An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R


This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.


  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.


The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Sat Apr 18 19:08:55 2020 +0000
TCD1103 DMA setup time padding to fix sporadic missed first pixel in transfer; fix TV ON so that the TV ON IR commands don't have to be grouped in the IR command first slots

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 0:5acbbe3f4cf4 1 /* USBJoystick.h */
mjr 0:5acbbe3f4cf4 2 /* USB device example: Joystick*/
mjr 0:5acbbe3f4cf4 3 /* Copyright (c) 2011 ARM Limited. All rights reserved. */
mjr 0:5acbbe3f4cf4 4 /* Modified Mouse code for Joystick - WH 2012 */
mjr 0:5acbbe3f4cf4 5
mjr 0:5acbbe3f4cf4 6 #ifndef USBJOYSTICK_H
mjr 0:5acbbe3f4cf4 7 #define USBJOYSTICK_H
mjr 0:5acbbe3f4cf4 8
mjr 0:5acbbe3f4cf4 9 #include "USBHID.h"
mjr 77:0b96f6867312 10 #include "circbuf.h"
mjr 35:e959ffba78fd 11
mjr 39:b3815a1c3802 12 // Bufferd incoming LedWiz message structure
mjr 38:091e511ce8a0 13 struct LedWizMsg
mjr 38:091e511ce8a0 14 {
mjr 38:091e511ce8a0 15 uint8_t data[8];
mjr 38:091e511ce8a0 16 };
mjr 38:091e511ce8a0 17
mjr 39:b3815a1c3802 18 // interface IDs
mjr 39:b3815a1c3802 19 const uint8_t IFC_ID_JS = 0; // joystick + LedWiz interface
mjr 39:b3815a1c3802 20 const uint8_t IFC_ID_KB = 1; // keyboard interface
mjr 39:b3815a1c3802 21
mjr 35:e959ffba78fd 22 // keyboard interface report IDs
mjr 63:5cd1a5f3a41b 23 const uint8_t REPORT_ID_KB = 1;
mjr 63:5cd1a5f3a41b 24 const uint8_t REPORT_ID_MEDIA = 2;
mjr 35:e959ffba78fd 25
mjr 0:5acbbe3f4cf4 26 /* Common usage */
mjr 0:5acbbe3f4cf4 27 enum JOY_BUTTON {
mjr 0:5acbbe3f4cf4 28 JOY_B0 = 0x0001,
mjr 0:5acbbe3f4cf4 29 JOY_B1 = 0x0002,
mjr 0:5acbbe3f4cf4 30 JOY_B2 = 0x0004,
mjr 0:5acbbe3f4cf4 31 JOY_B3 = 0x0008,
mjr 0:5acbbe3f4cf4 32 JOY_B4 = 0x0010,
mjr 0:5acbbe3f4cf4 33 JOY_B5 = 0x0020,
mjr 0:5acbbe3f4cf4 34 JOY_B6 = 0x0040,
mjr 0:5acbbe3f4cf4 35 JOY_B7 = 0x0080,
mjr 0:5acbbe3f4cf4 36 JOY_B8 = 0x0100,
mjr 0:5acbbe3f4cf4 37 JOY_B9 = 0x0200,
mjr 0:5acbbe3f4cf4 38 JOY_B10 = 0x0400,
mjr 0:5acbbe3f4cf4 39 JOY_B11 = 0x0800,
mjr 0:5acbbe3f4cf4 40 JOY_B12 = 0x1000,
mjr 0:5acbbe3f4cf4 41 JOY_B13 = 0x2000,
mjr 0:5acbbe3f4cf4 42 JOY_B14 = 0x4000,
mjr 0:5acbbe3f4cf4 43 JOY_B15 = 0x8000
mjr 0:5acbbe3f4cf4 44 };
mjr 0:5acbbe3f4cf4 45
mjr 0:5acbbe3f4cf4 46 /**
mjr 0:5acbbe3f4cf4 47 *
mjr 0:5acbbe3f4cf4 48 * USBJoystick example
mjr 0:5acbbe3f4cf4 49 * @code
mjr 0:5acbbe3f4cf4 50 * #include "mbed.h"
mjr 0:5acbbe3f4cf4 51 * #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 52 *
mjr 0:5acbbe3f4cf4 53 * USBJoystick joystick;
mjr 0:5acbbe3f4cf4 54 *
mjr 0:5acbbe3f4cf4 55 * int main(void)
mjr 0:5acbbe3f4cf4 56 * {
mjr 0:5acbbe3f4cf4 57 * while (1)
mjr 0:5acbbe3f4cf4 58 * {
mjr 0:5acbbe3f4cf4 59 * joystick.move(20, 0);
mjr 0:5acbbe3f4cf4 60 * wait(0.5);
mjr 0:5acbbe3f4cf4 61 * }
mjr 0:5acbbe3f4cf4 62 * }
mjr 0:5acbbe3f4cf4 63 *
mjr 0:5acbbe3f4cf4 64 * @endcode
