An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Tue Mar 01 23:21:45 2016 +0000
Revision:
51:57eb311faafa
Parent:
48:058ace2aed1d
Child:
52:8298b2a73eb2
Saving old CCD processing modes

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 // USB Message Protocol
mjr 35:e959ffba78fd 2 //
mjr 35:e959ffba78fd 3 // This file is purely for documentation, to describe our USB protocol.
mjr 35:e959ffba78fd 4 // We use the standard HID setup with one endpoint in each direction.
mjr 35:e959ffba78fd 5 // See USBJoystick.cpp/.h for our USB descriptor arrangement.
mjr 35:e959ffba78fd 6 //
mjr 35:e959ffba78fd 7
mjr 35:e959ffba78fd 8 // ------ OUTGOING MESSAGES (DEVICE TO HOST) ------
mjr 35:e959ffba78fd 9 //
mjr 47:df7a88cd249c 10 // General note: 16-bit and 32-bit fields in our reports are little-endian
mjr 47:df7a88cd249c 11 // unless otherwise specified.
mjr 47:df7a88cd249c 12 //
mjr 39:b3815a1c3802 13 // 1. Joystick reports
mjr 35:e959ffba78fd 14 // In most cases, our outgoing messages are HID joystick reports, using the
mjr 35:e959ffba78fd 15 // format defined in USBJoystick.cpp. This allows us to be installed on
mjr 35:e959ffba78fd 16 // Windows as a standard USB joystick, which all versions of Windows support
mjr 35:e959ffba78fd 17 // using in-the-box drivers. This allows a completely transparent, driverless,
mjr 39:b3815a1c3802 18 // plug-and-play installation experience on Windows. Our joystick report
mjr 39:b3815a1c3802 19 // looks like this (see USBJoystick.cpp for the formal HID report descriptor):
mjr 35:e959ffba78fd 20 //
mjr 39:b3815a1c3802 21 // ss status bits: 0x01 -> plunger enabled
mjr 40:cc0d9814522b 22 // 00 2nd byte of status (reserved)
mjr 40:cc0d9814522b 23 // 00 3rd byte of status (reserved)
mjr 39:b3815a1c3802 24 // 00 always zero for joystick reports
mjr 40:cc0d9814522b 25 // bb joystick buttons, low byte (buttons 1-8, 1 bit per button)
mjr 40:cc0d9814522b 26 // bb joystick buttons, 2nd byte (buttons 9-16)
mjr 40:cc0d9814522b 27 // bb joystick buttons, 3rd byte (buttons 17-24)
mjr 40:cc0d9814522b 28 // bb joystick buttons, high byte (buttons 25-32)
mjr 39:b3815a1c3802 29 // xx low byte of X position = nudge/accelerometer X axis
mjr 39:b3815a1c3802 30 // xx high byte of X position
mjr 39:b3815a1c3802 31 // yy low byte of Y position = nudge/accelerometer Y axis
mjr 39:b3815a1c3802 32 // yy high byte of Y position
mjr 39:b3815a1c3802 33 // zz low byte of Z position = plunger position
mjr 39:b3815a1c3802 34 // zz high byte of Z position
mjr 39:b3815a1c3802 35 //
mjr 39:b3815a1c3802 36 // The X, Y, and Z values are 16-bit signed integers. The accelerometer
mjr 39:b3815a1c3802 37 // values are on an abstract scale, where 0 represents no acceleration,
mjr 39:b3815a1c3802 38 // negative maximum represents -1g on that axis, and positive maximum
mjr 39:b3815a1c3802 39 // represents +1g on that axis. For the plunger position, 0 is the park
mjr 39:b3815a1c3802 40 // position (the rest position of the plunger) and positive values represent
mjr 39:b3815a1c3802 41 // retracted (pulled back) positions. A negative value means that the plunger
mjr 39:b3815a1c3802 42 // is pushed forward of the park position.
mjr 39:b3815a1c3802 43 //
mjr 39:b3815a1c3802 44 // 2. Special reports
mjr 35:e959ffba78fd 45 // We subvert the joystick report format in certain cases to report other
mjr 35:e959ffba78fd 46 // types of information, when specifically requested by the host. This allows
mjr 35:e959ffba78fd 47 // our custom configuration UI on the Windows side to query additional
mjr 35:e959ffba78fd 48 // information that we don't normally send via the joystick reports. We
mjr 35:e959ffba78fd 49 // define a custom vendor-specific "status" field in the reports that we
mjr 35:e959ffba78fd 50 // use to identify these special reports, as described below.
mjr 35:e959ffba78fd 51 //
mjr 39:b3815a1c3802 52 // Normal joystick reports always have 0 in the high bit of the 2nd byte
mjr 35:e959ffba78fd 53 // of the report. Special non-joystick reports always have 1 in the high bit
mjr 35:e959ffba78fd 54 // of the first byte. (This byte is defined in the HID Report Descriptor
mjr 35:e959ffba78fd 55 // as an opaque vendor-defined value, so the joystick interface on the
mjr 35:e959ffba78fd 56 // Windows side simply ignores it.)
mjr 35:e959ffba78fd 57 //
mjr 39:b3815a1c3802 58 // 2A. Plunger sensor pixel dump
mjr 39:b3815a1c3802 59 // Software on the PC can request a full read of the pixels from the plunger
mjr 39:b3815a1c3802 60 // image sensor (if an imaging sensor type is being used) by sending custom
mjr 39:b3815a1c3802 61 // protocol message 65 3 (see below). Normally, the pixels from the image
mjr 39:b3815a1c3802 62 // sensor are read and processed on the controller device without being sent
mjr 39:b3815a1c3802 63 // to the PC; the PC only receives the plunger position reading obtained from
mjr 39:b3815a1c3802 64 // analyzing the image data. For debugging and setup purposes, software on
mjr 39:b3815a1c3802 65 // the host can use this special report to obtain the full image pixel array.
mjr 39:b3815a1c3802 66 // The image sensors we use have too many pixels to fit into one report, so
mjr 39:b3815a1c3802 67 // we have to send a series of reports to transmit the full image. We send
mjr 39:b3815a1c3802 68 // as many reports as necessary to transmit the full image. Each report
mjr 39:b3815a1c3802 69 // looks like this:
mjr 35:e959ffba78fd 70 //
mjr 35:e959ffba78fd 71 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 48:058ace2aed1d 72 // example, 0x8004 (encoded little endian as 0x04 0x80)
mjr 48:058ace2aed1d 73 // indicates index 4. This is the starting pixel number
mjr 48:058ace2aed1d 74 // in the report. The first report will be 0x00 0x80 to
mjr 48:058ace2aed1d 75 // indicate pixel #0.
mjr 47:df7a88cd249c 76 // bytes 2 = 8-bit unsigned int brightness level of pixel at index
mjr 47:df7a88cd249c 77 // bytes 3 = brightness of pixel at index+1
mjr 35:e959ffba78fd 78 // etc for the rest of the packet
mjr 35:e959ffba78fd 79 //
mjr 48:058ace2aed1d 80 // The pixel dump also sends a special final report, after all of the
mjr 48:058ace2aed1d 81 // pixel messages, with the "index" field set to 0x7FF (11 bits of 1's).
