An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Sat Jan 21 19:48:30 2017 +0000
Revision:
73:4e8ce0b18915
Parent:
67:c39e66c4e000
Child:
74:822a92bc11d2
Add protocol commands for TV ON and button testers; add free memory status reporting; improve button scan interrupt speed; reduce button memory footprint slightly; further improve TSL1410R "scan mode 2" speed

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 // USB Message Protocol
mjr 35:e959ffba78fd 2 //
mjr 35:e959ffba78fd 3 // This file is purely for documentation, to describe our USB protocol.
mjr 35:e959ffba78fd 4 // We use the standard HID setup with one endpoint in each direction.
mjr 35:e959ffba78fd 5 // See USBJoystick.cpp/.h for our USB descriptor arrangement.
mjr 35:e959ffba78fd 6 //
mjr 35:e959ffba78fd 7
mjr 35:e959ffba78fd 8 // ------ OUTGOING MESSAGES (DEVICE TO HOST) ------
mjr 35:e959ffba78fd 9 //
mjr 47:df7a88cd249c 10 // General note: 16-bit and 32-bit fields in our reports are little-endian
mjr 47:df7a88cd249c 11 // unless otherwise specified.
mjr 47:df7a88cd249c 12 //
mjr 39:b3815a1c3802 13 // 1. Joystick reports
mjr 35:e959ffba78fd 14 // In most cases, our outgoing messages are HID joystick reports, using the
mjr 35:e959ffba78fd 15 // format defined in USBJoystick.cpp. This allows us to be installed on
mjr 35:e959ffba78fd 16 // Windows as a standard USB joystick, which all versions of Windows support
mjr 35:e959ffba78fd 17 // using in-the-box drivers. This allows a completely transparent, driverless,
mjr 39:b3815a1c3802 18 // plug-and-play installation experience on Windows. Our joystick report
mjr 39:b3815a1c3802 19 // looks like this (see USBJoystick.cpp for the formal HID report descriptor):
mjr 35:e959ffba78fd 20 //
mjr 55:4db125cd11a0 21 // ss status bits:
mjr 55:4db125cd11a0 22 // 0x01 -> plunger enabled
mjr 55:4db125cd11a0 23 // 0x02 -> night mode engaged
mjr 73:4e8ce0b18915 24 // 0x04,0x08,0x10 -> power sense status: meaningful only when
mjr 73:4e8ce0b18915 25 // the TV-on timer is used. Figure (ss>>2) & 0x07 to
mjr 73:4e8ce0b18915 26 // isolate the status bits. The resulting value is:
mjr 73:4e8ce0b18915 27 // 1 -> latch was on at last check
mjr 73:4e8ce0b18915 28 // 2 -> latch was off at last check, SET pin high
mjr 73:4e8ce0b18915 29 // 3 -> latch off, SET pin low, ready to check status
mjr 73:4e8ce0b18915 30 // 4 -> TV timer countdown in progress
mjr 73:4e8ce0b18915 31 // 5 -> TV relay is on
mjr 40:cc0d9814522b 32 // 00 2nd byte of status (reserved)
mjr 40:cc0d9814522b 33 // 00 3rd byte of status (reserved)
mjr 39:b3815a1c3802 34 // 00 always zero for joystick reports
mjr 40:cc0d9814522b 35 // bb joystick buttons, low byte (buttons 1-8, 1 bit per button)
mjr 40:cc0d9814522b 36 // bb joystick buttons, 2nd byte (buttons 9-16)
mjr 40:cc0d9814522b 37 // bb joystick buttons, 3rd byte (buttons 17-24)
mjr 40:cc0d9814522b 38 // bb joystick buttons, high byte (buttons 25-32)
mjr 39:b3815a1c3802 39 // xx low byte of X position = nudge/accelerometer X axis
mjr 39:b3815a1c3802 40 // xx high byte of X position
mjr 39:b3815a1c3802 41 // yy low byte of Y position = nudge/accelerometer Y axis
mjr 39:b3815a1c3802 42 // yy high byte of Y position
mjr 39:b3815a1c3802 43 // zz low byte of Z position = plunger position
mjr 39:b3815a1c3802 44 // zz high byte of Z position
mjr 39:b3815a1c3802 45 //
mjr 39:b3815a1c3802 46 // The X, Y, and Z values are 16-bit signed integers. The accelerometer
mjr 39:b3815a1c3802 47 // values are on an abstract scale, where 0 represents no acceleration,
mjr 39:b3815a1c3802 48 // negative maximum represents -1g on that axis, and positive maximum
mjr 39:b3815a1c3802 49 // represents +1g on that axis. For the plunger position, 0 is the park
mjr 39:b3815a1c3802 50 // position (the rest position of the plunger) and positive values represent
mjr 39:b3815a1c3802 51 // retracted (pulled back) positions. A negative value means that the plunger
mjr 39:b3815a1c3802 52 // is pushed forward of the park position.
mjr 39:b3815a1c3802 53 //
mjr 39:b3815a1c3802 54 // 2. Special reports
mjr 35:e959ffba78fd 55 // We subvert the joystick report format in certain cases to report other
mjr 35:e959ffba78fd 56 // types of information, when specifically requested by the host. This allows
mjr 35:e959ffba78fd 57 // our custom configuration UI on the Windows side to query additional
mjr 35:e959ffba78fd 58 // information that we don't normally send via the joystick reports. We
mjr 35:e959ffba78fd 59 // define a custom vendor-specific "status" field in the reports that we
mjr 35:e959ffba78fd 60 // use to identify these special reports, as described below.
mjr 35:e959ffba78fd 61 //
mjr 39:b3815a1c3802 62 // Normal joystick reports always have 0 in the high bit of the 2nd byte
mjr 35:e959ffba78fd 63 // of the report. Special non-joystick reports always have 1 in the high bit
mjr 35:e959ffba78fd 64 // of the first byte. (This byte is defined in the HID Report Descriptor
mjr 35:e959ffba78fd 65 // as an opaque vendor-defined value, so the joystick interface on the
mjr 35:e959ffba78fd 66 // Windows side simply ignores it.)
mjr 35:e959ffba78fd 67 //
mjr 52:8298b2a73eb2 68 // 2A. Plunger sensor status report
mjr 52:8298b2a73eb2 69 // Software on the PC can request a detailed status report from the plunger
mjr 52:8298b2a73eb2 70 // sensor. The status information is meant as an aid to installing and
mjr 52:8298b2a73eb2 71 // adjusting the sensor device for proper performance. For imaging sensor
mjr 52:8298b2a73eb2 72 // types, the status report includes a complete current image snapshot
mjr 52:8298b2a73eb2 73 // (an array of all of the pixels the sensor is currently imaging). For
mjr 52:8298b2a73eb2 74 // all sensor types, it includes the current plunger position registered
mjr 52:8298b2a73eb2 75 // on the sensor, and some timing information.
mjr 52:8298b2a73eb2 76 //
mjr 52:8298b2a73eb2 77 // To request the sensor status, the host sends custom protocol message 65 3
mjr 52:8298b2a73eb2 78 // (see below). The device replies with a message in this format:
mjr 52:8298b2a73eb2 79 //
mjr 52:8298b2a73eb2 80 // bytes 0:1 = 0x87FF
mjr 52:8298b2a73eb2 81 // byte 2 = 0 -> first (currently only) status report packet
mjr 52:8298b2a73eb2 82 // (additional packets could be added in the future if
mjr 52:8298b2a73eb2 83 // more fields need to be added)
mjr 52:8298b2a73eb2 84 // bytes 3:4 = number of pixels to be sent in following messages, as
mjr 52:8298b2a73eb2 85 // an unsigned 16-bit little-endian integer. This is 0 if
mjr 52:8298b2a73eb2 86 // the sensor isn't an imaging type.
mjr 52:8298b2a73eb2 87 // bytes 5:6 = current plunger position registered on the sensor.
mjr 52:8298b2a73eb2 88 // For imaging sensors, this is the pixel position, so it's
mjr 52:8298b2a73eb2 89 // scaled from 0 to number of pixels - 1. For non-imaging
mjr 52:8298b2a73eb2 90 // sensors, this uses the generic joystick scale 0..4095.
mjr 52:8298b2a73eb2 91 // The special value 0xFFFF means that the position couldn't
mjr 52:8298b2a73eb2 92 // be determined,
mjr 52:8298b2a73eb2 93 // byte 7 = bit flags:
mjr 52:8298b2a73eb2 94 // 0x01 = normal orientation detected
mjr 52:8298b2a73eb2 95 // 0x02 = reversed orientation detected
mjr 52:8298b2a73eb2 96 // 0x04 = calibration mode is active (no pixel packets
mjr 52:8298b2a73eb2 97 // are sent for this reading)
mjr 52:8298b2a73eb2 98 // bytes 8:9:10 = average time for each sensor read, in 10us units.
mjr 52:8298b2a73eb2 99 // This is the average time it takes to complete the I/O
mjr 52:8298b2a73eb2 100 // operation to read the sensor, to obtain the raw sensor
mjr 52:8298b2a73eb2 101 // data for instantaneous plunger position reading. For
mjr 52:8298b2a73eb2 102 // an imaging sensor, this is the time it takes for the
mjr 52:8298b2a73eb2 103 // sensor to capture the image and transfer it to the
mjr 52:8298b2a73eb2 104 // microcontroller. For an analog sensor (e.g., an LVDT
mjr 52:8298b2a73eb2 105 // or potentiometer), it's the time to complete an ADC
mjr 52:8298b2a73eb2 106 // sample.
mjr 52:8298b2a73eb2 107 // bytes 11:12:13 = time it took to process the current frame, in 10us
mjr 52:8298b2a73eb2 108 // units. This is the software processing time that was
mjr 52:8298b2a73eb2 109 // needed to analyze the raw data read from the sensor.
mjr 52:8298b2a73eb2 110 // This is typically only non-zero for imaging sensors,
mjr 52:8298b2a73eb2 111 // where it reflects the time required to scan the pixel
mjr 52:8298b2a73eb2 112 // array to find the indicated plunger position. The time
mjr 52:8298b2a73eb2 113 // is usually zero or negligible for analog sensor types,
mjr 52:8298b2a73eb2 114 // since the only "analysis" is a multiplication to rescale
mjr 52:8298b2a73eb2 115 // the ADC sample.