mjr 0:5acbbe3f4cf4 65 *
mjr 0:5acbbe3f4cf4 66 *
mjr 0:5acbbe3f4cf4 67 * @code
mjr 0:5acbbe3f4cf4 68 * #include "mbed.h"
mjr 0:5acbbe3f4cf4 69 * #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 70 * #include <math.h>
mjr 0:5acbbe3f4cf4 71 *
mjr 0:5acbbe3f4cf4 72 * USBJoystick joystick;
mjr 0:5acbbe3f4cf4 73 *
mjr 0:5acbbe3f4cf4 74 * int main(void)
mjr 0:5acbbe3f4cf4 75 * {
mjr 0:5acbbe3f4cf4 76 * while (1) {
mjr 0:5acbbe3f4cf4 77 * // Basic Joystick
mjr 0:5acbbe3f4cf4 78 * joystick.update(tx, y, z, buttonBits);
mjr 0:5acbbe3f4cf4 79 * wait(0.001);
mjr 0:5acbbe3f4cf4 80 * }
mjr 0:5acbbe3f4cf4 81 * }
mjr 0:5acbbe3f4cf4 82 * @endcode
mjr 0:5acbbe3f4cf4 83 */
mjr 0:5acbbe3f4cf4 84
mjr 0:5acbbe3f4cf4 85
mjr 77:0b96f6867312 86 class USBJoystick: public USBHID
mjr 77:0b96f6867312 87 {
mjr 77:0b96f6867312 88 public:
mjr 77:0b96f6867312 89 // Length of our joystick reports. Important: This must be kept in sync
mjr 77:0b96f6867312 90 // with the actual joystick report format sent in update().
mjr 77:0b96f6867312 91 static const int reportLen = 14;
mjr 90:aa4e571da8e8 92
mjr 90:aa4e571da8e8 93 // Joystick axis report format
mjr 90:aa4e571da8e8 94 static const int AXIS_FORMAT_XYZ = 0; // nudge on X/Y, plunger on Z
mjr 90:aa4e571da8e8 95 static const int AXIS_FORMAT_RXRYRZ = 1; // nudge on Rx/Ry, plunger on Rz
mjr 38:091e511ce8a0 96
mjr 77:0b96f6867312 97 /**
mjr 77:0b96f6867312 98 * Constructor
mjr 77:0b96f6867312 99 *
mjr 77:0b96f6867312 100 * @param vendor_id Your vendor_id (default: 0x1234)
mjr 77:0b96f6867312 101 * @param product_id Your product_id (default: 0x0002)
mjr 77:0b96f6867312 102 * @param product_release Your product_release (default: 0x0001)
mjr 90:aa4e571da8e8 103 * @param waitforConnect don't return until the connection is established
mjr 90:aa4e571da8e8 104 * @param enableJoystick enable the joystick interface (if false, uses the OUT-only LedWiz-style interface)
mjr 90:aa4e571da8e8 105 * @param axisFormat an AXIS_FORMAT_xxx value specifying the joystick axis report format
mjr 90:aa4e571da8e8 106 * @param useKB enable the USB keyboard reporting interface
mjr 77:0b96f6867312 107 */
mjr 77:0b96f6867312 108 USBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 90:aa4e571da8e8 109 int waitForConnect, bool enableJoystick, int axisFormat, bool useKB)
mjr 77:0b96f6867312 110 : USBHID(16, 64, vendor_id, product_id, product_release, false)
mjr 77:0b96f6867312 111 {
mjr 77:0b96f6867312 112 _init();
mjr 77:0b96f6867312 113 this->useKB = useKB;
mjr 77:0b96f6867312 114 this->enableJoystick = enableJoystick;
mjr 90:aa4e571da8e8 115 this->axisFormat = axisFormat;
mjr 77:0b96f6867312 116 connect(waitForConnect);
mjr 77:0b96f6867312 117 };
mjr 77:0b96f6867312 118
mjr 77:0b96f6867312 119 /* read a report from the LedWiz buffer */
mjr 77:0b96f6867312 120 bool readLedWizMsg(LedWizMsg &msg)
mjr 77:0b96f6867312 121 {
mjr 77:0b96f6867312 122 return;
mjr 77:0b96f6867312 123 }
mjr 77:0b96f6867312 124
mjr 77:0b96f6867312 125 /* get the idle time settings, in milliseconds */
