
An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.
Dependencies: mbed FastIO FastPWM USBDevice
Fork of Pinscape_Controller by
This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.
In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.
A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.
You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.
Downloads
- Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
- Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.
Documentation
The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.
You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).
System Requirements
The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.
The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.
Main Features
Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.
Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.
Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.
Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.
Expansion Boards
There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".
In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.
The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.
Update notes
If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.
First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.
Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.
New Features
V2 has numerous new features. Here are some of the highlights...
Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.
Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.
Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.
Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.
Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.
Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.
IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.
Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.
More Downloads
- Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).
Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
- Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
- Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
- Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.
Copyright and License
The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.
Warning to VirtuaPin Kit Owners
This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.
main.cpp@100:1ff35c07217c, 16 months ago (annotated)
- Committer:
- mjr
- Date:
- Thu Nov 28 23:18:23 2019 +0000
- Revision:
- 100:1ff35c07217c
- Parent:
- 99:8139b0c274f4
- Child:
- 101:755f44622abc
Added preliminary support for AEAT-6012 and TCD1103 sensors; use continuous averaging for pot sensor analog in; more AltAnalogIn options for timing and resolution
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
mjr | 51:57eb311faafa | 1 | /* Copyright 2014, 2016 M J Roberts, MIT License |
mjr | 5:a70c0bce770d | 2 | * |
mjr | 5:a70c0bce770d | 3 | * Permission is hereby granted, free of charge, to any person obtaining a copy of this software |
mjr | 5:a70c0bce770d | 4 | * and associated documentation files (the "Software"), to deal in the Software without |
mjr | 5:a70c0bce770d | 5 | * restriction, including without limitation the rights to use, copy, modify, merge, publish, |
mjr | 5:a70c0bce770d | 6 | * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the |
mjr | 5:a70c0bce770d | 7 | * Software is furnished to do so, subject to the following conditions: |
mjr | 5:a70c0bce770d | 8 | * |
mjr | 5:a70c0bce770d | 9 | * The above copyright notice and this permission notice shall be included in all copies or |
mjr | 5:a70c0bce770d | 10 | * substantial portions of the Software. |
mjr | 5:a70c0bce770d | 11 | * |
mjr | 5:a70c0bce770d | 12 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING |
mjr | 99:8139b0c274f4 | 13 | * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
mjr | 5:a70c0bce770d | 14 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, |
mjr | 5:a70c0bce770d | 15 | * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
mjr | 5:a70c0bce770d | 16 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
mjr | 5:a70c0bce770d | 17 | */ |
mjr | 5:a70c0bce770d | 18 | |
mjr | 5:a70c0bce770d | 19 | // |
mjr | 35:e959ffba78fd | 20 | // The Pinscape Controller |
mjr | 35:e959ffba78fd | 21 | // A comprehensive input/output controller for virtual pinball machines |
mjr | 5:a70c0bce770d | 22 | // |
mjr | 48:058ace2aed1d | 23 | // This project implements an I/O controller for virtual pinball cabinets. The |
mjr | 48:058ace2aed1d | 24 | // controller's function is to connect Visual Pinball (and other Windows pinball |
mjr | 48:058ace2aed1d | 25 | // emulators) with physical devices in the cabinet: buttons, sensors, and |
mjr | 48:058ace2aed1d | 26 | // feedback devices that create visual or mechanical effects during play. |
mjr | 38:091e511ce8a0 | 27 | // |
mjr | 48:058ace2aed1d | 28 | // The controller can perform several different functions, which can be used |
mjr | 38:091e511ce8a0 | 29 | // individually or in any combination: |
mjr | 5:a70c0bce770d | 30 | // |
mjr | 38:091e511ce8a0 | 31 | // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the |
mjr | 38:091e511ce8a0 | 32 | // motion of the cabinet when you nudge it. Visual Pinball and other pinball |
mjr | 38:091e511ce8a0 | 33 | // emulators on the PC have native handling for this type of input, so that |
mjr | 38:091e511ce8a0 | 34 | // physical nudges on the cabinet turn into simulated effects on the virtual |
mjr | 38:091e511ce8a0 | 35 | // ball. The KL25Z measures accelerations as analog readings and is quite |
mjr | 38:091e511ce8a0 | 36 | // sensitive, so the effect of a nudge on the simulation is proportional |
mjr | 38:091e511ce8a0 | 37 | // to the strength of the nudge. Accelerations are reported to the PC via a |
mjr | 38:091e511ce8a0 | 38 | // simulated joystick (using the X and Y axes); you just have to set some |
mjr | 38:091e511ce8a0 | 39 | // preferences in your pinball software to tell it that an accelerometer |
mjr | 38:091e511ce8a0 | 40 | // is attached. |
mjr | 5:a70c0bce770d | 41 | // |
mjr | 74:822a92bc11d2 | 42 | // - Plunger position sensing, with multiple sensor options. To use this feature, |
mjr | 35:e959ffba78fd | 43 | // you need to choose a sensor and set it up, connect the sensor electrically to |
mjr | 35:e959ffba78fd | 44 | // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how |
mjr | 35:e959ffba78fd | 45 | // the sensor is hooked up. The Pinscape software monitors the sensor and sends |
mjr | 35:e959ffba78fd | 46 | // readings to Visual Pinball via the joystick Z axis. VP and other PC software |
mjr | 38:091e511ce8a0 | 47 | // have native support for this type of input; as with the nudge setup, you just |
mjr | 38:091e511ce8a0 | 48 | // have to set some options in VP to activate the plunger. |
mjr | 17:ab3cec0c8bf4 | 49 | // |
mjr | 87:8d35c74403af | 50 | // We support several sensor types: |
mjr | 35:e959ffba78fd | 51 | // |
mjr | 87:8d35c74403af | 52 | // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with |
mjr | 87:8d35c74403af | 53 | // reflective optical sensing and built-in lighting and optics. The sensor |
mjr | 87:8d35c74403af | 54 | // is attached to the plunger so that it moves with the plunger, and slides |
mjr | 87:8d35c74403af | 55 | // along a guide rail with a reflective pattern of regularly spaces bars |
mjr | 87:8d35c74403af | 56 | // for the encoder to read. We read the plunger position by counting the |
mjr | 87:8d35c74403af | 57 | // bars the sensor passes as it moves across the rail. This is the newest |
mjr | 87:8d35c74403af | 58 | // option, and it's my current favorite because it's highly accurate, |
mjr | 87:8d35c74403af | 59 | // precise, and fast, plus it's relatively inexpensive. |
mjr | 87:8d35c74403af | 60 | // |
mjr | 87:8d35c74403af | 61 | // - Slide potentiometers. There are slide potentioneters available with a |
mjr | 87:8d35c74403af | 62 | // long enough travel distance (at least 85mm) to cover the plunger travel. |
mjr | 87:8d35c74403af | 63 | // Attach the plunger to the potentiometer knob so that the moving the |
mjr | 87:8d35c74403af | 64 | // plunger moves the pot knob. We sense the position by simply reading |
mjr | 87:8d35c74403af | 65 | // the analog voltage on the pot brush. A pot with a "linear taper" (that |
mjr | 87:8d35c74403af | 66 | // is, the resistance varies linearly with the position) is required. |
mjr | 87:8d35c74403af | 67 | // This option is cheap, easy to set up, and works well. |
mjr | 5:a70c0bce770d | 68 | // |
mjr | 87:8d35c74403af | 69 | // - VL6108X time-of-flight distance sensor. This is an optical distance |
mjr | 87:8d35c74403af | 70 | // sensor that measures the distance to a nearby object (within about 10cm) |
mjr | 87:8d35c74403af | 71 | // by measuring the travel time for reflected pulses of light. It's fairly |
mjr | 87:8d35c74403af | 72 | // cheap and easy to set up, but I don't recommend it because it has very |
mjr | 87:8d35c74403af | 73 | // low precision. |
mjr | 6:cc35eb643e8f | 74 | // |
mjr | 87:8d35c74403af | 75 | // - TSL1410R/TSL1412R linear array optical sensors. These are large optical |
mjr | 87:8d35c74403af | 76 | // sensors with the pixels arranged in a single row. The pixel arrays are |
mjr | 87:8d35c74403af | 77 | // large enough on these to cover the travel distance of the plunger, so we |
mjr | 87:8d35c74403af | 78 | // can set up the sensor near the plunger in such a way that the plunger |
mjr | 87:8d35c74403af | 79 | // casts a shadow on the sensor. We detect the plunger position by finding |
mjr | 87:8d35c74403af | 80 | // the edge of the sahdow in the image. The optics for this setup are very |
mjr | 87:8d35c74403af | 81 | // simple since we don't need any lenses. This was the first sensor we |
mjr | 87:8d35c74403af | 82 | // supported, and works very well, but unfortunately the sensor is difficult |
mjr | 87:8d35c74403af | 83 | // to find now since it's been discontinued by the manufacturer. |
mjr | 87:8d35c74403af | 84 | // |
mjr | 87:8d35c74403af | 85 | // The v2 Build Guide has details on how to build and configure all of the |
mjr | 87:8d35c74403af | 86 | // sensor options. |
mjr | 87:8d35c74403af | 87 | // |
mjr | 87:8d35c74403af | 88 | // Visual Pinball has built-in support for plunger devices like this one, but |
mjr | 87:8d35c74403af | 89 | // some older VP tables (particularly for VP 9) can't use it without some |
mjr | 87:8d35c74403af | 90 | // modifications to their scripting. The Build Guide has advice on how to |
mjr | 87:8d35c74403af | 91 | // fix up VP tables to add plunger support when necessary. |
mjr | 5:a70c0bce770d | 92 | // |
mjr | 77:0b96f6867312 | 93 | // - Button input wiring. You can assign GPIO ports as inputs for physical |
mjr | 77:0b96f6867312 | 94 | // pinball-style buttons, such as flipper buttons, a Start button, coin |
mjr | 77:0b96f6867312 | 95 | // chute switches, tilt bobs, and service panel buttons. You can configure |
mjr | 77:0b96f6867312 | 96 | // each button input to report a keyboard key or joystick button press to |
mjr | 77:0b96f6867312 | 97 | // the PC when the physical button is pushed. |
mjr | 13:72dda449c3c0 | 98 | // |
mjr | 53:9b2611964afc | 99 | // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets |
mjr | 53:9b2611964afc | 100 | // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the |
mjr | 53:9b2611964afc | 101 | // KL25Z, and lets PC software (such as Visual Pinball) control them during game |
mjr | 53:9b2611964afc | 102 | // play to create a more immersive playing experience. The Pinscape software |
mjr | 53:9b2611964afc | 103 | // presents itself to the host as an LedWiz device and accepts the full LedWiz |
mjr | 53:9b2611964afc | 104 | // command set, so software on the PC designed for real LedWiz'es can control |
mjr | 53:9b2611964afc | 105 | // attached devices without any modifications. |
mjr | 5:a70c0bce770d | 106 | // |
mjr | 53:9b2611964afc | 107 | // Even though the software provides a very thorough LedWiz emulation, the KL25Z |
mjr | 53:9b2611964afc | 108 | // GPIO hardware design imposes some serious limitations. The big one is that |
mjr | 53:9b2611964afc | 109 | // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have |
mjr | 53:9b2611964afc | 110 | // varying-intensity outputs (e.g., for controlling the brightness level of an |
mjr | 53:9b2611964afc | 111 | // LED or the speed or a motor). You can control more than 10 output ports, but |
mjr | 53:9b2611964afc | 112 | // only 10 can have PWM control; the rest are simple "digital" ports that can only |
mjr | 53:9b2611964afc | 113 | // be switched fully on or fully off. The second limitation is that the KL25Z |
mjr | 53:9b2611964afc | 114 | // just doesn't have that many GPIO ports overall. There are enough to populate |
mjr | 53:9b2611964afc | 115 | // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is |
mjr | 53:9b2611964afc | 116 | // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade |
mjr | 53:9b2611964afc | 117 | // off more outputs for fewer inputs, or vice versa. The third limitation is that |
mjr | 53:9b2611964afc | 118 | // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't |
mjr | 53:9b2611964afc | 119 | // even enough to control a small LED. So in order to connect any kind of feedback |
mjr | 53:9b2611964afc | 120 | // device to an output, you *must* build some external circuitry to boost the |
mjr | 53:9b2611964afc | 121 | // current handing. The Build Guide has a reference circuit design for this |
mjr | 53:9b2611964afc | 122 | // purpose that's simple and inexpensive to build. |
mjr | 6:cc35eb643e8f | 123 | // |
mjr | 87:8d35c74403af | 124 | // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips. |
mjr | 87:8d35c74403af | 125 | // You can attach external PWM chips for controlling device outputs, instead of |
mjr | 87:8d35c74403af | 126 | // using (or in addition to) the on-board GPIO ports as described above. The |
mjr | 87:8d35c74403af | 127 | // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each |
mjr | 87:8d35c74403af | 128 | // chip provides 16 PWM outputs, so you just need two of them to get the full |
mjr | 87:8d35c74403af | 129 | // complement of 32 output ports of a real LedWiz. You can hook up even more, |
mjr | 87:8d35c74403af | 130 | // though. Four chips gives you 64 ports, which should be plenty for nearly any |
mjr | 87:8d35c74403af | 131 | // virtual pinball project. |
mjr | 53:9b2611964afc | 132 | // |
mjr | 53:9b2611964afc | 133 | // The Pinscape Expansion Board project (which appeared in early 2016) provides |
mjr | 53:9b2611964afc | 134 | // a reference hardware design, with EAGLE circuit board layouts, that takes full |
mjr | 53:9b2611964afc | 135 | // advantage of the TLC5940 capability. It lets you create a customized set of |
mjr | 53:9b2611964afc | 136 | // outputs with full PWM control and power handling for high-current devices |
mjr | 87:8d35c74403af | 137 | // built in to the boards. |
mjr | 87:8d35c74403af | 138 | // |
mjr | 87:8d35c74403af | 139 | // To accommodate the larger supply of ports possible with the external chips, |
mjr | 87:8d35c74403af | 140 | // the controller software provides a custom, extended version of the LedWiz |
mjr | 87:8d35c74403af | 141 | // protocol that can handle up to 128 ports. Legacy PC software designed only |
mjr | 87:8d35c74403af | 142 | // for the original LedWiz obviously can't use the extended protocol, and thus |
mjr | 87:8d35c74403af | 143 | // can't take advantage of its extra capabilities, but the latest version of |
mjr | 87:8d35c74403af | 144 | // DOF (DirectOutput Framework) *does* know the new language and can take full |
mjr | 87:8d35c74403af | 145 | // advantage. Older software will still work, though - the new extensions are |
mjr | 87:8d35c74403af | 146 | // all backwards compatible, so old software that only knows about the original |
mjr | 87:8d35c74403af | 147 | // LedWiz protocol will still work, with the limitation that it can only access |
mjr | 87:8d35c74403af | 148 | // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that |
mjr | 87:8d35c74403af | 149 | // creates virtual LedWiz units representing additional ports beyond the first |
mjr | 87:8d35c74403af | 150 | // 32. This allows legacy LedWiz client software to address all ports by |
mjr | 87:8d35c74403af | 151 | // making them think that you have several physical LedWiz units installed. |
mjr | 26:cb71c4af2912 | 152 | // |
mjr | 38:091e511ce8a0 | 153 | // - Night Mode control for output devices. You can connect a switch or button |
mjr | 38:091e511ce8a0 | 154 | // to the controller to activate "Night Mode", which disables feedback devices |
mjr | 38:091e511ce8a0 | 155 | // that you designate as noisy. You can designate outputs individually as being |
mjr | 38:091e511ce8a0 | 156 | // included in this set or not. This is useful if you want to play a game on |
mjr | 38:091e511ce8a0 | 157 | // your cabinet late at night without waking the kids and annoying the neighbors. |
mjr | 38:091e511ce8a0 | 158 | // |
mjr | 38:091e511ce8a0 | 159 | // - TV ON switch. The controller can pulse a relay to turn on your TVs after |
mjr | 38:091e511ce8a0 | 160 | // power to the cabinet comes on, with a configurable delay timer. This feature |
mjr | 38:091e511ce8a0 | 161 | // is for TVs that don't turn themselves on automatically when first plugged in. |
mjr | 38:091e511ce8a0 | 162 | // To use this feature, you have to build some external circuitry to allow the |
mjr | 77:0b96f6867312 | 163 | // software to sense the power supply status. The Build Guide has details |
mjr | 77:0b96f6867312 | 164 | // on the necessary circuitry. You can use this to switch your TV on via a |
mjr | 77:0b96f6867312 | 165 | // hardwired connection to the TV's "on" button, which requires taking the |
mjr | 77:0b96f6867312 | 166 | // TV apart to gain access to its internal wiring, or optionally via the IR |
mjr | 77:0b96f6867312 | 167 | // remote control transmitter feature below. |
mjr | 77:0b96f6867312 | 168 | // |
mjr | 77:0b96f6867312 | 169 | // - Infrared (IR) remote control receiver and transmitter. You can attach an |
mjr | 77:0b96f6867312 | 170 | // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the |
mjr | 77:0b96f6867312 | 171 | // KL25Z capable of sending and/or receiving IR remote control signals. This |
mjr | 77:0b96f6867312 | 172 | // can be used with the TV ON feature above to turn your TV(s) on when the |
mjr | 77:0b96f6867312 | 173 | // system power comes on by sending the "on" command to them via IR, as though |
mjr | 77:0b96f6867312 | 174 | // you pressed the "on" button on the remote control. The sensor lets the |
mjr | 77:0b96f6867312 | 175 | // Pinscape software learn the IR codes from your existing remotes, in the |
mjr | 77:0b96f6867312 | 176 | // same manner as a handheld universal remote control, and the IR LED lets |
mjr | 77:0b96f6867312 | 177 | // it transmit learned codes. The sensor can also be used to receive codes |
mjr | 77:0b96f6867312 | 178 | // during normal operation and turn them into PC keystrokes; this lets you |
mjr | 77:0b96f6867312 | 179 | // access extra commands on the PC without adding more buttons to your |
mjr | 77:0b96f6867312 | 180 | // cabinet. The IR LED can also be used to transmit other codes when you |
mjr | 77:0b96f6867312 | 181 | // press selected cabinet buttons, allowing you to assign cabinet buttons |
mjr | 77:0b96f6867312 | 182 | // to send IR commands to your cabinet TV or other devices. |
mjr | 38:091e511ce8a0 | 183 | // |
mjr | 35:e959ffba78fd | 184 | // |
mjr | 35:e959ffba78fd | 185 | // |
mjr | 33:d832bcab089e | 186 | // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current |
mjr | 33:d832bcab089e | 187 | // device status. The flash patterns are: |
mjr | 6:cc35eb643e8f | 188 | // |
mjr | 48:058ace2aed1d | 189 | // short yellow flash = waiting to connect |
mjr | 6:cc35eb643e8f | 190 | // |
mjr | 48:058ace2aed1d | 191 | // short red flash = the connection is suspended (the host is in sleep |
mjr | 48:058ace2aed1d | 192 | // or suspend mode, the USB cable is unplugged after a connection |
mjr | 48:058ace2aed1d | 193 | // has been established) |
mjr | 48:058ace2aed1d | 194 | // |
mjr | 48:058ace2aed1d | 195 | // two short red flashes = connection lost (the device should immediately |
mjr | 48:058ace2aed1d | 196 | // go back to short-yellow "waiting to reconnect" mode when a connection |
mjr | 48:058ace2aed1d | 197 | // is lost, so this display shouldn't normally appear) |
mjr | 6:cc35eb643e8f | 198 | // |
mjr | 38:091e511ce8a0 | 199 | // long red/yellow = USB connection problem. The device still has a USB |
mjr | 48:058ace2aed1d | 200 | // connection to the host (or so it appears to the device), but data |
mjr | 48:058ace2aed1d | 201 | // transmissions are failing. |
mjr | 38:091e511ce8a0 | 202 | // |
mjr | 73:4e8ce0b18915 | 203 | // medium blue flash = TV ON delay timer running. This means that the |
mjr | 73:4e8ce0b18915 | 204 | // power to the secondary PSU has just been turned on, and the TV ON |
mjr | 73:4e8ce0b18915 | 205 | // timer is waiting for the configured delay time before pulsing the |
mjr | 73:4e8ce0b18915 | 206 | // TV power button relay. This is only shown if the TV ON feature is |
