An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Fri Apr 14 17:56:54 2017 +0000
Revision:
85:3c28aee81cde
Parent:
82:4f6209cb5c33
Child:
87:8d35c74403af
Save config updates before slight rearrangement;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 82:4f6209cb5c33 1 // VL6180X Time of Flight sensor interface
mjr 82:4f6209cb5c33 2
mjr 82:4f6209cb5c33 3 #include "mbed.h"
mjr 82:4f6209cb5c33 4 #include "VL6180X.h"
mjr 82:4f6209cb5c33 5
mjr 82:4f6209cb5c33 6 VL6180X::VL6180X(PinName sda, PinName scl, uint8_t addr, PinName gpio0)
mjr 82:4f6209cb5c33 7 : i2c(sda, scl), gpio0Pin(gpio0)
mjr 82:4f6209cb5c33 8 {
mjr 82:4f6209cb5c33 9 // remember the address
mjr 82:4f6209cb5c33 10 this->addr = addr;
mjr 82:4f6209cb5c33 11
mjr 82:4f6209cb5c33 12 // start in single-shot distance mode
mjr 82:4f6209cb5c33 13 distMode = 0;
mjr 82:4f6209cb5c33 14
mjr 82:4f6209cb5c33 15 // initially reset the sensor
mjr 85:3c28aee81cde 16 gpio0Pin.output();
mjr 82:4f6209cb5c33 17 gpio0Pin.write(0);
mjr 82:4f6209cb5c33 18 }
mjr 82:4f6209cb5c33 19
mjr 82:4f6209cb5c33 20 VL6180X::~VL6180X()
mjr 82:4f6209cb5c33 21 {
mjr 82:4f6209cb5c33 22 }
mjr 82:4f6209cb5c33 23
mjr 82:4f6209cb5c33 24 bool VL6180X::init()
mjr 82:4f6209cb5c33 25 {
mjr 82:4f6209cb5c33 26 // hold reset low for 10ms
mjr 85:3c28aee81cde 27 gpio0Pin.output();
mjr 82:4f6209cb5c33 28 gpio0Pin.write(0);
mjr 82:4f6209cb5c33 29 wait_us(10000);
mjr 82:4f6209cb5c33 30
mjr 82:4f6209cb5c33 31 // release reset to allow the sensor to reboot
mjr 85:3c28aee81cde 32 gpio0Pin.input();
mjr 82:4f6209cb5c33 33 wait_us(10000);
mjr 82:4f6209cb5c33 34
mjr 82:4f6209cb5c33 35 // reset the I2C bus
mjr 82:4f6209cb5c33 36 i2c.reset();
mjr 82:4f6209cb5c33 37
mjr 82:4f6209cb5c33 38 // check that the sensor's reset register reads as '1'
mjr 82:4f6209cb5c33 39 Timer t;
mjr 82:4f6209cb5c33 40 t.start();
mjr 82:4f6209cb5c33 41 while (readReg8(VL6180X_SYSTEM_FRESH_OUT_OF_RESET) != 1)
mjr 82:4f6209cb5c33 42 {
mjr 82:4f6209cb5c33 43 if (t.read_us() > 10000000)
mjr 82:4f6209cb5c33 44 return false;
mjr 82:4f6209cb5c33 45 }
mjr 82:4f6209cb5c33 46
mjr 82:4f6209cb5c33 47 // clear reset flag
mjr 82:4f6209cb5c33 48 writeReg8(VL6180X_SYSTEM_FRESH_OUT_OF_RESET, 0);
mjr 82:4f6209cb5c33 49
mjr 82:4f6209cb5c33 50 // give the device 50ms before sending the startup sequence
mjr 82:4f6209cb5c33 51 wait_ms(50);
mjr 82:4f6209cb5c33 52
mjr 82:4f6209cb5c33 53 // Send the mandatory initial register assignments, per the manufacturer's app notes:
mjr 82:4f6209cb5c33 54 // http://www.st.com/st-web-ui/static/active/en/resource/technical/document/application_note/DM00122600.pdf