mjr 51:57eb311faafa 82 // This report packs special fields instead of pixels. There are two
mjr 51:57eb311faafa 83 // subtypes, sent in sequence:
mjr 48:058ace2aed1d 84 //
mjr 51:57eb311faafa 85 // Subtype 0:
mjr 48:058ace2aed1d 86 // bytes 0:1 = 0x87FF (pixel report flags + index 0x7FF)
mjr 51:57eb311faafa 87 // byte 2 = 0x00 -> special report subtype 0
mjr 48:058ace2aed1d 88 // bytes 3:4 = pixel position of detected shadow edge in this image,
mjr 48:058ace2aed1d 89 // or 0xFFFF if no edge was found in this image. For
mjr 48:058ace2aed1d 90 // raw pixel reports, no edge will be detected because
mjr 48:058ace2aed1d 91 // we don't look for one.
mjr 48:058ace2aed1d 92 // byte 5 = flags:
mjr 48:058ace2aed1d 93 // 0x01 = normal orientation detected
mjr 48:058ace2aed1d 94 // 0x02 = reversed orientation detected
mjr 48:058ace2aed1d 95 // bytes 6:7:8 = average time for a sensor scan, in 10us units
mjr 48:058ace2aed1d 96 // byte 9:10:11 = time for processing this image, in 10us units
mjr 48:058ace2aed1d 97 //
mjr 51:57eb311faafa 98 // Subtype 1:
mjr 51:57eb311faafa 99 // bytes 0:1 = 0x87FF
mjr 51:57eb311faafa 100 // byte 2 = 0x01 -> special report subtype 1
mjr 51:57eb311faafa 101 // bytes 3:4 = calibration zero point, in pixels (16-bit little-endian)
mjr 51:57eb311faafa 102 // bytes 5:6 = calibration maximum point, in pixels
mjr 51:57eb311faafa 103 // bytes 7:8 = calibration minimum point, in pixels
mjr 51:57eb311faafa 104 // byte 9 = calibrated release time, in milliseconds
mjr 51:57eb311faafa 105 //
mjr 51:57eb311faafa 106 //
mjr 39:b3815a1c3802 107 // 2B. Configuration query.
mjr 39:b3815a1c3802 108 // This is requested by sending custom protocol message 65 4 (see below).
mjr 39:b3815a1c3802 109 // In reponse, the device sends one report to the host using this format:
mjr 35:e959ffba78fd 110 //
mjr 35:e959ffba78fd 111 // bytes 0:1 = 0x8800. This has the bit pattern 10001 in the high
mjr 35:e959ffba78fd 112 // 5 bits, which distinguishes it from regular joystick
mjr 40:cc0d9814522b 113 // reports and from other special report types.
mjr 35:e959ffba78fd 114 // bytes 2:3 = total number of outputs, little endian
mjr 40:cc0d9814522b 115 // bytes 6:7 = plunger calibration zero point, little endian
mjr 40:cc0d9814522b 116 // bytes 8:9 = plunger calibration maximum point, little endian
mjr 40:cc0d9814522b 117 // byte 10 = bit flags:
mjr 40:cc0d9814522b 118 // 0x01 -> configuration loaded; 0 in this bit means that
mjr 40:cc0d9814522b 119 // the firmware has been loaded but no configuration
mjr 40:cc0d9814522b 120 // has been sent from the host
mjr 40:cc0d9814522b 121 // The remaining bytes are reserved for future use.
mjr 35:e959ffba78fd 122 //
mjr 40:cc0d9814522b 123 // 2C. Device ID query.
mjr 40:cc0d9814522b 124 // This is requested by sending custom protocol message 65 7 (see below).
mjr 40:cc0d9814522b 125 // In response, the device sends one report to the host using this format:
mjr 40:cc0d9814522b 126 //
mjr 40:cc0d9814522b 127 // bytes 0:1 = 0x9000. This has bit pattern 10010 in the high 5
mjr 40:cc0d9814522b 128 // bits, which distinguishes this special report from other
mjr 40:cc0d9814522b 129 // report types.
mjr 40:cc0d9814522b 130 // bytes 2-11 = Unique CPU ID. This is the ID stored in the CPU at the
mjr 40:cc0d9814522b 131 // factory, guaranteed to be unique across Kinetis devices.
mjr 40:cc0d9814522b 132 // This can be used by the host to distinguish devices when
mjr 40:cc0d9814522b 133 // two or more controllers are attached.
mjr 35:e959ffba78fd 134 //
mjr 35:e959ffba78fd 135 // WHY WE USE THIS HACKY APPROACH TO DIFFERENT REPORT TYPES
mjr 35:e959ffba78fd 136 //
mjr 35:e959ffba78fd 137 // The HID report system was specifically designed to provide a clean,
mjr 35:e959ffba78fd 138 // structured way for devices to describe the data they send to the host.
mjr 35:e959ffba78fd 139 // Our approach isn't clean or structured; it ignores the promises we
mjr 35:e959ffba78fd 140 // make about the contents of our report via the HID Report Descriptor
mjr 35:e959ffba78fd 141 // and stuffs our own different data format into the same structure.
mjr 35:e959ffba78fd 142 //
mjr 35:e959ffba78fd 143 // We use this hacky approach only because we can't use the official
mjr 35:e959ffba78fd 144 // mechanism, due to the constraint that we want to emulate the LedWiz.
mjr 35:e959ffba78fd 145 // The right way to send different report types is to declare different
mjr 35:e959ffba78fd 146 // report types via extra HID Report Descriptors, then send each report
mjr 35:e959ffba78fd 147 // using one of the types we declared. If it weren't for the LedWiz
mjr 35:e959ffba78fd 148 // constraint, we'd simply define the pixel dump and config query reports
mjr 35:e959ffba78fd 149 // as their own separate HID Report types, each consisting of opaque
mjr 35:e959ffba78fd 150 // blocks of bytes. But we can't do this. The snag is that some versions
mjr 35:e959ffba78fd 151 // of the LedWiz Windows host software parse the USB HID descriptors as part
mjr 35:e959ffba78fd 152 // of identifying a device as a valid LedWiz unit, and will only recognize
mjr 35:e959ffba78fd 153 // the device if it matches certain particulars about the descriptor
mjr 35:e959ffba78fd 154 // structure of a real LedWiz. One of the features that's important to
mjr 35:e959ffba78fd 155 // some versions of the software is the descriptor link structure, which
mjr 35:e959ffba78fd 156 // is affected by the layout of HID Report Descriptor entries. In order
mjr 35:e959ffba78fd 157 // to match the expected layout, we can only define a single kind of output
mjr 35:e959ffba78fd 158 // report. Since we have to use Joystick reports for the sake of VP and
mjr 35:e959ffba78fd 159 // other pinball software, and we're only allowed the one report type, we
mjr 35:e959ffba78fd 160 // have to make that one report type the Joystick type. That's why we
mjr 35:e959ffba78fd 161 // overload the joystick reports with other meanings. It's a hack, but
mjr 35:e959ffba78fd 162 // at least it's a fairly reliable and isolated hack, iun that our special
mjr 35:e959ffba78fd 163 // reports are only generated when clients specifically ask for them.
mjr 35:e959ffba78fd 164 // Plus, even if a client who doesn't ask for a special report somehow
mjr 35:e959ffba78fd 165 // gets one, the worst that happens is that they get a momentary spurious
mjr 35:e959ffba78fd 166 // reading from the accelerometer and plunger.