mjr | 73:4e8ce0b18915 | 207 | // enabled. |
mjr | 73:4e8ce0b18915 | 208 | // |
mjr | 6:cc35eb643e8f | 209 | // long yellow/green = everything's working, but the plunger hasn't |
mjr | 38:091e511ce8a0 | 210 | // been calibrated. Follow the calibration procedure described in |
mjr | 38:091e511ce8a0 | 211 | // the project documentation. This flash mode won't appear if there's |
mjr | 38:091e511ce8a0 | 212 | // no plunger sensor configured. |
mjr | 6:cc35eb643e8f | 213 | // |
mjr | 38:091e511ce8a0 | 214 | // alternating blue/green = everything's working normally, and plunger |
mjr | 38:091e511ce8a0 | 215 | // calibration has been completed (or there's no plunger attached) |
mjr | 10:976666ffa4ef | 216 | // |
mjr | 48:058ace2aed1d | 217 | // fast red/purple = out of memory. The controller halts and displays |
mjr | 48:058ace2aed1d | 218 | // this diagnostic code until you manually reset it. If this happens, |
mjr | 48:058ace2aed1d | 219 | // it's probably because the configuration is too complex, in which |
mjr | 48:058ace2aed1d | 220 | // case the same error will occur after the reset. If it's stuck |
mjr | 48:058ace2aed1d | 221 | // in this cycle, you'll have to restore the default configuration |
mjr | 48:058ace2aed1d | 222 | // by re-installing the controller software (the Pinscape .bin file). |
mjr | 10:976666ffa4ef | 223 | // |
mjr | 48:058ace2aed1d | 224 | // |
mjr | 48:058ace2aed1d | 225 | // USB PROTOCOL: Most of our USB messaging is through standard USB HID |
mjr | 48:058ace2aed1d | 226 | // classes (joystick, keyboard). We also accept control messages on our |
mjr | 48:058ace2aed1d | 227 | // primary HID interface "OUT endpoint" using a custom protocol that's |
mjr | 48:058ace2aed1d | 228 | // not defined in any USB standards (we do have to provide a USB HID |
mjr | 48:058ace2aed1d | 229 | // Report Descriptor for it, but this just describes the protocol as |
mjr | 48:058ace2aed1d | 230 | // opaque vendor-defined bytes). The control protocol incorporates the |
mjr | 48:058ace2aed1d | 231 | // LedWiz protocol as a subset, and adds our own private extensions. |
mjr | 48:058ace2aed1d | 232 | // For full details, see USBProtocol.h. |
mjr | 33:d832bcab089e | 233 | |
mjr | 33:d832bcab089e | 234 | |
mjr | 0:5acbbe3f4cf4 | 235 | #include "mbed.h" |
mjr | 6:cc35eb643e8f | 236 | #include "math.h" |
mjr | 74:822a92bc11d2 | 237 | #include "diags.h" |
mjr | 48:058ace2aed1d | 238 | #include "pinscape.h" |
mjr | 79:682ae3171a08 | 239 | #include "NewMalloc.h" |
mjr | 0:5acbbe3f4cf4 | 240 | #include "USBJoystick.h" |
mjr | 0:5acbbe3f4cf4 | 241 | #include "MMA8451Q.h" |
mjr | 1:d913e0afb2ac | 242 | #include "FreescaleIAP.h" |
mjr | 2:c174f9ee414a | 243 | #include "crc32.h" |
mjr | 26:cb71c4af2912 | 244 | #include "TLC5940.h" |
mjr | 87:8d35c74403af | 245 | #include "TLC59116.h" |
mjr | 34:6b981a2afab7 | 246 | #include "74HC595.h" |
mjr | 35:e959ffba78fd | 247 | #include "nvm.h" |
mjr | 48:058ace2aed1d | 248 | #include "TinyDigitalIn.h" |
mjr | 77:0b96f6867312 | 249 | #include "IRReceiver.h" |
mjr | 77:0b96f6867312 | 250 | #include "IRTransmitter.h" |
mjr | 77:0b96f6867312 | 251 | #include "NewPwm.h" |
mjr | 74:822a92bc11d2 | 252 | |
mjr | 82:4f6209cb5c33 | 253 | // plunger sensors |
mjr | 82:4f6209cb5c33 | 254 | #include "plunger.h" |
mjr | 82:4f6209cb5c33 | 255 | #include "edgeSensor.h" |
mjr | 82:4f6209cb5c33 | 256 | #include "potSensor.h" |
mjr | 82:4f6209cb5c33 | 257 | #include "quadSensor.h" |
mjr | 82:4f6209cb5c33 | 258 | #include "nullSensor.h" |
mjr | 82:4f6209cb5c33 | 259 | #include "barCodeSensor.h" |
mjr | 82:4f6209cb5c33 | 260 | #include "distanceSensor.h" |
mjr | 87:8d35c74403af | 261 | #include "tsl14xxSensor.h" |
mjr | 100:1ff35c07217c | 262 | #include "rotarySensor.h" |
mjr | 100:1ff35c07217c | 263 | #include "tcd1103Sensor.h" |
mjr | 82:4f6209cb5c33 | 264 | |
mjr | 2:c174f9ee414a | 265 | |
mjr | 21:5048e16cc9ef | 266 | #define DECL_EXTERNS |
mjr | 17:ab3cec0c8bf4 | 267 | #include "config.h" |
mjr | 17:ab3cec0c8bf4 | 268 | |
mjr | 76:7f5912b6340e | 269 | // forward declarations |
mjr | 76:7f5912b6340e | 270 | static void waitPlungerIdle(void); |
mjr | 53:9b2611964afc | 271 | |
mjr | 53:9b2611964afc | 272 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 273 | // |
mjr | 53:9b2611964afc | 274 | // OpenSDA module identifier. This is for the benefit of the Windows |
mjr | 53:9b2611964afc | 275 | // configuration tool. When the config tool installs a .bin file onto |
mjr | 53:9b2611964afc | 276 | // the KL25Z, it will first find the sentinel string within the .bin file, |
mjr | 53:9b2611964afc | 277 | // and patch the "\0" bytes that follow the sentinel string with the |
mjr | 53:9b2611964afc | 278 | // OpenSDA module ID data. This allows us to report the OpenSDA |
mjr | 53:9b2611964afc | 279 | // identifiers back to the host system via USB, which in turn allows the |
mjr | 53:9b2611964afc | 280 | // config tool to figure out which OpenSDA MSD (mass storage device - a |
mjr | 53:9b2611964afc | 281 | // virtual disk drive) correlates to which Pinscape controller USB |
mjr | 53:9b2611964afc | 282 | // interface. |
mjr | 53:9b2611964afc | 283 | // |
mjr | 53:9b2611964afc | 284 | // This is only important if multiple Pinscape devices are attached to |
mjr | 53:9b2611964afc | 285 | // the same host. There doesn't seem to be any other way to figure out |
mjr | 53:9b2611964afc | 286 | // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA |
mjr | 53:9b2611964afc | 287 | // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't |
mjr | 53:9b2611964afc | 288 | // have any way to learn about the OpenSDA module it's connected to. The |
mjr | 53:9b2611964afc | 289 | // only way to pass this information to the KL25Z side that I can come up |
mjr | 53:9b2611964afc | 290 | // with is to have the Windows host embed it in the .bin file before |
mjr | 53:9b2611964afc | 291 | // downloading it to the OpenSDA MSD. |
mjr | 53:9b2611964afc | 292 | // |
mjr | 53:9b2611964afc | 293 | // We initialize the const data buffer (the part after the sentinel string) |
mjr | 53:9b2611964afc | 294 | // with all "\0" bytes, so that's what will be in the executable image that |
mjr | 53:9b2611964afc | 295 | // comes out of the mbed compiler. If you manually install the resulting |
mjr | 53:9b2611964afc | 296 | // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes |
mjr | 53:9b2611964afc | 297 | // will stay this way and read as all 0's at run-time. Since a real TUID |
mjr | 53:9b2611964afc | 298 | // would never be all 0's, that tells us that we were never patched and |
mjr | 53:9b2611964afc | 299 | // thus don't have any information on the OpenSDA module. |
mjr | 53:9b2611964afc | 300 | // |
mjr | 53:9b2611964afc | 301 | const char *getOpenSDAID() |
mjr | 53:9b2611964afc | 302 | { |
mjr | 53:9b2611964afc | 303 | #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///" |
mjr | 53:9b2611964afc | 304 | static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///"; |
mjr | 53:9b2611964afc | 305 | const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1; |
mjr | 53:9b2611964afc | 306 | |
mjr | 53:9b2611964afc | 307 | return OpenSDA + OpenSDA_prefix_length; |
mjr | 53:9b2611964afc | 308 | } |
mjr | 53:9b2611964afc | 309 | |
mjr | 53:9b2611964afc | 310 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 311 | // |
mjr | 53:9b2611964afc | 312 | // Build ID. We use the date and time of compiling the program as a build |
mjr | 53:9b2611964afc | 313 | // identifier. It would be a little nicer to use a simple serial number |
mjr | 53:9b2611964afc | 314 | // instead, but the mbed platform doesn't have a way to automate that. The |
mjr | 53:9b2611964afc | 315 | // timestamp is a pretty good proxy for a serial number in that it will |
mjr | 53:9b2611964afc | 316 | // naturally increase on each new build, which is the primary property we |
mjr | 53:9b2611964afc | 317 | // want from this. |
mjr | 53:9b2611964afc | 318 | // |
mjr | 53:9b2611964afc | 319 | // As with the embedded OpenSDA ID, we store the build timestamp with a |
mjr | 53:9b2611964afc | 320 | // sentinel string prefix, to allow automated tools to find the static data |
mjr | 53:9b2611964afc | 321 | // in the .bin file by searching for the sentinel string. In contrast to |
mjr | 53:9b2611964afc | 322 | // the OpenSDA ID, the value we store here is for tools to extract rather |
mjr | 53:9b2611964afc | 323 | // than store, since we automatically populate it via the preprocessor |
mjr | 53:9b2611964afc | 324 | // macros. |
mjr | 53:9b2611964afc | 325 | // |
mjr | 53:9b2611964afc | 326 | const char *getBuildID() |
mjr | 53:9b2611964afc | 327 | { |
mjr | 53:9b2611964afc | 328 | #define BUILDID_PREFIX "///Pinscape.Build.ID///" |
mjr | 53:9b2611964afc | 329 | static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///"; |
mjr | 53:9b2611964afc | 330 | const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1; |
mjr | 53:9b2611964afc | 331 | |
mjr | 53:9b2611964afc | 332 | return BuildID + BuildID_prefix_length; |
mjr | 53:9b2611964afc | 333 | } |
mjr | 53:9b2611964afc | 334 | |
mjr | 74:822a92bc11d2 | 335 | // -------------------------------------------------------------------------- |
mjr | 74:822a92bc11d2 | 336 | // Main loop iteration timing statistics. Collected only if |
mjr | 74:822a92bc11d2 | 337 | // ENABLE_DIAGNOSTICS is set in diags.h. |
mjr | 76:7f5912b6340e | 338 | #if ENABLE_DIAGNOSTICS |
mjr | 76:7f5912b6340e | 339 | uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount; |
mjr | 76:7f5912b6340e | 340 | uint64_t mainLoopMsgTime, mainLoopMsgCount; |
mjr | 76:7f5912b6340e | 341 | Timer mainLoopTimer; |
mjr | 76:7f5912b6340e | 342 | #endif |
mjr | 76:7f5912b6340e | 343 | |
mjr | 53:9b2611964afc | 344 | |
mjr | 5:a70c0bce770d | 345 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 346 | // |
mjr | 38:091e511ce8a0 | 347 | // Forward declarations |
mjr | 38:091e511ce8a0 | 348 | // |
mjr | 38:091e511ce8a0 | 349 | void setNightMode(bool on); |
mjr | 38:091e511ce8a0 | 350 | void toggleNightMode(); |
mjr | 38:091e511ce8a0 | 351 | |
mjr | 38:091e511ce8a0 | 352 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 353 | // utilities |
mjr | 17:ab3cec0c8bf4 | 354 | |
mjr | 77:0b96f6867312 | 355 | // int/float point square of a number |
mjr | 77:0b96f6867312 | 356 | inline int square(int x) { return x*x; } |
mjr | 26:cb71c4af2912 | 357 | inline float square(float x) { return x*x; } |
mjr | 26:cb71c4af2912 | 358 | |
mjr | 26:cb71c4af2912 | 359 | // floating point rounding |
mjr | 26:cb71c4af2912 | 360 | inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); } |
mjr | 26:cb71c4af2912 | 361 | |
mjr | 17:ab3cec0c8bf4 | 362 | |
mjr | 33:d832bcab089e | 363 | // -------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 364 | // |
mjr | 40:cc0d9814522b | 365 | // Extended verison of Timer class. This adds the ability to interrogate |
mjr | 40:cc0d9814522b | 366 | // the running state. |
mjr | 40:cc0d9814522b | 367 | // |
mjr | 77:0b96f6867312 | 368 | class ExtTimer: public Timer |
mjr | 40:cc0d9814522b | 369 | { |
mjr | 40:cc0d9814522b | 370 | public: |
mjr | 77:0b96f6867312 | 371 | ExtTimer() : running(false) { } |
mjr | 40:cc0d9814522b | 372 | |
mjr | 40:cc0d9814522b | 373 | void start() { running = true; Timer::start(); } |
mjr | 40:cc0d9814522b | 374 | void stop() { running = false; Timer::stop(); } |
mjr | 40:cc0d9814522b | 375 | |
mjr | 40:cc0d9814522b | 376 | bool isRunning() const { return running; } |
mjr | 40:cc0d9814522b | 377 | |
mjr | 40:cc0d9814522b | 378 | private: |
mjr | 40:cc0d9814522b | 379 | bool running; |
mjr | 40:cc0d9814522b | 380 | }; |
mjr | 40:cc0d9814522b | 381 | |
mjr | 53:9b2611964afc | 382 | |
mjr | 53:9b2611964afc | 383 | // -------------------------------------------------------------------------- |
mjr | 40:cc0d9814522b | 384 | // |
mjr | 33:d832bcab089e | 385 | // USB product version number |
mjr | 5:a70c0bce770d | 386 | // |
mjr | 47:df7a88cd249c | 387 | const uint16_t USB_VERSION_NO = 0x000A; |
mjr | 33:d832bcab089e | 388 | |
mjr | 33:d832bcab089e | 389 | // -------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 390 | // |
mjr | 6:cc35eb643e8f | 391 | // Joystick axis report range - we report from -JOYMAX to +JOYMAX |
mjr | 33:d832bcab089e | 392 | // |
mjr | 6:cc35eb643e8f | 393 | #define JOYMAX 4096 |
mjr | 6:cc35eb643e8f | 394 | |
mjr | 9:fd65b0a94720 | 395 | |
mjr | 17:ab3cec0c8bf4 | 396 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 397 | // |
mjr | 40:cc0d9814522b | 398 | // Wire protocol value translations. These translate byte values to and |
mjr | 40:cc0d9814522b | 399 | // from the USB protocol to local native format. |
mjr | 35:e959ffba78fd | 400 | // |
mjr | 35:e959ffba78fd | 401 | |
mjr | 35:e959ffba78fd | 402 | // unsigned 16-bit integer |
mjr | 35:e959ffba78fd | 403 | inline uint16_t wireUI16(const uint8_t *b) |
mjr | 35:e959ffba78fd | 404 | { |
mjr | 35:e959ffba78fd | 405 | return b[0] | ((uint16_t)b[1] << 8); |
mjr | 35:e959ffba78fd | 406 | } |
mjr | 40:cc0d9814522b | 407 | inline void ui16Wire(uint8_t *b, uint16_t val) |
mjr | 40:cc0d9814522b | 408 | { |
mjr | 40:cc0d9814522b | 409 | b[0] = (uint8_t)(val & 0xff); |
mjr | 40:cc0d9814522b | 410 | b[1] = (uint8_t)((val >> 8) & 0xff); |
mjr | 40:cc0d9814522b | 411 | } |
mjr | 35:e959ffba78fd | 412 | |
mjr | 35:e959ffba78fd | 413 | inline int16_t wireI16(const uint8_t *b) |
mjr | 35:e959ffba78fd | 414 | { |
mjr | 35:e959ffba78fd | 415 | return (int16_t)wireUI16(b); |
mjr | 35:e959ffba78fd | 416 | } |
mjr | 40:cc0d9814522b | 417 | inline void i16Wire(uint8_t *b, int16_t val) |
mjr | 40:cc0d9814522b | 418 | { |
mjr | 40:cc0d9814522b | 419 | ui16Wire(b, (uint16_t)val); |
mjr | 40:cc0d9814522b | 420 | } |
mjr | 35:e959ffba78fd | 421 | |
mjr | 35:e959ffba78fd | 422 | inline uint32_t wireUI32(const uint8_t *b) |
mjr | 35:e959ffba78fd | 423 | { |
mjr | 35:e959ffba78fd | 424 | return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24); |
mjr | 35:e959ffba78fd | 425 | } |
mjr | 40:cc0d9814522b | 426 | inline void ui32Wire(uint8_t *b, uint32_t val) |
mjr | 40:cc0d9814522b | 427 | { |
mjr | 40:cc0d9814522b | 428 | b[0] = (uint8_t)(val & 0xff); |
mjr | 40:cc0d9814522b | 429 | b[1] = (uint8_t)((val >> 8) & 0xff); |
mjr | 40:cc0d9814522b | 430 | b[2] = (uint8_t)((val >> 16) & 0xff); |
mjr | 40:cc0d9814522b | 431 | b[3] = (uint8_t)((val >> 24) & 0xff); |
mjr | 40:cc0d9814522b | 432 | } |
mjr | 35:e959ffba78fd | 433 | |
mjr | 35:e959ffba78fd | 434 | inline int32_t wireI32(const uint8_t *b) |
mjr | 35:e959ffba78fd | 435 | { |
mjr | 35:e959ffba78fd | 436 | return (int32_t)wireUI32(b); |
mjr | 35:e959ffba78fd | 437 | } |
mjr | 35:e959ffba78fd | 438 | |
mjr | 53:9b2611964afc | 439 | // Convert "wire" (USB) pin codes to/from PinName values. |
mjr | 53:9b2611964afc | 440 | // |
mjr | 53:9b2611964afc | 441 | // The internal mbed PinName format is |
mjr | 53:9b2611964afc | 442 | // |
mjr | 53:9b2611964afc | 443 | // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT |
mjr | 53:9b2611964afc | 444 | // |
mjr | 53:9b2611964afc | 445 | // where 'port' is 0-4 for Port A to Port E, and 'pin' is |
mjr | 53:9b2611964afc | 446 | // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2). |
mjr | 53:9b2611964afc | 447 | // |
mjr | 53:9b2611964afc | 448 | // We remap this to our more compact wire format where each |
mjr | 53:9b2611964afc | 449 | // pin name fits in 8 bits: |
mjr | 53:9b2611964afc | 450 | // |
mjr | 53:9b2611964afc | 451 | // ((port) << 5) | pin) // WIRE FORMAT |
mjr | 53:9b2611964afc | 452 | // |
mjr | 53:9b2611964afc | 453 | // E.g., E31 is (4 << 5) | 31. |
mjr | 53:9b2611964afc | 454 | // |
mjr | 53:9b2611964afc | 455 | // Wire code FF corresponds to PinName NC (not connected). |
mjr | 53:9b2611964afc | 456 | // |
mjr | 53:9b2611964afc | 457 | inline PinName wirePinName(uint8_t c) |
mjr | 35:e959ffba78fd | 458 | { |
mjr | 53:9b2611964afc | 459 | if (c == 0xFF) |
mjr | 53:9b2611964afc | 460 | return NC; // 0xFF -> NC |
mjr | 53:9b2611964afc | 461 | else |
mjr | 53:9b2611964afc | 462 | return PinName( |
mjr | 53:9b2611964afc | 463 | (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port |
mjr | 53:9b2611964afc | 464 | | (int(c & 0x1F) << 2)); // bottom five bits are pin |
mjr | 40:cc0d9814522b | 465 | } |
mjr | 40:cc0d9814522b | 466 | inline void pinNameWire(uint8_t *b, PinName n) |
mjr | 40:cc0d9814522b | 467 | { |
mjr | 53:9b2611964afc | 468 | *b = PINNAME_TO_WIRE(n); |
mjr | 35:e959ffba78fd | 469 | } |
mjr | 35:e959ffba78fd | 470 | |
mjr | 35:e959ffba78fd | 471 | |
mjr | 35:e959ffba78fd | 472 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 473 | // |
mjr | 38:091e511ce8a0 | 474 | // On-board RGB LED elements - we use these for diagnostic displays. |
mjr | 38:091e511ce8a0 | 475 | // |
mjr | 38:091e511ce8a0 | 476 | // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1, |
mjr | 38:091e511ce8a0 | 477 | // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard |
mjr | 38:091e511ce8a0 | 478 | // input or a device output). This is kind of unfortunate in that it's |
mjr | 38:091e511ce8a0 | 479 | // one of only two ports exposed on the jumper pins that can be muxed to |
mjr | 38:091e511ce8a0 | 480 | // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the |
mjr | 38:091e511ce8a0 | 481 | // SPI capability. |
mjr | 38:091e511ce8a0 | 482 | // |
mjr | 38:091e511ce8a0 | 483 | DigitalOut *ledR, *ledG, *ledB; |
mjr | 38:091e511ce8a0 | 484 | |
mjr | 73:4e8ce0b18915 | 485 | // Power on timer state for diagnostics. We flash the blue LED when |
mjr | 77:0b96f6867312 | 486 | // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also |
mjr | 77:0b96f6867312 | 487 | // show red when transmitting an LED signal, indicated by state 4. |
mjr | 73:4e8ce0b18915 | 488 | uint8_t powerTimerDiagState = 0; |
mjr | 73:4e8ce0b18915 | 489 | |
mjr | 38:091e511ce8a0 | 490 | // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is |
mjr | 38:091e511ce8a0 | 491 | // on, and -1 is no change (leaves the current setting intact). |
mjr | 73:4e8ce0b18915 | 492 | static uint8_t diagLEDState = 0; |
mjr | 38:091e511ce8a0 | 493 | void diagLED(int r, int g, int b) |
mjr | 38:091e511ce8a0 | 494 | { |
mjr | 73:4e8ce0b18915 | 495 | // remember the new state |
mjr | 73:4e8ce0b18915 | 496 | diagLEDState = r | (g << 1) | (b << 2); |
mjr | 73:4e8ce0b18915 | 497 | |
mjr | 73:4e8ce0b18915 | 498 | // if turning everything off, use the power timer state instead, |
mjr | 73:4e8ce0b18915 | 499 | // applying it to the blue LED |
mjr | 73:4e8ce0b18915 | 500 | if (diagLEDState == 0) |
mjr | 77:0b96f6867312 | 501 | { |
mjr | 77:0b96f6867312 | 502 | b = (powerTimerDiagState == 2 || powerTimerDiagState == 3); |
mjr | 77:0b96f6867312 | 503 | r = (powerTimerDiagState == 4); |
mjr | 77:0b96f6867312 | 504 | } |
mjr | 73:4e8ce0b18915 | 505 | |
mjr | 73:4e8ce0b18915 | 506 | // set the new state |
mjr | 38:091e511ce8a0 | 507 | if (ledR != 0 && r != -1) ledR->write(!r); |
mjr | 38:091e511ce8a0 | 508 | if (ledG != 0 && g != -1) ledG->write(!g); |
mjr | 38:091e511ce8a0 | 509 | if (ledB != 0 && b != -1) ledB->write(!b); |
mjr | 38:091e511ce8a0 | 510 | } |
mjr | 38:091e511ce8a0 | 511 | |
mjr | 73:4e8ce0b18915 | 512 | // update the LEDs with the current state |
mjr | 73:4e8ce0b18915 | 513 | void diagLED(void) |
mjr | 73:4e8ce0b18915 | 514 | { |
mjr | 73:4e8ce0b18915 | 515 | diagLED( |
mjr | 73:4e8ce0b18915 | 516 | diagLEDState & 0x01, |
mjr | 73:4e8ce0b18915 | 517 | (diagLEDState >> 1) & 0x01, |
mjr | 77:0b96f6867312 | 518 | (diagLEDState >> 2) & 0x01); |
mjr | 73:4e8ce0b18915 | 519 | } |
mjr | 73:4e8ce0b18915 | 520 | |
mjr | 38:091e511ce8a0 | 521 | // check an output port assignment to see if it conflicts with |
mjr | 38:091e511ce8a0 | 522 | // an on-board LED segment |
mjr | 38:091e511ce8a0 | 523 | struct LedSeg |
mjr | 38:091e511ce8a0 | 524 | { |
mjr | 38:091e511ce8a0 | 525 | bool r, g, b; |
mjr | 38:091e511ce8a0 | 526 | LedSeg() { r = g = b = false; } |
mjr | 38:091e511ce8a0 | 527 | |
mjr | 38:091e511ce8a0 | 528 | void check(LedWizPortCfg &pc) |
mjr | 38:091e511ce8a0 | 529 | { |
mjr | 38:091e511ce8a0 | 530 | // if it's a GPIO, check to see if it's assigned to one of |
mjr | 38:091e511ce8a0 | 531 | // our on-board LED segments |
mjr | 38:091e511ce8a0 | 532 | int t = pc.typ; |
mjr | 38:091e511ce8a0 | 533 | if (t == PortTypeGPIOPWM || t == PortTypeGPIODig) |
mjr | 38:091e511ce8a0 | 534 | { |
mjr | 38:091e511ce8a0 | 535 | // it's a GPIO port - check for a matching pin assignment |
mjr | 38:091e511ce8a0 | 536 | PinName pin = wirePinName(pc.pin); |
mjr | 38:091e511ce8a0 | 537 | if (pin == LED1) |
mjr | 38:091e511ce8a0 | 538 | r = true; |
mjr | 38:091e511ce8a0 | 539 | else if (pin == LED2) |
mjr | 38:091e511ce8a0 | 540 | g = true; |
mjr | 38:091e511ce8a0 | 541 | else if (pin == LED3) |
mjr | 38:091e511ce8a0 | 542 | b = true; |
mjr | 38:091e511ce8a0 | 543 | } |
mjr | 38:091e511ce8a0 | 544 | } |
mjr | 38:091e511ce8a0 | 545 | }; |
mjr | 38:091e511ce8a0 | 546 | |
mjr | 38:091e511ce8a0 | 547 | // Initialize the diagnostic LEDs. By default, we use the on-board |
mjr | 38:091e511ce8a0 | 548 | // RGB LED to display the microcontroller status. However, we allow |
mjr | 38:091e511ce8a0 | 549 | // the user to commandeer the on-board LED as an LedWiz output device, |
