An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Thu Apr 13 23:27:59 2017 +0000
Revision:
84:31e926f4f3bc
Parent:
83:ea44e193fd55
Parent:
82:4f6209cb5c33
Child:
85:3c28aee81cde
Merge bug fix branch

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 77:0b96f6867312 55 // Note that VP has built-in support for plunger devices like this one, but
mjr 77:0b96f6867312 56 // some VP tables can't use it without some additional scripting work. The
mjr 77:0b96f6867312 57 // Build Guide has advice on adjusting tables to add plunger support when
mjr 77:0b96f6867312 58 // necessary.
mjr 5:a70c0bce770d 59 //
mjr 6:cc35eb643e8f 60 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 61 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 62 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 63 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 64 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 65 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 66 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 67 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 68 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 69 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 70 //
mjr 17:ab3cec0c8bf4 71 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 72 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 73 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 74 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 75 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 76 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 77 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 78 //
mjr 77:0b96f6867312 79 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 80 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 81 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 82 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 83 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 84 //
mjr 53:9b2611964afc 85 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 86 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 87 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 88 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 89 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 90 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 91 // attached devices without any modifications.
mjr 5:a70c0bce770d 92 //
mjr 53:9b2611964afc 93 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 94 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 95 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 96 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 97 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 98 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 99 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 100 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 101 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 102 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 103 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 104 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 105 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 106 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 107 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 108 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 109 //
mjr 26:cb71c4af2912 110 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 111 // external PWM controller chips for controlling device outputs, instead of using
mjr 53:9b2611964afc 112 // the on-board GPIO ports as described above. The software can control a set of
mjr 53:9b2611964afc 113 // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just
mjr 53:9b2611964afc 114 // need two of them to get the full complement of 32 output ports of a real LedWiz.
mjr 53:9b2611964afc 115 // You can hook up even more, though. Four chips gives you 64 ports, which should
mjr 53:9b2611964afc 116 // be plenty for nearly any virtual pinball project. To accommodate the larger
mjr 53:9b2611964afc 117 // supply of ports possible with the PWM chips, the controller software provides
mjr 53:9b2611964afc 118 // a custom, extended version of the LedWiz protocol that can handle up to 128
mjr 53:9b2611964afc 119 // ports. PC software designed only for the real LedWiz obviously won't know
mjr 53:9b2611964afc 120 // about the extended protocol and won't be able to take advantage of its extra
mjr 53:9b2611964afc 121 // capabilities, but the latest version of DOF (DirectOutput Framework) *does*
mjr 53:9b2611964afc 122 // know the new language and can take full advantage. Older software will still
mjr 53:9b2611964afc 123 // work, though - the new extensions are all backward compatible, so old software
mjr 53:9b2611964afc 124 // that only knows about the original LedWiz protocol will still work, with the
mjr 53:9b2611964afc 125 // obvious limitation that it can only access the first 32 ports.
mjr 53:9b2611964afc 126 //
mjr 53:9b2611964afc 127 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 128 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 129 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 130 // outputs with full PWM control and power handling for high-current devices
mjr 53:9b2611964afc 131 // built in to the boards.
mjr 26:cb71c4af2912 132 //
mjr 38:091e511ce8a0 133 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 134 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 135 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 136 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 137 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 138 //
mjr 38:091e511ce8a0 139 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 140 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 141 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 142 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 143 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 144 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 145 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 146 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 147 // remote control transmitter feature below.
mjr 77:0b96f6867312 148 //
mjr 77:0b96f6867312 149 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 150 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 151 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 152 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 153 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 154 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 155 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 156 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 157 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 158 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 159 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 160 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 161 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 162 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 163 //
mjr 35:e959ffba78fd 164 //
mjr 35:e959ffba78fd 165 //
mjr 33:d832bcab089e 166 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 167 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 168 //
mjr 48:058ace2aed1d 169 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 170 //
mjr 48:058ace2aed1d 171 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 172 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 173 // has been established)
mjr 48:058ace2aed1d 174 //
mjr 48:058ace2aed1d 175 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 176 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 177 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 178 //
mjr 38:091e511ce8a0 179 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 180 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 181 // transmissions are failing.
mjr 38:091e511ce8a0 182 //
mjr 73:4e8ce0b18915 183 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 184 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 185 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 186 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 187 // enabled.
mjr 73:4e8ce0b18915 188 //
mjr 6:cc35eb643e8f 189 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 190 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 191 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 192 // no plunger sensor configured.
mjr 6:cc35eb643e8f 193 //
mjr 38:091e511ce8a0 194 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 195 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 196 //
mjr 48:058ace2aed1d 197 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 198 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 199 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 200 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 201 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 202 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 203 //
mjr 48:058ace2aed1d 204 //
mjr 48:058ace2aed1d 205 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 206 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 207 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 208 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 209 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 210 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 211 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 212 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 213
mjr 33:d832bcab089e 214
mjr 0:5acbbe3f4cf4 215 #include "mbed.h"
mjr 6:cc35eb643e8f 216 #include "math.h"
mjr 74:822a92bc11d2 217 #include "diags.h"
mjr 48:058ace2aed1d 218 #include "pinscape.h"
mjr 79:682ae3171a08 219 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 220 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 221 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 222 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 223 #include "crc32.h"
mjr 26:cb71c4af2912 224 #include "TLC5940.h"
mjr 34:6b981a2afab7 225 #include "74HC595.h"
mjr 35:e959ffba78fd 226 #include "nvm.h"
mjr 48:058ace2aed1d 227 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 228 #include "IRReceiver.h"
mjr 77:0b96f6867312 229 #include "IRTransmitter.h"
mjr 77:0b96f6867312 230 #include "NewPwm.h"
mjr 74:822a92bc11d2 231
mjr 82:4f6209cb5c33 232 // plunger sensors
mjr 82:4f6209cb5c33 233 #include "plunger.h"
mjr 82:4f6209cb5c33 234 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 235 #include "potSensor.h"
mjr 82:4f6209cb5c33 236 #include "quadSensor.h"
mjr 82:4f6209cb5c33 237 #include "nullSensor.h"
mjr 82:4f6209cb5c33 238 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 239 #include "distanceSensor.h"
mjr 82:4f6209cb5c33 240
mjr 2:c174f9ee414a 241
mjr 21:5048e16cc9ef 242 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 243 #include "config.h"
mjr 17:ab3cec0c8bf4 244
mjr 76:7f5912b6340e 245 // forward declarations
mjr 76:7f5912b6340e 246 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 247
mjr 53:9b2611964afc 248 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 249 //
mjr 53:9b2611964afc 250 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 251 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 252 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 253 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 254 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 255 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 256 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 257 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 258 // interface.
mjr 53:9b2611964afc 259 //
mjr 53:9b2611964afc 260 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 261 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 262 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 263 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 264 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 265 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 266 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 267 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 268 //
mjr 53:9b2611964afc 269 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 270 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 271 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 272 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 273 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 274 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 275 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 276 //
mjr 53:9b2611964afc 277 const char *getOpenSDAID()
mjr 53:9b2611964afc 278 {
mjr 53:9b2611964afc 279 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 280 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 281 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 282
mjr 53:9b2611964afc 283 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 284 }
mjr 53:9b2611964afc 285
mjr 53:9b2611964afc 286 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 287 //
mjr 53:9b2611964afc 288 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 289 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 290 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 291 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 292 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 293 // want from this.
mjr 53:9b2611964afc 294 //
mjr 53:9b2611964afc 295 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 296 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 297 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 298 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 299 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 300 // macros.
mjr 53:9b2611964afc 301 //
mjr 53:9b2611964afc 302 const char *getBuildID()
mjr 53:9b2611964afc 303 {
mjr 53:9b2611964afc 304 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 305 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 306 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 309 }
mjr 53:9b2611964afc 310
mjr 74:822a92bc11d2 311 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 312 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 313 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 314 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 315 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 316 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 317 Timer mainLoopTimer;
mjr 76:7f5912b6340e 318 #endif
mjr 76:7f5912b6340e 319
mjr 53:9b2611964afc 320
mjr 5:a70c0bce770d 321 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 322 //
mjr 38:091e511ce8a0 323 // Forward declarations
mjr 38:091e511ce8a0 324 //
mjr 38:091e511ce8a0 325 void setNightMode(bool on);
mjr 38:091e511ce8a0 326 void toggleNightMode();
mjr 38:091e511ce8a0 327
mjr 38:091e511ce8a0 328 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 329 // utilities
mjr 17:ab3cec0c8bf4 330
mjr 77:0b96f6867312 331 // int/float point square of a number
mjr 77:0b96f6867312 332 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 333 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 334
mjr 26:cb71c4af2912 335 // floating point rounding
mjr 26:cb71c4af2912 336 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 337
mjr 17:ab3cec0c8bf4 338
mjr 33:d832bcab089e 339 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 340 //
mjr 40:cc0d9814522b 341 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 342 // the running state.