mjr 52:8298b2a73eb2 116 //
mjr 52:8298b2a73eb2 117 // If the sensor is an imaging sensor type, this will be followed by a
mjr 52:8298b2a73eb2 118 // series of pixel messages. The imaging sensor types have too many pixels
mjr 52:8298b2a73eb2 119 // to send in a single USB transaction, so the device breaks up the array
mjr 52:8298b2a73eb2 120 // into as many packets as needed and sends them in sequence. For non-
mjr 52:8298b2a73eb2 121 // imaging sensors, the "number of pixels" field in the lead packet is
mjr 52:8298b2a73eb2 122 // zero, so obviously no pixel packets will follow. If the "calibration
mjr 52:8298b2a73eb2 123 // active" bit in the flags byte is set, no pixel packets are sent even
mjr 52:8298b2a73eb2 124 // if the sensor is an imaging type, since the transmission time for the
mjr 52:8298b2a73eb2 125 // pixels would intefere with the calibration process. If pixels are sent,
mjr 52:8298b2a73eb2 126 // they're sent in order starting at the first pixel. The format of each
mjr 52:8298b2a73eb2 127 // pixel packet is:
mjr 35:e959ffba78fd 128 //
mjr 35:e959ffba78fd 129 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 48:058ace2aed1d 130 // example, 0x8004 (encoded little endian as 0x04 0x80)
mjr 48:058ace2aed1d 131 // indicates index 4. This is the starting pixel number
mjr 48:058ace2aed1d 132 // in the report. The first report will be 0x00 0x80 to
mjr 48:058ace2aed1d 133 // indicate pixel #0.
mjr 47:df7a88cd249c 134 // bytes 2 = 8-bit unsigned int brightness level of pixel at index
mjr 47:df7a88cd249c 135 // bytes 3 = brightness of pixel at index+1
mjr 35:e959ffba78fd 136 // etc for the rest of the packet
mjr 35:e959ffba78fd 137 //
mjr 52:8298b2a73eb2 138 // Note that we currently only support one-dimensional imaging sensors
mjr 52:8298b2a73eb2 139 // (i.e., pixel arrays that are 1 pixel wide). The report format doesn't
mjr 52:8298b2a73eb2 140 // have any provision for a two-dimensional layout. The KL25Z probably
mjr 52:8298b2a73eb2 141 // isn't powerful enough to do real-time image analysis on a 2D image
mjr 52:8298b2a73eb2 142 // anyway, so it's unlikely that we'd be able to make 2D sensors work at
mjr 52:8298b2a73eb2 143 // all, but if we ever add such a thing we'll have to upgrade the report
mjr 52:8298b2a73eb2 144 // format here accordingly.
mjr 51:57eb311faafa 145 //
mjr 51:57eb311faafa 146 //
mjr 53:9b2611964afc 147 // 2B. Configuration report.
mjr 39:b3815a1c3802 148 // This is requested by sending custom protocol message 65 4 (see below).
mjr 39:b3815a1c3802 149 // In reponse, the device sends one report to the host using this format:
mjr 35:e959ffba78fd 150 //
mjr 35:e959ffba78fd 151 // bytes 0:1 = 0x8800. This has the bit pattern 10001 in the high
mjr 35:e959ffba78fd 152 // 5 bits, which distinguishes it from regular joystick
mjr 40:cc0d9814522b 153 // reports and from other special report types.
mjr 35:e959ffba78fd 154 // bytes 2:3 = total number of outputs, little endian
mjr 73:4e8ce0b18915 155 // bytes 4:5 = Pinscape unit number (0-15), little endian
mjr 40:cc0d9814522b 156 // bytes 6:7 = plunger calibration zero point, little endian
mjr 40:cc0d9814522b 157 // bytes 8:9 = plunger calibration maximum point, little endian
mjr 52:8298b2a73eb2 158 // byte 10 = plunger calibration release time, in milliseconds
mjr 52:8298b2a73eb2 159 // byte 11 = bit flags:
mjr 40:cc0d9814522b 160 // 0x01 -> configuration loaded; 0 in this bit means that
mjr 40:cc0d9814522b 161 // the firmware has been loaded but no configuration
mjr 40:cc0d9814522b 162 // has been sent from the host
mjr 73:4e8ce0b18915 163 // bytes 12:13 = available RAM, in bytes, little endian. This is the amount
mjr 73:4e8ce0b18915 164 // of unused heap (malloc'able) memory. The firmware generally
mjr 73:4e8ce0b18915 165 // allocates all of the dynamic memory it needs during startup,
mjr 73:4e8ce0b18915 166 // so the free memory figure doesn't tend to fluctuate during
mjr 73:4e8ce0b18915 167 // normal operation. The dynamic memory used is a function of
mjr 73:4e8ce0b18915 168 // the set of features enabled.
mjr 35:e959ffba78fd 169 //
mjr 53:9b2611964afc 170 // 2C. Device ID report.
mjr 40:cc0d9814522b 171 // This is requested by sending custom protocol message 65 7 (see below).
mjr 40:cc0d9814522b 172 // In response, the device sends one report to the host using this format:
mjr 40:cc0d9814522b 173 //
mjr 52:8298b2a73eb2 174 // bytes 0:1 = 0x9000. This has bit pattern 10010 in the high 5 bits
mjr 52:8298b2a73eb2 175 // to distinguish this from other report types.
mjr 53:9b2611964afc 176 // byte 2 = ID type. This is the same ID type sent in the request.
mjr 53:9b2611964afc 177 // bytes 3-12 = requested ID. The ID is 80 bits in big-endian byte
mjr 53:9b2611964afc 178 // order. For IDs longer than 80 bits, we truncate to the
mjr 53:9b2611964afc 179 // low-order 80 bits (that is, the last 80 bits).
mjr 53:9b2611964afc 180 //
mjr 53:9b2611964afc 181 // ID type 1 = CPU ID. This is the globally unique CPU ID
mjr 53:9b2611964afc 182 // stored in the KL25Z CPU.
mjr 35:e959ffba78fd 183 //
mjr 53:9b2611964afc 184 // ID type 2 = OpenSDA ID. This is the globally unique ID
mjr 53:9b2611964afc 185 // for the connected OpenSDA controller, if known. This
mjr 53:9b2611964afc 186 // allow the host to figure out which USB MSD (virtual
mjr 53:9b2611964afc 187 // disk drive), if any, represents the OpenSDA module for
mjr 53:9b2611964afc 188 // this Pinscape USB interface. This is primarily useful
mjr 53:9b2611964afc 189 // to determine which MSD to write in order to update the
mjr 53:9b2611964afc 190 // firmware on a given Pinscape unit.
mjr 53:9b2611964afc 191 //
mjr 53:9b2611964afc 192 // 2D. Configuration variable report.
mjr 52:8298b2a73eb2 193 // This is requested by sending custom protocol message 65 9 (see below).
mjr 52:8298b2a73eb2 194 // In response, the device sends one report to the host using this format:
mjr 52:8298b2a73eb2 195 //
mjr 52:8298b2a73eb2 196 // bytes 0:1 = 0x9800. This has bit pattern 10011 in the high 5 bits
mjr 52:8298b2a73eb2 197 // to distinguish this from other report types.
mjr 52:8298b2a73eb2 198 // byte 2 = Variable ID. This is the same variable ID sent in the
mjr 52:8298b2a73eb2 199 // query message, to relate the reply to the request.
mjr 52:8298b2a73eb2 200 // bytes 3-8 = Current value of the variable, in the format for the
mjr 52:8298b2a73eb2 201 // individual variable type. The variable formats are
mjr 52:8298b2a73eb2 202 // described in the CONFIGURATION VARIABLES section below.
mjr 52:8298b2a73eb2 203 //
mjr 53:9b2611964afc 204 // 2E. Software build information report.
mjr 53:9b2611964afc 205 // This is requested by sending custom protocol message 65 10 (see below).
mjr 53:9b2611964afc 206 // In response, the device sends one report using this format:
mjr 53:9b2611964afc 207 //
mjr 73:4e8ce0b18915 208 // bytes 0:1 = 0xA000. This has bit pattern 10100 in the high 5 bits
mjr 53:9b2611964afc 209 // to distinguish it from other report types.
mjr 53:9b2611964afc 210 // bytes 2:5 = Build date. This is returned as a 32-bit integer,
mjr 53:9b2611964afc 211 // little-endian as usual, encoding a decimal value
mjr 53:9b2611964afc 212 // in the format YYYYMMDD giving the date of the build.
mjr 53:9b2611964afc 213 // E.g., Feb 16 2016 is encoded as 20160216 (decimal).
mjr 53:9b2611964afc 214 // bytes 6:9 = Build time. This is a 32-bit integer, little-endian,
mjr 53:9b2611964afc 215 // encoding a decimal value in the format HHMMSS giving
mjr 53:9b2611964afc 216 // build time on a 24-hour clock.
mjr 53:9b2611964afc 217 //
mjr 73:4e8ce0b18915 218 // 2F. Button status report.
mjr 73:4e8ce0b18915 219 // This is requested by sending custom protocol message 65 13 (see below).
mjr 73:4e8ce0b18915 220 // In response, the device sends one report using this format:
mjr 73:4e8ce0b18915 221 //
mjr 73:4e8ce0b18915 222 // bytes 0:1 = 0xA1. This has bit pattern 10101 in the high 5 bits
mjr 73:4e8ce0b18915 223 // to distinguish it from other report types.
mjr 73:4e8ce0b18915 224 // byte 2 = number of button reports
mjr 73:4e8ce0b18915 225 // byte 3 = Physical status of buttons 1-8, 1 bit each. The low-order
mjr 73:4e8ce0b18915 226 // bit (0x01) is button 1. Each bit is 0 if the button is off,
mjr 73:4e8ce0b18915 227 // 1 if on. This reflects the physical status of the button
mjr 73:4e8ce0b18915 228 // input pins, after debouncing but before any logical state
mjr 73:4e8ce0b18915 229 // processing. Pulse mode and shifting have no effect on the
mjr 73:4e8ce0b18915 230 // physical state; this simply indicates whether the button is
mjr 73:4e8ce0b18915 231 // electrically on (shorted to GND) or off (open circuit).
