An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Sat Feb 27 06:41:17 2016 +0000
Revision:
50:40015764bbe6
Parent:
49:37bd97eb7688
Child:
51:57eb311faafa
New plunger scheme seems to be working solidly.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 50:40015764bbe6 1 // NEW PLUNGER PROCESSING 1 - 26 Feb 2016
mjr 50:40015764bbe6 2 // This version takes advantage of the new, faster TSL1410R DMA processing
mjr 50:40015764bbe6 3 // to implement better firing event detection. This attempt works basically
mjr 50:40015764bbe6 4 // like the old version, but uses the higher time resolution to detect firing
mjr 50:40015764bbe6 5 // events more reliably. The scheme here watches for accelerations (the old
mjr 50:40015764bbe6 6 // TSL1410R code wasn't fast enough to do that). We observed that a release
mjr 50:40015764bbe6 7 // takes about 65ms from the maximum retraction point to crossing the zero
mjr 50:40015764bbe6 8 // point. Our 2.5ms snapshots allow us to see about 25 frames over this
mjr 50:40015764bbe6 9 // span. The first 5-10 frames will show the position moving forward, but
mjr 50:40015764bbe6 10 // we don't see a clear acceleration trend in that first section. After
mjr 50:40015764bbe6 11 // that we see almost perfectly uniform acceleration for the rest of the
mjr 50:40015764bbe6 12 // release until we cross the zero point. "Almost" in that we often have
mjr 50:40015764bbe6 13 // one or two frames where the velocity is just slightly lower than the
mjr 50:40015764bbe6 14 // previous frame's. I think this is probably imprecision in the sensor;
mjr 50:40015764bbe6 15 // realistically, our time base is probably good to only +/- 1ms or so,
mjr 50:40015764bbe6 16 // since the shutter time for each frame is about 2.3ms. We assume that
mjr 50:40015764bbe6 17 // each frame captures the midpoint time of the shutter span, but that's
mjr 50:40015764bbe6 18 // a crude approximation; the scientifically right way to look at this is
mjr 50:40015764bbe6 19 // that our snapshot times have an uncertainty on the order of the shutter
mjr 50:40015764bbe6 20 // time. Those error bars of course propagate into the velocity readings.
mjr 50:40015764bbe6 21 // Fortunately, the true acceleration is high enough that it overwhelms
mjr 50:40015764bbe6 22 // the error bars on almost every sample. It appears to solve this
mjr 50:40015764bbe6 23 // entirely if we simply skip a sample where we don't see acceleration
mjr 50:40015764bbe6 24 // once we think a release has started - this takes our time between
mjr 50:40015764bbe6 25 // samples up to about 5ms, at which point the acceleration does seem to
mjr 50:40015764bbe6 26 // overwhelm the error bars 100% of the time.
mjr 50:40015764bbe6 27 //
mjr 50:40015764bbe6 28 // I'm capturing a snapshot of this implementation because I'm going to
mjr 50:40015764bbe6 29 // try something different. It would be much simpler if we could put our
mjr 50:40015764bbe6 30 // readings on a slight time delay, and identify firing events
mjr 50:40015764bbe6 31 // retrospectively when we actually cross the zero point. I'm going to
mjr 50:40015764bbe6 32 // experiment first with a time delay to see what the maximum acceptable
mjr 50:40015764bbe6 33 // delay time is. I expect that I can go up to about 30ms without it
mjr 50:40015764bbe6 34 // becoming noticeable, but I need to try it out. If we can go up to
mjr 50:40015764bbe6 35 // 70ms, we can capture firing events perfectly because we can delay
mjr 50:40015764bbe6 36 // reports long enough to have an entire firing event in history before
mjr 50:40015764bbe6 37 // we report anything. That will let us fix up the history to report an
mjr 50:40015764bbe6 38 // idealized firing event to VP every time, with no false positives.
mjr 50:40015764bbe6 39 // But I suspect a 70ms delay is going to be way too noticeable. If
mjr 50:40015764bbe6 40 // a 30ms delay works, I think we can still do a pretty good job - that
mjr 50:40015764bbe6 41 // gets us about halfway into a release motion, at which point it's
mjr 50:40015764bbe6 42 // pretty certain that it's really a release.
mjr 50:40015764bbe6 43
mjr 50:40015764bbe6 44
mjr 35:e959ffba78fd 45 /* Copyright 2014, 2015 M J Roberts, MIT License
mjr 5:a70c0bce770d 46 *
mjr 5:a70c0bce770d 47 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 48 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 49 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 50 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 51 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 52 *
mjr 5:a70c0bce770d 53 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 54 * substantial portions of the Software.
mjr 5:a70c0bce770d 55 *
mjr 5:a70c0bce770d 56 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 57 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 58 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 59 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 60 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 61 */
mjr 5:a70c0bce770d 62
mjr 5:a70c0bce770d 63 //
mjr 35:e959ffba78fd 64 // The Pinscape Controller
mjr 35:e959ffba78fd 65 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 66 //
mjr 48:058ace2aed1d 67 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 68 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 69 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 70 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 71 //
mjr 48:058ace2aed1d 72 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 73 // individually or in any combination:
mjr 5:a70c0bce770d 74 //
mjr 38:091e511ce8a0 75 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 76 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 77 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 78 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 79 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 80 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 81 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 82 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 83 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 84 // is attached.
mjr 5:a70c0bce770d 85 //
mjr 38:091e511ce8a0 86 // - Plunger position sensing, with mulitple sensor options. To use this feature,
mjr 35:e959ffba78fd 87 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 88 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 89 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 90 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 91 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 92 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 93 //
mjr 35:e959ffba78fd 94 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 95 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 96 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 97 // in the Build Guide.
mjr 35:e959ffba78fd 98 //
mjr 38:091e511ce8a0 99 // Note VP has built-in support for plunger devices like this one, but some VP
mjr 38:091e511ce8a0 100 // tables can't use it without some additional scripting work. The Build Guide has
mjr 38:091e511ce8a0 101 // advice on adjusting tables to add plunger support when necessary.
mjr 5:a70c0bce770d 102 //
mjr 6:cc35eb643e8f 103 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 104 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 105 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 106 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 107 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 108 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 109 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 110 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 111 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 112 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 113 //
mjr 17:ab3cec0c8bf4 114 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 115 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 116 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 117 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 118 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 119 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 120 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 121 //
mjr 13:72dda449c3c0 122 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 38:091e511ce8a0 123 // for buttons and switches. You can wire each input to a physical pinball-style
mjr 38:091e511ce8a0 124 // button or switch, such as flipper buttons, Start buttons, coin chute switches,
mjr 38:091e511ce8a0 125 // tilt bobs, and service buttons. Each button can be configured to be reported
mjr 38:091e511ce8a0 126 // to the PC as a joystick button or as a keyboard key (you can select which key
mjr 38:091e511ce8a0 127 // is used for each button).
mjr 13:72dda449c3c0 128 //
mjr 5:a70c0bce770d 129 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 130 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 131 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 40:cc0d9814522b 132 // of ports. The KL25Z hardware is limited to 10 PWM ports. Ports beyond the
mjr 40:cc0d9814522b 133 // 10 PWM ports are simple digital on/off ports. Intensity level settings on
mjr 40:cc0d9814522b 134 // digital ports is ignored, so such ports can only be used for devices such as
mjr 40:cc0d9814522b 135 // contactors and solenoids that don't need differeing intensities.
mjr 5:a70c0bce770d 136 //
mjr 40:cc0d9814522b 137 // Note that the KL25Z can only supply or sink 4mA on its output ports, so external
mjr 40:cc0d9814522b 138 // amplifier hardware is required to use the LedWiz emulation. Many different
mjr 40:cc0d9814522b 139 // hardware designs are possible, but there's a simple reference design in the
mjr 40:cc0d9814522b 140 // documentation that uses a Darlington array IC to increase the output from
mjr 40:cc0d9814522b 141 // each port to 500mA (the same level as the LedWiz), plus an extended design
mjr 40:cc0d9814522b 142 // that adds an optocoupler and MOSFET to provide very high power handling, up
mjr 40:cc0d9814522b 143 // to about 45A or 150W, with voltages up to 100V. That will handle just about
mjr 40:cc0d9814522b 144 // any DC device directly (wtihout relays or other amplifiers), and switches fast
mjr 40:cc0d9814522b 145 // enough to support PWM devices. For example, you can use it to drive a motor at
mjr 40:cc0d9814522b 146 // different speeds via the PWM intensity.
mjr 40:cc0d9814522b 147 //
mjr 40:cc0d9814522b 148 // The Controller device can report any desired LedWiz unit number to the host,
mjr 40:cc0d9814522b 149 // which makes it possible for one or more Pinscape Controller units to coexist
mjr 40:cc0d9814522b 150 // with one more more real LedWiz units in the same machine. The LedWiz design
mjr 40:cc0d9814522b 151 // allows for up to 16 units to be installed in one machine. Each device needs
mjr 40:cc0d9814522b 152 // to have a distinct LedWiz Unit Number, which allows software on the PC to
mjr 40:cc0d9814522b 153 // address each device independently.
mjr 5:a70c0bce770d 154 //
mjr 5:a70c0bce770d 155 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 156 // build any of the external port hardware (or attach anything to the output
mjr 40:cc0d9814522b 157 // ports at all) if the LedWiz features aren't needed.
mjr 6:cc35eb643e8f 158 //
mjr 26:cb71c4af2912 159 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 160 // external PWM controller chips for controlling device outputs, instead of using
mjr 26:cb71c4af2912 161 // the limited LedWiz emulation through the on-board GPIO ports as described above.
mjr 26:cb71c4af2912 162 // The software can control a set of daisy-chained TLC5940 chips, which provide
mjr 26:cb71c4af2912 163 // 16 PWM outputs per chip. Two of these chips give you the full complement
mjr 26:cb71c4af2912 164 // of 32 output ports of an actual LedWiz, and four give you 64 ports, which
mjr 33:d832bcab089e 165 // should be plenty for nearly any virtual pinball project. A private, extended
mjr 33:d832bcab089e 166 // version of the LedWiz protocol lets the host control the extra outputs, up to
mjr 33:d832bcab089e 167 // 128 outputs per KL25Z (8 TLC5940s). To take advantage of the extra outputs
mjr 33:d832bcab089e 168 // on the PC side, you need software that knows about the protocol extensions,
mjr 33:d832bcab089e 169 // which means you need the latest version of DirectOutput Framework (DOF). VP
mjr 33:d832bcab089e 170 // uses DOF for its output, so VP will be able to use the added ports without any
mjr 33:d832bcab089e 171 // extra work on your part. Older software (e.g., Future Pinball) that doesn't
mjr 33:d832bcab089e 172 // use DOF will still be able to use the LedWiz-compatible protocol, so it'll be
mjr 33:d832bcab089e 173 // able to control your first 32 ports (numbered 1-32 in the LedWiz scheme), but
mjr 33:d832bcab089e 174 // older software won't be able to address higher-numbered ports. That shouldn't
mjr 33:d832bcab089e 175 // be a problem because older software wouldn't know what to do with the extra
mjr 33:d832bcab089e 176 // devices anyway - FP, for example, is limited to a pre-defined set of outputs.
mjr 33:d832bcab089e 177 // As long as you put the most common devices on the first 32 outputs, and use
mjr 33:d832bcab089e 178 // higher numbered ports for the less common devices that older software can't
mjr 33:d832bcab089e 179 // use anyway, you'll get maximum functionality out of software new and old.
mjr 26:cb71c4af2912 180 //
mjr 38:091e511ce8a0 181 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 182 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 183 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 184 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 185 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 186 //
mjr 38:091e511ce8a0 187 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 188 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 189 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 190 // To use this feature, you have to build some external circuitry to allow the
mjr 38:091e511ce8a0 191 // software to sense the power supply status, and you have to run wires to your
mjr 38:091e511ce8a0 192 // TV's on/off button, which requires opening the case on your TV. The Build
mjr 38:091e511ce8a0 193 // Guide has details on the necessary circuitry and connections to the TV.
mjr 38:091e511ce8a0 194 //
mjr 35:e959ffba78fd 195 //
mjr 35:e959ffba78fd 196 //
mjr 33:d832bcab089e 197 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 198 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 199 //
mjr 48:058ace2aed1d 200 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 201 //
mjr 48:058ace2aed1d 202 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 203 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 204 // has been established)
mjr 48:058ace2aed1d 205 //
mjr 48:058ace2aed1d 206 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 207 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 208 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 209 //
mjr 38:091e511ce8a0 210 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 211 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 212 // transmissions are failing.
mjr 38:091e511ce8a0 213 //
mjr 6:cc35eb643e8f 214 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 215 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 216 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 217 // no plunger sensor configured.
mjr 6:cc35eb643e8f 218 //
mjr 38:091e511ce8a0 219 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 220 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 221 //
mjr 48:058ace2aed1d 222 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 223 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 224 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 225 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 226 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 227 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 228 //
mjr 48:058ace2aed1d 229 //
mjr 48:058ace2aed1d 230 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 231 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 232 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 233 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 234 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 235 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 236 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 237 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 238
mjr 33:d832bcab089e 239
mjr 0:5acbbe3f4cf4 240 #include "mbed.h"
mjr 6:cc35eb643e8f 241 #include "math.h"
mjr 48:058ace2aed1d 242 #include "pinscape.h"
mjr 0:5acbbe3f4cf4 243 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 244 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 245 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 246 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 247 #include "crc32.h"
mjr 26:cb71c4af2912 248 #include "TLC5940.h"
mjr 34:6b981a2afab7 249 #include "74HC595.h"
mjr 35:e959ffba78fd 250 #include "nvm.h"
mjr 35:e959ffba78fd 251 #include "plunger.h"
mjr 35:e959ffba78fd 252 #include "ccdSensor.h"
mjr 35:e959ffba78fd 253 #include "potSensor.h"
mjr 35:e959ffba78fd 254 #include "nullSensor.h"
mjr 48:058ace2aed1d 255 #include "TinyDigitalIn.h"
mjr 2:c174f9ee414a 256
mjr 21:5048e16cc9ef 257 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 258 #include "config.h"
mjr 17:ab3cec0c8bf4 259
mjr 48:058ace2aed1d 260 // --------------------------------------------------------------------------
mjr 48:058ace2aed1d 261 //
mjr 48:058ace2aed1d 262 // Custom memory allocator. We use our own version of malloc() to provide
mjr 48:058ace2aed1d 263 // diagnostics if we run out of heap.
mjr 48:058ace2aed1d 264 //
mjr 48:058ace2aed1d 265 void *xmalloc(size_t siz)
mjr 48:058ace2aed1d 266 {
mjr 48:058ace2aed1d 267 // allocate through the normal library malloc; if that succeeds,
mjr 48:058ace2aed1d 268 // simply return the pointer we got from malloc
mjr 48:058ace2aed1d 269 void *ptr = malloc(siz);
mjr 48:058ace2aed1d 270 if (ptr != 0)
mjr 48:058ace2aed1d 271 return ptr;
mjr 48:058ace2aed1d 272
mjr 48:058ace2aed1d 273 // failed - display diagnostics
mjr 48:058ace2aed1d 274 for (;;)
mjr 48:058ace2aed1d 275 {
mjr 48:058ace2aed1d 276 diagLED(1, 0, 0);
mjr 48:058ace2aed1d 277 wait(.2);
mjr 48:058ace2aed1d 278 diagLED(1, 0, 1);
mjr 48:058ace2aed1d 279 wait(.2);
mjr 48:058ace2aed1d 280 }
mjr 48:058ace2aed1d 281 }
mjr 48:058ace2aed1d 282
mjr 48:058ace2aed1d 283 // overload operator new to call our custom malloc
mjr 48:058ace2aed1d 284 void *operator new(size_t siz) { return xmalloc(siz); }
mjr 48:058ace2aed1d 285 void *operator new[](size_t siz) { return xmalloc(siz); }
mjr 5:a70c0bce770d 286
mjr 5:a70c0bce770d 287 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 288 //
mjr 38:091e511ce8a0 289 // Forward declarations
mjr 38:091e511ce8a0 290 //
mjr 38:091e511ce8a0 291 void setNightMode(bool on);
mjr 38:091e511ce8a0 292 void toggleNightMode();
mjr 38:091e511ce8a0 293
mjr 38:091e511ce8a0 294 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 295 // utilities
mjr 17:ab3cec0c8bf4 296
mjr 26:cb71c4af2912 297 // floating point square of a number
mjr 26:cb71c4af2912 298 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 299
mjr 26:cb71c4af2912 300 // floating point rounding
mjr 26:cb71c4af2912 301 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 302
mjr 17:ab3cec0c8bf4 303
mjr 33:d832bcab089e 304 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 305 //
mjr 40:cc0d9814522b 306 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 307 // the running state.