mjr 40:cc0d9814522b 343 //
mjr 77:0b96f6867312 344 class ExtTimer: public Timer
mjr 40:cc0d9814522b 345 {
mjr 40:cc0d9814522b 346 public:
mjr 77:0b96f6867312 347 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 348
mjr 40:cc0d9814522b 349 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 350 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 351
mjr 40:cc0d9814522b 352 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 353
mjr 40:cc0d9814522b 354 private:
mjr 40:cc0d9814522b 355 bool running;
mjr 40:cc0d9814522b 356 };
mjr 40:cc0d9814522b 357
mjr 53:9b2611964afc 358
mjr 53:9b2611964afc 359 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 360 //
mjr 33:d832bcab089e 361 // USB product version number
mjr 5:a70c0bce770d 362 //
mjr 47:df7a88cd249c 363 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 364
mjr 33:d832bcab089e 365 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 366 //
mjr 6:cc35eb643e8f 367 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 368 //
mjr 6:cc35eb643e8f 369 #define JOYMAX 4096
mjr 6:cc35eb643e8f 370
mjr 9:fd65b0a94720 371
mjr 17:ab3cec0c8bf4 372 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 373 //
mjr 40:cc0d9814522b 374 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 375 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 376 //
mjr 35:e959ffba78fd 377
mjr 35:e959ffba78fd 378 // unsigned 16-bit integer
mjr 35:e959ffba78fd 379 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 380 {
mjr 35:e959ffba78fd 381 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 382 }
mjr 40:cc0d9814522b 383 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 384 {
mjr 40:cc0d9814522b 385 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 386 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 387 }
mjr 35:e959ffba78fd 388
mjr 35:e959ffba78fd 389 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 390 {
mjr 35:e959ffba78fd 391 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 392 }
mjr 40:cc0d9814522b 393 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 394 {
mjr 40:cc0d9814522b 395 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 396 }
mjr 35:e959ffba78fd 397
mjr 35:e959ffba78fd 398 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 399 {
mjr 35:e959ffba78fd 400 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 401 }
mjr 40:cc0d9814522b 402 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 403 {
mjr 40:cc0d9814522b 404 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 405 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 406 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 407 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 408 }
mjr 35:e959ffba78fd 409
mjr 35:e959ffba78fd 410 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 411 {
mjr 35:e959ffba78fd 412 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 413 }
mjr 35:e959ffba78fd 414
mjr 53:9b2611964afc 415 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 416 //
mjr 53:9b2611964afc 417 // The internal mbed PinName format is
mjr 53:9b2611964afc 418 //
mjr 53:9b2611964afc 419 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 420 //
mjr 53:9b2611964afc 421 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 422 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 423 //
mjr 53:9b2611964afc 424 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 425 // pin name fits in 8 bits:
mjr 53:9b2611964afc 426 //
mjr 53:9b2611964afc 427 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 428 //
mjr 53:9b2611964afc 429 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 430 //
mjr 53:9b2611964afc 431 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 432 //
mjr 53:9b2611964afc 433 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 434 {
mjr 53:9b2611964afc 435 if (c == 0xFF)
mjr 53:9b2611964afc 436 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 437 else
mjr 53:9b2611964afc 438 return PinName(
mjr 53:9b2611964afc 439 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 440 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 441 }
mjr 40:cc0d9814522b 442 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 443 {
mjr 53:9b2611964afc 444 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 445 }
mjr 35:e959ffba78fd 446
mjr 35:e959ffba78fd 447
mjr 35:e959ffba78fd 448 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 449 //
mjr 38:091e511ce8a0 450 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 451 //
mjr 38:091e511ce8a0 452 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 453 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 454 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 455 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 456 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 457 // SPI capability.
mjr 38:091e511ce8a0 458 //
mjr 38:091e511ce8a0 459 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 460
mjr 73:4e8ce0b18915 461 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 462 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 463 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 464 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 465
mjr 38:091e511ce8a0 466 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 467 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 468 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 469 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 470 {
mjr 73:4e8ce0b18915 471 // remember the new state
mjr 73:4e8ce0b18915 472 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 473
mjr 73:4e8ce0b18915 474 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 475 // applying it to the blue LED
mjr 73:4e8ce0b18915 476 if (diagLEDState == 0)
mjr 77:0b96f6867312 477 {
mjr 77:0b96f6867312 478 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 479 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 480 }
mjr 73:4e8ce0b18915 481
mjr 73:4e8ce0b18915 482 // set the new state
mjr 38:091e511ce8a0 483 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 484 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 485 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 486 }
mjr 38:091e511ce8a0 487
mjr 73:4e8ce0b18915 488 // update the LEDs with the current state
mjr 73:4e8ce0b18915 489 void diagLED(void)
mjr 73:4e8ce0b18915 490 {
mjr 73:4e8ce0b18915 491 diagLED(
mjr 73:4e8ce0b18915 492 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 493 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 494 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 495 }
mjr 73:4e8ce0b18915 496
mjr 38:091e511ce8a0 497 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 498 // an on-board LED segment
mjr 38:091e511ce8a0 499 struct LedSeg
mjr 38:091e511ce8a0 500 {
mjr 38:091e511ce8a0 501 bool r, g, b;
mjr 38:091e511ce8a0 502 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 503
mjr 38:091e511ce8a0 504 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 505 {
mjr 38:091e511ce8a0 506 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 507 // our on-board LED segments
mjr 38:091e511ce8a0 508 int t = pc.typ;
mjr 38:091e511ce8a0 509 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 510 {
mjr 38:091e511ce8a0 511 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 512 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 513 if (pin == LED1)
mjr 38:091e511ce8a0 514 r = true;
mjr 38:091e511ce8a0 515 else if (pin == LED2)
mjr 38:091e511ce8a0 516 g = true;
mjr 38:091e511ce8a0 517 else if (pin == LED3)
mjr 38:091e511ce8a0 518 b = true;
mjr 38:091e511ce8a0 519 }
mjr 38:091e511ce8a0 520 }
mjr 38:091e511ce8a0 521 };
mjr 38:091e511ce8a0 522
mjr 38:091e511ce8a0 523 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 524 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 525 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 526 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 527 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 528 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 529 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 530 {
mjr 38:091e511ce8a0 531 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 532 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 533 LedSeg l;
mjr 38:091e511ce8a0 534 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 535 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 536
mjr 38:091e511ce8a0 537 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 538 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 539 // LedWiz use.
mjr 38:091e511ce8a0 540 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 541 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 542 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 543 }
mjr 38:091e511ce8a0 544
mjr 38:091e511ce8a0 545
mjr 38:091e511ce8a0 546 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 547 //
mjr 76:7f5912b6340e 548 // LedWiz emulation
mjr 76:7f5912b6340e 549 //
mjr 76:7f5912b6340e 550
mjr 76:7f5912b6340e 551 // LedWiz output states.
mjr 76:7f5912b6340e 552 //
mjr 76:7f5912b6340e 553 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 554 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 555 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 556 // The two axes are independent.
mjr 76:7f5912b6340e 557 //
mjr 76:7f5912b6340e 558 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 559 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 560 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 561 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 562 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 563 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 564 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 565 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 566
mjr 76:7f5912b6340e 567 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 568 static uint8_t *wizOn;
mjr 76:7f5912b6340e 569
mjr 76:7f5912b6340e 570 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 571 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 572 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 573 //
mjr 76:7f5912b6340e 574 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 575 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 576 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 577 // 130 = flash on / off
mjr 76:7f5912b6340e 578 // 131 = on / ramp down
mjr 76:7f5912b6340e 579 // 132 = ramp up / on
mjr 5:a70c0bce770d 580 //
mjr 76:7f5912b6340e 581 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 582 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 583 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 584 static uint8_t *wizVal;
mjr 76:7f5912b6340e 585
mjr 76:7f5912b6340e 586 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 587 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 588 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 589 // by the extended protocol:
mjr 76:7f5912b6340e 590 //
mjr 76:7f5912b6340e 591 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 592 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 593 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 594 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 595 // if the brightness is non-zero.
mjr 76:7f5912b6340e 596 //
mjr 76:7f5912b6340e 597 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 598 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 599 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 600 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 601 // 0..255 range.
mjr 26:cb71c4af2912 602 //
mjr 76:7f5912b6340e 603 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 604 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 605 // level.
mjr 26:cb71c4af2912 606 //
mjr 76:7f5912b6340e 607 static uint8_t *outLevel;
mjr 76:7f5912b6340e 608
mjr 76:7f5912b6340e 609
mjr 76:7f5912b6340e 610 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 611 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 612 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 613 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 614 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 615 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 616 //
mjr 76:7f5912b6340e 617 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 618 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 619 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 620 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 621 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 622 // at the maximum size.
mjr 76:7f5912b6340e 623 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 624 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 625
mjr 26:cb71c4af2912 626 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 627 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 628 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 629 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 630 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 631
mjr 76:7f5912b6340e 632
mjr 76:7f5912b6340e 633 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 634 //
mjr 76:7f5912b6340e 635 // Output Ports
mjr 76:7f5912b6340e 636 //
mjr 76:7f5912b6340e 637 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 638 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 639 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 640 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 641 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 642 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 643 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 644 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 645 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 646 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 647 // you have to ration pins among features.
mjr 76:7f5912b6340e 648 //
mjr 76:7f5912b6340e 649 // To overcome some of these limitations, we also provide two types of
mjr 76:7f5912b6340e 650 // peripheral controllers that allow adding many more outputs, using only
mjr 76:7f5912b6340e 651 // a small number of GPIO pins to interface with the peripherals. First,
mjr 76:7f5912b6340e 652 // we support TLC5940 PWM controller chips. Each TLC5940 provides 16 ports
mjr 76:7f5912b6340e 653 // with full PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 76:7f5912b6340e 654 // chip only requires 5 GPIO pins for the interface, no matter how many
mjr 76:7f5912b6340e 655 // chips are in the chain, so it effectively converts 5 GPIO pins into
mjr 76:7f5912b6340e 656 // almost any number of PWM outputs. Second, we support 74HC595 chips.
mjr 76:7f5912b6340e 657 // These provide only digital outputs, but like the TLC5940 they can be
mjr 76:7f5912b6340e 658 // daisy-chained to provide almost unlimited outputs with a few GPIO pins
mjr 76:7f5912b6340e 659 // to control the whole chain.
mjr 76:7f5912b6340e 660 //
mjr 76:7f5912b6340e 661 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 662 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 663 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 664 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 665 //
mjr 76:7f5912b6340e 666 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 667 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 668 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 669 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 670 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 671 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 672 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 673 // of physical devices they're connected to.