mjr 73:4e8ce0b18915 232 // byte 4 = buttons 9-16
mjr 73:4e8ce0b18915 233 // byte 5 = buttons 17-24
mjr 73:4e8ce0b18915 234 // byte 6 = buttons 25-32
mjr 73:4e8ce0b18915 235 // byte 7 = buttons 33-40
mjr 73:4e8ce0b18915 236 // byte 8 = buttons 41-48
mjr 73:4e8ce0b18915 237 //
mjr 52:8298b2a73eb2 238 //
mjr 35:e959ffba78fd 239 // WHY WE USE THIS HACKY APPROACH TO DIFFERENT REPORT TYPES
mjr 35:e959ffba78fd 240 //
mjr 35:e959ffba78fd 241 // The HID report system was specifically designed to provide a clean,
mjr 35:e959ffba78fd 242 // structured way for devices to describe the data they send to the host.
mjr 35:e959ffba78fd 243 // Our approach isn't clean or structured; it ignores the promises we
mjr 35:e959ffba78fd 244 // make about the contents of our report via the HID Report Descriptor
mjr 35:e959ffba78fd 245 // and stuffs our own different data format into the same structure.
mjr 35:e959ffba78fd 246 //
mjr 35:e959ffba78fd 247 // We use this hacky approach only because we can't use the official
mjr 35:e959ffba78fd 248 // mechanism, due to the constraint that we want to emulate the LedWiz.
mjr 35:e959ffba78fd 249 // The right way to send different report types is to declare different
mjr 35:e959ffba78fd 250 // report types via extra HID Report Descriptors, then send each report
mjr 35:e959ffba78fd 251 // using one of the types we declared. If it weren't for the LedWiz
mjr 35:e959ffba78fd 252 // constraint, we'd simply define the pixel dump and config query reports
mjr 35:e959ffba78fd 253 // as their own separate HID Report types, each consisting of opaque
mjr 35:e959ffba78fd 254 // blocks of bytes. But we can't do this. The snag is that some versions
mjr 35:e959ffba78fd 255 // of the LedWiz Windows host software parse the USB HID descriptors as part
mjr 35:e959ffba78fd 256 // of identifying a device as a valid LedWiz unit, and will only recognize
mjr 35:e959ffba78fd 257 // the device if it matches certain particulars about the descriptor
mjr 35:e959ffba78fd 258 // structure of a real LedWiz. One of the features that's important to
mjr 35:e959ffba78fd 259 // some versions of the software is the descriptor link structure, which
mjr 35:e959ffba78fd 260 // is affected by the layout of HID Report Descriptor entries. In order
mjr 35:e959ffba78fd 261 // to match the expected layout, we can only define a single kind of output
mjr 35:e959ffba78fd 262 // report. Since we have to use Joystick reports for the sake of VP and
mjr 35:e959ffba78fd 263 // other pinball software, and we're only allowed the one report type, we
mjr 35:e959ffba78fd 264 // have to make that one report type the Joystick type. That's why we
mjr 35:e959ffba78fd 265 // overload the joystick reports with other meanings. It's a hack, but
mjr 35:e959ffba78fd 266 // at least it's a fairly reliable and isolated hack, iun that our special
mjr 35:e959ffba78fd 267 // reports are only generated when clients specifically ask for them.
mjr 35:e959ffba78fd 268 // Plus, even if a client who doesn't ask for a special report somehow
mjr 35:e959ffba78fd 269 // gets one, the worst that happens is that they get a momentary spurious
mjr 35:e959ffba78fd 270 // reading from the accelerometer and plunger.
mjr 35:e959ffba78fd 271
mjr 35:e959ffba78fd 272
mjr 35:e959ffba78fd 273
mjr 35:e959ffba78fd 274 // ------- INCOMING MESSAGES (HOST TO DEVICE) -------
mjr 35:e959ffba78fd 275 //
mjr 35:e959ffba78fd 276 // For LedWiz compatibility, our incoming message format conforms to the
mjr 35:e959ffba78fd 277 // basic USB format used by real LedWiz units. This is simply 8 data
mjr 35:e959ffba78fd 278 // bytes, all private vendor-specific values (meaning that the Windows HID
mjr 35:e959ffba78fd 279 // driver treats them as opaque and doesn't attempt to parse them).
mjr 35:e959ffba78fd 280 //
mjr 35:e959ffba78fd 281 // Within this basic 8-byte format, we recognize the full protocol used
mjr 35:e959ffba78fd 282 // by real LedWiz units, plus an extended protocol that we define privately.
mjr 35:e959ffba78fd 283 // The LedWiz protocol leaves a large part of the potential protocol space
mjr 35:e959ffba78fd 284 // undefined, so we take advantage of this undefined region for our
mjr 35:e959ffba78fd 285 // extensions. This ensures that we can properly recognize all messages
mjr 35:e959ffba78fd 286 // intended for a real LedWiz unit, as well as messages from custom host
mjr 35:e959ffba78fd 287 // software that knows it's talking to a Pinscape unit.
mjr 35:e959ffba78fd 288
mjr 35:e959ffba78fd 289 // --- REAL LED WIZ MESSAGES ---
mjr 35:e959ffba78fd 290 //
mjr 35:e959ffba78fd 291 // The real LedWiz protocol has two message types, identified by the first
mjr 35:e959ffba78fd 292 // byte of the 8-byte USB packet:
mjr 35:e959ffba78fd 293 //
mjr 35:e959ffba78fd 294 // 64 -> SBA (64 xx xx xx xx ss uu uu)
mjr 35:e959ffba78fd 295 // xx = on/off bit mask for 8 outputs
mjr 35:e959ffba78fd 296 // ss = global flash speed setting (1-7)
mjr 35:e959ffba78fd 297 // uu = unused
mjr 35:e959ffba78fd 298 //
mjr 35:e959ffba78fd 299 // If the first byte has value 64 (0x40), it's an SBA message. This type of
mjr 35:e959ffba78fd 300 // message sets all 32 outputs individually ON or OFF according to the next
mjr 35:e959ffba78fd 301 // 32 bits (4 bytes) of the message, and sets the flash speed to the value in
mjr 35:e959ffba78fd 302 // the sixth byte. (The flash speed sets the global cycle rate for flashing
mjr 35:e959ffba78fd 303 // outputs - outputs with their values set to the range 128-132 - to a
mjr 35:e959ffba78fd 304 // relative speed, scaled linearly in frequency. 1 is the slowest at about
mjr 35:e959ffba78fd 305 // 2 Hz, 7 is the fastest at about 14 Hz.)
mjr 35:e959ffba78fd 306 //
mjr 35:e959ffba78fd 307 // 0-49 or 128-132 -> PBA (bb bb bb bb bb bb bb bb)
mjr 35:e959ffba78fd 308 // bb = brightness level/flash pattern for one output
mjr 35:e959ffba78fd 309 //
mjr 35:e959ffba78fd 310 // If the first byte is any valid brightness setting, it's a PBA message.
mjr 35:e959ffba78fd 311 // Valid brightness settings are:
mjr 35:e959ffba78fd 312 //
mjr 35:e959ffba78fd 313 // 0-48 = fixed brightness level, linearly from 0% to 100% intensity
mjr 35:e959ffba78fd 314 // 49 = fixed brightness level at 100% intensity (same as 48)
mjr 35:e959ffba78fd 315 // 129 = flashing pattern, fade up / fade down (sawtooth wave)
mjr 35:e959ffba78fd 316 // 130 = flashing pattern, on / off (square wave)
mjr 35:e959ffba78fd 317 // 131 = flashing pattern, on for 50% duty cycle / fade down
mjr 35:e959ffba78fd 318 // 132 = flashing pattern, fade up / on for 50% duty cycle
mjr 35:e959ffba78fd 319 //
mjr 35:e959ffba78fd 320 // A PBA message sets 8 outputs out of 32. Which 8 are to be set is
mjr 35:e959ffba78fd 321 // implicit in the message sequence: the first PBA sets outputs 1-8, the
mjr 35:e959ffba78fd 322 // second sets 9-16, and so on, rolling around after each fourth PBA.
mjr 35:e959ffba78fd 323 // An SBA also resets the implicit "bank" for the next PBA to outputs 1-8.
mjr 35:e959ffba78fd 324 //
mjr 35:e959ffba78fd 325 // Note that there's no special first byte to indicate the PBA message
mjr 35:e959ffba78fd 326 // type, as there is in an SBA. The first byte of a PBA is simply the
mjr 53:9b2611964afc 327 // first output setting. The way the LedWiz creators conceived this, an
mjr 53:9b2611964afc 328 // SBA message is distinguishable from a PBA because there's no such thing
mjr 53:9b2611964afc 329 // as a brightness level 64, hence 64 is never valid as a byte in an PBA
mjr 53:9b2611964afc 330 // message, hence a message starting with 64 must be something other than
mjr 53:9b2611964afc 331 // an PBA message.
mjr 35:e959ffba78fd 332 //
mjr 35:e959ffba78fd 333 // Our extended protocol uses the same principle, taking advantage of the
mjr 53:9b2611964afc 334 // many other byte values that are also invalid in PBA messages. To be a
mjr 53:9b2611964afc 335 // valid PBA message, the first byte must be in the range 0-49 or 129-132.
mjr 53:9b2611964afc 336 // As already mentioned, byte value 64 indicates an SBA message, so we
mjr 53:9b2611964afc 337 // can't use that one for private extensions. This still leaves many
mjr 53:9b2611964afc 338 // other byte values for us, though, namely 50-63, 65-128, and 133-255.
mjr 35:e959ffba78fd 339
mjr 35:e959ffba78fd 340
mjr 35:e959ffba78fd 341 // --- PRIVATE EXTENDED MESSAGES ---
mjr 35:e959ffba78fd 342 //
mjr 35:e959ffba78fd 343 // All of our extended protocol messages are identified by the first byte:
mjr 35:e959ffba78fd 344 //
mjr 35:e959ffba78fd 345 // 65 -> Miscellaneous control message. The second byte specifies the specific
mjr 35:e959ffba78fd 346 // operation:
mjr 35:e959ffba78fd 347 //
mjr 39:b3815a1c3802 348 // 0 -> No Op - does nothing. (This can be used to send a test message on the
mjr 39:b3815a1c3802 349 // USB endpoint.)
mjr 39:b3815a1c3802 350 //
mjr 35:e959ffba78fd 351 // 1 -> Set device unit number and plunger status, and save the changes immediately
mjr 35:e959ffba78fd 352 // to flash. The device will automatically reboot after the changes are saved.
