c8bf4 542 // Debouncing is the process of filtering out transients from button
mjr 17:ab3cec0c8bf4 543 // state changes. When an electrical switch is closed or opened, the
mjr 17:ab3cec0c8bf4 544 // signal can have a brief period of instability that makes the switch
mjr 17:ab3cec0c8bf4 545 // appear to turn on and off very rapidly. This is known as "bouncing".
mjr 17:ab3cec0c8bf4 546 //
mjr 17:ab3cec0c8bf4 547 // To remove the transients, we filter the signal by requiring each
mjr 17:ab3cec0c8bf4 548 // change to stick for at least a minimum interval (we use 50ms). We
mjr 17:ab3cec0c8bf4 549 // keep a short recent history of each button's state for this purpose.
mjr 17:ab3cec0c8bf4 550 // If we see a button change state, we ignore the change if we saw the
mjr 17:ab3cec0c8bf4 551 // same button make another change within the same interval.
mjr 11:bd9da7088e6e 552 uint32_t readButtonsDebounced()
mjr 11:bd9da7088e6e 553 {
mjr 11:bd9da7088e6e 554 struct reading {
mjr 17:ab3cec0c8bf4 555 // elapsed time between this reading and the previous reading
mjr 17:ab3cec0c8bf4 556 int dt;
mjr 17:ab3cec0c8bf4 557
mjr 17:ab3cec0c8bf4 558 // Final button state for each button that changed on this
mjr 17:ab3cec0c8bf4 559 // report. OR this with a new report (after applying the
mjr 17:ab3cec0c8bf4 560 // mask 'm') to carry forward the changes that occurred in
mjr 17:ab3cec0c8bf4 561 // this report to the new report.
mjr 17:ab3cec0c8bf4 562 uint32_t b;
mjr 17:ab3cec0c8bf4 563
mjr 17:ab3cec0c8bf4 564 // Change mask at this report. This is a bit mask of the buttons
mjr 18:5e890ebd0023 565 // that changed on this report. AND the NOT of this mask with a
mjr 17:ab3cec0c8bf4 566 // new reading to filter buttons out of the new reading that
mjr 17:ab3cec0c8bf4 567 // changed on this report.
mjr 17:ab3cec0c8bf4 568 uint32_t m;
mjr 11:bd9da7088e6e 569 };
mjr 11:bd9da7088e6e 570 static reading readings[8]; // circular buffer of readings
mjr 11:bd9da7088e6e 571 static int ri = 0; // reading buffer index (next write position)
mjr 17:ab3cec0c8bf4 572 static int bPrv = 0; // immediately previous report
mjr 11:bd9da7088e6e 573
mjr 11:bd9da7088e6e 574 // get the write pointer
mjr 11:bd9da7088e6e 575 reading *r = &readings[ri];
mjr 11:bd9da7088e6e 576
mjr 11:bd9da7088e6e 577 // figure the time since the last reading, and read the raw button state
mjr 17:ab3cec0c8bf4 578 int ms = r->dt = buttonTimer.read_ms();
mjr 17:ab3cec0c8bf4 579 uint32_t b = readButtonsRaw();
mjr 11:bd9da7088e6e 580
mjr 11:bd9da7088e6e 581 // start timing the next interval
mjr 12:669df364a565 582 buttonTimer.reset();
mjr 11:bd9da7088e6e 583
mjr 18:5e890ebd0023 584 // Mask out changes for any buttons that changed state within the
mjr 18:5e890ebd0023 585 // past 50ms. This ensures that each state change sticks for at
mjr 18:5e890ebd0023 586 // least 50ms, which should be long enough to be sure that a change
mjr 18:5e890ebd0023 587 // that reverses a prior change isn't just a transient.
mjr 18:5e890ebd0023 588 for (int i = 1, j = ri - 1 ; i < countof(readings) && ms < 50 ; ++i, --j)
mjr 11:bd9da7088e6e 589 {
mjr 11:bd9da7088e6e 590 // find the next prior reading, wrapping in the circular buffer
mjr 11:bd9da7088e6e 591 if (j < 0)
mjr 11:bd9da7088e6e 592 j = countof(readings) - 1;
mjr 11:bd9da7088e6e 593 reading *rj = &readings[j];
mjr 17:ab3cec0c8bf4 594
mjr 17:ab3cec0c8bf4 595 // For any button that changed state in the prior reading 'rj',
mjr 17:ab3cec0c8bf4 596 // remove any new change and restore it to its 'rj' state.
mjr 18:5e890ebd0023 597 b &= ~rj->m;
mjr 17:ab3cec0c8bf4 598 b |= rj->b;
mjr 17:ab3cec0c8bf4 599
mjr 17:ab3cec0c8bf4 600 // add in the time to the next prior report
mjr 11:bd9da7088e6e 601 ms += rj->dt;
mjr 11:bd9da7088e6e 602 }
mjr 11:bd9da7088e6e 603
mjr 17:ab3cec0c8bf4 604 // figure which buttons changed on this report vs the prior report
mjr 17:ab3cec0c8bf4 605 uint32_t m = b ^ bPrv;
mjr 17:ab3cec0c8bf4 606
mjr 17:ab3cec0c8bf4 607 // save the change mask and changed button vector in our history entry
mjr 18:5e890ebd0023 608 r->m = m;
mjr 17:ab3cec0c8bf4 609 r->b = b & m;
mjr 17:ab3cec0c8bf4 610
mjr 17:ab3cec0c8bf4 611 // save this as the prior report
mjr 17:ab3cec0c8bf4 612 bPrv = b;
mjr 17:ab3cec0c8bf4 613
mjr 11:bd9da7088e6e 614 // advance the write position for next time
mjr 11:bd9da7088e6e 615 ri += 1;
mjr 12:669df364a565 616 if (ri >= countof(readings))
mjr 11:bd9da7088e6e 617 ri = 0;
mjr 11:bd9da7088e6e 618
mjr 11:bd9da7088e6e 619 // return the debounced result
mjr 11:bd9da7088e6e 620 return b;
mjr 11:bd9da7088e6e 621 }
mjr 18:5e890ebd0023 622 #endif
mjr 11:bd9da7088e6e 623
mjr 5:a70c0bce770d 624 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 625 //
mjr 5:a70c0bce770d 626 // Customization joystick subbclass
mjr 5:a70c0bce770d 627 //
mjr 5:a70c0bce770d 628
mjr 5:a70c0bce770d 629 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 630 {
mjr 5:a70c0bce770d 631 public:
mjr 5:a70c0bce770d 632 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release)
mjr 5:a70c0bce770d 633 : USBJoystick(vendor_id, product_id, product_release, true)
mjr 5:a70c0bce770d 634 {
mjr 5:a70c0bce770d 635 suspended_ = false;
mjr 5:a70c0bce770d 636 }
mjr 5:a70c0bce770d 637
mjr 5:a70c0bce770d 638 // are we connected?
mjr 5:a70c0bce770d 639 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 640
mjr 5:a70c0bce770d 641 // Are we in suspend mode?
mjr 5:a70c0bce770d 642 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 643
mjr 5:a70c0bce770d 644 protected:
mjr 5:a70c0bce770d 645 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 646 { suspended_ = suspended; }
mjr 5:a70c0bce770d 647
mjr 5:a70c0bce770d 648 // are we suspended?
mjr 5:a70c0bce770d 649 int suspended_;
mjr 5:a70c0bce770d 650 };
mjr 5:a70c0bce770d 651
mjr 5:a70c0bce770d 652 // ---------------------------------------------------------------------------
mjr 6:cc35eb643e8f 653 //
mjr 6:cc35eb643e8f 654 // Some simple math service routines
mjr 6:cc35eb643e8f 655 //
mjr 6:cc35eb643e8f 656
mjr 6:cc35eb643e8f 657 inline float square(float x) { return x*x; }
mjr 6:cc35eb643e8f 658 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 6:cc35eb643e8f 659
mjr 6:cc35eb643e8f 660 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 661 //
mjr 5:a70c0bce770d 662 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 663 //
mjr 5:a70c0bce770d 664
mjr 5:a70c0bce770d 665 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 666 //
mjr 5:a70c0bce770d 667 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 668 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 669 // automatic calibration.
mjr 5:a70c0bce770d 670 //
mjr 5:a70c0bce770d 671 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 672 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 673 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 674 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 675 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 676 // every sample.
mjr 5:a70c0bce770d 677 //
mjr 6:cc35eb643e8f 678 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 679 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 680 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 681 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 682 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 683 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 684 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 685 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 686 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 687 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 688 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 689 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 690 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 691 // of nudging, say).