mjr 76:7f5912b6340e 674
mjr 76:7f5912b6340e 675
mjr 26:cb71c4af2912 676 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 677 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 678 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 679 class LwOut
mjr 6:cc35eb643e8f 680 {
mjr 6:cc35eb643e8f 681 public:
mjr 40:cc0d9814522b 682 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 683 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 684 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 685 };
mjr 26:cb71c4af2912 686
mjr 35:e959ffba78fd 687 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 688 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 689 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 690 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 691 // numbering.
mjr 35:e959ffba78fd 692 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 693 {
mjr 33:d832bcab089e 694 public:
mjr 35:e959ffba78fd 695 LwVirtualOut() { }
mjr 40:cc0d9814522b 696 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 697 };
mjr 26:cb71c4af2912 698
mjr 34:6b981a2afab7 699 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 700 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 701 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 702 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 703 {
mjr 34:6b981a2afab7 704 public:
mjr 34:6b981a2afab7 705 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 706 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 707
mjr 34:6b981a2afab7 708 private:
mjr 53:9b2611964afc 709 // underlying physical output
mjr 34:6b981a2afab7 710 LwOut *out;
mjr 34:6b981a2afab7 711 };
mjr 34:6b981a2afab7 712
mjr 53:9b2611964afc 713 // Global ZB Launch Ball state
mjr 53:9b2611964afc 714 bool zbLaunchOn = false;
mjr 53:9b2611964afc 715
mjr 53:9b2611964afc 716 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 717 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 718 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 719 {
mjr 53:9b2611964afc 720 public:
mjr 53:9b2611964afc 721 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 722 virtual void set(uint8_t val)
mjr 53:9b2611964afc 723 {
mjr 53:9b2611964afc 724 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 725 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 726
mjr 53:9b2611964afc 727 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 728 out->set(val);
mjr 53:9b2611964afc 729 }
mjr 53:9b2611964afc 730
mjr 53:9b2611964afc 731 private:
mjr 53:9b2611964afc 732 // underlying physical or virtual output
mjr 53:9b2611964afc 733 LwOut *out;
mjr 53:9b2611964afc 734 };
mjr 53:9b2611964afc 735
mjr 53:9b2611964afc 736
mjr 40:cc0d9814522b 737 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 738 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 739 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 740 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 741 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 742 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 743 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 744 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 745 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 746 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 747 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 748 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 749 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 750 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 751 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 752 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 753 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 754 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 755 };
mjr 40:cc0d9814522b 756
mjr 40:cc0d9814522b 757 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 758 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 759 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 760 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 761 {
mjr 40:cc0d9814522b 762 public:
mjr 40:cc0d9814522b 763 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 764 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 765
mjr 40:cc0d9814522b 766 private:
mjr 40:cc0d9814522b 767 LwOut *out;
mjr 40:cc0d9814522b 768 };
mjr 40:cc0d9814522b 769
mjr 77:0b96f6867312 770 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 771 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 772 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 773 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 774
mjr 40:cc0d9814522b 775 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 776 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 777 // mode is engaged.
mjr 40:cc0d9814522b 778 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 779 {
mjr 40:cc0d9814522b 780 public:
mjr 40:cc0d9814522b 781 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 782 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 783
mjr 53:9b2611964afc 784 private:
mjr 53:9b2611964afc 785 LwOut *out;
mjr 53:9b2611964afc 786 };
mjr 53:9b2611964afc 787
mjr 53:9b2611964afc 788 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 789 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 790 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 791 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 792 {
mjr 53:9b2611964afc 793 public:
mjr 53:9b2611964afc 794 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 795 virtual void set(uint8_t)
mjr 53:9b2611964afc 796 {
mjr 53:9b2611964afc 797 // ignore the host value and simply show the current
mjr 53:9b2611964afc 798 // night mode setting
mjr 53:9b2611964afc 799 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 800 }
mjr 40:cc0d9814522b 801
mjr 40:cc0d9814522b 802 private:
mjr 40:cc0d9814522b 803 LwOut *out;
mjr 40:cc0d9814522b 804 };
mjr 40:cc0d9814522b 805
mjr 26:cb71c4af2912 806
mjr 35:e959ffba78fd 807 //
mjr 35:e959ffba78fd 808 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 809 // assignments set in config.h.
mjr 33:d832bcab089e 810 //
mjr 35:e959ffba78fd 811 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 812 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 813 {
mjr 35:e959ffba78fd 814 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 815 {
mjr 53:9b2611964afc 816 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 817 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 818 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 819 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 820 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 821 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 822 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 823 }
mjr 35:e959ffba78fd 824 }
mjr 26:cb71c4af2912 825
mjr 40:cc0d9814522b 826 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 827 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 828 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 829 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 830 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 831 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 832 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 833 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 834 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 835 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 836 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 837 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 838 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 839 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 840 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 841 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 842 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 843 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 844 };
mjr 40:cc0d9814522b 845
mjr 40:cc0d9814522b 846 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 847 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 848 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 849 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 850 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 851 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 852 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 853 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 854 // are always 8 bits.
mjr 40:cc0d9814522b 855 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 856 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 857 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 858 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 859 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 860 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 861 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 862 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 863 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 864 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 865 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 866 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 867 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 868 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 869 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 870 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 871 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 872 };
mjr 40:cc0d9814522b 873
mjr 26:cb71c4af2912 874 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 875 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 876 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 877 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 878 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 879 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 880 {
mjr 26:cb71c4af2912 881 public:
mjr 60:f38da020aa13 882 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 883 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 884 {
mjr 26:cb71c4af2912 885 if (val != prv)
mjr 40:cc0d9814522b 886 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 887 }
mjr 60:f38da020aa13 888 uint8_t idx;
mjr 40:cc0d9814522b 889 uint8_t prv;
mjr 26:cb71c4af2912 890 };
mjr 26:cb71c4af2912 891
mjr 40:cc0d9814522b 892 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 893 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 894 {
mjr 40:cc0d9814522b 895 public:
mjr 60:f38da020aa13 896 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 897 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 898 {
mjr 40:cc0d9814522b 899 if (val != prv)
mjr 40:cc0d9814522b 900 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 901 }
mjr 60:f38da020aa13 902 uint8_t idx;
mjr 40:cc0d9814522b 903 uint8_t prv;
mjr 40:cc0d9814522b 904 };
mjr 40:cc0d9814522b 905
mjr 40:cc0d9814522b 906
mjr 33:d832bcab089e 907
mjr 34:6b981a2afab7 908 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 909 // config.h.
mjr 35:e959ffba78fd 910 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 911
mjr 35:e959ffba78fd 912 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 913 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 914 {
mjr 35:e959ffba78fd 915 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 916 {
mjr 53:9b2611964afc 917 hc595 = new HC595(
mjr 53:9b2611964afc 918 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 919 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 920 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 921 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 922 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 923 hc595->init();
mjr 35:e959ffba78fd 924 hc595->update();
mjr 35:e959ffba78fd 925 }
mjr 35:e959ffba78fd 926 }
mjr 34:6b981a2afab7 927
mjr 34:6b981a2afab7 928 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 929 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 930 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 931 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 932 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 933 class Lw595Out: public LwOut
mjr 33:d832bcab089e 934 {
mjr 33:d832bcab089e 935 public:
mjr 60:f38da020aa13 936 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 937 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 938 {
mjr 34:6b981a2afab7 939 if (val != prv)
mjr 40:cc0d9814522b 940 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 941 }
mjr 60:f38da020aa13 942 uint8_t idx;
mjr 40:cc0d9814522b 943 uint8_t prv;
mjr 33:d832bcab089e 944 };
mjr 33:d832bcab089e 945
mjr 26:cb71c4af2912 946
mjr 40:cc0d9814522b 947
mjr 64:ef7ca92dff36 948 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 949 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 950 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 951 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 952 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 953 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 954 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 955 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 956 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 957 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 958 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 959 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 960 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 961 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 962 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 963 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 964 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 965 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 966 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 967 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 968 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 969 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 970 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 971 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 972 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 973 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 974 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 975 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 976 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 977 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 978 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 979 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 980 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 981 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 982 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 983 };
mjr 26:cb71c4af2912 984
mjr 64:ef7ca92dff36 985
mjr 64:ef7ca92dff36 986 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 987 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 988 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 989 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 990 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 991 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 992 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 993 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 994 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 995 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 996 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 997 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 998 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 999 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1000 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1001 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1002 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1003 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1004 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1005 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1006 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1007 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1008 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1009 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1010 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1011 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1012 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1013 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1014 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1015 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1016 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1017 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1018 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1019 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1020 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1021 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1022 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1023 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1024 };
mjr 64:ef7ca92dff36 1025
mjr 77:0b96f6867312 1026 // Polled-update PWM output list
mjr 74:822a92bc11d2 1027 //
mjr 77:0b96f6867312 1028 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1029 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1030 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1031 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1032 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1033 //
mjr 77:0b96f6867312 1034 // Our solution is to simply repeat all PWM updates periodically. If a write
mjr 77:0b96f6867312 1035 // is lost on one cycle, it'll eventually be applied on a subseuqent periodic
mjr 77:0b96f6867312 1036 // update. For low overhead, we do these repeat updates periodically during
mjr 77:0b96f6867312 1037 // the main loop.
mjr 74:822a92bc11d2 1038 //
mjr 77:0b96f6867312 1039 // The mbed library has its own solution to this bug, but it creates a
mjr 77:0b96f6867312 1040 // separate problem of its own. The mbed solution is to write the value
mjr 77:0b96f6867312 1041 // register immediately, and then also reset the "count" register in the
mjr 77:0b96f6867312 1042 // TPM unit containing the output. The count reset truncates the current
mjr 77:0b96f6867312 1043 // PWM cycle, which avoids the hardware problem with more than one write per
mjr 77:0b96f6867312 1044 // cycle. The problem is that the truncated cycle causes visible flicker if
mjr 77:0b96f6867312 1045 // the output is connected to an LED. This is particularly noticeable during
mjr 77:0b96f6867312 1046 // fades, when we're updating the value register repeatedly and rapidly: an
mjr 77:0b96f6867312 1047 // attempt to fade from fully on to fully off causes rapid fluttering and
mjr 77:0b96f6867312 1048 // flashing rather than a smooth brightness fade.