mjr 35:e959ffba78fd 353 // The additional bytes of the message give the parameters:
mjr 35:e959ffba78fd 354 //
mjr 35:e959ffba78fd 355 // third byte = new unit number (0-15, corresponding to nominal unit numbers 1-16)
mjr 35:e959ffba78fd 356 // fourth byte = plunger on/off (0=disabled, 1=enabled)
mjr 35:e959ffba78fd 357 //
mjr 35:e959ffba78fd 358 // 2 -> Begin plunger calibration mode. The device stays in this mode for about
mjr 35:e959ffba78fd 359 // 15 seconds, and sets the zero point and maximum retraction points to the
mjr 35:e959ffba78fd 360 // observed endpoints of sensor readings while the mode is running. After
mjr 35:e959ffba78fd 361 // the time limit elapses, the device automatically stores the results in
mjr 35:e959ffba78fd 362 // non-volatile flash memory and exits the mode.
mjr 35:e959ffba78fd 363 //
mjr 51:57eb311faafa 364 // 3 -> Send pixel dump. The device sends one complete image snapshot from the
mjr 51:57eb311faafa 365 // plunger sensor, as as series of pixel dump messages. (The message format
mjr 51:57eb311faafa 366 // isn't big enough to allow the whole image to be sent in one message, so
mjr 53:9b2611964afc 367 // the image is broken up into as many messages as necessary.) The device
mjr 53:9b2611964afc 368 // then resumes sending normal joystick messages. If the plunger sensor
mjr 53:9b2611964afc 369 // isn't an imaging type, or no sensor is installed, no pixel messages are
mjr 53:9b2611964afc 370 // sent. Parameters:
mjr 48:058ace2aed1d 371 //
mjr 48:058ace2aed1d 372 // third byte = bit flags:
mjr 51:57eb311faafa 373 // 0x01 = low res mode. The device rescales the sensor pixel array
mjr 51:57eb311faafa 374 // sent in the dump messages to a low-resolution subset. The
mjr 51:57eb311faafa 375 // size of the subset is determined by the device. This has
mjr 51:57eb311faafa 376 // no effect on the sensor operation; it merely reduces the
mjr 51:57eb311faafa 377 // USB transmission time to allow for a faster frame rate for
mjr 51:57eb311faafa 378 // viewing in the config tool.
mjr 35:e959ffba78fd 379 //
mjr 53:9b2611964afc 380 // fourth byte = extra exposure time in 100us (.1ms) increments. For
mjr 53:9b2611964afc 381 // imaging sensors, we'll add this delay to the minimum exposure
mjr 53:9b2611964afc 382 // time. This allows the caller to explicitly adjust the exposure
mjr 53:9b2611964afc 383 // level for calibration purposes.
mjr 53:9b2611964afc 384 //
mjr 35:e959ffba78fd 385 // 4 -> Query configuration. The device sends a special configuration report,
mjr 40:cc0d9814522b 386 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 387 // joystick reports.
mjr 35:e959ffba78fd 388 //
mjr 35:e959ffba78fd 389 // 5 -> Turn all outputs off and restore LedWiz defaults. Sets output ports
mjr 35:e959ffba78fd 390 // 1-32 to OFF and LedWiz brightness/mode setting 48, sets outputs 33 and
mjr 35:e959ffba78fd 391 // higher to brightness level 0, and sets the LedWiz global flash speed to 2.
mjr 35:e959ffba78fd 392 //
mjr 35:e959ffba78fd 393 // 6 -> Save configuration to flash. This saves all variable updates sent via
mjr 35:e959ffba78fd 394 // type 66 messages since the last reboot, then automatically reboots the
mjr 35:e959ffba78fd 395 // device to put the changes into effect.
mjr 35:e959ffba78fd 396 //
mjr 53:9b2611964afc 397 // third byte = delay time in seconds. The device will wait this long
mjr 53:9b2611964afc 398 // before disconnecting, to allow the PC to perform any cleanup tasks
mjr 53:9b2611964afc 399 // while the device is still attached (e.g., modifying Windows device
mjr 53:9b2611964afc 400 // driver settings)
mjr 53:9b2611964afc 401 //
mjr 40:cc0d9814522b 402 // 7 -> Query device ID. The device replies with a special device ID report
mjr 40:cc0d9814522b 403 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 404 // joystick reports.
mjr 40:cc0d9814522b 405 //
mjr 53:9b2611964afc 406 // The third byte of the message is the ID index to retrieve:
mjr 53:9b2611964afc 407 //
mjr 53:9b2611964afc 408 // 1 = CPU ID: returns the KL25Z globally unique CPU ID.
mjr 53:9b2611964afc 409 //
mjr 53:9b2611964afc 410 // 2 = OpenSDA ID: returns the OpenSDA TUID. This must be patched
mjr 53:9b2611964afc 411 // into the firmware by the PC host when the .bin file is
mjr 53:9b2611964afc 412 // installed onto the device. This will return all 'X' bytes
mjr 53:9b2611964afc 413 // if the value wasn't patched at install time.
mjr 53:9b2611964afc 414 //
mjr 40:cc0d9814522b 415 // 8 -> Engage/disengage night mode. The third byte of the message is 1 to
mjr 55:4db125cd11a0 416 // engage night mode, 0 to disengage night mode. The current mode isn't
mjr 55:4db125cd11a0 417 // stored persistently; night mode is always off after a reset.
mjr 40:cc0d9814522b 418 //
mjr 52:8298b2a73eb2 419 // 9 -> Query configuration variable. The second byte is the config variable
mjr 52:8298b2a73eb2 420 // number (see the CONFIGURATION VARIABLES section below). For the array
mjr 52:8298b2a73eb2 421 // variables (button assignments, output ports), the third byte is the
mjr 52:8298b2a73eb2 422 // array index. The device replies with a configuration variable report
mjr 52:8298b2a73eb2 423 // (see above) with the current setting for the requested variable.
mjr 52:8298b2a73eb2 424 //
mjr 53:9b2611964afc 425 // 10 -> Query software build information. No parameters. This replies with
mjr 53:9b2611964afc 426 // the software build information report (see above).
mjr 53:9b2611964afc 427 //
mjr 73:4e8ce0b18915 428 // 11 -> TV ON relay manual control. This allows testing and operating the
mjr 73:4e8ce0b18915 429 // relay from the PC. This doesn't change the power-up configuration;
mjr 73:4e8ce0b18915 430 // it merely allows the relay to be controlled directly.
mjr 73:4e8ce0b18915 431 //
mjr 73:4e8ce0b18915 432 // 0 = turn relay off
mjr 73:4e8ce0b18915 433 // 1 = turn relay on
mjr 73:4e8ce0b18915 434 // 2 = pulse the relay as though the power-on delay timer fired
mjr 73:4e8ce0b18915 435 //
mjr 73:4e8ce0b18915 436 // 12 -> Select virtual LedWiz unit. This selects a bank of 32 ports that
mjr 73:4e8ce0b18915 437 // will be addressed by subsequent SBA and PBA messages. After this
mjr 73:4e8ce0b18915 438 // command is sent, all SBA and PBA messages will address the bank of
mjr 73:4e8ce0b18915 439 // ports selected by this command. Send this command again with a new
mjr 73:4e8ce0b18915 440 // bank number to address other ports with SBA/PBA messages.
mjr 73:4e8ce0b18915 441 //
mjr 73:4e8ce0b18915 442 // The rationale for this command is to allow legacy software that only
mjr 73:4e8ce0b18915 443 // uses the original LedWiz protocol to access more than 32 ports. To
mjr 73:4e8ce0b18915 444 // do this, we must replace the LEDWIZ.DLL interface library on the PC
mjr 73:4e8ce0b18915 445 // with a new version that exposes each Pinscape unit as multiple virtual
mjr 73:4e8ce0b18915 446 // LedWiz devices. The DLL creates a virtual LedWiz unit (each with its
mjr 73:4e8ce0b18915 447 // own unit number) for each bank of 32 ports on the Pincape unit. When
mjr 73:4e8ce0b18915 448 // the DLL receives an SBA or PBA command addressed to one of the virtual
mjr 73:4e8ce0b18915 449 // LedWiz units, it first sends a "select virtual unit" command (i.e.,
mjr 73:4e8ce0b18915 450 // this message) to Pinscape, selecting the appropriate bank of 32 ports
mjr 73:4e8ce0b18915 451 // represented by the virtual unit being accessed by the client, then
mjr 73:4e8ce0b18915 452 // follows with the SBA/PBA command the client sent.
mjr 73:4e8ce0b18915 453 //
mjr 73:4e8ce0b18915 454 // The third byte of the message is the bank number to select. Bank 0
mjr 73:4e8ce0b18915 455 // is ports 1-32, bank 1 is ports 33-64, and so on.
mjr 73:4e8ce0b18915 456 //
mjr 73:4e8ce0b18915 457 // 13 -> Get button status report. The device sends one button status report
mjr 73:4e8ce0b18915 458 // in response (see section "2F" above).
mjr 73:4e8ce0b18915 459 //
mjr 35:e959ffba78fd 460 // 66 -> Set configuration variable. The second byte of the message is the config
mjr 35:e959ffba78fd 461 // variable number, and the remaining bytes give the new value for the variable.
mjr 53:9b2611964afc 462 // The value format is specific to each variable; see the CONFIGURATION VARIABLES
mjr 53:9b2611964afc 463 // section below for a list of the variables and their formats. This command
mjr 53:9b2611964afc 464 // only sets the value in RAM; it doesn't write the value to flash and doesn't
mjr 53:9b2611964afc 465 // put the change into effect. To save the new settings, the host must send a
mjr 53:9b2611964afc 466 // type 65 subtype 6 message (see above). That saves the settings to flash and
mjr 53:9b2611964afc 467 // reboots the device, which makes the new settings active.