mjr 82:4f6209cb5c33 55 writeReg8(0x0207, 0x01);
mjr 82:4f6209cb5c33 56 writeReg8(0x0208, 0x01);
mjr 82:4f6209cb5c33 57 writeReg8(0x0096, 0x00);
mjr 82:4f6209cb5c33 58 writeReg8(0x0097, 0xfd);
mjr 82:4f6209cb5c33 59 writeReg8(0x00e3, 0x00);
mjr 82:4f6209cb5c33 60 writeReg8(0x00e4, 0x04);
mjr 82:4f6209cb5c33 61 writeReg8(0x00e5, 0x02);
mjr 82:4f6209cb5c33 62 writeReg8(0x00e6, 0x01);
mjr 82:4f6209cb5c33 63 writeReg8(0x00e7, 0x03);
mjr 82:4f6209cb5c33 64 writeReg8(0x00f5, 0x02);
mjr 82:4f6209cb5c33 65 writeReg8(0x00d9, 0x05);
mjr 82:4f6209cb5c33 66 writeReg8(0x00db, 0xce);
mjr 82:4f6209cb5c33 67 writeReg8(0x00dc, 0x03);
mjr 82:4f6209cb5c33 68 writeReg8(0x00dd, 0xf8);
mjr 82:4f6209cb5c33 69 writeReg8(0x009f, 0x00);
mjr 82:4f6209cb5c33 70 writeReg8(0x00a3, 0x3c);
mjr 82:4f6209cb5c33 71 writeReg8(0x00b7, 0x00);
mjr 82:4f6209cb5c33 72 writeReg8(0x00bb, 0x3c);
mjr 82:4f6209cb5c33 73 writeReg8(0x00b2, 0x09);
mjr 82:4f6209cb5c33 74 writeReg8(0x00ca, 0x09);
mjr 82:4f6209cb5c33 75 writeReg8(0x0198, 0x01);
mjr 82:4f6209cb5c33 76 writeReg8(0x01b0, 0x17);
mjr 82:4f6209cb5c33 77 writeReg8(0x01ad, 0x00);
mjr 82:4f6209cb5c33 78 writeReg8(0x00ff, 0x05);
mjr 82:4f6209cb5c33 79 writeReg8(0x0100, 0x05);
mjr 82:4f6209cb5c33 80 writeReg8(0x0199, 0x05);
mjr 82:4f6209cb5c33 81 writeReg8(0x01a6, 0x1b);
mjr 82:4f6209cb5c33 82 writeReg8(0x01ac, 0x3e);
mjr 82:4f6209cb5c33 83 writeReg8(0x01a7, 0x1f);
mjr 82:4f6209cb5c33 84 writeReg8(0x0030, 0x00);
mjr 82:4f6209cb5c33 85
mjr 82:4f6209cb5c33 86 // allow time to settle
mjr 82:4f6209cb5c33 87 wait_us(1000);
mjr 82:4f6209cb5c33 88
mjr 82:4f6209cb5c33 89 // success
mjr 82:4f6209cb5c33 90 return true;
mjr 82:4f6209cb5c33 91 }
mjr 82:4f6209cb5c33 92
mjr 82:4f6209cb5c33 93 void VL6180X::setDefaults()
mjr 82:4f6209cb5c33 94 {
mjr 82:4f6209cb5c33 95 writeReg8(VL6180X_SYSTEM_GROUPED_PARAMETER_HOLD, 0x01); // set parameter hold while updating settings
mjr 82:4f6209cb5c33 96
mjr 82:4f6209cb5c33 97 writeReg8(VL6180X_SYSTEM_INTERRUPT_CONFIG_GPIO, (4<<3) | 4); // Enable interrupts from range and ambient integrator
mjr 82:4f6209cb5c33 98 writeReg8(VL6180X_SYSTEM_MODE_GPIO1, 0x10); // Set GPIO1 low when sample complete
mjr 82:4f6209cb5c33 99 writeReg8(VL6180X_SYSRANGE_VHV_REPEAT_RATE, 0xFF); // Set auto calibration period (Max = 255)/(OFF = 0)
mjr 82:4f6209cb5c33 100 writeReg8(VL6180X_SYSRANGE_INTERMEASUREMENT_PERIOD, 0x09); // Set default ranging inter-measurement period to 100ms
mjr 82:4f6209cb5c33 101 writeReg8(VL6180X_SYSRANGE_MAX_CONVERGENCE_TIME, 0x32); // Max range convergence time 48ms
mjr 82:4f6209cb5c33 102 writeReg8(VL6180X_SYSRANGE_RANGE_CHECK_ENABLES, 0x11); // S/N enable, ignore disable, early convergence test enable