mjr | 38:091e511ce8a0 | 550 | // which can be useful for testing a new installation. So we'll check |
mjr | 38:091e511ce8a0 | 551 | // for LedWiz outputs assigned to the on-board LED segments, and turn |
mjr | 38:091e511ce8a0 | 552 | // off the diagnostic use for any so assigned. |
mjr | 38:091e511ce8a0 | 553 | void initDiagLEDs(Config &cfg) |
mjr | 38:091e511ce8a0 | 554 | { |
mjr | 38:091e511ce8a0 | 555 | // run through the configuration list and cross off any of the |
mjr | 38:091e511ce8a0 | 556 | // LED segments assigned to LedWiz ports |
mjr | 38:091e511ce8a0 | 557 | LedSeg l; |
mjr | 38:091e511ce8a0 | 558 | for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i) |
mjr | 38:091e511ce8a0 | 559 | l.check(cfg.outPort[i]); |
mjr | 38:091e511ce8a0 | 560 | |
mjr | 38:091e511ce8a0 | 561 | // We now know which segments are taken for LedWiz use and which |
mjr | 38:091e511ce8a0 | 562 | // are free. Create diagnostic ports for the ones not claimed for |
mjr | 38:091e511ce8a0 | 563 | // LedWiz use. |
mjr | 38:091e511ce8a0 | 564 | if (!l.r) ledR = new DigitalOut(LED1, 1); |
mjr | 38:091e511ce8a0 | 565 | if (!l.g) ledG = new DigitalOut(LED2, 1); |
mjr | 38:091e511ce8a0 | 566 | if (!l.b) ledB = new DigitalOut(LED3, 1); |
mjr | 38:091e511ce8a0 | 567 | } |
mjr | 38:091e511ce8a0 | 568 | |
mjr | 38:091e511ce8a0 | 569 | |
mjr | 38:091e511ce8a0 | 570 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 571 | // |
mjr | 76:7f5912b6340e | 572 | // LedWiz emulation |
mjr | 76:7f5912b6340e | 573 | // |
mjr | 76:7f5912b6340e | 574 | |
mjr | 76:7f5912b6340e | 575 | // LedWiz output states. |
mjr | 76:7f5912b6340e | 576 | // |
mjr | 76:7f5912b6340e | 577 | // The LedWiz protocol has two separate control axes for each output. |
mjr | 76:7f5912b6340e | 578 | // One axis is its on/off state; the other is its "profile" state, which |
mjr | 76:7f5912b6340e | 579 | // is either a fixed brightness or a blinking pattern for the light. |
mjr | 76:7f5912b6340e | 580 | // The two axes are independent. |
mjr | 76:7f5912b6340e | 581 | // |
mjr | 76:7f5912b6340e | 582 | // Even though the original LedWiz protocol can only access 32 ports, we |
mjr | 76:7f5912b6340e | 583 | // maintain LedWiz state for every port, even if we have more than 32. Our |
mjr | 76:7f5912b6340e | 584 | // extended protocol allows the client to send LedWiz-style messages that |
mjr | 76:7f5912b6340e | 585 | // control any set of ports. A replacement LEDWIZ.DLL can make a single |
mjr | 76:7f5912b6340e | 586 | // Pinscape unit look like multiple virtual LedWiz units to legacy clients, |
mjr | 76:7f5912b6340e | 587 | // allowing them to control all of our ports. The clients will still be |
mjr | 76:7f5912b6340e | 588 | // using LedWiz-style states to control the ports, so we need to support |
mjr | 76:7f5912b6340e | 589 | // the LedWiz scheme with separate on/off and brightness control per port. |
mjr | 76:7f5912b6340e | 590 | |
mjr | 76:7f5912b6340e | 591 | // On/off state for each LedWiz output |
mjr | 76:7f5912b6340e | 592 | static uint8_t *wizOn; |
mjr | 76:7f5912b6340e | 593 | |
mjr | 76:7f5912b6340e | 594 | // LedWiz "Profile State" (the LedWiz brightness level or blink mode) |
mjr | 76:7f5912b6340e | 595 | // for each LedWiz output. If the output was last updated through an |
mjr | 76:7f5912b6340e | 596 | // LedWiz protocol message, it will have one of these values: |
mjr | 76:7f5912b6340e | 597 | // |
mjr | 76:7f5912b6340e | 598 | // 0-48 = fixed brightness 0% to 100% |
mjr | 76:7f5912b6340e | 599 | // 49 = fixed brightness 100% (equivalent to 48) |
mjr | 76:7f5912b6340e | 600 | // 129 = ramp up / ramp down |
mjr | 76:7f5912b6340e | 601 | // 130 = flash on / off |
mjr | 76:7f5912b6340e | 602 | // 131 = on / ramp down |
mjr | 76:7f5912b6340e | 603 | // 132 = ramp up / on |
mjr | 5:a70c0bce770d | 604 | // |
mjr | 76:7f5912b6340e | 605 | // (Note that value 49 isn't documented in the LedWiz spec, but real |
mjr | 76:7f5912b6340e | 606 | // LedWiz units treat it as equivalent to 48, and some PC software uses |
mjr | 76:7f5912b6340e | 607 | // it, so we need to accept it for compatibility.) |
mjr | 76:7f5912b6340e | 608 | static uint8_t *wizVal; |
mjr | 76:7f5912b6340e | 609 | |
mjr | 76:7f5912b6340e | 610 | // Current actual brightness for each output. This is a simple linear |
mjr | 76:7f5912b6340e | 611 | // value on a 0..255 scale. This is EITHER the linear brightness computed |
mjr | 76:7f5912b6340e | 612 | // from the LedWiz setting for the port, OR the 0..255 value set explicitly |
mjr | 76:7f5912b6340e | 613 | // by the extended protocol: |
mjr | 76:7f5912b6340e | 614 | // |
mjr | 76:7f5912b6340e | 615 | // - If the last command that updated the port was an extended protocol |
mjr | 76:7f5912b6340e | 616 | // SET BRIGHTNESS command, this is the value set by that command. In |
mjr | 76:7f5912b6340e | 617 | // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise; |
mjr | 76:7f5912b6340e | 618 | // and wizVal[port] is set to the brightness rescaled to the 0..48 range |
mjr | 76:7f5912b6340e | 619 | // if the brightness is non-zero. |
mjr | 76:7f5912b6340e | 620 | // |
mjr | 76:7f5912b6340e | 621 | // - If the last command that updated the port was an LedWiz command |
mjr | 76:7f5912b6340e | 622 | // (SBA/PBA/SBX/PBX), this contains the brightness value computed from |
mjr | 76:7f5912b6340e | 623 | // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is |
mjr | 76:7f5912b6340e | 624 | // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the |
mjr | 76:7f5912b6340e | 625 | // 0..255 range. |
mjr | 26:cb71c4af2912 | 626 | // |
mjr | 76:7f5912b6340e | 627 | // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is |
mjr | 76:7f5912b6340e | 628 | // also updated continuously to reflect the current flashing brightness |
mjr | 76:7f5912b6340e | 629 | // level. |
mjr | 26:cb71c4af2912 | 630 | // |
mjr | 76:7f5912b6340e | 631 | static uint8_t *outLevel; |
mjr | 76:7f5912b6340e | 632 | |
mjr | 76:7f5912b6340e | 633 | |
mjr | 76:7f5912b6340e | 634 | // LedWiz flash speed. This is a value from 1 to 7 giving the pulse |
mjr | 76:7f5912b6340e | 635 | // rate for lights in blinking states. The LedWiz API doesn't document |
mjr | 76:7f5912b6340e | 636 | // what the numbers mean in real time units, but by observation, the |
mjr | 76:7f5912b6340e | 637 | // "speed" setting represents the period of the flash cycle in 0.25s |
mjr | 76:7f5912b6340e | 638 | // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz. |
mjr | 76:7f5912b6340e | 639 | // The period is the full cycle time of the flash waveform. |
mjr | 76:7f5912b6340e | 640 | // |
mjr | 76:7f5912b6340e | 641 | // Each bank of 32 lights has its independent own pulse rate, so we need |
mjr | 76:7f5912b6340e | 642 | // one entry per bank. Each bank has 32 outputs, so we need a total of |
mjr | 76:7f5912b6340e | 643 | // ceil(number_of_physical_outputs/32) entries. Note that we could allocate |
mjr | 76:7f5912b6340e | 644 | // this dynamically once we know the number of actual outputs, but the |
mjr | 76:7f5912b6340e | 645 | // upper limit is low enough that it's more efficient to use a fixed array |
mjr | 76:7f5912b6340e | 646 | // at the maximum size. |
mjr | 76:7f5912b6340e | 647 | static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32; |
mjr | 76:7f5912b6340e | 648 | static uint8_t wizSpeed[MAX_LW_BANKS]; |
mjr | 29:582472d0bc57 | 649 | |
mjr | 26:cb71c4af2912 | 650 | // Current starting output index for "PBA" messages from the PC (using |
mjr | 26:cb71c4af2912 | 651 | // the LedWiz USB protocol). Each PBA message implicitly uses the |
mjr | 26:cb71c4af2912 | 652 | // current index as the starting point for the ports referenced in |
mjr | 26:cb71c4af2912 | 653 | // the message, and increases it (by 8) for the next call. |
mjr | 0:5acbbe3f4cf4 | 654 | static int pbaIdx = 0; |
mjr | 0:5acbbe3f4cf4 | 655 | |
mjr | 76:7f5912b6340e | 656 | |
mjr | 76:7f5912b6340e | 657 | // --------------------------------------------------------------------------- |
mjr | 76:7f5912b6340e | 658 | // |
mjr | 76:7f5912b6340e | 659 | // Output Ports |
mjr | 76:7f5912b6340e | 660 | // |
mjr | 76:7f5912b6340e | 661 | // There are two way to connect outputs. First, you can use the on-board |
mjr | 76:7f5912b6340e | 662 | // GPIO ports to implement device outputs: each LedWiz software port is |
mjr | 76:7f5912b6340e | 663 | // connected to a physical GPIO pin on the KL25Z. This has some pretty |
mjr | 76:7f5912b6340e | 664 | // strict limits, though. The KL25Z only has 10 PWM channels, so only 10 |
mjr | 76:7f5912b6340e | 665 | // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off. |
mjr | 76:7f5912b6340e | 666 | // The KL25Z also simply doesn't have enough exposed GPIO ports overall to |
mjr | 76:7f5912b6340e | 667 | // support all of the features the software supports. The software allows |
mjr | 76:7f5912b6340e | 668 | // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5 |
mjr | 76:7f5912b6340e | 669 | // GPIO pins), and various other external devices. The KL25Z only exposes |
mjr | 76:7f5912b6340e | 670 | // about 50 GPIO pins. So if you want to do everything with GPIO ports, |
mjr | 76:7f5912b6340e | 671 | // you have to ration pins among features. |
mjr | 76:7f5912b6340e | 672 | // |
mjr | 87:8d35c74403af | 673 | // To overcome some of these limitations, we also support several external |
mjr | 76:7f5912b6340e | 674 | // peripheral controllers that allow adding many more outputs, using only |
mjr | 87:8d35c74403af | 675 | // a small number of GPIO pins to interface with the peripherals: |
mjr | 87:8d35c74403af | 676 | // |
mjr | 87:8d35c74403af | 677 | // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with |
mjr | 87:8d35c74403af | 678 | // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The |
mjr | 87:8d35c74403af | 679 | // chips connect via 5 GPIO pins, and since they're daisy-chainable, |
mjr | 87:8d35c74403af | 680 | // one set of 5 pins can control any number of the chips. So this chip |
mjr | 87:8d35c74403af | 681 | // effectively converts 5 GPIO pins into almost any number of PWM outputs. |
mjr | 87:8d35c74403af | 682 | // |
mjr | 87:8d35c74403af | 683 | // - TLC59116 PWM controller chips. These are similar to the TLC5940 but |
mjr | 87:8d35c74403af | 684 | // a newer generation with an improved design. These use an I2C bus, |
mjr | 87:8d35c74403af | 685 | // allowing up to 14 chips to be connected via 3 GPIO pins. |
mjr | 87:8d35c74403af | 686 | // |
mjr | 87:8d35c74403af | 687 | // - 74HC595 shift register chips. These provide 8 digital (on/off only) |
mjr | 87:8d35c74403af | 688 | // outputs per chip. These need 4 GPIO pins, and like the other can be |
mjr | 87:8d35c74403af | 689 | // daisy chained to add more outputs without using more GPIO pins. These |
mjr | 87:8d35c74403af | 690 | // are advantageous for outputs that don't require PWM, since the data |
mjr | 87:8d35c74403af | 691 | // transfer sizes are so much smaller. The expansion boards use these |
mjr | 87:8d35c74403af | 692 | // for the chime board outputs. |
mjr | 76:7f5912b6340e | 693 | // |
mjr | 76:7f5912b6340e | 694 | // Direct GPIO output ports and peripheral controllers can be mixed and |
mjr | 76:7f5912b6340e | 695 | // matched in one system. The assignment of pins to ports and the |
mjr | 76:7f5912b6340e | 696 | // configuration of peripheral controllers is all handled in the software |
mjr | 76:7f5912b6340e | 697 | // setup, so a physical system can be expanded and updated at any time. |
mjr | 76:7f5912b6340e | 698 | // |
mjr | 76:7f5912b6340e | 699 | // To handle the diversity of output port types, we start with an abstract |
mjr | 76:7f5912b6340e | 700 | // base class for outputs. Each type of physical output interface has a |
mjr | 76:7f5912b6340e | 701 | // concrete subclass. During initialization, we create the appropriate |
mjr | 76:7f5912b6340e | 702 | // subclass for each software port, mapping it to the assigned GPIO pin |
mjr | 76:7f5912b6340e | 703 | // or peripheral port. Most of the rest of the software only cares about |
mjr | 76:7f5912b6340e | 704 | // the abstract interface, so once the subclassed port objects are set up, |
mjr | 76:7f5912b6340e | 705 | // the rest of the system can control the ports without knowing which types |
mjr | 76:7f5912b6340e | 706 | // of physical devices they're connected to. |
mjr | 76:7f5912b6340e | 707 | |
mjr | 76:7f5912b6340e | 708 | |
mjr | 26:cb71c4af2912 | 709 | // Generic LedWiz output port interface. We create a cover class to |
mjr | 26:cb71c4af2912 | 710 | // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external |
mjr | 26:cb71c4af2912 | 711 | // TLC5940 outputs, and give them all a common interface. |
mjr | 6:cc35eb643e8f | 712 | class LwOut |
mjr | 6:cc35eb643e8f | 713 | { |
mjr | 6:cc35eb643e8f | 714 | public: |
mjr | 40:cc0d9814522b | 715 | // Set the output intensity. 'val' is 0 for fully off, 255 for |
mjr | 40:cc0d9814522b | 716 | // fully on, with values in between signifying lower intensity. |
mjr | 40:cc0d9814522b | 717 | virtual void set(uint8_t val) = 0; |
mjr | 6:cc35eb643e8f | 718 | }; |
mjr | 26:cb71c4af2912 | 719 | |
mjr | 35:e959ffba78fd | 720 | // LwOut class for virtual ports. This type of port is visible to |
mjr | 35:e959ffba78fd | 721 | // the host software, but isn't connected to any physical output. |
mjr | 35:e959ffba78fd | 722 | // This can be used for special software-only ports like the ZB |
mjr | 35:e959ffba78fd | 723 | // Launch Ball output, or simply for placeholders in the LedWiz port |
mjr | 35:e959ffba78fd | 724 | // numbering. |
mjr | 35:e959ffba78fd | 725 | class LwVirtualOut: public LwOut |
mjr | 33:d832bcab089e | 726 | { |
mjr | 33:d832bcab089e | 727 | public: |
mjr | 35:e959ffba78fd | 728 | LwVirtualOut() { } |
mjr | 40:cc0d9814522b | 729 | virtual void set(uint8_t ) { } |
mjr | 33:d832bcab089e | 730 | }; |
mjr | 26:cb71c4af2912 | 731 | |
mjr | 34:6b981a2afab7 | 732 | // Active Low out. For any output marked as active low, we layer this |
mjr | 34:6b981a2afab7 | 733 | // on top of the physical pin interface. This simply inverts the value of |
mjr | 40:cc0d9814522b | 734 | // the output value, so that 255 means fully off and 0 means fully on. |
mjr | 34:6b981a2afab7 | 735 | class LwInvertedOut: public LwOut |
mjr | 34:6b981a2afab7 | 736 | { |
mjr | 34:6b981a2afab7 | 737 | public: |
mjr | 34:6b981a2afab7 | 738 | LwInvertedOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 739 | virtual void set(uint8_t val) { out->set(255 - val); } |
mjr | 34:6b981a2afab7 | 740 | |
mjr | 34:6b981a2afab7 | 741 | private: |
mjr | 53:9b2611964afc | 742 | // underlying physical output |
mjr | 34:6b981a2afab7 | 743 | LwOut *out; |
mjr | 34:6b981a2afab7 | 744 | }; |
mjr | 34:6b981a2afab7 | 745 | |
mjr | 53:9b2611964afc | 746 | // Global ZB Launch Ball state |
mjr | 53:9b2611964afc | 747 | bool zbLaunchOn = false; |
mjr | 53:9b2611964afc | 748 | |
mjr | 53:9b2611964afc | 749 | // ZB Launch Ball output. This is layered on a port (physical or virtual) |
mjr | 53:9b2611964afc | 750 | // to track the ZB Launch Ball signal. |
mjr | 53:9b2611964afc | 751 | class LwZbLaunchOut: public LwOut |
mjr | 53:9b2611964afc | 752 | { |
mjr | 53:9b2611964afc | 753 | public: |
mjr | 53:9b2611964afc | 754 | LwZbLaunchOut(LwOut *o) : out(o) { } |
mjr | 53:9b2611964afc | 755 | virtual void set(uint8_t val) |
mjr | 53:9b2611964afc | 756 | { |
mjr | 53:9b2611964afc | 757 | // update the global ZB Launch Ball state |
mjr | 53:9b2611964afc | 758 | zbLaunchOn = (val != 0); |
mjr | 53:9b2611964afc | 759 | |
mjr | 53:9b2611964afc | 760 | // pass it along to the underlying port, in case it's a physical output |
mjr | 53:9b2611964afc | 761 | out->set(val); |
mjr | 53:9b2611964afc | 762 | } |
mjr | 53:9b2611964afc | 763 | |
mjr | 53:9b2611964afc | 764 | private: |
mjr | 53:9b2611964afc | 765 | // underlying physical or virtual output |
mjr | 53:9b2611964afc | 766 | LwOut *out; |
mjr | 53:9b2611964afc | 767 | }; |
mjr | 53:9b2611964afc | 768 | |
mjr | 53:9b2611964afc | 769 | |
mjr | 40:cc0d9814522b | 770 | // Gamma correction table for 8-bit input values |
mjr | 87:8d35c74403af | 771 | static const uint8_t dof_to_gamma_8bit[] = { |
mjr | 40:cc0d9814522b | 772 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
mjr | 40:cc0d9814522b | 773 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, |
mjr | 40:cc0d9814522b | 774 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, |
mjr | 40:cc0d9814522b | 775 | 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, |
mjr | 40:cc0d9814522b | 776 | 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, |
mjr | 40:cc0d9814522b | 777 | 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, |
mjr | 40:cc0d9814522b | 778 | 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, |
mjr | 40:cc0d9814522b | 779 | 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, |
mjr | 40:cc0d9814522b | 780 | 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, |
mjr | 40:cc0d9814522b | 781 | 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, |
mjr | 40:cc0d9814522b | 782 | 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, |
mjr | 40:cc0d9814522b | 783 | 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114, |
mjr | 40:cc0d9814522b | 784 | 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142, |
mjr | 40:cc0d9814522b | 785 | 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175, |
mjr | 40:cc0d9814522b | 786 | 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, |
mjr | 40:cc0d9814522b | 787 | 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255 |
mjr | 40:cc0d9814522b | 788 | }; |
mjr | 40:cc0d9814522b | 789 | |
mjr | 40:cc0d9814522b | 790 | // Gamma-corrected out. This is a filter object that we layer on top |
mjr | 40:cc0d9814522b | 791 | // of a physical pin interface. This applies gamma correction to the |
mjr | 40:cc0d9814522b | 792 | // input value and then passes it along to the underlying pin object. |
mjr | 40:cc0d9814522b | 793 | class LwGammaOut: public LwOut |
mjr | 40:cc0d9814522b | 794 | { |
mjr | 40:cc0d9814522b | 795 | public: |
mjr | 40:cc0d9814522b | 796 | LwGammaOut(LwOut *o) : out(o) { } |
mjr | 87:8d35c74403af | 797 | virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); } |
mjr | 40:cc0d9814522b | 798 | |
mjr | 40:cc0d9814522b | 799 | private: |
mjr | 40:cc0d9814522b | 800 | LwOut *out; |
mjr | 40:cc0d9814522b | 801 | }; |
mjr | 40:cc0d9814522b | 802 | |
mjr | 77:0b96f6867312 | 803 | // Global night mode flag. To minimize overhead when reporting |
mjr | 77:0b96f6867312 | 804 | // the status, we set this to the status report flag bit for |
mjr | 77:0b96f6867312 | 805 | // night mode, 0x02, when engaged. |
mjr | 77:0b96f6867312 | 806 | static uint8_t nightMode = 0x00; |
mjr | 53:9b2611964afc | 807 | |
mjr | 40:cc0d9814522b | 808 | // Noisy output. This is a filter object that we layer on top of |
mjr | 40:cc0d9814522b | 809 | // a physical pin output. This filter disables the port when night |
mjr | 40:cc0d9814522b | 810 | // mode is engaged. |
mjr | 40:cc0d9814522b | 811 | class LwNoisyOut: public LwOut |
mjr | 40:cc0d9814522b | 812 | { |
mjr | 40:cc0d9814522b | 813 | public: |
mjr | 40:cc0d9814522b | 814 | LwNoisyOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 815 | virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); } |
mjr | 40:cc0d9814522b | 816 | |
mjr | 53:9b2611964afc | 817 | private: |
mjr | 53:9b2611964afc | 818 | LwOut *out; |
mjr | 53:9b2611964afc | 819 | }; |
mjr | 53:9b2611964afc | 820 | |
mjr | 53:9b2611964afc | 821 | // Night Mode indicator output. This is a filter object that we |
mjr | 53:9b2611964afc | 822 | // layer on top of a physical pin output. This filter ignores the |
mjr | 53:9b2611964afc | 823 | // host value and simply shows the night mode status. |
mjr | 53:9b2611964afc | 824 | class LwNightModeIndicatorOut: public LwOut |
mjr | 53:9b2611964afc | 825 | { |
mjr | 53:9b2611964afc | 826 | public: |
mjr | 53:9b2611964afc | 827 | LwNightModeIndicatorOut(LwOut *o) : out(o) { } |
mjr | 89:c43cd923401c | 828 | virtual void set(uint8_t) |
mjr | 53:9b2611964afc | 829 | { |
mjr | 53:9b2611964afc | 830 | // ignore the host value and simply show the current |
mjr | 53:9b2611964afc | 831 | // night mode setting |
mjr | 53:9b2611964afc | 832 | out->set(nightMode ? 255 : 0); |
mjr | 53:9b2611964afc | 833 | } |
mjr | 40:cc0d9814522b | 834 | |
mjr | 40:cc0d9814522b | 835 | private: |
mjr | 40:cc0d9814522b | 836 | LwOut *out; |
mjr | 40:cc0d9814522b | 837 | }; |
mjr | 40:cc0d9814522b | 838 | |
mjr | 26:cb71c4af2912 | 839 | |
mjr | 89:c43cd923401c | 840 | // Flipper Logic output. This is a filter object that we layer on |
mjr | 89:c43cd923401c | 841 | // top of a physical pin output. |
mjr | 89:c43cd923401c | 842 | // |
mjr | 89:c43cd923401c | 843 | // A Flipper Logic output is effectively a digital output from the |
mjr | 89:c43cd923401c | 844 | // client's perspective, in that it ignores the intensity level and |
mjr | 89:c43cd923401c | 845 | // only pays attention to the ON/OFF state. 0 is OFF and any other |
mjr | 89:c43cd923401c | 846 | // level is ON. |
mjr | 89:c43cd923401c | 847 | // |
mjr | 89:c43cd923401c | 848 | // In terms of the physical output, though, we do use varying power. |