mjr 35:e959ffba78fd 468 //
mjr 35:e959ffba78fd 469 // 200-228 -> Set extended output brightness. This sets outputs N to N+6 to the
mjr 35:e959ffba78fd 470 // respective brightness values in the 2nd through 8th bytes of the message
mjr 35:e959ffba78fd 471 // (output N is set to the 2nd byte value, N+1 is set to the 3rd byte value,
mjr 35:e959ffba78fd 472 // etc). Each brightness level is a linear brightness level from 0-255,
mjr 35:e959ffba78fd 473 // where 0 is 0% brightness and 255 is 100% brightness. N is calculated as
mjr 35:e959ffba78fd 474 // (first byte - 200)*7 + 1:
mjr 35:e959ffba78fd 475 //
mjr 35:e959ffba78fd 476 // 200 = outputs 1-7
mjr 35:e959ffba78fd 477 // 201 = outputs 8-14
mjr 35:e959ffba78fd 478 // 202 = outputs 15-21
mjr 35:e959ffba78fd 479 // ...
mjr 35:e959ffba78fd 480 // 228 = outputs 197-203
mjr 35:e959ffba78fd 481 //
mjr 53:9b2611964afc 482 // This message is the way to address ports 33 and higher. Original LedWiz
mjr 53:9b2611964afc 483 // protocol messages can't access ports above 32, since the protocol is
mjr 53:9b2611964afc 484 // hard-wired for exactly 32 ports.
mjr 35:e959ffba78fd 485 //
mjr 53:9b2611964afc 486 // Note that the extended output messages differ from regular LedWiz commands
mjr 35:e959ffba78fd 487 // in two ways. First, the brightness is the ONLY attribute when an output is
mjr 53:9b2611964afc 488 // set using this mode. There's no separate ON/OFF state per output as there
mjr 35:e959ffba78fd 489 // is with the SBA/PBA messages. To turn an output OFF with this message, set
mjr 35:e959ffba78fd 490 // the intensity to 0. Setting a non-zero intensity turns it on immediately
mjr 35:e959ffba78fd 491 // without regard to the SBA status for the port. Second, the brightness is
mjr 35:e959ffba78fd 492 // on a full 8-bit scale (0-255) rather than the LedWiz's approximately 5-bit
mjr 35:e959ffba78fd 493 // scale, because there are no parts of the range reserved for flashing modes.
mjr 35:e959ffba78fd 494 //
mjr 35:e959ffba78fd 495 // Outputs 1-32 can be controlled by EITHER the regular LedWiz SBA/PBA messages
mjr 35:e959ffba78fd 496 // or by the extended messages. The latest setting for a given port takes
mjr 35:e959ffba78fd 497 // precedence. If an SBA/PBA message was the last thing sent to a port, the
mjr 35:e959ffba78fd 498 // normal LedWiz combination of ON/OFF and brightness/flash mode status is used
mjr 35:e959ffba78fd 499 // to determine the port's physical output setting. If an extended brightness
mjr 35:e959ffba78fd 500 // message was the last thing sent to a port, the LedWiz ON/OFF status and
mjr 35:e959ffba78fd 501 // flash modes are ignored, and the fixed brightness is set. Outputs 33 and
mjr 35:e959ffba78fd 502 // higher inherently can't be addressed or affected by SBA/PBA messages.
mjr 53:9b2611964afc 503 //
mjr 53:9b2611964afc 504 // (The precedence scheme is designed to accommodate a mix of legacy and DOF
mjr 53:9b2611964afc 505 // software transparently. The behavior described is really just to ensure
mjr 53:9b2611964afc 506 // transparent interoperability; it's not something that host software writers
mjr 53:9b2611964afc 507 // should have to worry about. We expect that anyone writing new software will
mjr 53:9b2611964afc 508 // just use the extended protocol and ignore the old LedWiz commands, since
mjr 53:9b2611964afc 509 // the extended protocol is easier to use and more powerful.)
mjr 35:e959ffba78fd 510
mjr 35:e959ffba78fd 511
mjr 35:e959ffba78fd 512 // ------- CONFIGURATION VARIABLES -------
mjr 35:e959ffba78fd 513 //
mjr 35:e959ffba78fd 514 // Message type 66 (see above) sets one configuration variable. The second byte
mjr 35:e959ffba78fd 515 // of the message is the variable ID, and the rest of the bytes give the new
mjr 35:e959ffba78fd 516 // value, in a variable-specific format. 16-bit values are little endian.
mjr 55:4db125cd11a0 517 // Any bytes at the end of the message not otherwise specified are reserved
mjr 55:4db125cd11a0 518 // for future use and should always be set to 0 in the message data.
mjr 35:e959ffba78fd 519 //
mjr 53:9b2611964afc 520 // 0 -> QUERY ONLY: Describe the configuration variables. The device
mjr 53:9b2611964afc 521 // sends a config variable query report with the following fields:
mjr 53:9b2611964afc 522 //
mjr 53:9b2611964afc 523 // byte 3 -> number of scalar (non-array) variables (these are
mjr 53:9b2611964afc 524 // numbered sequentially from 1 to N)
mjr 53:9b2611964afc 525 // byte 4 -> number of array variables (these are numbered
mjr 53:9b2611964afc 526 // sequentially from 256-N to 255)
mjr 53:9b2611964afc 527 //
mjr 53:9b2611964afc 528 // The description query is meant to allow the host to capture all
mjr 53:9b2611964afc 529 // configuration settings on the device without having to know what
mjr 53:9b2611964afc 530 // the variables mean or how many there are. This is useful for
mjr 53:9b2611964afc 531 // backing up the settings in a file on the PC, for example, or for
mjr 53:9b2611964afc 532 // capturing them to restore after a firmware update. This allows
mjr 53:9b2611964afc 533 // more flexible interoperability between unsynchronized versions
mjr 53:9b2611964afc 534 // of the firmware and the host software.
mjr 53:9b2611964afc 535 //
mjr 53:9b2611964afc 536 // 1 -> USB device ID. This sets the USB vendor and product ID codes
mjr 53:9b2611964afc 537 // to use when connecting to the PC. For LedWiz emulation, use
mjr 35:e959ffba78fd 538 // vendor 0xFAFA and product 0x00EF + unit# (where unit# is the
mjr 53:9b2611964afc 539 // nominal LedWiz unit number, from 1 to 16). If you have any
mjr 53:9b2611964afc 540 // REAL LedWiz units in your system, we recommend starting the
mjr 53:9b2611964afc 541 // Pinscape LedWiz numbering at 8 to avoid conflicts with the
mjr 53:9b2611964afc 542 // real LedWiz units. If you don't have any real LedWiz units,
mjr 53:9b2611964afc 543 // you can number your Pinscape units starting from 1.
mjr 35:e959ffba78fd 544 //
mjr 53:9b2611964afc 545 // If LedWiz emulation isn't desired or causes host conflicts,
mjr 53:9b2611964afc 546 // use our private ID: Vendor 0x1209, product 0xEAEA. (These IDs
mjr 53:9b2611964afc 547 // are registered with http://pid.codes, a registry for open-source
mjr 53:9b2611964afc 548 // USB devices, so they're guaranteed to be free of conflicts with
mjr 53:9b2611964afc 549 // other properly registered devices). The device will NOT appear
mjr 53:9b2611964afc 550 // as an LedWiz if you use the private ID codes, but DOF (R3 or
mjr 53:9b2611964afc 551 // later) will still recognize it as a Pinscape controller.
mjr 53:9b2611964afc 552 //
mjr 53:9b2611964afc 553 // bytes 3:4 -> USB Vendor ID
mjr 53:9b2611964afc 554 // bytes 5:6 -> USB Product ID
mjr 53:9b2611964afc 555 //
mjr 53:9b2611964afc 556 // 2 -> Pinscape Controller unit number for DOF. The Pinscape unit
mjr 53:9b2611964afc 557 // number is independent of the LedWiz unit number, and indepedent
mjr 53:9b2611964afc 558 // of the USB vendor/product IDs. DOF (R3 and later) uses this to
mjr 53:9b2611964afc 559 // identify the unit for the extended Pinscape functionality.
mjr 53:9b2611964afc 560 // For easiest DOF configuration, we recommend numbering your
mjr 53:9b2611964afc 561 // units sequentially starting at 1 (regardless of whether or not
mjr 53:9b2611964afc 562 // you have any real LedWiz units).
mjr 53:9b2611964afc 563 //
mjr 53:9b2611964afc 564 // byte 3 -> unit number, from 1 to 16
mjr 35:e959ffba78fd 565 //
mjr 55:4db125cd11a0 566 // 3 -> Enable/disable joystick reports.
mjr 55:4db125cd11a0 567 //
mjr 55:4db125cd11a0 568 // byte 2 -> 1 to enable, 0 to disable
mjr 35:e959ffba78fd 569 //
mjr 55:4db125cd11a0 570 // When joystick reports are disabled, the device registers as a generic HID
mjr 55:4db125cd11a0 571 // device, and only sends the private report types used by the Windows config
mjr 55:4db125cd11a0 572 // tool. It won't appear to Windows as a USB game controller or joystick.
mjr 55:4db125cd11a0 573 //
mjr 55:4db125cd11a0 574 // Note that this doesn't affect whether the device also registers a keyboard
mjr 55:4db125cd11a0 575 // interface. A keyboard interface will appear if and only if any buttons
mjr 55:4db125cd11a0 576 // (including virtual buttons, such as the ZB Launch Ball feature) are assigned
mjr 55:4db125cd11a0 577 // to generate keyboard key input.
mjr 55:4db125cd11a0 578 //
mjr 55:4db125cd11a0 579 // 4 -> Accelerometer orientation.
mjr 35:e959ffba78fd 580 //
mjr 55:4db125cd11a0 581 // byte 3 -> orientation:
mjr 55:4db125cd11a0 582 // 0 = ports at front (USB ports pointing towards front of cabinet)
mjr 55:4db125cd11a0 583 // 1 = ports at left
mjr 55:4db125cd11a0 584 // 2 = ports at right
mjr 55:4db125cd11a0 585 // 3 = ports at rear
mjr 55:4db125cd11a0 586 //
mjr 55:4db125cd11a0 587 // 5 -> Plunger sensor type.