mjr 74:822a92bc11d2 1049 //
mjr 77:0b96f6867312 1050 // The hardware bug is a case of good intentions gone bad. The hardware is
mjr 77:0b96f6867312 1051 // *supposed* to make it easy for software to avoid glitching during PWM
mjr 77:0b96f6867312 1052 // updates, by providing a staging register in front of the real value
mjr 77:0b96f6867312 1053 // register. The software actually writes to the staging register, which
mjr 77:0b96f6867312 1054 // holds updates until the end of the cycle, at which point the hardware
mjr 77:0b96f6867312 1055 // automatically moves the value from the staging register into the real
mjr 77:0b96f6867312 1056 // register. This ensures that the real register is always updated exactly
mjr 77:0b96f6867312 1057 // at a cycle boundary, which in turn ensures that there's no flicker when
mjr 77:0b96f6867312 1058 // values are updated. A great design - except that it doesn't quite work.
mjr 77:0b96f6867312 1059 // The problem is that the staging register actually seems to be implemented
mjr 77:0b96f6867312 1060 // as a one-element FIFO in "stop when full" mode. That is, when you write
mjr 77:0b96f6867312 1061 // the FIFO, it becomes full. When the cycle ends and the hardware reads it
mjr 77:0b96f6867312 1062 // to move the staged value into the real register, the FIFO becomes empty.
mjr 77:0b96f6867312 1063 // But if you try to write the FIFO twice before the hardware reads it and
mjr 77:0b96f6867312 1064 // empties it, the second write fails, leaving the first value in the queue.
mjr 77:0b96f6867312 1065 // There doesn't seem to be any way to clear the FIFO from software, so you
mjr 77:0b96f6867312 1066 // just have to wait for the cycle to end before writing another update.
mjr 77:0b96f6867312 1067 // That more or less defeats the purpose of the staging register, whose whole
mjr 77:0b96f6867312 1068 // point is to free software from worrying about timing considerations with
mjr 77:0b96f6867312 1069 // updates. It frees us of the need to align our timing on cycle boundaries,
mjr 77:0b96f6867312 1070 // but it leaves us with the need to limit writes to once per cycle.
mjr 74:822a92bc11d2 1071 //
mjr 77:0b96f6867312 1072 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1073 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1074 // of polled items.
mjr 74:822a92bc11d2 1075 static int numPolledPwm;
mjr 74:822a92bc11d2 1076 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1077
mjr 74:822a92bc11d2 1078 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1079 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1080 {
mjr 6:cc35eb643e8f 1081 public:
mjr 43:7a6364d82a41 1082 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1083 {
mjr 77:0b96f6867312 1084 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1085 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1086 polledPwm[numPolledPwm++] = this;
mjr 77:0b96f6867312 1087
mjr 77:0b96f6867312 1088 // set the initial value
mjr 77:0b96f6867312 1089 set(initVal);
mjr 43:7a6364d82a41 1090 }
mjr 74:822a92bc11d2 1091
mjr 40:cc0d9814522b 1092 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1093 {
mjr 77:0b96f6867312 1094 // save the new value
mjr 74:822a92bc11d2 1095 this->val = val;
mjr 77:0b96f6867312 1096
mjr 77:0b96f6867312 1097 // commit it to the hardware
mjr 77:0b96f6867312 1098 commit();
mjr 13:72dda449c3c0 1099 }
mjr 74:822a92bc11d2 1100
mjr 74:822a92bc11d2 1101 // handle periodic update polling
mjr 74:822a92bc11d2 1102 void poll()
mjr 74:822a92bc11d2 1103 {
mjr 77:0b96f6867312 1104 commit();
mjr 74:822a92bc11d2 1105 }
mjr 74:822a92bc11d2 1106
mjr 74:822a92bc11d2 1107 protected:
mjr 77:0b96f6867312 1108 virtual void commit()
mjr 74:822a92bc11d2 1109 {
mjr 74:822a92bc11d2 1110 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1111 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1112 }
mjr 74:822a92bc11d2 1113
mjr 77:0b96f6867312 1114 NewPwmOut p;
mjr 77:0b96f6867312 1115 uint8_t val;
mjr 6:cc35eb643e8f 1116 };
mjr 26:cb71c4af2912 1117
mjr 74:822a92bc11d2 1118 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1119 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1120 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1121 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1122 {
mjr 64:ef7ca92dff36 1123 public:
mjr 64:ef7ca92dff36 1124 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1125 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1126 {
mjr 64:ef7ca92dff36 1127 }
mjr 74:822a92bc11d2 1128
mjr 74:822a92bc11d2 1129 protected:
mjr 77:0b96f6867312 1130 virtual void commit()
mjr 64:ef7ca92dff36 1131 {
mjr 74:822a92bc11d2 1132 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1133 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1134 }
mjr 64:ef7ca92dff36 1135 };
mjr 64:ef7ca92dff36 1136
mjr 74:822a92bc11d2 1137 // poll the PWM outputs
mjr 74:822a92bc11d2 1138 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1139 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1140 void pollPwmUpdates()
mjr 74:822a92bc11d2 1141 {
mjr 74:822a92bc11d2 1142 // if it's been at least 25ms since the last update, do another update
mjr 74:822a92bc11d2 1143 if (polledPwmTimer.read_us() >= 25000)
mjr 74:822a92bc11d2 1144 {
mjr 74:822a92bc11d2 1145 // time the run for statistics collection
mjr 74:822a92bc11d2 1146 IF_DIAG(
mjr 74:822a92bc11d2 1147 Timer t;
mjr 74:822a92bc11d2 1148 t.start();
mjr 74:822a92bc11d2 1149 )
mjr 74:822a92bc11d2 1150
mjr 74:822a92bc11d2 1151 // poll each output
mjr 74:822a92bc11d2 1152 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1153 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1154
mjr 74:822a92bc11d2 1155 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1156 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1157
mjr 74:822a92bc11d2 1158 // collect statistics
mjr 74:822a92bc11d2 1159 IF_DIAG(
mjr 76:7f5912b6340e 1160 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1161 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1162 )
mjr 74:822a92bc11d2 1163 }
mjr 74:822a92bc11d2 1164 }
mjr 64:ef7ca92dff36 1165
mjr 26:cb71c4af2912 1166 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1167 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1168 {
mjr 6:cc35eb643e8f 1169 public:
mjr 43:7a6364d82a41 1170 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1171 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1172 {
mjr 13:72dda449c3c0 1173 if (val != prv)
mjr 40:cc0d9814522b 1174 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1175 }
mjr 6:cc35eb643e8f 1176 DigitalOut p;
mjr 40:cc0d9814522b 1177 uint8_t prv;
mjr 6:cc35eb643e8f 1178 };
mjr 26:cb71c4af2912 1179
mjr 29:582472d0bc57 1180 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1181 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1182 // port n (0-based).
mjr 35:e959ffba78fd 1183 //
mjr 35:e959ffba78fd 1184 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1185 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1186 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1187 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1188 // 74HC595 ports).
mjr 33:d832bcab089e 1189 static int numOutputs;
mjr 33:d832bcab089e 1190 static LwOut **lwPin;
mjr 33:d832bcab089e 1191
mjr 38:091e511ce8a0 1192 // create a single output pin
mjr 53:9b2611964afc 1193 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1194 {
mjr 38:091e511ce8a0 1195 // get this item's values
mjr 38:091e511ce8a0 1196 int typ = pc.typ;
mjr 38:091e511ce8a0 1197 int pin = pc.pin;
mjr 38:091e511ce8a0 1198 int flags = pc.flags;
mjr 40:cc0d9814522b 1199 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1200 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1201 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1202
mjr 38:091e511ce8a0 1203 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1204 LwOut *lwp;
mjr 38:091e511ce8a0 1205 switch (typ)
mjr 38:091e511ce8a0 1206 {
mjr 38:091e511ce8a0 1207 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1208 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1209 if (pin != 0)
mjr 64:ef7ca92dff36 1210 {
mjr 64:ef7ca92dff36 1211 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1212 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1213 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1214 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1215 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1216 {
mjr 64:ef7ca92dff36 1217 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1218 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1219
mjr 64:ef7ca92dff36 1220 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1221 gamma = false;
mjr 64:ef7ca92dff36 1222 }
mjr 64:ef7ca92dff36 1223 else
mjr 64:ef7ca92dff36 1224 {
mjr 64:ef7ca92dff36 1225 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1226 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1227 }
mjr 64:ef7ca92dff36 1228 }
mjr 48:058ace2aed1d 1229 else
mjr 48:058ace2aed1d 1230 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1231 break;
mjr 38:091e511ce8a0 1232
mjr 38:091e511ce8a0 1233 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1234 // Digital GPIO port
mjr 48:058ace2aed1d 1235 if (pin != 0)
mjr 48:058ace2aed1d 1236 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1237 else
mjr 48:058ace2aed1d 1238 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1239 break;
mjr 38:091e511ce8a0 1240
mjr 38:091e511ce8a0 1241 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1242 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1243 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1244 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1245 {
mjr 40:cc0d9814522b 1246 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1247 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1248 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1249 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1250 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1251 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1252 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1253 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1254 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1255 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1256 // for this unlikely case.