mjr 77:0b96f6867312 126 uint32_t getKbIdle() const { return kbIdleTime * 4UL; }
mjr 77:0b96f6867312 127 uint32_t getMediaIdle() const { return mediaIdleTime * 4UL; }
mjr 77:0b96f6867312 128
mjr 39:b3815a1c3802 129
mjr 77:0b96f6867312 130 /**
mjr 77:0b96f6867312 131 * Send a keyboard report. The argument gives the key state, in the standard
mjr 77:0b96f6867312 132 * 6KRO USB keyboard report format: byte 0 is the modifier key bit mask, byte 1
mjr 77:0b96f6867312 133 * is reserved (must be 0), and bytes 2-6 are the currently pressed keys, as
mjr 77:0b96f6867312 134 * USB key codes.
mjr 77:0b96f6867312 135 */
mjr 77:0b96f6867312 136 bool kbUpdate(uint8_t data[8]);
mjr 77:0b96f6867312 137
mjr 77:0b96f6867312 138 /**
mjr 77:0b96f6867312 139 * Send a media key update. The argument gives the bit mask of media keys
mjr 77:0b96f6867312 140 * currently pressed. See the HID report descriptor for the order of bits.
mjr 77:0b96f6867312 141 */
mjr 77:0b96f6867312 142 bool mediaUpdate(uint8_t data);
mjr 77:0b96f6867312 143
mjr 77:0b96f6867312 144 /**
mjr 77:0b96f6867312 145 * Update the joystick status
mjr 77:0b96f6867312 146 *
mjr 77:0b96f6867312 147 * @param x x-axis position
mjr 77:0b96f6867312 148 * @param y y-axis position
mjr 77:0b96f6867312 149 * @param z z-axis position
mjr 77:0b96f6867312 150 * @param buttons buttons state, as a bit mask (combination with '|' of JOY_Bn values)
mjr 77:0b96f6867312 151 * @returns true if there is no error, false otherwise
mjr 77:0b96f6867312 152 */
mjr 77:0b96f6867312 153 bool update(int16_t x, int16_t y, int16_t z, uint32_t buttons, uint16_t status);
mjr 77:0b96f6867312 154
mjr 77:0b96f6867312 155 /**
mjr 77:0b96f6867312 156 * Update just the status
mjr 77:0b96f6867312 157 */
mjr 77:0b96f6867312 158 bool updateStatus(uint32_t stat);
mjr 77:0b96f6867312 159
mjr 77:0b96f6867312 160 /**
mjr 86:e30a1f60f783 161 * Write the plunger status report header.
mjr 86:e30a1f60f783 162 *
mjr 86:e30a1f60f783 163 * Note that we automatically add the "calibration mode" bit to the flags,
mjr 86:e30a1f60f783 164 * so the caller doesn't have to include this. The caller only has to
mjr 86:e30a1f60f783 165 * include the sensor-specific flags.
mjr 77:0b96f6867312 166 *
mjr 77:0b96f6867312 167 * @param npix number of pixels in the sensor (0 for non-imaging sensors)
mjr 86:e30a1f60f783 168 * @param pos the decoded plunger position, or -1 if none detected
mjr 86:e30a1f60f783 169 * @param flags (see USBProtocol.h, message type 2A, "byte 7" bit flags)
mjr 77:0b96f6867312 170 * @param avgScanTime average sensor scan time in microseconds
mjr 77:0b96f6867312 171 * @param processingTime time in microseconds to process the current frame
mjr 77:0b96f6867312 172 */
mjr 86:e30a1f60f783 173 bool sendPlungerStatus(int npix, int flags, int dir,
mjr 86:e30a1f60f783 174 uint32_t avgScanTime, uint32_t processingTime);
mjr 86:e30a1f60f783 175
mjr 86:e30a1f60f783 176 /**
mjr 86:e30a1f60f783 177 * Send a secondary plunger status report header.