mjr 82:4f6209cb5c33 103 writeReg16(VL6180X_SYSRANGE_EARLY_CONVERGENCE_ESTIMATE, 0x7B); // abort range measurement if convergence rate below this value
mjr 82:4f6209cb5c33 104
mjr 82:4f6209cb5c33 105 writeReg8(VL6180X_SYSALS_INTERMEASUREMENT_PERIOD, 0x0A); // Set default ALS inter-measurement period to 100ms
mjr 82:4f6209cb5c33 106 writeReg8(VL6180X_SYSALS_ANALOGUE_GAIN, 0x46); // Set the ALS gain
mjr 82:4f6209cb5c33 107 writeReg16(VL6180X_SYSALS_INTEGRATION_PERIOD, 0x63); // ALS integration time 100ms
mjr 82:4f6209cb5c33 108
mjr 82:4f6209cb5c33 109 writeReg8(VL6180X_READOUT_AVERAGING_SAMPLE_PERIOD, 0x30); // Sample averaging period (1.3ms + N*64.5us)
mjr 82:4f6209cb5c33 110 writeReg8(VL6180X_FIRMWARE_RESULT_SCALER, 0x01);
mjr 82:4f6209cb5c33 111
mjr 82:4f6209cb5c33 112 writeReg8(VL6180X_SYSTEM_GROUPED_PARAMETER_HOLD, 0x00); // end parameter hold
mjr 82:4f6209cb5c33 113
mjr 82:4f6209cb5c33 114 // perform a single calibration; wait until it's done (within reason)
mjr 82:4f6209cb5c33 115 Timer t;
mjr 82:4f6209cb5c33 116 t.start();
mjr 82:4f6209cb5c33 117 writeReg8(VL6180X_SYSRANGE_VHV_RECALIBRATE, 0x01);
mjr 82:4f6209cb5c33 118 while (readReg8(VL6180X_SYSRANGE_VHV_RECALIBRATE) != 0)
mjr 82:4f6209cb5c33 119 {
mjr 82:4f6209cb5c33 120 // if we've been waiting too long, abort
mjr 82:4f6209cb5c33 121 if (t.read_us() > 1000000)
mjr 82:4f6209cb5c33 122 break;
mjr 82:4f6209cb5c33 123 }
mjr 82:4f6209cb5c33 124 }
mjr 82:4f6209cb5c33 125
mjr 82:4f6209cb5c33 126 void VL6180X::getID(struct VL6180X_ID &id)
mjr 82:4f6209cb5c33 127 {
mjr 82:4f6209cb5c33 128 id.model = readReg8(VL6180X_IDENTIFICATION_MODEL_ID);
mjr 82:4f6209cb5c33 129 id.modelRevMajor = readReg8(VL6180X_IDENTIFICATION_MODEL_REV_MAJOR) & 0x07;
mjr 82:4f6209cb5c33 130 id.modelRevMinor = readReg8(VL6180X_IDENTIFICATION_MODEL_REV_MINOR) & 0x07;
mjr 82:4f6209cb5c33 131 id.moduleRevMajor = readReg8(VL6180X_IDENTIFICATION_MODULE_REV_MAJOR) & 0x07;
mjr 82:4f6209cb5c33 132 id.moduleRevMinor = readReg8(VL6180X_IDENTIFICATION_MODULE_REV_MINOR) & 0x07;
mjr 82:4f6209cb5c33 133
mjr 82:4f6209cb5c33 134 uint16_t date = readReg16(VL6180X_IDENTIFICATION_DATE);
mjr 82:4f6209cb5c33 135 uint16_t time = readReg16(VL6180X_IDENTIFICATION_TIME) * 2;
mjr 82:4f6209cb5c33 136 id.manufDate.year = 2010 + ((date >> 12) & 0x0f);
mjr 82:4f6209cb5c33 137 id.manufDate.month = (date >> 8) & 0x0f;
mjr 82:4f6209cb5c33 138 id.manufDate.day = (date >> 3) & 0x1f;
mjr 82:4f6209cb5c33 139 id.manufDate.phase = uint8_t(date & 0x07);
mjr 82:4f6209cb5c33 140 id.manufDate.hh = time/3600;