mjr 40:cc0d9814522b 1257 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1258 {
mjr 40:cc0d9814522b 1259 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1260 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1261
mjr 40:cc0d9814522b 1262 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1263 gamma = false;
mjr 40:cc0d9814522b 1264 }
mjr 40:cc0d9814522b 1265 else
mjr 40:cc0d9814522b 1266 {
mjr 40:cc0d9814522b 1267 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1268 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1269 }
mjr 40:cc0d9814522b 1270 }
mjr 38:091e511ce8a0 1271 else
mjr 40:cc0d9814522b 1272 {
mjr 40:cc0d9814522b 1273 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1274 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1275 }
mjr 38:091e511ce8a0 1276 break;
mjr 38:091e511ce8a0 1277
mjr 38:091e511ce8a0 1278 case PortType74HC595:
mjr 38:091e511ce8a0 1279 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 1280 // output number, create a virtual port)
mjr 38:091e511ce8a0 1281 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1282 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1283 else
mjr 38:091e511ce8a0 1284 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1285 break;
mjr 38:091e511ce8a0 1286
mjr 38:091e511ce8a0 1287 case PortTypeVirtual:
mjr 43:7a6364d82a41 1288 case PortTypeDisabled:
mjr 38:091e511ce8a0 1289 default:
mjr 38:091e511ce8a0 1290 // virtual or unknown
mjr 38:091e511ce8a0 1291 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1292 break;
mjr 38:091e511ce8a0 1293 }
mjr 38:091e511ce8a0 1294
mjr 40:cc0d9814522b 1295 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1296 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1297 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1298 if (activeLow)
mjr 38:091e511ce8a0 1299 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1300
mjr 40:cc0d9814522b 1301 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1302 // needs to be
mjr 40:cc0d9814522b 1303 if (noisy)
mjr 40:cc0d9814522b 1304 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1305
mjr 40:cc0d9814522b 1306 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1307 if (gamma)
mjr 40:cc0d9814522b 1308 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1309
mjr 53:9b2611964afc 1310 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1311 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1312 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1313 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1314 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1315
mjr 53:9b2611964afc 1316 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1317 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1318 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1319
mjr 38:091e511ce8a0 1320 // turn it off initially
mjr 38:091e511ce8a0 1321 lwp->set(0);
mjr 38:091e511ce8a0 1322
mjr 38:091e511ce8a0 1323 // return the pin
mjr 38:091e511ce8a0 1324 return lwp;
mjr 38:091e511ce8a0 1325 }
mjr 38:091e511ce8a0 1326
mjr 6:cc35eb643e8f 1327 // initialize the output pin array
mjr 35:e959ffba78fd 1328 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1329 {
mjr 35:e959ffba78fd 1330 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1331 // total number of ports.
mjr 35:e959ffba78fd 1332 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1333 int i;
mjr 35:e959ffba78fd 1334 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1335 {
mjr 35:e959ffba78fd 1336 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1337 {
mjr 35:e959ffba78fd 1338 numOutputs = i;
mjr 34:6b981a2afab7 1339 break;
mjr 34:6b981a2afab7 1340 }
mjr 33:d832bcab089e 1341 }
mjr 33:d832bcab089e 1342
mjr 73:4e8ce0b18915 1343 // allocate the pin array
mjr 73:4e8ce0b18915 1344 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1345
mjr 73:4e8ce0b18915 1346 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1347 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1348
mjr 73:4e8ce0b18915 1349 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1350 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1351 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1352
mjr 73:4e8ce0b18915 1353 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1354 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1355 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1356
mjr 73:4e8ce0b18915 1357 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1358 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1359 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1360
mjr 35:e959ffba78fd 1361 // create the pin interface object for each port
mjr 35:e959ffba78fd 1362 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1363 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1364 }
mjr 6:cc35eb643e8f 1365
mjr 76:7f5912b6340e 1366 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1367 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1368 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1369 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1370 // equivalent to 48.
mjr 40:cc0d9814522b 1371 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1372 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1373 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1374 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1375 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1376 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1377 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1378 255, 255
mjr 40:cc0d9814522b 1379 };
mjr 40:cc0d9814522b 1380
mjr 76:7f5912b6340e 1381 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1382 // level (1..48)
mjr 76:7f5912b6340e 1383 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1384 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1385 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1386 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1387 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1388 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1389 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1390 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1391 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1392 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1393 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1394 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1395 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1396 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1397 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1398 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1399 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1400 };
mjr 76:7f5912b6340e 1401
mjr 74:822a92bc11d2 1402 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1403 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1404 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1405 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1406 //
mjr 74:822a92bc11d2 1407 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1408 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1409 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1410 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1411 //
mjr 74:822a92bc11d2 1412 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1413 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1414 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1415 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1416 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1417 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1418 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1419 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1420 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1421 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1422 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1423 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1424 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1425 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1426 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1427 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1428 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1429 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1430 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1431 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1432
mjr 74:822a92bc11d2 1433 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1434 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1435 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1436 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1437 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1438 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1439 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1440 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1441 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1442 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1443 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1444 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1445 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1446 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1447 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1448 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1449 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1450
mjr 74:822a92bc11d2 1451 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1452 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1453 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1454 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1455 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1456 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1457 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1458 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1459 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1460 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1461 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1462 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1463 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1464 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1465 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1466 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1467 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1468
mjr 74:822a92bc11d2 1469 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1470 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1471 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1472 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1473 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1474 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1475 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1476 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1477 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1478 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1479 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1480 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1481 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1482 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1483 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1484 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1485 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1486 };
mjr 74:822a92bc11d2 1487
mjr 74:822a92bc11d2 1488 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1489 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1490 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1491
mjr 76:7f5912b6340e 1492 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1493 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1494
mjr 76:7f5912b6340e 1495 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1496 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1497 // outputs on each cycle.
mjr 29:582472d0bc57 1498 static void wizPulse()
mjr 29:582472d0bc57 1499 {
mjr 76:7f5912b6340e 1500 // current bank
mjr 76:7f5912b6340e 1501 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1502
mjr 76:7f5912b6340e 1503 // start a timer for statistics collection
mjr 76:7f5912b6340e 1504 IF_DIAG(
mjr 76:7f5912b6340e 1505 Timer t;
mjr 76:7f5912b6340e 1506 t.start();
mjr 76:7f5912b6340e 1507 )
mjr 76:7f5912b6340e 1508
mjr 76:7f5912b6340e 1509 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1510 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1511 //
mjr 76:7f5912b6340e 1512 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1513 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1514 //
mjr 76:7f5912b6340e 1515 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1516 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1517 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1518 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1519 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1520 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1521 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1522 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1523 // current cycle.
mjr 76:7f5912b6340e 1524 //
mjr 76:7f5912b6340e 1525 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1526 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1527 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1528 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1529 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1530 //
mjr 76:7f5912b6340e 1531 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1532 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1533 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1534 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1535 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1536 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1537 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1538 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1539 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1540 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1541 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1542 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1543 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1544 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1545 // bit counts.
mjr 76:7f5912b6340e 1546 //
mjr 76:7f5912b6340e 1547 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1548 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1549 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1550 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1551 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1552 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1553 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1554 // one division for another!
mjr 76:7f5912b6340e 1555 //
mjr 76:7f5912b6340e 1556 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1557 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1558 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1559 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1560 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1561 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1562 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1563 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1564 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1565 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1566 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1567 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1568 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1569 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1570 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1571 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1572 // remainder calculation anyway.
mjr 76:7f5912b6340e 1573 //
mjr 76:7f5912b6340e 1574 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1575 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1576 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1577 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1578 //
mjr 76:7f5912b6340e 1579 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1580 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1581 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1582 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1583 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1584 // the result, since we started with 32.
mjr 76:7f5912b6340e 1585 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1586 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1587 };
mjr 76:7f5912b6340e 1588 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1589
mjr 76:7f5912b6340e 1590 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1591 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1592 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1593 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1594 toPort = numOutputs;
mjr 76:7f5912b6340e 1595
mjr 76:7f5912b6340e 1596 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1597 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1598 {
mjr 76:7f5912b6340e 1599 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1600 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1601 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1602 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1603 if (wizOn[i])
mjr 29:582472d0bc57 1604 {
mjr 76:7f5912b6340e 1605 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 1606 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 1607 {
mjr 76:7f5912b6340e 1608 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 1609 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 1610 }
mjr 29:582472d0bc57 1611 }
mjr 76:7f5912b6340e 1612 }
mjr 76:7f5912b6340e 1613
mjr 34:6b981a2afab7 1614 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1615 if (hc595 != 0)
mjr 35:e959ffba78fd 1616 hc595->update();
mjr 76:7f5912b6340e 1617
mjr 76:7f5912b6340e 1618 // switch to the next bank
mjr 76:7f5912b6340e 1619 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 1620 wizPulseBank = 0;
mjr 76:7f5912b6340e 1621
mjr 76:7f5912b6340e 1622 // collect timing statistics
mjr 76:7f5912b6340e 1623 IF_DIAG(
mjr 76:7f5912b6340e 1624 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 1625 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 1626 )
mjr 1:d913e0afb2ac 1627 }
mjr 38:091e511ce8a0 1628
mjr 76:7f5912b6340e 1629 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 1630 static void updateLwPort(int port)
mjr 38:091e511ce8a0 1631 {
mjr 76:7f5912b6340e 1632 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 1633 if (wizOn[port])
mjr 76:7f5912b6340e 1634 {
mjr 76:7f5912b6340e 1635 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 1636 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 1637 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 1638 // it on the next cycle.