mjr 40:cc0d9814522b 308 //
mjr 40:cc0d9814522b 309 class Timer2: public Timer
mjr 40:cc0d9814522b 310 {
mjr 40:cc0d9814522b 311 public:
mjr 40:cc0d9814522b 312 Timer2() : running(false) { }
mjr 40:cc0d9814522b 313
mjr 40:cc0d9814522b 314 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 315 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 316
mjr 40:cc0d9814522b 317 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 318
mjr 40:cc0d9814522b 319 private:
mjr 40:cc0d9814522b 320 bool running;
mjr 40:cc0d9814522b 321 };
mjr 40:cc0d9814522b 322
mjr 40:cc0d9814522b 323 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 324 //
mjr 33:d832bcab089e 325 // USB product version number
mjr 5:a70c0bce770d 326 //
mjr 47:df7a88cd249c 327 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 328
mjr 33:d832bcab089e 329 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 330 //
mjr 6:cc35eb643e8f 331 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 332 //
mjr 6:cc35eb643e8f 333 #define JOYMAX 4096
mjr 6:cc35eb643e8f 334
mjr 9:fd65b0a94720 335
mjr 17:ab3cec0c8bf4 336 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 337 //
mjr 40:cc0d9814522b 338 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 339 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 340 //
mjr 35:e959ffba78fd 341
mjr 35:e959ffba78fd 342 // unsigned 16-bit integer
mjr 35:e959ffba78fd 343 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 344 {
mjr 35:e959ffba78fd 345 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 346 }
mjr 40:cc0d9814522b 347 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 348 {
mjr 40:cc0d9814522b 349 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 350 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 351 }
mjr 35:e959ffba78fd 352
mjr 35:e959ffba78fd 353 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 354 {
mjr 35:e959ffba78fd 355 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 356 }
mjr 40:cc0d9814522b 357 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 358 {
mjr 40:cc0d9814522b 359 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 360 }
mjr 35:e959ffba78fd 361
mjr 35:e959ffba78fd 362 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 363 {
mjr 35:e959ffba78fd 364 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 365 }
mjr 40:cc0d9814522b 366 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 367 {
mjr 40:cc0d9814522b 368 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 369 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 370 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 371 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 372 }
mjr 35:e959ffba78fd 373
mjr 35:e959ffba78fd 374 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 375 {
mjr 35:e959ffba78fd 376 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 377 }
mjr 35:e959ffba78fd 378
mjr 40:cc0d9814522b 379 static const PinName pinNameMap[] = {
mjr 40:cc0d9814522b 380 NC, PTA1, PTA2, PTA4, PTA5, PTA12, PTA13, PTA16, PTA17, PTB0, // 0-9
mjr 40:cc0d9814522b 381 PTB1, PTB2, PTB3, PTB8, PTB9, PTB10, PTB11, PTB18, PTB19, PTC0, // 10-19
mjr 40:cc0d9814522b 382 PTC1, PTC2, PTC3, PTC4, PTC5, PTC6, PTC7, PTC8, PTC9, PTC10, // 20-29
mjr 40:cc0d9814522b 383 PTC11, PTC12, PTC13, PTC16, PTC17, PTD0, PTD1, PTD2, PTD3, PTD4, // 30-39
mjr 40:cc0d9814522b 384 PTD5, PTD6, PTD7, PTE0, PTE1, PTE2, PTE3, PTE4, PTE5, PTE20, // 40-49
mjr 40:cc0d9814522b 385 PTE21, PTE22, PTE23, PTE29, PTE30, PTE31 // 50-55
mjr 40:cc0d9814522b 386 };
mjr 35:e959ffba78fd 387 inline PinName wirePinName(int c)
mjr 35:e959ffba78fd 388 {
mjr 40:cc0d9814522b 389 return (c < countof(pinNameMap) ? pinNameMap[c] : NC);
mjr 40:cc0d9814522b 390 }
mjr 40:cc0d9814522b 391 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 392 {
mjr 40:cc0d9814522b 393 b[0] = 0; // presume invalid -> NC
mjr 40:cc0d9814522b 394 for (int i = 0 ; i < countof(pinNameMap) ; ++i)
mjr 40:cc0d9814522b 395 {
mjr 40:cc0d9814522b 396 if (pinNameMap[i] == n)
mjr 40:cc0d9814522b 397 {
mjr 40:cc0d9814522b 398 b[0] = i;
mjr 40:cc0d9814522b 399 return;
mjr 40:cc0d9814522b 400 }
mjr 40:cc0d9814522b 401 }
mjr 35:e959ffba78fd 402 }
mjr 35:e959ffba78fd 403
mjr 35:e959ffba78fd 404
mjr 35:e959ffba78fd 405 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 406 //
mjr 38:091e511ce8a0 407 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 408 //
mjr 38:091e511ce8a0 409 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 410 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 411 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 412 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 413 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 414 // SPI capability.
mjr 38:091e511ce8a0 415 //
mjr 38:091e511ce8a0 416 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 417
mjr 38:091e511ce8a0 418 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 419 // on, and -1 is no change (leaves the current setting intact).
mjr 38:091e511ce8a0 420 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 421 {
mjr 38:091e511ce8a0 422 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 423 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 424 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 425 }
mjr 38:091e511ce8a0 426
mjr 38:091e511ce8a0 427 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 428 // an on-board LED segment
mjr 38:091e511ce8a0 429 struct LedSeg
mjr 38:091e511ce8a0 430 {
mjr 38:091e511ce8a0 431 bool r, g, b;
mjr 38:091e511ce8a0 432 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 433
mjr 38:091e511ce8a0 434 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 435 {
mjr 38:091e511ce8a0 436 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 437 // our on-board LED segments
mjr 38:091e511ce8a0 438 int t = pc.typ;
mjr 38:091e511ce8a0 439 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 440 {
mjr 38:091e511ce8a0 441 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 442 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 443 if (pin == LED1)
mjr 38:091e511ce8a0 444 r = true;
mjr 38:091e511ce8a0 445 else if (pin == LED2)
mjr 38:091e511ce8a0 446 g = true;
mjr 38:091e511ce8a0 447 else if (pin == LED3)
mjr 38:091e511ce8a0 448 b = true;
mjr 38:091e511ce8a0 449 }
mjr 38:091e511ce8a0 450 }
mjr 38:091e511ce8a0 451 };
mjr 38:091e511ce8a0 452
mjr 38:091e511ce8a0 453 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 454 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 455 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 456 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 457 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 458 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 459 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 460 {
mjr 38:091e511ce8a0 461 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 462 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 463 LedSeg l;
mjr 38:091e511ce8a0 464 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 465 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 466
mjr 38:091e511ce8a0 467 // check the special ports
mjr 38:091e511ce8a0 468 for (int i = 0 ; i < countof(cfg.specialPort) ; ++i)
mjr 38:091e511ce8a0 469 l.check(cfg.specialPort[i]);
mjr 38:091e511ce8a0 470
mjr 38:091e511ce8a0 471 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 472 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 473 // LedWiz use.
mjr 38:091e511ce8a0 474 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 475 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 476 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 477 }
mjr 38:091e511ce8a0 478
mjr 38:091e511ce8a0 479
mjr 38:091e511ce8a0 480 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 481 //
mjr 29:582472d0bc57 482 // LedWiz emulation, and enhanced TLC5940 output controller
mjr 5:a70c0bce770d 483 //
mjr 26:cb71c4af2912 484 // There are two modes for this feature. The default mode uses the on-board
mjr 26:cb71c4af2912 485 // GPIO ports to implement device outputs - each LedWiz software port is
mjr 26:cb71c4af2912 486 // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10
mjr 26:cb71c4af2912 487 // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the
mjr 26:cb71c4af2912 488 // rest are strictly on/off. The KL25Z also has a limited number of GPIO
mjr 26:cb71c4af2912 489 // ports overall - not enough for the full complement of 32 LedWiz ports
mjr 26:cb71c4af2912 490 // and 24 VP joystick inputs, so it's necessary to trade one against the
mjr 26:cb71c4af2912 491 // other if both features are to be used.
mjr 26:cb71c4af2912 492 //
mjr 26:cb71c4af2912 493 // The alternative, enhanced mode uses external TLC5940 PWM controller
mjr 26:cb71c4af2912 494 // chips to control device outputs. In this mode, each LedWiz software
mjr 26:cb71c4af2912 495 // port is mapped to an output on one of the external TLC5940 chips.
mjr 26:cb71c4af2912 496 // Two 5940s is enough for the full set of 32 LedWiz ports, and we can
mjr 26:cb71c4af2912 497 // support even more chips for even more outputs (although doing so requires
mjr 26:cb71c4af2912 498 // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired
mjr 26:cb71c4af2912 499 // for 32 outputs). Every port in this mode has full PWM support.
mjr 26:cb71c4af2912 500 //
mjr 5:a70c0bce770d 501
mjr 29:582472d0bc57 502
mjr 26:cb71c4af2912 503 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 504 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 505 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 506 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 507 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 508
mjr 26:cb71c4af2912 509 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 510 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 511 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 512 class LwOut
mjr 6:cc35eb643e8f 513 {
mjr 6:cc35eb643e8f 514 public:
mjr 40:cc0d9814522b 515 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 516 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 517 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 518 };
mjr 26:cb71c4af2912 519
mjr 35:e959ffba78fd 520 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 521 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 522 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 523 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 524 // numbering.
mjr 35:e959ffba78fd 525 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 526 {
mjr 33:d832bcab089e 527 public:
mjr 35:e959ffba78fd 528 LwVirtualOut() { }
mjr 40:cc0d9814522b 529 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 530 };
mjr 26:cb71c4af2912 531
mjr 34:6b981a2afab7 532 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 533 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 534 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 535 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 536 {
mjr 34:6b981a2afab7 537 public:
mjr 34:6b981a2afab7 538 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 539 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 540
mjr 34:6b981a2afab7 541 private:
mjr 34:6b981a2afab7 542 LwOut *out;
mjr 34:6b981a2afab7 543 };
mjr 34:6b981a2afab7 544
mjr 40:cc0d9814522b 545 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 546 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 547 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 548 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 549 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 550 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 551 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 552 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 553 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 554 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 555 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 556 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 557 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 558 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 559 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 560 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 561 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 562 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 563 };
mjr 40:cc0d9814522b 564
mjr 40:cc0d9814522b 565 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 566 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 567 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 568 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 569 {
mjr 40:cc0d9814522b 570 public:
mjr 40:cc0d9814522b 571 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 572 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 573
mjr 40:cc0d9814522b 574 private:
mjr 40:cc0d9814522b 575 LwOut *out;
mjr 40:cc0d9814522b 576 };
mjr 40:cc0d9814522b 577
mjr 40:cc0d9814522b 578 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 579 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 580 // mode is engaged.
mjr 40:cc0d9814522b 581 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 582 {
mjr 40:cc0d9814522b 583 public:
mjr 40:cc0d9814522b 584 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 585 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 586
mjr 40:cc0d9814522b 587 static bool nightMode;
mjr 40:cc0d9814522b 588
mjr 40:cc0d9814522b 589 private:
mjr 40:cc0d9814522b 590 LwOut *out;
mjr 40:cc0d9814522b 591 };
mjr 40:cc0d9814522b 592
mjr 40:cc0d9814522b 593 // global night mode flag
mjr 40:cc0d9814522b 594 bool LwNoisyOut::nightMode = false;
mjr 40:cc0d9814522b 595
mjr 26:cb71c4af2912 596
mjr 35:e959ffba78fd 597 //
mjr 35:e959ffba78fd 598 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 599 // assignments set in config.h.
mjr 33:d832bcab089e 600 //
mjr 35:e959ffba78fd 601 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 602 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 603 {
mjr 35:e959ffba78fd 604 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 605 {
mjr 35:e959ffba78fd 606 tlc5940 = new TLC5940(cfg.tlc5940.sclk, cfg.tlc5940.sin, cfg.tlc5940.gsclk,
mjr 35:e959ffba78fd 607 cfg.tlc5940.blank, cfg.tlc5940.xlat, cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 608 }
mjr 35:e959ffba78fd 609 }
mjr 26:cb71c4af2912 610
mjr 40:cc0d9814522b 611 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 612 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 613 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 614 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 615 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 616 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 617 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 618 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 619 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 620 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 621 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 622 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 623 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 624 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 625 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 626 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 627 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 628 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 629 };
mjr 40:cc0d9814522b 630
mjr 40:cc0d9814522b 631 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 632 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 633 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 634 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 635 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 636 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 637 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 638 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 639 // are always 8 bits.
mjr 40:cc0d9814522b 640 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 641 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 642 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 643 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 644 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 645 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 646 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 647 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 648 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 649 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 650 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 651 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 652 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 653 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 654 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 655 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 656 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 657 };
mjr 40:cc0d9814522b 658
mjr 40:cc0d9814522b 659
mjr 26:cb71c4af2912 660 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 661 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 662 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 663 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 664 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 665 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 666 {
mjr 26:cb71c4af2912 667 public:
mjr 40:cc0d9814522b 668 Lw5940Out(int idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 669 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 670 {
mjr 26:cb71c4af2912 671 if (val != prv)
mjr 40:cc0d9814522b 672 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 673 }
mjr 26:cb71c4af2912 674 int idx;
mjr 40:cc0d9814522b 675 uint8_t prv;
mjr 26:cb71c4af2912 676 };
mjr 26:cb71c4af2912 677
mjr 40:cc0d9814522b 678 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 679 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 680 {
mjr 40:cc0d9814522b 681 public:
mjr 40:cc0d9814522b 682 Lw5940GammaOut(int idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 683 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 684 {
mjr 40:cc0d9814522b 685 if (val != prv)
mjr 40:cc0d9814522b 686 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 687 }
mjr 40:cc0d9814522b 688 int idx;
mjr 40:cc0d9814522b 689 uint8_t prv;
mjr 40:cc0d9814522b 690 };
mjr 40:cc0d9814522b 691
mjr 40:cc0d9814522b 692
mjr 33:d832bcab089e 693
mjr 34:6b981a2afab7 694 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 695 // config.h.
mjr 35:e959ffba78fd 696 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 697
mjr 35:e959ffba78fd 698 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 699 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 700 {
mjr 35:e959ffba78fd 701 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 702 {
mjr 35:e959ffba78fd 703 hc595 = new HC595(cfg.hc595.nchips, cfg.hc595.sin, cfg.hc595.sclk, cfg.hc595.latch, cfg.hc595.ena);
mjr 35:e959ffba78fd 704 hc595->init();
mjr 35:e959ffba78fd 705 hc595->update();
mjr 35:e959ffba78fd 706 }
mjr 35:e959ffba78fd 707 }
mjr 34:6b981a2afab7 708
mjr 34:6b981a2afab7 709 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 710 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 711 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 712 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 713 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 714 class Lw595Out: public LwOut
mjr 33:d832bcab089e 715 {
mjr 33:d832bcab089e 716 public:
mjr 40:cc0d9814522b 717 Lw595Out(int idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 718 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 719 {
mjr 34:6b981a2afab7 720 if (val != prv)
mjr 40:cc0d9814522b 721 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 722 }
mjr 34:6b981a2afab7 723 int idx;
mjr 40:cc0d9814522b 724 uint8_t prv;
mjr 33:d832bcab089e 725 };
mjr 33:d832bcab089e 726
mjr 26:cb71c4af2912 727
mjr 40:cc0d9814522b 728
mjr 40:cc0d9814522b 729 // Conversion table - 8-bit DOF output level to PWM float level
mjr 40:cc0d9814522b 730 // (normalized to 0.0..1.0 scale)
mjr 40:cc0d9814522b 731 static const float pwm_level[] = {
mjr 40:cc0d9814522b 732 0.000000, 0.003922, 0.007843, 0.011765, 0.015686, 0.019608, 0.023529, 0.027451,
mjr 40:cc0d9814522b 733 0.031373, 0.035294, 0.039216, 0.043137, 0.047059, 0.050980, 0.054902, 0.058824,
mjr 40:cc0d9814522b 734 0.062745, 0.066667, 0.070588, 0.074510, 0.078431, 0.082353, 0.086275, 0.090196,
mjr 40:cc0d9814522b 735 0.094118, 0.098039, 0.101961, 0.105882, 0.109804, 0.113725, 0.117647, 0.121569,
mjr 40:cc0d9814522b 736 0.125490, 0.129412, 0.133333, 0.137255, 0.141176, 0.145098, 0.149020, 0.152941,
mjr 40:cc0d9814522b 737 0.156863, 0.160784, 0.164706, 0.168627, 0.172549, 0.176471, 0.180392, 0.184314,
mjr 40:cc0d9814522b 738 0.188235, 0.192157, 0.196078, 0.200000, 0.203922, 0.207843, 0.211765, 0.215686,
mjr 40:cc0d9814522b 739 0.219608, 0.223529, 0.227451, 0.231373, 0.235294, 0.239216, 0.243137, 0.247059,
mjr 40:cc0d9814522b 740 0.250980, 0.254902, 0.258824, 0.262745, 0.266667, 0.270588, 0.274510, 0.278431,
mjr 40:cc0d9814522b 741 0.282353, 0.286275, 0.290196, 0.294118, 0.298039, 0.301961, 0.305882, 0.309804,
mjr 40:cc0d9814522b 742 0.313725, 0.317647, 0.321569, 0.325490, 0.329412, 0.333333, 0.337255, 0.341176,
mjr 40:cc0d9814522b 743 0.345098, 0.349020, 0.352941, 0.356863, 0.360784, 0.364706, 0.368627, 0.372549,
mjr 40:cc0d9814522b 744 0.376471, 0.380392, 0.384314, 0.388235, 0.392157, 0.396078, 0.400000, 0.403922,
mjr 40:cc0d9814522b 745 0.407843, 0.411765, 0.415686, 0.419608, 0.423529, 0.427451, 0.431373, 0.435294,
mjr 40:cc0d9814522b 746 0.439216, 0.443137, 0.447059, 0.450980, 0.454902, 0.458824, 0.462745, 0.466667,
mjr 40:cc0d9814522b 747 0.470588, 0.474510, 0.478431, 0.482353, 0.486275, 0.490196, 0.494118, 0.498039,
mjr 40:cc0d9814522b 748 0.501961, 0.505882, 0.509804, 0.513725, 0.517647, 0.521569, 0.525490, 0.529412,
mjr 40:cc0d9814522b 749 0.533333, 0.537255, 0.541176, 0.545098, 0.549020, 0.552941, 0.556863, 0.560784,
mjr 40:cc0d9814522b 750 0.564706, 0.568627, 0.572549, 0.576471, 0.580392, 0.584314, 0.588235, 0.592157,
mjr 40:cc0d9814522b 751 0.596078, 0.600000, 0.603922, 0.607843, 0.611765, 0.615686, 0.619608, 0.623529,
mjr 40:cc0d9814522b 752 0.627451, 0.631373, 0.635294, 0.639216, 0.643137, 0.647059, 0.650980, 0.654902,
mjr 40:cc0d9814522b 753 0.658824, 0.662745, 0.666667, 0.670588, 0.674510, 0.678431, 0.682353, 0.686275,
mjr 40:cc0d9814522b 754 0.690196, 0.694118, 0.698039, 0.701961, 0.705882, 0.709804, 0.713725, 0.717647,
mjr 40:cc0d9814522b 755 0.721569, 0.725490, 0.729412, 0.733333, 0.737255, 0.741176, 0.745098, 0.749020,
mjr 40:cc0d9814522b 756 0.752941, 0.756863, 0.760784, 0.764706, 0.768627, 0.772549, 0.776471, 0.780392,
mjr 40:cc0d9814522b 757 0.784314, 0.788235, 0.792157, 0.796078, 0.800000, 0.803922, 0.807843, 0.811765,
mjr 40:cc0d9814522b 758 0.815686, 0.819608, 0.823529, 0.827451, 0.831373, 0.835294, 0.839216, 0.843137,
mjr 40:cc0d9814522b 759 0.847059, 0.850980, 0.854902, 0.858824, 0.862745, 0.866667, 0.870588, 0.874510,
mjr 40:cc0d9814522b 760 0.878431, 0.882353, 0.886275, 0.890196, 0.894118, 0.898039, 0.901961, 0.905882,
mjr 40:cc0d9814522b 761 0.909804, 0.913725, 0.917647, 0.921569, 0.925490, 0.929412, 0.933333, 0.937255,
mjr 40:cc0d9814522b 762 0.941176, 0.945098, 0.949020, 0.952941, 0.956863, 0.960784, 0.964706, 0.968627,
mjr 40:cc0d9814522b 763 0.972549, 0.976471, 0.980392, 0.984314, 0.988235, 0.992157, 0.996078, 1.000000
mjr 40:cc0d9814522b 764 };
mjr 26:cb71c4af2912 765
mjr 26:cb71c4af2912 766 // LwOut class for a PWM-capable GPIO port
mjr 6:cc35eb643e8f 767 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 768 {
mjr 6:cc35eb643e8f 769 public:
mjr 43:7a6364d82a41 770 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 771 {
mjr 43:7a6364d82a41 772 prv = initVal ^ 0xFF;
mjr 43:7a6364d82a41 773 set(initVal);
mjr 43:7a6364d82a41 774 }
mjr 40:cc0d9814522b 775 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 776 {
mjr 13:72dda449c3c0 777 if (val != prv)
mjr 40:cc0d9814522b 778 p.write(pwm_level[prv = val]);
mjr 13:72dda449c3c0 779 }
mjr 6:cc35eb643e8f 780 PwmOut p;
mjr 40:cc0d9814522b 781 uint8_t prv;
mjr 6:cc35eb643e8f 782 };
mjr 26:cb71c4af2912 783
mjr 26:cb71c4af2912 784 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 785 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 786 {
mjr 6:cc35eb643e8f 787 public:
mjr 43:7a6364d82a41 788 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 789 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 790 {
mjr 13:72dda449c3c0 791 if (val != prv)
mjr 40:cc0d9814522b 792 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 793 }
mjr 6:cc35eb643e8f 794 DigitalOut p;
mjr 40:cc0d9814522b 795 uint8_t prv;
mjr 6:cc35eb643e8f 796 };
mjr 26:cb71c4af2912 797
mjr 29:582472d0bc57 798 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 799 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 800 // port n (0-based).