mjr 35:e959ffba78fd 588 //
mjr 55:4db125cd11a0 589 // byte 3 -> plunger type:
mjr 55:4db125cd11a0 590 // 0 = none (disabled)
mjr 55:4db125cd11a0 591 // 1 = TSL1410R linear image sensor, 1280x1 pixels, serial mode
mjr 55:4db125cd11a0 592 // *2 = TSL1410R, parallel mode
mjr 55:4db125cd11a0 593 // 3 = TSL1412R linear image sensor, 1536x1 pixels, serial mode
mjr 55:4db125cd11a0 594 // *4 = TSL1412R, parallel mode
mjr 55:4db125cd11a0 595 // 5 = Potentiometer with linear taper, or any other device that
mjr 55:4db125cd11a0 596 // represents the position reading with a single analog voltage
mjr 55:4db125cd11a0 597 // *6 = AEDR8300 optical quadrature sensor, 75lpi
mjr 55:4db125cd11a0 598 // *7 = AS5304 magnetic quadrature sensor, 160 steps per 2mm
mjr 55:4db125cd11a0 599 //
mjr 55:4db125cd11a0 600 // * The sensor types marked with asterisks (*) are reserved for types
mjr 55:4db125cd11a0 601 // that aren't currently implemented but could be added in the future.
mjr 55:4db125cd11a0 602 // Selecting these types will effectively disable the plunger.
mjr 55:4db125cd11a0 603 //
mjr 55:4db125cd11a0 604 // 6 -> Plunger pin assignments.
mjr 47:df7a88cd249c 605 //
mjr 55:4db125cd11a0 606 // byte 3 -> pin assignment 1
mjr 55:4db125cd11a0 607 // byte 4 -> pin assignment 2
mjr 55:4db125cd11a0 608 // byte 5 -> pin assignment 3
mjr 55:4db125cd11a0 609 // byte 6 -> pin assignment 4
mjr 55:4db125cd11a0 610 //
mjr 55:4db125cd11a0 611 // All of the pins use the standard GPIO port format (see "GPIO pin number
mjr 55:4db125cd11a0 612 // mappings" below). The actual use of the four pins depends on the plunger
mjr 55:4db125cd11a0 613 // type, as shown below. "NC" means that the pin isn't used at all for the
mjr 55:4db125cd11a0 614 // corresponding plunger type.
mjr 35:e959ffba78fd 615 //
mjr 55:4db125cd11a0 616 // Plunger Type Pin 1 Pin 2 Pin 3 Pin 4
mjr 35:e959ffba78fd 617 //
mjr 55:4db125cd11a0 618 // TSL1410R/1412R, serial SI (DigitalOut) CLK (DigitalOut) AO (AnalogIn) NC
mjr 55:4db125cd11a0 619 // TSL1410R/1412R, parallel SI (DigitalOut) CLK (DigitalOut) AO1 (AnalogIn) AO2 (AnalogIn)
mjr 55:4db125cd11a0 620 // Potentiometer AO (AnalogIn) NC NC NC
mjr 55:4db125cd11a0 621 // AEDR8300 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 622 // AS5304 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 623 //
mjr 55:4db125cd11a0 624 // 7 -> Plunger calibration button pin assignments.
mjr 35:e959ffba78fd 625 //
mjr 55:4db125cd11a0 626 // byte 3 -> features enabled/disabled: bit mask consisting of:
mjr 55:4db125cd11a0 627 // 0x01 button input is enabled
mjr 55:4db125cd11a0 628 // 0x02 lamp output is enabled
mjr 55:4db125cd11a0 629 // byte 4 -> DigitalIn pin for the button switch
mjr 55:4db125cd11a0 630 // byte 5 -> DigitalOut pin for the indicator lamp
mjr 55:4db125cd11a0 631 //
mjr 55:4db125cd11a0 632 // Note that setting a pin to NC (Not Connected) will disable it even if the
mjr 55:4db125cd11a0 633 // corresponding feature enable bit (in byte 3) is set.
mjr 35:e959ffba78fd 634 //
mjr 55:4db125cd11a0 635 // 8 -> ZB Launch Ball setup. This configures the ZB Launch Ball feature.
mjr 55:4db125cd11a0 636 //
mjr 55:4db125cd11a0 637 // byte 3 -> LedWiz port number (1-255) mapped to "ZB Launch Ball" in DOF
mjr 55:4db125cd11a0 638 // byte 4 -> key type
mjr 55:4db125cd11a0 639 // byte 5 -> key code
mjr 55:4db125cd11a0 640 // bytes 6:7 -> "push" distance, in 1/1000 inch increments (16 bit little endian)
mjr 55:4db125cd11a0 641 //
mjr 55:4db125cd11a0 642 // Set the port number to 0 to disable the feature. The key type and key code
mjr 55:4db125cd11a0 643 // fields use the same conventions as for a button mapping (see below). The
mjr 55:4db125cd11a0 644 // recommended push distance is 63, which represents .063" ~ 1/16".
mjr 35:e959ffba78fd 645 //
mjr 35:e959ffba78fd 646 // 9 -> TV ON relay setup. This requires external circuitry implemented on the
mjr 35:e959ffba78fd 647 // Expansion Board (or an equivalent circuit as described in the Build Guide).
mjr 55:4db125cd11a0 648 //
mjr 55:4db125cd11a0 649 // byte 3 -> "power status" input pin (DigitalIn)
mjr 55:4db125cd11a0 650 // byte 4 -> "latch" output (DigitalOut)
mjr 55:4db125cd11a0 651 // byte 5 -> relay trigger output (DigitalOut)
mjr 55:4db125cd11a0 652 // bytes 6:7 -> delay time in 10ms increments (16 bit little endian);
mjr 55:4db125cd11a0 653 // e.g., 550 (0x26 0x02) represents 5.5 seconds
mjr 55:4db125cd11a0 654 //
mjr 55:4db125cd11a0 655 // Set the delay time to 0 to disable the feature. The pin assignments will
mjr 55:4db125cd11a0 656 // be ignored if the feature is disabled.
mjr 35:e959ffba78fd 657 //
mjr 35:e959ffba78fd 658 // 10 -> TLC5940NT setup. This chip is an external PWM controller, with 32 outputs
mjr 35:e959ffba78fd 659 // per chip and a serial data interface that allows the chips to be daisy-
mjr 35:e959ffba78fd 660 // chained. We can use these chips to add an arbitrary number of PWM output
mjr 55:4db125cd11a0 661 // ports for the LedWiz emulation.
mjr 55:4db125cd11a0 662 //
mjr 35:e959ffba78fd 663 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 664 // byte 4 = SIN pin - Serial data (must connect to SPIO MOSI -> PTC6 or PTD2)
mjr 35:e959ffba78fd 665 // byte 5 = SCLK pin - Serial clock (must connect to SPIO SCLK -> PTC5 or PTD1)
mjr 35:e959ffba78fd 666 // byte 6 = XLAT pin - XLAT (latch) signal (any GPIO pin)
mjr 35:e959ffba78fd 667 // byte 7 = BLANK pin - BLANK signal (any GPIO pin)
mjr 35:e959ffba78fd 668 // byte 8 = GSCLK pin - Grayscale clock signal (must be a PWM-out capable pin)
mjr 35:e959ffba78fd 669 //
mjr 55:4db125cd11a0 670 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 671 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 672 //
mjr 35:e959ffba78fd 673 // 11 -> 74HC595 setup. This chip is an external shift register, with 8 outputs per
mjr 35:e959ffba78fd 674 // chip and a serial data interface that allows daisy-chaining. We use this
mjr 35:e959ffba78fd 675 // chips to add extra digital outputs for the LedWiz emulation. In particular,
mjr 35:e959ffba78fd 676 // the Chime Board (part of the Expansion Board suite) uses these to add timer-
mjr 55:4db125cd11a0 677 // protected outputs for coil devices (knockers, chimes, bells, etc).
mjr 55:4db125cd11a0 678 //
mjr 35:e959ffba78fd 679 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 680 // byte 4 = SIN pin - Serial data (any GPIO pin)
mjr 35:e959ffba78fd 681 // byte 5 = SCLK pin - Serial clock (any GPIO pin)
mjr 35:e959ffba78fd 682 // byte 6 = LATCH pin - LATCH signal (any GPIO pin)
mjr 35:e959ffba78fd 683 // byte 7 = ENA pin - ENABLE signal (any GPIO pin)
mjr 35:e959ffba78fd 684 //
mjr 55:4db125cd11a0 685 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 686 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 687 //
mjr 53:9b2611964afc 688 // 12 -> Disconnect reboot timeout. The reboot timeout allows the controller software
mjr 51:57eb311faafa 689 // to automatically reboot the KL25Z after it detects that the USB connection is
mjr 51:57eb311faafa 690 // broken. On some hosts, the device isn't able to reconnect after the initial
mjr 51:57eb311faafa 691 // connection is lost. The reboot timeout is a workaround for these cases. When
mjr 51:57eb311faafa 692 // the software detects that the connection is no longer active, it will reboot
mjr 51:57eb311faafa 693 // the KL25Z automatically if a new connection isn't established within the
mjr 55:4db125cd11a0 694 // timeout period. Set the timeout to 0 to disable the feature (i.e., the device
mjr 55:4db125cd11a0 695 // will never automatically reboot itself on a broken connection).
mjr 55:4db125cd11a0 696 //
mjr 55:4db125cd11a0 697 // byte 3 -> reboot timeout in seconds; 0 = disabled
mjr 51:57eb311faafa 698 //
mjr 53:9b2611964afc 699 // 13 -> Plunger calibration. In most cases, the calibration is set internally by the
mjr 52:8298b2a73eb2 700 // device by running the calibration procedure. However, it's sometimes useful
mjr 52:8298b2a73eb2 701 // for the host to be able to get and set the calibration, such as to back up
mjr 52:8298b2a73eb2 702 // the device settings on the PC, or to save and restore the current settings
mjr 52:8298b2a73eb2 703 // when installing a software update.
mjr 52:8298b2a73eb2 704 //
mjr 52:8298b2a73eb2 705 // bytes 3:4 = rest position (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 706 // bytes 5:6 = maximum retraction point (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 707 // byte 7 = measured plunger release travel time in milliseconds
mjr 52:8298b2a73eb2 708 //
mjr 53:9b2611964afc 709 // 14 -> Expansion board configuration. This doesn't affect the controller behavior
mjr 52:8298b2a73eb2 710 // directly; the individual options related to the expansion boards (such as
mjr 52:8298b2a73eb2 711 // the TLC5940 and 74HC595 setup) still need to be set separately. This is
mjr 52:8298b2a73eb2 712 // stored so that the PC config UI can store and recover the information to
mjr 52:8298b2a73eb2 713 // present in the UI. For the "classic" KL25Z-only configuration, simply set
mjr 52:8298b2a73eb2 714 // all of the fields to zero.