mjr 76:7f5912b6340e 1639 int val = wizVal[port];
mjr 76:7f5912b6340e 1640 if (val <= 49)
mjr 76:7f5912b6340e 1641 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 1642 }
mjr 76:7f5912b6340e 1643 else
mjr 76:7f5912b6340e 1644 {
mjr 76:7f5912b6340e 1645 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 1646 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 1647 }
mjr 73:4e8ce0b18915 1648 }
mjr 73:4e8ce0b18915 1649
mjr 73:4e8ce0b18915 1650 // Turn off all outputs and restore everything to the default LedWiz
mjr 73:4e8ce0b18915 1651 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 73:4e8ce0b18915 1652 // brightness) and switch state Off, sets all extended outputs (#33
mjr 73:4e8ce0b18915 1653 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 73:4e8ce0b18915 1654 // This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 1655 //
mjr 73:4e8ce0b18915 1656 void allOutputsOff()
mjr 73:4e8ce0b18915 1657 {
mjr 73:4e8ce0b18915 1658 // reset all LedWiz outputs to OFF/48
mjr 73:4e8ce0b18915 1659 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 1660 {
mjr 73:4e8ce0b18915 1661 outLevel[i] = 0;
mjr 73:4e8ce0b18915 1662 wizOn[i] = 0;
mjr 73:4e8ce0b18915 1663 wizVal[i] = 48;
mjr 73:4e8ce0b18915 1664 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 1665 }
mjr 73:4e8ce0b18915 1666
mjr 73:4e8ce0b18915 1667 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 1668 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1669 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 1670
mjr 73:4e8ce0b18915 1671 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 1672 if (hc595 != 0)
mjr 38:091e511ce8a0 1673 hc595->update();
mjr 38:091e511ce8a0 1674 }
mjr 38:091e511ce8a0 1675
mjr 74:822a92bc11d2 1676 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 1677 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 1678 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 1679 // address any port group.
mjr 74:822a92bc11d2 1680 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 1681 {
mjr 76:7f5912b6340e 1682 // update all on/off states in the group
mjr 74:822a92bc11d2 1683 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 1684 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 1685 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 1686 {
mjr 74:822a92bc11d2 1687 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 1688 if (bit == 0x100) {
mjr 74:822a92bc11d2 1689 bit = 1;
mjr 74:822a92bc11d2 1690 ++imsg;
mjr 74:822a92bc11d2 1691 }
mjr 74:822a92bc11d2 1692
mjr 74:822a92bc11d2 1693 // set the on/off state
mjr 76:7f5912b6340e 1694 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 1695
mjr 76:7f5912b6340e 1696 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 1697 updateLwPort(port);
mjr 74:822a92bc11d2 1698 }
mjr 74:822a92bc11d2 1699
mjr 74:822a92bc11d2 1700 // set the flash speed for the port group
mjr 74:822a92bc11d2 1701 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 1702 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 1703
mjr 76:7f5912b6340e 1704 // update 74HC959 outputs
mjr 76:7f5912b6340e 1705 if (hc595 != 0)
mjr 76:7f5912b6340e 1706 hc595->update();
mjr 74:822a92bc11d2 1707 }
mjr 74:822a92bc11d2 1708
mjr 74:822a92bc11d2 1709 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 1710 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 1711 {
mjr 74:822a92bc11d2 1712 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 1713 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 1714 {
mjr 74:822a92bc11d2 1715 // get the value
mjr 74:822a92bc11d2 1716 uint8_t v = data[i];
mjr 74:822a92bc11d2 1717
mjr 74:822a92bc11d2 1718 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 1719 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 1720 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 1721 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 1722 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 1723 // as such.
mjr 74:822a92bc11d2 1724 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 1725 v = 48;
mjr 74:822a92bc11d2 1726
mjr 74:822a92bc11d2 1727 // store it
mjr 76:7f5912b6340e 1728 wizVal[port] = v;
mjr 76:7f5912b6340e 1729
mjr 76:7f5912b6340e 1730 // update the port
mjr 76:7f5912b6340e 1731 updateLwPort(port);
mjr 74:822a92bc11d2 1732 }
mjr 74:822a92bc11d2 1733
mjr 76:7f5912b6340e 1734 // update 74HC595 outputs
mjr 76:7f5912b6340e 1735 if (hc595 != 0)
mjr 76:7f5912b6340e 1736 hc595->update();
mjr 74:822a92bc11d2 1737 }
mjr 74:822a92bc11d2 1738
mjr 77:0b96f6867312 1739 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 1740 //
mjr 77:0b96f6867312 1741 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 1742 //
mjr 77:0b96f6867312 1743
mjr 77:0b96f6867312 1744 // receiver
mjr 77:0b96f6867312 1745 IRReceiver *ir_rx;
mjr 77:0b96f6867312 1746
mjr 77:0b96f6867312 1747 // transmitter
mjr 77:0b96f6867312 1748 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 1749
mjr 77:0b96f6867312 1750 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 1751 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 1752 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 1753 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 1754 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 1755 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 1756 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 1757 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 1758 // configuration slot n
mjr 77:0b96f6867312 1759 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 1760
mjr 78:1e00b3fa11af 1761 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 1762 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 1763 // protocol.
mjr 78:1e00b3fa11af 1764 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 1765
mjr 78:1e00b3fa11af 1766 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 1767 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 1768 // while waiting for the rest.
mjr 78:1e00b3fa11af 1769 static struct
mjr 78:1e00b3fa11af 1770 {
mjr 78:1e00b3fa11af 1771 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 1772 uint64_t code; // code
mjr 78:1e00b3fa11af 1773 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 1774 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 1775 } IRAdHocCmd;
mjr 78:1e00b3fa11af 1776
mjr 77:0b96f6867312 1777
mjr 77:0b96f6867312 1778 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 1779 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 1780 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 1781 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 1782 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 1783 // amount of time.
mjr 77:0b96f6867312 1784 Timer IRTimer;
mjr 77:0b96f6867312 1785
mjr 77:0b96f6867312 1786 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 1787 // The states are:
mjr 77:0b96f6867312 1788 //
mjr 77:0b96f6867312 1789 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 1790 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 1791 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 1792 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 1793 //
mjr 77:0b96f6867312 1794 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 1795 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 1796 // received within a reasonable time.
mjr 77:0b96f6867312 1797 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 1798
mjr 77:0b96f6867312 1799 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 1800 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 1801 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 1802 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 1803 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 1804 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 1805 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 1806 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 1807 IRCommand learnedIRCode;
mjr 77:0b96f6867312 1808
mjr 78:1e00b3fa11af 1809 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 1810 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 1811 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 1812 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 1813 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 1814 // index; 0 represents no command.
mjr 77:0b96f6867312 1815 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 1816
mjr 77:0b96f6867312 1817 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 1818 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 1819 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 1820 // command we received.
mjr 77:0b96f6867312 1821 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 1822
mjr 77:0b96f6867312 1823 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 1824 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 1825 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 1826 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 1827 // distinct key press.
mjr 77:0b96f6867312 1828 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 1829
mjr 78:1e00b3fa11af 1830
mjr 77:0b96f6867312 1831 // initialize
mjr 77:0b96f6867312 1832 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 1833 {
mjr 77:0b96f6867312 1834 PinName pin;
mjr 77:0b96f6867312 1835
mjr 77:0b96f6867312 1836 // start the IR timer
mjr 77:0b96f6867312 1837 IRTimer.start();
mjr 77:0b96f6867312 1838
mjr 77:0b96f6867312 1839 // if there's a transmitter, set it up
mjr 77:0b96f6867312 1840 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 1841 {
mjr 77:0b96f6867312 1842 // no virtual buttons yet
mjr 77:0b96f6867312 1843 int nVirtualButtons = 0;
mjr 77:0b96f6867312 1844 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 1845
mjr 77:0b96f6867312 1846 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 1847 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1848 {
mjr 77:0b96f6867312 1849 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 1850 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 1851 }
mjr 77:0b96f6867312 1852
mjr 77:0b96f6867312 1853 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 1854 // real button inputs
mjr 77:0b96f6867312 1855 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 1856 {
mjr 77:0b96f6867312 1857 // get the button
mjr 77:0b96f6867312 1858 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 1859
mjr 77:0b96f6867312 1860 // check the unshifted button
mjr 77:0b96f6867312 1861 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 1862 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1863 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1864 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1865
mjr 77:0b96f6867312 1866 // check the shifted button
mjr 77:0b96f6867312 1867 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 1868 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1869 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1870 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1871 }
mjr 77:0b96f6867312 1872
mjr 77:0b96f6867312 1873 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 1874 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 1875 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 1876
mjr 77:0b96f6867312 1877 // create the transmitter
mjr 77:0b96f6867312 1878 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 1879
mjr 77:0b96f6867312 1880 // program the commands into the virtual button slots
mjr 77:0b96f6867312 1881 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1882 {
mjr 77:0b96f6867312 1883 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 1884 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 1885 if (vb != 0xFF)
mjr 77:0b96f6867312 1886 {
mjr 77:0b96f6867312 1887 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1888 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 1889 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 1890 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 1891 }
mjr 77:0b96f6867312 1892 }
mjr 77:0b96f6867312 1893 }
mjr 77:0b96f6867312 1894
mjr 77:0b96f6867312 1895 // if there's a receiver, set it up
mjr 77:0b96f6867312 1896 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 1897 {
mjr 77:0b96f6867312 1898 // create the receiver
mjr 77:0b96f6867312 1899 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 1900
mjr 77:0b96f6867312 1901 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 1902 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 1903 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 1904
mjr 77:0b96f6867312 1905 // enable it
mjr 77:0b96f6867312 1906 ir_rx->enable();
mjr 77:0b96f6867312 1907
mjr 77:0b96f6867312 1908 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 1909 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 1910 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 1911 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1912 {
mjr 77:0b96f6867312 1913 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1914 if (cb.protocol != 0
mjr 77:0b96f6867312 1915 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 1916 {
mjr 77:0b96f6867312 1917 kbKeys = true;
mjr 77:0b96f6867312 1918 break;
mjr 77:0b96f6867312 1919 }
mjr 77:0b96f6867312 1920 }
mjr 77:0b96f6867312 1921 }
mjr 77:0b96f6867312 1922 }
mjr 77:0b96f6867312 1923
mjr 77:0b96f6867312 1924 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 1925 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 1926 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 1927 {
mjr 77:0b96f6867312 1928 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 1929 if (ir_tx != 0)
mjr 77:0b96f6867312 1930 {
mjr 77:0b96f6867312 1931 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 1932 int slot = cmd - 1;
mjr 77:0b96f6867312 1933
mjr 77:0b96f6867312 1934 // press or release the virtual button
mjr 77:0b96f6867312 1935 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 1936 }
mjr 77:0b96f6867312 1937 }
mjr 77:0b96f6867312 1938
mjr 78:1e00b3fa11af 1939 // Process IR input and output
mjr 77:0b96f6867312 1940 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 1941 {
mjr 78:1e00b3fa11af 1942 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 1943 if (ir_tx != 0)
mjr 77:0b96f6867312 1944 {
mjr 78:1e00b3fa11af 1945 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 1946 // is ready to send, send it.