mjr 86:e30a1f60f783 178 *
mjr 86:e30a1f60f783 179 * @param nativeScale upper bound of the sensor's native reading scale
mjr 86:e30a1f60f783 180 * @param jitterLo low end of jitter filter window (in sensor native scale units)
mjr 86:e30a1f60f783 181 * @param jitterHi high end of jitter filter window
mjr 86:e30a1f60f783 182 * @param rawPos raw position reading, before applying jitter filter
mjr 86:e30a1f60f783 183 * @param axcTime auto-exposure time in microseconds
mjr 86:e30a1f60f783 184 */
mjr 86:e30a1f60f783 185 bool sendPlungerStatus2(
mjr 86:e30a1f60f783 186 int nativeScale, int jitterLo, int jitterHi, int rawPos, int axcTime);
mjr 87:8d35c74403af 187
mjr 87:8d35c74403af 188 /**
mjr 87:8d35c74403af 189 * Send a barcode plunger status report header.
mjr 87:8d35c74403af 190 *
mjr 87:8d35c74403af 191 * @param nbits number of bits in bar code
mjr 87:8d35c74403af 192 * @param codetype bar code type (1=Gray code/Manchester bit coding)
mjr 87:8d35c74403af 193 * @param pixofs pixel offset of first bit
mjr 87:8d35c74403af 194 * @param raw raw bar code bits
mjr 87:8d35c74403af 195 * @param mask mask of successfully read bar code bits
mjr 87:8d35c74403af 196 */
mjr 87:8d35c74403af 197 bool sendPlungerStatusBarcode(
mjr 87:8d35c74403af 198 int nbits, int codetype, int startOfs, int pixPerBit, int raw, int mask);
mjr 108:bd5d4bd4383b 199
mjr 108:bd5d4bd4383b 200 /**
mjr 108:bd5d4bd4383b 201 * Send a quadrature sensor status report header.
mjr 108:bd5d4bd4383b 202 *
mjr 108:bd5d4bd4383b 203 * @param chA channel "A" reading
mjr 108:bd5d4bd4383b 204 * @param chB channel "B" reading
mjr 108:bd5d4bd4383b 205 */
mjr 108:bd5d4bd4383b 206 bool sendPlungerStatusQuadrature(int chA, int chB);
mjr 86:e30a1f60f783 207
mjr 77:0b96f6867312 208 /**
mjr 77:0b96f6867312 209 * Write an exposure report. We'll fill out a report with as many pixels as
mjr 77:0b96f6867312 210 * will fit in the packet, send the report, and update the index to the next
mjr 77:0b96f6867312 211 * pixel to send. The caller should call this repeatedly to send reports for
mjr 77:0b96f6867312 212 * all pixels.
mjr 77:0b96f6867312 213 *
mjr 77:0b96f6867312 214 * @param idx current index in pixel array, updated to point to next pixel to send
mjr 77:0b96f6867312 215 * @param npix number of pixels in the overall array
mjr 77:0b96f6867312 216 * @param pix pixel array
mjr 77:0b96f6867312 217 */
mjr 77:0b96f6867312 218 bool sendPlungerPix(int &idx, int npix, const uint8_t *pix);
mjr 77:0b96f6867312 219
mjr 77:0b96f6867312 220 /**
mjr 77:0b96f6867312 221 * Write a configuration report.