mjr 35:e959ffba78fd 167
mjr 35:e959ffba78fd 168
mjr 35:e959ffba78fd 169
mjr 35:e959ffba78fd 170 // ------- INCOMING MESSAGES (HOST TO DEVICE) -------
mjr 35:e959ffba78fd 171 //
mjr 35:e959ffba78fd 172 // For LedWiz compatibility, our incoming message format conforms to the
mjr 35:e959ffba78fd 173 // basic USB format used by real LedWiz units. This is simply 8 data
mjr 35:e959ffba78fd 174 // bytes, all private vendor-specific values (meaning that the Windows HID
mjr 35:e959ffba78fd 175 // driver treats them as opaque and doesn't attempt to parse them).
mjr 35:e959ffba78fd 176 //
mjr 35:e959ffba78fd 177 // Within this basic 8-byte format, we recognize the full protocol used
mjr 35:e959ffba78fd 178 // by real LedWiz units, plus an extended protocol that we define privately.
mjr 35:e959ffba78fd 179 // The LedWiz protocol leaves a large part of the potential protocol space
mjr 35:e959ffba78fd 180 // undefined, so we take advantage of this undefined region for our
mjr 35:e959ffba78fd 181 // extensions. This ensures that we can properly recognize all messages
mjr 35:e959ffba78fd 182 // intended for a real LedWiz unit, as well as messages from custom host
mjr 35:e959ffba78fd 183 // software that knows it's talking to a Pinscape unit.
mjr 35:e959ffba78fd 184
mjr 35:e959ffba78fd 185 // --- REAL LED WIZ MESSAGES ---
mjr 35:e959ffba78fd 186 //
mjr 35:e959ffba78fd 187 // The real LedWiz protocol has two message types, identified by the first
mjr 35:e959ffba78fd 188 // byte of the 8-byte USB packet:
mjr 35:e959ffba78fd 189 //
mjr 35:e959ffba78fd 190 // 64 -> SBA (64 xx xx xx xx ss uu uu)
mjr 35:e959ffba78fd 191 // xx = on/off bit mask for 8 outputs
mjr 35:e959ffba78fd 192 // ss = global flash speed setting (1-7)
mjr 35:e959ffba78fd 193 // uu = unused
mjr 35:e959ffba78fd 194 //
mjr 35:e959ffba78fd 195 // If the first byte has value 64 (0x40), it's an SBA message. This type of
mjr 35:e959ffba78fd 196 // message sets all 32 outputs individually ON or OFF according to the next
mjr 35:e959ffba78fd 197 // 32 bits (4 bytes) of the message, and sets the flash speed to the value in
mjr 35:e959ffba78fd 198 // the sixth byte. (The flash speed sets the global cycle rate for flashing
mjr 35:e959ffba78fd 199 // outputs - outputs with their values set to the range 128-132 - to a
mjr 35:e959ffba78fd 200 // relative speed, scaled linearly in frequency. 1 is the slowest at about
mjr 35:e959ffba78fd 201 // 2 Hz, 7 is the fastest at about 14 Hz.)
mjr 35:e959ffba78fd 202 //
mjr 35:e959ffba78fd 203 // 0-49 or 128-132 -> PBA (bb bb bb bb bb bb bb bb)
mjr 35:e959ffba78fd 204 // bb = brightness level/flash pattern for one output
mjr 35:e959ffba78fd 205 //
mjr 35:e959ffba78fd 206 // If the first byte is any valid brightness setting, it's a PBA message.
mjr 35:e959ffba78fd 207 // Valid brightness settings are:
mjr 35:e959ffba78fd 208 //
mjr 35:e959ffba78fd 209 // 0-48 = fixed brightness level, linearly from 0% to 100% intensity
mjr 35:e959ffba78fd 210 // 49 = fixed brightness level at 100% intensity (same as 48)
mjr 35:e959ffba78fd 211 // 129 = flashing pattern, fade up / fade down (sawtooth wave)
mjr 35:e959ffba78fd 212 // 130 = flashing pattern, on / off (square wave)
mjr 35:e959ffba78fd 213 // 131 = flashing pattern, on for 50% duty cycle / fade down
mjr 35:e959ffba78fd 214 // 132 = flashing pattern, fade up / on for 50% duty cycle
mjr 35:e959ffba78fd 215 //
mjr 35:e959ffba78fd 216 // A PBA message sets 8 outputs out of 32. Which 8 are to be set is
mjr 35:e959ffba78fd 217 // implicit in the message sequence: the first PBA sets outputs 1-8, the
mjr 35:e959ffba78fd 218 // second sets 9-16, and so on, rolling around after each fourth PBA.
mjr 35:e959ffba78fd 219 // An SBA also resets the implicit "bank" for the next PBA to outputs 1-8.
mjr 35:e959ffba78fd 220 //
mjr 35:e959ffba78fd 221 // Note that there's no special first byte to indicate the PBA message
mjr 35:e959ffba78fd 222 // type, as there is in an SBA. The first byte of a PBA is simply the
mjr 35:e959ffba78fd 223 // first output setting. The way the LedWiz creators conceived this, the
mjr 35:e959ffba78fd 224 // SBA distinguishable from a PBA because 64 isn't a valid output setting,
mjr 35:e959ffba78fd 225 // hence a message that starts with a byte value of 64 isn't a valid PBA
mjr 35:e959ffba78fd 226 // message.
mjr 35:e959ffba78fd 227 //
mjr 35:e959ffba78fd 228 // Our extended protocol uses the same principle, taking advantage of the
mjr 35:e959ffba78fd 229 // other byte value ranges that are invalid in PBA messages. To be a valid
mjr 35:e959ffba78fd 230 // PBA message, the first byte must be in the range 0-49 or 129-132. As
mjr 35:e959ffba78fd 231 // already mentioned, byte value 64 indicates an SBA message. This leaves
mjr 35:e959ffba78fd 232 // these ranges available for other uses: 50-63, 65-128, and 133-255.
mjr 35:e959ffba78fd 233
mjr 35:e959ffba78fd 234
mjr 35:e959ffba78fd 235 // --- PRIVATE EXTENDED MESSAGES ---
mjr 35:e959ffba78fd 236 //
mjr 35:e959ffba78fd 237 // All of our extended protocol messages are identified by the first byte:
mjr 35:e959ffba78fd 238 //
mjr 35:e959ffba78fd 239 // 65 -> Miscellaneous control message. The second byte specifies the specific
mjr 35:e959ffba78fd 240 // operation:
mjr 35:e959ffba78fd 241 //
mjr 39:b3815a1c3802 242 // 0 -> No Op - does nothing. (This can be used to send a test message on the
mjr 39:b3815a1c3802 243 // USB endpoint.)
mjr 39:b3815a1c3802 244 //
mjr 35:e959ffba78fd 245 // 1 -> Set device unit number and plunger status, and save the changes immediately
mjr 35:e959ffba78fd 246 // to flash. The device will automatically reboot after the changes are saved.
mjr 35:e959ffba78fd 247 // The additional bytes of the message give the parameters:
mjr 35:e959ffba78fd 248 //
mjr 35:e959ffba78fd 249 // third byte = new unit number (0-15, corresponding to nominal unit numbers 1-16)
mjr 35:e959ffba78fd 250 // fourth byte = plunger on/off (0=disabled, 1=enabled)
mjr 35:e959ffba78fd 251 //
mjr 35:e959ffba78fd 252 // 2 -> Begin plunger calibration mode. The device stays in this mode for about
mjr 35:e959ffba78fd 253 // 15 seconds, and sets the zero point and maximum retraction points to the
mjr 35:e959ffba78fd 254 // observed endpoints of sensor readings while the mode is running. After
mjr 35:e959ffba78fd 255 // the time limit elapses, the device automatically stores the results in
mjr 35:e959ffba78fd 256 // non-volatile flash memory and exits the mode.