mjr 52:8298b2a73eb2 715 //
mjr 53:9b2611964afc 716 // byte 3 = board set type. At the moment, the Pinscape expansion boards
mjr 53:9b2611964afc 717 // are the only ones supported in the software. This allows for
mjr 53:9b2611964afc 718 // adding new designs or independent designs in the future.
mjr 53:9b2611964afc 719 // 0 = Standalone KL25Z (no expansion boards)
mjr 53:9b2611964afc 720 // 1 = Pinscape expansion boards
mjr 53:9b2611964afc 721 //
mjr 53:9b2611964afc 722 // byte 4 = board set interface revision. This *isn't* the version number
mjr 53:9b2611964afc 723 // of the board itself, but rather of its software interface. In
mjr 53:9b2611964afc 724 // other words, this doesn't change every time the EAGLE layout
mjr 53:9b2611964afc 725 // for the board changes. It only changes when a revision is made
mjr 53:9b2611964afc 726 // that affects the software, such as a GPIO pin assignment.
mjr 53:9b2611964afc 727 //
mjr 55:4db125cd11a0 728 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 729 // 0 = first release (Feb 2016)
mjr 53:9b2611964afc 730 //
mjr 55:4db125cd11a0 731 // bytes 5:8 = additional hardware-specific data. These slots are used
mjr 55:4db125cd11a0 732 // to store extra data specific to the expansion boards selected.
mjr 55:4db125cd11a0 733 //
mjr 55:4db125cd11a0 734 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 735 // byte 5 = number of main interface boards
mjr 55:4db125cd11a0 736 // byte 6 = number of MOSFET power boards
mjr 55:4db125cd11a0 737 // byte 7 = number of chime boards
mjr 53:9b2611964afc 738 //
mjr 53:9b2611964afc 739 // 15 -> Night mode setup.
mjr 53:9b2611964afc 740 //
mjr 53:9b2611964afc 741 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none. This selects
mjr 53:9b2611964afc 742 // a physically wired button that can be used to control night mode.
mjr 53:9b2611964afc 743 // The button can also be used as normal for PC input if desired.
mjr 55:4db125cd11a0 744 // Note that night mode can still be activated via a USB command
mjr 55:4db125cd11a0 745 // even if no button is assigned.
mjr 55:4db125cd11a0 746 //
mjr 53:9b2611964afc 747 // byte 4 = flags:
mjr 66:2e3583fbd2f4 748 //
mjr 66:2e3583fbd2f4 749 // 0x01 -> The wired input is an on/off switch: night mode will be
mjr 53:9b2611964afc 750 // active when the input is switched on. If this bit isn't
mjr 66:2e3583fbd2f4 751 // set, the input is a momentary button: pushing the button
mjr 53:9b2611964afc 752 // toggles night mode.
mjr 55:4db125cd11a0 753 //
mjr 66:2e3583fbd2f4 754 // 0x02 -> Night Mode is assigned to the SHIFTED button (see Shift
mjr 66:2e3583fbd2f4 755 // Button setup at variable 16). This can only be used
mjr 66:2e3583fbd2f4 756 // in momentary mode; it's ignored if flag bit 0x01 is set.
mjr 66:2e3583fbd2f4 757 // When the shift flag is set, the button only toggles
mjr 66:2e3583fbd2f4 758 // night mode when you press it while also holding down
mjr 66:2e3583fbd2f4 759 // the Shift button.
mjr 66:2e3583fbd2f4 760 //
mjr 53:9b2611964afc 761 // byte 5 = indicator output number - 1..MAX_OUT_PORTS, or 0 for none. This
mjr 53:9b2611964afc 762 // selects an output port that will be turned on when night mode is
mjr 53:9b2611964afc 763 // activated. Night mode activation overrides any setting made by
mjr 53:9b2611964afc 764 // the host.
mjr 53:9b2611964afc 765 //
mjr 66:2e3583fbd2f4 766 // 16 -> Shift Button setup. One button can be designated as a "Local Shift
mjr 66:2e3583fbd2f4 767 // Button" that can be pressed to select a secondary meaning for other
mjr 66:2e3583fbd2f4 768 // buttons. This isn't to be confused with the PC Shift keys; those can
mjr 66:2e3583fbd2f4 769 // be programmed using the USB key codes for Left Shift and Right Shift.
mjr 66:2e3583fbd2f4 770 // Rather, this applies a LOCAL shift feature in the cabinet button that
mjr 66:2e3583fbd2f4 771 // lets you select a secondary meaning. For example, you could assign
mjr 66:2e3583fbd2f4 772 // the Start button to the "1" key (VP "Start Game") normally, but have
mjr 66:2e3583fbd2f4 773 // its meaning change to the "5" key ("Insert Coin") when the shift
mjr 66:2e3583fbd2f4 774 // button is pressed. This provides access to more control functions
mjr 66:2e3583fbd2f4 775 // without adding more physical buttons.
mjr 66:2e3583fbd2f4 776 //
mjr 66:2e3583fbd2f4 777 // The shift button itself can also have a regular key assignment. If
mjr 66:2e3583fbd2f4 778 // it does, the key is only sent to the PC when you RELEASE the shift
mjr 66:2e3583fbd2f4 779 // button, and then only if no other key with a shifted key code assigned
mjr 66:2e3583fbd2f4 780 // was pressed while the shift button was being held down. If another
mjr 66:2e3583fbd2f4 781 // key was pressed, and it has a shifted meaning assigned, we assume that
mjr 66:2e3583fbd2f4 782 // the shift button was only pressed in the first place for its shifting
mjr 66:2e3583fbd2f4 783 // function rather than for its normal keystroke. This dual usage lets
mjr 66:2e3583fbd2f4 784 // you make the shifting function even more unobtrusive by assigning it
mjr 66:2e3583fbd2f4 785 // to an ordinary button that has its own purpose when not used as a
mjr 66:2e3583fbd2f4 786 // shift button. For example, you could assign the shift function to the
mjr 66:2e3583fbd2f4 787 // rarely used Extra Ball button. In those cases where you actually want
mjr 66:2e3583fbd2f4 788 // to use the Extra Ball feature, it's there, but you also get more
mjr 66:2e3583fbd2f4 789 // mileage out of the button by using it to select secondary mappings for
mjr 66:2e3583fbd2f4 790 // other buttons.
mjr 66:2e3583fbd2f4 791 //
mjr 66:2e3583fbd2f4 792 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none.
mjr 66:2e3583fbd2f4 793 //
mjr 53:9b2611964afc 794 //
mjr 53:9b2611964afc 795 // ARRAY VARIABLES: Each variable below is an array. For each get/set message,
mjr 53:9b2611964afc 796 // byte 3 gives the array index. These are grouped at the top end of the variable
mjr 53:9b2611964afc 797 // ID range to distinguish this special feature. On QUERY, set the index byte to 0
mjr 53:9b2611964afc 798 // to query the number of slots; the reply will be a report for the array index
mjr 53:9b2611964afc 799 // variable with index 0, with the first (and only) byte after that indicating
mjr 53:9b2611964afc 800 // the maximum array index.
mjr 53:9b2611964afc 801 //
mjr 66:2e3583fbd2f4 802 // 253 -> Extended input button setup. This adds on to the information set by
mjr 66:2e3583fbd2f4 803 // variable 254 below, accessing additional fields. The "shifted" key
mjr 66:2e3583fbd2f4 804 // type and code fields assign a secondary meaning to the button that's
mjr 66:2e3583fbd2f4 805 // used when the local Shift button is being held down. See variable 16
mjr 66:2e3583fbd2f4 806 // above for more details on the Shift button.
mjr 66:2e3583fbd2f4 807 //
mjr 66:2e3583fbd2f4 808 // byte 3 = Button number 91..MAX_BUTTONS
mjr 66:2e3583fbd2f4 809 // byte 4 = shifted key type (same codes as "key type" in var 254)
mjr 66:2e3583fbd2f4 810 // byte 5 = shifted key code (same meaning as "key code" in var 254)
mjr 66:2e3583fbd2f4 811 //
mjr 53:9b2611964afc 812 // 254 -> Input button setup. This sets up one button; it can be repeated for each
mjr 64:ef7ca92dff36 813 // button to be configured. There are MAX_EXT_BUTTONS button slots (see
mjr 64:ef7ca92dff36 814 // config.h for the constant definition), numbered 1..MAX_EXT_BUTTONS. Each
mjr 53:9b2611964afc 815 // slot can be configured as a joystick button, a regular keyboard key, or a
mjr 53:9b2611964afc 816 // media control key (mute, volume up, volume down).
mjr 53:9b2611964afc 817 //
mjr 53:9b2611964afc 818 // The bytes of the message are:
mjr 66:2e3583fbd2f4 819 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 64:ef7ca92dff36 820 // byte 4 = GPIO pin for the button input; mapped as a DigitalIn port
mjr 53:9b2611964afc 821 // byte 5 = key type reported to PC when button is pushed:
mjr 53:9b2611964afc 822 // 0 = none (no PC input reported when button pushed)
mjr 53:9b2611964afc 823 // 1 = joystick button -> byte 6 is the button number, 1-32
mjr 53:9b2611964afc 824 // 2 = regular keyboard key -> byte 6 is the USB key code (see below)
mjr 67:c39e66c4e000 825 // 3 = media key -> byte 6 is the USB media control code (see below)
mjr 53:9b2611964afc 826 // byte 6 = key code, which depends on the key type in byte 5
mjr 53:9b2611964afc 827 // byte 7 = flags - a combination of these bit values:
mjr 53:9b2611964afc 828 // 0x01 = pulse mode. This reports a physical on/off switch's state
mjr 53:9b2611964afc 829 // to the host as a brief key press whenever the switch changes
mjr 53:9b2611964afc 830 // state. This is useful for the VPinMAME Coin Door button,
mjr 53:9b2611964afc 831 // which requires the End key to be pressed each time the
mjr 53:9b2611964afc 832 // door changes state.