mjr | 89:c43cd923401c | 849 | // It's just that the varying power isn't under the client's control; |
mjr | 89:c43cd923401c | 850 | // we control it according to our flipperLogic settings: |
mjr | 89:c43cd923401c | 851 | // |
mjr | 89:c43cd923401c | 852 | // - When the software port transitions from OFF (0 brightness) to ON |
mjr | 89:c43cd923401c | 853 | // (any non-zero brightness level), we set the physical port to 100% |
mjr | 89:c43cd923401c | 854 | // power and start a timer. |
mjr | 89:c43cd923401c | 855 | // |
mjr | 89:c43cd923401c | 856 | // - When the full power time in our flipperLogic settings elapses, |
mjr | 89:c43cd923401c | 857 | // if the software port is still ON, we reduce the physical port to |
mjr | 89:c43cd923401c | 858 | // the PWM level in our flipperLogic setting. |
mjr | 89:c43cd923401c | 859 | // |
mjr | 89:c43cd923401c | 860 | class LwFlipperLogicOut: public LwOut |
mjr | 89:c43cd923401c | 861 | { |
mjr | 89:c43cd923401c | 862 | public: |
mjr | 89:c43cd923401c | 863 | // Set up the output. 'params' is the flipperLogic value from |
mjr | 89:c43cd923401c | 864 | // the configuration. |
mjr | 89:c43cd923401c | 865 | LwFlipperLogicOut(LwOut *o, uint8_t params) |
mjr | 89:c43cd923401c | 866 | : out(o), params(params) |
mjr | 89:c43cd923401c | 867 | { |
mjr | 89:c43cd923401c | 868 | // initially OFF |
mjr | 89:c43cd923401c | 869 | state = 0; |
mjr | 89:c43cd923401c | 870 | } |
mjr | 89:c43cd923401c | 871 | |
mjr | 89:c43cd923401c | 872 | virtual void set(uint8_t level) |
mjr | 89:c43cd923401c | 873 | { |
mjr | 98:4df3c0f7e707 | 874 | // remember the new nominal level set by the client |
mjr | 89:c43cd923401c | 875 | val = level; |
mjr | 89:c43cd923401c | 876 | |
mjr | 89:c43cd923401c | 877 | // update the physical output according to our current timing state |
mjr | 89:c43cd923401c | 878 | switch (state) |
mjr | 89:c43cd923401c | 879 | { |
mjr | 89:c43cd923401c | 880 | case 0: |
mjr | 89:c43cd923401c | 881 | // We're currently off. If the new level is non-zero, switch |
mjr | 89:c43cd923401c | 882 | // to state 1 (initial full-power interval) and set the requested |
mjr | 89:c43cd923401c | 883 | // level. If the new level is zero, we're switching from off to |
mjr | 89:c43cd923401c | 884 | // off, so there's no change. |
mjr | 89:c43cd923401c | 885 | if (level != 0) |
mjr | 89:c43cd923401c | 886 | { |
mjr | 89:c43cd923401c | 887 | // switch to state 1 (initial full-power interval) |
mjr | 89:c43cd923401c | 888 | state = 1; |
mjr | 89:c43cd923401c | 889 | |
mjr | 89:c43cd923401c | 890 | // set the requested output level - there's no limit during |
mjr | 89:c43cd923401c | 891 | // the initial full-power interval, so set the exact level |
mjr | 89:c43cd923401c | 892 | // requested |
mjr | 89:c43cd923401c | 893 | out->set(level); |
mjr | 89:c43cd923401c | 894 | |
mjr | 89:c43cd923401c | 895 | // add myself to the pending timer list |
mjr | 89:c43cd923401c | 896 | pending[nPending++] = this; |
mjr | 89:c43cd923401c | 897 | |
mjr | 89:c43cd923401c | 898 | // note the starting time |
mjr | 89:c43cd923401c | 899 | t0 = timer.read_us(); |
mjr | 89:c43cd923401c | 900 | } |
mjr | 89:c43cd923401c | 901 | break; |
mjr | 89:c43cd923401c | 902 | |
mjr | 89:c43cd923401c | 903 | case 1: |
mjr | 89:c43cd923401c | 904 | // Initial full-power interval. If the new level is non-zero, |
mjr | 89:c43cd923401c | 905 | // simply apply the new level as requested, since there's no |
mjr | 89:c43cd923401c | 906 | // limit during this period. If the new level is zero, shut |
mjr | 89:c43cd923401c | 907 | // off the output and cancel the pending timer. |
mjr | 89:c43cd923401c | 908 | out->set(level); |
mjr | 89:c43cd923401c | 909 | if (level == 0) |
mjr | 89:c43cd923401c | 910 | { |
mjr | 89:c43cd923401c | 911 | // We're switching off. In state 1, we have a pending timer, |
mjr | 89:c43cd923401c | 912 | // so we need to remove it from the list. |
mjr | 89:c43cd923401c | 913 | for (int i = 0 ; i < nPending ; ++i) |
mjr | 89:c43cd923401c | 914 | { |
mjr | 89:c43cd923401c | 915 | // is this us? |
mjr | 89:c43cd923401c | 916 | if (pending[i] == this) |
mjr | 89:c43cd923401c | 917 | { |
mjr | 89:c43cd923401c | 918 | // remove myself by replacing the slot with the |
mjr | 89:c43cd923401c | 919 | // last list entry |
mjr | 89:c43cd923401c | 920 | pending[i] = pending[--nPending]; |
mjr | 89:c43cd923401c | 921 | |
mjr | 89:c43cd923401c | 922 | // no need to look any further |
mjr | 89:c43cd923401c | 923 | break; |
mjr | 89:c43cd923401c | 924 | } |
mjr | 89:c43cd923401c | 925 | } |
mjr | 89:c43cd923401c | 926 | |
mjr | 89:c43cd923401c | 927 | // switch to state 0 (off) |
mjr | 89:c43cd923401c | 928 | state = 0; |
mjr | 89:c43cd923401c | 929 | } |
mjr | 89:c43cd923401c | 930 | break; |
mjr | 89:c43cd923401c | 931 | |
mjr | 89:c43cd923401c | 932 | case 2: |
mjr | 89:c43cd923401c | 933 | // Hold interval. If the new level is zero, switch to state |
mjr | 89:c43cd923401c | 934 | // 0 (off). If the new level is non-zero, stay in the hold |
mjr | 89:c43cd923401c | 935 | // state, and set the new level, applying the hold power setting |
mjr | 89:c43cd923401c | 936 | // as the upper bound. |
mjr | 89:c43cd923401c | 937 | if (level == 0) |
mjr | 89:c43cd923401c | 938 | { |
mjr | 89:c43cd923401c | 939 | // switching off - turn off the physical output |
mjr | 89:c43cd923401c | 940 | out->set(0); |
mjr | 89:c43cd923401c | 941 | |
mjr | 89:c43cd923401c | 942 | // go to state 0 (off) |
mjr | 89:c43cd923401c | 943 | state = 0; |
mjr | 89:c43cd923401c | 944 | } |
mjr | 89:c43cd923401c | 945 | else |
mjr | 89:c43cd923401c | 946 | { |
mjr | 89:c43cd923401c | 947 | // staying on - set the new physical output power to the |
mjr | 89:c43cd923401c | 948 | // lower of the requested power and the hold power |
mjr | 89:c43cd923401c | 949 | uint8_t hold = holdPower(); |
mjr | 89:c43cd923401c | 950 | out->set(level < hold ? level : hold); |
mjr | 89:c43cd923401c | 951 | } |
mjr | 89:c43cd923401c | 952 | break; |
mjr | 89:c43cd923401c | 953 | } |
mjr | 89:c43cd923401c | 954 | } |
mjr | 89:c43cd923401c | 955 | |
mjr | 89:c43cd923401c | 956 | // Class initialization |
mjr | 89:c43cd923401c | 957 | static void classInit(Config &cfg) |
mjr | 89:c43cd923401c | 958 | { |
mjr | 89:c43cd923401c | 959 | // Count the Flipper Logic outputs in the configuration. We |
mjr | 89:c43cd923401c | 960 | // need to allocate enough pending timer list space to accommodate |
mjr | 89:c43cd923401c | 961 | // all of these outputs. |
mjr | 89:c43cd923401c | 962 | int n = 0; |
mjr | 89:c43cd923401c | 963 | for (int i = 0 ; i < MAX_OUT_PORTS ; ++i) |
mjr | 89:c43cd923401c | 964 | { |
mjr | 89:c43cd923401c | 965 | // if this port is active and marked as Flipper Logic, count it |
mjr | 89:c43cd923401c | 966 | if (cfg.outPort[i].typ != PortTypeDisabled |
mjr | 89:c43cd923401c | 967 | && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0) |
mjr | 89:c43cd923401c | 968 | ++n; |
mjr | 89:c43cd923401c | 969 | } |
mjr | 89:c43cd923401c | 970 | |
mjr | 89:c43cd923401c | 971 | // allocate space for the pending timer list |
mjr | 89:c43cd923401c | 972 | pending = new LwFlipperLogicOut*[n]; |
mjr | 89:c43cd923401c | 973 | |
mjr | 89:c43cd923401c | 974 | // there's nothing in the pending list yet |
mjr | 89:c43cd923401c | 975 | nPending = 0; |
mjr | 89:c43cd923401c | 976 | |
mjr | 89:c43cd923401c | 977 | // Start our shared timer. The epoch is arbitrary, since we only |
mjr | 89:c43cd923401c | 978 | // use it to figure elapsed times. |
mjr | 89:c43cd923401c | 979 | timer.start(); |
mjr | 89:c43cd923401c | 980 | } |
mjr | 89:c43cd923401c | 981 | |
mjr | 89:c43cd923401c | 982 | // Check for ports with pending timers. The main routine should |
mjr | 89:c43cd923401c | 983 | // call this on each iteration to process our state transitions. |
mjr | 89:c43cd923401c | 984 | static void poll() |
mjr | 89:c43cd923401c | 985 | { |
mjr | 89:c43cd923401c | 986 | // note the current time |
mjr | 89:c43cd923401c | 987 | uint32_t t = timer.read_us(); |
mjr | 89:c43cd923401c | 988 | |
mjr | 89:c43cd923401c | 989 | // go through the timer list |
mjr | 89:c43cd923401c | 990 | for (int i = 0 ; i < nPending ; ) |
mjr | 89:c43cd923401c | 991 | { |
mjr | 89:c43cd923401c | 992 | // get the port |
mjr | 89:c43cd923401c | 993 | LwFlipperLogicOut *port = pending[i]; |
mjr | 89:c43cd923401c | 994 | |
mjr | 89:c43cd923401c | 995 | // assume we'll keep it |
mjr | 89:c43cd923401c | 996 | bool remove = false; |
mjr | 89:c43cd923401c | 997 | |
mjr | 89:c43cd923401c | 998 | // check if the port is still on |
mjr | 89:c43cd923401c | 999 | if (port->state != 0) |
mjr | 89:c43cd923401c | 1000 | { |
mjr | 89:c43cd923401c | 1001 | // it's still on - check if the initial full power time has elapsed |
mjr | 89:c43cd923401c | 1002 | if (uint32_t(t - port->t0) > port->fullPowerTime_us()) |
mjr | 89:c43cd923401c | 1003 | { |
mjr | 89:c43cd923401c | 1004 | // done with the full power interval - switch to hold state |
mjr | 89:c43cd923401c | 1005 | port->state = 2; |
mjr | 89:c43cd923401c | 1006 | |
mjr | 89:c43cd923401c | 1007 | // set the physical port to the hold power setting or the |
mjr | 89:c43cd923401c | 1008 | // client brightness setting, whichever is lower |
mjr | 89:c43cd923401c | 1009 | uint8_t hold = port->holdPower(); |
mjr | 89:c43cd923401c | 1010 | uint8_t val = port->val; |
mjr | 89:c43cd923401c | 1011 | port->out->set(val < hold ? val : hold); |
mjr | 89:c43cd923401c | 1012 | |
mjr | 89:c43cd923401c | 1013 | // we're done with the timer |
mjr | 89:c43cd923401c | 1014 | remove = true; |
mjr | 89:c43cd923401c | 1015 | } |
mjr | 89:c43cd923401c | 1016 | } |
mjr | 89:c43cd923401c | 1017 | else |
mjr | 89:c43cd923401c | 1018 | { |
mjr | 89:c43cd923401c | 1019 | // the port was turned off before the timer expired - remove |
mjr | 89:c43cd923401c | 1020 | // it from the timer list |
mjr | 89:c43cd923401c | 1021 | remove = true; |
mjr | 89:c43cd923401c | 1022 | } |
mjr | 89:c43cd923401c | 1023 | |
mjr | 89:c43cd923401c | 1024 | // if desired, remove the port from the timer list |
mjr | 89:c43cd923401c | 1025 | if (remove) |
mjr | 89:c43cd923401c | 1026 | { |
mjr | 89:c43cd923401c | 1027 | // Remove the list entry by overwriting the slot with |
mjr | 89:c43cd923401c | 1028 | // the last entry in the list. |
mjr | 89:c43cd923401c | 1029 | pending[i] = pending[--nPending]; |
mjr | 89:c43cd923401c | 1030 | |
mjr | 89:c43cd923401c | 1031 | // Note that we don't increment the loop counter, since |
mjr | 89:c43cd923401c | 1032 | // we now need to revisit this same slot. |
mjr | 89:c43cd923401c | 1033 | } |
mjr | 89:c43cd923401c | 1034 | else |
mjr | 89:c43cd923401c | 1035 | { |
mjr | 89:c43cd923401c | 1036 | // we're keeping this item; move on to the next one |
mjr | 89:c43cd923401c | 1037 | ++i; |
mjr | 89:c43cd923401c | 1038 | } |
mjr | 89:c43cd923401c | 1039 | } |
mjr | 89:c43cd923401c | 1040 | } |
mjr | 89:c43cd923401c | 1041 | |
mjr | 89:c43cd923401c | 1042 | protected: |
mjr | 89:c43cd923401c | 1043 | // underlying physical output |
mjr | 89:c43cd923401c | 1044 | LwOut *out; |
mjr | 89:c43cd923401c | 1045 | |
mjr | 89:c43cd923401c | 1046 | // Timestamp on 'timer' of start of full-power interval. We set this |
mjr | 89:c43cd923401c | 1047 | // to the current 'timer' timestamp when entering state 1. |
mjr | 89:c43cd923401c | 1048 | uint32_t t0; |
mjr | 89:c43cd923401c | 1049 | |
mjr | 89:c43cd923401c | 1050 | // Nominal output level (brightness) last set by the client. During |
mjr | 89:c43cd923401c | 1051 | // the initial full-power interval, we replicate the requested level |
mjr | 89:c43cd923401c | 1052 | // exactly on the physical output. During the hold interval, we limit |
mjr | 89:c43cd923401c | 1053 | // the physical output to the hold power, but use the caller's value |
mjr | 89:c43cd923401c | 1054 | // if it's lower. |
mjr | 89:c43cd923401c | 1055 | uint8_t val; |
mjr | 89:c43cd923401c | 1056 | |
mjr | 89:c43cd923401c | 1057 | // Current port state: |
mjr | 89:c43cd923401c | 1058 | // |
mjr | 89:c43cd923401c | 1059 | // 0 = off |
mjr | 89:c43cd923401c | 1060 | // 1 = on at initial full power |
mjr | 89:c43cd923401c | 1061 | // 2 = on at hold power |
mjr | 89:c43cd923401c | 1062 | uint8_t state; |
mjr | 89:c43cd923401c | 1063 | |
mjr | 89:c43cd923401c | 1064 | // Configuration parameters. The high 4 bits encode the initial full- |
mjr | 89:c43cd923401c | 1065 | // power time in 50ms units, starting at 0=50ms. The low 4 bits encode |
mjr | 89:c43cd923401c | 1066 | // the hold power (applied after the initial time expires if the output |
mjr | 89:c43cd923401c | 1067 | // is still on) in units of 6.66%. The resulting percentage is used |
mjr | 89:c43cd923401c | 1068 | // for the PWM duty cycle of the physical output. |
mjr | 89:c43cd923401c | 1069 | uint8_t params; |
mjr | 89:c43cd923401c | 1070 | |
mjr | 99:8139b0c274f4 | 1071 | // Figure the initial full-power time in microseconds: 50ms * (1+N), |
mjr | 99:8139b0c274f4 | 1072 | // where N is the high 4 bits of the parameter byte. |
mjr | 99:8139b0c274f4 | 1073 | inline uint32_t fullPowerTime_us() const { return 50000*(1 + ((params >> 4) & 0x0F)); } |
mjr | 89:c43cd923401c | 1074 | |
mjr | 89:c43cd923401c | 1075 | // Figure the hold power PWM level (0-255) |
mjr | 89:c43cd923401c | 1076 | inline uint8_t holdPower() const { return (params & 0x0F) * 17; } |
mjr | 89:c43cd923401c | 1077 | |
mjr | 89:c43cd923401c | 1078 | // Timer. This is a shared timer for all of the FL ports. When we |
mjr | 89:c43cd923401c | 1079 | // transition from OFF to ON, we note the current time on this timer |
mjr | 89:c43cd923401c | 1080 | // (which runs continuously). |
mjr | 89:c43cd923401c | 1081 | static Timer timer; |
mjr | 89:c43cd923401c | 1082 | |
mjr | 89:c43cd923401c | 1083 | // Flipper logic pending timer list. Whenever a flipper logic output |
mjr | 98:4df3c0f7e707 | 1084 | // transitions from OFF to ON, we add it to this list. We scan the |
mjr | 98:4df3c0f7e707 | 1085 | // list in our polling routine to find ports that have reached the |
mjr | 98:4df3c0f7e707 | 1086 | // expiration of their initial full-power intervals. |
mjr | 89:c43cd923401c | 1087 | static LwFlipperLogicOut **pending; |
mjr | 89:c43cd923401c | 1088 | static uint8_t nPending; |
mjr | 89:c43cd923401c | 1089 | }; |
mjr | 89:c43cd923401c | 1090 | |
mjr | 89:c43cd923401c | 1091 | // Flipper Logic statics |
mjr | 89:c43cd923401c | 1092 | Timer LwFlipperLogicOut::timer; |
mjr | 89:c43cd923401c | 1093 | LwFlipperLogicOut **LwFlipperLogicOut::pending; |
mjr | 89:c43cd923401c | 1094 | uint8_t LwFlipperLogicOut::nPending; |
mjr | 99:8139b0c274f4 | 1095 | |
mjr | 99:8139b0c274f4 | 1096 | // Chime Logic. This is a filter output that we layer on a physical |
mjr | 99:8139b0c274f4 | 1097 | // output to set a minimum and maximum ON time for the output. |
mjr | 99:8139b0c274f4 | 1098 | class LwChimeLogicOut: public LwOut |
mjr | 98:4df3c0f7e707 | 1099 | { |
mjr | 98:4df3c0f7e707 | 1100 | public: |
mjr | 99:8139b0c274f4 | 1101 | // Set up the output. 'params' encodes the minimum and maximum time. |
mjr | 99:8139b0c274f4 | 1102 | LwChimeLogicOut(LwOut *o, uint8_t params) |
mjr | 99:8139b0c274f4 | 1103 | : out(o), params(params) |
mjr | 98:4df3c0f7e707 | 1104 | { |
mjr | 98:4df3c0f7e707 | 1105 | // initially OFF |
mjr | 98:4df3c0f7e707 | 1106 | state = 0; |
mjr | 98:4df3c0f7e707 | 1107 | } |
mjr | 98:4df3c0f7e707 | 1108 | |
mjr | 98:4df3c0f7e707 | 1109 | virtual void set(uint8_t level) |
mjr | 98:4df3c0f7e707 | 1110 | { |
mjr | 98:4df3c0f7e707 | 1111 | // update the physical output according to our current timing state |
mjr | 98:4df3c0f7e707 | 1112 | switch (state) |
mjr | 98:4df3c0f7e707 | 1113 | { |
mjr | 98:4df3c0f7e707 | 1114 | case 0: |
mjr | 98:4df3c0f7e707 | 1115 | // We're currently off. If the new level is non-zero, switch |
mjr | 98:4df3c0f7e707 | 1116 | // to state 1 (initial minimum interval) and set the requested |
mjr | 98:4df3c0f7e707 | 1117 | // level. If the new level is zero, we're switching from off to |
mjr | 98:4df3c0f7e707 | 1118 | // off, so there's no change. |
mjr | 98:4df3c0f7e707 | 1119 | if (level != 0) |
mjr | 98:4df3c0f7e707 | 1120 | { |
mjr | 98:4df3c0f7e707 | 1121 | // switch to state 1 (initial minimum interval, port is |
mjr | 98:4df3c0f7e707 | 1122 | // logically on) |
mjr | 98:4df3c0f7e707 | 1123 | state = 1; |
mjr | 98:4df3c0f7e707 | 1124 | |
mjr | 98:4df3c0f7e707 | 1125 | // set the requested output level |
mjr | 98:4df3c0f7e707 | 1126 | out->set(level); |
mjr | 98:4df3c0f7e707 | 1127 | |
mjr | 98:4df3c0f7e707 | 1128 | // add myself to the pending timer list |
mjr | 98:4df3c0f7e707 | 1129 | pending[nPending++] = this; |
mjr | 98:4df3c0f7e707 | 1130 | |
mjr | 98:4df3c0f7e707 | 1131 | // note the starting time |
mjr | 98:4df3c0f7e707 | 1132 | t0 = timer.read_us(); |
mjr | 98:4df3c0f7e707 | 1133 | } |
mjr | 98:4df3c0f7e707 | 1134 | break; |
mjr | 98:4df3c0f7e707 | 1135 | |
mjr | 98:4df3c0f7e707 | 1136 | case 1: // min ON interval, port on |
mjr | 98:4df3c0f7e707 | 1137 | case 2: // min ON interval, port off |
mjr | 98:4df3c0f7e707 | 1138 | // We're in the initial minimum ON interval. If the new power |
mjr | 98:4df3c0f7e707 | 1139 | // level is non-zero, pass it through to the physical port, since |
mjr | 98:4df3c0f7e707 | 1140 | // the client is allowed to change the power level during the |
mjr | 98:4df3c0f7e707 | 1141 | // initial ON interval - they just can't turn it off entirely. |
mjr | 98:4df3c0f7e707 | 1142 | // Set the state to 1 to indicate that the logical port is on. |
mjr | 98:4df3c0f7e707 | 1143 | // |
mjr | 98:4df3c0f7e707 | 1144 | // If the new level is zero, leave the underlying port at its |
mjr | 98:4df3c0f7e707 | 1145 | // current power level, since we're not allowed to turn it off |
mjr | 98:4df3c0f7e707 | 1146 | // during this period. Set the state to 2 to indicate that the |
mjr | 98:4df3c0f7e707 | 1147 | // logical port is off even though the physical port has to stay |
mjr | 98:4df3c0f7e707 | 1148 | // on for the remainder of the interval. |
mjr | 98:4df3c0f7e707 | 1149 | if (level != 0) |
mjr | 98:4df3c0f7e707 | 1150 | { |
mjr | 98:4df3c0f7e707 | 1151 | // client is leaving the port on - pass through the new |
mjr | 98:4df3c0f7e707 | 1152 | // power level and set state 1 (logically on) |
mjr | 98:4df3c0f7e707 | 1153 | out->set(level); |
mjr | 98:4df3c0f7e707 | 1154 | state = 1; |
mjr | 98:4df3c0f7e707 | 1155 | } |
mjr | 98:4df3c0f7e707 | 1156 | else |
mjr | 98:4df3c0f7e707 | 1157 | { |
mjr | 98:4df3c0f7e707 | 1158 | // Client is turning off the port - leave the underlying port |
mjr | 98:4df3c0f7e707 | 1159 | // on at its current level and set state 2 (logically off). |
mjr | 98:4df3c0f7e707 | 1160 | // When the minimum ON time expires, the polling routine will |
mjr | 98:4df3c0f7e707 | 1161 | // see that we're logically off and will pass that through to |
mjr | 98:4df3c0f7e707 | 1162 | // the underlying physical port. Until then, though, we have |
mjr | 98:4df3c0f7e707 | 1163 | // to leave the physical port on to satisfy the minimum ON |
mjr | 98:4df3c0f7e707 | 1164 | // time requirement. |
mjr | 98:4df3c0f7e707 | 1165 | state = 2; |
mjr | 98:4df3c0f7e707 | 1166 | } |
mjr | 98:4df3c0f7e707 | 1167 | break; |
mjr | 98:4df3c0f7e707 | 1168 | |
mjr | 98:4df3c0f7e707 | 1169 | case 3: |
mjr | 99:8139b0c274f4 | 1170 | // We're after the minimum ON interval and before the maximum |
mjr | 99:8139b0c274f4 | 1171 | // ON time limit. We can set any new level, including fully off. |
mjr | 99:8139b0c274f4 | 1172 | // Pass the new power level through to the port. |
mjr | 98:4df3c0f7e707 | 1173 | out->set(level); |
mjr | 98:4df3c0f7e707 | 1174 | |
mjr | 98:4df3c0f7e707 | 1175 | // if the port is now off, return to state 0 (OFF) |
mjr | 98:4df3c0f7e707 | 1176 | if (level == 0) |
mjr | 99:8139b0c274f4 | 1177 | { |
mjr | 99:8139b0c274f4 | 1178 | // return to the OFF state |
mjr | 99:8139b0c274f4 | 1179 | state = 0; |
mjr | 99:8139b0c274f4 | 1180 | |
mjr | 99:8139b0c274f4 | 1181 | // If we have a timer pending, remove it. A timer will be |
mjr | 99:8139b0c274f4 | 1182 | // pending if we have a non-infinite maximum on time for the |
mjr | 99:8139b0c274f4 | 1183 | // port. |
mjr | 99:8139b0c274f4 | 1184 | for (int i = 0 ; i < nPending ; ++i) |
mjr | 99:8139b0c274f4 | 1185 | { |
mjr | 99:8139b0c274f4 | 1186 | // is this us? |
mjr | 99:8139b0c274f4 | 1187 | if (pending[i] == this) |
mjr | 99:8139b0c274f4 | 1188 | { |
mjr | 99:8139b0c274f4 | 1189 | // remove myself by replacing the slot with the |
mjr | 99:8139b0c274f4 | 1190 | // last list entry |
mjr | 99:8139b0c274f4 | 1191 | pending[i] = pending[--nPending]; |
mjr | 99:8139b0c274f4 | 1192 | |
mjr | 99:8139b0c274f4 | 1193 | // no need to look any further |
mjr | 99:8139b0c274f4 | 1194 | break; |
mjr | 99:8139b0c274f4 | 1195 | } |
mjr | 99:8139b0c274f4 | 1196 | } |
mjr | 99:8139b0c274f4 | 1197 | } |
mjr | 99:8139b0c274f4 | 1198 | break; |
mjr | 99:8139b0c274f4 | 1199 | |
mjr | 99:8139b0c274f4 | 1200 | case 4: |
mjr | 99:8139b0c274f4 | 1201 | // We're after the maximum ON time. The physical port stays off |
mjr | 99:8139b0c274f4 | 1202 | // during this interval, so we don't pass any changes through to |
mjr | 99:8139b0c274f4 | 1203 | // the physical port. When the client sets the level to 0, we |