mjr 35:e959ffba78fd 257 //
mjr 51:57eb311faafa 258 // 3 -> Send pixel dump. The device sends one complete image snapshot from the
mjr 51:57eb311faafa 259 // plunger sensor, as as series of pixel dump messages. (The message format
mjr 51:57eb311faafa 260 // isn't big enough to allow the whole image to be sent in one message, so
mjr 51:57eb311faafa 261 // the image is broken up into as many messages as necessary.) After sending
mjr 51:57eb311faafa 262 // the pixels, the device sends the special suffix messages with additional
mjr 51:57eb311faafa 263 // data about the sensor. See the "pixel dump message" section above. The
mjr 51:57eb311faafa 264 // device then resumes sending normal joystick messages. If the plunger
mjr 51:57eb311faafa 265 // sensor isn't an imaging type, no pixel messages are sent, but the extra
mjr 51:57eb311faafa 266 // suffix reports are still sent. If no plunger sensor is installed, no
mjr 51:57eb311faafa 267 // reports are sent. Parameters:
mjr 48:058ace2aed1d 268 //
mjr 48:058ace2aed1d 269 // third byte = bit flags:
mjr 51:57eb311faafa 270 // 0x01 = low res mode. The device rescales the sensor pixel array
mjr 51:57eb311faafa 271 // sent in the dump messages to a low-resolution subset. The
mjr 51:57eb311faafa 272 // size of the subset is determined by the device. This has
mjr 51:57eb311faafa 273 // no effect on the sensor operation; it merely reduces the
mjr 51:57eb311faafa 274 // USB transmission time to allow for a faster frame rate for
mjr 51:57eb311faafa 275 // viewing in the config tool.
mjr 35:e959ffba78fd 276 //
mjr 35:e959ffba78fd 277 // 4 -> Query configuration. The device sends a special configuration report,
mjr 40:cc0d9814522b 278 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 279 // joystick reports.
mjr 35:e959ffba78fd 280 //
mjr 35:e959ffba78fd 281 // 5 -> Turn all outputs off and restore LedWiz defaults. Sets output ports
mjr 35:e959ffba78fd 282 // 1-32 to OFF and LedWiz brightness/mode setting 48, sets outputs 33 and
mjr 35:e959ffba78fd 283 // higher to brightness level 0, and sets the LedWiz global flash speed to 2.
mjr 35:e959ffba78fd 284 //
mjr 35:e959ffba78fd 285 // 6 -> Save configuration to flash. This saves all variable updates sent via
mjr 35:e959ffba78fd 286 // type 66 messages since the last reboot, then automatically reboots the
mjr 35:e959ffba78fd 287 // device to put the changes into effect.
mjr 35:e959ffba78fd 288 //
mjr 40:cc0d9814522b 289 // 7 -> Query device ID. The device replies with a special device ID report
mjr 40:cc0d9814522b 290 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 291 // joystick reports.
mjr 40:cc0d9814522b 292 //
mjr 40:cc0d9814522b 293 // 8 -> Engage/disengage night mode. The third byte of the message is 1 to
mjr 40:cc0d9814522b 294 // engage night mode, 0 to disengage night mode. (This mode isn't stored
mjr 40:cc0d9814522b 295 // persistently; night mode is disengaged after a reset or power cycle.)
mjr 40:cc0d9814522b 296 //
mjr 35:e959ffba78fd 297 // 66 -> Set configuration variable. The second byte of the message is the config
mjr 35:e959ffba78fd 298 // variable number, and the remaining bytes give the new value for the variable.
mjr 35:e959ffba78fd 299 // The value format is specific to each variable; see the list below for details.
mjr 35:e959ffba78fd 300 // This message only sets the value in RAM - it doesn't write the value to flash
mjr 35:e959ffba78fd 301 // and doesn't put the change into effect immediately. To put updates into effect,
mjr 35:e959ffba78fd 302 // the host must send a type 65 subtype 6 message (see above), which saves updates
mjr 35:e959ffba78fd 303 // to flash and reboots the device.
mjr 35:e959ffba78fd 304 //
mjr 35:e959ffba78fd 305 // 200-228 -> Set extended output brightness. This sets outputs N to N+6 to the
mjr 35:e959ffba78fd 306 // respective brightness values in the 2nd through 8th bytes of the message
mjr 35:e959ffba78fd 307 // (output N is set to the 2nd byte value, N+1 is set to the 3rd byte value,
mjr 35:e959ffba78fd 308 // etc). Each brightness level is a linear brightness level from 0-255,
mjr 35:e959ffba78fd 309 // where 0 is 0% brightness and 255 is 100% brightness. N is calculated as
mjr 35:e959ffba78fd 310 // (first byte - 200)*7 + 1:
mjr 35:e959ffba78fd 311 //
mjr 35:e959ffba78fd 312 // 200 = outputs 1-7
mjr 35:e959ffba78fd 313 // 201 = outputs 8-14
mjr 35:e959ffba78fd 314 // 202 = outputs 15-21
mjr 35:e959ffba78fd 315 // ...
mjr 35:e959ffba78fd 316 // 228 = outputs 197-203
mjr 35:e959ffba78fd 317 //
mjr 35:e959ffba78fd 318 // This message is the only way to address ports 33 and higher, since standard
mjr 35:e959ffba78fd 319 // LedWiz messages are inherently limited to ports 1-32.
mjr 35:e959ffba78fd 320 //
mjr 35:e959ffba78fd 321 // Note that these extended output messages differ from regular LedWiz settings
mjr 35:e959ffba78fd 322 // in two ways. First, the brightness is the ONLY attribute when an output is
mjr 35:e959ffba78fd 323 // set using this mode - there's no separate ON/OFF setting per output as there
mjr 35:e959ffba78fd 324 // is with the SBA/PBA messages. To turn an output OFF with this message, set
mjr 35:e959ffba78fd 325 // the intensity to 0. Setting a non-zero intensity turns it on immediately
mjr 35:e959ffba78fd 326 // without regard to the SBA status for the port. Second, the brightness is
mjr 35:e959ffba78fd 327 // on a full 8-bit scale (0-255) rather than the LedWiz's approximately 5-bit
mjr 35:e959ffba78fd 328 // scale, because there are no parts of the range reserved for flashing modes.
mjr 35:e959ffba78fd 329 //
mjr 35:e959ffba78fd 330 // Outputs 1-32 can be controlled by EITHER the regular LedWiz SBA/PBA messages
mjr 35:e959ffba78fd 331 // or by the extended messages. The latest setting for a given port takes
mjr 35:e959ffba78fd 332 // precedence. If an SBA/PBA message was the last thing sent to a port, the
mjr 35:e959ffba78fd 333 // normal LedWiz combination of ON/OFF and brightness/flash mode status is used
mjr 35:e959ffba78fd 334 // to determine the port's physical output setting. If an extended brightness
mjr 35:e959ffba78fd 335 // message was the last thing sent to a port, the LedWiz ON/OFF status and
mjr 35:e959ffba78fd 336 // flash modes are ignored, and the fixed brightness is set. Outputs 33 and
mjr 35:e959ffba78fd 337 // higher inherently can't be addressed or affected by SBA/PBA messages.