mjr 5:a70c0bce770d 692 //
mjr 5:a70c0bce770d 693
mjr 17:ab3cec0c8bf4 694 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 695 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 696
mjr 17:ab3cec0c8bf4 697 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 698 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 699 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 700
mjr 17:ab3cec0c8bf4 701 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 702 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 703 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 704 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 705
mjr 17:ab3cec0c8bf4 706
mjr 6:cc35eb643e8f 707 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 708 struct AccHist
mjr 5:a70c0bce770d 709 {
mjr 6:cc35eb643e8f 710 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 711 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 712 {
mjr 6:cc35eb643e8f 713 // save the raw position
mjr 6:cc35eb643e8f 714 this->x = x;
mjr 6:cc35eb643e8f 715 this->y = y;
mjr 6:cc35eb643e8f 716 this->d = distance(prv);
mjr 6:cc35eb643e8f 717 }
mjr 6:cc35eb643e8f 718
mjr 6:cc35eb643e8f 719 // reading for this entry
mjr 5:a70c0bce770d 720 float x, y;
mjr 5:a70c0bce770d 721
mjr 6:cc35eb643e8f 722 // distance from previous entry
mjr 6:cc35eb643e8f 723 float d;
mjr 5:a70c0bce770d 724
mjr 6:cc35eb643e8f 725 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 726 float xtot, ytot;
mjr 6:cc35eb643e8f 727 int cnt;
mjr 6:cc35eb643e8f 728
mjr 6:cc35eb643e8f 729 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 730 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 731 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 732 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 733
mjr 6:cc35eb643e8f 734 float distance(AccHist *p)
mjr 6:cc35eb643e8f 735 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 736 };
mjr 5:a70c0bce770d 737
mjr 5:a70c0bce770d 738 // accelerometer wrapper class
mjr 3:3514575d4f86 739 class Accel
mjr 3:3514575d4f86 740 {
mjr 3:3514575d4f86 741 public:
mjr 3:3514575d4f86 742 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 743 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 744 {
mjr 5:a70c0bce770d 745 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 746 irqPin_ = irqPin;
mjr 5:a70c0bce770d 747
mjr 5:a70c0bce770d 748 // reset and initialize
mjr 5:a70c0bce770d 749 reset();
mjr 5:a70c0bce770d 750 }
mjr 5:a70c0bce770d 751
mjr 5:a70c0bce770d 752 void reset()
mjr 5:a70c0bce770d 753 {
mjr 6:cc35eb643e8f 754 // clear the center point
mjr 6:cc35eb643e8f 755 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 756
mjr 6:cc35eb643e8f 757 // start the calibration timer
mjr 5:a70c0bce770d 758 tCenter_.start();
mjr 5:a70c0bce770d 759 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 760
mjr 5:a70c0bce770d 761 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 762 mma_.init();
mjr 6:cc35eb643e8f 763
mjr 6:cc35eb643e8f 764 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 765 vx_ = vy_ = 0;
mjr 3:3514575d4f86 766
mjr 6:cc35eb643e8f 767 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 768 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 769 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 770
mjr 3:3514575d4f86 771 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 772 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 773
mjr 3:3514575d4f86 774 // start our timers
mjr 3:3514575d4f86 775 tGet_.start();
mjr 3:3514575d4f86 776 tInt_.start();
mjr 3:3514575d4f86 777 }
mjr 3:3514575d4f86 778
mjr 9:fd65b0a94720 779 void get(int &x, int &y)
mjr 3:3514575d4f86 780 {
mjr 3:3514575d4f86 781 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 782 __disable_irq();
mjr 3:3514575d4f86 783
mjr 3:3514575d4f86 784 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 785 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 786 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 787
mjr 6:cc35eb643e8f 788 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 789 vx_ = vy_ = 0;
mjr 3:3514575d4f86 790
mjr 3:3514575d4f86 791 // get the time since the last get() sample
mjr 3:3514575d4f86 792 float dt = tGet_.read_us()/1.0e6;
mjr 3:3514575d4f86 793 tGet_.reset();
mjr 3:3514575d4f86 794
mjr 3:3514575d4f86 795 // done manipulating the shared data
mjr 3:3514575d4f86 796 __enable_irq();
mjr 3:3514575d4f86 797
mjr 6:cc35eb643e8f 798 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 799 vx /= dt;
mjr 6:cc35eb643e8f 800 vy /= dt;
mjr 6:cc35eb643e8f 801
mjr 6:cc35eb643e8f 802 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 803 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 804 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 805
mjr 5:a70c0bce770d 806 // check for auto-centering every so often
mjr 5:a70c0bce770d 807 if (tCenter_.read_ms() > 1000)
mjr 5:a70c0bce770d 808 {
mjr 5:a70c0bce770d 809 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 810 AccHist *prv = p;
mjr 5:a70c0bce770d 811 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 812 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 813 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 814
mjr 5:a70c0bce770d 815 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 816 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 817 {
mjr 5:a70c0bce770d 818 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 819 static const float accTol = .01;
mjr 6:cc35eb643e8f 820 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 821 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 822 && p0[1].d < accTol
mjr 6:cc35eb643e8f 823 && p0[2].d < accTol
mjr 6:cc35eb643e8f 824 && p0[3].d < accTol
mjr 6:cc35eb643e8f 825 && p0[4].d < accTol)
mjr 5:a70c0bce770d 826 {
mjr 6:cc35eb643e8f 827 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 828 // the samples over the rest period
mjr 6:cc35eb643e8f 829 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 830 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 831 }
mjr 5:a70c0bce770d 832 }
mjr 5:a70c0bce770d 833 else
mjr 5:a70c0bce770d 834 {
mjr 5:a70c0bce770d 835 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 836 ++nAccPrv_;
mjr 5:a70c0bce770d 837 }
mjr 6:cc35eb643e8f 838
mjr 6:cc35eb643e8f 839 // clear the new item's running totals
mjr 6:cc35eb643e8f 840 p->clearAvg();
mjr 5:a70c0bce770d 841
mjr 5:a70c0bce770d 842 // reset the timer
mjr 5:a70c0bce770d 843 tCenter_.reset();
mjr 5:a70c0bce770d 844 }
mjr 5:a70c0bce770d 845
mjr 6:cc35eb643e8f 846 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 847 x = rawToReport(vx);
mjr 6:cc35eb643e8f 848 y = rawToReport(vy);
mjr 5:a70c0bce770d 849
mjr 6:cc35eb643e8f 850 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 851 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 852 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 853 #endif
mjr 3:3514575d4f86 854 }
mjr 3:3514575d4f86 855
mjr 3:3514575d4f86 856 private:
mjr 6:cc35eb643e8f 857 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 858 int rawToReport(float v)
mjr 5:a70c0bce770d 859 {
mjr 6:cc35eb643e8f 860 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 861 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 862
mjr 6:cc35eb643e8f 863 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 864 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 865 static const int filter[] = {
mjr 6:cc35eb643e8f 866 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 867 0,
mjr 6:cc35eb643e8f 868 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 869 };
mjr 6:cc35eb643e8f 870 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 871 }
mjr 5:a70c0bce770d 872
mjr 3:3514575d4f86 873 // interrupt handler
mjr 3:3514575d4f86 874 void isr()
mjr 3:3514575d4f86 875 {
mjr 3:3514575d4f86 876 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 877 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 878 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 879 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 880 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 881 float x, y, z;
mjr 5:a70c0bce770d 882 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 883
mjr 3:3514575d4f86 884 // calculate the time since the last interrupt
mjr 3:3514575d4f86 885 float dt = tInt_.read_us()/1.0e6;
mjr 3:3514575d4f86 886 tInt_.reset();
mjr 6:cc35eb643e8f 887
mjr 6:cc35eb643e8f 888 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 889 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 890 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 891
mjr 6:cc35eb643e8f 892 // store the updates
mjr 6:cc35eb643e8f 893 ax_ = x;
mjr 6:cc35eb643e8f 894 ay_ = y;
mjr 6:cc35eb643e8f 895 az_ = z;
mjr 3:3514575d4f86 896 }
mjr 3:3514575d4f86 897
mjr 3:3514575d4f86 898 // underlying accelerometer object
mjr 3:3514575d4f86 899 MMA8451Q mma_;
mjr 3:3514575d4f86 900
mjr 5:a70c0bce770d 901 // last raw acceleration readings
mjr 6:cc35eb643e8f 902 float ax_, ay_, az_;
mjr 5:a70c0bce770d 903
mjr 6:cc35eb643e8f 904 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 905 float vx_, vy_;
mjr 6:cc35eb643e8f 906
mjr 3:3514575d4f86 907 // timer for measuring time between get() samples
mjr 3:3514575d4f86 908 Timer tGet_;
mjr 3:3514575d4f86 909
mjr 3:3514575d4f86 910 // timer for measuring time between interrupts
mjr 3:3514575d4f86 911 Timer tInt_;
mjr 5:a70c0bce770d 912
mjr 6:cc35eb643e8f 913 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 914 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 915 // at rest.
mjr 6:cc35eb643e8f 916 float cx_, cy_;
mjr 5:a70c0bce770d 917
mjr 5:a70c0bce770d 918 // timer for atuo-centering
mjr 5:a70c0bce770d 919 Timer tCenter_;
mjr 6:cc35eb643e8f 920
mjr 6:cc35eb643e8f 921 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 922 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 923 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 924 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 925 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 926 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 927 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 928 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 929 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 930 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 931 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 932 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 933 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 934 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 935 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 936
mjr 5:a70c0bce770d 937 // interurupt pin name
mjr 5:a70c0bce770d 938 PinName irqPin_;
mjr 5:a70c0bce770d 939
mjr 5:a70c0bce770d 940 // interrupt router
mjr 5:a70c0bce770d 941 InterruptIn intIn_;
mjr 3:3514575d4f86 942 };
mjr 3:3514575d4f86 943
mjr 5:a70c0bce770d 944
mjr 5:a70c0bce770d 945 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 946 //
mjr 14:df700b22ca08 947 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 948 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 949 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 950 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 951 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 952 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 953 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 954 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 955 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 956 //
mjr 14:df700b22ca08 957 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 958 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 959 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 960 //
mjr 5:a70c0bce770d 961 void clear_i2c()
mjr 5:a70c0bce770d 962 {
mjr 5:a70c0bce770d 963 // assume a general-purpose output pin to the I2C clock
mjr 5:a70c0bce770d 964 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 965 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 966
mjr 5:a70c0bce770d 967 // clock the SCL 9 times
mjr 5:a70c0bce770d 968 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 969 {
mjr 5:a70c0bce770d 970 scl = 1;
mjr 5:a70c0bce770d 971 wait_us(20);
mjr 5:a70c0bce770d 972 scl = 0;
mjr 5:a70c0bce770d 973 wait_us(20);
mjr 5:a70c0bce770d 974 }
mjr 5:a70c0bce770d 975 }
mjr 14:df700b22ca08 976
mjr 14:df700b22ca08 977 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 978 //
mjr 17:ab3cec0c8bf4 979 // Include the appropriate plunger sensor definition. This will define a
mjr 17:ab3cec0c8bf4 980 // class called PlungerSensor, with a standard interface that we use in
mjr 17:ab3cec0c8bf4 981 // the main loop below. This is *kind of* like a virtual class interface,
mjr 17:ab3cec0c8bf4 982 // but it actually defines the methods statically, which is a little more
mjr 17:ab3cec0c8bf4 983 // efficient at run-time. There's no need for a true virtual interface
mjr 17:ab3cec0c8bf4 984 // because we don't need to be able to change sensor types on the fly.
mjr 17:ab3cec0c8bf4 985 //
mjr 17:ab3cec0c8bf4 986
mjr 17:ab3cec0c8bf4 987 #ifdef ENABLE_CCD_SENSOR
mjr 17:ab3cec0c8bf4 988 #include "ccdSensor.h"
mjr 17:ab3cec0c8bf4 989 #elif ENABLE_POT_SENSOR
mjr 17:ab3cec0c8bf4 990 #include "potSensor.h"
mjr 17:ab3cec0c8bf4 991 #else
mjr 17:ab3cec0c8bf4 992 #include "nullSensor.h"
mjr 17:ab3cec0c8bf4 993 #endif
mjr 17:ab3cec0c8bf4 994
mjr 17:ab3cec0c8bf4 995
mjr 17:ab3cec0c8bf4 996 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 997 //
mjr 17:ab3cec0c8bf4 998 // Non-volatile memory (NVM)
mjr 17:ab3cec0c8bf4 999 //
mjr 17:ab3cec0c8bf4 1000
mjr 17:ab3cec0c8bf4 1001 // Structure defining our NVM storage layout. We store a small
mjr 17:ab3cec0c8bf4 1002 // amount of persistent data in flash memory to retain calibration
mjr 17:ab3cec0c8bf4 1003 // data when powered off.