mjr 53:9b2611964afc 833 //
mjr 53:9b2611964afc 834 // 255 -> LedWiz output port setup. This sets up one output port; it can be repeated
mjr 53:9b2611964afc 835 // for each port to be configured. There are 128 possible slots for output ports,
mjr 53:9b2611964afc 836 // numbered 1 to 128. The number of ports atcually active is determined by
mjr 53:9b2611964afc 837 // the first DISABLED port (type 0). For example, if ports 1-32 are set as GPIO
mjr 53:9b2611964afc 838 // outputs and port 33 is disabled, we'll report to the host that we have 32 ports,
mjr 53:9b2611964afc 839 // regardless of the settings for post 34 and higher.
mjr 53:9b2611964afc 840 //
mjr 53:9b2611964afc 841 // The bytes of the message are:
mjr 53:9b2611964afc 842 // byte 3 = LedWiz port number (1 to MAX_OUT_PORTS)
mjr 53:9b2611964afc 843 // byte 4 = physical output type:
mjr 53:9b2611964afc 844 // 0 = Disabled. This output isn't used, and isn't visible to the
mjr 53:9b2611964afc 845 // LedWiz/DOF software on the host. The FIRST disabled port
mjr 53:9b2611964afc 846 // determines the number of ports visible to the host - ALL ports
mjr 53:9b2611964afc 847 // after the first disabled port are also implicitly disabled.
mjr 53:9b2611964afc 848 // 1 = GPIO PWM output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 849 // operating in PWM mode. Note that only a subset of KL25Z GPIO
mjr 53:9b2611964afc 850 // ports are PWM-capable.
mjr 53:9b2611964afc 851 // 2 = GPIO Digital output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 852 // operating in digital mode. Digital ports can only be set ON
mjr 53:9b2611964afc 853 // or OFF, with no brightness/intensity control. All pins can be
mjr 53:9b2611964afc 854 // used in this mode.
mjr 53:9b2611964afc 855 // 3 = TLC5940 port: connected to TLC5940 output port number specified
mjr 53:9b2611964afc 856 // in byte 5. Ports are numbered sequentially starting from port 0
mjr 53:9b2611964afc 857 // for the first output (OUT0) on the first chip in the daisy chain.
mjr 53:9b2611964afc 858 // 4 = 74HC595 port: connected to 74HC595 output port specified in byte 5.
mjr 53:9b2611964afc 859 // As with the TLC5940 outputs, ports are numbered sequentially from 0
mjr 53:9b2611964afc 860 // for the first output on the first chip in the daisy chain.
mjr 53:9b2611964afc 861 // 5 = Virtual output: this output port exists for the purposes of the
mjr 53:9b2611964afc 862 // LedWiz/DOF software on the host, but isn't physically connected
mjr 53:9b2611964afc 863 // to any output device. This can be used to create a virtual output
mjr 53:9b2611964afc 864 // for the DOF ZB Launch Ball signal, for example, or simply as a
mjr 53:9b2611964afc 865 // placeholder in the LedWiz port numbering. The physical output ID
mjr 53:9b2611964afc 866 // (byte 5) is ignored for this port type.
mjr 53:9b2611964afc 867 // byte 5 = physical output port, interpreted according to the value in byte 4
mjr 53:9b2611964afc 868 // byte 6 = flags: a combination of these bit values:
mjr 53:9b2611964afc 869 // 0x01 = active-high output (0V on output turns attached device ON)
mjr 53:9b2611964afc 870 // 0x02 = noisemaker device: disable this output when "night mode" is engaged
mjr 53:9b2611964afc 871 // 0x04 = apply gamma correction to this output
mjr 53:9b2611964afc 872 //
mjr 53:9b2611964afc 873 // Note that the on-board LED segments can be used as LedWiz output ports. This
mjr 53:9b2611964afc 874 // is useful for testing a new installation with DOF or other PC software without
mjr 53:9b2611964afc 875 // having to connect any external devices. Assigning the on-board LED segments to
mjr 53:9b2611964afc 876 // output ports overrides their normal status/diagnostic display use, so the normal
mjr 53:9b2611964afc 877 // status flash pattern won't appear when they're used this way.
mjr 52:8298b2a73eb2 878 //
mjr 35:e959ffba78fd 879
mjr 35:e959ffba78fd 880
mjr 55:4db125cd11a0 881 // --- GPIO PIN NUMBER MAPPINGS ---
mjr 35:e959ffba78fd 882 //
mjr 53:9b2611964afc 883 // In USB messages that specify GPIO pin assignments, pins are identified by
mjr 53:9b2611964afc 884 // 8-bit integers. The special value 0xFF means NC (not connected). All actual
mjr 53:9b2611964afc 885 // pins are mapped with the port number in the top 3 bits and the pin number in
mjr 53:9b2611964afc 886 // the bottom 5 bits. Port A=0, B=1, ..., E=4. For example, PTC7 is port C (2)
mjr 53:9b2611964afc 887 // pin 7, so it's represented as (2 << 5) | 7.
mjr 53:9b2611964afc 888
mjr 35:e959ffba78fd 889
mjr 35:e959ffba78fd 890 // --- USB KEYBOARD SCAN CODES ---
mjr 35:e959ffba78fd 891 //
mjr 53:9b2611964afc 892 // For regular keyboard keys, we use the standard USB HID scan codes
mjr 53:9b2611964afc 893 // for the US keyboard layout. The scan codes are defined by the USB
mjr 53:9b2611964afc 894 // HID specifications; you can find a full list in the official USB
mjr 53:9b2611964afc 895 // specs. Some common codes are listed below as a quick reference.
mjr 35:e959ffba78fd 896 //
mjr 53:9b2611964afc 897 // Key name -> USB scan code (hex)
mjr 53:9b2611964afc 898 // A-Z -> 04-1D
mjr 53:9b2611964afc 899 // top row 1!->0) -> 1E-27
mjr 53:9b2611964afc 900 // Return -> 28
mjr 53:9b2611964afc 901 // Escape -> 29
mjr 53:9b2611964afc 902 // Backspace -> 2A
mjr 53:9b2611964afc 903 // Tab -> 2B
mjr 53:9b2611964afc 904 // Spacebar -> 2C
mjr 53:9b2611964afc 905 // -_ -> 2D
mjr 53:9b2611964afc 906 // =+ -> 2E
mjr 53:9b2611964afc 907 // [{ -> 2F
mjr 53:9b2611964afc 908 // ]} -> 30
mjr 53:9b2611964afc 909 // \| -> 31
mjr 53:9b2611964afc 910 // ;: -> 33
mjr 53:9b2611964afc 911 // '" -> 34
mjr 53:9b2611964afc 912 // `~ -> 35
mjr 53:9b2611964afc 913 // ,< -> 36
mjr 53:9b2611964afc 914 // .> -> 37
mjr 53:9b2611964afc 915 // /? -> 38
mjr 53:9b2611964afc 916 // Caps Lock -> 39
mjr 53:9b2611964afc 917 // F1-F12 -> 3A-45
mjr 53:9b2611964afc 918 // F13-F24 -> 68-73
mjr 53:9b2611964afc 919 // Print Screen -> 46
mjr 53:9b2611964afc 920 // Scroll Lock -> 47
mjr 53:9b2611964afc 921 // Pause -> 48
mjr 53:9b2611964afc 922 // Insert -> 49
mjr 53:9b2611964afc 923 // Home -> 4A
mjr 53:9b2611964afc 924 // Page Up -> 4B
mjr 53:9b2611964afc 925 // Del -> 4C
mjr 53:9b2611964afc 926 // End -> 4D
mjr 53:9b2611964afc 927 // Page Down -> 4E
mjr 53:9b2611964afc 928 // Right Arrow -> 4F
mjr 53:9b2611964afc 929 // Left Arrow -> 50
mjr 53:9b2611964afc 930 // Down Arrow -> 51
mjr 53:9b2611964afc 931 // Up Arrow -> 52
mjr 53:9b2611964afc 932 // Num Lock/Clear -> 53
mjr 53:9b2611964afc 933 // Keypad / * - + -> 54 55 56 57
mjr 53:9b2611964afc 934 // Keypad Enter -> 58
mjr 53:9b2611964afc 935 // Keypad 1-9 -> 59-61
mjr 53:9b2611964afc 936 // Keypad 0 -> 62
mjr 53:9b2611964afc 937 // Keypad . -> 63
mjr 53:9b2611964afc 938 // Mute -> 7F
mjr 53:9b2611964afc 939 // Volume Up -> 80
mjr 53:9b2611964afc 940 // Volume Down -> 81
mjr 53:9b2611964afc 941 // Left Control -> E0
mjr 53:9b2611964afc 942 // Left Shift -> E1
mjr 53:9b2611964afc 943 // Left Alt -> E2
mjr 53:9b2611964afc 944 // Left GUI -> E3
mjr 53:9b2611964afc 945 // Right Control -> E4
mjr 53:9b2611964afc 946 // Right Shift -> E5
mjr 53:9b2611964afc 947 // Right Alt -> E6
mjr 53:9b2611964afc 948 // Right GUI -> E7
mjr 53:9b2611964afc 949 //
mjr 66:2e3583fbd2f4 950 // Due to limitations in Windows, there's a limit of 6 regular keys
mjr 66:2e3583fbd2f4 951 // pressed at the same time. The shift keys in the E0-E7 range don't
mjr 66:2e3583fbd2f4 952 // count against this limit, though, since they're encoded as modifier
mjr 66:2e3583fbd2f4 953 // keys; all of these can be pressed at the same time in addition to 6
mjr 67:c39e66c4e000 954 // regular keys.
mjr 67:c39e66c4e000 955
mjr 67:c39e66c4e000 956 // --- USB MEDIA CONTROL SCAN CODES ---
mjr 67:c39e66c4e000 957 //
mjr 67:c39e66c4e000 958 // Buttons mapped to type 3 are Media Control buttons. These select
mjr 67:c39e66c4e000 959 // a small set of common media control functions. We recognize the
mjr 67:c39e66c4e000 960 // following type codes only:
mjr 67:c39e66c4e000 961 //
mjr 67:c39e66c4e000 962 // Mute -> E2
mjr 67:c39e66c4e000 963 // Volume up -> E9
mjr 67:c39e66c4e000 964 // Volume Down -> EA
mjr 67:c39e66c4e000 965 // Next Track -> B5
mjr 67:c39e66c4e000 966 // Previous Track -> B6
mjr 67:c39e66c4e000 967 // Stop -> B7
mjr 67:c39e66c4e000 968 // Play/Pause -> CD