mjr 35:e959ffba78fd 801 //
mjr 35:e959ffba78fd 802 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 803 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 804 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 805 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 806 // 74HC595 ports).
mjr 33:d832bcab089e 807 static int numOutputs;
mjr 33:d832bcab089e 808 static LwOut **lwPin;
mjr 33:d832bcab089e 809
mjr 38:091e511ce8a0 810 // Special output ports:
mjr 38:091e511ce8a0 811 //
mjr 38:091e511ce8a0 812 // [0] = Night Mode indicator light
mjr 38:091e511ce8a0 813 //
mjr 38:091e511ce8a0 814 static LwOut *specialPin[1];
mjr 40:cc0d9814522b 815 const int SPECIAL_PIN_NIGHTMODE = 0;
mjr 38:091e511ce8a0 816
mjr 38:091e511ce8a0 817
mjr 35:e959ffba78fd 818 // Number of LedWiz emulation outputs. This is the number of ports
mjr 35:e959ffba78fd 819 // accessible through the standard (non-extended) LedWiz protocol
mjr 35:e959ffba78fd 820 // messages. The protocol has a fixed set of 32 outputs, but we
mjr 35:e959ffba78fd 821 // might have fewer actual outputs. This is therefore set to the
mjr 35:e959ffba78fd 822 // lower of 32 or the actual number of outputs.
mjr 35:e959ffba78fd 823 static int numLwOutputs;
mjr 35:e959ffba78fd 824
mjr 40:cc0d9814522b 825 // Current absolute brightness level for an output. This is a DOF
mjr 40:cc0d9814522b 826 // brightness level value, from 0 for fully off to 255 for fully on.
mjr 40:cc0d9814522b 827 // This is used for all extended ports (33 and above), and for any
mjr 40:cc0d9814522b 828 // LedWiz port with wizVal == 255.
mjr 40:cc0d9814522b 829 static uint8_t *outLevel;
mjr 38:091e511ce8a0 830
mjr 38:091e511ce8a0 831 // create a single output pin
mjr 38:091e511ce8a0 832 LwOut *createLwPin(LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 833 {
mjr 38:091e511ce8a0 834 // get this item's values
mjr 38:091e511ce8a0 835 int typ = pc.typ;
mjr 38:091e511ce8a0 836 int pin = pc.pin;
mjr 38:091e511ce8a0 837 int flags = pc.flags;
mjr 40:cc0d9814522b 838 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 839 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 840 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 841
mjr 38:091e511ce8a0 842 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 843 LwOut *lwp;
mjr 38:091e511ce8a0 844 switch (typ)
mjr 38:091e511ce8a0 845 {
mjr 38:091e511ce8a0 846 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 847 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 848 if (pin != 0)
mjr 48:058ace2aed1d 849 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 850 else
mjr 48:058ace2aed1d 851 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 852 break;
mjr 38:091e511ce8a0 853
mjr 38:091e511ce8a0 854 case PortTypeGPIODig:
mjr 38:091e511ce8a0 855 // Digital GPIO port
mjr 48:058ace2aed1d 856 if (pin != 0)
mjr 48:058ace2aed1d 857 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 858 else
mjr 48:058ace2aed1d 859 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 860 break;
mjr 38:091e511ce8a0 861
mjr 38:091e511ce8a0 862 case PortTypeTLC5940:
mjr 38:091e511ce8a0 863 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 864 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 865 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 866 {
mjr 40:cc0d9814522b 867 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 868 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 869 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 870 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 871 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 872 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 873 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 874 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 875 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 876 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 877 // for this unlikely case.
mjr 40:cc0d9814522b 878 if (gamma && !activeLow)
mjr 40:cc0d9814522b 879 {
mjr 40:cc0d9814522b 880 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 881 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 882
mjr 40:cc0d9814522b 883 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 884 gamma = false;
mjr 40:cc0d9814522b 885 }
mjr 40:cc0d9814522b 886 else
mjr 40:cc0d9814522b 887 {
mjr 40:cc0d9814522b 888 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 889 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 890 }
mjr 40:cc0d9814522b 891 }
mjr 38:091e511ce8a0 892 else
mjr 40:cc0d9814522b 893 {
mjr 40:cc0d9814522b 894 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 895 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 896 }
mjr 38:091e511ce8a0 897 break;
mjr 38:091e511ce8a0 898
mjr 38:091e511ce8a0 899 case PortType74HC595:
mjr 38:091e511ce8a0 900 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 901 // output number, create a virtual port)
mjr 38:091e511ce8a0 902 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 903 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 904 else
mjr 38:091e511ce8a0 905 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 906 break;
mjr 38:091e511ce8a0 907
mjr 38:091e511ce8a0 908 case PortTypeVirtual:
mjr 43:7a6364d82a41 909 case PortTypeDisabled:
mjr 38:091e511ce8a0 910 default:
mjr 38:091e511ce8a0 911 // virtual or unknown
mjr 38:091e511ce8a0 912 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 913 break;
mjr 38:091e511ce8a0 914 }
mjr 38:091e511ce8a0 915
mjr 40:cc0d9814522b 916 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 917 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 918 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 919 if (activeLow)
mjr 38:091e511ce8a0 920 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 921
mjr 40:cc0d9814522b 922 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 923 // needs to be
mjr 40:cc0d9814522b 924 if (noisy)
mjr 40:cc0d9814522b 925 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 926
mjr 40:cc0d9814522b 927 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 928 if (gamma)
mjr 40:cc0d9814522b 929 lwp = new LwGammaOut(lwp);
mjr 38:091e511ce8a0 930
mjr 38:091e511ce8a0 931 // turn it off initially
mjr 38:091e511ce8a0 932 lwp->set(0);
mjr 38:091e511ce8a0 933
mjr 38:091e511ce8a0 934 // return the pin
mjr 38:091e511ce8a0 935 return lwp;
mjr 38:091e511ce8a0 936 }
mjr 38:091e511ce8a0 937
mjr 6:cc35eb643e8f 938 // initialize the output pin array
mjr 35:e959ffba78fd 939 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 940 {
mjr 35:e959ffba78fd 941 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 942 // total number of ports.
mjr 35:e959ffba78fd 943 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 944 int i;
mjr 35:e959ffba78fd 945 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 946 {
mjr 35:e959ffba78fd 947 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 948 {
mjr 35:e959ffba78fd 949 numOutputs = i;
mjr 34:6b981a2afab7 950 break;
mjr 34:6b981a2afab7 951 }
mjr 33:d832bcab089e 952 }
mjr 33:d832bcab089e 953
mjr 35:e959ffba78fd 954 // the real LedWiz protocol can access at most 32 ports, or the
mjr 35:e959ffba78fd 955 // actual number of outputs, whichever is lower
mjr 35:e959ffba78fd 956 numLwOutputs = (numOutputs < 32 ? numOutputs : 32);
mjr 35:e959ffba78fd 957
mjr 33:d832bcab089e 958 // allocate the pin array
mjr 33:d832bcab089e 959 lwPin = new LwOut*[numOutputs];
mjr 33:d832bcab089e 960
mjr 38:091e511ce8a0 961 // Allocate the current brightness array. For these, allocate at
mjr 38:091e511ce8a0 962 // least 32, so that we have enough for all LedWiz messages, but
mjr 38:091e511ce8a0 963 // allocate the full set of actual ports if we have more than the
mjr 38:091e511ce8a0 964 // LedWiz complement.
mjr 38:091e511ce8a0 965 int minOuts = numOutputs < 32 ? 32 : numOutputs;
mjr 40:cc0d9814522b 966 outLevel = new uint8_t[minOuts];
mjr 33:d832bcab089e 967
mjr 35:e959ffba78fd 968 // create the pin interface object for each port
mjr 35:e959ffba78fd 969 for (i = 0 ; i < numOutputs ; ++i)
mjr 38:091e511ce8a0 970 lwPin[i] = createLwPin(cfg.outPort[i], cfg);
mjr 34:6b981a2afab7 971
mjr 38:091e511ce8a0 972 // create the pin interface for each special port
mjr 38:091e511ce8a0 973 for (i = 0 ; i < countof(cfg.specialPort) ; ++i)
mjr 38:091e511ce8a0 974 specialPin[i] = createLwPin(cfg.specialPort[i], cfg);
mjr 6:cc35eb643e8f 975 }
mjr 6:cc35eb643e8f 976
mjr 29:582472d0bc57 977 // LedWiz output states.
mjr 29:582472d0bc57 978 //
mjr 29:582472d0bc57 979 // The LedWiz protocol has two separate control axes for each output.
mjr 29:582472d0bc57 980 // One axis is its on/off state; the other is its "profile" state, which
mjr 29:582472d0bc57 981 // is either a fixed brightness or a blinking pattern for the light.
mjr 29:582472d0bc57 982 // The two axes are independent.
mjr 29:582472d0bc57 983 //
mjr 29:582472d0bc57 984 // Note that the LedWiz protocol can only address 32 outputs, so the
mjr 29:582472d0bc57 985 // wizOn and wizVal arrays have fixed sizes of 32 elements no matter
mjr 29:582472d0bc57 986 // how many physical outputs we're using.
mjr 29:582472d0bc57 987
mjr 0:5acbbe3f4cf4 988 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 989 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 990
mjr 40:cc0d9814522b 991 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 40:cc0d9814522b 992 // for each LedWiz output. If the output was last updated through an
mjr 40:cc0d9814522b 993 // LedWiz protocol message, it will have one of these values:
mjr 29:582472d0bc57 994 //
mjr 29:582472d0bc57 995 // 0-48 = fixed brightness 0% to 100%
mjr 40:cc0d9814522b 996 // 49 = fixed brightness 100% (equivalent to 48)
mjr 29:582472d0bc57 997 // 129 = ramp up / ramp down
mjr 29:582472d0bc57 998 // 130 = flash on / off
mjr 29:582472d0bc57 999 // 131 = on / ramp down
mjr 29:582472d0bc57 1000 // 132 = ramp up / on
mjr 29:582472d0bc57 1001 //
mjr 40:cc0d9814522b 1002 // If the output was last updated through an extended protocol message,
mjr 40:cc0d9814522b 1003 // it will have the special value 255. This means that we use the
mjr 40:cc0d9814522b 1004 // outLevel[] value for the port instead of an LedWiz setting.
mjr 29:582472d0bc57 1005 //
mjr 40:cc0d9814522b 1006 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 40:cc0d9814522b 1007 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 40:cc0d9814522b 1008 // it, so we need to accept it for compatibility.)
mjr 1:d913e0afb2ac 1009 static uint8_t wizVal[32] = {
mjr 13:72dda449c3c0 1010 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 1011 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 1012 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 1013 48, 48, 48, 48, 48, 48, 48, 48
mjr 0:5acbbe3f4cf4 1014 };
mjr 0:5acbbe3f4cf4 1015
mjr 29:582472d0bc57 1016 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 29:582472d0bc57 1017 // rate for lights in blinking states.
mjr 29:582472d0bc57 1018 static uint8_t wizSpeed = 2;
mjr 29:582472d0bc57 1019
mjr 40:cc0d9814522b 1020 // Current LedWiz flash cycle counter. This runs from 0 to 255
mjr 40:cc0d9814522b 1021 // during each cycle.
mjr 29:582472d0bc57 1022 static uint8_t wizFlashCounter = 0;
mjr 29:582472d0bc57 1023
mjr 40:cc0d9814522b 1024 // translate an LedWiz brightness level (0-49) to a DOF brightness
mjr 40:cc0d9814522b 1025 // level (0-255)
mjr 40:cc0d9814522b 1026 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1027 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1028 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1029 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1030 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1031 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1032 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1033 255, 255
mjr 40:cc0d9814522b 1034 };
mjr 40:cc0d9814522b 1035
mjr 40:cc0d9814522b 1036 // Translate an LedWiz output (ports 1-32) to a DOF brightness level.
mjr 40:cc0d9814522b 1037 static uint8_t wizState(int idx)
mjr 0:5acbbe3f4cf4 1038 {
mjr 29:582472d0bc57 1039 // if the output was last set with an extended protocol message,
mjr 29:582472d0bc57 1040 // use the value set there, ignoring the output's LedWiz state
mjr 29:582472d0bc57 1041 if (wizVal[idx] == 255)
mjr 29:582472d0bc57 1042 return outLevel[idx];
mjr 29:582472d0bc57 1043
mjr 29:582472d0bc57 1044 // if it's off, show at zero intensity
mjr 29:582472d0bc57 1045 if (!wizOn[idx])
mjr 29:582472d0bc57 1046 return 0;
mjr 29:582472d0bc57 1047
mjr 29:582472d0bc57 1048 // check the state
mjr 29:582472d0bc57 1049 uint8_t val = wizVal[idx];
mjr 40:cc0d9814522b 1050 if (val <= 49)
mjr 29:582472d0bc57 1051 {
mjr 29:582472d0bc57 1052 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 29:582472d0bc57 1053 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 29:582472d0bc57 1054 // Note that on the actual LedWiz, level 48 is actually about
mjr 29:582472d0bc57 1055 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 29:582472d0bc57 1056 // the true 100% level. (In the documentation, level 49 is
mjr 29:582472d0bc57 1057 // simply not a valid setting.) Even so, we treat level 48 as
mjr 29:582472d0bc57 1058 // 100% on to match the documentation. This won't be perfectly
mjr 29:582472d0bc57 1059 // ocmpatible with the actual LedWiz, but it makes for such a
mjr 29:582472d0bc57 1060 // small difference in brightness (if the output device is an
mjr 29:582472d0bc57 1061 // LED, say) that no one should notice. It seems better to
mjr 29:582472d0bc57 1062 // err in this direction, because while the difference in
mjr 29:582472d0bc57 1063 // brightness when attached to an LED won't be noticeable, the
mjr 29:582472d0bc57 1064 // difference in duty cycle when attached to something like a
mjr 29:582472d0bc57 1065 // contactor *can* be noticeable - anything less than 100%
mjr 29:582472d0bc57 1066 // can cause a contactor or relay to chatter. There's almost
mjr 29:582472d0bc57 1067 // never a situation where you'd want values other than 0% and
mjr 29:582472d0bc57 1068 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 29:582472d0bc57 1069 // makes us work properly with software that's expecting the
mjr 29:582472d0bc57 1070 // documented LedWiz behavior and therefore uses level 48 to
mjr 29:582472d0bc57 1071 // turn a contactor or relay fully on.
mjr 40:cc0d9814522b 1072 //
mjr 40:cc0d9814522b 1073 // Note that value 49 is undefined in the LedWiz documentation,
mjr 40:cc0d9814522b 1074 // but real LedWiz units treat it as 100%, equivalent to 48.
mjr 40:cc0d9814522b 1075 // Some software on the PC side uses this, so we need to treat
mjr 40:cc0d9814522b 1076 // it the same way for compatibility.
mjr 40:cc0d9814522b 1077 return lw_to_dof[val];
mjr 29:582472d0bc57 1078 }
mjr 29:582472d0bc57 1079 else if (val == 129)
mjr 29:582472d0bc57 1080 {
mjr 40:cc0d9814522b 1081 // 129 = ramp up / ramp down
mjr 30:6e9902f06f48 1082 return wizFlashCounter < 128
mjr 40:cc0d9814522b 1083 ? wizFlashCounter*2 + 1
mjr 40:cc0d9814522b 1084 : (255 - wizFlashCounter)*2;
mjr 29:582472d0bc57 1085 }
mjr 29:582472d0bc57 1086 else if (val == 130)
mjr 29:582472d0bc57 1087 {
mjr 40:cc0d9814522b 1088 // 130 = flash on / off
mjr 40:cc0d9814522b 1089 return wizFlashCounter < 128 ? 255 : 0;
mjr 29:582472d0bc57 1090 }
mjr 29:582472d0bc57 1091 else if (val == 131)
mjr 29:582472d0bc57 1092 {
mjr 40:cc0d9814522b 1093 // 131 = on / ramp down
mjr 40:cc0d9814522b 1094 return wizFlashCounter < 128 ? 255 : (255 - wizFlashCounter)*2;
mjr 0:5acbbe3f4cf4 1095 }
mjr 29:582472d0bc57 1096 else if (val == 132)
mjr 29:582472d0bc57 1097 {
mjr 40:cc0d9814522b 1098 // 132 = ramp up / on
mjr 40:cc0d9814522b 1099 return wizFlashCounter < 128 ? wizFlashCounter*2 : 255;
mjr 29:582472d0bc57 1100 }
mjr 29:582472d0bc57 1101 else
mjr 13:72dda449c3c0 1102 {
mjr 29:582472d0bc57 1103 // Other values are undefined in the LedWiz documentation. Hosts
mjr 29:582472d0bc57 1104 // *should* never send undefined values, since whatever behavior an
mjr 29:582472d0bc57 1105 // LedWiz unit exhibits in response is accidental and could change
mjr 29:582472d0bc57 1106 // in a future version. We'll treat all undefined values as equivalent
mjr 29:582472d0bc57 1107 // to 48 (fully on).