mjr 17:ab3cec0c8bf4 1004 struct NVM
mjr 17:ab3cec0c8bf4 1005 {
mjr 17:ab3cec0c8bf4 1006 // checksum - we use this to determine if the flash record
mjr 17:ab3cec0c8bf4 1007 // has been properly initialized
mjr 17:ab3cec0c8bf4 1008 uint32_t checksum;
mjr 17:ab3cec0c8bf4 1009
mjr 17:ab3cec0c8bf4 1010 // signature value
mjr 17:ab3cec0c8bf4 1011 static const uint32_t SIGNATURE = 0x4D4A522A;
mjr 17:ab3cec0c8bf4 1012 static const uint16_t VERSION = 0x0003;
mjr 17:ab3cec0c8bf4 1013
mjr 17:ab3cec0c8bf4 1014 // Is the data structure valid? We test the signature and
mjr 17:ab3cec0c8bf4 1015 // checksum to determine if we've been properly stored.
mjr 17:ab3cec0c8bf4 1016 int valid() const
mjr 17:ab3cec0c8bf4 1017 {
mjr 17:ab3cec0c8bf4 1018 return (d.sig == SIGNATURE
mjr 17:ab3cec0c8bf4 1019 && d.vsn == VERSION
mjr 17:ab3cec0c8bf4 1020 && d.sz == sizeof(NVM)
mjr 17:ab3cec0c8bf4 1021 && checksum == CRC32(&d, sizeof(d)));
mjr 17:ab3cec0c8bf4 1022 }
mjr 17:ab3cec0c8bf4 1023
mjr 17:ab3cec0c8bf4 1024 // save to non-volatile memory
mjr 17:ab3cec0c8bf4 1025 void save(FreescaleIAP &iap, int addr)
mjr 17:ab3cec0c8bf4 1026 {
mjr 17:ab3cec0c8bf4 1027 // update the checksum and structure size
mjr 17:ab3cec0c8bf4 1028 checksum = CRC32(&d, sizeof(d));
mjr 17:ab3cec0c8bf4 1029 d.sz = sizeof(NVM);
mjr 17:ab3cec0c8bf4 1030
mjr 17:ab3cec0c8bf4 1031 // erase the sector
mjr 17:ab3cec0c8bf4 1032 iap.erase_sector(addr);
mjr 17:ab3cec0c8bf4 1033
mjr 17:ab3cec0c8bf4 1034 // save the data
mjr 17:ab3cec0c8bf4 1035 iap.program_flash(addr, this, sizeof(*this));
mjr 17:ab3cec0c8bf4 1036 }
mjr 17:ab3cec0c8bf4 1037
mjr 17:ab3cec0c8bf4 1038 // reset calibration data for calibration mode
mjr 17:ab3cec0c8bf4 1039 void resetPlunger()
mjr 17:ab3cec0c8bf4 1040 {
mjr 17:ab3cec0c8bf4 1041 // set extremes for the calibration data
mjr 17:ab3cec0c8bf4 1042 d.plungerMax = 0;
mjr 17:ab3cec0c8bf4 1043 d.plungerZero = npix;
mjr 17:ab3cec0c8bf4 1044 d.plungerMin = npix;
mjr 17:ab3cec0c8bf4 1045 }
mjr 17:ab3cec0c8bf4 1046
mjr 17:ab3cec0c8bf4 1047 // stored data (excluding the checksum)
mjr 17:ab3cec0c8bf4 1048 struct
mjr 17:ab3cec0c8bf4 1049 {
mjr 17:ab3cec0c8bf4 1050 // Signature, structure version, and structure size - further verification
mjr 17:ab3cec0c8bf4 1051 // that we have valid initialized data. The size is a simple proxy for a
mjr 17:ab3cec0c8bf4 1052 // structure version, as the most common type of change to the structure as
mjr 17:ab3cec0c8bf4 1053 // the software evolves will be the addition of new elements. We also
mjr 17:ab3cec0c8bf4 1054 // provide an explicit version number that we can update manually if we
mjr 17:ab3cec0c8bf4 1055 // make any changes that don't affect the structure size but would affect
mjr 17:ab3cec0c8bf4 1056 // compatibility with a saved record (e.g., swapping two existing elements).
mjr 17:ab3cec0c8bf4 1057 uint32_t sig;
mjr 17:ab3cec0c8bf4 1058 uint16_t vsn;
mjr 17:ab3cec0c8bf4 1059 int sz;
mjr 17:ab3cec0c8bf4 1060
mjr 17:ab3cec0c8bf4 1061 // has the plunger been manually calibrated?
mjr 17:ab3cec0c8bf4 1062 int plungerCal;
mjr 17:ab3cec0c8bf4 1063
mjr 17:ab3cec0c8bf4 1064 // Plunger calibration min, zero, and max. The zero point is the
mjr 17:ab3cec0c8bf4 1065 // rest position (aka park position), where it's in equilibrium between
mjr 17:ab3cec0c8bf4 1066 // the main spring and the barrel spring. It can travel a small distance
mjr 17:ab3cec0c8bf4 1067 // forward of the rest position, because the barrel spring can be
mjr 17:ab3cec0c8bf4 1068 // compressed by the user pushing on the plunger or by the momentum
mjr 17:ab3cec0c8bf4 1069 // of a release motion. The minimum is the maximum forward point where
mjr 17:ab3cec0c8bf4 1070 // the barrel spring can't be compressed any further.
mjr 17:ab3cec0c8bf4 1071 int plungerMin;
mjr 17:ab3cec0c8bf4 1072 int plungerZero;
mjr 17:ab3cec0c8bf4 1073 int plungerMax;
mjr 17:ab3cec0c8bf4 1074
mjr 17:ab3cec0c8bf4 1075 // is the plunger sensor enabled?
mjr 17:ab3cec0c8bf4 1076 int plungerEnabled;
mjr 17:ab3cec0c8bf4 1077
mjr 17:ab3cec0c8bf4 1078 // LedWiz unit number
mjr 17:ab3cec0c8bf4 1079 uint8_t ledWizUnitNo;
mjr 17:ab3cec0c8bf4 1080 } d;
mjr 17:ab3cec0c8bf4 1081 };
mjr 17:ab3cec0c8bf4 1082
mjr 17:ab3cec0c8bf4 1083
mjr 17:ab3cec0c8bf4 1084 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 1085 //
mjr 5:a70c0bce770d 1086 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 1087 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 1088 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 1089 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 1090 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 1091 // port outputs.
mjr 5:a70c0bce770d 1092 //
mjr 0:5acbbe3f4cf4 1093 int main(void)
mjr 0:5acbbe3f4cf4 1094 {
mjr 1:d913e0afb2ac 1095 // turn off our on-board indicator LED
mjr 4:02c7cd7b2183 1096 ledR = 1;
mjr 4:02c7cd7b2183 1097 ledG = 1;
mjr 4:02c7cd7b2183 1098 ledB = 1;
mjr 1:d913e0afb2ac 1099
mjr 6:cc35eb643e8f 1100 // initialize the LedWiz ports
mjr 6:cc35eb643e8f 1101 initLwOut();
mjr 6:cc35eb643e8f 1102
mjr 11:bd9da7088e6e 1103 // initialize the button input ports
mjr 11:bd9da7088e6e 1104 initButtons();
mjr 11:bd9da7088e6e 1105
mjr 6:cc35eb643e8f 1106 // we don't need a reset yet
mjr 6:cc35eb643e8f 1107 bool needReset = false;
mjr 6:cc35eb643e8f 1108
mjr 5:a70c0bce770d 1109 // clear the I2C bus for the accelerometer
mjr 5:a70c0bce770d 1110 clear_i2c();
mjr 5:a70c0bce770d 1111
mjr 2:c174f9ee414a 1112 // set up a flash memory controller
mjr 2:c174f9ee414a 1113 FreescaleIAP iap;
mjr 2:c174f9ee414a 1114
mjr 2:c174f9ee414a 1115 // use the last sector of flash for our non-volatile memory structure
mjr 2:c174f9ee414a 1116 int flash_addr = (iap.flash_size() - SECTOR_SIZE);
mjr 2:c174f9ee414a 1117 NVM *flash = (NVM *)flash_addr;
mjr 2:c174f9ee414a 1118 NVM cfg;
mjr 2:c174f9ee414a 1119
mjr 2:c174f9ee414a 1120 // check for valid flash
mjr 6:cc35eb643e8f 1121 bool flash_valid = flash->valid();
mjr 2:c174f9ee414a 1122
mjr 2:c174f9ee414a 1123 // if the flash is valid, load it; otherwise initialize to defaults
mjr 2:c174f9ee414a 1124 if (flash_valid) {
mjr 2:c174f9ee414a 1125 memcpy(&cfg, flash, sizeof(cfg));
mjr 6:cc35eb643e8f 1126 printf("Flash restored: plunger cal=%d, min=%d, zero=%d, max=%d\r\n",
mjr 6:cc35eb643e8f 1127 cfg.d.plungerCal, cfg.d.plungerMin, cfg.d.plungerZero, cfg.d.plungerMax);
mjr 2:c174f9ee414a 1128 }
mjr 2:c174f9ee414a 1129 else {
mjr 2:c174f9ee414a 1130 printf("Factory reset\r\n");
mjr 2:c174f9ee414a 1131 cfg.d.sig = cfg.SIGNATURE;
mjr 2:c174f9ee414a 1132 cfg.d.vsn = cfg.VERSION;
mjr 6:cc35eb643e8f 1133 cfg.d.plungerCal = 0;
mjr 17:ab3cec0c8bf4 1134 cfg.d.plungerMin = 0; // assume we can go all the way forward...
mjr 17:ab3cec0c8bf4 1135 cfg.d.plungerMax = npix; // ...and all the way back
mjr 17:ab3cec0c8bf4 1136 cfg.d.plungerZero = npix/6; // the rest position is usually around 1/2" back
mjr 6:cc35eb643e8f 1137 cfg.d.ledWizUnitNo = DEFAULT_LEDWIZ_UNIT_NUMBER;
mjr 17:ab3cec0c8bf4 1138 cfg.d.plungerEnabled = true;
mjr 2:c174f9ee414a 1139 }
mjr 1:d913e0afb2ac 1140
mjr 6:cc35eb643e8f 1141 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 1142 // number from the saved configuration.