mjr 82:4f6209cb5c33 141 id.manufDate.mm = (time % 3600) / 60;
mjr 82:4f6209cb5c33 142 id.manufDate.ss = time % 60;
mjr 82:4f6209cb5c33 143 }
mjr 82:4f6209cb5c33 144
mjr 82:4f6209cb5c33 145
mjr 82:4f6209cb5c33 146 uint8_t VL6180X::changeAddress(uint8_t newAddress)
mjr 82:4f6209cb5c33 147 {
mjr 82:4f6209cb5c33 148 // do nothing if the address is the same or it's out of range
mjr 82:4f6209cb5c33 149 if (newAddress == addr || newAddress > 127)
mjr 82:4f6209cb5c33 150 return addr;
mjr 82:4f6209cb5c33 151
mjr 82:4f6209cb5c33 152 // set the new address
mjr 82:4f6209cb5c33 153 writeReg8(VL6180X_I2C_SLAVE_DEVICE_ADDRESS, newAddress);
mjr 82:4f6209cb5c33 154
mjr 82:4f6209cb5c33 155 // read it back and store it
mjr 82:4f6209cb5c33 156 addr = readReg8(VL6180X_I2C_SLAVE_DEVICE_ADDRESS);
mjr 82:4f6209cb5c33 157
mjr 82:4f6209cb5c33 158 // return the new address
mjr 82:4f6209cb5c33 159 return addr;
mjr 82:4f6209cb5c33 160 }
mjr 82:4f6209cb5c33 161
mjr 82:4f6209cb5c33 162
mjr 82:4f6209cb5c33 163 void VL6180X::continuousDistanceMode(bool on)
mjr 82:4f6209cb5c33 164 {
mjr 82:4f6209cb5c33 165 if (distMode != on)
mjr 82:4f6209cb5c33 166 {
mjr 82:4f6209cb5c33 167 // remember the new mode
mjr 82:4f6209cb5c33 168 distMode = on;
mjr 82:4f6209cb5c33 169
mjr 82:4f6209cb5c33 170 // Set continuous or single-shot mode. If starting continuous
mjr 82:4f6209cb5c33 171 // mode, set bits 0x01 (range mode = continuous) + 0x02 (start
mjr 82:4f6209cb5c33 172 // collecting samples now). If ending the mode, set all bits
mjr 82:4f6209cb5c33 173 // to zero to select single-shot mode without starting a reading.
mjr 82:4f6209cb5c33 174 if (on)
mjr 82:4f6209cb5c33 175 {
mjr 82:4f6209cb5c33 176 writeReg8(VL6180X_SYSTEM_INTERRUPT_CONFIG_GPIO, 4); // Enable interrupts for ranging only
mjr 82:4f6209cb5c33 177 writeReg8(VL6180X_SYSALS_INTERMEASUREMENT_PERIOD, 0); // minimum measurement interval (10ms)
mjr 82:4f6209cb5c33 178 writeReg8(VL6180X_SYSRANGE_START, 0x03);
mjr 82:4f6209cb5c33 179 }
mjr 82:4f6209cb5c33 180 else
mjr 82:4f6209cb5c33 181 writeReg8(VL6180X_SYSRANGE_START, 0x00);
mjr 82:4f6209cb5c33 182 }
mjr 82:4f6209cb5c33 183 }
mjr 82:4f6209cb5c33 184
mjr 82:4f6209cb5c33 185 bool VL6180X::rangeReady()
mjr 82:4f6209cb5c33 186 {
mjr 82:4f6209cb5c33 187 return (readReg8(VL6180X_RESULT_INTERRUPT_STATUS_GPIO) & 0x07) == 4;
mjr 82:4f6209cb5c33 188 }
mjr 82:4f6209cb5c33 189
mjr 82:4f6209cb5c33 190 void VL6180X::startRangeReading()
mjr 82:4f6209cb5c33 191 {
mjr 82:4f6209cb5c33 192 writeReg8(VL6180X_SYSRANGE_START, 0x01);
mjr 82:4f6209cb5c33 193 }
mjr 82:4f6209cb5c33 194
mjr 82:4f6209cb5c33 195 int VL6180X::getRange(uint8_t &distance, uint32_t timeout_us)