mjr | 99:8139b0c274f4 | 1204 | // turn off the logical port and reset to state 0. |
mjr | 99:8139b0c274f4 | 1205 | if (level == 0) |
mjr | 98:4df3c0f7e707 | 1206 | state = 0; |
mjr | 98:4df3c0f7e707 | 1207 | break; |
mjr | 98:4df3c0f7e707 | 1208 | } |
mjr | 98:4df3c0f7e707 | 1209 | } |
mjr | 98:4df3c0f7e707 | 1210 | |
mjr | 98:4df3c0f7e707 | 1211 | // Class initialization |
mjr | 98:4df3c0f7e707 | 1212 | static void classInit(Config &cfg) |
mjr | 98:4df3c0f7e707 | 1213 | { |
mjr | 98:4df3c0f7e707 | 1214 | // Count the Minimum On Time outputs in the configuration. We |
mjr | 98:4df3c0f7e707 | 1215 | // need to allocate enough pending timer list space to accommodate |
mjr | 98:4df3c0f7e707 | 1216 | // all of these outputs. |
mjr | 98:4df3c0f7e707 | 1217 | int n = 0; |
mjr | 98:4df3c0f7e707 | 1218 | for (int i = 0 ; i < MAX_OUT_PORTS ; ++i) |
mjr | 98:4df3c0f7e707 | 1219 | { |
mjr | 98:4df3c0f7e707 | 1220 | // if this port is active and marked as Flipper Logic, count it |
mjr | 98:4df3c0f7e707 | 1221 | if (cfg.outPort[i].typ != PortTypeDisabled |
mjr | 99:8139b0c274f4 | 1222 | && (cfg.outPort[i].flags & PortFlagChimeLogic) != 0) |
mjr | 98:4df3c0f7e707 | 1223 | ++n; |
mjr | 98:4df3c0f7e707 | 1224 | } |
mjr | 98:4df3c0f7e707 | 1225 | |
mjr | 98:4df3c0f7e707 | 1226 | // allocate space for the pending timer list |
mjr | 99:8139b0c274f4 | 1227 | pending = new LwChimeLogicOut*[n]; |
mjr | 98:4df3c0f7e707 | 1228 | |
mjr | 98:4df3c0f7e707 | 1229 | // there's nothing in the pending list yet |
mjr | 98:4df3c0f7e707 | 1230 | nPending = 0; |
mjr | 98:4df3c0f7e707 | 1231 | |
mjr | 98:4df3c0f7e707 | 1232 | // Start our shared timer. The epoch is arbitrary, since we only |
mjr | 98:4df3c0f7e707 | 1233 | // use it to figure elapsed times. |
mjr | 98:4df3c0f7e707 | 1234 | timer.start(); |
mjr | 98:4df3c0f7e707 | 1235 | } |
mjr | 98:4df3c0f7e707 | 1236 | |
mjr | 98:4df3c0f7e707 | 1237 | // Check for ports with pending timers. The main routine should |
mjr | 98:4df3c0f7e707 | 1238 | // call this on each iteration to process our state transitions. |
mjr | 98:4df3c0f7e707 | 1239 | static void poll() |
mjr | 98:4df3c0f7e707 | 1240 | { |
mjr | 98:4df3c0f7e707 | 1241 | // note the current time |
mjr | 98:4df3c0f7e707 | 1242 | uint32_t t = timer.read_us(); |
mjr | 98:4df3c0f7e707 | 1243 | |
mjr | 98:4df3c0f7e707 | 1244 | // go through the timer list |
mjr | 98:4df3c0f7e707 | 1245 | for (int i = 0 ; i < nPending ; ) |
mjr | 98:4df3c0f7e707 | 1246 | { |
mjr | 98:4df3c0f7e707 | 1247 | // get the port |
mjr | 99:8139b0c274f4 | 1248 | LwChimeLogicOut *port = pending[i]; |
mjr | 98:4df3c0f7e707 | 1249 | |
mjr | 98:4df3c0f7e707 | 1250 | // assume we'll keep it |
mjr | 98:4df3c0f7e707 | 1251 | bool remove = false; |
mjr | 98:4df3c0f7e707 | 1252 | |
mjr | 99:8139b0c274f4 | 1253 | // check our state |
mjr | 99:8139b0c274f4 | 1254 | switch (port->state) |
mjr | 98:4df3c0f7e707 | 1255 | { |
mjr | 99:8139b0c274f4 | 1256 | case 1: // initial minimum ON time, port logically on |
mjr | 99:8139b0c274f4 | 1257 | case 2: // initial minimum ON time, port logically off |
mjr | 99:8139b0c274f4 | 1258 | // check if the minimum ON time has elapsed |
mjr | 98:4df3c0f7e707 | 1259 | if (uint32_t(t - port->t0) > port->minOnTime_us()) |
mjr | 98:4df3c0f7e707 | 1260 | { |
mjr | 98:4df3c0f7e707 | 1261 | // This port has completed its initial ON interval, so |
mjr | 98:4df3c0f7e707 | 1262 | // it advances to the next state. |
mjr | 98:4df3c0f7e707 | 1263 | if (port->state == 1) |
mjr | 98:4df3c0f7e707 | 1264 | { |
mjr | 99:8139b0c274f4 | 1265 | // The port is logically on, so advance to state 3. |
mjr | 99:8139b0c274f4 | 1266 | // The underlying port is already at its proper level, |
mjr | 99:8139b0c274f4 | 1267 | // since we pass through non-zero power settings to the |
mjr | 99:8139b0c274f4 | 1268 | // underlying port throughout the initial minimum time. |
mjr | 99:8139b0c274f4 | 1269 | // The timer stays active into state 3. |
mjr | 98:4df3c0f7e707 | 1270 | port->state = 3; |
mjr | 99:8139b0c274f4 | 1271 | |
mjr | 99:8139b0c274f4 | 1272 | // Special case: maximum on time 0 means "infinite". |
mjr | 99:8139b0c274f4 | 1273 | // There's no need for a timer in this case; we'll |
mjr | 99:8139b0c274f4 | 1274 | // just stay in state 3 until the client turns the |
mjr | 99:8139b0c274f4 | 1275 | // port off. |
mjr | 99:8139b0c274f4 | 1276 | if (port->maxOnTime_us() == 0) |
mjr | 99:8139b0c274f4 | 1277 | remove = true; |
mjr | 98:4df3c0f7e707 | 1278 | } |
mjr | 98:4df3c0f7e707 | 1279 | else |
mjr | 98:4df3c0f7e707 | 1280 | { |
mjr | 98:4df3c0f7e707 | 1281 | // The port was switched off by the client during the |
mjr | 98:4df3c0f7e707 | 1282 | // minimum ON period. We haven't passed the OFF state |
mjr | 98:4df3c0f7e707 | 1283 | // to the underlying port yet, because the port has to |
mjr | 98:4df3c0f7e707 | 1284 | // stay on throughout the minimum ON period. So turn |
mjr | 98:4df3c0f7e707 | 1285 | // the port off now. |
mjr | 98:4df3c0f7e707 | 1286 | port->out->set(0); |
mjr | 98:4df3c0f7e707 | 1287 | |
mjr | 98:4df3c0f7e707 | 1288 | // return to state 0 (OFF) |
mjr | 98:4df3c0f7e707 | 1289 | port->state = 0; |
mjr | 99:8139b0c274f4 | 1290 | |
mjr | 99:8139b0c274f4 | 1291 | // we're done with the timer |
mjr | 99:8139b0c274f4 | 1292 | remove = true; |
mjr | 98:4df3c0f7e707 | 1293 | } |
mjr | 99:8139b0c274f4 | 1294 | } |
mjr | 99:8139b0c274f4 | 1295 | break; |
mjr | 99:8139b0c274f4 | 1296 | |
mjr | 99:8139b0c274f4 | 1297 | case 3: // between minimum ON time and maximum ON time |
mjr | 99:8139b0c274f4 | 1298 | // check if the maximum ON time has expired |
mjr | 99:8139b0c274f4 | 1299 | if (uint32_t(t - port->t0) > port->maxOnTime_us()) |
mjr | 99:8139b0c274f4 | 1300 | { |
mjr | 99:8139b0c274f4 | 1301 | // The maximum ON time has expired. Turn off the physical |
mjr | 99:8139b0c274f4 | 1302 | // port. |
mjr | 99:8139b0c274f4 | 1303 | port->out->set(0); |
mjr | 98:4df3c0f7e707 | 1304 | |
mjr | 99:8139b0c274f4 | 1305 | // Switch to state 4 (logically ON past maximum time) |
mjr | 99:8139b0c274f4 | 1306 | port->state = 4; |
mjr | 99:8139b0c274f4 | 1307 | |
mjr | 99:8139b0c274f4 | 1308 | // Remove the timer on this port. This port simply stays |
mjr | 99:8139b0c274f4 | 1309 | // in state 4 until the client turns off the port. |
mjr | 98:4df3c0f7e707 | 1310 | remove = true; |
mjr | 98:4df3c0f7e707 | 1311 | } |
mjr | 99:8139b0c274f4 | 1312 | break; |
mjr | 98:4df3c0f7e707 | 1313 | } |
mjr | 98:4df3c0f7e707 | 1314 | |
mjr | 98:4df3c0f7e707 | 1315 | // if desired, remove the port from the timer list |
mjr | 98:4df3c0f7e707 | 1316 | if (remove) |
mjr | 98:4df3c0f7e707 | 1317 | { |
mjr | 98:4df3c0f7e707 | 1318 | // Remove the list entry by overwriting the slot with |
mjr | 98:4df3c0f7e707 | 1319 | // the last entry in the list. |
mjr | 98:4df3c0f7e707 | 1320 | pending[i] = pending[--nPending]; |
mjr | 98:4df3c0f7e707 | 1321 | |
mjr | 98:4df3c0f7e707 | 1322 | // Note that we don't increment the loop counter, since |
mjr | 98:4df3c0f7e707 | 1323 | // we now need to revisit this same slot. |
mjr | 98:4df3c0f7e707 | 1324 | } |
mjr | 98:4df3c0f7e707 | 1325 | else |
mjr | 98:4df3c0f7e707 | 1326 | { |
mjr | 98:4df3c0f7e707 | 1327 | // we're keeping this item; move on to the next one |
mjr | 98:4df3c0f7e707 | 1328 | ++i; |
mjr | 98:4df3c0f7e707 | 1329 | } |
mjr | 98:4df3c0f7e707 | 1330 | } |
mjr | 98:4df3c0f7e707 | 1331 | } |
mjr | 98:4df3c0f7e707 | 1332 | |
mjr | 98:4df3c0f7e707 | 1333 | protected: |
mjr | 98:4df3c0f7e707 | 1334 | // underlying physical output |
mjr | 98:4df3c0f7e707 | 1335 | LwOut *out; |
mjr | 98:4df3c0f7e707 | 1336 | |
mjr | 98:4df3c0f7e707 | 1337 | // Timestamp on 'timer' of start of full-power interval. We set this |
mjr | 98:4df3c0f7e707 | 1338 | // to the current 'timer' timestamp when entering state 1. |
mjr | 98:4df3c0f7e707 | 1339 | uint32_t t0; |
mjr | 98:4df3c0f7e707 | 1340 | |
mjr | 98:4df3c0f7e707 | 1341 | // Current port state: |
mjr | 98:4df3c0f7e707 | 1342 | // |
mjr | 98:4df3c0f7e707 | 1343 | // 0 = off |
mjr | 99:8139b0c274f4 | 1344 | // 1 = in initial minimum ON interval, logical port is on |
mjr | 99:8139b0c274f4 | 1345 | // 2 = in initial minimum ON interval, logical port is off |
mjr | 99:8139b0c274f4 | 1346 | // 3 = in interval between minimum and maximum ON times |
mjr | 99:8139b0c274f4 | 1347 | // 4 = after the maximum ON interval |
mjr | 99:8139b0c274f4 | 1348 | // |
mjr | 99:8139b0c274f4 | 1349 | // The "logical" on/off state of the port is the state set by the |
mjr | 99:8139b0c274f4 | 1350 | // client. The "physical" state is the state of the underlying port. |
mjr | 99:8139b0c274f4 | 1351 | // The relationships between logical and physical port state, and the |
mjr | 99:8139b0c274f4 | 1352 | // effects of updates by the client, are as follows: |
mjr | 99:8139b0c274f4 | 1353 | // |
mjr | 99:8139b0c274f4 | 1354 | // State | Logical | Physical | Client set on | Client set off |
mjr | 99:8139b0c274f4 | 1355 | // ----------------------------------------------------------- |
mjr | 99:8139b0c274f4 | 1356 | // 0 | Off | Off | phys on, -> 1 | no effect |
mjr | 99:8139b0c274f4 | 1357 | // 1 | On | On | no effect | -> 2 |
mjr | 99:8139b0c274f4 | 1358 | // 2 | Off | On | -> 1 | no effect |
mjr | 99:8139b0c274f4 | 1359 | // 3 | On | On | no effect | phys off, -> 0 |
mjr | 99:8139b0c274f4 | 1360 | // 4 | On | On | no effect | phys off, -> 0 |
mjr | 99:8139b0c274f4 | 1361 | // |
mjr | 99:8139b0c274f4 | 1362 | // The polling routine makes the following transitions when the current |
mjr | 99:8139b0c274f4 | 1363 | // time limit expires: |
mjr | 99:8139b0c274f4 | 1364 | // |
mjr | 99:8139b0c274f4 | 1365 | // 1: at end of minimum ON, -> 3 (or 4 if max == infinity) |
mjr | 99:8139b0c274f4 | 1366 | // 2: at end of minimum ON, port off, -> 0 |
mjr | 99:8139b0c274f4 | 1367 | // 3: at end of maximum ON, port off, -> 4 |
mjr | 98:4df3c0f7e707 | 1368 | // |
mjr | 98:4df3c0f7e707 | 1369 | uint8_t state; |
mjr | 98:4df3c0f7e707 | 1370 | |
mjr | 99:8139b0c274f4 | 1371 | // Configuration parameters byte. This encodes the minimum and maximum |
mjr | 99:8139b0c274f4 | 1372 | // ON times. |
mjr | 99:8139b0c274f4 | 1373 | uint8_t params; |
mjr | 98:4df3c0f7e707 | 1374 | |
mjr | 98:4df3c0f7e707 | 1375 | // Timer. This is a shared timer for all of the minimum ON time ports. |
mjr | 98:4df3c0f7e707 | 1376 | // When we transition from OFF to ON, we note the current time on this |
mjr | 98:4df3c0f7e707 | 1377 | // timer to establish the start of our minimum ON period. |
mjr | 98:4df3c0f7e707 | 1378 | static Timer timer; |
mjr | 98:4df3c0f7e707 | 1379 | |
mjr | 98:4df3c0f7e707 | 1380 | // translaton table from timing parameter in config to minimum ON time |
mjr | 98:4df3c0f7e707 | 1381 | static const uint32_t paramToTime_us[]; |
mjr | 98:4df3c0f7e707 | 1382 | |
mjr | 99:8139b0c274f4 | 1383 | // Figure the minimum ON time. The minimum ON time is given by the |
mjr | 99:8139b0c274f4 | 1384 | // low-order 4 bits of the parameters byte, which serves as an index |
mjr | 99:8139b0c274f4 | 1385 | // into our time table. |
mjr | 99:8139b0c274f4 | 1386 | inline uint32_t minOnTime_us() const { return paramToTime_us[params & 0x0F]; } |
mjr | 99:8139b0c274f4 | 1387 | |
mjr | 99:8139b0c274f4 | 1388 | // Figure the maximum ON time. The maximum time is the high 4 bits |
mjr | 99:8139b0c274f4 | 1389 | // of the parameters byte. This is an index into our time table, but |
mjr | 99:8139b0c274f4 | 1390 | // 0 has the special meaning "infinite". |
mjr | 99:8139b0c274f4 | 1391 | inline uint32_t maxOnTime_us() const { return paramToTime_us[((params >> 4) & 0x0F)]; } |
mjr | 98:4df3c0f7e707 | 1392 | |
mjr | 98:4df3c0f7e707 | 1393 | // Pending timer list. Whenever one of our ports transitions from OFF |
mjr | 98:4df3c0f7e707 | 1394 | // to ON, we add it to this list. We scan this list in our polling |
mjr | 98:4df3c0f7e707 | 1395 | // routine to find ports that have reached the ends of their initial |
mjr | 98:4df3c0f7e707 | 1396 | // ON intervals. |
mjr | 99:8139b0c274f4 | 1397 | static LwChimeLogicOut **pending; |
mjr | 98:4df3c0f7e707 | 1398 | static uint8_t nPending; |
mjr | 98:4df3c0f7e707 | 1399 | }; |
mjr | 98:4df3c0f7e707 | 1400 | |
mjr | 98:4df3c0f7e707 | 1401 | // Min Time Out statics |
mjr | 99:8139b0c274f4 | 1402 | Timer LwChimeLogicOut::timer; |
mjr | 99:8139b0c274f4 | 1403 | LwChimeLogicOut **LwChimeLogicOut::pending; |
mjr | 99:8139b0c274f4 | 1404 | uint8_t LwChimeLogicOut::nPending; |
mjr | 99:8139b0c274f4 | 1405 | const uint32_t LwChimeLogicOut::paramToTime_us[] = { |
mjr | 99:8139b0c274f4 | 1406 | 0, // for the max time, this means "infinite" |
mjr | 98:4df3c0f7e707 | 1407 | 1000, |
mjr | 98:4df3c0f7e707 | 1408 | 2000, |
mjr | 98:4df3c0f7e707 | 1409 | 5000, |
mjr | 98:4df3c0f7e707 | 1410 | 10000, |
mjr | 98:4df3c0f7e707 | 1411 | 20000, |
mjr | 98:4df3c0f7e707 | 1412 | 40000, |
mjr | 98:4df3c0f7e707 | 1413 | 80000, |
mjr | 98:4df3c0f7e707 | 1414 | 100000, |
mjr | 98:4df3c0f7e707 | 1415 | 200000, |
mjr | 98:4df3c0f7e707 | 1416 | 300000, |
mjr | 98:4df3c0f7e707 | 1417 | 400000, |
mjr | 98:4df3c0f7e707 | 1418 | 500000, |
mjr | 98:4df3c0f7e707 | 1419 | 600000, |
mjr | 98:4df3c0f7e707 | 1420 | 700000, |
mjr | 98:4df3c0f7e707 | 1421 | 800000 |
mjr | 98:4df3c0f7e707 | 1422 | }; |
mjr | 89:c43cd923401c | 1423 | |
mjr | 35:e959ffba78fd | 1424 | // |
mjr | 35:e959ffba78fd | 1425 | // The TLC5940 interface object. We'll set this up with the port |
mjr | 35:e959ffba78fd | 1426 | // assignments set in config.h. |
mjr | 33:d832bcab089e | 1427 | // |
mjr | 35:e959ffba78fd | 1428 | TLC5940 *tlc5940 = 0; |
mjr | 35:e959ffba78fd | 1429 | void init_tlc5940(Config &cfg) |
mjr | 35:e959ffba78fd | 1430 | { |
mjr | 35:e959ffba78fd | 1431 | if (cfg.tlc5940.nchips != 0) |
mjr | 35:e959ffba78fd | 1432 | { |
mjr | 53:9b2611964afc | 1433 | tlc5940 = new TLC5940( |
mjr | 53:9b2611964afc | 1434 | wirePinName(cfg.tlc5940.sclk), |
mjr | 53:9b2611964afc | 1435 | wirePinName(cfg.tlc5940.sin), |
mjr | 53:9b2611964afc | 1436 | wirePinName(cfg.tlc5940.gsclk), |
mjr | 53:9b2611964afc | 1437 | wirePinName(cfg.tlc5940.blank), |
mjr | 53:9b2611964afc | 1438 | wirePinName(cfg.tlc5940.xlat), |
mjr | 53:9b2611964afc | 1439 | cfg.tlc5940.nchips); |
mjr | 35:e959ffba78fd | 1440 | } |
mjr | 35:e959ffba78fd | 1441 | } |
mjr | 26:cb71c4af2912 | 1442 | |
mjr | 40:cc0d9814522b | 1443 | // Conversion table for 8-bit DOF level to 12-bit TLC5940 level |
mjr | 40:cc0d9814522b | 1444 | static const uint16_t dof_to_tlc[] = { |
mjr | 40:cc0d9814522b | 1445 | 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241, |
mjr | 40:cc0d9814522b | 1446 | 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498, |
mjr | 40:cc0d9814522b | 1447 | 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755, |
mjr | 40:cc0d9814522b | 1448 | 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012, |
mjr | 40:cc0d9814522b | 1449 | 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269, |
mjr | 40:cc0d9814522b | 1450 | 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526, |
mjr | 40:cc0d9814522b | 1451 | 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783, |
mjr | 40:cc0d9814522b | 1452 | 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039, |
mjr | 40:cc0d9814522b | 1453 | 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296, |
mjr | 40:cc0d9814522b | 1454 | 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553, |
mjr | 40:cc0d9814522b | 1455 | 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810, |
mjr | 40:cc0d9814522b | 1456 | 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067, |
mjr | 40:cc0d9814522b | 1457 | 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324, |
mjr | 40:cc0d9814522b | 1458 | 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581, |
mjr | 40:cc0d9814522b | 1459 | 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838, |
mjr | 40:cc0d9814522b | 1460 | 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095 |
mjr | 40:cc0d9814522b | 1461 | }; |
mjr | 40:cc0d9814522b | 1462 | |
mjr | 40:cc0d9814522b | 1463 | // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with |
mjr | 40:cc0d9814522b | 1464 | // gamma correction. Note that the output layering scheme can handle |
mjr | 40:cc0d9814522b | 1465 | // this without a separate table, by first applying gamma to the DOF |
mjr | 40:cc0d9814522b | 1466 | // level to produce an 8-bit gamma-corrected value, then convert that |
mjr | 40:cc0d9814522b | 1467 | // to the 12-bit TLC5940 value. But we get better precision by doing |
mjr | 40:cc0d9814522b | 1468 | // the gamma correction in the 12-bit TLC5940 domain. We can only |
mjr | 40:cc0d9814522b | 1469 | // get the 12-bit domain by combining both steps into one layering |
mjr | 40:cc0d9814522b | 1470 | // object, though, since the intermediate values in the layering system |
mjr | 40:cc0d9814522b | 1471 | // are always 8 bits. |
mjr | 40:cc0d9814522b | 1472 | static const uint16_t dof_to_gamma_tlc[] = { |
mjr | 40:cc0d9814522b | 1473 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, |
mjr | 40:cc0d9814522b | 1474 | 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11, |
mjr | 40:cc0d9814522b | 1475 | 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36, |
mjr | 40:cc0d9814522b | 1476 | 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82, |
mjr | 40:cc0d9814522b | 1477 | 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154, |
mjr | 40:cc0d9814522b | 1478 | 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258, |
mjr | 40:cc0d9814522b | 1479 | 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399, |
mjr | 40:cc0d9814522b | 1480 | 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582, |
mjr | 40:cc0d9814522b | 1481 | 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811, |
mjr | 40:cc0d9814522b | 1482 | 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091, |
mjr | 40:cc0d9814522b | 1483 | 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427, |
mjr | 40:cc0d9814522b | 1484 | 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823, |
mjr | 40:cc0d9814522b | 1485 | 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284, |
mjr | 40:cc0d9814522b | 1486 | 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813, |
mjr | 40:cc0d9814522b | 1487 | 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416, |
mjr | 40:cc0d9814522b | 1488 | 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095 |
mjr | 40:cc0d9814522b | 1489 | }; |
mjr | 40:cc0d9814522b | 1490 | |
mjr | 26:cb71c4af2912 | 1491 | // LwOut class for TLC5940 outputs. These are fully PWM capable. |
mjr | 26:cb71c4af2912 | 1492 | // The 'idx' value in the constructor is the output index in the |
mjr | 26:cb71c4af2912 | 1493 | // daisy-chained TLC5940 array. 0 is output #0 on the first chip, |
mjr | 26:cb71c4af2912 | 1494 | // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is |
mjr | 26:cb71c4af2912 | 1495 | // #0 on the second chip, 32 is #0 on the third chip, etc. |
mjr | 26:cb71c4af2912 | 1496 | class Lw5940Out: public LwOut |
mjr | 26:cb71c4af2912 | 1497 | { |
mjr | 26:cb71c4af2912 | 1498 | public: |
mjr | 60:f38da020aa13 | 1499 | Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 1500 | virtual void set(uint8_t val) |
mjr | 26:cb71c4af2912 | 1501 | { |
mjr | 26:cb71c4af2912 | 1502 | if (val != prv) |
mjr | 40:cc0d9814522b | 1503 | tlc5940->set(idx, dof_to_tlc[prv = val]); |
mjr | 26:cb71c4af2912 | 1504 | } |
mjr | 60:f38da020aa13 | 1505 | uint8_t idx; |
mjr | 40:cc0d9814522b | 1506 | uint8_t prv; |
mjr | 26:cb71c4af2912 | 1507 | }; |
mjr | 26:cb71c4af2912 | 1508 | |
mjr | 40:cc0d9814522b | 1509 | // LwOut class for TLC5940 gamma-corrected outputs. |
mjr | 40:cc0d9814522b | 1510 | class Lw5940GammaOut: public LwOut |
mjr | 40:cc0d9814522b | 1511 | { |
mjr | 40:cc0d9814522b | 1512 | public: |
mjr | 60:f38da020aa13 | 1513 | Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 1514 | virtual void set(uint8_t val) |
mjr | 40:cc0d9814522b | 1515 | { |
mjr | 40:cc0d9814522b | 1516 | if (val != prv) |
mjr | 40:cc0d9814522b | 1517 | tlc5940->set(idx, dof_to_gamma_tlc[prv = val]); |
mjr | 40:cc0d9814522b | 1518 | } |
mjr | 60:f38da020aa13 | 1519 | uint8_t idx; |
mjr | 40:cc0d9814522b | 1520 | uint8_t prv; |
mjr | 40:cc0d9814522b | 1521 | }; |
mjr | 40:cc0d9814522b | 1522 | |
mjr | 87:8d35c74403af | 1523 | // |
mjr | 87:8d35c74403af | 1524 | // TLC59116 interface object |
mjr | 87:8d35c74403af | 1525 | // |
mjr | 87:8d35c74403af | 1526 | TLC59116 *tlc59116 = 0; |
mjr | 87:8d35c74403af | 1527 | void init_tlc59116(Config &cfg) |
mjr | 87:8d35c74403af | 1528 | { |
mjr | 87:8d35c74403af | 1529 | // Create the interface if any chips are enabled |
mjr | 87:8d35c74403af | 1530 | if (cfg.tlc59116.chipMask != 0) |
mjr | 87:8d35c74403af | 1531 | { |
mjr | 87:8d35c74403af | 1532 | // set up the interface |
mjr | 87:8d35c74403af | 1533 | tlc59116 = new TLC59116( |
mjr | 87:8d35c74403af | 1534 | wirePinName(cfg.tlc59116.sda), |
mjr | 87:8d35c74403af | 1535 | wirePinName(cfg.tlc59116.scl), |
mjr | 87:8d35c74403af | 1536 | wirePinName(cfg.tlc59116.reset)); |
mjr | 87:8d35c74403af | 1537 | |
mjr | 87:8d35c74403af | 1538 | // initialize the chips |
mjr | 87:8d35c74403af | 1539 | tlc59116->init(); |
mjr | 87:8d35c74403af | 1540 | } |
mjr | 87:8d35c74403af | 1541 | } |