mjr 78:1e00b3fa11af 1947 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 1948 {
mjr 78:1e00b3fa11af 1949 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 1950 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 1951 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 1952 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 1953
mjr 78:1e00b3fa11af 1954 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 1955 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 1956 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 1957
mjr 78:1e00b3fa11af 1958 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 1959 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 1960 }
mjr 77:0b96f6867312 1961 }
mjr 78:1e00b3fa11af 1962
mjr 78:1e00b3fa11af 1963 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 1964 if (ir_rx != 0)
mjr 77:0b96f6867312 1965 {
mjr 78:1e00b3fa11af 1966 // Time out any received command
mjr 78:1e00b3fa11af 1967 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 1968 {
mjr 80:94dc2946871b 1969 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 1970 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 1971 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 1972 if (t > 200000)
mjr 78:1e00b3fa11af 1973 IRCommandIn = 0;
mjr 80:94dc2946871b 1974 else if (t > 50000)
mjr 78:1e00b3fa11af 1975 IRKeyGap = false;
mjr 78:1e00b3fa11af 1976 }
mjr 78:1e00b3fa11af 1977
mjr 78:1e00b3fa11af 1978 // Check if we're in learning mode
mjr 78:1e00b3fa11af 1979 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 1980 {
mjr 78:1e00b3fa11af 1981 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 1982 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 1983 // limit.
mjr 78:1e00b3fa11af 1984 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 1985 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 1986 int n;
mjr 78:1e00b3fa11af 1987 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 1988
mjr 78:1e00b3fa11af 1989 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 1990 if (n != 0)
mjr 78:1e00b3fa11af 1991 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 1992
mjr 78:1e00b3fa11af 1993 // check for a command
mjr 78:1e00b3fa11af 1994 IRCommand c;
mjr 78:1e00b3fa11af 1995 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 1996 {
mjr 78:1e00b3fa11af 1997 // check the current learning state
mjr 78:1e00b3fa11af 1998 switch (IRLearningMode)
mjr 78:1e00b3fa11af 1999 {
mjr 78:1e00b3fa11af 2000 case 1:
mjr 78:1e00b3fa11af 2001 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2002 // This is it.
mjr 78:1e00b3fa11af 2003 learnedIRCode = c;
mjr 78:1e00b3fa11af 2004
mjr 78:1e00b3fa11af 2005 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2006 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2007 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2008 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2009 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2010 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2011 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2012 break;
mjr 78:1e00b3fa11af 2013
mjr 78:1e00b3fa11af 2014 case 2:
mjr 78:1e00b3fa11af 2015 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2016 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2017 //
mjr 78:1e00b3fa11af 2018 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2019 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2020 //
mjr 78:1e00b3fa11af 2021 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2022 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2023 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2024 // them.
mjr 78:1e00b3fa11af 2025 //
mjr 78:1e00b3fa11af 2026 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2027 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2028 // over.
mjr 78:1e00b3fa11af 2029 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2030 && c.hasDittos
mjr 78:1e00b3fa11af 2031 && c.ditto)
mjr 78:1e00b3fa11af 2032 {
mjr 78:1e00b3fa11af 2033 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2034 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2035 }
mjr 78:1e00b3fa11af 2036 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2037 && c.hasDittos
mjr 78:1e00b3fa11af 2038 && !c.ditto
mjr 78:1e00b3fa11af 2039 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2040 {
mjr 78:1e00b3fa11af 2041 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2042 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2043 // protocol supports them
mjr 78:1e00b3fa11af 2044 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2045 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2046 }
mjr 78:1e00b3fa11af 2047 else
mjr 78:1e00b3fa11af 2048 {
mjr 78:1e00b3fa11af 2049 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2050 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2051 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2052 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2053 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2054 }
mjr 78:1e00b3fa11af 2055 break;
mjr 78:1e00b3fa11af 2056 }
mjr 77:0b96f6867312 2057
mjr 78:1e00b3fa11af 2058 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2059 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2060 // learning mode.
mjr 78:1e00b3fa11af 2061 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2062 {
mjr 78:1e00b3fa11af 2063 // figure the flags:
mjr 78:1e00b3fa11af 2064 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2065 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2066 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2067 flags |= 0x02;
mjr 78:1e00b3fa11af 2068
mjr 78:1e00b3fa11af 2069 // report the code
mjr 78:1e00b3fa11af 2070 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2071
mjr 78:1e00b3fa11af 2072 // exit learning mode
mjr 78:1e00b3fa11af 2073 IRLearningMode = 0;
mjr 77:0b96f6867312 2074 }
mjr 77:0b96f6867312 2075 }
mjr 77:0b96f6867312 2076
mjr 78:1e00b3fa11af 2077 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2078 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2079 {
mjr 78:1e00b3fa11af 2080 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2081 // zero data elements
mjr 78:1e00b3fa11af 2082 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2083
mjr 78:1e00b3fa11af 2084
mjr 78:1e00b3fa11af 2085 // cancel learning mode
mjr 77:0b96f6867312 2086 IRLearningMode = 0;
mjr 77:0b96f6867312 2087 }
mjr 77:0b96f6867312 2088 }
mjr 78:1e00b3fa11af 2089 else
mjr 77:0b96f6867312 2090 {
mjr 78:1e00b3fa11af 2091 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2092 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2093 ir_rx->process();
mjr 78:1e00b3fa11af 2094
mjr 78:1e00b3fa11af 2095 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2096 // have been read.
mjr 78:1e00b3fa11af 2097 IRCommand c;
mjr 78:1e00b3fa11af 2098 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2099 {
mjr 78:1e00b3fa11af 2100 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2101 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2102 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2103 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2104 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2105 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2106 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2107 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2108 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2109 //
mjr 78:1e00b3fa11af 2110 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2111 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2112 // command.
mjr 78:1e00b3fa11af 2113 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2114 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2115 {
mjr 78:1e00b3fa11af 2116 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2117 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2118 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2119 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2120 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2121 if (c.ditto)
mjr 78:1e00b3fa11af 2122 {
mjr 78:1e00b3fa11af 2123 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2124 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2125 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2126 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2127 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2128 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2129 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2130 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2131 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2132 }
mjr 78:1e00b3fa11af 2133 else
mjr 78:1e00b3fa11af 2134 {
mjr 78:1e00b3fa11af 2135 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2136 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2137 // prior command.
mjr 78:1e00b3fa11af 2138 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2139 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2140 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2141
mjr 78:1e00b3fa11af 2142 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2143 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2144 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2145 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2146 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2147 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2148 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2149 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2150 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2151 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2152 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2153 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2154 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2155 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2156 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2157 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2158 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2159 autoRepeat =
mjr 78:1e00b3fa11af 2160 repeat
mjr 78:1e00b3fa11af 2161 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2162 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2163 }
mjr 78:1e00b3fa11af 2164 }
mjr 78:1e00b3fa11af 2165
mjr 78:1e00b3fa11af 2166 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2167 if (repeat)
mjr 78:1e00b3fa11af 2168 {
mjr 78:1e00b3fa11af 2169 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2170 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2171 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2172 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2173 // key press event.
mjr 78:1e00b3fa11af 2174 if (!autoRepeat)
mjr 78:1e00b3fa11af 2175 IRKeyGap = true;
mjr 78:1e00b3fa11af 2176
mjr 78:1e00b3fa11af 2177 // restart the key-up timer
mjr 78:1e00b3fa11af 2178 IRTimer.reset();
mjr 78:1e00b3fa11af 2179 }
mjr 78:1e00b3fa11af 2180 else if (c.ditto)
mjr 78:1e00b3fa11af 2181 {
mjr 78:1e00b3fa11af 2182 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2183 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2184 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2185 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2186 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2187 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2188 // a full command for a new key press.
mjr 78:1e00b3fa11af 2189 IRCommandIn = 0;
mjr 77:0b96f6867312 2190 }
mjr 77:0b96f6867312 2191 else
mjr 77:0b96f6867312 2192 {
mjr 78:1e00b3fa11af 2193 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2194 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2195 // the new command).
mjr 78:1e00b3fa11af 2196 IRCommandIn = 0;
mjr 77:0b96f6867312 2197
mjr 78:1e00b3fa11af 2198 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2199 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2200 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2201 {
mjr 78:1e00b3fa11af 2202 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2203 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2204 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2205 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2206 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2207 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2208 {
mjr 78:1e00b3fa11af 2209 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2210 // remember the starting time.