mjr 77:0b96f6867312 222 *
mjr 77:0b96f6867312 223 * @param numOutputs the number of configured output channels
mjr 77:0b96f6867312 224 * @param unitNo the device unit number
mjr 77:0b96f6867312 225 * @param plungerZero plunger zero calibration point
mjr 77:0b96f6867312 226 * @param plungerMax plunger max calibration point
mjr 77:0b96f6867312 227 * @param plungerRlsTime measured plunger release time, in milliseconds
mjr 77:0b96f6867312 228 * @param configured true if a configuration has been saved to flash from the host
mjr 77:0b96f6867312 229 * @param sbxpbx true if this firmware version supports SBX/PBX protocol extensions
mjr 78:1e00b3fa11af 230 * @param newAccelFeatures true if this firmware version supports the new accelerometer
mjr 78:1e00b3fa11af 231 * features (adjustable dynamic range, adjustable auto-centering mode time,
mjr 78:1e00b3fa11af 232 * auto-centering mode on/off)
mjr 92:f264fbaa1be5 233 * @param flashStatusFeature true if this firmware version supports the flash write
mjr 82:4f6209cb5c33 234 * success flags in the status bits
mjr 92:f264fbaa1be5 235 * @param reportTimingFeatures true if this firmware version supports configurable
mjr 92:f264fbaa1be5 236 * joystick report timing
mjr 99:8139b0c274f4 237 * @param chimeLogicFeature true if this firmware version supports Chime Logic
mjr 77:0b96f6867312 238 * @param freeHeapBytes number of free bytes in the malloc heap
mjr 77:0b96f6867312 239 */
mjr 77:0b96f6867312 240 bool reportConfig(int numOutputs, int unitNo,
mjr 77:0b96f6867312 241 int plungerZero, int plungerMax, int plunterRlsTime,
mjr 92:f264fbaa1be5 242 bool configured, bool sbxpbx, bool newAccelFeatures,
mjr 92:f264fbaa1be5 243 bool flashStatusFeature, bool reportTimingFeatures,
mjr 99:8139b0c274f4 244 bool chimeLogicFeature, size_t freeHeapBytes);
mjr 77:0b96f6867312 245
mjr 77:0b96f6867312 246 /**
mjr 77:0b96f6867312 247 * Write a configuration variable query report.
mjr 77:0b96f6867312 248 *
mjr 77:0b96f6867312 249 * @param data the 7-byte data variable buffer, starting with the variable ID byte
mjr 77:0b96f6867312 250 */
mjr 77:0b96f6867312 251 bool reportConfigVar(const uint8_t *data);
mjr 77:0b96f6867312 252
mjr 77:0b96f6867312 253 /**
mjr 77:0b96f6867312 254 * Write a device ID report.
mjr 77:0b96f6867312 255 */
mjr 77:0b96f6867312 256 bool reportID(int index);
mjr 77:0b96f6867312 257
mjr 77:0b96f6867312 258 /**
mjr 77:0b96f6867312 259 * Write a build data report
mjr 77:0b96f6867312 260 *
mjr 77:0b96f6867312 261 * @param date build date plus time, in __DATE__ " " __TIME__ macro format ("Mon dd, yyyy hh:mm:ss")
mjr 77:0b96f6867312 262 */
mjr 77:0b96f6867312 263 bool reportBuildInfo(const char *date);
mjr 77:0b96f6867312 264
mjr 77:0b96f6867312 265 /**
mjr 77:0b96f6867312 266 * Write a physical button status report.
mjr 77:0b96f6867312 267 *
mjr 77:0b96f6867312 268 * @param numButtons the number of buttons
mjr 77:0b96f6867312 269 * @param state the button states, 1 bit per button, 8 buttons per byte,
mjr 77:0b96f6867312 270 * starting with button 0 in the low-order bit (0x01) of the
mjr 77:0b96f6867312 271 * first byte
mjr 77:0b96f6867312 272 */
mjr 77:0b96f6867312 273 bool reportButtonStatus(int numButtons, const uint8_t *state);
mjr 77:0b96f6867312 274
mjr 77:0b96f6867312 275 /**
mjr 77:0b96f6867312 276 * Write an IR raw sensor input report. This reports a set of raw
mjr 77:0b96f6867312 277 * timing reports for input read from the IR sensor, for learning
mjr 77:0b96f6867312 278 * remote purposes.
mjr 77:0b96f6867312 279 *
mjr 77:0b96f6867312 280 * @param n number of items to report, up to maxRawIR
mjr 77:0b96f6867312 281 * @param data items to report; each is a timing reading, in 2us
mjr 77:0b96f6867312 282 * increments, with the low bit in each report set to 0 for
mjr 77:0b96f6867312 283 * a "space" (IR off) or 1 for a "mark" (IR on)
mjr 77:0b96f6867312 284 */
mjr 77:0b96f6867312 285 bool reportRawIR(int n, const uint16_t *data);
mjr 77:0b96f6867312 286
mjr 77:0b96f6867312 287 /**
mjr 77:0b96f6867312 288 * Maximum number of raw IR readings that can be sent in one report
mjr 77:0b96f6867312 289 * via reportRawIR().