mjr 6:cc35eb643e8f 1143 MyUSBJoystick js(
mjr 6:cc35eb643e8f 1144 USB_VENDOR_ID,
mjr 6:cc35eb643e8f 1145 USB_PRODUCT_ID | cfg.d.ledWizUnitNo,
mjr 6:cc35eb643e8f 1146 USB_VERSION_NO);
mjr 17:ab3cec0c8bf4 1147
mjr 17:ab3cec0c8bf4 1148 // last report timer - we use this to throttle reports, since VP
mjr 17:ab3cec0c8bf4 1149 // doesn't want to hear from us more than about every 10ms
mjr 17:ab3cec0c8bf4 1150 Timer reportTimer;
mjr 17:ab3cec0c8bf4 1151 reportTimer.start();
mjr 17:ab3cec0c8bf4 1152
mjr 17:ab3cec0c8bf4 1153 // initialize the calibration buttons, if present
mjr 17:ab3cec0c8bf4 1154 DigitalIn *calBtn = (CAL_BUTTON_PIN == NC ? 0 : new DigitalIn(CAL_BUTTON_PIN));
mjr 17:ab3cec0c8bf4 1155 DigitalOut *calBtnLed = (CAL_BUTTON_LED == NC ? 0 : new DigitalOut(CAL_BUTTON_LED));
mjr 6:cc35eb643e8f 1156
mjr 1:d913e0afb2ac 1157 // plunger calibration button debounce timer
mjr 1:d913e0afb2ac 1158 Timer calBtnTimer;
mjr 1:d913e0afb2ac 1159 calBtnTimer.start();
mjr 1:d913e0afb2ac 1160 int calBtnLit = false;
mjr 1:d913e0afb2ac 1161
mjr 1:d913e0afb2ac 1162 // Calibration button state:
mjr 1:d913e0afb2ac 1163 // 0 = not pushed
mjr 1:d913e0afb2ac 1164 // 1 = pushed, not yet debounced
mjr 1:d913e0afb2ac 1165 // 2 = pushed, debounced, waiting for hold time
mjr 1:d913e0afb2ac 1166 // 3 = pushed, hold time completed - in calibration mode
mjr 1:d913e0afb2ac 1167 int calBtnState = 0;
mjr 1:d913e0afb2ac 1168
mjr 1:d913e0afb2ac 1169 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 1170 Timer hbTimer;
mjr 1:d913e0afb2ac 1171 hbTimer.start();
mjr 1:d913e0afb2ac 1172 int hb = 0;
mjr 5:a70c0bce770d 1173 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 1174
mjr 1:d913e0afb2ac 1175 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 1176 Timer acTimer;
mjr 1:d913e0afb2ac 1177 acTimer.start();
mjr 1:d913e0afb2ac 1178
mjr 0:5acbbe3f4cf4 1179 // create the accelerometer object
mjr 5:a70c0bce770d 1180 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 0:5acbbe3f4cf4 1181
mjr 17:ab3cec0c8bf4 1182 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 1183 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 1184 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 1185
mjr 17:ab3cec0c8bf4 1186 // create our plunger sensor object
mjr 17:ab3cec0c8bf4 1187 PlungerSensor plungerSensor;
mjr 17:ab3cec0c8bf4 1188
mjr 17:ab3cec0c8bf4 1189 // last plunger report position, in 'npix' normalized pixel units
mjr 17:ab3cec0c8bf4 1190 int pos = 0;
mjr 17:ab3cec0c8bf4 1191
mjr 17:ab3cec0c8bf4 1192 // last plunger report, in joystick units (we report the plunger as the
mjr 17:ab3cec0c8bf4 1193 // "z" axis of the joystick, per the VP convention)
mjr 17:ab3cec0c8bf4 1194 int z = 0;
mjr 17:ab3cec0c8bf4 1195
mjr 17:ab3cec0c8bf4 1196 // most recent prior plunger readings, for tracking release events(z0 is
mjr 17:ab3cec0c8bf4 1197 // reading just before the last one we reported, z1 is the one before that,
mjr 17:ab3cec0c8bf4 1198 // z2 the next before that)
mjr 17:ab3cec0c8bf4 1199 int z0 = 0, z1 = 0, z2 = 0;
mjr 17:ab3cec0c8bf4 1200
mjr 17:ab3cec0c8bf4 1201 // Simulated "bounce" position when firing. We model the bounce off of
mjr 17:ab3cec0c8bf4 1202 // the barrel spring when the plunger is released as proportional to the
mjr 17:ab3cec0c8bf4 1203 // distance it was retracted just before being released.
mjr 17:ab3cec0c8bf4 1204 int zBounce = 0;
mjr 2:c174f9ee414a 1205
mjr 17:ab3cec0c8bf4 1206 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 17:ab3cec0c8bf4 1207 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 17:ab3cec0c8bf4 1208 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 17:ab3cec0c8bf4 1209 // back and releases the plunger, or simply pushes on the plunger from
mjr 17:ab3cec0c8bf4 1210 // the rest position. This allows the plunger to be used in lieu of a
mjr 17:ab3cec0c8bf4 1211 // physical Launch Ball button for tables that don't have plungers.
mjr 17:ab3cec0c8bf4 1212 //
mjr 17:ab3cec0c8bf4 1213 // States:
mjr 17:ab3cec0c8bf4 1214 // 0 = default
mjr 17:ab3cec0c8bf4 1215 // 1 = cocked (plunger has been pulled back about 1" from state 0)
mjr 17:ab3cec0c8bf4 1216 // 2 = uncocked (plunger is pulled back less than 1" from state 1)
mjr 17:ab3cec0c8bf4 1217 // 3 = launching (plunger has been released from state 1 or 2, or
mjr 17:ab3cec0c8bf4 1218 // pushed forward about 1/4" from state 0)
mjr 17:ab3cec0c8bf4 1219 // 4 = launching, plunger is no longer pushed forward
mjr 17:ab3cec0c8bf4 1220 int lbState = 0;
mjr 6:cc35eb643e8f 1221
mjr 17:ab3cec0c8bf4 1222 // Time since last lbState transition. Some of the states are time-
mjr 17:ab3cec0c8bf4 1223 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 17:ab3cec0c8bf4 1224 // we remain in this state for more than a few milliseconds, since
mjr 17:ab3cec0c8bf4 1225 // it indicates that the plunger is being slowly returned to rest
mjr 17:ab3cec0c8bf4 1226 // rather than released. In the "launching" state, we need to release
mjr 17:ab3cec0c8bf4 1227 // the Launch Ball button after a moment, and we need to wait for
mjr 17:ab3cec0c8bf4 1228 // the plunger to come to rest before returning to state 0.
mjr 17:ab3cec0c8bf4 1229 Timer lbTimer;
mjr 17:ab3cec0c8bf4 1230 lbTimer.start();
mjr 17:ab3cec0c8bf4 1231
mjr 18:5e890ebd0023 1232 // Launch Ball simulated push timer. We start this when we simulate
mjr 18:5e890ebd0023 1233 // the button push, and turn off the simulated button when enough time
mjr 18:5e890ebd0023 1234 // has elapsed.
mjr 18:5e890ebd0023 1235 Timer lbBtnTimer;
mjr 18:5e890ebd0023 1236
mjr 17:ab3cec0c8bf4 1237 // Simulated button states. This is a vector of button states
mjr 17:ab3cec0c8bf4 1238 // for the simulated buttons. We combine this with the physical
mjr 17:ab3cec0c8bf4 1239 // button states on each USB joystick report, so we will report
mjr 17:ab3cec0c8bf4 1240 // a button as pressed if either the physical button is being pressed
mjr 17:ab3cec0c8bf4 1241 // or we're simulating a press on the button. This is used for the
mjr 17:ab3cec0c8bf4 1242 // simulated Launch Ball button.
mjr 17:ab3cec0c8bf4 1243 uint32_t simButtons = 0;
mjr 6:cc35eb643e8f 1244
mjr 6:cc35eb643e8f 1245 // Firing in progress: we set this when we detect the start of rapid
mjr 6:cc35eb643e8f 1246 // plunger movement from a retracted position towards the rest position.
mjr 17:ab3cec0c8bf4 1247 //
mjr 17:ab3cec0c8bf4 1248 // When we detect a firing event, we send VP a series of synthetic
mjr 17:ab3cec0c8bf4 1249 // reports simulating the idealized plunger motion. The actual physical
mjr 17:ab3cec0c8bf4 1250 // motion is much too fast to report to VP; in the time between two USB
mjr 17:ab3cec0c8bf4 1251 // reports, the plunger can shoot all the way forward, rebound off of
mjr 17:ab3cec0c8bf4 1252 // the barrel spring, bounce back part way, and bounce forward again,
mjr 17:ab3cec0c8bf4 1253 // or even do all of this more than once. This means that sampling the
mjr 17:ab3cec0c8bf4 1254 // physical motion at the USB report rate would create a misleading
mjr 17:ab3cec0c8bf4 1255 // picture of the plunger motion, since our samples would catch the
mjr 17:ab3cec0c8bf4 1256 // plunger at random points in this oscillating motion. From the
mjr 17:ab3cec0c8bf4 1257 // user's perspective, the physical action that occurred is simply that
mjr 17:ab3cec0c8bf4 1258 // the plunger was released from a particular distance, so it's this
mjr 17:ab3cec0c8bf4 1259 // high-level event that we want to convey to VP. To do this, we
mjr 17:ab3cec0c8bf4 1260 // synthesize a series of reports to convey an idealized version of
mjr 17:ab3cec0c8bf4 1261 // the release motion that's perfectly synchronized to the VP reports.
mjr 17:ab3cec0c8bf4 1262 // Essentially we pretend that our USB position samples are exactly
mjr 17:ab3cec0c8bf4 1263 // aligned in time with (1) the point of retraction just before the
mjr 17:ab3cec0c8bf4 1264 // user released the plunger, (2) the point of maximum forward motion
mjr 17:ab3cec0c8bf4 1265 // just after the user released the plunger (the point of maximum
mjr 17:ab3cec0c8bf4 1266 // compression as the plunger bounces off of the barrel spring), and
mjr 17:ab3cec0c8bf4 1267 // (3) the plunger coming to rest at the park position. This series
mjr 17:ab3cec0c8bf4 1268 // of reports is synthetic in the sense that it's not what we actually
mjr 17:ab3cec0c8bf4 1269 // see on the CCD at the times of these reports - the true plunger
mjr 17:ab3cec0c8bf4 1270 // position is oscillating at high speed during this period. But at
mjr 17:ab3cec0c8bf4 1271 // the same time it conveys a more faithful picture of the true physical
mjr 17:ab3cec0c8bf4 1272 // motion to VP, and allows VP to reproduce the true physical motion
mjr 17:ab3cec0c8bf4 1273 // more faithfully in its simulation model, by correcting for the
mjr 17:ab3cec0c8bf4 1274 // relatively low sampling rate in the communication path between the
mjr 17:ab3cec0c8bf4 1275 // real plunger and VP's model plunger.
mjr 17:ab3cec0c8bf4 1276 //
mjr 17:ab3cec0c8bf4 1277 // If 'firing' is non-zero, it's the index of our current report in
mjr 17:ab3cec0c8bf4 1278 // the synthetic firing report series.