mjr 35:e959ffba78fd 338
mjr 35:e959ffba78fd 339
mjr 35:e959ffba78fd 340 // ------- CONFIGURATION VARIABLES -------
mjr 35:e959ffba78fd 341 //
mjr 35:e959ffba78fd 342 // Message type 66 (see above) sets one configuration variable. The second byte
mjr 35:e959ffba78fd 343 // of the message is the variable ID, and the rest of the bytes give the new
mjr 35:e959ffba78fd 344 // value, in a variable-specific format. 16-bit values are little endian.
mjr 35:e959ffba78fd 345 //
mjr 35:e959ffba78fd 346 // 1 -> USB device ID. Bytes 3-4 give the 16-bit USB Vendor ID; bytes
mjr 35:e959ffba78fd 347 // 5-6 give the 16-bit USB Product ID. For LedWiz emulation, use
mjr 35:e959ffba78fd 348 // vendor 0xFAFA and product 0x00EF + unit# (where unit# is the
mjr 35:e959ffba78fd 349 // nominal LedWiz unit number, from 1 to 16). If LedWiz emulation
mjr 35:e959ffba78fd 350 // isn't desired or causes host conflicts, you can use our private
mjr 35:e959ffba78fd 351 // ID assigned by http://pid.codes (a registry for open-source USB
mjr 35:e959ffba78fd 352 // devices) of vendor 0x1209 and product 0xEAEA. (You can also use
mjr 35:e959ffba78fd 353 // any other values that don't cause a conflict on your PC, but we
mjr 35:e959ffba78fd 354 // recommend using one of these pre-assigned values if possible.)
mjr 35:e959ffba78fd 355 //
mjr 35:e959ffba78fd 356 // 2 -> Pinscape Controller unit number for DOF. Byte 3 is the new
mjr 35:e959ffba78fd 357 // unit number, from 1 to 16.
mjr 35:e959ffba78fd 358 //
mjr 35:e959ffba78fd 359 // 3 -> Enable/disable joystick reports. Byte 2 is 1 to enable, 0 to
mjr 35:e959ffba78fd 360 // disable. When disabled, the device registers as a generic HID
mjr 35:e959ffba78fd 361 / device, and only sends the private report types used by the
mjr 35:e959ffba78fd 362 // Windows config tool.
mjr 35:e959ffba78fd 363 //
mjr 35:e959ffba78fd 364 // 4 -> Accelerometer orientation. Byte 3 is the new setting:
mjr 35:e959ffba78fd 365 //
mjr 35:e959ffba78fd 366 // 0 = ports at front (USB ports pointing towards front of cabinet)
mjr 35:e959ffba78fd 367 // 1 = ports at left
mjr 35:e959ffba78fd 368 // 2 = ports at right
mjr 35:e959ffba78fd 369 // 3 = ports at rear
mjr 35:e959ffba78fd 370 //
mjr 35:e959ffba78fd 371 // 5 -> Plunger sensor type. Byte 3 is the type ID:
mjr 35:e959ffba78fd 372 //
mjr 35:e959ffba78fd 373 // 0 = none (disabled)
mjr 35:e959ffba78fd 374 // 1 = TSL1410R linear image sensor, 1280x1 pixels, serial mode
mjr 47:df7a88cd249c 375 // *2 = TSL1410R, parallel mode
mjr 35:e959ffba78fd 376 // 3 = TSL1412R linear image sensor, 1536x1 pixels, serial mode
mjr 47:df7a88cd249c 377 // *4 = TSL1412R, parallel mode
mjr 35:e959ffba78fd 378 // 5 = Potentiometer with linear taper, or any other device that
mjr 35:e959ffba78fd 379 // represents the position reading with a single analog voltage
mjr 47:df7a88cd249c 380 // *6 = AEDR8300 optical quadrature sensor, 75lpi
mjr 47:df7a88cd249c 381 // *7 = AS5304 magnetic quadrature sensor, 160 steps per 2mm
mjr 47:df7a88cd249c 382 //
mjr 47:df7a88cd249c 383 // * The sensor types marked with asterisks (*) are planned but not
mjr 47:df7a88cd249c 384 // currently implemented. Selecting these types will effectively
mjr 47:df7a88cd249c 385 // disable the plunger.
mjr 35:e959ffba78fd 386 //
mjr 35:e959ffba78fd 387 // 6 -> Plunger pin assignments. Bytes 3-6 give the pin assignments for
mjr 35:e959ffba78fd 388 // pins 1, 2, 3, and 4. These use the Pin Number Mappings listed
mjr 35:e959ffba78fd 389 // below. The meaning of each pin depends on the plunger type:
mjr 35:e959ffba78fd 390 //
mjr 35:e959ffba78fd 391 // TSL1410R/1412R, serial: SI (DigitalOut), CLK (DigitalOut), AO (AnalogIn), NC
mjr 35:e959ffba78fd 392 // TSL1410R/1412R, parallel: SI (DigitalOut), CLK (DigitalOut), AO1 (AnalogIn), AO2 (AnalogIn)
mjr 35:e959ffba78fd 393 // Potentiometer: AO (AnalogIn), NC, NC, NC
mjr 35:e959ffba78fd 394 // AEDR8300: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 395 // AS5304: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 396 //
mjr 35:e959ffba78fd 397 // 7 -> Plunger calibration button pin assignments. Byte 3 is the DigitalIn
mjr 35:e959ffba78fd 398 // pin for the button switch; byte 4 is the DigitalOut pin for the indicator
mjr 35:e959ffba78fd 399 // lamp. Either can be set to NC to disable the function. (Use the Pin
mjr 35:e959ffba78fd 400 // Number Mappins listed below for both bytes.)
mjr 35:e959ffba78fd 401 //
mjr 35:e959ffba78fd 402 // 8 -> ZB Launch Ball setup. This configures the ZB Launch Ball feature. Byte
mjr 35:e959ffba78fd 403 // 3 is the LedWiz port number (1-255) mapped to the "ZB Launch Ball" output
mjr 35:e959ffba78fd 404 // in DOF. Set the port to 0 to disable the feature. Byte 4 is the button
mjr 35:e959ffba78fd 405 // number (1-32) that we'll "press" when the feature is activated. Bytes 5-6
mjr 35:e959ffba78fd 406 // give the "push distance" for activating the button by pushing forward on
mjr 40:cc0d9814522b 407 // the plunger knob, in 1/1000 inch increments (e.g., 80 represents 0.08",
mjr 40:cc0d9814522b 408 // which is the recommended setting).
mjr 35:e959ffba78fd 409 //
mjr 35:e959ffba78fd 410 // 9 -> TV ON relay setup. This requires external circuitry implemented on the
mjr 35:e959ffba78fd 411 // Expansion Board (or an equivalent circuit as described in the Build Guide).
mjr 35:e959ffba78fd 412 // Byte 3 is the GPIO DigitalIn pin for the "power status" input, using the
mjr 35:e959ffba78fd 413 // Pin Number Mappings below. Byte 4 is the DigitalOut pin for the "latch"
mjr 35:e959ffba78fd 414 // output. Byte 5 is the DigitalOut pin for the relay trigger. Bytes 6-7
mjr 35:e959ffba78fd 415 // give the delay time in 10ms increments as an unsigned 16-bit value (e.g.,
mjr 35:e959ffba78fd 416 // 550 represents 5.5 seconds).