mjr | 87:8d35c74403af | 1542 | |
mjr | 87:8d35c74403af | 1543 | // LwOut class for TLC59116 outputs. The 'addr' value in the constructor |
mjr | 87:8d35c74403af | 1544 | // is low 4 bits of the chip's I2C address; this is the part of the address |
mjr | 87:8d35c74403af | 1545 | // that's configurable per chip. 'port' is the output number on the chip |
mjr | 87:8d35c74403af | 1546 | // (0-15). |
mjr | 87:8d35c74403af | 1547 | // |
mjr | 87:8d35c74403af | 1548 | // Note that we don't need a separate gamma-corrected subclass for this |
mjr | 87:8d35c74403af | 1549 | // output type, since there's no loss of precision with the standard layered |
mjr | 87:8d35c74403af | 1550 | // gamma (it emits 8-bit values, and we take 8-bit inputs). |
mjr | 87:8d35c74403af | 1551 | class Lw59116Out: public LwOut |
mjr | 87:8d35c74403af | 1552 | { |
mjr | 87:8d35c74403af | 1553 | public: |
mjr | 87:8d35c74403af | 1554 | Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; } |
mjr | 87:8d35c74403af | 1555 | virtual void set(uint8_t val) |
mjr | 87:8d35c74403af | 1556 | { |
mjr | 87:8d35c74403af | 1557 | if (val != prv) |
mjr | 87:8d35c74403af | 1558 | tlc59116->set(addr, port, prv = val); |
mjr | 87:8d35c74403af | 1559 | } |
mjr | 87:8d35c74403af | 1560 | |
mjr | 87:8d35c74403af | 1561 | protected: |
mjr | 87:8d35c74403af | 1562 | uint8_t addr; |
mjr | 87:8d35c74403af | 1563 | uint8_t port; |
mjr | 87:8d35c74403af | 1564 | uint8_t prv; |
mjr | 87:8d35c74403af | 1565 | }; |
mjr | 87:8d35c74403af | 1566 | |
mjr | 87:8d35c74403af | 1567 | |
mjr | 87:8d35c74403af | 1568 | // |
mjr | 34:6b981a2afab7 | 1569 | // 74HC595 interface object. Set this up with the port assignments in |
mjr | 34:6b981a2afab7 | 1570 | // config.h. |
mjr | 87:8d35c74403af | 1571 | // |
mjr | 35:e959ffba78fd | 1572 | HC595 *hc595 = 0; |
mjr | 35:e959ffba78fd | 1573 | |
mjr | 35:e959ffba78fd | 1574 | // initialize the 74HC595 interface |
mjr | 35:e959ffba78fd | 1575 | void init_hc595(Config &cfg) |
mjr | 35:e959ffba78fd | 1576 | { |
mjr | 35:e959ffba78fd | 1577 | if (cfg.hc595.nchips != 0) |
mjr | 35:e959ffba78fd | 1578 | { |
mjr | 53:9b2611964afc | 1579 | hc595 = new HC595( |
mjr | 53:9b2611964afc | 1580 | wirePinName(cfg.hc595.nchips), |
mjr | 53:9b2611964afc | 1581 | wirePinName(cfg.hc595.sin), |
mjr | 53:9b2611964afc | 1582 | wirePinName(cfg.hc595.sclk), |
mjr | 53:9b2611964afc | 1583 | wirePinName(cfg.hc595.latch), |
mjr | 53:9b2611964afc | 1584 | wirePinName(cfg.hc595.ena)); |
mjr | 35:e959ffba78fd | 1585 | hc595->init(); |
mjr | 35:e959ffba78fd | 1586 | hc595->update(); |
mjr | 35:e959ffba78fd | 1587 | } |
mjr | 35:e959ffba78fd | 1588 | } |
mjr | 34:6b981a2afab7 | 1589 | |
mjr | 34:6b981a2afab7 | 1590 | // LwOut class for 74HC595 outputs. These are simple digial outs. |
mjr | 34:6b981a2afab7 | 1591 | // The 'idx' value in the constructor is the output index in the |
mjr | 34:6b981a2afab7 | 1592 | // daisy-chained 74HC595 array. 0 is output #0 on the first chip, |
mjr | 34:6b981a2afab7 | 1593 | // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is |
mjr | 34:6b981a2afab7 | 1594 | // #0 on the second chip, etc. |
mjr | 34:6b981a2afab7 | 1595 | class Lw595Out: public LwOut |
mjr | 33:d832bcab089e | 1596 | { |
mjr | 33:d832bcab089e | 1597 | public: |
mjr | 60:f38da020aa13 | 1598 | Lw595Out(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 1599 | virtual void set(uint8_t val) |
mjr | 34:6b981a2afab7 | 1600 | { |
mjr | 34:6b981a2afab7 | 1601 | if (val != prv) |
mjr | 40:cc0d9814522b | 1602 | hc595->set(idx, (prv = val) == 0 ? 0 : 1); |
mjr | 34:6b981a2afab7 | 1603 | } |
mjr | 60:f38da020aa13 | 1604 | uint8_t idx; |
mjr | 40:cc0d9814522b | 1605 | uint8_t prv; |
mjr | 33:d832bcab089e | 1606 | }; |
mjr | 33:d832bcab089e | 1607 | |
mjr | 26:cb71c4af2912 | 1608 | |
mjr | 40:cc0d9814522b | 1609 | |
mjr | 64:ef7ca92dff36 | 1610 | // Conversion table - 8-bit DOF output level to PWM duty cycle, |
mjr | 64:ef7ca92dff36 | 1611 | // normalized to 0.0 to 1.0 scale. |
mjr | 74:822a92bc11d2 | 1612 | static const float dof_to_pwm[] = { |
mjr | 64:ef7ca92dff36 | 1613 | 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f, |
mjr | 64:ef7ca92dff36 | 1614 | 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f, |
mjr | 64:ef7ca92dff36 | 1615 | 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f, |
mjr | 64:ef7ca92dff36 | 1616 | 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f, |
mjr | 64:ef7ca92dff36 | 1617 | 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f, |
mjr | 64:ef7ca92dff36 | 1618 | 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f, |
mjr | 64:ef7ca92dff36 | 1619 | 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f, |
mjr | 64:ef7ca92dff36 | 1620 | 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f, |
mjr | 64:ef7ca92dff36 | 1621 | 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f, |
mjr | 64:ef7ca92dff36 | 1622 | 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f, |
mjr | 64:ef7ca92dff36 | 1623 | 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f, |
mjr | 64:ef7ca92dff36 | 1624 | 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f, |
mjr | 64:ef7ca92dff36 | 1625 | 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f, |
mjr | 64:ef7ca92dff36 | 1626 | 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f, |
mjr | 64:ef7ca92dff36 | 1627 | 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f, |
mjr | 64:ef7ca92dff36 | 1628 | 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f, |
mjr | 64:ef7ca92dff36 | 1629 | 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f, |
mjr | 64:ef7ca92dff36 | 1630 | 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f, |
mjr | 64:ef7ca92dff36 | 1631 | 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f, |
mjr | 64:ef7ca92dff36 | 1632 | 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f, |
mjr | 64:ef7ca92dff36 | 1633 | 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f, |
mjr | 64:ef7ca92dff36 | 1634 | 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f, |
mjr | 64:ef7ca92dff36 | 1635 | 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f, |
mjr | 64:ef7ca92dff36 | 1636 | 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f, |
mjr | 64:ef7ca92dff36 | 1637 | 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f, |
mjr | 64:ef7ca92dff36 | 1638 | 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f, |
mjr | 64:ef7ca92dff36 | 1639 | 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f, |
mjr | 64:ef7ca92dff36 | 1640 | 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f, |
mjr | 64:ef7ca92dff36 | 1641 | 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f, |
mjr | 64:ef7ca92dff36 | 1642 | 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f, |
mjr | 64:ef7ca92dff36 | 1643 | 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f, |
mjr | 64:ef7ca92dff36 | 1644 | 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f |
mjr | 40:cc0d9814522b | 1645 | }; |
mjr | 26:cb71c4af2912 | 1646 | |
mjr | 64:ef7ca92dff36 | 1647 | |
mjr | 92:f264fbaa1be5 | 1648 | // Conversion table for 8-bit DOF level to pulse width, with gamma correction |
mjr | 92:f264fbaa1be5 | 1649 | // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0. |
mjr | 92:f264fbaa1be5 | 1650 | // Note that we could use the layered gamma output on top of the regular |
mjr | 92:f264fbaa1be5 | 1651 | // LwPwmOut class for this instead of a separate table, but we get much better |
mjr | 92:f264fbaa1be5 | 1652 | // precision with a dedicated table, because we apply gamma correction to the |
mjr | 92:f264fbaa1be5 | 1653 | // actual duty cycle values (as 'float') rather than the 8-bit DOF values. |
mjr | 64:ef7ca92dff36 | 1654 | static const float dof_to_gamma_pwm[] = { |
mjr | 64:ef7ca92dff36 | 1655 | 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f, |
mjr | 64:ef7ca92dff36 | 1656 | 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f, |
mjr | 64:ef7ca92dff36 | 1657 | 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f, |
mjr | 64:ef7ca92dff36 | 1658 | 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f, |
mjr | 64:ef7ca92dff36 | 1659 | 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f, |
mjr | 64:ef7ca92dff36 | 1660 | 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f, |
mjr | 64:ef7ca92dff36 | 1661 | 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f, |
mjr | 64:ef7ca92dff36 | 1662 | 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f, |
mjr | 64:ef7ca92dff36 | 1663 | 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f, |
mjr | 64:ef7ca92dff36 | 1664 | 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f, |
mjr | 64:ef7ca92dff36 | 1665 | 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f, |
mjr | 64:ef7ca92dff36 | 1666 | 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f, |
mjr | 64:ef7ca92dff36 | 1667 | 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f, |
mjr | 64:ef7ca92dff36 | 1668 | 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f, |
mjr | 64:ef7ca92dff36 | 1669 | 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f, |
mjr | 64:ef7ca92dff36 | 1670 | 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f, |
mjr | 64:ef7ca92dff36 | 1671 | 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f, |
mjr | 64:ef7ca92dff36 | 1672 | 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f, |
mjr | 64:ef7ca92dff36 | 1673 | 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f, |
mjr | 64:ef7ca92dff36 | 1674 | 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f, |
mjr | 64:ef7ca92dff36 | 1675 | 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f, |
mjr | 64:ef7ca92dff36 | 1676 | 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f, |
mjr | 64:ef7ca92dff36 | 1677 | 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f, |
mjr | 64:ef7ca92dff36 | 1678 | 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f, |
mjr | 64:ef7ca92dff36 | 1679 | 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f, |
mjr | 64:ef7ca92dff36 | 1680 | 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f, |
mjr | 64:ef7ca92dff36 | 1681 | 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f, |
mjr | 64:ef7ca92dff36 | 1682 | 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f, |
mjr | 64:ef7ca92dff36 | 1683 | 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f, |
mjr | 64:ef7ca92dff36 | 1684 | 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f, |
mjr | 64:ef7ca92dff36 | 1685 | 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f, |
mjr | 64:ef7ca92dff36 | 1686 | 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f |
mjr | 64:ef7ca92dff36 | 1687 | }; |
mjr | 64:ef7ca92dff36 | 1688 | |
mjr | 77:0b96f6867312 | 1689 | // Polled-update PWM output list |
mjr | 74:822a92bc11d2 | 1690 | // |
mjr | 77:0b96f6867312 | 1691 | // This is a workaround for a KL25Z hardware bug/limitation. The bug (more |
mjr | 77:0b96f6867312 | 1692 | // about this below) is that we can't write to a PWM output "value" register |
mjr | 77:0b96f6867312 | 1693 | // more than once per PWM cycle; if we do, outputs after the first are lost. |
mjr | 77:0b96f6867312 | 1694 | // The value register controls the duty cycle, so it's what you have to write |
mjr | 77:0b96f6867312 | 1695 | // if you want to update the brightness of an output. |
mjr | 74:822a92bc11d2 | 1696 | // |
mjr | 92:f264fbaa1be5 | 1697 | // The symptom of the problem, if it's not worked around somehow, is that |
mjr | 92:f264fbaa1be5 | 1698 | // an output will get "stuck" due to a missed write. This is especially |
mjr | 92:f264fbaa1be5 | 1699 | // noticeable during a series of updates such as a fade. If the last |
mjr | 92:f264fbaa1be5 | 1700 | // couple of updates in a fade are lost, the output will get stuck at some |
mjr | 92:f264fbaa1be5 | 1701 | // value above or below the desired final value. The stuck setting will |
mjr | 92:f264fbaa1be5 | 1702 | // persist until the output is deliberately changed again later. |
mjr | 92:f264fbaa1be5 | 1703 | // |
mjr | 92:f264fbaa1be5 | 1704 | // Our solution: Simply repeat all PWM updates periodically. This way, any |
mjr | 92:f264fbaa1be5 | 1705 | // lost write will *eventually* take hold on one of the repeats. Repeats of |
mjr | 92:f264fbaa1be5 | 1706 | // the same value won't change anything and thus won't be noticeable. We do |
mjr | 92:f264fbaa1be5 | 1707 | // these periodic updates during the main loop, which makes them very low |
mjr | 92:f264fbaa1be5 | 1708 | // overhead (there's no interrupt overhead; we just do them when convenient |
mjr | 92:f264fbaa1be5 | 1709 | // in the main loop), and also makes them very frequent. The frequency |
mjr | 92:f264fbaa1be5 | 1710 | // is crucial because it ensures that updates will never be lost for long |
mjr | 92:f264fbaa1be5 | 1711 | // enough to become noticeable. |
mjr | 92:f264fbaa1be5 | 1712 | // |
mjr | 92:f264fbaa1be5 | 1713 | // The mbed library has its own, different solution to this bug, but the |
mjr | 92:f264fbaa1be5 | 1714 | // mbed solution isn't really a solution at all because it creates a separate |
mjr | 100:1ff35c07217c | 1715 | // problem of its own. The mbed approach is to reset the TPM "count" register |
mjr | 92:f264fbaa1be5 | 1716 | // on every value register write. The count reset truncates the current |
mjr | 92:f264fbaa1be5 | 1717 | // PWM cycle, which bypasses the hardware problem. Remember, the hardware |
mjr | 92:f264fbaa1be5 | 1718 | // problem is that you can only write once per cycle; the mbed "solution" gets |
mjr | 92:f264fbaa1be5 | 1719 | // around that by making sure the cycle ends immediately after the write. |
mjr | 92:f264fbaa1be5 | 1720 | // The problem with this approach is that the truncated cycle causes visible |
mjr | 92:f264fbaa1be5 | 1721 | // flicker if the output is connected to an LED. This is particularly |
mjr | 92:f264fbaa1be5 | 1722 | // noticeable during fades, when we're updating the value register repeatedly |
mjr | 92:f264fbaa1be5 | 1723 | // and rapidly: an attempt to fade from fully on to fully off causes rapid |
mjr | 92:f264fbaa1be5 | 1724 | // fluttering and flashing rather than a smooth brightness fade. That's why |
mjr | 92:f264fbaa1be5 | 1725 | // I had to come up with something different - the mbed solution just trades |
mjr | 92:f264fbaa1be5 | 1726 | // one annoying bug for another that's just as bad. |
mjr | 92:f264fbaa1be5 | 1727 | // |
mjr | 92:f264fbaa1be5 | 1728 | // The hardware bug, by the way, is a case of good intentions gone bad. |
mjr | 92:f264fbaa1be5 | 1729 | // The whole point of the staging register is to make things easier for |
mjr | 92:f264fbaa1be5 | 1730 | // us software writers. In most PWM hardware, software has to coordinate |
mjr | 92:f264fbaa1be5 | 1731 | // with the PWM duty cycle when updating registers to avoid a glitch that |
mjr | 92:f264fbaa1be5 | 1732 | // you'd get by scribbling to the duty cycle register mid-cycle. The |
mjr | 92:f264fbaa1be5 | 1733 | // staging register solves this by letting the software write an update at |
mjr | 92:f264fbaa1be5 | 1734 | // any time, knowing that the hardware will apply the update at exactly the |
mjr | 92:f264fbaa1be5 | 1735 | // end of the cycle, ensuring glitch-free updates. It's a great design, |
mjr | 92:f264fbaa1be5 | 1736 | // except that it doesn't quite work. The problem is that they implemented |
mjr | 92:f264fbaa1be5 | 1737 | // this clever staging register as a one-element FIFO that refuses any more |
mjr | 92:f264fbaa1be5 | 1738 | // writes when full. That is, writing a value to the FIFO fills it; once |
mjr | 92:f264fbaa1be5 | 1739 | // full, it ignores writes until it gets emptied out. How's it emptied out? |
mjr | 92:f264fbaa1be5 | 1740 | // By the hardware moving the staged value to the real register. Sadly, they |
mjr | 92:f264fbaa1be5 | 1741 | // didn't provide any way for the software to clear the register, and no way |
mjr | 92:f264fbaa1be5 | 1742 | // to even tell that it's full. So we don't have glitches on write, but we're |
mjr | 92:f264fbaa1be5 | 1743 | // back to the original problem that the software has to be aware of the PWM |
mjr | 92:f264fbaa1be5 | 1744 | // cycle timing, because the only way for the software to know that a write |
mjr | 92:f264fbaa1be5 | 1745 | // actually worked is to know that it's been at least one PWM cycle since the |
mjr | 92:f264fbaa1be5 | 1746 | // last write. That largely defeats the whole purpose of the staging register, |
mjr | 92:f264fbaa1be5 | 1747 | // since the whole point was to free software writers of these timing |
mjr | 92:f264fbaa1be5 | 1748 | // considerations. It's still an improvement over no staging register at |
mjr | 92:f264fbaa1be5 | 1749 | // all, since we at least don't have to worry about glitches, but it leaves |
mjr | 92:f264fbaa1be5 | 1750 | // us with this somewhat similar hassle. |
mjr | 74:822a92bc11d2 | 1751 | // |
mjr | 77:0b96f6867312 | 1752 | // So here we have our list of PWM outputs that need to be polled for updates. |
mjr | 77:0b96f6867312 | 1753 | // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set |
mjr | 77:0b96f6867312 | 1754 | // of polled items. |
mjr | 74:822a92bc11d2 | 1755 | static int numPolledPwm; |
mjr | 74:822a92bc11d2 | 1756 | static class LwPwmOut *polledPwm[10]; |
mjr | 74:822a92bc11d2 | 1757 | |
mjr | 74:822a92bc11d2 | 1758 | // LwOut class for a PWM-capable GPIO port. |
mjr | 6:cc35eb643e8f | 1759 | class LwPwmOut: public LwOut |
mjr | 6:cc35eb643e8f | 1760 | { |
mjr | 6:cc35eb643e8f | 1761 | public: |
mjr | 43:7a6364d82a41 | 1762 | LwPwmOut(PinName pin, uint8_t initVal) : p(pin) |
mjr | 43:7a6364d82a41 | 1763 | { |
mjr | 77:0b96f6867312 | 1764 | // add myself to the list of polled outputs for periodic updates |
mjr | 77:0b96f6867312 | 1765 | if (numPolledPwm < countof(polledPwm)) |
mjr | 74:822a92bc11d2 | 1766 | polledPwm[numPolledPwm++] = this; |
mjr | 93:177832c29041 | 1767 | |
mjr | 94:0476b3e2b996 | 1768 | // IMPORTANT: Do not set the PWM period (frequency) here explicitly. |
mjr | 94:0476b3e2b996 | 1769 | // We instead want to accept the current setting for the TPM unit |
mjr | 94:0476b3e2b996 | 1770 | // we're assigned to. The KL25Z hardware can only set the period at |
mjr | 94:0476b3e2b996 | 1771 | // the TPM unit level, not per channel, so if we changed the frequency |
mjr | 94:0476b3e2b996 | 1772 | // here, we'd change it for everything attached to our TPM unit. LW |
mjr | 94:0476b3e2b996 | 1773 | // outputs don't care about frequency other than that it's fast enough |
mjr | 94:0476b3e2b996 | 1774 | // that attached LEDs won't flicker. Some other PWM users (IR remote, |
mjr | 94:0476b3e2b996 | 1775 | // TLC5940) DO care about exact frequencies, because they use the PWM |
mjr | 94:0476b3e2b996 | 1776 | // as a signal generator rather than merely for brightness control. |
mjr | 94:0476b3e2b996 | 1777 | // If we changed the frequency here, we could clobber one of those |
mjr | 94:0476b3e2b996 | 1778 | // carefully chosen frequencies and break the other subsystem. So |
mjr | 94:0476b3e2b996 | 1779 | // we need to be the "free variable" here and accept whatever setting |
mjr | 94:0476b3e2b996 | 1780 | // is currently on our assigned unit. To minimize flicker, the main() |
mjr | 94:0476b3e2b996 | 1781 | // entrypoint sets a default PWM rate of 1kHz on all channels. All |
mjr | 94:0476b3e2b996 | 1782 | // of the other subsystems that might set specific frequencies will |
mjr | 94:0476b3e2b996 | 1783 | // set much high frequencies, so that should only be good for us. |
mjr | 94:0476b3e2b996 | 1784 | |
mjr | 94:0476b3e2b996 | 1785 | // set the initial brightness value |
mjr | 77:0b96f6867312 | 1786 | set(initVal); |
mjr | 43:7a6364d82a41 | 1787 | } |
mjr | 74:822a92bc11d2 | 1788 | |
mjr | 40:cc0d9814522b | 1789 | virtual void set(uint8_t val) |
mjr | 74:822a92bc11d2 | 1790 | { |
mjr | 77:0b96f6867312 | 1791 | // save the new value |
mjr | 74:822a92bc11d2 | 1792 | this->val = val; |
mjr | 77:0b96f6867312 | 1793 | |
mjr | 77:0b96f6867312 | 1794 | // commit it to the hardware |
mjr | 77:0b96f6867312 | 1795 | commit(); |
mjr | 13:72dda449c3c0 | 1796 | } |
mjr | 74:822a92bc11d2 | 1797 | |
mjr | 74:822a92bc11d2 | 1798 | // handle periodic update polling |
mjr | 74:822a92bc11d2 | 1799 | void poll() |
mjr | 74:822a92bc11d2 | 1800 | { |
mjr | 77:0b96f6867312 | 1801 | commit(); |
mjr | 74:822a92bc11d2 | 1802 | } |
mjr | 74:822a92bc11d2 | 1803 | |
mjr | 74:822a92bc11d2 | 1804 | protected: |
mjr | 77:0b96f6867312 | 1805 | virtual void commit() |
mjr | 74:822a92bc11d2 | 1806 | { |
mjr | 74:822a92bc11d2 | 1807 | // write the current value to the PWM controller if it's changed |
mjr | 77:0b96f6867312 | 1808 | p.glitchFreeWrite(dof_to_pwm[val]); |
mjr | 74:822a92bc11d2 | 1809 | } |
mjr | 74:822a92bc11d2 | 1810 | |
mjr | 77:0b96f6867312 | 1811 | NewPwmOut p; |
mjr | 77:0b96f6867312 | 1812 | uint8_t val; |
mjr | 6:cc35eb643e8f | 1813 | }; |
mjr | 26:cb71c4af2912 | 1814 | |
mjr | 74:822a92bc11d2 | 1815 | // Gamma corrected PWM GPIO output. This works exactly like the regular |
mjr | 74:822a92bc11d2 | 1816 | // PWM output, but translates DOF values through the gamma-corrected |
mjr | 74:822a92bc11d2 | 1817 | // table instead of the regular linear table. |
mjr | 64:ef7ca92dff36 | 1818 | class LwPwmGammaOut: public LwPwmOut |