mjr 82:4f6209cb5c33 196 {
mjr 82:4f6209cb5c33 197 if (!rangeReady())
mjr 82:4f6209cb5c33 198 writeReg8(VL6180X_SYSRANGE_START, 0x01);
mjr 82:4f6209cb5c33 199
mjr 82:4f6209cb5c33 200 // wait for the sample
mjr 82:4f6209cb5c33 201 Timer t;
mjr 82:4f6209cb5c33 202 t.start();
mjr 82:4f6209cb5c33 203 for (;;)
mjr 82:4f6209cb5c33 204 {
mjr 82:4f6209cb5c33 205 // if the GPIO pin is high, the sample is ready
mjr 82:4f6209cb5c33 206 if (rangeReady())
mjr 82:4f6209cb5c33 207 break;
mjr 82:4f6209cb5c33 208
mjr 82:4f6209cb5c33 209 // if we've exceeded the timeout, return failure
mjr 82:4f6209cb5c33 210 if (t.read_us() > timeout_us)
mjr 82:4f6209cb5c33 211 return -1;
mjr 82:4f6209cb5c33 212 }
mjr 82:4f6209cb5c33 213
mjr 82:4f6209cb5c33 214 // check for errors
mjr 82:4f6209cb5c33 215 uint8_t err = (readReg8(VL6180X_RESULT_RANGE_STATUS) >> 4) & 0x0F;
mjr 82:4f6209cb5c33 216
mjr 82:4f6209cb5c33 217 // read the distance
mjr 82:4f6209cb5c33 218 distance = readReg8(VL6180X_RESULT_RANGE_VAL);
mjr 82:4f6209cb5c33 219
mjr 82:4f6209cb5c33 220 // clear the data-ready interrupt
mjr 82:4f6209cb5c33 221 writeReg8(VL6180X_SYSTEM_INTERRUPT_CLEAR, 0x07);
mjr 82:4f6209cb5c33 222
mjr 82:4f6209cb5c33 223 // return the error code
mjr 82:4f6209cb5c33 224 return err;
mjr 82:4f6209cb5c33 225 }
mjr 82:4f6209cb5c33 226
mjr 82:4f6209cb5c33 227 void VL6180X::getRangeStats(VL6180X_RangeStats &stats)
mjr 82:4f6209cb5c33 228 {
mjr 82:4f6209cb5c33 229 stats.returnRate = readReg16(VL6180X_RESULT_RANGE_RETURN_RATE);
mjr 82:4f6209cb5c33 230 stats.refReturnRate = readReg16(VL6180X_RESULT_RANGE_REFERENCE_RATE);
mjr 82:4f6209cb5c33 231 stats.returnCnt = readReg32(VL6180X_RESULT_RANGE_RETURN_SIGNAL_COUNT);
mjr 82:4f6209cb5c33 232 stats.refReturnCnt = readReg32(VL6180X_RESULT_RANGE_REFERENCE_SIGNAL_COUNT);
mjr 82:4f6209cb5c33 233 stats.ambCnt = readReg32(VL6180X_RESULT_RANGE_RETURN_AMB_COUNT);
mjr 82:4f6209cb5c33 234 stats.refAmbCnt = readReg32(VL6180X_RESULT_RANGE_REFERENCE_AMB_COUNT);
mjr 82:4f6209cb5c33 235 stats.convTime = readReg32(VL6180X_RESULT_RANGE_RETURN_CONV_TIME);
mjr 82:4f6209cb5c33 236 stats.refConvTime = readReg32(VL6180X_RESULT_RANGE_REFERENCE_CONV_TIME);
mjr 82:4f6209cb5c33 237 }
mjr 82:4f6209cb5c33 238
mjr 82:4f6209cb5c33 239 float VL6180X::getAmbientLight(VL6180X_ALS_Gain gain)
mjr 82:4f6209cb5c33 240 {
mjr 82:4f6209cb5c33 241 // set the desired gain
mjr 82:4f6209cb5c33 242 writeReg8(VL6180X_SYSALS_ANALOGUE_GAIN, (0x40 | gain));
mjr 82:4f6209cb5c33 243
mjr 82:4f6209cb5c33 244 // start the integration
mjr 82:4f6209cb5c33 245 writeReg8(VL6180X_SYSALS_START, 0x01);
mjr 82:4f6209cb5c33 246