mjr 40:cc0d9814522b 1108 return 255;
mjr 0:5acbbe3f4cf4 1109 }
mjr 0:5acbbe3f4cf4 1110 }
mjr 0:5acbbe3f4cf4 1111
mjr 29:582472d0bc57 1112 // LedWiz flash timer pulse. This fires periodically to update
mjr 29:582472d0bc57 1113 // LedWiz flashing outputs. At the slowest pulse speed set via
mjr 29:582472d0bc57 1114 // the SBA command, each waveform cycle has 256 steps, so we
mjr 29:582472d0bc57 1115 // choose the pulse time base so that the slowest cycle completes
mjr 29:582472d0bc57 1116 // in 2 seconds. This seems to roughly match the real LedWiz
mjr 29:582472d0bc57 1117 // behavior. We run the pulse timer at the same rate regardless
mjr 29:582472d0bc57 1118 // of the pulse speed; at higher pulse speeds, we simply use
mjr 29:582472d0bc57 1119 // larger steps through the cycle on each interrupt. Running
mjr 29:582472d0bc57 1120 // every 1/127 of a second = 8ms seems to be a pretty light load.
mjr 29:582472d0bc57 1121 Timeout wizPulseTimer;
mjr 38:091e511ce8a0 1122 #define WIZ_PULSE_TIME_BASE (1.0f/127.0f)
mjr 29:582472d0bc57 1123 static void wizPulse()
mjr 29:582472d0bc57 1124 {
mjr 29:582472d0bc57 1125 // increase the counter by the speed increment, and wrap at 256
mjr 29:582472d0bc57 1126 wizFlashCounter += wizSpeed;
mjr 29:582472d0bc57 1127 wizFlashCounter &= 0xff;
mjr 29:582472d0bc57 1128
mjr 29:582472d0bc57 1129 // if we have any flashing lights, update them
mjr 29:582472d0bc57 1130 int ena = false;
mjr 35:e959ffba78fd 1131 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 1132 {
mjr 29:582472d0bc57 1133 if (wizOn[i])
mjr 29:582472d0bc57 1134 {
mjr 29:582472d0bc57 1135 uint8_t s = wizVal[i];
mjr 29:582472d0bc57 1136 if (s >= 129 && s <= 132)
mjr 29:582472d0bc57 1137 {
mjr 40:cc0d9814522b 1138 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1139 ena = true;
mjr 29:582472d0bc57 1140 }
mjr 29:582472d0bc57 1141 }
mjr 29:582472d0bc57 1142 }
mjr 29:582472d0bc57 1143
mjr 29:582472d0bc57 1144 // Set up the next timer pulse only if we found anything flashing.
mjr 29:582472d0bc57 1145 // To minimize overhead from this feature, we only enable the interrupt
mjr 29:582472d0bc57 1146 // when we need it. This eliminates any performance penalty to other
mjr 29:582472d0bc57 1147 // features when the host software doesn't care about the flashing
mjr 29:582472d0bc57 1148 // modes. For example, DOF never uses these modes, so there's no
mjr 29:582472d0bc57 1149 // need for them when running Visual Pinball.
mjr 29:582472d0bc57 1150 if (ena)
mjr 29:582472d0bc57 1151 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 29:582472d0bc57 1152 }
mjr 29:582472d0bc57 1153
mjr 29:582472d0bc57 1154 // Update the physical outputs connected to the LedWiz ports. This is
mjr 29:582472d0bc57 1155 // called after any update from an LedWiz protocol message.
mjr 1:d913e0afb2ac 1156 static void updateWizOuts()
mjr 1:d913e0afb2ac 1157 {
mjr 29:582472d0bc57 1158 // update each output
mjr 29:582472d0bc57 1159 int pulse = false;
mjr 35:e959ffba78fd 1160 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 1161 {
mjr 29:582472d0bc57 1162 pulse |= (wizVal[i] >= 129 && wizVal[i] <= 132);
mjr 40:cc0d9814522b 1163 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1164 }
mjr 29:582472d0bc57 1165
mjr 29:582472d0bc57 1166 // if any outputs are set to flashing mode, and the pulse timer
mjr 29:582472d0bc57 1167 // isn't running, turn it on
mjr 29:582472d0bc57 1168 if (pulse)
mjr 29:582472d0bc57 1169 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 34:6b981a2afab7 1170
mjr 34:6b981a2afab7 1171 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1172 if (hc595 != 0)
mjr 35:e959ffba78fd 1173 hc595->update();
mjr 1:d913e0afb2ac 1174 }
mjr 38:091e511ce8a0 1175
mjr 38:091e511ce8a0 1176 // Update all physical outputs. This is called after a change to a global
mjr 38:091e511ce8a0 1177 // setting that affects all outputs, such as engaging or canceling Night Mode.
mjr 38:091e511ce8a0 1178 static void updateAllOuts()
mjr 38:091e511ce8a0 1179 {
mjr 38:091e511ce8a0 1180 // uddate each LedWiz output
mjr 38:091e511ce8a0 1181 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 40:cc0d9814522b 1182 lwPin[i]->set(wizState(i));
mjr 34:6b981a2afab7 1183
mjr 38:091e511ce8a0 1184 // update each extended output
mjr 38:091e511ce8a0 1185 for (int i = 33 ; i < numOutputs ; ++i)
mjr 40:cc0d9814522b 1186 lwPin[i]->set(outLevel[i]);
mjr 38:091e511ce8a0 1187
mjr 38:091e511ce8a0 1188 // flush 74HC595 changes, if necessary
mjr 38:091e511ce8a0 1189 if (hc595 != 0)
mjr 38:091e511ce8a0 1190 hc595->update();
mjr 38:091e511ce8a0 1191 }
mjr 38:091e511ce8a0 1192
mjr 11:bd9da7088e6e 1193 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 1194 //
mjr 11:bd9da7088e6e 1195 // Button input
mjr 11:bd9da7088e6e 1196 //
mjr 11:bd9da7088e6e 1197
mjr 18:5e890ebd0023 1198 // button state
mjr 18:5e890ebd0023 1199 struct ButtonState
mjr 18:5e890ebd0023 1200 {
mjr 38:091e511ce8a0 1201 ButtonState()
mjr 38:091e511ce8a0 1202 {
mjr 38:091e511ce8a0 1203 di = NULL;
mjr 38:091e511ce8a0 1204 on = 0;
mjr 38:091e511ce8a0 1205 pressed = prev = 0;
mjr 38:091e511ce8a0 1206 dbstate = 0;
mjr 38:091e511ce8a0 1207 js = 0;
mjr 38:091e511ce8a0 1208 keymod = 0;
mjr 38:091e511ce8a0 1209 keycode = 0;
mjr 38:091e511ce8a0 1210 special = 0;
mjr 38:091e511ce8a0 1211 pulseState = 0;
mjr 38:091e511ce8a0 1212 pulseTime = 0.0f;
mjr 38:091e511ce8a0 1213 }
mjr 35:e959ffba78fd 1214
mjr 35:e959ffba78fd 1215 // DigitalIn for the button
mjr 48:058ace2aed1d 1216 TinyDigitalIn *di;
mjr 38:091e511ce8a0 1217
mjr 38:091e511ce8a0 1218 // current PHYSICAL on/off state, after debouncing
mjr 48:058ace2aed1d 1219 uint8_t on : 1;
mjr 18:5e890ebd0023 1220
mjr 38:091e511ce8a0 1221 // current LOGICAL on/off state as reported to the host.
mjr 48:058ace2aed1d 1222 uint8_t pressed : 1;
mjr 38:091e511ce8a0 1223
mjr 38:091e511ce8a0 1224 // previous logical on/off state, when keys were last processed for USB
mjr 38:091e511ce8a0 1225 // reports and local effects
mjr 48:058ace2aed1d 1226 uint8_t prev : 1;
mjr 38:091e511ce8a0 1227
mjr 38:091e511ce8a0 1228 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 1229 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 1230 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 1231 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 1232 // a parameter that determines how long we wait for transients to settle).
mjr 38:091e511ce8a0 1233 uint8_t dbstate;
mjr 35:e959ffba78fd 1234
mjr 35:e959ffba78fd 1235 // joystick button mask for the button, if mapped as a joystick button
mjr 35:e959ffba78fd 1236 uint32_t js;
mjr 35:e959ffba78fd 1237
mjr 35:e959ffba78fd 1238 // keyboard modifier bits and scan code for the button, if mapped as a keyboard key
mjr 35:e959ffba78fd 1239 uint8_t keymod;
mjr 35:e959ffba78fd 1240 uint8_t keycode;
mjr 35:e959ffba78fd 1241
mjr 35:e959ffba78fd 1242 // media control key code
mjr 35:e959ffba78fd 1243 uint8_t mediakey;
mjr 35:e959ffba78fd 1244
mjr 38:091e511ce8a0 1245 // special key code
mjr 38:091e511ce8a0 1246 uint8_t special;
mjr 38:091e511ce8a0 1247
mjr 38:091e511ce8a0 1248 // Pulse mode: a button in pulse mode transmits a brief logical button press and
mjr 38:091e511ce8a0 1249 // release each time the attached physical switch changes state. This is useful
mjr 38:091e511ce8a0 1250 // for cases where the host expects a key press for each change in the state of
mjr 38:091e511ce8a0 1251 // the physical switch. The canonical example is the Coin Door switch in VPinMAME,
mjr 38:091e511ce8a0 1252 // which requires pressing the END key to toggle the open/closed state. This
mjr 38:091e511ce8a0 1253 // software design isn't easily implemented in a physical coin door, though -
mjr 38:091e511ce8a0 1254 // the easiest way to sense a physical coin door's state is with a simple on/off
mjr 38:091e511ce8a0 1255 // switch. Pulse mode bridges that divide by converting a physical switch state
mjr 38:091e511ce8a0 1256 // to on/off toggle key reports to the host.
mjr 38:091e511ce8a0 1257 //
mjr 38:091e511ce8a0 1258 // Pulse state:
mjr 38:091e511ce8a0 1259 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 1260 // 1 -> off
mjr 38:091e511ce8a0 1261 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 1262 // 3 -> on
mjr 38:091e511ce8a0 1263 // 4 -> transitioning on-off
mjr 38:091e511ce8a0 1264 //
mjr 38:091e511ce8a0 1265 // Each state change sticks for a minimum period; when the timer expires,
mjr 38:091e511ce8a0 1266 // if the underlying physical switch is in a different state, we switch
mjr 38:091e511ce8a0 1267 // to the next state and restart the timer. pulseTime is the amount of
mjr 38:091e511ce8a0 1268 // time remaining before we can make another state transition. The state
mjr 38:091e511ce8a0 1269 // transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...; this
mjr 38:091e511ce8a0 1270 // guarantees that the parity of the pulse count always matches the
mjr 38:091e511ce8a0 1271 // current physical switch state when the latter is stable, which makes
mjr 38:091e511ce8a0 1272 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 38:091e511ce8a0 1273 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 38:091e511ce8a0 1274 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 38:091e511ce8a0 1275 // This software system can't be fooled that way.)
mjr 38:091e511ce8a0 1276 uint8_t pulseState;
mjr 38:091e511ce8a0 1277 float pulseTime;
mjr 38:091e511ce8a0 1278
mjr 48:058ace2aed1d 1279 } __attribute__((packed)) buttonState[MAX_BUTTONS];
mjr 18:5e890ebd0023 1280
mjr 38:091e511ce8a0 1281
mjr 38:091e511ce8a0 1282 // Button data
mjr 38:091e511ce8a0 1283 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 1284
mjr 38:091e511ce8a0 1285 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 1286 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 1287 // modifier keys.
mjr 38:091e511ce8a0 1288 struct
mjr 38:091e511ce8a0 1289 {
mjr 38:091e511ce8a0 1290 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 1291 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 1292 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 1293 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 1294 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 1295
mjr 38:091e511ce8a0 1296 // Media key state
mjr 38:091e511ce8a0 1297 struct
mjr 38:091e511ce8a0 1298 {
mjr 38:091e511ce8a0 1299 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 1300 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 1301 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 1302
mjr 38:091e511ce8a0 1303 // button scan interrupt ticker
mjr 38:091e511ce8a0 1304 Ticker buttonTicker;
mjr 38:091e511ce8a0 1305
mjr 38:091e511ce8a0 1306 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 1307 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 1308 void scanButtons()
mjr 38:091e511ce8a0 1309 {
mjr 38:091e511ce8a0 1310 // scan all button input pins
mjr 38:091e511ce8a0 1311 ButtonState *bs = buttonState;
mjr 38:091e511ce8a0 1312 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 38:091e511ce8a0 1313 {
mjr 38:091e511ce8a0 1314 // if it's connected, check its physical state
mjr 38:091e511ce8a0 1315 if (bs->di != NULL)
mjr 38:091e511ce8a0 1316 {
mjr 38:091e511ce8a0 1317 // Shift the new state into the debounce history. Note that
mjr 38:091e511ce8a0 1318 // the physical pin inputs are active low (0V/GND = ON), so invert
mjr 38:091e511ce8a0 1319 // the reading by XOR'ing the low bit with 1. And of course we
mjr 38:091e511ce8a0 1320 // only want the low bit (since the history is effectively a bit
mjr 38:091e511ce8a0 1321 // vector), so mask the whole thing with 0x01 as well.
mjr 38:091e511ce8a0 1322 uint8_t db = bs->dbstate;
mjr 38:091e511ce8a0 1323 db <<= 1;
mjr 38:091e511ce8a0 1324 db |= (bs->di->read() & 0x01) ^ 0x01;
mjr 38:091e511ce8a0 1325 bs->dbstate = db;
mjr 38:091e511ce8a0 1326
mjr 38:091e511ce8a0 1327 // if we have all 0's or 1's in the history for the required
mjr 38:091e511ce8a0 1328 // debounce period, the key state is stable - check for a change
mjr 38:091e511ce8a0 1329 // to the last stable state
mjr 38:091e511ce8a0 1330 const uint8_t stable = 0x1F; // 00011111b -> 5 stable readings
mjr 38:091e511ce8a0 1331 db &= stable;
mjr 38:091e511ce8a0 1332 if (db == 0 || db == stable)
mjr 38:091e511ce8a0 1333 bs->on = db;
mjr 38:091e511ce8a0 1334 }
mjr 38:091e511ce8a0 1335 }
mjr 38:091e511ce8a0 1336 }
mjr 38:091e511ce8a0 1337
mjr 38:091e511ce8a0 1338 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 1339 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 1340 // in the physical button state.
mjr 38:091e511ce8a0 1341 Timer buttonTimer;
mjr 12:669df364a565 1342
mjr 11:bd9da7088e6e 1343 // initialize the button inputs
mjr 35:e959ffba78fd 1344 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 1345 {
mjr 35:e959ffba78fd 1346 // presume we'll find no keyboard keys
mjr 35:e959ffba78fd 1347 kbKeys = false;
mjr 35:e959ffba78fd 1348
mjr 11:bd9da7088e6e 1349 // create the digital inputs
mjr 35:e959ffba78fd 1350 ButtonState *bs = buttonState;
mjr 35:e959ffba78fd 1351 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 11:bd9da7088e6e 1352 {
mjr 35:e959ffba78fd 1353 PinName pin = wirePinName(cfg.button[i].pin);
mjr 35:e959ffba78fd 1354 if (pin != NC)
mjr 35:e959ffba78fd 1355 {
mjr 35:e959ffba78fd 1356 // set up the GPIO input pin for this button
mjr 48:058ace2aed1d 1357 bs->di = new TinyDigitalIn(pin);
mjr 35:e959ffba78fd 1358
mjr 38:091e511ce8a0 1359 // if it's a pulse mode button, set the initial pulse state to Off
mjr 38:091e511ce8a0 1360 if (cfg.button[i].flags & BtnFlagPulse)
mjr 38:091e511ce8a0 1361 bs->pulseState = 1;
mjr 38:091e511ce8a0 1362
mjr 35:e959ffba78fd 1363 // note if it's a keyboard key of some kind (including media keys)
mjr 35:e959ffba78fd 1364 uint8_t val = cfg.button[i].val;
mjr 35:e959ffba78fd 1365 switch (cfg.button[i].typ)
mjr 35:e959ffba78fd 1366 {
mjr 35:e959ffba78fd 1367 case BtnTypeJoystick:
mjr 35:e959ffba78fd 1368 // joystick button - get the button bit mask
mjr 35:e959ffba78fd 1369 bs->js = 1 << val;
mjr 35:e959ffba78fd 1370 break;
mjr 35:e959ffba78fd 1371
mjr 35:e959ffba78fd 1372 case BtnTypeKey:
mjr 35:e959ffba78fd 1373 // regular keyboard key - note the scan code
mjr 35:e959ffba78fd 1374 bs->keycode = val;
mjr 35:e959ffba78fd 1375 kbKeys = true;
mjr 35:e959ffba78fd 1376 break;
mjr 35:e959ffba78fd 1377
mjr 35:e959ffba78fd 1378 case BtnTypeModKey:
mjr 35:e959ffba78fd 1379 // keyboard mod key - note the modifier mask
mjr 35:e959ffba78fd 1380 bs->keymod = val;
mjr 35:e959ffba78fd 1381 kbKeys = true;
mjr 35:e959ffba78fd 1382 break;
mjr 35:e959ffba78fd 1383
mjr 35:e959ffba78fd 1384 case BtnTypeMedia:
mjr 35:e959ffba78fd 1385 // media key - note the code
mjr 35:e959ffba78fd 1386 bs->mediakey = val;
mjr 35:e959ffba78fd 1387 kbKeys = true;
mjr 35:e959ffba78fd 1388 break;
mjr 39:b3815a1c3802 1389
mjr 39:b3815a1c3802 1390 case BtnTypeSpecial:
mjr 39:b3815a1c3802 1391 // special key
mjr 39:b3815a1c3802 1392 bs->special = val;
mjr 39:b3815a1c3802 1393 break;
mjr 35:e959ffba78fd 1394 }
mjr 35:e959ffba78fd 1395 }
mjr 11:bd9da7088e6e 1396 }
mjr 12:669df364a565 1397
mjr 38:091e511ce8a0 1398 // start the button scan thread
mjr 38:091e511ce8a0 1399 buttonTicker.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 1400
mjr 38:091e511ce8a0 1401 // start the button state transition timer
mjr 12:669df364a565 1402 buttonTimer.start();
mjr 11:bd9da7088e6e 1403 }
mjr 11:bd9da7088e6e 1404
mjr 38:091e511ce8a0 1405 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 1406 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 1407 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 1408 // mapped to special device functions (e.g., Night Mode).