mjr 77:0b96f6867312 290 */
mjr 77:0b96f6867312 291 static const int maxRawIR = (reportLen - 3)/2;
mjr 77:0b96f6867312 292
mjr 77:0b96f6867312 293 /**
mjr 77:0b96f6867312 294 * Write an IR input report. This reports a decoded command read in
mjr 77:0b96f6867312 295 * learning mode to the host.
mjr 77:0b96f6867312 296 *
mjr 77:0b96f6867312 297 * @param pro protocol ID (see IRProtocolID.h)
mjr 77:0b96f6867312 298 * @param flags bit flags: 0x02 = protocol uses dittos
mjr 77:0b96f6867312 299 * @param code decoded command code
mjr 77:0b96f6867312 300 */
mjr 77:0b96f6867312 301 bool reportIRCode(uint8_t pro, uint8_t flags, uint64_t code);
mjr 35:e959ffba78fd 302
mjr 77:0b96f6867312 303 /**
mjr 77:0b96f6867312 304 * Send a joystick report to the host
mjr 77:0b96f6867312 305 *
mjr 77:0b96f6867312 306 * @returns true if there is no error, false otherwise
mjr 77:0b96f6867312 307 */
mjr 77:0b96f6867312 308 bool update();
mjr 77:0b96f6867312 309
mjr 77:0b96f6867312 310 /**
mjr 77:0b96f6867312 311 * Move the cursor to (x, y)
mjr 77:0b96f6867312 312 *
mjr 77:0b96f6867312 313 * @param x x-axis position
mjr 77:0b96f6867312 314 * @param y y-axis position
mjr 77:0b96f6867312 315 * @returns true if there is no error, false otherwise
mjr 77:0b96f6867312 316 */
mjr 77:0b96f6867312 317 bool move(int16_t x, int16_t y);
mjr 77:0b96f6867312 318
mjr 77:0b96f6867312 319 /**
mjr 77:0b96f6867312 320 * Set the z position
mjr 77:0b96f6867312 321 *
mjr 77:0b96f6867312 322 * @param z z-axis osition
mjr 77:0b96f6867312 323 */
mjr 77:0b96f6867312 324 bool setZ(int16_t z);
mjr 77:0b96f6867312 325
mjr 77:0b96f6867312 326 /**
mjr 77:0b96f6867312 327 * Press one or several buttons
mjr 77:0b96f6867312 328 *
mjr 77:0b96f6867312 329 * @param buttons button state, as a bitwise combination of JOY_Bn values
mjr 77:0b96f6867312 330 * @returns true if there is no error, false otherwise
mjr 77:0b96f6867312 331 */
mjr 77:0b96f6867312 332 bool buttons(uint32_t buttons);
mjr 77:0b96f6867312 333
mjr 77:0b96f6867312 334 /* USB descriptor overrides */
mjr 77:0b96f6867312 335 virtual const uint8_t *configurationDesc();
mjr 77:0b96f6867312 336 virtual const uint8_t *reportDesc(int idx, uint16_t &len);
mjr 39:b3815a1c3802 337
mjr 77:0b96f6867312 338 /* USB descriptor string overrides */
mjr 77:0b96f6867312 339 virtual const uint8_t *stringImanufacturerDesc();
mjr 77:0b96f6867312 340 virtual const uint8_t *stringIserialDesc();
mjr 77:0b96f6867312 341 virtual const uint8_t *stringIproductDesc();
mjr 77:0b96f6867312 342
mjr 77:0b96f6867312 343 /* set/get idle time */
mjr 77:0b96f6867312 344 virtual void setIdleTime(int ifc, int rptid, int t)
mjr 77:0b96f6867312 345 {
mjr 77:0b96f6867312 346 // Remember the new value if operating on the keyboard. Remember
mjr 77:0b96f6867312 347 // separate keyboard and media control idle times, in case the
mjr 77:0b96f6867312 348 // host wants separate report rates.