mjr | 64:ef7ca92dff36 | 1819 | { |
mjr | 64:ef7ca92dff36 | 1820 | public: |
mjr | 64:ef7ca92dff36 | 1821 | LwPwmGammaOut(PinName pin, uint8_t initVal) |
mjr | 64:ef7ca92dff36 | 1822 | : LwPwmOut(pin, initVal) |
mjr | 64:ef7ca92dff36 | 1823 | { |
mjr | 64:ef7ca92dff36 | 1824 | } |
mjr | 74:822a92bc11d2 | 1825 | |
mjr | 74:822a92bc11d2 | 1826 | protected: |
mjr | 77:0b96f6867312 | 1827 | virtual void commit() |
mjr | 64:ef7ca92dff36 | 1828 | { |
mjr | 74:822a92bc11d2 | 1829 | // write the current value to the PWM controller if it's changed |
mjr | 77:0b96f6867312 | 1830 | p.glitchFreeWrite(dof_to_gamma_pwm[val]); |
mjr | 64:ef7ca92dff36 | 1831 | } |
mjr | 64:ef7ca92dff36 | 1832 | }; |
mjr | 64:ef7ca92dff36 | 1833 | |
mjr | 74:822a92bc11d2 | 1834 | // poll the PWM outputs |
mjr | 74:822a92bc11d2 | 1835 | Timer polledPwmTimer; |
mjr | 76:7f5912b6340e | 1836 | uint64_t polledPwmTotalTime, polledPwmRunCount; |
mjr | 74:822a92bc11d2 | 1837 | void pollPwmUpdates() |
mjr | 74:822a92bc11d2 | 1838 | { |
mjr | 94:0476b3e2b996 | 1839 | // If it's been long enough since the last update, do another update. |
mjr | 94:0476b3e2b996 | 1840 | // Note that the time limit is fairly arbitrary: it has to be at least |
mjr | 94:0476b3e2b996 | 1841 | // 1.5X the PWM period, so that we can be sure that at least one PWM |
mjr | 94:0476b3e2b996 | 1842 | // period has elapsed since the last update, but there's no hard upper |
mjr | 94:0476b3e2b996 | 1843 | // bound. Instead, it only has to be short enough that fades don't |
mjr | 94:0476b3e2b996 | 1844 | // become noticeably chunky. The competing interest is that we don't |
mjr | 94:0476b3e2b996 | 1845 | // want to do this more often than necessary to provide incremental |
mjr | 94:0476b3e2b996 | 1846 | // benefit, because the polling adds overhead to the main loop and |
mjr | 94:0476b3e2b996 | 1847 | // takes time away from other tasks we could be performing. The |
mjr | 94:0476b3e2b996 | 1848 | // shortest time with practical benefit is probably around 50-60Hz, |
mjr | 94:0476b3e2b996 | 1849 | // since that gives us "video rate" granularity in fades. Anything |
mjr | 94:0476b3e2b996 | 1850 | // faster wouldn't probably make fades look any smoother to a human |
mjr | 94:0476b3e2b996 | 1851 | // viewer. |
mjr | 94:0476b3e2b996 | 1852 | if (polledPwmTimer.read_us() >= 15000) |
mjr | 74:822a92bc11d2 | 1853 | { |
mjr | 74:822a92bc11d2 | 1854 | // time the run for statistics collection |
mjr | 74:822a92bc11d2 | 1855 | IF_DIAG( |
mjr | 74:822a92bc11d2 | 1856 | Timer t; |
mjr | 74:822a92bc11d2 | 1857 | t.start(); |
mjr | 74:822a92bc11d2 | 1858 | ) |
mjr | 74:822a92bc11d2 | 1859 | |
mjr | 74:822a92bc11d2 | 1860 | // poll each output |
mjr | 74:822a92bc11d2 | 1861 | for (int i = numPolledPwm ; i > 0 ; ) |
mjr | 74:822a92bc11d2 | 1862 | polledPwm[--i]->poll(); |
mjr | 74:822a92bc11d2 | 1863 | |
mjr | 74:822a92bc11d2 | 1864 | // reset the timer for the next cycle |
mjr | 74:822a92bc11d2 | 1865 | polledPwmTimer.reset(); |
mjr | 74:822a92bc11d2 | 1866 | |
mjr | 74:822a92bc11d2 | 1867 | // collect statistics |
mjr | 74:822a92bc11d2 | 1868 | IF_DIAG( |
mjr | 76:7f5912b6340e | 1869 | polledPwmTotalTime += t.read_us(); |
mjr | 74:822a92bc11d2 | 1870 | polledPwmRunCount += 1; |
mjr | 74:822a92bc11d2 | 1871 | ) |
mjr | 74:822a92bc11d2 | 1872 | } |
mjr | 74:822a92bc11d2 | 1873 | } |
mjr | 64:ef7ca92dff36 | 1874 | |
mjr | 26:cb71c4af2912 | 1875 | // LwOut class for a Digital-Only (Non-PWM) GPIO port |
mjr | 6:cc35eb643e8f | 1876 | class LwDigOut: public LwOut |
mjr | 6:cc35eb643e8f | 1877 | { |
mjr | 6:cc35eb643e8f | 1878 | public: |
mjr | 43:7a6364d82a41 | 1879 | LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; } |
mjr | 40:cc0d9814522b | 1880 | virtual void set(uint8_t val) |
mjr | 13:72dda449c3c0 | 1881 | { |
mjr | 13:72dda449c3c0 | 1882 | if (val != prv) |
mjr | 40:cc0d9814522b | 1883 | p.write((prv = val) == 0 ? 0 : 1); |
mjr | 13:72dda449c3c0 | 1884 | } |
mjr | 6:cc35eb643e8f | 1885 | DigitalOut p; |
mjr | 40:cc0d9814522b | 1886 | uint8_t prv; |
mjr | 6:cc35eb643e8f | 1887 | }; |
mjr | 26:cb71c4af2912 | 1888 | |
mjr | 29:582472d0bc57 | 1889 | // Array of output physical pin assignments. This array is indexed |
mjr | 29:582472d0bc57 | 1890 | // by LedWiz logical port number - lwPin[n] is the maping for LedWiz |
mjr | 35:e959ffba78fd | 1891 | // port n (0-based). |
mjr | 35:e959ffba78fd | 1892 | // |
mjr | 35:e959ffba78fd | 1893 | // Each pin is handled by an interface object for the physical output |
mjr | 35:e959ffba78fd | 1894 | // type for the port, as set in the configuration. The interface |
mjr | 35:e959ffba78fd | 1895 | // objects handle the specifics of addressing the different hardware |
mjr | 35:e959ffba78fd | 1896 | // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and |
mjr | 35:e959ffba78fd | 1897 | // 74HC595 ports). |
mjr | 33:d832bcab089e | 1898 | static int numOutputs; |
mjr | 33:d832bcab089e | 1899 | static LwOut **lwPin; |
mjr | 33:d832bcab089e | 1900 | |
mjr | 38:091e511ce8a0 | 1901 | // create a single output pin |
mjr | 53:9b2611964afc | 1902 | LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg) |
mjr | 38:091e511ce8a0 | 1903 | { |
mjr | 38:091e511ce8a0 | 1904 | // get this item's values |
mjr | 38:091e511ce8a0 | 1905 | int typ = pc.typ; |
mjr | 38:091e511ce8a0 | 1906 | int pin = pc.pin; |
mjr | 38:091e511ce8a0 | 1907 | int flags = pc.flags; |
mjr | 40:cc0d9814522b | 1908 | int noisy = flags & PortFlagNoisemaker; |
mjr | 38:091e511ce8a0 | 1909 | int activeLow = flags & PortFlagActiveLow; |
mjr | 40:cc0d9814522b | 1910 | int gamma = flags & PortFlagGamma; |
mjr | 89:c43cd923401c | 1911 | int flipperLogic = flags & PortFlagFlipperLogic; |
mjr | 99:8139b0c274f4 | 1912 | int chimeLogic = flags & PortFlagChimeLogic; |
mjr | 89:c43cd923401c | 1913 | |
mjr | 89:c43cd923401c | 1914 | // cancel gamma on flipper logic ports |
mjr | 89:c43cd923401c | 1915 | if (flipperLogic) |
mjr | 89:c43cd923401c | 1916 | gamma = false; |
mjr | 38:091e511ce8a0 | 1917 | |
mjr | 38:091e511ce8a0 | 1918 | // create the pin interface object according to the port type |
mjr | 38:091e511ce8a0 | 1919 | LwOut *lwp; |
mjr | 38:091e511ce8a0 | 1920 | switch (typ) |
mjr | 38:091e511ce8a0 | 1921 | { |
mjr | 38:091e511ce8a0 | 1922 | case PortTypeGPIOPWM: |
mjr | 48:058ace2aed1d | 1923 | // PWM GPIO port - assign if we have a valid pin |
mjr | 48:058ace2aed1d | 1924 | if (pin != 0) |
mjr | 64:ef7ca92dff36 | 1925 | { |
mjr | 64:ef7ca92dff36 | 1926 | // If gamma correction is to be used, and we're not inverting the output, |
mjr | 64:ef7ca92dff36 | 1927 | // use the combined Pwmout + Gamma output class; otherwise use the plain |
mjr | 64:ef7ca92dff36 | 1928 | // PwmOut class. We can't use the combined class for inverted outputs |
mjr | 64:ef7ca92dff36 | 1929 | // because we have to apply gamma correction before the inversion. |
mjr | 64:ef7ca92dff36 | 1930 | if (gamma && !activeLow) |
mjr | 64:ef7ca92dff36 | 1931 | { |
mjr | 64:ef7ca92dff36 | 1932 | // use the gamma-corrected PwmOut type |
mjr | 64:ef7ca92dff36 | 1933 | lwp = new LwPwmGammaOut(wirePinName(pin), 0); |
mjr | 64:ef7ca92dff36 | 1934 | |
mjr | 64:ef7ca92dff36 | 1935 | // don't apply further gamma correction to this output |
mjr | 64:ef7ca92dff36 | 1936 | gamma = false; |
mjr | 64:ef7ca92dff36 | 1937 | } |
mjr | 64:ef7ca92dff36 | 1938 | else |
mjr | 64:ef7ca92dff36 | 1939 | { |
mjr | 64:ef7ca92dff36 | 1940 | // no gamma correction - use the standard PwmOut class |
mjr | 64:ef7ca92dff36 | 1941 | lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0); |
mjr | 64:ef7ca92dff36 | 1942 | } |
mjr | 64:ef7ca92dff36 | 1943 | } |
mjr | 48:058ace2aed1d | 1944 | else |
mjr | 48:058ace2aed1d | 1945 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1946 | break; |
mjr | 38:091e511ce8a0 | 1947 | |
mjr | 38:091e511ce8a0 | 1948 | case PortTypeGPIODig: |
mjr | 38:091e511ce8a0 | 1949 | // Digital GPIO port |
mjr | 48:058ace2aed1d | 1950 | if (pin != 0) |
mjr | 48:058ace2aed1d | 1951 | lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0); |
mjr | 48:058ace2aed1d | 1952 | else |
mjr | 48:058ace2aed1d | 1953 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1954 | break; |
mjr | 38:091e511ce8a0 | 1955 | |
mjr | 38:091e511ce8a0 | 1956 | case PortTypeTLC5940: |
mjr | 38:091e511ce8a0 | 1957 | // TLC5940 port (if we don't have a TLC controller object, or it's not a valid |
mjr | 38:091e511ce8a0 | 1958 | // output port number on the chips we have, create a virtual port) |
mjr | 38:091e511ce8a0 | 1959 | if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16) |
mjr | 40:cc0d9814522b | 1960 | { |
mjr | 40:cc0d9814522b | 1961 | // If gamma correction is to be used, and we're not inverting the output, |
mjr | 40:cc0d9814522b | 1962 | // use the combined TLC4950 + Gamma output class. Otherwise use the plain |
mjr | 40:cc0d9814522b | 1963 | // TLC5940 output. We skip the combined class if the output is inverted |
mjr | 40:cc0d9814522b | 1964 | // because we need to apply gamma BEFORE the inversion to get the right |
mjr | 40:cc0d9814522b | 1965 | // results, but the combined class would apply it after because of the |
mjr | 40:cc0d9814522b | 1966 | // layering scheme - the combined class is a physical device output class, |
mjr | 40:cc0d9814522b | 1967 | // and a physical device output class is necessarily at the bottom of |
mjr | 40:cc0d9814522b | 1968 | // the stack. We don't have a combined inverted+gamma+TLC class, because |
mjr | 40:cc0d9814522b | 1969 | // inversion isn't recommended for TLC5940 chips in the first place, so |
mjr | 40:cc0d9814522b | 1970 | // it's not worth the extra memory footprint to have a dedicated table |
mjr | 40:cc0d9814522b | 1971 | // for this unlikely case. |
mjr | 40:cc0d9814522b | 1972 | if (gamma && !activeLow) |
mjr | 40:cc0d9814522b | 1973 | { |
mjr | 40:cc0d9814522b | 1974 | // use the gamma-corrected 5940 output mapper |
mjr | 40:cc0d9814522b | 1975 | lwp = new Lw5940GammaOut(pin); |
mjr | 40:cc0d9814522b | 1976 | |
mjr | 40:cc0d9814522b | 1977 | // DON'T apply further gamma correction to this output |
mjr | 40:cc0d9814522b | 1978 | gamma = false; |
mjr | 40:cc0d9814522b | 1979 | } |
mjr | 40:cc0d9814522b | 1980 | else |
mjr | 40:cc0d9814522b | 1981 | { |
mjr | 40:cc0d9814522b | 1982 | // no gamma - use the plain (linear) 5940 output class |
mjr | 40:cc0d9814522b | 1983 | lwp = new Lw5940Out(pin); |
mjr | 40:cc0d9814522b | 1984 | } |
mjr | 40:cc0d9814522b | 1985 | } |
mjr | 38:091e511ce8a0 | 1986 | else |
mjr | 40:cc0d9814522b | 1987 | { |
mjr | 40:cc0d9814522b | 1988 | // no TLC5940 chips, or invalid port number - use a virtual out |
mjr | 38:091e511ce8a0 | 1989 | lwp = new LwVirtualOut(); |
mjr | 40:cc0d9814522b | 1990 | } |
mjr | 38:091e511ce8a0 | 1991 | break; |
mjr | 38:091e511ce8a0 | 1992 | |
mjr | 38:091e511ce8a0 | 1993 | case PortType74HC595: |
mjr | 87:8d35c74403af | 1994 | // 74HC595 port (if we don't have an HC595 controller object, or it's not |
mjr | 87:8d35c74403af | 1995 | // a valid output number, create a virtual port) |
mjr | 38:091e511ce8a0 | 1996 | if (hc595 != 0 && pin < cfg.hc595.nchips*8) |
mjr | 38:091e511ce8a0 | 1997 | lwp = new Lw595Out(pin); |
mjr | 38:091e511ce8a0 | 1998 | else |
mjr | 38:091e511ce8a0 | 1999 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 2000 | break; |
mjr | 87:8d35c74403af | 2001 | |
mjr | 87:8d35c74403af | 2002 | case PortTypeTLC59116: |
mjr | 87:8d35c74403af | 2003 | // TLC59116 port. The pin number in the config encodes the chip address |
mjr | 87:8d35c74403af | 2004 | // in the high 4 bits and the output number on the chip in the low 4 bits. |
mjr | 87:8d35c74403af | 2005 | // There's no gamma-corrected version of this output handler, so we don't |
mjr | 87:8d35c74403af | 2006 | // need to worry about that here; just use the layered gamma as needed. |
mjr | 87:8d35c74403af | 2007 | if (tlc59116 != 0) |
mjr | 87:8d35c74403af | 2008 | lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F); |
mjr | 87:8d35c74403af | 2009 | break; |
mjr | 38:091e511ce8a0 | 2010 | |
mjr | 38:091e511ce8a0 | 2011 | case PortTypeVirtual: |
mjr | 43:7a6364d82a41 | 2012 | case PortTypeDisabled: |
mjr | 38:091e511ce8a0 | 2013 | default: |
mjr | 38:091e511ce8a0 | 2014 | // virtual or unknown |
mjr | 38:091e511ce8a0 | 2015 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 2016 | break; |
mjr | 38:091e511ce8a0 | 2017 | } |
mjr | 38:091e511ce8a0 | 2018 | |
mjr | 40:cc0d9814522b | 2019 | // If it's Active Low, layer on an inverter. Note that an inverter |
mjr | 40:cc0d9814522b | 2020 | // needs to be the bottom-most layer, since all of the other filters |
mjr | 40:cc0d9814522b | 2021 | // assume that they're working with normal (non-inverted) values. |
mjr | 38:091e511ce8a0 | 2022 | if (activeLow) |
mjr | 38:091e511ce8a0 | 2023 | lwp = new LwInvertedOut(lwp); |
mjr | 40:cc0d9814522b | 2024 | |
mjr | 89:c43cd923401c | 2025 | // Layer on Flipper Logic if desired |
mjr | 89:c43cd923401c | 2026 | if (flipperLogic) |
mjr | 89:c43cd923401c | 2027 | lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic); |
mjr | 89:c43cd923401c | 2028 | |
mjr | 99:8139b0c274f4 | 2029 | // Layer on Chime Logic if desired. Note that Chime Logic and |
mjr | 99:8139b0c274f4 | 2030 | // Flipper Logic are mutually exclusive, and Flipper Logic takes |
mjr | 99:8139b0c274f4 | 2031 | // precedence, so ignore the Chime Logic bit if both are set. |
mjr | 99:8139b0c274f4 | 2032 | if (chimeLogic && !flipperLogic) |
mjr | 99:8139b0c274f4 | 2033 | lwp = new LwChimeLogicOut(lwp, pc.flipperLogic); |
mjr | 98:4df3c0f7e707 | 2034 | |
mjr | 89:c43cd923401c | 2035 | // If it's a noisemaker, layer on a night mode switch |
mjr | 40:cc0d9814522b | 2036 | if (noisy) |
mjr | 40:cc0d9814522b | 2037 | lwp = new LwNoisyOut(lwp); |
mjr | 40:cc0d9814522b | 2038 | |
mjr | 40:cc0d9814522b | 2039 | // If it's gamma-corrected, layer on a gamma corrector |
mjr | 40:cc0d9814522b | 2040 | if (gamma) |
mjr | 40:cc0d9814522b | 2041 | lwp = new LwGammaOut(lwp); |
mjr | 53:9b2611964afc | 2042 | |
mjr | 53:9b2611964afc | 2043 | // If this is the ZB Launch Ball port, layer a monitor object. Note |
mjr | 64:ef7ca92dff36 | 2044 | // that the nominal port numbering in the config starts at 1, but we're |
mjr | 53:9b2611964afc | 2045 | // using an array index, so test against portno+1. |
mjr | 53:9b2611964afc | 2046 | if (portno + 1 == cfg.plunger.zbLaunchBall.port) |
mjr | 53:9b2611964afc | 2047 | lwp = new LwZbLaunchOut(lwp); |
mjr | 53:9b2611964afc | 2048 | |
mjr | 53:9b2611964afc | 2049 | // If this is the Night Mode indicator port, layer a night mode object. |
mjr | 53:9b2611964afc | 2050 | if (portno + 1 == cfg.nightMode.port) |
mjr | 53:9b2611964afc | 2051 | lwp = new LwNightModeIndicatorOut(lwp); |
mjr | 38:091e511ce8a0 | 2052 | |
mjr | 38:091e511ce8a0 | 2053 | // turn it off initially |
mjr | 38:091e511ce8a0 | 2054 | lwp->set(0); |
mjr | 38:091e511ce8a0 | 2055 | |
mjr | 38:091e511ce8a0 | 2056 | // return the pin |
mjr | 38:091e511ce8a0 | 2057 | return lwp; |
mjr | 38:091e511ce8a0 | 2058 | } |
mjr | 38:091e511ce8a0 | 2059 | |
mjr | 6:cc35eb643e8f | 2060 | // initialize the output pin array |
mjr | 35:e959ffba78fd | 2061 | void initLwOut(Config &cfg) |
mjr | 6:cc35eb643e8f | 2062 | { |
mjr | 99:8139b0c274f4 | 2063 | // Initialize the Flipper Logic and Chime Logic outputs |
mjr | 89:c43cd923401c | 2064 | LwFlipperLogicOut::classInit(cfg); |
mjr | 99:8139b0c274f4 | 2065 | LwChimeLogicOut::classInit(cfg); |
mjr | 89:c43cd923401c | 2066 | |
mjr | 35:e959ffba78fd | 2067 | // Count the outputs. The first disabled output determines the |
mjr | 35:e959ffba78fd | 2068 | // total number of ports. |
mjr | 35:e959ffba78fd | 2069 | numOutputs = MAX_OUT_PORTS; |
mjr | 33:d832bcab089e | 2070 | int i; |
mjr | 35:e959ffba78fd | 2071 | for (i = 0 ; i < MAX_OUT_PORTS ; ++i) |
mjr | 6:cc35eb643e8f | 2072 | { |
mjr | 35:e959ffba78fd | 2073 | if (cfg.outPort[i].typ == PortTypeDisabled) |
mjr | 34:6b981a2afab7 | 2074 | { |
mjr | 35:e959ffba78fd | 2075 | numOutputs = i; |
mjr | 34:6b981a2afab7 | 2076 | break; |
mjr | 34:6b981a2afab7 | 2077 | } |
mjr | 33:d832bcab089e | 2078 | } |
mjr | 33:d832bcab089e | 2079 | |
mjr | 73:4e8ce0b18915 | 2080 | // allocate the pin array |
mjr | 73:4e8ce0b18915 | 2081 | lwPin = new LwOut*[numOutputs]; |
mjr | 35:e959ffba78fd | 2082 | |
mjr | 73:4e8ce0b18915 | 2083 | // Allocate the current brightness array |
mjr | 73:4e8ce0b18915 | 2084 | outLevel = new uint8_t[numOutputs]; |
mjr | 33:d832bcab089e | 2085 | |
mjr | 73:4e8ce0b18915 | 2086 | // allocate the LedWiz output state arrays |
mjr | 73:4e8ce0b18915 | 2087 | wizOn = new uint8_t[numOutputs]; |
mjr | 73:4e8ce0b18915 | 2088 | wizVal = new uint8_t[numOutputs]; |
mjr | 73:4e8ce0b18915 | 2089 | |
mjr | 73:4e8ce0b18915 | 2090 | // initialize all LedWiz outputs to off and brightness 48 |
mjr | 73:4e8ce0b18915 | 2091 | memset(wizOn, 0, numOutputs); |
mjr | 73:4e8ce0b18915 | 2092 | memset(wizVal, 48, numOutputs); |
mjr | 73:4e8ce0b18915 | 2093 | |
mjr | 73:4e8ce0b18915 | 2094 | // set all LedWiz virtual unit flash speeds to 2 |
mjr | 73:4e8ce0b18915 | 2095 | for (i = 0 ; i < countof(wizSpeed) ; ++i) |
mjr | 73:4e8ce0b18915 | 2096 | wizSpeed[i] = 2; |
mjr | 33:d832bcab089e | 2097 | |
mjr | 35:e959ffba78fd | 2098 | // create the pin interface object for each port |
mjr | 35:e959ffba78fd | 2099 | for (i = 0 ; i < numOutputs ; ++i) |
mjr | 53:9b2611964afc | 2100 | lwPin[i] = createLwPin(i, cfg.outPort[i], cfg); |
mjr | 6:cc35eb643e8f | 2101 | } |
mjr | 6:cc35eb643e8f | 2102 | |
mjr | 76:7f5912b6340e | 2103 | // Translate an LedWiz brightness level (0..49) to a DOF brightness |
mjr | 76:7f5912b6340e | 2104 | // level (0..255). Note that brightness level 49 isn't actually valid, |
mjr | 76:7f5912b6340e | 2105 | // according to the LedWiz API documentation, but many clients use it |
mjr | 76:7f5912b6340e | 2106 | // anyway, and the real LedWiz accepts it and seems to treat it as |
mjr | 76:7f5912b6340e | 2107 | // equivalent to 48. |
mjr | 40:cc0d9814522b | 2108 | static const uint8_t lw_to_dof[] = { |
mjr | 40:cc0d9814522b | 2109 | 0, 5, 11, 16, 21, 27, 32, 37, |
mjr | 40:cc0d9814522b | 2110 | 43, 48, 53, 58, 64, 69, 74, 80, |
mjr | 40:cc0d9814522b | 2111 | 85, 90, 96, 101, 106, 112, 117, 122, |
mjr | 40:cc0d9814522b | 2112 | 128, 133, 138, 143, 149, 154, 159, 165, |
mjr | 40:cc0d9814522b | 2113 | 170, 175, 181, 186, 191, 197, 202, 207, |
mjr | 40:cc0d9814522b | 2114 | 213, 218, 223, 228, 234, 239, 244, 250, |
mjr | 40:cc0d9814522b | 2115 | 255, 255 |
mjr | 40:cc0d9814522b | 2116 | }; |
mjr | 40:cc0d9814522b | 2117 | |
mjr | 76:7f5912b6340e | 2118 | // Translate a DOF brightness level (0..255) to an LedWiz brightness |
mjr | 76:7f5912b6340e | 2119 | // level (1..48) |
mjr | 76:7f5912b6340e | 2120 | static const uint8_t dof_to_lw[] = { |
mjr | 76:7f5912b6340e | 2121 | 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, |
mjr | 76:7f5912b6340e | 2122 | 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, |
mjr | 76:7f5912b6340e | 2123 | 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, |
mjr | 76:7f5912b6340e | 2124 | 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, |
mjr | 76:7f5912b6340e | 2125 | 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, |
mjr | 76:7f5912b6340e | 2126 | 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, |
mjr | 76:7f5912b6340e | 2127 | 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, |
mjr | 76:7f5912b6340e | 2128 | 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, |
mjr | 76:7f5912b6340e | 2129 | 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27, |
mjr | 76:7f5912b6340e | 2130 | 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30, |
mjr | 76:7f5912b6340e | 2131 | 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33, |
mjr | 76:7f5912b6340e | 2132 | 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36, |
mjr | 76:7f5912b6340e | 2133 | 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39, |
mjr | 76:7f5912b6340e | 2134 | 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42, |
mjr | 76:7f5912b6340e | 2135 | 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45, |
mjr | 76:7f5912b6340e | 2136 | 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48 |
mjr | 76:7f5912b6340e | 2137 | }; |
mjr | 76:7f5912b6340e | 2138 | |
mjr | 74:822a92bc11d2 | 2139 | // LedWiz flash cycle tables. For efficiency, we use a lookup table |
mjr | 74:822a92bc11d2 | 2140 | // rather than calculating these on the fly. The flash cycles are |
mjr | 74:822a92bc11d2 | 2141 | // generated by the following formulas, where 'c' is the current |
mjr | 74:822a92bc11d2 | 2142 | // cycle counter, from 0 to 255: |
mjr | 74:822a92bc11d2 | 2143 | // |
mjr | 74:822a92bc11d2 | 2144 | // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2) |
mjr | 74:822a92bc11d2 | 2145 | // mode 130 = flash on/off = (c < 128 ? 255 : 0) |
mjr | 74:822a92bc11d2 | 2146 | // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2) |
mjr | 74:822a92bc11d2 | 2147 | // mode 132 = ramp up/on = (c < 128 ? c*2 : 255) |
mjr | 74:822a92bc11d2 | 2148 | // |
mjr | 74:822a92bc11d2 | 2149 | // To look up the current output value for a given mode and a given |
mjr | 74:822a92bc11d2 | 2150 | // cycle counter 'c', index the table with ((mode-129)*256)+c. |