mjr 9:fd65b0a94720 1279 int firing = 0;
mjr 2:c174f9ee414a 1280
mjr 2:c174f9ee414a 1281 // start the first CCD integration cycle
mjr 17:ab3cec0c8bf4 1282 plungerSensor.init();
mjr 9:fd65b0a94720 1283
mjr 9:fd65b0a94720 1284 // Device status. We report this on each update so that the host config
mjr 9:fd65b0a94720 1285 // tool can detect our current settings. This is a bit mask consisting
mjr 9:fd65b0a94720 1286 // of these bits:
mjr 9:fd65b0a94720 1287 // 0x01 -> plunger sensor enabled
mjr 17:ab3cec0c8bf4 1288 uint16_t statusFlags = (cfg.d.plungerEnabled ? 0x01 : 0x00);
mjr 10:976666ffa4ef 1289
mjr 10:976666ffa4ef 1290 // flag: send a pixel dump after the next read
mjr 10:976666ffa4ef 1291 bool reportPix = false;
mjr 1:d913e0afb2ac 1292
mjr 1:d913e0afb2ac 1293 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 1294 // host requests
mjr 0:5acbbe3f4cf4 1295 for (;;)
mjr 0:5acbbe3f4cf4 1296 {
mjr 18:5e890ebd0023 1297 // Look for an incoming report. Process a few input reports in
mjr 18:5e890ebd0023 1298 // a row, but stop after a few so that a barrage of inputs won't
mjr 18:5e890ebd0023 1299 // starve our output event processing.
mjr 0:5acbbe3f4cf4 1300 HID_REPORT report;
mjr 18:5e890ebd0023 1301 for (int rr = 0 ; rr < 4 && js.readNB(&report) ; ++rr)
mjr 0:5acbbe3f4cf4 1302 {
mjr 6:cc35eb643e8f 1303 // all Led-Wiz reports are 8 bytes exactly
mjr 6:cc35eb643e8f 1304 if (report.length == 8)
mjr 1:d913e0afb2ac 1305 {
mjr 6:cc35eb643e8f 1306 uint8_t *data = report.data;
mjr 6:cc35eb643e8f 1307 if (data[0] == 64)
mjr 0:5acbbe3f4cf4 1308 {
mjr 6:cc35eb643e8f 1309 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 6:cc35eb643e8f 1310 // for the outputs; 5th byte is the pulse speed (0-7)
mjr 6:cc35eb643e8f 1311 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 6:cc35eb643e8f 1312 // data[1], data[2], data[3], data[4], data[5]);
mjr 0:5acbbe3f4cf4 1313
mjr 6:cc35eb643e8f 1314 // update all on/off states
mjr 6:cc35eb643e8f 1315 for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1)
mjr 6:cc35eb643e8f 1316 {
mjr 6:cc35eb643e8f 1317 if (bit == 0x100) {
mjr 6:cc35eb643e8f 1318 bit = 1;
mjr 6:cc35eb643e8f 1319 ++ri;
mjr 6:cc35eb643e8f 1320 }
mjr 6:cc35eb643e8f 1321 wizOn[i] = ((data[ri] & bit) != 0);
mjr 6:cc35eb643e8f 1322 }
mjr 6:cc35eb643e8f 1323
mjr 6:cc35eb643e8f 1324 // update the physical outputs
mjr 1:d913e0afb2ac 1325 updateWizOuts();
mjr 6:cc35eb643e8f 1326
mjr 6:cc35eb643e8f 1327 // reset the PBA counter
mjr 6:cc35eb643e8f 1328 pbaIdx = 0;
mjr 6:cc35eb643e8f 1329 }
mjr 6:cc35eb643e8f 1330 else if (data[0] == 65)
mjr 6:cc35eb643e8f 1331 {
mjr 6:cc35eb643e8f 1332 // Private control message. This isn't an LedWiz message - it's
mjr 6:cc35eb643e8f 1333 // an extension for this device. 65 is an invalid PBA setting,
mjr 6:cc35eb643e8f 1334 // and isn't used for any other LedWiz message, so we appropriate
mjr 6:cc35eb643e8f 1335 // it for our own private use. The first byte specifies the
mjr 6:cc35eb643e8f 1336 // message type.
mjr 6:cc35eb643e8f 1337 if (data[1] == 1)
mjr 6:cc35eb643e8f 1338 {
mjr 9:fd65b0a94720 1339 // 1 = Set Configuration:
mjr 6:cc35eb643e8f 1340 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 6:cc35eb643e8f 1341 // data[3] = feature enable bit mask:
mjr 6:cc35eb643e8f 1342 // 0x01 = enable CCD
mjr 6:cc35eb643e8f 1343
mjr 6:cc35eb643e8f 1344 // we'll need a reset if the LedWiz unit number is changing
mjr 6:cc35eb643e8f 1345 uint8_t newUnitNo = data[2] & 0x0f;
mjr 6:cc35eb643e8f 1346 needReset |= (newUnitNo != cfg.d.ledWizUnitNo);
mjr 6:cc35eb643e8f 1347
mjr 6:cc35eb643e8f 1348 // set the configuration parameters from the message
mjr 6:cc35eb643e8f 1349 cfg.d.ledWizUnitNo = newUnitNo;
mjr 17:ab3cec0c8bf4 1350 cfg.d.plungerEnabled = data[3] & 0x01;
mjr 6:cc35eb643e8f 1351
mjr 9:fd65b0a94720 1352 // update the status flags
mjr 9:fd65b0a94720 1353 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 9:fd65b0a94720 1354
mjr 9:fd65b0a94720 1355 // if the ccd is no longer enabled, use 0 for z reports
mjr 17:ab3cec0c8bf4 1356 if (!cfg.d.plungerEnabled)
mjr 9:fd65b0a94720 1357 z = 0;
mjr 9:fd65b0a94720 1358
mjr 6:cc35eb643e8f 1359 // save the configuration
mjr 6:cc35eb643e8f 1360 cfg.save(iap, flash_addr);
mjr 6:cc35eb643e8f 1361 }
mjr 9:fd65b0a94720 1362 else if (data[1] == 2)
mjr 9:fd65b0a94720 1363 {
mjr 9:fd65b0a94720 1364 // 2 = Calibrate plunger
mjr 9:fd65b0a94720 1365 // (No parameters)
mjr 9:fd65b0a94720 1366
mjr 9:fd65b0a94720 1367 // enter calibration mode
mjr 9:fd65b0a94720 1368 calBtnState = 3;
mjr 9:fd65b0a94720 1369 calBtnTimer.reset();
mjr 9:fd65b0a94720 1370 cfg.resetPlunger();
mjr 9:fd65b0a94720 1371 }
mjr 10:976666ffa4ef 1372 else if (data[1] == 3)
mjr 10:976666ffa4ef 1373 {
mjr 10:976666ffa4ef 1374 // 3 = pixel dump
mjr 10:976666ffa4ef 1375 // (No parameters)
mjr 10:976666ffa4ef 1376 reportPix = true;
mjr 10:976666ffa4ef 1377
mjr 10:976666ffa4ef 1378 // show purple until we finish sending the report
mjr 10:976666ffa4ef 1379 ledR = 0;
mjr 10:976666ffa4ef 1380 ledB = 0;
mjr 10:976666ffa4ef 1381 ledG = 1;
mjr 10:976666ffa4ef 1382 }
mjr 6:cc35eb643e8f 1383 }
mjr 6:cc35eb643e8f 1384 else
mjr 6:cc35eb643e8f 1385 {
mjr 6:cc35eb643e8f 1386 // LWZ-PBA - full state dump; each byte is one output
mjr 6:cc35eb643e8f 1387 // in the current bank. pbaIdx keeps track of the bank;
mjr 6:cc35eb643e8f 1388 // this is incremented implicitly by each PBA message.
mjr 6:cc35eb643e8f 1389 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 6:cc35eb643e8f 1390 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 6:cc35eb643e8f 1391
mjr 6:cc35eb643e8f 1392 // update all output profile settings
mjr 6:cc35eb643e8f 1393 for (int i = 0 ; i < 8 ; ++i)
mjr 6:cc35eb643e8f 1394 wizVal[pbaIdx + i] = data[i];
mjr 6:cc35eb643e8f 1395
mjr 6:cc35eb643e8f 1396 // update the physical LED state if this is the last bank
mjr 6:cc35eb643e8f 1397 if (pbaIdx == 24)
mjr 13:72dda449c3c0 1398 {
mjr 6:cc35eb643e8f 1399 updateWizOuts();
mjr 13:72dda449c3c0 1400 pbaIdx = 0;
mjr 13:72dda449c3c0 1401 }
mjr 13:72dda449c3c0 1402 else
mjr 13:72dda449c3c0 1403 pbaIdx += 8;
mjr 6:cc35eb643e8f 1404 }
mjr 0:5acbbe3f4cf4 1405 }
mjr 0:5acbbe3f4cf4 1406 }
mjr 1:d913e0afb2ac 1407
mjr 1:d913e0afb2ac 1408 // check for plunger calibration
mjr 17:ab3cec0c8bf4 1409 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 1410 {
mjr 1:d913e0afb2ac 1411 // check the state
mjr 1:d913e0afb2ac 1412 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1413 {
mjr 1:d913e0afb2ac 1414 case 0:
mjr 1:d913e0afb2ac 1415 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 1416 calBtnTimer.reset();
mjr 1:d913e0afb2ac 1417 calBtnState = 1;
mjr 1:d913e0afb2ac 1418 break;
mjr 1:d913e0afb2ac 1419
mjr 1:d913e0afb2ac 1420 case 1:
mjr 1:d913e0afb2ac 1421 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 1422 // passed, start the hold period
mjr 9:fd65b0a94720 1423 if (calBtnTimer.read_ms() > 50)
mjr 1:d913e0afb2ac 1424 calBtnState = 2;
mjr 1:d913e0afb2ac 1425 break;
mjr 1:d913e0afb2ac 1426
mjr 1:d913e0afb2ac 1427 case 2:
mjr 1:d913e0afb2ac 1428 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 1429 // for the entire hold period, move to calibration mode
mjr 9:fd65b0a94720 1430 if (calBtnTimer.read_ms() > 2050)
mjr 1:d913e0afb2ac 1431 {
mjr 1:d913e0afb2ac 1432 // enter calibration mode
mjr 1:d913e0afb2ac 1433 calBtnState = 3;
mjr 9:fd65b0a94720 1434 calBtnTimer.reset();
mjr 9:fd65b0a94720 1435 cfg.resetPlunger();
mjr 1:d913e0afb2ac 1436 }
mjr 1:d913e0afb2ac 1437 break;
mjr 2:c174f9ee414a 1438
mjr 2:c174f9ee414a 1439 case 3:
mjr 9:fd65b0a94720 1440 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 1441 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 1442 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 1443 break;
mjr 0:5acbbe3f4cf4 1444 }
mjr 0:5acbbe3f4cf4 1445 }
mjr 1:d913e0afb2ac 1446 else
mjr 1:d913e0afb2ac 1447 {
mjr 2:c174f9ee414a 1448 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 1449 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 1450 // and save the results to flash.