mjr 38:091e511ce8a0 1409 void processButtons()
mjr 35:e959ffba78fd 1410 {
mjr 35:e959ffba78fd 1411 // start with an empty list of USB key codes
mjr 35:e959ffba78fd 1412 uint8_t modkeys = 0;
mjr 35:e959ffba78fd 1413 uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 };
mjr 35:e959ffba78fd 1414 int nkeys = 0;
mjr 11:bd9da7088e6e 1415
mjr 35:e959ffba78fd 1416 // clear the joystick buttons
mjr 36:b9747461331e 1417 uint32_t newjs = 0;
mjr 35:e959ffba78fd 1418
mjr 35:e959ffba78fd 1419 // start with no media keys pressed
mjr 35:e959ffba78fd 1420 uint8_t mediakeys = 0;
mjr 38:091e511ce8a0 1421
mjr 38:091e511ce8a0 1422 // calculate the time since the last run
mjr 35:e959ffba78fd 1423 float dt = buttonTimer.read();
mjr 18:5e890ebd0023 1424 buttonTimer.reset();
mjr 38:091e511ce8a0 1425
mjr 11:bd9da7088e6e 1426 // scan the button list
mjr 18:5e890ebd0023 1427 ButtonState *bs = buttonState;
mjr 35:e959ffba78fd 1428 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 11:bd9da7088e6e 1429 {
mjr 38:091e511ce8a0 1430 // if it's a pulse-mode switch, get the virtual pressed state
mjr 38:091e511ce8a0 1431 if (bs->pulseState != 0)
mjr 18:5e890ebd0023 1432 {
mjr 38:091e511ce8a0 1433 // deduct the time to the next state change
mjr 38:091e511ce8a0 1434 bs->pulseTime -= dt;
mjr 38:091e511ce8a0 1435 if (bs->pulseTime < 0)
mjr 38:091e511ce8a0 1436 bs->pulseTime = 0;
mjr 38:091e511ce8a0 1437
mjr 38:091e511ce8a0 1438 // if the timer has expired, check for state changes
mjr 38:091e511ce8a0 1439 if (bs->pulseTime == 0)
mjr 18:5e890ebd0023 1440 {
mjr 38:091e511ce8a0 1441 const float pulseLength = 0.2;
mjr 38:091e511ce8a0 1442 switch (bs->pulseState)
mjr 18:5e890ebd0023 1443 {
mjr 38:091e511ce8a0 1444 case 1:
mjr 38:091e511ce8a0 1445 // off - if the physical switch is now on, start a button pulse
mjr 38:091e511ce8a0 1446 if (bs->on) {
mjr 38:091e511ce8a0 1447 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1448 bs->pulseState = 2;
mjr 38:091e511ce8a0 1449 bs->pressed = 1;
mjr 38:091e511ce8a0 1450 }
mjr 38:091e511ce8a0 1451 break;
mjr 18:5e890ebd0023 1452
mjr 38:091e511ce8a0 1453 case 2:
mjr 38:091e511ce8a0 1454 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 1455 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 1456 // change in state in the logical button
mjr 38:091e511ce8a0 1457 bs->pulseState = 3;
mjr 38:091e511ce8a0 1458 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1459 bs->pressed = 0;
mjr 38:091e511ce8a0 1460 break;
mjr 38:091e511ce8a0 1461
mjr 38:091e511ce8a0 1462 case 3:
mjr 38:091e511ce8a0 1463 // on - if the physical switch is now off, start a button pulse
mjr 38:091e511ce8a0 1464 if (!bs->on) {
mjr 38:091e511ce8a0 1465 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1466 bs->pulseState = 4;
mjr 38:091e511ce8a0 1467 bs->pressed = 1;
mjr 38:091e511ce8a0 1468 }
mjr 38:091e511ce8a0 1469 break;
mjr 38:091e511ce8a0 1470
mjr 38:091e511ce8a0 1471 case 4:
mjr 38:091e511ce8a0 1472 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 1473 bs->pulseState = 1;
mjr 38:091e511ce8a0 1474 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1475 bs->pressed = 0;
mjr 38:091e511ce8a0 1476 break;
mjr 18:5e890ebd0023 1477 }
mjr 18:5e890ebd0023 1478 }
mjr 38:091e511ce8a0 1479 }
mjr 38:091e511ce8a0 1480 else
mjr 38:091e511ce8a0 1481 {
mjr 38:091e511ce8a0 1482 // not a pulse switch - the logical state is the same as the physical state
mjr 38:091e511ce8a0 1483 bs->pressed = bs->on;
mjr 38:091e511ce8a0 1484 }
mjr 35:e959ffba78fd 1485
mjr 38:091e511ce8a0 1486 // carry out any edge effects from buttons changing states
mjr 38:091e511ce8a0 1487 if (bs->pressed != bs->prev)
mjr 38:091e511ce8a0 1488 {
mjr 38:091e511ce8a0 1489 // check for special key transitions
mjr 38:091e511ce8a0 1490 switch (bs->special)
mjr 35:e959ffba78fd 1491 {
mjr 38:091e511ce8a0 1492 case 1:
mjr 38:091e511ce8a0 1493 // night mode momentary switch - when the button transitions from
mjr 38:091e511ce8a0 1494 // OFF to ON, invert night mode
mjr 38:091e511ce8a0 1495 if (bs->pressed)
mjr 38:091e511ce8a0 1496 toggleNightMode();
mjr 38:091e511ce8a0 1497 break;
mjr 35:e959ffba78fd 1498
mjr 38:091e511ce8a0 1499 case 2:
mjr 38:091e511ce8a0 1500 // night mode toggle switch - when the button changes state, change
mjr 38:091e511ce8a0 1501 // night mode to match the new state
mjr 38:091e511ce8a0 1502 setNightMode(bs->pressed);
mjr 38:091e511ce8a0 1503 break;
mjr 35:e959ffba78fd 1504 }
mjr 38:091e511ce8a0 1505
mjr 38:091e511ce8a0 1506 // remember the new state for comparison on the next run
mjr 38:091e511ce8a0 1507 bs->prev = bs->pressed;
mjr 38:091e511ce8a0 1508 }
mjr 38:091e511ce8a0 1509
mjr 38:091e511ce8a0 1510 // if it's pressed, add it to the appropriate key state list
mjr 38:091e511ce8a0 1511 if (bs->pressed)
mjr 38:091e511ce8a0 1512 {
mjr 38:091e511ce8a0 1513 // OR in the joystick button bit, mod key bits, and media key bits
mjr 38:091e511ce8a0 1514 newjs |= bs->js;
mjr 38:091e511ce8a0 1515 modkeys |= bs->keymod;
mjr 38:091e511ce8a0 1516 mediakeys |= bs->mediakey;
mjr 38:091e511ce8a0 1517
mjr 38:091e511ce8a0 1518 // if it has a keyboard key, add the scan code to the active list
mjr 38:091e511ce8a0 1519 if (bs->keycode != 0 && nkeys < 7)
mjr 38:091e511ce8a0 1520 keys[nkeys++] = bs->keycode;
mjr 18:5e890ebd0023 1521 }
mjr 11:bd9da7088e6e 1522 }
mjr 36:b9747461331e 1523
mjr 36:b9747461331e 1524 // check for joystick button changes
mjr 36:b9747461331e 1525 if (jsButtons != newjs)
mjr 36:b9747461331e 1526 jsButtons = newjs;
mjr 11:bd9da7088e6e 1527
mjr 35:e959ffba78fd 1528 // Check for changes to the keyboard keys
mjr 35:e959ffba78fd 1529 if (kbState.data[0] != modkeys
mjr 35:e959ffba78fd 1530 || kbState.nkeys != nkeys
mjr 35:e959ffba78fd 1531 || memcmp(keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 1532 {
mjr 35:e959ffba78fd 1533 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 1534 kbState.changed = true;
mjr 35:e959ffba78fd 1535 kbState.data[0] = modkeys;
mjr 35:e959ffba78fd 1536 if (nkeys <= 6) {
mjr 35:e959ffba78fd 1537 // 6 or fewer simultaneous keys - report the key codes
mjr 35:e959ffba78fd 1538 kbState.nkeys = nkeys;
mjr 35:e959ffba78fd 1539 memcpy(&kbState.data[2], keys, 6);
mjr 35:e959ffba78fd 1540 }
mjr 35:e959ffba78fd 1541 else {
mjr 35:e959ffba78fd 1542 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 1543 kbState.nkeys = 6;
mjr 35:e959ffba78fd 1544 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 1545 }
mjr 35:e959ffba78fd 1546 }
mjr 35:e959ffba78fd 1547
mjr 35:e959ffba78fd 1548 // Check for changes to media keys
mjr 35:e959ffba78fd 1549 if (mediaState.data != mediakeys)
mjr 35:e959ffba78fd 1550 {
mjr 35:e959ffba78fd 1551 mediaState.changed = true;
mjr 35:e959ffba78fd 1552 mediaState.data = mediakeys;
mjr 35:e959ffba78fd 1553 }
mjr 11:bd9da7088e6e 1554 }
mjr 11:bd9da7088e6e 1555
mjr 5:a70c0bce770d 1556 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1557 //
mjr 5:a70c0bce770d 1558 // Customization joystick subbclass
mjr 5:a70c0bce770d 1559 //
mjr 5:a70c0bce770d 1560
mjr 5:a70c0bce770d 1561 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 1562 {
mjr 5:a70c0bce770d 1563 public:
mjr 35:e959ffba78fd 1564 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 1565 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 1566 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 1567 {
mjr 5:a70c0bce770d 1568 suspended_ = false;
mjr 5:a70c0bce770d 1569 }
mjr 5:a70c0bce770d 1570
mjr 5:a70c0bce770d 1571 // are we connected?
mjr 5:a70c0bce770d 1572 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 1573
mjr 5:a70c0bce770d 1574 // Are we in suspend mode?
mjr 5:a70c0bce770d 1575 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 1576
mjr 5:a70c0bce770d 1577 protected:
mjr 5:a70c0bce770d 1578 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 1579 { suspended_ = suspended; }
mjr 5:a70c0bce770d 1580
mjr 5:a70c0bce770d 1581 // are we suspended?
mjr 5:a70c0bce770d 1582 int suspended_;
mjr 5:a70c0bce770d 1583 };
mjr 5:a70c0bce770d 1584
mjr 5:a70c0bce770d 1585 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1586 //
mjr 5:a70c0bce770d 1587 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 1588 //
mjr 5:a70c0bce770d 1589
mjr 5:a70c0bce770d 1590 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 1591 //
mjr 5:a70c0bce770d 1592 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 1593 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 1594 // automatic calibration.
mjr 5:a70c0bce770d 1595 //
mjr 5:a70c0bce770d 1596 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 1597 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 1598 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 1599 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 1600 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 1601 // every sample.
mjr 5:a70c0bce770d 1602 //
mjr 6:cc35eb643e8f 1603 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 1604 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 1605 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 1606 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 1607 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 1608 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 1609 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 1610 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 1611 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 1612 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 1613 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 1614 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 1615 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 1616 // of nudging, say).
mjr 5:a70c0bce770d 1617 //
mjr 5:a70c0bce770d 1618
mjr 17:ab3cec0c8bf4 1619 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 1620 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 1621
mjr 17:ab3cec0c8bf4 1622 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 1623 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 1624 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 1625
mjr 17:ab3cec0c8bf4 1626 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 1627 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 1628 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 1629 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 1630
mjr 17:ab3cec0c8bf4 1631
mjr 6:cc35eb643e8f 1632 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 1633 struct AccHist
mjr 5:a70c0bce770d 1634 {
mjr 6:cc35eb643e8f 1635 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 1636 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 1637 {
mjr 6:cc35eb643e8f 1638 // save the raw position
mjr 6:cc35eb643e8f 1639 this->x = x;
mjr 6:cc35eb643e8f 1640 this->y = y;
mjr 6:cc35eb643e8f 1641 this->d = distance(prv);
mjr 6:cc35eb643e8f 1642 }
mjr 6:cc35eb643e8f 1643
mjr 6:cc35eb643e8f 1644 // reading for this entry
mjr 5:a70c0bce770d 1645 float x, y;
mjr 5:a70c0bce770d 1646
mjr 6:cc35eb643e8f 1647 // distance from previous entry
mjr 6:cc35eb643e8f 1648 float d;
mjr 5:a70c0bce770d 1649
mjr 6:cc35eb643e8f 1650 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 1651 float xtot, ytot;
mjr 6:cc35eb643e8f 1652 int cnt;
mjr 6:cc35eb643e8f 1653
mjr 6:cc35eb643e8f 1654 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 1655 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 1656 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 1657 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 1658
mjr 6:cc35eb643e8f 1659 float distance(AccHist *p)
mjr 6:cc35eb643e8f 1660 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 1661 };
mjr 5:a70c0bce770d 1662
mjr 5:a70c0bce770d 1663 // accelerometer wrapper class
mjr 3:3514575d4f86 1664 class Accel
mjr 3:3514575d4f86 1665 {
mjr 3:3514575d4f86 1666 public:
mjr 3:3514575d4f86 1667 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 1668 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 1669 {
mjr 5:a70c0bce770d 1670 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 1671 irqPin_ = irqPin;
mjr 5:a70c0bce770d 1672
mjr 5:a70c0bce770d 1673 // reset and initialize
mjr 5:a70c0bce770d 1674 reset();
mjr 5:a70c0bce770d 1675 }
mjr 5:a70c0bce770d 1676
mjr 5:a70c0bce770d 1677 void reset()
mjr 5:a70c0bce770d 1678 {
mjr 6:cc35eb643e8f 1679 // clear the center point
mjr 6:cc35eb643e8f 1680 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 1681
mjr 6:cc35eb643e8f 1682 // start the calibration timer
mjr 5:a70c0bce770d 1683 tCenter_.start();
mjr 5:a70c0bce770d 1684 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 1685
mjr 5:a70c0bce770d 1686 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 1687 mma_.init();
mjr 6:cc35eb643e8f 1688
mjr 6:cc35eb643e8f 1689 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 1690 vx_ = vy_ = 0;
mjr 3:3514575d4f86 1691
mjr 6:cc35eb643e8f 1692 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 1693 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 1694 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 1695
mjr 3:3514575d4f86 1696 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 1697 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 1698
mjr 3:3514575d4f86 1699 // start our timers
mjr 3:3514575d4f86 1700 tGet_.start();
mjr 3:3514575d4f86 1701 tInt_.start();
mjr 3:3514575d4f86 1702 }
mjr 3:3514575d4f86 1703
mjr 9:fd65b0a94720 1704 void get(int &x, int &y)
mjr 3:3514575d4f86 1705 {
mjr 3:3514575d4f86 1706 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 1707 __disable_irq();
mjr 3:3514575d4f86 1708
mjr 3:3514575d4f86 1709 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 1710 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 1711 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 1712
mjr 6:cc35eb643e8f 1713 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 1714 vx_ = vy_ = 0;
mjr 3:3514575d4f86 1715
mjr 3:3514575d4f86 1716 // get the time since the last get() sample
mjr 38:091e511ce8a0 1717 float dt = tGet_.read_us()/1.0e6f;
mjr 3:3514575d4f86 1718 tGet_.reset();
mjr 3:3514575d4f86 1719
mjr 3:3514575d4f86 1720 // done manipulating the shared data
mjr 3:3514575d4f86 1721 __enable_irq();
mjr 3:3514575d4f86 1722
mjr 6:cc35eb643e8f 1723 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 1724 vx /= dt;
mjr 6:cc35eb643e8f 1725 vy /= dt;
mjr 6:cc35eb643e8f 1726
mjr 6:cc35eb643e8f 1727 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 1728 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 1729 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 1730
mjr 5:a70c0bce770d 1731 // check for auto-centering every so often
mjr 48:058ace2aed1d 1732 if (tCenter_.read_us() > 1000000)
mjr 5:a70c0bce770d 1733 {
mjr 5:a70c0bce770d 1734 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 1735 AccHist *prv = p;
mjr 5:a70c0bce770d 1736 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 1737 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 1738 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 1739
mjr 5:a70c0bce770d 1740 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 1741 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 1742 {
mjr 5:a70c0bce770d 1743 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 1744 static const float accTol = .01;
mjr 6:cc35eb643e8f 1745 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 1746 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 1747 && p0[1].d < accTol
mjr 6:cc35eb643e8f 1748 && p0[2].d < accTol
mjr 6:cc35eb643e8f 1749 && p0[3].d < accTol
mjr 6:cc35eb643e8f 1750 && p0[4].d < accTol)
mjr 5:a70c0bce770d 1751 {
mjr 6:cc35eb643e8f 1752 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 1753 // the samples over the rest period
mjr 6:cc35eb643e8f 1754 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 1755 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 1756 }
mjr 5:a70c0bce770d 1757 }
mjr 5:a70c0bce770d 1758 else
mjr 5:a70c0bce770d 1759 {
mjr 5:a70c0bce770d 1760 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 1761 ++nAccPrv_;
mjr 5:a70c0bce770d 1762 }
mjr 6:cc35eb643e8f 1763
mjr 6:cc35eb643e8f 1764 // clear the new item's running totals
mjr 6:cc35eb643e8f 1765 p->clearAvg();
mjr 5:a70c0bce770d 1766
mjr 5:a70c0bce770d 1767 // reset the timer
mjr 5:a70c0bce770d 1768 tCenter_.reset();
mjr 39:b3815a1c3802 1769
mjr 39:b3815a1c3802 1770 // If we haven't seen an interrupt in a while, do an explicit read to
mjr 39:b3815a1c3802 1771 // "unstick" the device. The device can become stuck - which is to say,
mjr 39:b3815a1c3802 1772 // it will stop delivering data-ready interrupts - if we fail to service
mjr 39:b3815a1c3802 1773 // one data-ready interrupt before the next one occurs. Reading a sample
mjr 39:b3815a1c3802 1774 // will clear up this overrun condition and allow normal interrupt
mjr 39:b3815a1c3802 1775 // generation to continue.