mjr 77:0b96f6867312 349 if (ifc == IFC_ID_KB)
mjr 77:0b96f6867312 350 {
mjr 77:0b96f6867312 351 if (rptid == REPORT_ID_KB)
mjr 77:0b96f6867312 352 kbIdleTime = t;
mjr 77:0b96f6867312 353 else if (rptid == REPORT_ID_MEDIA)
mjr 77:0b96f6867312 354 mediaIdleTime = t;
mjr 77:0b96f6867312 355 }
mjr 77:0b96f6867312 356 }
mjr 77:0b96f6867312 357 virtual uint8_t getIdleTime(int ifc, int rptid)
mjr 77:0b96f6867312 358 {
mjr 77:0b96f6867312 359 // Return the kb idle time if the kb interface is the one requested.
mjr 77:0b96f6867312 360 if (ifc == IFC_ID_KB)
mjr 77:0b96f6867312 361 {
mjr 77:0b96f6867312 362 if (rptid == REPORT_ID_KB)
mjr 77:0b96f6867312 363 return kbIdleTime;
mjr 77:0b96f6867312 364 if (rptid == REPORT_ID_MEDIA)
mjr 77:0b96f6867312 365 return mediaIdleTime;
mjr 77:0b96f6867312 366 }
mjr 77:0b96f6867312 367
mjr 77:0b96f6867312 368 // we don't use idle times for other interfaces or report types
mjr 77:0b96f6867312 369 return 0;
mjr 77:0b96f6867312 370 }
mjr 77:0b96f6867312 371
mjr 77:0b96f6867312 372 /* callback overrides */
mjr 77:0b96f6867312 373 virtual bool USBCallback_setConfiguration(uint8_t configuration);
mjr 77:0b96f6867312 374 virtual bool USBCallback_setInterface(uint16_t interface, uint8_t alternate)
mjr 77:0b96f6867312 375 { return interface == 0 || interface == 1; }
mjr 77:0b96f6867312 376
mjr 77:0b96f6867312 377 virtual bool EP1_OUT_callback();
mjr 77:0b96f6867312 378 virtual bool EP4_OUT_callback();
mjr 77:0b96f6867312 379
mjr 77:0b96f6867312 380 private:
mjr 38:091e511ce8a0 381
mjr 77:0b96f6867312 382 // Incoming LedWiz message buffer. Each LedWiz message is exactly 8 bytes.
mjr 77:0b96f6867312 383 CircBuf<LedWizMsg, 16> lwbuf;
mjr 77:0b96f6867312 384
mjr 90:aa4e571da8e8 385 // enable the joystick interface
mjr 77:0b96f6867312 386 bool enableJoystick;
mjr 90:aa4e571da8e8 387
mjr 90:aa4e571da8e8 388 // joystick axis reporting format
mjr 90:aa4e571da8e8 389 bool axisFormat;
mjr 90:aa4e571da8e8 390
mjr 90:aa4e571da8e8 391 // enable the keyboard interface for button inputs
mjr 77:0b96f6867312 392 bool useKB;
mjr 90:aa4e571da8e8 393
mjr 90:aa4e571da8e8 394 // keyboard maximum idle time between reports
mjr 77:0b96f6867312 395 uint8_t kbIdleTime;
mjr 90:aa4e571da8e8 396
mjr 90:aa4e571da8e8 397 // media maximum idle time between reports
mjr 77:0b96f6867312 398 uint8_t mediaIdleTime;
mjr 90:aa4e571da8e8 399
mjr 90:aa4e571da8e8 400 // current X, Y, Z axis values
mjr 77:0b96f6867312 401 int16_t _x;
mjr 77:0b96f6867312 402 int16_t _y;
mjr 77:0b96f6867312 403 int16_t _z;
mjr 90:aa4e571da8e8 404
mjr 90:aa4e571da8e8 405 // joystick button status bits
mjr 77:0b96f6867312 406 uint16_t _buttonsLo;
mjr 77:0b96f6867312 407 uint16_t _buttonsHi;
mjr 90:aa4e571da8e8 408
mjr 90:aa4e571da8e8 409 // special status flag bits
mjr 77:0b96f6867312 410 uint16_t _status;
mjr 77:0b96f6867312 411
mjr 77:0b96f6867312 412 void _init();
mjr 0:5acbbe3f4cf4 413 };
mjr 0:5acbbe3f4cf4 414
mjr 38:091e511ce8a0 415 #endif