mjr 2:c174f9ee414a 1451 //
mjr 2:c174f9ee414a 1452 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 1453 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 1454 // mode, it simply cancels the attempt.
mjr 9:fd65b0a94720 1455 if (calBtnState == 3 && calBtnTimer.read_ms() > 15000)
mjr 2:c174f9ee414a 1456 {
mjr 2:c174f9ee414a 1457 // exit calibration mode
mjr 1:d913e0afb2ac 1458 calBtnState = 0;
mjr 2:c174f9ee414a 1459
mjr 6:cc35eb643e8f 1460 // save the updated configuration
mjr 6:cc35eb643e8f 1461 cfg.d.plungerCal = 1;
mjr 6:cc35eb643e8f 1462 cfg.save(iap, flash_addr);
mjr 2:c174f9ee414a 1463
mjr 2:c174f9ee414a 1464 // the flash state is now valid
mjr 2:c174f9ee414a 1465 flash_valid = true;
mjr 2:c174f9ee414a 1466 }
mjr 2:c174f9ee414a 1467 else if (calBtnState != 3)
mjr 2:c174f9ee414a 1468 {
mjr 2:c174f9ee414a 1469 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 1470 calBtnState = 0;
mjr 2:c174f9ee414a 1471 }
mjr 1:d913e0afb2ac 1472 }
mjr 1:d913e0afb2ac 1473
mjr 1:d913e0afb2ac 1474 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 1475 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 1476 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1477 {
mjr 1:d913e0afb2ac 1478 case 2:
mjr 1:d913e0afb2ac 1479 // in the hold period - flash the light
mjr 9:fd65b0a94720 1480 newCalBtnLit = ((calBtnTimer.read_ms()/250) & 1);
mjr 1:d913e0afb2ac 1481 break;
mjr 1:d913e0afb2ac 1482
mjr 1:d913e0afb2ac 1483 case 3:
mjr 1:d913e0afb2ac 1484 // calibration mode - show steady on
mjr 1:d913e0afb2ac 1485 newCalBtnLit = true;
mjr 1:d913e0afb2ac 1486 break;
mjr 1:d913e0afb2ac 1487
mjr 1:d913e0afb2ac 1488 default:
mjr 1:d913e0afb2ac 1489 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 1490 newCalBtnLit = false;
mjr 1:d913e0afb2ac 1491 break;
mjr 1:d913e0afb2ac 1492 }
mjr 3:3514575d4f86 1493
mjr 3:3514575d4f86 1494 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 1495 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 1496 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 1497 {
mjr 1:d913e0afb2ac 1498 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 1499 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 1500 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 1501 calBtnLed->write(1);
mjr 4:02c7cd7b2183 1502 ledR = 1;
mjr 4:02c7cd7b2183 1503 ledG = 1;
mjr 9:fd65b0a94720 1504 ledB = 0;
mjr 2:c174f9ee414a 1505 }
mjr 2:c174f9ee414a 1506 else {
mjr 17:ab3cec0c8bf4 1507 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 1508 calBtnLed->write(0);
mjr 4:02c7cd7b2183 1509 ledR = 1;
mjr 4:02c7cd7b2183 1510 ledG = 1;
mjr 9:fd65b0a94720 1511 ledB = 1;
mjr 2:c174f9ee414a 1512 }
mjr 1:d913e0afb2ac 1513 }
mjr 1:d913e0afb2ac 1514
mjr 17:ab3cec0c8bf4 1515 // If the plunger is enabled, and we're not already in a firing event,
mjr 17:ab3cec0c8bf4 1516 // and the last plunger reading had the plunger pulled back at least
mjr 17:ab3cec0c8bf4 1517 // a bit, watch for plunger release events until it's time for our next
mjr 17:ab3cec0c8bf4 1518 // USB report.
mjr 17:ab3cec0c8bf4 1519 if (!firing && cfg.d.plungerEnabled && z >= JOYMAX/6)
mjr 17:ab3cec0c8bf4 1520 {
mjr 17:ab3cec0c8bf4 1521 // monitor the plunger until it's time for our next report
mjr 17:ab3cec0c8bf4 1522 while (reportTimer.read_ms() < 15)
mjr 17:ab3cec0c8bf4 1523 {
mjr 17:ab3cec0c8bf4 1524 // do a fast low-res scan; if it's at or past the zero point,
mjr 17:ab3cec0c8bf4 1525 // start a firing event
mjr 17:ab3cec0c8bf4 1526 if (plungerSensor.lowResScan() <= cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 1527 firing = 1;
mjr 17:ab3cec0c8bf4 1528 }
mjr 17:ab3cec0c8bf4 1529 }
mjr 17:ab3cec0c8bf4 1530
mjr 6:cc35eb643e8f 1531 // read the plunger sensor, if it's enabled
mjr 17:ab3cec0c8bf4 1532 if (cfg.d.plungerEnabled)
mjr 6:cc35eb643e8f 1533 {
mjr 6:cc35eb643e8f 1534 // start with the previous reading, in case we don't have a
mjr 6:cc35eb643e8f 1535 // clear result on this frame
mjr 6:cc35eb643e8f 1536 int znew = z;
mjr 17:ab3cec0c8bf4 1537 if (plungerSensor.highResScan(pos))
mjr 6:cc35eb643e8f 1538 {
mjr 17:ab3cec0c8bf4 1539 // We got a new reading. If we're in calibration mode, use it
mjr 17:ab3cec0c8bf4 1540 // to figure the new calibration, otherwise adjust the new reading
mjr 17:ab3cec0c8bf4 1541 // for the established calibration.
mjr 17:ab3cec0c8bf4 1542 if (calBtnState == 3)
mjr 6:cc35eb643e8f 1543 {
mjr 17:ab3cec0c8bf4 1544 // Calibration mode. If this reading is outside of the current
mjr 17:ab3cec0c8bf4 1545 // calibration bounds, expand the bounds.
mjr 17:ab3cec0c8bf4 1546 if (pos < cfg.d.plungerMin)
mjr 17:ab3cec0c8bf4 1547 cfg.d.plungerMin = pos;
mjr 17:ab3cec0c8bf4 1548 if (pos < cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 1549 cfg.d.plungerZero = pos;
mjr 17:ab3cec0c8bf4 1550 if (pos > cfg.d.plungerMax)
mjr 17:ab3cec0c8bf4 1551 cfg.d.plungerMax = pos;
mjr 6:cc35eb643e8f 1552
mjr 17:ab3cec0c8bf4 1553 // normalize to the full physical range while calibrating
mjr 17:ab3cec0c8bf4 1554 znew = int(round(float(pos)/npix * JOYMAX));
mjr 17:ab3cec0c8bf4 1555 }
mjr 17:ab3cec0c8bf4 1556 else
mjr 17:ab3cec0c8bf4 1557 {
mjr 17:ab3cec0c8bf4 1558 // Not in calibration mode, so normalize the new reading to the
mjr 17:ab3cec0c8bf4 1559 // established calibration range.
mjr 17:ab3cec0c8bf4 1560 //
mjr 17:ab3cec0c8bf4 1561 // Note that negative values are allowed. Zero represents the
mjr 17:ab3cec0c8bf4 1562 // "park" position, where the plunger sits when at rest. A mechanical
mjr 17:ab3cec0c8bf4 1563 // plunger has a smmall amount of travel in the "push" direction,
mjr 17:ab3cec0c8bf4 1564 // since the barrel spring can be compressed slightly. Negative
mjr 17:ab3cec0c8bf4 1565 // values represent travel in the push direction.
mjr 17:ab3cec0c8bf4 1566 if (pos > cfg.d.plungerMax)
mjr 17:ab3cec0c8bf4 1567 pos = cfg.d.plungerMax;
mjr 17:ab3cec0c8bf4 1568 znew = int(round(float(pos - cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 1569 / (cfg.d.plungerMax - cfg.d.plungerZero + 1) * JOYMAX));
mjr 6:cc35eb643e8f 1570 }
mjr 6:cc35eb643e8f 1571 }
mjr 7:100a25f8bf56 1572
mjr 17:ab3cec0c8bf4 1573 // If we're not already in a firing event, check to see if the
mjr 17:ab3cec0c8bf4 1574 // new position is forward of the last report. If it is, a firing
mjr 17:ab3cec0c8bf4 1575 // event might have started during the high-res scan. This might
mjr 17:ab3cec0c8bf4 1576 // seem unlikely given that the scan only takes about 5ms, but that
mjr 17:ab3cec0c8bf4 1577 // 5ms represents about 25-30% of our total time between reports,
mjr 17:ab3cec0c8bf4 1578 // there's about a 1 in 4 chance that a release starts during a
mjr 17:ab3cec0c8bf4 1579 // scan.
mjr 17:ab3cec0c8bf4 1580 if (!firing && z0 > 0 && znew < z0)
mjr 17:ab3cec0c8bf4 1581 {
mjr 17:ab3cec0c8bf4 1582 // The plunger has moved forward since the previous report.
mjr 17:ab3cec0c8bf4 1583 // Watch it for a few more ms to see if we can get a stable
mjr 17:ab3cec0c8bf4 1584 // new position.
mjr 17:ab3cec0c8bf4 1585 int pos1 = plungerSensor.lowResScan();
mjr 17:ab3cec0c8bf4 1586 Timer tw;
mjr 17:ab3cec0c8bf4 1587 tw.start();
mjr 17:ab3cec0c8bf4 1588 while (tw.read_ms() < 6)
mjr 17:ab3cec0c8bf4 1589 {
mjr 17:ab3cec0c8bf4 1590 // if we've crossed the rest position, it's a firing event
mjr 17:ab3cec0c8bf4 1591 if (pos1 < cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 1592 {
mjr 17:ab3cec0c8bf4 1593 firing = 1;
mjr 17:ab3cec0c8bf4 1594 break;
mjr 17:ab3cec0c8bf4 1595 }
mjr 17:ab3cec0c8bf4 1596
mjr 17:ab3cec0c8bf4 1597 // read the new position
mjr 17:ab3cec0c8bf4 1598 int pos2 = plungerSensor.lowResScan();
mjr 17:ab3cec0c8bf4 1599
mjr 17:ab3cec0c8bf4 1600 // if it's stable, stop looping
mjr 17:ab3cec0c8bf4 1601 if (abs(pos2 - pos1) < int(npix/(3.2*8)))
mjr 17:ab3cec0c8bf4 1602 break;
mjr 17:ab3cec0c8bf4 1603
mjr 17:ab3cec0c8bf4 1604 // the new reading is now the prior reading
mjr 17:ab3cec0c8bf4 1605 pos1 = pos2;
mjr 17:ab3cec0c8bf4 1606 }
mjr 17:ab3cec0c8bf4 1607 }
mjr 17:ab3cec0c8bf4 1608
mjr 17:ab3cec0c8bf4 1609 // Check for a simulated Launch Ball button press, if enabled
mjr 18:5e890ebd0023 1610 if (ZBLaunchBallPort != 0)
mjr 17:ab3cec0c8bf4 1611 {
mjr 18:5e890ebd0023 1612 const int cockThreshold = JOYMAX/3;
mjr 18:5e890ebd0023 1613 const int pushThreshold = int(-JOYMAX/3 * LaunchBallPushDistance);
mjr 17:ab3cec0c8bf4 1614 int newState = lbState;
mjr 17:ab3cec0c8bf4 1615 switch (lbState)
mjr 17:ab3cec0c8bf4 1616 {
mjr 17:ab3cec0c8bf4 1617 case 0:
mjr 17:ab3cec0c8bf4 1618 // Base state. If the plunger is pulled back by an inch
mjr 17:ab3cec0c8bf4 1619 // or more, go to "cocked" state. If the plunger is pushed
mjr 17:ab3cec0c8bf4 1620 // forward by 1/4" or more, go to "launch" state.