mjr 35:e959ffba78fd 417 //
mjr 35:e959ffba78fd 418 // 10 -> TLC5940NT setup. This chip is an external PWM controller, with 32 outputs
mjr 35:e959ffba78fd 419 // per chip and a serial data interface that allows the chips to be daisy-
mjr 35:e959ffba78fd 420 // chained. We can use these chips to add an arbitrary number of PWM output
mjr 35:e959ffba78fd 421 // ports for the LedWiz emulation. Set the number of chips to 0 to disable
mjr 35:e959ffba78fd 422 // the feature. The bytes of the message are:
mjr 35:e959ffba78fd 423 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 424 // byte 4 = SIN pin - Serial data (must connect to SPIO MOSI -> PTC6 or PTD2)
mjr 35:e959ffba78fd 425 // byte 5 = SCLK pin - Serial clock (must connect to SPIO SCLK -> PTC5 or PTD1)
mjr 35:e959ffba78fd 426 // byte 6 = XLAT pin - XLAT (latch) signal (any GPIO pin)
mjr 35:e959ffba78fd 427 // byte 7 = BLANK pin - BLANK signal (any GPIO pin)
mjr 35:e959ffba78fd 428 // byte 8 = GSCLK pin - Grayscale clock signal (must be a PWM-out capable pin)
mjr 35:e959ffba78fd 429 //
mjr 35:e959ffba78fd 430 // 11 -> 74HC595 setup. This chip is an external shift register, with 8 outputs per
mjr 35:e959ffba78fd 431 // chip and a serial data interface that allows daisy-chaining. We use this
mjr 35:e959ffba78fd 432 // chips to add extra digital outputs for the LedWiz emulation. In particular,
mjr 35:e959ffba78fd 433 // the Chime Board (part of the Expansion Board suite) uses these to add timer-
mjr 35:e959ffba78fd 434 // protected outputs for coil devices (knockers, chimes, bells, etc). Set the
mjr 35:e959ffba78fd 435 // number of chips to 0 to disable the feature. The message bytes are:
mjr 35:e959ffba78fd 436 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 437 // byte 4 = SIN pin - Serial data (any GPIO pin)
mjr 35:e959ffba78fd 438 // byte 5 = SCLK pin - Serial clock (any GPIO pin)
mjr 35:e959ffba78fd 439 // byte 6 = LATCH pin - LATCH signal (any GPIO pin)
mjr 35:e959ffba78fd 440 // byte 7 = ENA pin - ENABLE signal (any GPIO pin)
mjr 35:e959ffba78fd 441 //
mjr 35:e959ffba78fd 442 // 12 -> Input button setup. This sets up one button; it can be repeated for each
mjr 35:e959ffba78fd 443 // button to be configured. There are 32 button slots, numbered 1-32. Each
mjr 35:e959ffba78fd 444 // key can be configured as a joystick button, a regular keyboard key, a
mjr 35:e959ffba78fd 445 // keyboard modifier key (such as Shift, Ctrl, or Alt), or a media control
mjr 35:e959ffba78fd 446 // key (such as volume up/down).
mjr 35:e959ffba78fd 447 //
mjr 35:e959ffba78fd 448 // The bytes of the message are:
mjr 35:e959ffba78fd 449 // byte 3 = Button number (1-32)
mjr 35:e959ffba78fd 450 // byte 4 = GPIO pin to read for button input
mjr 35:e959ffba78fd 451 // byte 5 = key type reported to PC when button is pushed:
mjr 35:e959ffba78fd 452 // 1 = joystick button -> byte 6 is the button number, 1-32
mjr 35:e959ffba78fd 453 // 2 = regular keyboard key -> byte 6 is the USB key code (see below)
mjr 35:e959ffba78fd 454 // 3 = keyboard modifier key -> byte 6 is the USB modifier code (see below)
mjr 35:e959ffba78fd 455 // 4 = media control key -> byte 6 is the USB key code (see below)
mjr 38:091e511ce8a0 456 // 5 = special button -> byte 6 is the special button code (see below)
mjr 35:e959ffba78fd 457 // byte 6 = key code, which depends on the key type in byte 5
mjr 38:091e511ce8a0 458 // byte 7 = flags - a combination of these bit values:
mjr 38:091e511ce8a0 459 // 0x01 = pulse mode. This reports a physical on/off switch's state
mjr 38:091e511ce8a0 460 // to the host as a brief key press whenever the switch changes
mjr 38:091e511ce8a0 461 // state. This is useful for the VPinMAME Coin Door button,
mjr 38:091e511ce8a0 462 // which requires the End key to be pressed each time the
mjr 38:091e511ce8a0 463 // door changes state.
mjr 35:e959ffba78fd 464 //
mjr 35:e959ffba78fd 465 // 13 -> LedWiz output port setup. This sets up one output port; it can be repeated
mjr 35:e959ffba78fd 466 // for each port to be configured. There are 203 possible slots for output ports,
mjr 35:e959ffba78fd 467 // numbered 1 to 203. The number of ports visible to the host is determined by
mjr 35:e959ffba78fd 468 // the first DISABLED port (type 0). For example, if ports 1-32 are set as GPIO
mjr 35:e959ffba78fd 469 // outputs and port 33 is disabled, the host will see 32 ports, regardless of
mjr 35:e959ffba78fd 470 // the settings for post 34 and higher.
mjr 35:e959ffba78fd 471 //
mjr 35:e959ffba78fd 472 // The bytes of the message are:
mjr 35:e959ffba78fd 473 // byte 3 = LedWiz port number (1 to maximum number or ports)
mjr 35:e959ffba78fd 474 // byte 4 = physical output type:
mjr 35:e959ffba78fd 475 // 0 = Disabled. This output isn't used, and isn't visible to the
mjr 35:e959ffba78fd 476 // LedWiz/DOF software on the host. The FIRST disabled port
mjr 35:e959ffba78fd 477 // determines the number of ports visible to the host - ALL ports
mjr 35:e959ffba78fd 478 // after the first disabled port are also implicitly disabled.
mjr 35:e959ffba78fd 479 // 1 = GPIO PWM output: connected to GPIO pin specified in byte 5,
mjr 35:e959ffba78fd 480 // operating in PWM mode. Note that only a subset of KL25Z GPIO
mjr 35:e959ffba78fd 481 // ports are PWM-capable.
mjr 35:e959ffba78fd 482 // 2 = GPIO Digital output: connected to GPIO pin specified in byte 5,
mjr 35:e959ffba78fd 483 // operating in digital mode. Digital ports can only be set ON
mjr 35:e959ffba78fd 484 // or OFF, with no brightness/intensity control. All pins can be
mjr 35:e959ffba78fd 485 // used in this mode.
mjr 35:e959ffba78fd 486 // 3 = TLC5940 port: connected to TLC5940 output port number specified
mjr 35:e959ffba78fd 487 // in byte 5. Ports are numbered sequentially starting from port 0
mjr 35:e959ffba78fd 488 // for the first output (OUT0) on the first chip in the daisy chain.
mjr 35:e959ffba78fd 489 // 4 = 74HC595 port: connected to 74HC595 output port specified in byte 5.