mjr 39:b3815a1c3802 1776 //
mjr 39:b3815a1c3802 1777 // Note that this stuck condition *shouldn't* ever occur - if it does,
mjr 39:b3815a1c3802 1778 // it means that we're spending a long period with interrupts disabled
mjr 39:b3815a1c3802 1779 // (either in a critical section or in another interrupt handler), which
mjr 39:b3815a1c3802 1780 // will likely cause other worse problems beyond the sticky accelerometer.
mjr 39:b3815a1c3802 1781 // Even so, it's easy to detect and correct, so we'll do so for the sake
mjr 39:b3815a1c3802 1782 // of making the system more fault-tolerant.
mjr 39:b3815a1c3802 1783 if (tInt_.read() > 1.0f)
mjr 39:b3815a1c3802 1784 {
mjr 39:b3815a1c3802 1785 float x, y, z;
mjr 39:b3815a1c3802 1786 mma_.getAccXYZ(x, y, z);
mjr 39:b3815a1c3802 1787 }
mjr 5:a70c0bce770d 1788 }
mjr 5:a70c0bce770d 1789
mjr 6:cc35eb643e8f 1790 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 1791 x = rawToReport(vx);
mjr 6:cc35eb643e8f 1792 y = rawToReport(vy);
mjr 5:a70c0bce770d 1793
mjr 6:cc35eb643e8f 1794 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1795 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1796 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 1797 #endif
mjr 3:3514575d4f86 1798 }
mjr 29:582472d0bc57 1799
mjr 3:3514575d4f86 1800 private:
mjr 6:cc35eb643e8f 1801 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 1802 int rawToReport(float v)
mjr 5:a70c0bce770d 1803 {
mjr 6:cc35eb643e8f 1804 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 1805 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 1806
mjr 6:cc35eb643e8f 1807 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 1808 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 1809 static const int filter[] = {
mjr 6:cc35eb643e8f 1810 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 1811 0,
mjr 6:cc35eb643e8f 1812 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 1813 };
mjr 6:cc35eb643e8f 1814 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 1815 }
mjr 5:a70c0bce770d 1816
mjr 3:3514575d4f86 1817 // interrupt handler
mjr 3:3514575d4f86 1818 void isr()
mjr 3:3514575d4f86 1819 {
mjr 3:3514575d4f86 1820 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 1821 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 1822 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 1823 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 1824 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 1825 float x, y, z;
mjr 5:a70c0bce770d 1826 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 1827
mjr 3:3514575d4f86 1828 // calculate the time since the last interrupt
mjr 39:b3815a1c3802 1829 float dt = tInt_.read();
mjr 3:3514575d4f86 1830 tInt_.reset();
mjr 6:cc35eb643e8f 1831
mjr 6:cc35eb643e8f 1832 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 1833 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 1834 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 1835
mjr 6:cc35eb643e8f 1836 // store the updates
mjr 6:cc35eb643e8f 1837 ax_ = x;
mjr 6:cc35eb643e8f 1838 ay_ = y;
mjr 6:cc35eb643e8f 1839 az_ = z;
mjr 3:3514575d4f86 1840 }
mjr 3:3514575d4f86 1841
mjr 3:3514575d4f86 1842 // underlying accelerometer object
mjr 3:3514575d4f86 1843 MMA8451Q mma_;
mjr 3:3514575d4f86 1844
mjr 5:a70c0bce770d 1845 // last raw acceleration readings
mjr 6:cc35eb643e8f 1846 float ax_, ay_, az_;
mjr 5:a70c0bce770d 1847
mjr 6:cc35eb643e8f 1848 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 1849 float vx_, vy_;
mjr 6:cc35eb643e8f 1850
mjr 3:3514575d4f86 1851 // timer for measuring time between get() samples
mjr 3:3514575d4f86 1852 Timer tGet_;
mjr 3:3514575d4f86 1853
mjr 3:3514575d4f86 1854 // timer for measuring time between interrupts
mjr 3:3514575d4f86 1855 Timer tInt_;
mjr 5:a70c0bce770d 1856
mjr 6:cc35eb643e8f 1857 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 1858 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 1859 // at rest.
mjr 6:cc35eb643e8f 1860 float cx_, cy_;
mjr 5:a70c0bce770d 1861
mjr 5:a70c0bce770d 1862 // timer for atuo-centering
mjr 5:a70c0bce770d 1863 Timer tCenter_;
mjr 6:cc35eb643e8f 1864
mjr 6:cc35eb643e8f 1865 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 1866 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 1867 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 1868 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 1869 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 1870 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 1871 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 1872 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 1873 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 1874 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 1875 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 1876 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 1877 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 1878 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 1879 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 1880
mjr 5:a70c0bce770d 1881 // interurupt pin name
mjr 5:a70c0bce770d 1882 PinName irqPin_;
mjr 5:a70c0bce770d 1883
mjr 5:a70c0bce770d 1884 // interrupt router
mjr 5:a70c0bce770d 1885 InterruptIn intIn_;
mjr 3:3514575d4f86 1886 };
mjr 3:3514575d4f86 1887
mjr 5:a70c0bce770d 1888
mjr 5:a70c0bce770d 1889 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1890 //
mjr 14:df700b22ca08 1891 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 1892 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 1893 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 1894 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 1895 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 1896 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 1897 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 1898 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 1899 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 1900 //
mjr 14:df700b22ca08 1901 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 1902 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 1903 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 1904 //
mjr 5:a70c0bce770d 1905 void clear_i2c()
mjr 5:a70c0bce770d 1906 {
mjr 38:091e511ce8a0 1907 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 1908 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 1909 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 1910
mjr 5:a70c0bce770d 1911 // clock the SCL 9 times
mjr 5:a70c0bce770d 1912 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 1913 {
mjr 5:a70c0bce770d 1914 scl = 1;
mjr 5:a70c0bce770d 1915 wait_us(20);
mjr 5:a70c0bce770d 1916 scl = 0;
mjr 5:a70c0bce770d 1917 wait_us(20);
mjr 5:a70c0bce770d 1918 }
mjr 5:a70c0bce770d 1919 }
mjr 14:df700b22ca08 1920
mjr 14:df700b22ca08 1921 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 1922 //
mjr 33:d832bcab089e 1923 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 1924 // for a given interval before allowing an update.
mjr 33:d832bcab089e 1925 //
mjr 33:d832bcab089e 1926 class Debouncer
mjr 33:d832bcab089e 1927 {
mjr 33:d832bcab089e 1928 public:
mjr 33:d832bcab089e 1929 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 1930 {
mjr 33:d832bcab089e 1931 t.start();
mjr 33:d832bcab089e 1932 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 1933 this->tmin = tmin;
mjr 33:d832bcab089e 1934 }
mjr 33:d832bcab089e 1935
mjr 33:d832bcab089e 1936 // Get the current stable value
mjr 33:d832bcab089e 1937 bool val() const { return stable; }
mjr 33:d832bcab089e 1938
mjr 33:d832bcab089e 1939 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 1940 // input device.
mjr 33:d832bcab089e 1941 void sampleIn(bool val)
mjr 33:d832bcab089e 1942 {
mjr 33:d832bcab089e 1943 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 1944 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 1945 // on the sample reader.
mjr 33:d832bcab089e 1946 if (val != prv)
mjr 33:d832bcab089e 1947 {
mjr 33:d832bcab089e 1948 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 1949 t.reset();
mjr 33:d832bcab089e 1950
mjr 33:d832bcab089e 1951 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 1952 prv = val;
mjr 33:d832bcab089e 1953 }
mjr 33:d832bcab089e 1954 else if (val != stable)
mjr 33:d832bcab089e 1955 {
mjr 33:d832bcab089e 1956 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 1957 // and different from the stable value. This means that
mjr 33:d832bcab089e 1958 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 1959 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 1960 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 1961 if (t.read() > tmin)
mjr 33:d832bcab089e 1962 stable = val;
mjr 33:d832bcab089e 1963 }
mjr 33:d832bcab089e 1964 }
mjr 33:d832bcab089e 1965
mjr 33:d832bcab089e 1966 private:
mjr 33:d832bcab089e 1967 // current stable value
mjr 33:d832bcab089e 1968 bool stable;
mjr 33:d832bcab089e 1969
mjr 33:d832bcab089e 1970 // last raw sample value
mjr 33:d832bcab089e 1971 bool prv;
mjr 33:d832bcab089e 1972
mjr 33:d832bcab089e 1973 // elapsed time since last raw input change
mjr 33:d832bcab089e 1974 Timer t;
mjr 33:d832bcab089e 1975
mjr 33:d832bcab089e 1976 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 1977 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 1978 float tmin;
mjr 33:d832bcab089e 1979 };
mjr 33:d832bcab089e 1980
mjr 33:d832bcab089e 1981
mjr 33:d832bcab089e 1982 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 1983 //
mjr 33:d832bcab089e 1984 // Turn off all outputs and restore everything to the default LedWiz
mjr 33:d832bcab089e 1985 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 33:d832bcab089e 1986 // brightness) and switch state Off, sets all extended outputs (#33
mjr 33:d832bcab089e 1987 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 33:d832bcab089e 1988 // This effectively restores the power-on conditions.
mjr 33:d832bcab089e 1989 //
mjr 33:d832bcab089e 1990 void allOutputsOff()
mjr 33:d832bcab089e 1991 {
mjr 33:d832bcab089e 1992 // reset all LedWiz outputs to OFF/48
mjr 35:e959ffba78fd 1993 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 33:d832bcab089e 1994 {
mjr 33:d832bcab089e 1995 outLevel[i] = 0;
mjr 33:d832bcab089e 1996 wizOn[i] = 0;
mjr 33:d832bcab089e 1997 wizVal[i] = 48;
mjr 33:d832bcab089e 1998 lwPin[i]->set(0);
mjr 33:d832bcab089e 1999 }
mjr 33:d832bcab089e 2000
mjr 33:d832bcab089e 2001 // reset all extended outputs (ports >32) to full off (brightness 0)
mjr 40:cc0d9814522b 2002 for (int i = numLwOutputs ; i < numOutputs ; ++i)
mjr 33:d832bcab089e 2003 {
mjr 33:d832bcab089e 2004 outLevel[i] = 0;
mjr 33:d832bcab089e 2005 lwPin[i]->set(0);
mjr 33:d832bcab089e 2006 }
mjr 33:d832bcab089e 2007
mjr 33:d832bcab089e 2008 // restore default LedWiz flash rate
mjr 33:d832bcab089e 2009 wizSpeed = 2;
mjr 34:6b981a2afab7 2010
mjr 34:6b981a2afab7 2011 // flush changes to hc595, if applicable
mjr 35:e959ffba78fd 2012 if (hc595 != 0)
mjr 35:e959ffba78fd 2013 hc595->update();
mjr 33:d832bcab089e 2014 }
mjr 33:d832bcab089e 2015
mjr 33:d832bcab089e 2016 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 2017 //
mjr 33:d832bcab089e 2018 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 2019 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 2020 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 2021 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 2022 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 2023 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 2024 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 2025 //
mjr 33:d832bcab089e 2026 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 2027 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 2028 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 2029 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 2030 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 2031 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 2032 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 2033 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 2034 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 2035 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 2036 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 2037 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 2038 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 2039 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 2040 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 2041 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 2042 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 2043 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 2044 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 2045 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 2046 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 2047 //
mjr 40:cc0d9814522b 2048 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 2049 // of tricky but likely scenarios:
mjr 33:d832bcab089e 2050 //
mjr 33:d832bcab089e 2051 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 2052 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 2053 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 2054 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 2055 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 2056 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 2057 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 2058 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 2059 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 2060 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 2061 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 2062 //
mjr 33:d832bcab089e 2063 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 2064 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 2065 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 2066 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 2067 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 2068 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 2069 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 2070 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 2071 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 2072 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 2073 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 2074 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 2075 // first check.
mjr 33:d832bcab089e 2076 //
mjr 33:d832bcab089e 2077 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 2078 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 2079 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 2080 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 2081 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 2082 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 2083 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 2084 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 2085 //
mjr 33:d832bcab089e 2086
mjr 33:d832bcab089e 2087 // Current PSU2 state:
mjr 33:d832bcab089e 2088 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 2089 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 2090 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 2091 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 2092 // 5 -> TV relay on
mjr 33:d832bcab089e 2093 int psu2_state = 1;
mjr 35:e959ffba78fd 2094
mjr 35:e959ffba78fd 2095 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 2096 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 2097 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 2098
mjr 35:e959ffba78fd 2099 // TV ON switch relay control
mjr 35:e959ffba78fd 2100 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 2101
mjr 35:e959ffba78fd 2102 // Timer interrupt
mjr 35:e959ffba78fd 2103 Ticker tv_ticker;
mjr 35:e959ffba78fd 2104 float tv_delay_time;
mjr 33:d832bcab089e 2105 void TVTimerInt()
mjr 33:d832bcab089e 2106 {
mjr 35:e959ffba78fd 2107 // time since last state change
mjr 35:e959ffba78fd 2108 static Timer tv_timer;
mjr 35:e959ffba78fd 2109
mjr 33:d832bcab089e 2110 // Check our internal state
mjr 33:d832bcab089e 2111 switch (psu2_state)
mjr 33:d832bcab089e 2112 {
mjr 33:d832bcab089e 2113 case 1:
mjr 33:d832bcab089e 2114 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 2115 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 2116 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 2117 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 2118 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 2119 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 2120 {
mjr 33:d832bcab089e 2121 // switch to OFF state
mjr 33:d832bcab089e 2122 psu2_state = 2;
mjr 33:d832bcab089e 2123
mjr 33:d832bcab089e 2124 // try setting the latch
mjr 35:e959ffba78fd 2125 psu2_status_set->write(1);
mjr 33:d832bcab089e 2126 }
mjr 33:d832bcab089e 2127 break;
mjr 33:d832bcab089e 2128
mjr 33:d832bcab089e 2129 case 2:
mjr 33:d832bcab089e 2130 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 2131 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 2132 psu2_status_set->write(0);
mjr 33:d832bcab089e 2133 psu2_state = 3;
mjr 33:d832bcab089e 2134 break;
mjr 33:d832bcab089e 2135
mjr 33:d832bcab089e 2136 case 3:
mjr 33:d832bcab089e 2137 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 2138 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 2139 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 2140 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 2141 if (psu2_status_sense->read())
mjr 33:d832bcab089e 2142 {
mjr 33:d832bcab089e 2143 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 2144 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 2145 tv_timer.reset();
mjr 33:d832bcab089e 2146 tv_timer.start();
mjr 33:d832bcab089e 2147 psu2_state = 4;
mjr 33:d832bcab089e 2148 }
mjr 33:d832bcab089e 2149 else
mjr 33:d832bcab089e 2150 {
mjr 33:d832bcab089e 2151 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 2152 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 2153 // was turned on since the last check.
mjr 35:e959ffba78fd 2154 psu2_status_set->write(1);
mjr 33:d832bcab089e 2155 psu2_state = 2;
mjr 33:d832bcab089e 2156 }
mjr 33:d832bcab089e 2157 break;
mjr 33:d832bcab089e 2158
mjr 33:d832bcab089e 2159 case 4:
mjr 33:d832bcab089e 2160 // TV timer countdown in progress. If we've reached the
mjr 33:d832bcab089e 2161 // delay time, pulse the relay.
mjr 35:e959ffba78fd 2162 if (tv_timer.read() >= tv_delay_time)
mjr 33:d832bcab089e 2163 {
mjr 33:d832bcab089e 2164 // turn on the relay for one timer interval
mjr 35:e959ffba78fd 2165 tv_relay->write(1);
mjr 33:d832bcab089e 2166 psu2_state = 5;
mjr 33:d832bcab089e 2167 }
mjr 33:d832bcab089e 2168 break;
mjr 33:d832bcab089e 2169
mjr 33:d832bcab089e 2170 case 5:
mjr 33:d832bcab089e 2171 // TV timer relay on. We pulse this for one interval, so
mjr 33:d832bcab089e 2172 // it's now time to turn it off and return to the default state.
mjr 35:e959ffba78fd 2173 tv_relay->write(0);
mjr 33:d832bcab089e 2174 psu2_state = 1;
mjr 33:d832bcab089e 2175 break;
mjr 33:d832bcab089e 2176 }
mjr 33:d832bcab089e 2177 }
mjr 33:d832bcab089e 2178
mjr 35:e959ffba78fd 2179 // Start the TV ON checker. If the status sense circuit is enabled in
mjr 35:e959ffba78fd 2180 // the configuration, we'll set up the pin connections and start the
mjr 35:e959ffba78fd 2181 // interrupt handler that periodically checks the status. Does nothing
mjr 35:e959ffba78fd 2182 // if any of the pins are configured as NC.
mjr 35:e959ffba78fd 2183 void startTVTimer(Config &cfg)
mjr 35:e959ffba78fd 2184 {
mjr 35:e959ffba78fd 2185 // only start the timer if the status sense circuit pins are configured
mjr 35:e959ffba78fd 2186 if (cfg.TVON.statusPin != NC && cfg.TVON.latchPin != NC && cfg.TVON.relayPin != NC)
mjr 35:e959ffba78fd 2187 {
mjr 35:e959ffba78fd 2188 psu2_status_sense = new DigitalIn(cfg.TVON.statusPin);
mjr 35:e959ffba78fd 2189 psu2_status_set = new DigitalOut(cfg.TVON.latchPin);
mjr 35:e959ffba78fd 2190 tv_relay = new DigitalOut(cfg.TVON.relayPin);
mjr 40:cc0d9814522b 2191 tv_delay_time = cfg.TVON.delayTime/100.0;
mjr 35:e959ffba78fd 2192
mjr 35:e959ffba78fd 2193 // Set up our time routine to run every 1/4 second.
mjr 35:e959ffba78fd 2194 tv_ticker.attach(&TVTimerInt, 0.25);
mjr 35:e959ffba78fd 2195 }
mjr 35:e959ffba78fd 2196 }
mjr 35:e959ffba78fd 2197
mjr 35:e959ffba78fd 2198 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2199 //
mjr 35:e959ffba78fd 2200 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 2201 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 2202 //
mjr 35:e959ffba78fd 2203 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 2204 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 2205 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 2206 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 2207 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 2208 // again each time the firmware is updated.