mjr 82:4f6209cb5c33 247 // give it time to integrate
mjr 82:4f6209cb5c33 248 wait_ms(100);
mjr 82:4f6209cb5c33 249
mjr 82:4f6209cb5c33 250 // clear the data-ready interrupt
mjr 82:4f6209cb5c33 251 writeReg8(VL6180X_SYSTEM_INTERRUPT_CLEAR, 0x07);
mjr 82:4f6209cb5c33 252
mjr 82:4f6209cb5c33 253 // retrieve the raw sensor reading om the sensoe
mjr 82:4f6209cb5c33 254 unsigned int alsRaw = readReg16(VL6180X_RESULT_ALS_VAL);
mjr 82:4f6209cb5c33 255
mjr 82:4f6209cb5c33 256 // get the integration period
mjr 82:4f6209cb5c33 257 unsigned int tIntRaw = readReg16(VL6180X_SYSALS_INTEGRATION_PERIOD);
mjr 82:4f6209cb5c33 258 float alsIntegrationPeriod = 100.0 / tIntRaw ;
mjr 82:4f6209cb5c33 259
mjr 82:4f6209cb5c33 260 // get the actual gain at the user's gain setting
mjr 82:4f6209cb5c33 261 float trueGain = 0.0;
mjr 82:4f6209cb5c33 262 switch (gain)
mjr 82:4f6209cb5c33 263 {
mjr 82:4f6209cb5c33 264 case GAIN_20: trueGain = 20.0; break;
mjr 82:4f6209cb5c33 265 case GAIN_10: trueGain = 10.32; break;
mjr 82:4f6209cb5c33 266 case GAIN_5: trueGain = 5.21; break;
mjr 82:4f6209cb5c33 267 case GAIN_2_5: trueGain = 2.60; break;
mjr 82:4f6209cb5c33 268 case GAIN_1_67: trueGain = 1.72; break;
mjr 82:4f6209cb5c33 269 case GAIN_1_25: trueGain = 1.28; break;
mjr 82:4f6209cb5c33 270 case GAIN_1: trueGain = 1.01; break;
mjr 82:4f6209cb5c33 271 case GAIN_40: trueGain = 40.0; break;
mjr 82:4f6209cb5c33 272 default: trueGain = 1.0; break;
mjr 82:4f6209cb5c33 273 }
mjr 82:4f6209cb5c33 274
mjr 82:4f6209cb5c33 275 // calculate the lux (see the manufacturer's app notes)
mjr 82:4f6209cb5c33 276 return alsRaw * 0.32f / trueGain * alsIntegrationPeriod;
mjr 82:4f6209cb5c33 277 }
mjr 82:4f6209cb5c33 278
mjr 82:4f6209cb5c33 279 uint8_t VL6180X::readReg8(uint16_t registerAddr)
mjr 82:4f6209cb5c33 280 {
mjr 82:4f6209cb5c33 281 // write the request - MSB+LSB of register address
mjr 82:4f6209cb5c33 282 uint8_t data_write[2];
mjr 82:4f6209cb5c33 283 data_write[0] = (registerAddr >> 8) & 0xFF;
mjr 82:4f6209cb5c33 284 data_write[1] = registerAddr & 0xFF;
mjr 82:4f6209cb5c33 285 if (i2c.write(addr << 1, data_write, 2, true))
mjr 82:4f6209cb5c33 286 return 0x00;
mjr 82:4f6209cb5c33 287
mjr 82:4f6209cb5c33 288 // read the result
mjr 82:4f6209cb5c33 289 uint8_t data_read[1];
mjr 82:4f6209cb5c33 290 if (i2c.read(addr << 1, data_read, 1))
mjr 82:4f6209cb5c33 291 return 0x00;
mjr 82:4f6209cb5c33 292
mjr 82:4f6209cb5c33 293 // return the result
mjr 82:4f6209cb5c33 294 return data_read[0];
mjr 82:4f6209cb5c33 295 }
mjr 82:4f6209cb5c33 296
mjr 82:4f6209cb5c33 297 uint16_t VL6180X::readReg16(uint16_t registerAddr)