mjr 35:e959ffba78fd 490 // As with the TLC5940 outputs, ports are numbered sequentially from 0
mjr 35:e959ffba78fd 491 // for the first output on the first chip in the daisy chain.
mjr 35:e959ffba78fd 492 // 5 = Virtual output: this output port exists for the purposes of the
mjr 35:e959ffba78fd 493 // LedWiz/DOF software on the host, but isn't physically connected
mjr 35:e959ffba78fd 494 // to any output device. This can be used to create a virtual output
mjr 35:e959ffba78fd 495 // for the DOF ZB Launch Ball signal, for example, or simply as a
mjr 35:e959ffba78fd 496 // placeholder in the LedWiz port numbering. The physical output ID
mjr 35:e959ffba78fd 497 // (byte 5) is ignored for this port type.
mjr 35:e959ffba78fd 498 // byte 5 = physical output ID, interpreted according to the value in byte 4
mjr 35:e959ffba78fd 499 // byte 6 = flags: a combination of these bit values:
mjr 38:091e511ce8a0 500 // 0x01 = active-high output (0V on output turns attached device ON)
mjr 38:091e511ce8a0 501 // 0x02 = noisemaker device: disable this output when "night mode" is engaged
mjr 40:cc0d9814522b 502 // 0x04 = apply gamma correction to this output
mjr 38:091e511ce8a0 503 //
mjr 38:091e511ce8a0 504 // Note that the on-board LED segments can be used as LedWiz output ports. This
mjr 38:091e511ce8a0 505 // is useful for testing a new installation with DOF or other PC software without
mjr 38:091e511ce8a0 506 // having to connect any external devices. Assigning the on-board LED segments to
mjr 38:091e511ce8a0 507 // output ports overrides their normal status/diagnostic display use, so the normal
mjr 38:091e511ce8a0 508 // status flash pattern won't appear when they're used this way.
mjr 38:091e511ce8a0 509 //
mjr 38:091e511ce8a0 510 // Special port numbers: if the LedWiz port number is one of these special values,
mjr 38:091e511ce8a0 511 // the physical output is used for a special purpose. These ports aren't visible
mjr 38:091e511ce8a0 512 // to the PC as LedWiz ports; they're for internal use by the controller. The
mjr 38:091e511ce8a0 513 // special port numbers are:
mjr 38:091e511ce8a0 514 //
mjr 38:091e511ce8a0 515 // 254 = Night Mode indicator lamp. This port is turned on when night mode
mjr 38:091e511ce8a0 516 // is engaged, and turned off when night mode is disengaged. This can
mjr 38:091e511ce8a0 517 // be used, for example, to control an indicator LED inside a lighted
mjr 38:091e511ce8a0 518 // momentary pushbutton switch used to activate night mode. The light
mjr 38:091e511ce8a0 519 // provides visual feedback that the mode is turned on.
mjr 38:091e511ce8a0 520 //
mjr 51:57eb311faafa 521 // 14 -> Disconnect reboot timeout. The reboot timeout allows the controller software
mjr 51:57eb311faafa 522 // to automatically reboot the KL25Z after it detects that the USB connection is
mjr 51:57eb311faafa 523 // broken. On some hosts, the device isn't able to reconnect after the initial
mjr 51:57eb311faafa 524 // connection is lost. The reboot timeout is a workaround for these cases. When
mjr 51:57eb311faafa 525 // the software detects that the connection is no longer active, it will reboot
mjr 51:57eb311faafa 526 // the KL25Z automatically if a new connection isn't established within the
mjr 51:57eb311faafa 527 // timeout period. Bytes 3 give the new reboot timeout in seconds. Setting this
mjr 51:57eb311faafa 528 // to 0 disables the reboot timeout.
mjr 51:57eb311faafa 529 //
mjr 38:091e511ce8a0 530
mjr 35:e959ffba78fd 531
mjr 35:e959ffba78fd 532
mjr 35:e959ffba78fd 533 // --- PIN NUMBER MAPPINGS ---
mjr 35:e959ffba78fd 534 //
mjr 35:e959ffba78fd 535 // In USB messages that specify GPIO pin assignments, pins are identified with
mjr 35:e959ffba78fd 536 // our own private numbering scheme. Our numbering scheme only includes the
mjr 35:e959ffba78fd 537 // ports connected to external header pins on the KL25Z board, so this is only
mjr 35:e959ffba78fd 538 // a sparse subset of the full GPIO port set. These are numbered in order of
mjr 35:e959ffba78fd 539 // pin name. The special value 0 = NC = Not Connected can be used where
mjr 35:e959ffba78fd 540 // appropriate to indicate a disabled or unused pin.
mjr 35:e959ffba78fd 541 //
mjr 35:e959ffba78fd 542 // 0 = NC (not connected)
mjr 35:e959ffba78fd 543 // 1 = PTA1
mjr 35:e959ffba78fd 544 // 2 = PTA2
mjr 35:e959ffba78fd 545 // 3 = PTA4
mjr 35:e959ffba78fd 546 // 4 = PTA5
mjr 35:e959ffba78fd 547 // 5 = PTA12
mjr 35:e959ffba78fd 548 // 6 = PTA13
mjr 35:e959ffba78fd 549 // 7 = PTA16
mjr 35:e959ffba78fd 550 // 8 = PTA17
mjr 35:e959ffba78fd 551 // 9 = PTB0
mjr 35:e959ffba78fd 552 // 10 = PTB1
mjr 35:e959ffba78fd 553 // 11 = PTB2
mjr 35:e959ffba78fd 554 // 12 = PTB3
mjr 35:e959ffba78fd 555 // 13 = PTB8
mjr 35:e959ffba78fd 556 // 14 = PTB9
mjr 35:e959ffba78fd 557 // 15 = PTB10
mjr 35:e959ffba78fd 558 // 16 = PTB11
mjr 38:091e511ce8a0 559 // 17 = PTB18 (on-board LED Red segment - not exposed as a header pin)
mjr 38:091e511ce8a0 560 // 18 = PTB19 (on-board LED Green segment - not exposed as a header pin)
mjr 38:091e511ce8a0 561 // 19 = PTC0
mjr 38:091e511ce8a0 562 // 20 = PTC1
mjr 38:091e511ce8a0 563 // 21 = PTC2
mjr 38:091e511ce8a0 564 // 22 = PTC3
mjr 38:091e511ce8a0 565 // 23 = PTC4
mjr 38:091e511ce8a0 566 // 24 = PTC5
mjr 38:091e511ce8a0 567 // 25 = PTC6
mjr 38:091e511ce8a0 568 // 26 = PTC7
mjr 38:091e511ce8a0 569 // 27 = PTC8
mjr 38:091e511ce8a0 570 // 28 = PTC9
mjr 38:091e511ce8a0 571 // 29 = PTC10
mjr 38:091e511ce8a0 572 // 30 = PTC11
mjr 38:091e511ce8a0 573 // 31 = PTC12
mjr 38:091e511ce8a0 574 // 32 = PTC13
mjr 38:091e511ce8a0 575 // 33 = PTC16
mjr 38:091e511ce8a0 576 // 34 = PTC17
mjr 38:091e511ce8a0 577 // 35 = PTD0
mjr 38:091e511ce8a0 578 // 36 = PTD1 (on-board LED Blue segment)
mjr 38:091e511ce8a0 579 // 37 = PTD2
mjr 38:091e511ce8a0 580 // 38 = PTD3
mjr 38:091e511ce8a0 581 // 39 = PTD4
mjr 38:091e511ce8a0 582 // 40 = PTD5
mjr 38:091e511ce8a0 583 // 41 = PTD6
mjr 38:091e511ce8a0 584 // 42 = PTD7
mjr 38:091e511ce8a0 585 // 43 = PTE0
mjr 38:091e511ce8a0 586 // 44 = PTE1
mjr 38:091e511ce8a0 587 // 45 = PTE2
mjr 38:091e511ce8a0 588 // 46 = PTE3
mjr 38:091e511ce8a0 589 // 47 = PTE4
mjr 38:091e511ce8a0 590 // 48 = PTE5
mjr 38:091e511ce8a0 591 // 49 = PTE20
mjr 38:091e511ce8a0 592 // 50 = PTE21
mjr 38:091e511ce8a0 593 // 51 = PTE22
mjr 38:091e511ce8a0 594 // 52 = PTE23
mjr 38:091e511ce8a0 595 // 53 = PTE29
mjr 38:091e511ce8a0 596 // 54 = PTE30
mjr 38:091e511ce8a0 597 // 55 = PTE31
mjr 35:e959ffba78fd 598
mjr 35:e959ffba78fd 599 // --- USB KEYBOARD SCAN CODES ---
mjr 35:e959ffba78fd 600 //
mjr 35:e959ffba78fd 601 // Use the standard USB HID keyboard codes for regular keys. See the
mjr 35:e959ffba78fd 602 // HID Usage Tables in the official USB specifications for a full list.