mjr 78:1e00b3fa11af 2211 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2212 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2213 IRTimer.reset();
mjr 78:1e00b3fa11af 2214
mjr 78:1e00b3fa11af 2215 // no need to keep searching
mjr 78:1e00b3fa11af 2216 break;
mjr 78:1e00b3fa11af 2217 }
mjr 77:0b96f6867312 2218 }
mjr 77:0b96f6867312 2219 }
mjr 77:0b96f6867312 2220 }
mjr 77:0b96f6867312 2221 }
mjr 77:0b96f6867312 2222 }
mjr 77:0b96f6867312 2223 }
mjr 77:0b96f6867312 2224
mjr 74:822a92bc11d2 2225
mjr 11:bd9da7088e6e 2226 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2227 //
mjr 11:bd9da7088e6e 2228 // Button input
mjr 11:bd9da7088e6e 2229 //
mjr 11:bd9da7088e6e 2230
mjr 18:5e890ebd0023 2231 // button state
mjr 18:5e890ebd0023 2232 struct ButtonState
mjr 18:5e890ebd0023 2233 {
mjr 38:091e511ce8a0 2234 ButtonState()
mjr 38:091e511ce8a0 2235 {
mjr 53:9b2611964afc 2236 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2237 virtState = 0;
mjr 53:9b2611964afc 2238 dbState = 0;
mjr 38:091e511ce8a0 2239 pulseState = 0;
mjr 53:9b2611964afc 2240 pulseTime = 0;
mjr 38:091e511ce8a0 2241 }
mjr 35:e959ffba78fd 2242
mjr 53:9b2611964afc 2243 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2244 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2245 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2246 //
mjr 53:9b2611964afc 2247 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2248 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2249 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2250 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2251 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2252 void virtPress(bool on)
mjr 53:9b2611964afc 2253 {
mjr 53:9b2611964afc 2254 // Increment or decrement the current state
mjr 53:9b2611964afc 2255 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2256 }
mjr 53:9b2611964afc 2257
mjr 53:9b2611964afc 2258 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2259 TinyDigitalIn di;
mjr 38:091e511ce8a0 2260
mjr 65:739875521aae 2261 // Time of last pulse state transition.
mjr 65:739875521aae 2262 //
mjr 65:739875521aae 2263 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2264 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2265 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2266 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2267 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2268 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2269 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2270 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2271 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2272 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2273 // This software system can't be fooled that way.)
mjr 65:739875521aae 2274 uint32_t pulseTime;
mjr 18:5e890ebd0023 2275
mjr 65:739875521aae 2276 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2277 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2278 uint8_t cfgIndex;
mjr 53:9b2611964afc 2279
mjr 53:9b2611964afc 2280 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2281 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2282 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2283 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2284 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2285 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2286 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2287 // and physical source states.
mjr 53:9b2611964afc 2288 uint8_t virtState;
mjr 38:091e511ce8a0 2289
mjr 38:091e511ce8a0 2290 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2291 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2292 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2293 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2294 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2295 uint8_t dbState;
mjr 38:091e511ce8a0 2296
mjr 65:739875521aae 2297 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2298 uint8_t physState : 1;
mjr 65:739875521aae 2299
mjr 65:739875521aae 2300 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2301 uint8_t logState : 1;
mjr 65:739875521aae 2302
mjr 79:682ae3171a08 2303 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 2304 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 2305 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 2306 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 2307 uint8_t prevLogState : 1;
mjr 65:739875521aae 2308
mjr 65:739875521aae 2309 // Pulse state
mjr 65:739875521aae 2310 //
mjr 65:739875521aae 2311 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2312 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2313 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2314 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2315 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2316 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2317 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2318 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2319 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2320 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2321 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 2322 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 2323 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2324 //
mjr 38:091e511ce8a0 2325 // Pulse state:
mjr 38:091e511ce8a0 2326 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2327 // 1 -> off
mjr 38:091e511ce8a0 2328 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2329 // 3 -> on
mjr 38:091e511ce8a0 2330 // 4 -> transitioning on-off
mjr 65:739875521aae 2331 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2332
mjr 65:739875521aae 2333 } __attribute__((packed));
mjr 65:739875521aae 2334
mjr 65:739875521aae 2335 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2336 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2337 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2338
mjr 66:2e3583fbd2f4 2339 // Shift button state
mjr 66:2e3583fbd2f4 2340 struct
mjr 66:2e3583fbd2f4 2341 {
mjr 66:2e3583fbd2f4 2342 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 2343 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 2344 // 0 = not shifted
mjr 66:2e3583fbd2f4 2345 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2346 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 2347 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 2348 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 2349 }
mjr 66:2e3583fbd2f4 2350 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2351
mjr 38:091e511ce8a0 2352 // Button data
mjr 38:091e511ce8a0 2353 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2354
mjr 38:091e511ce8a0 2355 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2356 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2357 // modifier keys.
mjr 38:091e511ce8a0 2358 struct
mjr 38:091e511ce8a0 2359 {
mjr 38:091e511ce8a0 2360 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2361 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2362 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2363 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2364 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2365
mjr 38:091e511ce8a0 2366 // Media key state
mjr 38:091e511ce8a0 2367 struct
mjr 38:091e511ce8a0 2368 {
mjr 38:091e511ce8a0 2369 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2370 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2371 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2372
mjr 79:682ae3171a08 2373 // button scan interrupt timer
mjr 79:682ae3171a08 2374 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 2375
mjr 38:091e511ce8a0 2376 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2377 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2378 void scanButtons()
mjr 38:091e511ce8a0 2379 {
mjr 79:682ae3171a08 2380 // schedule the next interrupt
mjr 79:682ae3171a08 2381 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 2382
mjr 38:091e511ce8a0 2383 // scan all button input pins
mjr 73:4e8ce0b18915 2384 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2385 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2386 {
mjr 73:4e8ce0b18915 2387 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2388 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2389 bs->dbState = db;
mjr 73:4e8ce0b18915 2390
mjr 73:4e8ce0b18915 2391 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2392 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2393 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2394 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2395 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2396 db &= stable;
mjr 73:4e8ce0b18915 2397 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2398 bs->physState = !db;
mjr 38:091e511ce8a0 2399 }
mjr 38:091e511ce8a0 2400 }
mjr 38:091e511ce8a0 2401
mjr 38:091e511ce8a0 2402 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2403 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2404 // in the physical button state.
mjr 38:091e511ce8a0 2405 Timer buttonTimer;
mjr 12:669df364a565 2406
mjr 65:739875521aae 2407 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2408 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2409 {
mjr 65:739875521aae 2410 // count it
mjr 65:739875521aae 2411 ++nButtons;
mjr 65:739875521aae 2412
mjr 67:c39e66c4e000 2413 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2414 // keyboard interface
mjr 72:884207c0aab0 2415 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2416 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2417 kbKeys = true;
mjr 65:739875521aae 2418 }
mjr 65:739875521aae 2419
mjr 11:bd9da7088e6e 2420 // initialize the button inputs
mjr 35:e959ffba78fd 2421 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2422 {
mjr 66:2e3583fbd2f4 2423 // presume no shift key
mjr 66:2e3583fbd2f4 2424 shiftButton.index = -1;
mjr 82:4f6209cb5c33 2425 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2426
mjr 65:739875521aae 2427 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2428 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2429 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2430 nButtons = 0;
mjr 65:739875521aae 2431 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2432 {
mjr 65:739875521aae 2433 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2434 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 2435 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 2436 }
mjr 65:739875521aae 2437
mjr 65:739875521aae 2438 // Count virtual buttons
mjr 65:739875521aae 2439
mjr 65:739875521aae 2440 // ZB Launch
mjr 65:739875521aae 2441 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 2442 {
mjr 65:739875521aae 2443 // valid - remember the live button index
mjr 65:739875521aae 2444 zblButtonIndex = nButtons;
mjr 65:739875521aae 2445
mjr 65:739875521aae 2446 // count it
mjr 72:884207c0aab0 2447 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 2448 }
mjr 65:739875521aae 2449
mjr 65:739875521aae 2450 // Allocate the live button slots
mjr 65:739875521aae 2451 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 2452
mjr 65:739875521aae 2453 // Configure the physical inputs
mjr 65:739875521aae 2454 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2455 {
mjr 65:739875521aae 2456 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 2457 if (pin != NC)
mjr 65:739875521aae 2458 {
mjr 65:739875521aae 2459 // point back to the config slot for the keyboard data
mjr 65:739875521aae 2460 bs->cfgIndex = i;
mjr 65:739875521aae 2461
mjr 65:739875521aae 2462 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 2463 bs->di.assignPin(pin);
mjr 65:739875521aae 2464
mjr 65:739875521aae 2465 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 2466 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 2467 bs->pulseState = 1;
mjr 65:739875521aae 2468
mjr 66:2e3583fbd2f4 2469 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 2470 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 2471 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 2472 // config slots are left unused.
mjr 78:1e00b3fa11af 2473 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 2474 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 2475
mjr 65:739875521aae 2476 // advance to the next button
mjr 65:739875521aae 2477 ++bs;
mjr 65:739875521aae 2478 }
mjr 65:739875521aae 2479 }
mjr 65:739875521aae 2480
mjr 53:9b2611964afc 2481 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 2482 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 2483 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 2484 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 2485
mjr 53:9b2611964afc 2486 // ZB Launch Ball button
mjr 65:739875521aae 2487 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 2488 {
mjr 65:739875521aae 2489 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 2490 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 2491 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 2492 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 2493 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 2494 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 2495 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 2496 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 2497
mjr 66:2e3583fbd2f4 2498 // advance to the next button
mjr 65:739875521aae 2499 ++bs;
mjr 11:bd9da7088e6e 2500 }
mjr 12:669df364a565 2501
mjr 38:091e511ce8a0 2502 // start the button scan thread
mjr 79:682ae3171a08 2503 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 2504
mjr 38:091e511ce8a0 2505 // start the button state transition timer
mjr 12:669df364a565 2506 buttonTimer.start();
mjr 11:bd9da7088e6e 2507 }
mjr 11:bd9da7088e6e 2508
mjr 67:c39e66c4e000 2509 // Media key mapping. This maps from an 8-bit USB media key