mjr 35:e959ffba78fd 2209 //
mjr 35:e959ffba78fd 2210 NVM nvm;
mjr 35:e959ffba78fd 2211
mjr 35:e959ffba78fd 2212 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 2213 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 2214
mjr 35:e959ffba78fd 2215 // flash memory controller interface
mjr 35:e959ffba78fd 2216 FreescaleIAP iap;
mjr 35:e959ffba78fd 2217
mjr 35:e959ffba78fd 2218 // figure the flash address as a pointer along with the number of sectors
mjr 35:e959ffba78fd 2219 // required to store the structure
mjr 35:e959ffba78fd 2220 NVM *configFlashAddr(int &addr, int &numSectors)
mjr 35:e959ffba78fd 2221 {
mjr 35:e959ffba78fd 2222 // figure how many flash sectors we span, rounding up to whole sectors
mjr 35:e959ffba78fd 2223 numSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 35:e959ffba78fd 2224
mjr 35:e959ffba78fd 2225 // figure the address - this is the highest flash address where the
mjr 35:e959ffba78fd 2226 // structure will fit with the start aligned on a sector boundary
mjr 35:e959ffba78fd 2227 addr = iap.flash_size() - (numSectors * SECTOR_SIZE);
mjr 35:e959ffba78fd 2228
mjr 35:e959ffba78fd 2229 // return the address as a pointer
mjr 35:e959ffba78fd 2230 return (NVM *)addr;
mjr 35:e959ffba78fd 2231 }
mjr 35:e959ffba78fd 2232
mjr 35:e959ffba78fd 2233 // figure the flash address as a pointer
mjr 35:e959ffba78fd 2234 NVM *configFlashAddr()
mjr 35:e959ffba78fd 2235 {
mjr 35:e959ffba78fd 2236 int addr, numSectors;
mjr 35:e959ffba78fd 2237 return configFlashAddr(addr, numSectors);
mjr 35:e959ffba78fd 2238 }
mjr 35:e959ffba78fd 2239
mjr 35:e959ffba78fd 2240 // Load the config from flash
mjr 35:e959ffba78fd 2241 void loadConfigFromFlash()
mjr 35:e959ffba78fd 2242 {
mjr 35:e959ffba78fd 2243 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 2244 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 2245 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 2246 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 2247 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 2248 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 2249 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 2250 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 2251 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 2252 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 2253 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 2254 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 2255 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 2256 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 2257 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 2258 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 2259
mjr 35:e959ffba78fd 2260 // Figure how many sectors we need for our structure
mjr 35:e959ffba78fd 2261 NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 2262
mjr 35:e959ffba78fd 2263 // if the flash is valid, load it; otherwise initialize to defaults
mjr 35:e959ffba78fd 2264 if (flash->valid())
mjr 35:e959ffba78fd 2265 {
mjr 35:e959ffba78fd 2266 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 2267 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 2268 }
mjr 35:e959ffba78fd 2269 else
mjr 35:e959ffba78fd 2270 {
mjr 35:e959ffba78fd 2271 // flash is invalid - load factory settings nito RAM structure
mjr 35:e959ffba78fd 2272 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 2273 }
mjr 35:e959ffba78fd 2274 }
mjr 35:e959ffba78fd 2275
mjr 35:e959ffba78fd 2276 void saveConfigToFlash()
mjr 33:d832bcab089e 2277 {
mjr 35:e959ffba78fd 2278 int addr, sectors;
mjr 35:e959ffba78fd 2279 configFlashAddr(addr, sectors);
mjr 35:e959ffba78fd 2280 nvm.save(iap, addr);
mjr 35:e959ffba78fd 2281 }
mjr 35:e959ffba78fd 2282
mjr 35:e959ffba78fd 2283 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2284 //
mjr 40:cc0d9814522b 2285 // Night mode setting updates
mjr 40:cc0d9814522b 2286 //
mjr 38:091e511ce8a0 2287
mjr 38:091e511ce8a0 2288 // Turn night mode on or off
mjr 38:091e511ce8a0 2289 static void setNightMode(bool on)
mjr 38:091e511ce8a0 2290 {
mjr 40:cc0d9814522b 2291 // set the new night mode flag in the noisy output class
mjr 40:cc0d9814522b 2292 LwNoisyOut::nightMode = on;
mjr 40:cc0d9814522b 2293
mjr 40:cc0d9814522b 2294 // update the special output pin that shows the night mode state
mjr 40:cc0d9814522b 2295 specialPin[SPECIAL_PIN_NIGHTMODE]->set(on ? 255 : 0);
mjr 40:cc0d9814522b 2296
mjr 40:cc0d9814522b 2297 // update all outputs for the mode change
mjr 40:cc0d9814522b 2298 updateAllOuts();
mjr 38:091e511ce8a0 2299 }
mjr 38:091e511ce8a0 2300
mjr 38:091e511ce8a0 2301 // Toggle night mode
mjr 38:091e511ce8a0 2302 static void toggleNightMode()
mjr 38:091e511ce8a0 2303 {
mjr 40:cc0d9814522b 2304 setNightMode(!LwNoisyOut::nightMode);
mjr 38:091e511ce8a0 2305 }
mjr 38:091e511ce8a0 2306
mjr 38:091e511ce8a0 2307
mjr 38:091e511ce8a0 2308 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 2309 //
mjr 35:e959ffba78fd 2310 // Plunger Sensor
mjr 35:e959ffba78fd 2311 //
mjr 35:e959ffba78fd 2312
mjr 35:e959ffba78fd 2313 // the plunger sensor interface object
mjr 35:e959ffba78fd 2314 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 2315
mjr 35:e959ffba78fd 2316 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 2317 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 2318 void createPlunger()
mjr 35:e959ffba78fd 2319 {
mjr 35:e959ffba78fd 2320 // create the new sensor object according to the type
mjr 35:e959ffba78fd 2321 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 2322 {
mjr 35:e959ffba78fd 2323 case PlungerType_TSL1410RS:
mjr 35:e959ffba78fd 2324 // pins are: SI, CLOCK, AO
mjr 35:e959ffba78fd 2325 plungerSensor = new PlungerSensorTSL1410R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], NC);
mjr 35:e959ffba78fd 2326 break;
mjr 35:e959ffba78fd 2327
mjr 35:e959ffba78fd 2328 case PlungerType_TSL1410RP:
mjr 35:e959ffba78fd 2329 // pins are: SI, CLOCK, AO1, AO2
mjr 35:e959ffba78fd 2330 plungerSensor = new PlungerSensorTSL1410R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], cfg.plunger.sensorPin[3]);
mjr 35:e959ffba78fd 2331 break;
mjr 35:e959ffba78fd 2332
mjr 35:e959ffba78fd 2333 case PlungerType_TSL1412RS:
mjr 35:e959ffba78fd 2334 // pins are: SI, CLOCK, AO1, AO2
mjr 35:e959ffba78fd 2335 plungerSensor = new PlungerSensorTSL1412R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], NC);
mjr 35:e959ffba78fd 2336 break;
mjr 35:e959ffba78fd 2337
mjr 35:e959ffba78fd 2338 case PlungerType_TSL1412RP:
mjr 35:e959ffba78fd 2339 // pins are: SI, CLOCK, AO1, AO2
mjr 35:e959ffba78fd 2340 plungerSensor = new PlungerSensorTSL1412R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], cfg.plunger.sensorPin[3]);
mjr 35:e959ffba78fd 2341 break;
mjr 35:e959ffba78fd 2342
mjr 35:e959ffba78fd 2343 case PlungerType_Pot:
mjr 35:e959ffba78fd 2344 // pins are: AO
mjr 35:e959ffba78fd 2345 plungerSensor = new PlungerSensorPot(cfg.plunger.sensorPin[0]);
mjr 35:e959ffba78fd 2346 break;
mjr 35:e959ffba78fd 2347
mjr 35:e959ffba78fd 2348 case PlungerType_None:
mjr 35:e959ffba78fd 2349 default:
mjr 35:e959ffba78fd 2350 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 2351 break;
mjr 35:e959ffba78fd 2352 }
mjr 33:d832bcab089e 2353 }
mjr 33:d832bcab089e 2354
mjr 48:058ace2aed1d 2355 // Plunger reader
mjr 48:058ace2aed1d 2356 class PlungerReader
mjr 48:058ace2aed1d 2357 {
mjr 48:058ace2aed1d 2358 public:
mjr 48:058ace2aed1d 2359 PlungerReader()
mjr 48:058ace2aed1d 2360 {
mjr 48:058ace2aed1d 2361 // not in a firing event yet
mjr 48:058ace2aed1d 2362 firing = 0;
mjr 48:058ace2aed1d 2363
mjr 48:058ace2aed1d 2364 // no history yet
mjr 48:058ace2aed1d 2365 histIdx = 0;
mjr 48:058ace2aed1d 2366
mjr 48:058ace2aed1d 2367 // not in calibration mode
mjr 50:40015764bbe6 2368 cal = false;
mjr 48:058ace2aed1d 2369 }
mjr 48:058ace2aed1d 2370
mjr 48:058ace2aed1d 2371 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 2372 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 2373 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 2374 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 2375 void read()
mjr 48:058ace2aed1d 2376 {
mjr 48:058ace2aed1d 2377 // Read a sample from the sensor
mjr 48:058ace2aed1d 2378 PlungerReading r;
mjr 48:058ace2aed1d 2379 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 2380 {
mjr 48:058ace2aed1d 2381 // if in calibration mode, apply it to the calibration
mjr 48:058ace2aed1d 2382 if (cal)
mjr 48:058ace2aed1d 2383 {
mjr 48:058ace2aed1d 2384 // if it's outside of the current calibration bounds,
mjr 48:058ace2aed1d 2385 // expand the bounds
mjr 48:058ace2aed1d 2386 if (r.pos < cfg.plunger.cal.min)
mjr 48:058ace2aed1d 2387 cfg.plunger.cal.min = r.pos;
mjr 48:058ace2aed1d 2388 if (r.pos < cfg.plunger.cal.zero)
mjr 48:058ace2aed1d 2389 cfg.plunger.cal.zero = r.pos;
mjr 48:058ace2aed1d 2390 if (r.pos > cfg.plunger.cal.max)
mjr 48:058ace2aed1d 2391 cfg.plunger.cal.max = r.pos;
mjr 48:058ace2aed1d 2392
mjr 48:058ace2aed1d 2393 // As long as we're in calibration mode, return the raw
mjr 48:058ace2aed1d 2394 // sensor position as the joystick value, adjusted to the
mjr 48:058ace2aed1d 2395 // JOYMAX scale.
mjr 48:058ace2aed1d 2396 z = int16_t((long(r.pos) * JOYMAX)/65535);
mjr 50:40015764bbe6 2397 return;
mjr 49:37bd97eb7688 2398 }
mjr 50:40015764bbe6 2399
mjr 50:40015764bbe6 2400 // Pull the last two readings from the history
mjr 50:40015764bbe6 2401 const PlungerReading &prv = nthHist(0);
mjr 50:40015764bbe6 2402 const PlungerReading &prv2 = nthHist(1);
mjr 48:058ace2aed1d 2403
mjr 48:058ace2aed1d 2404 // If the new reading is within 2ms of the previous reading,
mjr 48:058ace2aed1d 2405 // ignore it. We require a minimum time between samples to
mjr 48:058ace2aed1d 2406 // ensure that we have a usable amount of precision in the
mjr 48:058ace2aed1d 2407 // denominator (the time interval) for calculating the plunger
mjr 48:058ace2aed1d 2408 // velocity. (The CCD sensor can't take readings faster than
mjr 48:058ace2aed1d 2409 // this anyway, but other sensor types, such as potentiometers,
mjr 48:058ace2aed1d 2410 // can, so we have to throttle the rate artifically in case
mjr 48:058ace2aed1d 2411 // we're using a fast sensor like that.)
mjr 48:058ace2aed1d 2412 if (uint32_t(r.t - prv.t) < 2000UL)
mjr 48:058ace2aed1d 2413 return;
mjr 48:058ace2aed1d 2414
mjr 50:40015764bbe6 2415 // bounds-check the calibration data
mjr 50:40015764bbe6 2416 checkCalBounds(r.pos);
mjr 50:40015764bbe6 2417
mjr 50:40015764bbe6 2418 // calibrate and rescale the value
mjr 50:40015764bbe6 2419 r.pos = int(
mjr 50:40015764bbe6 2420 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 50:40015764bbe6 2421 / (cfg.plunger.cal.max - cfg.plunger.cal.zero));
mjr 50:40015764bbe6 2422
mjr 50:40015764bbe6 2423 // Calculate the velocity from the second-to-last reading
mjr 50:40015764bbe6 2424 // to here, in joystick distance units per microsecond.
mjr 50:40015764bbe6 2425 // Note that we use the second-to-last reading rather than
mjr 50:40015764bbe6 2426 // the very last reading to give ourselves a little longer
mjr 50:40015764bbe6 2427 // time base. The time base is so short between consecutive
mjr 50:40015764bbe6 2428 // readings that the error bars in the position would be too
mjr 50:40015764bbe6 2429 // large.
mjr 50:40015764bbe6 2430 //
mjr 50:40015764bbe6 2431 // For reference, the physical plunger velocity ranges up
mjr 50:40015764bbe6 2432 // to about 100,000 joystick distance units/sec. This is
mjr 50:40015764bbe6 2433 // based on empirical measurements. The typical time for
mjr 50:40015764bbe6 2434 // a real plunger to travel the full distance when released
mjr 50:40015764bbe6 2435 // from full retraction is about 85ms, so the average velocity
mjr 50:40015764bbe6 2436 // covering this distance is about 56,000 units/sec. The
mjr 50:40015764bbe6 2437 // peak is probably about twice that. In real-world units,
mjr 50:40015764bbe6 2438 // this translates to an average speed of about .75 m/s and
mjr 50:40015764bbe6 2439 // a peak of about 1.5 m/s.
mjr 50:40015764bbe6 2440 //
mjr 50:40015764bbe6 2441 // Note that we actually calculate the value here in units
mjr 50:40015764bbe6 2442 // per *microsecond* - the discussion above is in terms of
mjr 50:40015764bbe6 2443 // units/sec because that's more on a human scale. Our
mjr 50:40015764bbe6 2444 // choice of internal units here really isn't important,
mjr 50:40015764bbe6 2445 // since we only use the velocity for comparison purposes,
mjr 50:40015764bbe6 2446 // to detect acceleration trends. We therefore save ourselves
mjr 50:40015764bbe6 2447 // a little CPU time by using the natural units of our inputs.
mjr 50:40015764bbe6 2448 float v = float(r.pos - prv2.pos)/float(r.t - prv2.t);
mjr 50:40015764bbe6 2449
mjr 50:40015764bbe6 2450 // presume we'll report the latest instantaneous reading
mjr 50:40015764bbe6 2451 z = r.pos;
mjr 50:40015764bbe6 2452 vz = v;
mjr 48:058ace2aed1d 2453
mjr 50:40015764bbe6 2454 // Check firing events
mjr 50:40015764bbe6 2455 switch (firing)
mjr 50:40015764bbe6 2456 {
mjr 50:40015764bbe6 2457 case 0:
mjr 50:40015764bbe6 2458 // Default state - not in a firing event.
mjr 50:40015764bbe6 2459
mjr 50:40015764bbe6 2460 // If we have forward motion from a position that's retracted
mjr 50:40015764bbe6 2461 // beyond a threshold, enter phase 1. If we're not pulled back
mjr 50:40015764bbe6 2462 // far enough, don't bother with this, as a release wouldn't
mjr 50:40015764bbe6 2463 // be strong enough to require the synthetic firing treatment.
mjr 50:40015764bbe6 2464 if (v < 0 && r.pos > JOYMAX/6)
mjr 50:40015764bbe6 2465 {
mjr 50:40015764bbe6 2466 // enter phase 1
mjr 50:40015764bbe6 2467 firingMode(1);
mjr 50:40015764bbe6 2468
mjr 50:40015764bbe6 2469 // we don't have a freeze position yet, but note the start time
mjr 50:40015764bbe6 2470 f1.pos = 0;
mjr 50:40015764bbe6 2471 f1.t = r.t;
mjr 50:40015764bbe6 2472
mjr 50:40015764bbe6 2473 // Figure the barrel spring "bounce" position in case we complete
mjr 50:40015764bbe6 2474 // the firing event. This is the amount that the forward momentum
mjr 50:40015764bbe6 2475 // of the plunger will compress the barrel spring at the peak of
mjr 50:40015764bbe6 2476 // the forward travel during the release. Assume that this is
mjr 50:40015764bbe6 2477 // linearly proportional to the starting retraction distance.
mjr 50:40015764bbe6 2478 // The barrel spring is about 1/6 the length of the main spring,
mjr 50:40015764bbe6 2479 // so figure it compresses by 1/6 the distance. (This is overly
mjr 50:40015764bbe6 2480 // simplistic and inaccurate, but it seems to give perfectly good
mjr 50:40015764bbe6 2481 // visual results, and that's all it's for.)
mjr 50:40015764bbe6 2482 f2.pos = -r.pos/6;
mjr 50:40015764bbe6 2483 }
mjr 50:40015764bbe6 2484 break;
mjr 50:40015764bbe6 2485
mjr 50:40015764bbe6 2486 case 1:
mjr 50:40015764bbe6 2487 // Phase 1 - acceleration. If we cross the zero point, trigger
mjr 50:40015764bbe6 2488 // the firing event. Otherwise, continue monitoring as long as we
mjr 50:40015764bbe6 2489 // see acceleration in the forward direction.
mjr 50:40015764bbe6 2490 if (r.pos <= 0)
mjr 50:40015764bbe6 2491 {
mjr 50:40015764bbe6 2492 // switch to the synthetic firing mode
mjr 50:40015764bbe6 2493 firingMode(2);
mjr 50:40015764bbe6 2494 z = f2.pos;
mjr 50:40015764bbe6 2495
mjr 50:40015764bbe6 2496 // note the start time for the firing phase
mjr 50:40015764bbe6 2497 f2.t = r.t;
mjr 50:40015764bbe6 2498 }
mjr 50:40015764bbe6 2499 else if (v < vprv2)
mjr 50:40015764bbe6 2500 {
mjr 50:40015764bbe6 2501 // We're still accelerating, and we haven't crossed the zero
mjr 50:40015764bbe6 2502 // point yet - stay in phase 1. (Note that forward motion is
mjr 50:40015764bbe6 2503 // negative velocity, so accelerating means that the new
mjr 50:40015764bbe6 2504 // velocity is more negative than the previous one, which
mjr 50:40015764bbe6 2505 // is to say numerically less than - that's why the test
mjr 50:40015764bbe6 2506 // for acceleration is the seemingly backwards 'v < vprv'.)