mjr 35:e959ffba78fd 603 // Here are the most common codes for quick references:
mjr 35:e959ffba78fd 604 //
mjr 35:e959ffba78fd 605 // A-Z -> 4-29
mjr 35:e959ffba78fd 606 // top row numbers -> 30-39
mjr 35:e959ffba78fd 607 // Return -> 40
mjr 35:e959ffba78fd 608 // Escape -> 41
mjr 35:e959ffba78fd 609 // Backspace -> 42
mjr 35:e959ffba78fd 610 // Tab -> 43
mjr 35:e959ffba78fd 611 // Spacebar -> 44
mjr 35:e959ffba78fd 612 // -_ -> 45
mjr 35:e959ffba78fd 613 // =+ -> 46
mjr 35:e959ffba78fd 614 // [{ -> 47
mjr 35:e959ffba78fd 615 // ]} -> 48
mjr 35:e959ffba78fd 616 // \| -> 49
mjr 35:e959ffba78fd 617 // ;: -> 51
mjr 35:e959ffba78fd 618 // '" -> 52
mjr 35:e959ffba78fd 619 // `~ -> 53
mjr 35:e959ffba78fd 620 // ,< -> 54
mjr 35:e959ffba78fd 621 // .> -> 55
mjr 35:e959ffba78fd 622 // /? -> 56
mjr 35:e959ffba78fd 623 // Caps Lock -> 57
mjr 35:e959ffba78fd 624 // F1-F12 -> 58-69
mjr 35:e959ffba78fd 625 // F13-F24 -> 104-115
mjr 35:e959ffba78fd 626 // Print Screen -> 70
mjr 35:e959ffba78fd 627 // Scroll Lock -> 71
mjr 35:e959ffba78fd 628 // Pause -> 72
mjr 35:e959ffba78fd 629 // Insert -> 73
mjr 35:e959ffba78fd 630 // Home -> 74
mjr 35:e959ffba78fd 631 // Page Up -> 75
mjr 35:e959ffba78fd 632 // Del -> 76
mjr 35:e959ffba78fd 633 // End -> 77
mjr 35:e959ffba78fd 634 // Page Down -> 78
mjr 35:e959ffba78fd 635 // Right Arrow -> 79
mjr 35:e959ffba78fd 636 // Left Arrow -> 80
mjr 35:e959ffba78fd 637 // Down Arrow -> 81
mjr 35:e959ffba78fd 638 // Up Arrow -> 82
mjr 35:e959ffba78fd 639 // Num Lock/Clear -> 83
mjr 35:e959ffba78fd 640 // Keypad / * - + -> 84 85 86 87
mjr 35:e959ffba78fd 641 // Keypad Enter -> 88
mjr 35:e959ffba78fd 642 // Keypad 1-9 -> 89-97
mjr 35:e959ffba78fd 643 // Keypad 0 -> 98
mjr 35:e959ffba78fd 644 // Keypad . -> 99
mjr 35:e959ffba78fd 645 //
mjr 35:e959ffba78fd 646
mjr 35:e959ffba78fd 647
mjr 35:e959ffba78fd 648 // --- USB KEYBOARD MODIFIER KEY CODES ---
mjr 35:e959ffba78fd 649 //
mjr 35:e959ffba78fd 650 // Use these codes for modifier keys in the button mappings
mjr 35:e959ffba78fd 651 //
mjr 35:e959ffba78fd 652 // 0x01 = Left Control
mjr 35:e959ffba78fd 653 // 0x02 = Left Shift
mjr 35:e959ffba78fd 654 // 0x04 = Left Alt
mjr 35:e959ffba78fd 655 // 0x08 = Left GUI ("Windows" key)
mjr 35:e959ffba78fd 656 // 0x10 = Right Control
mjr 35:e959ffba78fd 657 // 0x20 = Right Shift
mjr 35:e959ffba78fd 658 // 0x40 = Right Alt
mjr 35:e959ffba78fd 659 // 0x80 = Right GUI ("Windows" key)
mjr 35:e959ffba78fd 660
mjr 35:e959ffba78fd 661
mjr 35:e959ffba78fd 662 // --- USB KEYBOARD MEDIA KEY CODES ---
mjr 35:e959ffba78fd 663 //
mjr 35:e959ffba78fd 664 // Use these for media control keys in the button mappings
mjr 35:e959ffba78fd 665 //
mjr 35:e959ffba78fd 666 // 0x01 = Volume Up
mjr 35:e959ffba78fd 667 // 0x02 = Volume Down
mjr 35:e959ffba78fd 668 // 0x04 = Mute on/off
mjr 35:e959ffba78fd 669
mjr 38:091e511ce8a0 670
mjr 38:091e511ce8a0 671 // --- SPECIAL BUTTON KEY CODES ---
mjr 38:091e511ce8a0 672 //
mjr 38:091e511ce8a0 673 // Use these for special keys in the button mappings
mjr 38:091e511ce8a0 674 //
mjr 38:091e511ce8a0 675 // 0x01 = Night mode switch, momentary switch mode. Pushing this button
mjr 38:091e511ce8a0 676 // engages night mode, disabling all LedWiz outputs marked with the
mjr 38:091e511ce8a0 677 // "noisemaker" flag. Other outputs are unaffected. Pushing
mjr 38:091e511ce8a0 678 // the button again disengages night mode. Use this option if the
mjr 38:091e511ce8a0 679 // physical button attached to the input is a momentary switch type.
mjr 38:091e511ce8a0 680 //
mjr 38:091e511ce8a0 681 // 0x02 = Night mode switch, toggle switch mode. When this switch is on,
mjr 38:091e511ce8a0 682 // night mode is engaged; when the switch is off, night mode is
mjr 38:091e511ce8a0 683 // disengaged. Use this option if the physical switch attached to
mjr 38:091e511ce8a0 684 // to the input is a toggle switch (not a momentary switch).
mjr 38:091e511ce8a0 685