mjr 18:5e890ebd0023 1621 if (znew >= cockThreshold)
mjr 17:ab3cec0c8bf4 1622 newState = 1;
mjr 18:5e890ebd0023 1623 else if (znew <= pushThreshold)
mjr 17:ab3cec0c8bf4 1624 newState = 3;
mjr 17:ab3cec0c8bf4 1625 break;
mjr 17:ab3cec0c8bf4 1626
mjr 17:ab3cec0c8bf4 1627 case 1:
mjr 17:ab3cec0c8bf4 1628 // Cocked state. If a firing event is now in progress,
mjr 17:ab3cec0c8bf4 1629 // go to "launch" state. Otherwise, if the plunger is less
mjr 17:ab3cec0c8bf4 1630 // than 1" retracted, go to "uncocked" state - the player
mjr 17:ab3cec0c8bf4 1631 // might be slowly returning the plunger to rest so as not
mjr 17:ab3cec0c8bf4 1632 // to trigger a launch.
mjr 17:ab3cec0c8bf4 1633 if (firing || znew <= 0)
mjr 17:ab3cec0c8bf4 1634 newState = 3;
mjr 18:5e890ebd0023 1635 else if (znew < cockThreshold)
mjr 17:ab3cec0c8bf4 1636 newState = 2;
mjr 17:ab3cec0c8bf4 1637 break;
mjr 17:ab3cec0c8bf4 1638
mjr 17:ab3cec0c8bf4 1639 case 2:
mjr 17:ab3cec0c8bf4 1640 // Uncocked state. If the plunger is more than an inch
mjr 17:ab3cec0c8bf4 1641 // retracted, return to cocked state. If we've been in
mjr 17:ab3cec0c8bf4 1642 // the uncocked state for more than half a second, return
mjr 18:5e890ebd0023 1643 // to the base state. This allows the user to return the
mjr 18:5e890ebd0023 1644 // plunger to rest without triggering a launch, by moving
mjr 18:5e890ebd0023 1645 // it at manual speed to the rest position rather than
mjr 18:5e890ebd0023 1646 // releasing it.
mjr 18:5e890ebd0023 1647 if (znew >= cockThreshold)
mjr 17:ab3cec0c8bf4 1648 newState = 1;
mjr 17:ab3cec0c8bf4 1649 else if (lbTimer.read_ms() > 500)
mjr 17:ab3cec0c8bf4 1650 newState = 0;
mjr 17:ab3cec0c8bf4 1651 break;
mjr 17:ab3cec0c8bf4 1652
mjr 17:ab3cec0c8bf4 1653 case 3:
mjr 17:ab3cec0c8bf4 1654 // Launch state. If the plunger is no longer pushed
mjr 17:ab3cec0c8bf4 1655 // forward, switch to launch rest state.
mjr 18:5e890ebd0023 1656 if (znew >= 0)
mjr 17:ab3cec0c8bf4 1657 newState = 4;
mjr 17:ab3cec0c8bf4 1658 break;
mjr 17:ab3cec0c8bf4 1659
mjr 17:ab3cec0c8bf4 1660 case 4:
mjr 17:ab3cec0c8bf4 1661 // Launch rest state. If the plunger is pushed forward
mjr 17:ab3cec0c8bf4 1662 // again, switch back to launch state. If not, and we've
mjr 17:ab3cec0c8bf4 1663 // been in this state for at least 200ms, return to the
mjr 17:ab3cec0c8bf4 1664 // default state.
mjr 18:5e890ebd0023 1665 if (znew <= pushThreshold)
mjr 17:ab3cec0c8bf4 1666 newState = 3;
mjr 17:ab3cec0c8bf4 1667 else if (lbTimer.read_ms() > 200)
mjr 17:ab3cec0c8bf4 1668 newState = 0;
mjr 17:ab3cec0c8bf4 1669 break;
mjr 17:ab3cec0c8bf4 1670 }
mjr 17:ab3cec0c8bf4 1671
mjr 17:ab3cec0c8bf4 1672 // change states if desired
mjr 18:5e890ebd0023 1673 const uint32_t lbButtonBit = (1 << (LaunchBallButton - 1));
mjr 17:ab3cec0c8bf4 1674 if (newState != lbState)
mjr 17:ab3cec0c8bf4 1675 {
mjr 18:5e890ebd0023 1676 // if we're entering Launch state, and the ZB Launch Ball
mjr 18:5e890ebd0023 1677 // LedWiz signal is turned on, simulate a Launch Ball button
mjr 18:5e890ebd0023 1678 // press
mjr 18:5e890ebd0023 1679 if (newState == 3 && lbState != 4 && wizOn[ZBLaunchBallPort-1])
mjr 18:5e890ebd0023 1680 {
mjr 18:5e890ebd0023 1681 lbBtnTimer.reset();
mjr 18:5e890ebd0023 1682 lbBtnTimer.start();
mjr 18:5e890ebd0023 1683 simButtons |= lbButtonBit;
mjr 18:5e890ebd0023 1684 }
mjr 17:ab3cec0c8bf4 1685
mjr 17:ab3cec0c8bf4 1686 // if we're switching to state 0, release the button
mjr 17:ab3cec0c8bf4 1687 if (newState == 0)
mjr 17:ab3cec0c8bf4 1688 simButtons &= ~(1 << (LaunchBallButton - 1));
mjr 17:ab3cec0c8bf4 1689
mjr 17:ab3cec0c8bf4 1690 // switch to the new state
mjr 17:ab3cec0c8bf4 1691 lbState = newState;
mjr 17:ab3cec0c8bf4 1692
mjr 17:ab3cec0c8bf4 1693 // start timing in the new state
mjr 17:ab3cec0c8bf4 1694 lbTimer.reset();
mjr 17:ab3cec0c8bf4 1695 }
mjr 18:5e890ebd0023 1696
mjr 18:5e890ebd0023 1697 // if the simulated Launch Ball button press is in effect,
mjr 18:5e890ebd0023 1698 // and either it's been in effect too long or the ZB Launch
mjr 18:5e890ebd0023 1699 // Ball signal is no longer active, turn off the button
mjr 18:5e890ebd0023 1700 if ((simButtons & lbButtonBit) != 0
mjr 18:5e890ebd0023 1701 && (!wizOn[ZBLaunchBallPort-1] || lbBtnTimer.read_ms() > 250))
mjr 18:5e890ebd0023 1702 {
mjr 18:5e890ebd0023 1703 lbBtnTimer.stop();
mjr 18:5e890ebd0023 1704 simButtons &= ~lbButtonBit;
mjr 18:5e890ebd0023 1705 }
mjr 18:5e890ebd0023 1706
mjr 17:ab3cec0c8bf4 1707 }
mjr 17:ab3cec0c8bf4 1708
mjr 17:ab3cec0c8bf4 1709 // If a firing event is in progress, generate synthetic reports to
mjr 17:ab3cec0c8bf4 1710 // describe an idealized version of the plunger motion to VP rather
mjr 17:ab3cec0c8bf4 1711 // than reporting the actual physical plunger position.
mjr 6:cc35eb643e8f 1712 //
mjr 17:ab3cec0c8bf4 1713 // We use the synthetic reports during a release event because the
mjr 17:ab3cec0c8bf4 1714 // physical plunger motion when released is too fast for VP to track.
mjr 17:ab3cec0c8bf4 1715 // VP only syncs its internal physics model with the outside world
mjr 17:ab3cec0c8bf4 1716 // about every 10ms. In that amount of time, the plunger moves
mjr 17:ab3cec0c8bf4 1717 // fast enough when released that it can shoot all the way forward,
mjr 17:ab3cec0c8bf4 1718 // bounce off of the barrel spring, and rebound part of the way
mjr 17:ab3cec0c8bf4 1719 // back. The result is the classic analog-to-digital problem of
mjr 17:ab3cec0c8bf4 1720 // sample aliasing. If we happen to time our sample during the
mjr 17:ab3cec0c8bf4 1721 // release motion so that we catch the plunger at the peak of a
mjr 17:ab3cec0c8bf4 1722 // bounce, the digital signal incorrectly looks like the plunger
mjr 17:ab3cec0c8bf4 1723 // is moving slowly forward - VP thinks we went from fully
mjr 17:ab3cec0c8bf4 1724 // retracted to half retracted in the sample interval, whereas
mjr 17:ab3cec0c8bf4 1725 // we actually traveled all the way forward and half way back,
mjr 17:ab3cec0c8bf4 1726 // so the speed VP infers is about 1/3 of the actual speed.
mjr 9:fd65b0a94720 1727 //
mjr 17:ab3cec0c8bf4 1728 // To correct this, we take advantage of our ability to sample
mjr 17:ab3cec0c8bf4 1729 // the CCD image several times in the course of a VP report. If
mjr 17:ab3cec0c8bf4 1730 // we catch the plunger near the origin after we've seen it
mjr 17:ab3cec0c8bf4 1731 // retracted, we go into Release Event mode. During this mode,
mjr 17:ab3cec0c8bf4 1732 // we stop reporting the true physical plunger position, and
mjr 17:ab3cec0c8bf4 1733 // instead report an idealized pattern: we report the plunger
mjr 17:ab3cec0c8bf4 1734 // immediately shooting forward to a position in front of the
mjr 17:ab3cec0c8bf4 1735 // park position that's in proportion to how far back the plunger
mjr 17:ab3cec0c8bf4 1736 // was just before the release, and we then report it stationary
mjr 17:ab3cec0c8bf4 1737 // at the park position. We continue to report the stationary
mjr 17:ab3cec0c8bf4 1738 // park position until the actual physical plunger motion has
mjr 17:ab3cec0c8bf4 1739 // stabilized on a new position. We then exit Release Event
mjr 17:ab3cec0c8bf4 1740 // mode and return to reporting the true physical position.