mjr 82:4f6209cb5c33 298 {
mjr 82:4f6209cb5c33 299 // write the request - MSB+LSB of register address
mjr 82:4f6209cb5c33 300 uint8_t data_write[2];
mjr 82:4f6209cb5c33 301 data_write[0] = (registerAddr >> 8) & 0xFF;
mjr 82:4f6209cb5c33 302 data_write[1] = registerAddr & 0xFF;
mjr 82:4f6209cb5c33 303 if (i2c.write(addr << 1, data_write, 2, true))
mjr 82:4f6209cb5c33 304 return 0;
mjr 82:4f6209cb5c33 305
mjr 82:4f6209cb5c33 306 // read the result
mjr 82:4f6209cb5c33 307 uint8_t data_read[2];
mjr 82:4f6209cb5c33 308 if (i2c.read(addr << 1, data_read, 2))
mjr 82:4f6209cb5c33 309 return 00;
mjr 82:4f6209cb5c33 310
mjr 82:4f6209cb5c33 311 // return the result
mjr 82:4f6209cb5c33 312 return (data_read[0] << 8) | data_read[1];
mjr 82:4f6209cb5c33 313 }
mjr 82:4f6209cb5c33 314
mjr 82:4f6209cb5c33 315 uint32_t VL6180X::readReg32(uint16_t registerAddr)
mjr 82:4f6209cb5c33 316 {
mjr 82:4f6209cb5c33 317 // write the request - MSB+LSB of register address
mjr 82:4f6209cb5c33 318 uint8_t data_write[2];
mjr 82:4f6209cb5c33 319 data_write[0] = (registerAddr >> 8) & 0xFF;
mjr 82:4f6209cb5c33 320 data_write[1] = registerAddr & 0xFF;
mjr 82:4f6209cb5c33 321 if (i2c.write(addr << 1, data_write, 2, false))
mjr 82:4f6209cb5c33 322 return 0;
mjr 82:4f6209cb5c33 323
mjr 82:4f6209cb5c33 324 // read the result
mjr 82:4f6209cb5c33 325 uint8_t data_read[4];
mjr 82:4f6209cb5c33 326 if (i2c.read(addr << 1, data_read, 4))
mjr 82:4f6209cb5c33 327 return 0;
mjr 82:4f6209cb5c33 328
mjr 82:4f6209cb5c33 329 // return the result
mjr 82:4f6209cb5c33 330 return (data_read[0] << 24) | (data_read[1] << 16) | (data_read[2] << 8) | data_read[1];
mjr 82:4f6209cb5c33 331 }
mjr 82:4f6209cb5c33 332
mjr 82:4f6209cb5c33 333 void VL6180X::writeReg8(uint16_t registerAddr, uint8_t data)
mjr 82:4f6209cb5c33 334 {
mjr 82:4f6209cb5c33 335 uint8_t data_write[3];
mjr 82:4f6209cb5c33 336 data_write[0] = (registerAddr >> 8) & 0xFF;
mjr 82:4f6209cb5c33 337 data_write[1] = registerAddr & 0xFF;
mjr 82:4f6209cb5c33 338 data_write[2] = data & 0xFF;
mjr 82:4f6209cb5c33 339 i2c.write(addr << 1, data_write, 3);
mjr 82:4f6209cb5c33 340 }
mjr 82:4f6209cb5c33 341
mjr 82:4f6209cb5c33 342 void VL6180X::writeReg16(uint16_t registerAddr, uint16_t data)
mjr 82:4f6209cb5c33 343 {
mjr 82:4f6209cb5c33 344 uint8_t data_write[4];
mjr 82:4f6209cb5c33 345 data_write[0] = (registerAddr >> 8) & 0xFF;
mjr 82:4f6209cb5c33 346 data_write[1] = registerAddr & 0xFF;
mjr 82:4f6209cb5c33 347 data_write[2] = (data >> 8) & 0xFF;
mjr 82:4f6209cb5c33 348 data_write[3] = data & 0xFF;
mjr 82:4f6209cb5c33 349 i2c.write(addr << 1, data_write, 4);
mjr 82:4f6209cb5c33 350 }