mjr 50:40015764bbe6 2507
mjr 50:40015764bbe6 2508 // If we've been accelerating for at least 20ms, we're probably
mjr 50:40015764bbe6 2509 // really doing a release. Jump back to the recent local
mjr 50:40015764bbe6 2510 // maximum where the release *really* started. This is always
mjr 50:40015764bbe6 2511 // a bit before we started seeing sustained accleration, because
mjr 50:40015764bbe6 2512 // the plunger motion for the first few milliseconds is too slow
mjr 50:40015764bbe6 2513 // for our sensor precision to reliably detect acceleration.
mjr 50:40015764bbe6 2514 if (f1.pos != 0)
mjr 50:40015764bbe6 2515 {
mjr 50:40015764bbe6 2516 // we have a reset point - freeze there
mjr 50:40015764bbe6 2517 z = f1.pos;
mjr 50:40015764bbe6 2518 }
mjr 50:40015764bbe6 2519 else if (uint32_t(r.t - f1.t) >= 20000UL)
mjr 50:40015764bbe6 2520 {
mjr 50:40015764bbe6 2521 // it's been long enough - set a reset point.
mjr 50:40015764bbe6 2522 f1.pos = z = histLocalMax(r.t, 50000UL);
mjr 50:40015764bbe6 2523 }
mjr 50:40015764bbe6 2524 }
mjr 50:40015764bbe6 2525 else
mjr 50:40015764bbe6 2526 {
mjr 50:40015764bbe6 2527 // We're not accelerating. Cancel the firing event.
mjr 50:40015764bbe6 2528 firingMode(0);
mjr 50:40015764bbe6 2529 }
mjr 50:40015764bbe6 2530 break;
mjr 50:40015764bbe6 2531
mjr 50:40015764bbe6 2532 case 2:
mjr 50:40015764bbe6 2533 // Phase 2 - start of synthetic firing event. Report the fake
mjr 50:40015764bbe6 2534 // bounce for 25ms. VP polls the joystick about every 10ms, so
mjr 50:40015764bbe6 2535 // this should be enough time to guarantee that VP sees this
mjr 50:40015764bbe6 2536 // report at least once.
mjr 50:40015764bbe6 2537 if (uint32_t(r.t - f2.t) < 25000UL)
mjr 50:40015764bbe6 2538 {
mjr 50:40015764bbe6 2539 // report the bounce position
mjr 50:40015764bbe6 2540 z = f2.pos;
mjr 50:40015764bbe6 2541 }
mjr 50:40015764bbe6 2542 else
mjr 50:40015764bbe6 2543 {
mjr 50:40015764bbe6 2544 // it's been long enough - switch to phase 3, where we
mjr 50:40015764bbe6 2545 // report the park position until the real plunger comes
mjr 50:40015764bbe6 2546 // to rest
mjr 50:40015764bbe6 2547 firingMode(3);
mjr 50:40015764bbe6 2548 z = 0;
mjr 50:40015764bbe6 2549
mjr 50:40015764bbe6 2550 // set the start of the "stability window" to the rest position
mjr 50:40015764bbe6 2551 f3s.t = r.t;
mjr 50:40015764bbe6 2552 f3s.pos = 0;
mjr 50:40015764bbe6 2553
mjr 50:40015764bbe6 2554 // set the start of the "retraction window" to the actual position
mjr 50:40015764bbe6 2555 f3r = r;
mjr 50:40015764bbe6 2556 }
mjr 50:40015764bbe6 2557 break;
mjr 50:40015764bbe6 2558
mjr 50:40015764bbe6 2559 case 3:
mjr 50:40015764bbe6 2560 // Phase 3 - in synthetic firing event. Report the park position
mjr 50:40015764bbe6 2561 // until the plunger position stabilizes. Left to its own devices,
mjr 50:40015764bbe6 2562 // the plunger will usualy bounce off the barrel spring several
mjr 50:40015764bbe6 2563 // times before coming to rest, so we'll see oscillating motion
mjr 50:40015764bbe6 2564 // for a second or two. In the simplest case, we can aimply wait
mjr 50:40015764bbe6 2565 // for the plunger to stop moving for a short time. However, the
mjr 50:40015764bbe6 2566 // player might intervene by pulling the plunger back again, so
mjr 50:40015764bbe6 2567 // watch for that motion as well. If we're just bouncing freely,
mjr 50:40015764bbe6 2568 // we'll see the direction change frequently. If the player is
mjr 50:40015764bbe6 2569 // moving the plunger manually, the direction will be constant
mjr 50:40015764bbe6 2570 // for longer.
mjr 50:40015764bbe6 2571 if (v >= 0)
mjr 50:40015764bbe6 2572 {
mjr 50:40015764bbe6 2573 // We're moving back (or standing still). If this has been
mjr 50:40015764bbe6 2574 // going on for a while, the user must have taken control.
mjr 50:40015764bbe6 2575 if (uint32_t(r.t - f3r.t) > 65000UL)
mjr 50:40015764bbe6 2576 {
mjr 50:40015764bbe6 2577 // user has taken control - cancel firing mode
mjr 50:40015764bbe6 2578 firingMode(0);
mjr 50:40015764bbe6 2579 break;
mjr 50:40015764bbe6 2580 }
mjr 50:40015764bbe6 2581 }
mjr 50:40015764bbe6 2582 else
mjr 50:40015764bbe6 2583 {
mjr 50:40015764bbe6 2584 // forward motion - reset retraction window
mjr 50:40015764bbe6 2585 f3r.t = r.t;
mjr 50:40015764bbe6 2586 }
mjr 50:40015764bbe6 2587
mjr 50:40015764bbe6 2588 // check if we've come to rest, or close enough
mjr 50:40015764bbe6 2589 if (abs(r.pos - f3s.pos) < 200)
mjr 50:40015764bbe6 2590 {
mjr 50:40015764bbe6 2591 // It's within an eighth inch of the last starting point.
mjr 50:40015764bbe6 2592 // If it's been here for 30ms, consider it stable.
mjr 50:40015764bbe6 2593 if (uint32_t(r.t - f3s.t) > 30000UL)
mjr 50:40015764bbe6 2594 {
mjr 50:40015764bbe6 2595 // we're done with the firing event
mjr 50:40015764bbe6 2596 firingMode(0);
mjr 50:40015764bbe6 2597 }
mjr 50:40015764bbe6 2598 else
mjr 50:40015764bbe6 2599 {
mjr 50:40015764bbe6 2600 // it's close to the last position but hasn't been
mjr 50:40015764bbe6 2601 // here long enough; stay in firing mode and continue
mjr 50:40015764bbe6 2602 // to report the park position
mjr 50:40015764bbe6 2603 z = 0;
mjr 50:40015764bbe6 2604 }
mjr 50:40015764bbe6 2605 }
mjr 50:40015764bbe6 2606 else
mjr 50:40015764bbe6 2607 {
mjr 50:40015764bbe6 2608 // It's not close enough to the last starting point, so use
mjr 50:40015764bbe6 2609 // this as a new starting point, and stay in firing mode.
mjr 50:40015764bbe6 2610 f3s = r;
mjr 50:40015764bbe6 2611 z = 0;
mjr 50:40015764bbe6 2612 }
mjr 50:40015764bbe6 2613 break;
mjr 50:40015764bbe6 2614 }
mjr 50:40015764bbe6 2615
mjr 50:40015764bbe6 2616 // save the velocity reading for next time
mjr 50:40015764bbe6 2617 vprv2 = vprv;
mjr 50:40015764bbe6 2618 vprv = v;
mjr 50:40015764bbe6 2619
mjr 50:40015764bbe6 2620 // add the new reading to the history
mjr 50:40015764bbe6 2621 hist[histIdx++] = r;
mjr 50:40015764bbe6 2622 histIdx %= countof(hist);
mjr 48:058ace2aed1d 2623 }
mjr 48:058ace2aed1d 2624 }
mjr 48:058ace2aed1d 2625
mjr 48:058ace2aed1d 2626 // Get the current value to report through the joystick interface
mjr 50:40015764bbe6 2627 int16_t getPosition() const { return z; }
mjr 48:058ace2aed1d 2628
mjr 48:058ace2aed1d 2629 // Get the current velocity (joystick distance units per microsecond)
mjr 48:058ace2aed1d 2630 float getVelocity() const { return vz; }
mjr 48:058ace2aed1d 2631
mjr 48:058ace2aed1d 2632 // get the timestamp of the current joystick report (microseconds)
mjr 50:40015764bbe6 2633 uint32_t getTimestamp() const { return nthHist(0).t; }
mjr 48:058ace2aed1d 2634
mjr 48:058ace2aed1d 2635 // Set calibration mode on or off
mjr 48:058ace2aed1d 2636 void calMode(bool f)
mjr 48:058ace2aed1d 2637 {
mjr 48:058ace2aed1d 2638 // if entering calibration mode, reset the saved calibration data
mjr 48:058ace2aed1d 2639 if (f && !cal)
mjr 48:058ace2aed1d 2640 cfg.plunger.cal.begin();
mjr 48:058ace2aed1d 2641
mjr 48:058ace2aed1d 2642 // remember the new mode
mjr 48:058ace2aed1d 2643 cal = f;
mjr 48:058ace2aed1d 2644 }
mjr 48:058ace2aed1d 2645
mjr 48:058ace2aed1d 2646 // is a firing event in progress?
mjr 48:058ace2aed1d 2647 bool isFiring() { return firing > 3; }
mjr 48:058ace2aed1d 2648
mjr 48:058ace2aed1d 2649 private:
mjr 48:058ace2aed1d 2650 // set a firing mode
mjr 48:058ace2aed1d 2651 inline void firingMode(int m)
mjr 48:058ace2aed1d 2652 {
mjr 48:058ace2aed1d 2653 firing = m;
mjr 48:058ace2aed1d 2654
mjr 48:058ace2aed1d 2655 // $$$
mjr 48:058ace2aed1d 2656 lwPin[3]->set(0);
mjr 48:058ace2aed1d 2657 lwPin[4]->set(0);
mjr 48:058ace2aed1d 2658 lwPin[5]->set(0);
mjr 48:058ace2aed1d 2659 switch (m)
mjr 48:058ace2aed1d 2660 {
mjr 48:058ace2aed1d 2661 case 1: lwPin[3]->set(255); break; // red
mjr 48:058ace2aed1d 2662 case 2: lwPin[4]->set(255); break; // green
mjr 48:058ace2aed1d 2663 case 3: lwPin[5]->set(255); break; // blue
mjr 48:058ace2aed1d 2664 case 4: lwPin[3]->set(255); lwPin[5]->set(255); break; // purple
mjr 48:058ace2aed1d 2665 }
mjr 48:058ace2aed1d 2666 //$$$
mjr 48:058ace2aed1d 2667 }
mjr 48:058ace2aed1d 2668
mjr 48:058ace2aed1d 2669 // Find the most recent local maximum in the history data, up to
mjr 48:058ace2aed1d 2670 // the given time limit.
mjr 48:058ace2aed1d 2671 int histLocalMax(uint32_t tcur, uint32_t dt)
mjr 48:058ace2aed1d 2672 {
mjr 48:058ace2aed1d 2673 // start with the prior entry
mjr 48:058ace2aed1d 2674 int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1;
mjr 48:058ace2aed1d 2675 int hi = hist[idx].pos;
mjr 48:058ace2aed1d 2676
mjr 48:058ace2aed1d 2677 // scan backwards for a local maximum
mjr 48:058ace2aed1d 2678 for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1)
mjr 48:058ace2aed1d 2679 {
mjr 48:058ace2aed1d 2680 // if this isn't within the time window, stop
mjr 48:058ace2aed1d 2681 if (uint32_t(tcur - hist[idx].t) > dt)
mjr 48:058ace2aed1d 2682 break;
mjr 48:058ace2aed1d 2683
mjr 48:058ace2aed1d 2684 // if this isn't above the current hith, stop
mjr 48:058ace2aed1d 2685 if (hist[idx].pos < hi)
mjr 48:058ace2aed1d 2686 break;
mjr 48:058ace2aed1d 2687
mjr 48:058ace2aed1d 2688 // this is the new high
mjr 48:058ace2aed1d 2689 hi = hist[idx].pos;
mjr 48:058ace2aed1d 2690 }
mjr 48:058ace2aed1d 2691
mjr 48:058ace2aed1d 2692 // return the local maximum
mjr 48:058ace2aed1d 2693 return hi;
mjr 48:058ace2aed1d 2694 }
mjr 48:058ace2aed1d 2695
mjr 48:058ace2aed1d 2696 // Adjust the calibration bounds for a new reading. This is used
mjr 48:058ace2aed1d 2697 // while NOT in calibration mode to ensure that a reading doesn't
mjr 48:058ace2aed1d 2698 // violate the calibration limits. If it does, we'll readjust the
mjr 48:058ace2aed1d 2699 // limits to incorporate the new value.
mjr 48:058ace2aed1d 2700 void checkCalBounds(int pos)
mjr 48:058ace2aed1d 2701 {
mjr 48:058ace2aed1d 2702 // If the value is beyond the calibration maximum, increase the
mjr 48:058ace2aed1d 2703 // calibration point. This ensures that our joystick reading
mjr 48:058ace2aed1d 2704 // is always within the valid joystick field range.
mjr 48:058ace2aed1d 2705 if (pos > cfg.plunger.cal.max)
mjr 48:058ace2aed1d 2706 cfg.plunger.cal.max = pos;
mjr 48:058ace2aed1d 2707
mjr 48:058ace2aed1d 2708 // make sure we don't overflow in the opposite direction
mjr 48:058ace2aed1d 2709 if (pos < cfg.plunger.cal.zero
mjr 48:058ace2aed1d 2710 && cfg.plunger.cal.zero - pos > cfg.plunger.cal.max)
mjr 48:058ace2aed1d 2711 {
mjr 48:058ace2aed1d 2712 // we need to raise 'max' by this much to keep things in range
mjr 48:058ace2aed1d 2713 int adj = cfg.plunger.cal.zero - pos - cfg.plunger.cal.max;
mjr 48:058ace2aed1d 2714
mjr 48:058ace2aed1d 2715 // we can raise 'max' at most this much before overflowing
mjr 48:058ace2aed1d 2716 int lim = 0xffff - cfg.plunger.cal.max;
mjr 48:058ace2aed1d 2717
mjr 48:058ace2aed1d 2718 // if we have headroom to raise 'max' by 'adj', do so, otherwise
mjr 48:058ace2aed1d 2719 // raise it as much as we can and apply the excess to lowering the
mjr 48:058ace2aed1d 2720 // zero point
mjr 48:058ace2aed1d 2721 if (adj > lim)
mjr 48:058ace2aed1d 2722 {
mjr 48:058ace2aed1d 2723 cfg.plunger.cal.zero -= adj - lim;
mjr 48:058ace2aed1d 2724 adj = lim;
mjr 48:058ace2aed1d 2725 }
mjr 48:058ace2aed1d 2726 cfg.plunger.cal.max += adj;
mjr 48:058ace2aed1d 2727 }
mjr 48:058ace2aed1d 2728
mjr 48:058ace2aed1d 2729 // If the calibration max isn't higher than the calibration
mjr 48:058ace2aed1d 2730 // zero, we have a negative or zero scale range, which isn't
mjr 48:058ace2aed1d 2731 // physically meaningful. Fix it by forcing the max above
mjr 48:058ace2aed1d 2732 // the zero point (or the zero point below the max, if they're
mjr 48:058ace2aed1d 2733 // both pegged at the datatype maximum).
mjr 48:058ace2aed1d 2734 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 48:058ace2aed1d 2735 {
mjr 48:058ace2aed1d 2736 if (cfg.plunger.cal.zero != 0xFFFF)
mjr 48:058ace2aed1d 2737 cfg.plunger.cal.max = cfg.plunger.cal.zero + 1;
mjr 48:058ace2aed1d 2738 else
mjr 48:058ace2aed1d 2739 cfg.plunger.cal.zero -= 1;
mjr 48:058ace2aed1d 2740 }
mjr 48:058ace2aed1d 2741 }
mjr 48:058ace2aed1d 2742
mjr 50:40015764bbe6 2743 // velocity at previous reading, and the one before that
mjr 50:40015764bbe6 2744 float vprv, vprv2;
mjr 48:058ace2aed1d 2745
mjr 48:058ace2aed1d 2746 // Circular buffer of recent readings. We keep a short history
mjr 48:058ace2aed1d 2747 // of readings to analyze during firing events. We can only identify
mjr 48:058ace2aed1d 2748 // a firing event once it's somewhat under way, so we need a little
mjr 48:058ace2aed1d 2749 // retrospective information to accurately determine after the fact
mjr 48:058ace2aed1d 2750 // exactly when it started. We throttle our readings to no more
mjr 48:058ace2aed1d 2751 // than one every 2ms, so we have at least N*2ms of history in this
mjr 48:058ace2aed1d 2752 // array.
mjr 50:40015764bbe6 2753 PlungerReading hist[25];
mjr 48:058ace2aed1d 2754 int histIdx;
mjr 49:37bd97eb7688 2755
mjr 50:40015764bbe6 2756 // get the nth history item (0=last, 1=2nd to last, etc)
mjr 50:40015764bbe6 2757 const PlungerReading &nthHist(int n) const
mjr 50:40015764bbe6 2758 {
mjr 50:40015764bbe6 2759 // histIdx-1 is the last written; go from there
mjr 50:40015764bbe6 2760 n = histIdx - 1 - n;
mjr 50:40015764bbe6 2761
mjr 50:40015764bbe6 2762 // adjust for wrapping
mjr 50:40015764bbe6 2763 if (n < 0)
mjr 50:40015764bbe6 2764 n += countof(hist);
mjr 50:40015764bbe6 2765
mjr 50:40015764bbe6 2766 // return the item
mjr 50:40015764bbe6 2767 return hist[n];
mjr 50:40015764bbe6 2768 }
mjr 48:058ace2aed1d 2769
mjr 48:058ace2aed1d 2770 // Firing event state.
mjr 48:058ace2aed1d 2771 //
mjr 48:058ace2aed1d 2772 // A "firing event" happens when we detect that the physical plunger
mjr 48:058ace2aed1d 2773 // is moving forward fast enough that it was probably released. When
mjr 48:058ace2aed1d 2774 // we detect a firing event, we momentarily disconnect the joystick
mjr 48:058ace2aed1d 2775 // readings from the physical sensor, and instead feed in a series of
mjr