mjr 17:ab3cec0c8bf4 1741 if (firing)
mjr 6:cc35eb643e8f 1742 {
mjr 17:ab3cec0c8bf4 1743 // Firing in progress. Keep reporting the park position
mjr 17:ab3cec0c8bf4 1744 // until the physical plunger position comes to rest.
mjr 17:ab3cec0c8bf4 1745 const int restTol = JOYMAX/24;
mjr 17:ab3cec0c8bf4 1746 if (firing == 1)
mjr 6:cc35eb643e8f 1747 {
mjr 17:ab3cec0c8bf4 1748 // For the first couple of frames, show the plunger shooting
mjr 17:ab3cec0c8bf4 1749 // forward past the zero point, to simulate the momentum carrying
mjr 17:ab3cec0c8bf4 1750 // it forward to bounce off of the barrel spring. Show the
mjr 17:ab3cec0c8bf4 1751 // bounce as proportional to the distance it was retracted
mjr 17:ab3cec0c8bf4 1752 // in the prior report.
mjr 17:ab3cec0c8bf4 1753 z = zBounce = -z0/6;
mjr 17:ab3cec0c8bf4 1754 ++firing;
mjr 6:cc35eb643e8f 1755 }
mjr 17:ab3cec0c8bf4 1756 else if (firing == 2)
mjr 9:fd65b0a94720 1757 {
mjr 17:ab3cec0c8bf4 1758 // second frame - keep the bounce a little longer
mjr 17:ab3cec0c8bf4 1759 z = zBounce;
mjr 17:ab3cec0c8bf4 1760 ++firing;
mjr 17:ab3cec0c8bf4 1761 }
mjr 17:ab3cec0c8bf4 1762 else if (firing > 4
mjr 17:ab3cec0c8bf4 1763 && abs(znew - z0) < restTol
mjr 17:ab3cec0c8bf4 1764 && abs(znew - z1) < restTol
mjr 17:ab3cec0c8bf4 1765 && abs(znew - z2) < restTol)
mjr 17:ab3cec0c8bf4 1766 {
mjr 17:ab3cec0c8bf4 1767 // The physical plunger has come to rest. Exit firing
mjr 17:ab3cec0c8bf4 1768 // mode and resume reporting the actual position.
mjr 17:ab3cec0c8bf4 1769 firing = false;
mjr 17:ab3cec0c8bf4 1770 z = znew;
mjr 9:fd65b0a94720 1771 }
mjr 9:fd65b0a94720 1772 else
mjr 9:fd65b0a94720 1773 {
mjr 17:ab3cec0c8bf4 1774 // until the physical plunger comes to rest, simply
mjr 17:ab3cec0c8bf4 1775 // report the park position
mjr 9:fd65b0a94720 1776 z = 0;
mjr 17:ab3cec0c8bf4 1777 ++firing;
mjr 9:fd65b0a94720 1778 }
mjr 6:cc35eb643e8f 1779 }
mjr 6:cc35eb643e8f 1780 else
mjr 6:cc35eb643e8f 1781 {
mjr 17:ab3cec0c8bf4 1782 // not in firing mode - report the true physical position
mjr 17:ab3cec0c8bf4 1783 z = znew;
mjr 6:cc35eb643e8f 1784 }
mjr 17:ab3cec0c8bf4 1785
mjr 17:ab3cec0c8bf4 1786 // shift the new reading into the recent history buffer
mjr 6:cc35eb643e8f 1787 z2 = z1;
mjr 6:cc35eb643e8f 1788 z1 = z0;
mjr 6:cc35eb643e8f 1789 z0 = znew;
mjr 2:c174f9ee414a 1790 }
mjr 6:cc35eb643e8f 1791
mjr 11:bd9da7088e6e 1792 // update the buttons
mjr 18:5e890ebd0023 1793 uint32_t buttons = readButtons();
mjr 17:ab3cec0c8bf4 1794
mjr 17:ab3cec0c8bf4 1795 // If it's been long enough since our last USB status report,
mjr 17:ab3cec0c8bf4 1796 // send the new report. We throttle the report rate because
mjr 17:ab3cec0c8bf4 1797 // it can overwhelm the PC side if we report too frequently.
mjr 17:ab3cec0c8bf4 1798 // VP only wants to sync with the real world in 10ms intervals,
mjr 17:ab3cec0c8bf4 1799 // so reporting more frequently only creates i/o overhead
mjr 17:ab3cec0c8bf4 1800 // without doing anything to improve the simulation.
mjr 17:ab3cec0c8bf4 1801 if (reportTimer.read_ms() > 15)
mjr 17:ab3cec0c8bf4 1802 {
mjr 17:ab3cec0c8bf4 1803 // read the accelerometer
mjr 17:ab3cec0c8bf4 1804 int xa, ya;
mjr 17:ab3cec0c8bf4 1805 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 1806
mjr 17:ab3cec0c8bf4 1807 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 1808 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 1809 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 1810 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 1811 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 1812
mjr 17:ab3cec0c8bf4 1813 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 1814 x = xa;
mjr 17:ab3cec0c8bf4 1815 y = ya;
mjr 17:ab3cec0c8bf4 1816
mjr 17:ab3cec0c8bf4 1817 // Send the status report. Note that the nominal x and y axes
mjr 17:ab3cec0c8bf4 1818 // are reversed - this makes it more intuitive to set up in VP.
mjr 17:ab3cec0c8bf4 1819 // If we mount the Freesale card flat on the floor of the cabinet
mjr 17:ab3cec0c8bf4 1820 // with the USB connectors facing the front of the cabinet, this
mjr 17:ab3cec0c8bf4 1821 // arrangement of our nominal axes aligns with VP's standard
mjr 17:ab3cec0c8bf4 1822 // setting, so that we can configure VP with X Axis = X on the
mjr 17:ab3cec0c8bf4 1823 // joystick and Y Axis = Y on the joystick.
mjr 17:ab3cec0c8bf4 1824 js.update(y, x, z, buttons | simButtons, statusFlags);
mjr 17:ab3cec0c8bf4 1825
mjr 17:ab3cec0c8bf4 1826 // we've just started a new report interval, so reset the timer
mjr 17:ab3cec0c8bf4 1827 reportTimer.reset();
mjr 17:ab3cec0c8bf4 1828 }
mjr 1:d913e0afb2ac 1829
mjr 10:976666ffa4ef 1830 // If we're in pixel dump mode, report all pixel exposure values
mjr 10:976666ffa4ef 1831 if (reportPix)
mjr 10:976666ffa4ef 1832 {
mjr 17:ab3cec0c8bf4 1833 // send the report
mjr 17:ab3cec0c8bf4 1834 plungerSensor.sendExposureReport(js);
mjr 17:ab3cec0c8bf4 1835
mjr 10:976666ffa4ef 1836 // we have satisfied this request
mjr 10:976666ffa4ef 1837 reportPix = false;
mjr 10:976666ffa4ef 1838 }
mjr 10:976666ffa4ef 1839
mjr 6:cc35eb643e8f 1840 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1841 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1842 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 1843 #endif
mjr 6:cc35eb643e8f 1844
mjr 6:cc35eb643e8f 1845 // provide a visual status indication on the on-board LED
mjr 5:a70c0bce770d 1846 if (calBtnState < 2 && hbTimer.read_ms() > 1000)
mjr 1:d913e0afb2ac 1847 {
mjr 5:a70c0bce770d 1848 if (js.isSuspended() || !js.isConnected())
mjr 2:c174f9ee414a 1849 {
mjr 5:a70c0bce770d 1850 // suspended - turn off the LED
mjr 4:02c7cd7b2183 1851 ledR = 1;
mjr 4:02c7cd7b2183 1852 ledG = 1;
mjr 4:02c7cd7b2183 1853 ledB = 1;
mjr 5:a70c0bce770d 1854
mjr 5:a70c0bce770d 1855 // show a status flash every so often
mjr 5:a70c0bce770d 1856 if (hbcnt % 3 == 0)
mjr 5:a70c0bce770d 1857 {
mjr 6:cc35eb643e8f 1858 // disconnected = red/red flash; suspended = red
mjr 5:a70c0bce770d 1859 for (int n = js.isConnected() ? 1 : 2 ; n > 0 ; --n)
mjr 5:a70c0bce770d 1860 {
mjr 5:a70c0bce770d 1861 ledR = 0;
mjr 5:a70c0bce770d 1862 wait(0.05);
mjr 5:a70c0bce770d 1863 ledR = 1;
mjr 5:a70c0bce770d 1864 wait(0.25);
mjr 5:a70c0bce770d 1865 }
mjr 5:a70c0bce770d 1866 }
mjr 2:c174f9ee414a 1867 }
mjr 6:cc35eb643e8f 1868 else if (needReset)
mjr 2:c174f9ee414a 1869 {
mjr 6:cc35eb643e8f 1870 // connected, need to reset due to changes in config parameters -
mjr 6:cc35eb643e8f 1871 // flash red/green
mjr 6:cc35eb643e8f 1872 hb = !hb;
mjr 6:cc35eb643e8f 1873 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1874 ledG = (hb ? 1 : 0);
mjr 6:cc35eb643e8f 1875 ledB = 0;
mjr 6:cc35eb643e8f 1876 }
mjr 17:ab3cec0c8bf4 1877 else if (cfg.d.plungerEnabled && !cfg.d.plungerCal)
mjr 6:cc35eb643e8f 1878 {
mjr 6:cc35eb643e8f 1879 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 1880 hb = !hb;
mjr 6:cc35eb643e8f 1881 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1882 ledG = 0;
mjr 6:cc35eb643e8f 1883 ledB = 1;
mjr 6:cc35eb643e8f 1884 }
mjr 6:cc35eb643e8f 1885 else
mjr 6:cc35eb643e8f 1886 {
mjr 6:cc35eb643e8f 1887 // connected - flash blue/green
mjr 2:c174f9ee414a 1888 hb = !hb;
mjr 4:02c7cd7b2183 1889 ledR = 1;
mjr 4:02c7cd7b2183 1890 ledG = (hb ? 0 : 1);
mjr 4:02c7cd7b2183 1891 ledB = (hb ? 1 : 0);
mjr 2:c174f9ee414a 1892 }
mjr 1:d913e0afb2ac 1893
mjr 1:d913e0afb2ac 1894 // reset the heartbeat timer
mjr 1:d913e0afb2ac 1895 hbTimer.reset();
mjr 5:a70c0bce770d 1896 ++hbcnt;
mjr 1:d913e0afb2ac 1897 }
mjr 1:d913e0afb2ac 1898 }
mjr 0:5acbbe3f4cf4 1899 }