mjr | 74:822a92bc11d2 | 2151 | static const uint8_t wizFlashLookup[] = { |
mjr | 74:822a92bc11d2 | 2152 | // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2) |
mjr | 74:822a92bc11d2 | 2153 | 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f, |
mjr | 74:822a92bc11d2 | 2154 | 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f, |
mjr | 74:822a92bc11d2 | 2155 | 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f, |
mjr | 74:822a92bc11d2 | 2156 | 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f, |
mjr | 74:822a92bc11d2 | 2157 | 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f, |
mjr | 74:822a92bc11d2 | 2158 | 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf, |
mjr | 74:822a92bc11d2 | 2159 | 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf, |
mjr | 74:822a92bc11d2 | 2160 | 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff, |
mjr | 74:822a92bc11d2 | 2161 | 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0, |
mjr | 74:822a92bc11d2 | 2162 | 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0, |
mjr | 74:822a92bc11d2 | 2163 | 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0, |
mjr | 74:822a92bc11d2 | 2164 | 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80, |
mjr | 74:822a92bc11d2 | 2165 | 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60, |
mjr | 74:822a92bc11d2 | 2166 | 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40, |
mjr | 74:822a92bc11d2 | 2167 | 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20, |
mjr | 74:822a92bc11d2 | 2168 | 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00, |
mjr | 74:822a92bc11d2 | 2169 | |
mjr | 74:822a92bc11d2 | 2170 | // mode 130 = flash on/off = (c < 128 ? 255 : 0) |
mjr | 74:822a92bc11d2 | 2171 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2172 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2173 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2174 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2175 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2176 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2177 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2178 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2179 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 2180 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 2181 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 2182 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 2183 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 2184 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 2185 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 2186 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 2187 | |
mjr | 74:822a92bc11d2 | 2188 | // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2 |
mjr | 74:822a92bc11d2 | 2189 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2190 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2191 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2192 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2193 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2194 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2195 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2196 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2197 | 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0, |
mjr | 74:822a92bc11d2 | 2198 | 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0, |
mjr | 74:822a92bc11d2 | 2199 | 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0, |
mjr | 74:822a92bc11d2 | 2200 | 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80, |
mjr | 74:822a92bc11d2 | 2201 | 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60, |
mjr | 74:822a92bc11d2 | 2202 | 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40, |
mjr | 74:822a92bc11d2 | 2203 | 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20, |
mjr | 74:822a92bc11d2 | 2204 | 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00, |
mjr | 74:822a92bc11d2 | 2205 | |
mjr | 74:822a92bc11d2 | 2206 | // mode 132 = ramp up/on = c < 128 ? c*2 : 255 |
mjr | 74:822a92bc11d2 | 2207 | 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e, |
mjr | 74:822a92bc11d2 | 2208 | 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e, |
mjr | 74:822a92bc11d2 | 2209 | 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e, |
mjr | 74:822a92bc11d2 | 2210 | 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e, |
mjr | 74:822a92bc11d2 | 2211 | 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e, |
mjr | 74:822a92bc11d2 | 2212 | 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe, |
mjr | 74:822a92bc11d2 | 2213 | 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde, |
mjr | 74:822a92bc11d2 | 2214 | 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe, |
mjr | 74:822a92bc11d2 | 2215 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2216 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2217 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2218 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2219 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2220 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2221 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2222 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff |
mjr | 74:822a92bc11d2 | 2223 | }; |
mjr | 74:822a92bc11d2 | 2224 | |
mjr | 74:822a92bc11d2 | 2225 | // LedWiz flash cycle timer. This runs continuously. On each update, |
mjr | 74:822a92bc11d2 | 2226 | // we use this to figure out where we are on the cycle for each bank. |
mjr | 74:822a92bc11d2 | 2227 | Timer wizCycleTimer; |
mjr | 74:822a92bc11d2 | 2228 | |
mjr | 76:7f5912b6340e | 2229 | // timing statistics for wizPulse() |
mjr | 76:7f5912b6340e | 2230 | uint64_t wizPulseTotalTime, wizPulseRunCount; |
mjr | 76:7f5912b6340e | 2231 | |
mjr | 76:7f5912b6340e | 2232 | // LedWiz flash timer pulse. The main loop calls this on each cycle |
mjr | 76:7f5912b6340e | 2233 | // to update outputs using LedWiz flash modes. We do one bank of 32 |
mjr | 76:7f5912b6340e | 2234 | // outputs on each cycle. |
mjr | 29:582472d0bc57 | 2235 | static void wizPulse() |
mjr | 29:582472d0bc57 | 2236 | { |
mjr | 76:7f5912b6340e | 2237 | // current bank |
mjr | 76:7f5912b6340e | 2238 | static int wizPulseBank = 0; |
mjr | 76:7f5912b6340e | 2239 | |
mjr | 76:7f5912b6340e | 2240 | // start a timer for statistics collection |
mjr | 76:7f5912b6340e | 2241 | IF_DIAG( |
mjr | 76:7f5912b6340e | 2242 | Timer t; |
mjr | 76:7f5912b6340e | 2243 | t.start(); |
mjr | 76:7f5912b6340e | 2244 | ) |
mjr | 76:7f5912b6340e | 2245 | |
mjr | 76:7f5912b6340e | 2246 | // Update the current bank's cycle counter: figure the current |
mjr | 76:7f5912b6340e | 2247 | // phase of the LedWiz pulse cycle for this bank. |
mjr | 76:7f5912b6340e | 2248 | // |
mjr | 76:7f5912b6340e | 2249 | // The LedWiz speed setting gives the flash period in 0.25s units |
mjr | 76:7f5912b6340e | 2250 | // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s). |
mjr | 76:7f5912b6340e | 2251 | // |
mjr | 76:7f5912b6340e | 2252 | // What we're after here is the "phase", which is to say the point |
mjr | 76:7f5912b6340e | 2253 | // in the current cycle. If we assume that the cycle has been running |
mjr | 76:7f5912b6340e | 2254 | // continuously since some arbitrary time zero in the past, we can |
mjr | 76:7f5912b6340e | 2255 | // figure where we are in the current cycle by dividing the time since |
mjr | 76:7f5912b6340e | 2256 | // that zero by the cycle period and taking the remainder. E.g., if |
mjr | 76:7f5912b6340e | 2257 | // the cycle time is 5 seconds, and the time since t-zero is 17 seconds, |
mjr | 76:7f5912b6340e | 2258 | // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds |
mjr | 76:7f5912b6340e | 2259 | // into the current 5-second cycle, or 2/5 of the way through the |
mjr | 76:7f5912b6340e | 2260 | // current cycle. |
mjr | 76:7f5912b6340e | 2261 | // |
mjr | 76:7f5912b6340e | 2262 | // We do this calculation on every iteration of the main loop, so we |
mjr | 76:7f5912b6340e | 2263 | // want it to be very fast. To streamline it, we'll use some tricky |
mjr | 76:7f5912b6340e | 2264 | // integer arithmetic. The result will be the same as the straightforward |
mjr | 76:7f5912b6340e | 2265 | // remainder and fraction calculation we just explained, but we'll get |
mjr | 76:7f5912b6340e | 2266 | // there by less-than-obvious means. |
mjr | 76:7f5912b6340e | 2267 | // |
mjr | 76:7f5912b6340e | 2268 | // Rather than finding the phase as a continuous quantity or floating |
mjr | 76:7f5912b6340e | 2269 | // point number, we'll quantize it. We'll divide each cycle into 256 |
mjr | 76:7f5912b6340e | 2270 | // time units, or quanta. Each quantum is 1/256 of the cycle length, |
mjr | 76:7f5912b6340e | 2271 | // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of |
mjr | 76:7f5912b6340e | 2272 | // a second, or about 3.9ms. If we express the time since t-zero in |
mjr | 76:7f5912b6340e | 2273 | // these units, the time period of one cycle is exactly 256 units, so |
mjr | 76:7f5912b6340e | 2274 | // we can calculate our point in the cycle by taking the remainder of |
mjr | 76:7f5912b6340e | 2275 | // the time (in our funny units) divided by 256. The special thing |
mjr | 76:7f5912b6340e | 2276 | // about making the cycle time equal to 256 units is that "x % 256" |
mjr | 76:7f5912b6340e | 2277 | // is exactly the same as "x & 255", which is a much faster operation |
mjr | 76:7f5912b6340e | 2278 | // than division on ARM M0+: this CPU has no hardware DIVIDE operation, |
mjr | 76:7f5912b6340e | 2279 | // so an integer division takes about 5us. The bit mask operation, in |
mjr | 76:7f5912b6340e | 2280 | // contrast, takes only about 60ns - about 100x faster. 5us doesn't |
mjr | 76:7f5912b6340e | 2281 | // sound like much, but we do this on every main loop, so every little |
mjr | 76:7f5912b6340e | 2282 | // bit counts. |
mjr | 76:7f5912b6340e | 2283 | // |
mjr | 76:7f5912b6340e | 2284 | // The snag is that our system timer gives us the elapsed time in |
mjr | 76:7f5912b6340e | 2285 | // microseconds. We still need to convert this to our special quanta |
mjr | 76:7f5912b6340e | 2286 | // of 256 units per cycle. The straightforward way to do that is by |
mjr | 76:7f5912b6340e | 2287 | // dividing by (microseconds per quantum). E.g., for LedWiz speed 4, |
mjr | 76:7f5912b6340e | 2288 | // we decided that our quantum was 1/256 of a second, or 3906us, so |
mjr | 76:7f5912b6340e | 2289 | // dividing the current system time in microseconds by 3906 will give |
mjr | 76:7f5912b6340e | 2290 | // us the time in our quantum units. But now we've just substituted |
mjr | 76:7f5912b6340e | 2291 | // one division for another! |
mjr | 76:7f5912b6340e | 2292 | // |
mjr | 76:7f5912b6340e | 2293 | // This is where our really tricky integer math comes in. Dividing |
mjr | 76:7f5912b6340e | 2294 | // by X is the same as multiplying by 1/X. In integer math, 1/3906 |
mjr | 76:7f5912b6340e | 2295 | // is zero, so that won't work. But we can get around that by doing |
mjr | 76:7f5912b6340e | 2296 | // the integer math as "fixed point" arithmetic instead. It's still |
mjr | 76:7f5912b6340e | 2297 | // actually carried out as integer operations, but we'll scale our |
mjr | 76:7f5912b6340e | 2298 | // integers by a scaling factor, then take out the scaling factor |
mjr | 76:7f5912b6340e | 2299 | // later to get the final result. The scaling factor we'll use is |
mjr | 76:7f5912b6340e | 2300 | // 2^24. So we're going to calculate (time * 2^24/3906), then divide |
mjr | 76:7f5912b6340e | 2301 | // the result by 2^24 to get the final answer. I know it seems like |
mjr | 76:7f5912b6340e | 2302 | // we're substituting one division for another yet again, but this |
mjr | 76:7f5912b6340e | 2303 | // time's the charm, because dividing by 2^24 is a bit shift operation, |
mjr | 76:7f5912b6340e | 2304 | // which is another single-cycle operation on M0+. You might also |
mjr | 76:7f5912b6340e | 2305 | // wonder how all these tricks don't cause overflows or underflows |
mjr | 76:7f5912b6340e | 2306 | // or what not. Well, the multiply by 2^24/3906 will cause an |
mjr | 76:7f5912b6340e | 2307 | // overflow, but we don't care, because the overflow will all be in |
mjr | 76:7f5912b6340e | 2308 | // the high-order bits that we're going to discard in the final |
mjr | 76:7f5912b6340e | 2309 | // remainder calculation anyway. |
mjr | 76:7f5912b6340e | 2310 | // |
mjr | 76:7f5912b6340e | 2311 | // Each entry in the array below represents 2^24/N for the corresponding |
mjr | 76:7f5912b6340e | 2312 | // LedWiz speed, where N is the number of time quanta per cycle at that |
mjr | 76:7f5912b6340e | 2313 | // speed. The time quanta are chosen such that 256 quanta add up to |
mjr | 76:7f5912b6340e | 2314 | // approximately (LedWiz speed setting * 0.25s). |
mjr | 76:7f5912b6340e | 2315 | // |
mjr | 76:7f5912b6340e | 2316 | // Note that the calculation has an implicit bit mask (result & 0xFF) |
mjr | 76:7f5912b6340e | 2317 | // to get the final result mod 256. But we don't have to actually |
mjr | 76:7f5912b6340e | 2318 | // do that work because we're using 32-bit ints and a 2^24 fixed |
mjr | 76:7f5912b6340e | 2319 | // point base (X in the narrative above). The final shift right by |
mjr | 76:7f5912b6340e | 2320 | // 24 bits to divide out the base will leave us with only 8 bits in |
mjr | 76:7f5912b6340e | 2321 | // the result, since we started with 32. |
mjr | 76:7f5912b6340e | 2322 | static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed |
mjr | 76:7f5912b6340e | 2323 | 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454 |
mjr | 76:7f5912b6340e | 2324 | }; |
mjr | 76:7f5912b6340e | 2325 | int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24); |
mjr | 76:7f5912b6340e | 2326 | |
mjr | 76:7f5912b6340e | 2327 | // get the range of 32 output sin this bank |
mjr | 76:7f5912b6340e | 2328 | int fromPort = wizPulseBank*32; |
mjr | 76:7f5912b6340e | 2329 | int toPort = fromPort+32; |
mjr | 76:7f5912b6340e | 2330 | if (toPort > numOutputs) |
mjr | 76:7f5912b6340e | 2331 | toPort = numOutputs; |
mjr | 76:7f5912b6340e | 2332 | |
mjr | 76:7f5912b6340e | 2333 | // update all outputs set to flashing values |
mjr | 76:7f5912b6340e | 2334 | for (int i = fromPort ; i < toPort ; ++i) |
mjr | 73:4e8ce0b18915 | 2335 | { |
mjr | 76:7f5912b6340e | 2336 | // Update the port only if the LedWiz SBA switch for the port is on |
mjr | 76:7f5912b6340e | 2337 | // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132. |
mjr | 76:7f5912b6340e | 2338 | // These modes and only these modes have the high bit (0x80) set, so |
mjr | 76:7f5912b6340e | 2339 | // we can test for them simply by testing the high bit. |
mjr | 76:7f5912b6340e | 2340 | if (wizOn[i]) |
mjr | 29:582472d0bc57 | 2341 | { |
mjr | 76:7f5912b6340e | 2342 | uint8_t val = wizVal[i]; |
mjr | 76:7f5912b6340e | 2343 | if ((val & 0x80) != 0) |
mjr | 29:582472d0bc57 | 2344 | { |
mjr | 76:7f5912b6340e | 2345 | // ook up the value for the mode at the cycle time |
mjr | 76:7f5912b6340e | 2346 | lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]); |
mjr | 29:582472d0bc57 | 2347 | } |
mjr | 29:582472d0bc57 | 2348 | } |
mjr | 76:7f5912b6340e | 2349 | } |
mjr | 76:7f5912b6340e | 2350 | |
mjr | 34:6b981a2afab7 | 2351 | // flush changes to 74HC595 chips, if attached |
mjr | 35:e959ffba78fd | 2352 | if (hc595 != 0) |
mjr | 35:e959ffba78fd | 2353 | hc595->update(); |
mjr | 76:7f5912b6340e | 2354 | |
mjr | 76:7f5912b6340e | 2355 | // switch to the next bank |
mjr | 76:7f5912b6340e | 2356 | if (++wizPulseBank >= MAX_LW_BANKS) |
mjr | 76:7f5912b6340e | 2357 | wizPulseBank = 0; |
mjr | 76:7f5912b6340e | 2358 | |
mjr | 76:7f5912b6340e | 2359 | // collect timing statistics |
mjr | 76:7f5912b6340e | 2360 | IF_DIAG( |
mjr | 76:7f5912b6340e | 2361 | wizPulseTotalTime += t.read_us(); |
mjr | 76:7f5912b6340e | 2362 | wizPulseRunCount += 1; |
mjr | 76:7f5912b6340e | 2363 | ) |
mjr | 1:d913e0afb2ac | 2364 | } |
mjr | 38:091e511ce8a0 | 2365 | |
mjr | 76:7f5912b6340e | 2366 | // Update a port to reflect its new LedWiz SBA+PBA setting. |
mjr | 76:7f5912b6340e | 2367 | static void updateLwPort(int port) |
mjr | 38:091e511ce8a0 | 2368 | { |
mjr | 76:7f5912b6340e | 2369 | // check if the SBA switch is on or off |
mjr | 76:7f5912b6340e | 2370 | if (wizOn[port]) |
mjr | 76:7f5912b6340e | 2371 | { |
mjr | 76:7f5912b6340e | 2372 | // It's on. If the port is a valid static brightness level, |
mjr | 76:7f5912b6340e | 2373 | // set the output port to match. Otherwise leave it as is: |
mjr | 76:7f5912b6340e | 2374 | // if it's a flashing mode, the flash mode pulse will update |
mjr | 76:7f5912b6340e | 2375 | // it on the next cycle. |
mjr | 76:7f5912b6340e | 2376 | int val = wizVal[port]; |
mjr | 76:7f5912b6340e | 2377 | if (val <= 49) |
mjr | 76:7f5912b6340e | 2378 | lwPin[port]->set(outLevel[port] = lw_to_dof[val]); |
mjr | 76:7f5912b6340e | 2379 | } |
mjr | 76:7f5912b6340e | 2380 | else |
mjr | 76:7f5912b6340e | 2381 | { |
mjr | 76:7f5912b6340e | 2382 | // the port is off - set absolute brightness zero |
mjr | 76:7f5912b6340e | 2383 | lwPin[port]->set(outLevel[port] = 0); |
mjr | 76:7f5912b6340e | 2384 | } |
mjr | 73:4e8ce0b18915 | 2385 | } |
mjr | 73:4e8ce0b18915 | 2386 | |
mjr | 73:4e8ce0b18915 | 2387 | // Turn off all outputs and restore everything to the default LedWiz |
mjr | 92:f264fbaa1be5 | 2388 | // state. This sets all outputs to LedWiz profile value 48 (full |
mjr | 92:f264fbaa1be5 | 2389 | // brightness) and switch state Off, and sets the LedWiz flash rate |
mjr | 92:f264fbaa1be5 | 2390 | // to 2. This effectively restores the power-on conditions. |
mjr | 73:4e8ce0b18915 | 2391 | // |
mjr | 73:4e8ce0b18915 | 2392 | void allOutputsOff() |
mjr | 73:4e8ce0b18915 | 2393 | { |
mjr | 92:f264fbaa1be5 | 2394 | // reset all outputs to OFF/48 |
mjr | 73:4e8ce0b18915 | 2395 | for (int i = 0 ; i < numOutputs ; ++i) |
mjr | 73:4e8ce0b18915 | 2396 | { |
mjr | 73:4e8ce0b18915 | 2397 | outLevel[i] = 0; |
mjr | 73:4e8ce0b18915 | 2398 | wizOn[i] = 0; |
mjr | 73:4e8ce0b18915 | 2399 | wizVal[i] = 48; |
mjr | 73:4e8ce0b18915 | 2400 | lwPin[i]->set(0); |
mjr | 73:4e8ce0b18915 | 2401 | } |
mjr | 73:4e8ce0b18915 | 2402 | |
mjr | 73:4e8ce0b18915 | 2403 | // restore default LedWiz flash rate |
mjr | 73:4e8ce0b18915 | 2404 | for (int i = 0 ; i < countof(wizSpeed) ; ++i) |
mjr | 73:4e8ce0b18915 | 2405 | wizSpeed[i] = 2; |
mjr | 38:091e511ce8a0 | 2406 | |
mjr | 73:4e8ce0b18915 | 2407 | // flush changes to hc595, if applicable |
mjr | 38:091e511ce8a0 | 2408 | if (hc595 != 0) |
mjr | 38:091e511ce8a0 | 2409 | hc595->update(); |
mjr | 38:091e511ce8a0 | 2410 | } |
mjr | 38:091e511ce8a0 | 2411 | |
mjr | 74:822a92bc11d2 | 2412 | // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32, |
mjr | 74:822a92bc11d2 | 2413 | // 1 for ports 33-64, etc. Original protocol SBA messages always |
mjr | 74:822a92bc11d2 | 2414 | // address port group 0; our private SBX extension messages can |
mjr | 74:822a92bc11d2 | 2415 | // address any port group. |
mjr | 74:822a92bc11d2 | 2416 | void sba_sbx(int portGroup, const uint8_t *data) |
mjr | 74:822a92bc11d2 | 2417 | { |
mjr | 76:7f5912b6340e | 2418 | // update all on/off states in the group |
mjr | 74:822a92bc11d2 | 2419 | for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ; |
mjr | 74:822a92bc11d2 | 2420 | i < 32 && port < numOutputs ; |
mjr | 74:822a92bc11d2 | 2421 | ++i, bit <<= 1, ++port) |
mjr | 74:822a92bc11d2 | 2422 | { |
mjr | 74:822a92bc11d2 | 2423 | // figure the on/off state bit for this output |
mjr | 74:822a92bc11d2 | 2424 | if (bit == 0x100) { |
mjr | 74:822a92bc11d2 | 2425 | bit = 1; |
mjr | 74:822a92bc11d2 | 2426 | ++imsg; |
mjr | 74:822a92bc11d2 | 2427 | } |
mjr | 74:822a92bc11d2 | 2428 | |
mjr | 74:822a92bc11d2 | 2429 | // set the on/off state |
mjr | 76:7f5912b6340e | 2430 | bool on = wizOn[port] = ((data[imsg] & bit) != 0); |
mjr | 76:7f5912b6340e | 2431 | |
mjr | 76:7f5912b6340e | 2432 | // set the output port brightness to match the new setting |
mjr | 76:7f5912b6340e | 2433 | updateLwPort(port); |
mjr | 74:822a92bc11d2 | 2434 | } |
mjr | 74:822a92bc11d2 | 2435 | |
mjr | 74:822a92bc11d2 | 2436 | // set the flash speed for the port group |
mjr | 74:822a92bc11d2 | 2437 | if (portGroup < countof(wizSpeed)) |
mjr | 74:822a92bc11d2 | 2438 | wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]); |
mjr | 74:822a92bc11d2 | 2439 | |
mjr | 76:7f5912b6340e | 2440 | // update 74HC959 outputs |
mjr | 76:7f5912b6340e | 2441 | if (hc595 != 0) |
mjr | 76:7f5912b6340e | 2442 | hc595->update(); |
mjr | 74:822a92bc11d2 | 2443 | } |
mjr | 74:822a92bc11d2 | 2444 | |
mjr | 74:822a92bc11d2 | 2445 | // Carry out a PBA or PBX message. |
mjr | 74:822a92bc11d2 | 2446 | void pba_pbx(int basePort, const uint8_t *data) |
mjr | 74:822a92bc11d2 | 2447 | { |
mjr | 74:822a92bc11d2 | 2448 | // update each wizVal entry from the brightness data |
mjr | 76:7f5912b6340e | 2449 | for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port) |
mjr | 74:822a92bc11d2 | 2450 | { |
mjr | 74:822a92bc11d2 | 2451 | // get the value |
mjr | 74:822a92bc11d2 | 2452 | uint8_t v = data[i]; |
mjr | 74:822a92bc11d2 | 2453 | |
mjr | 74:822a92bc11d2 | 2454 | // Validate it. The legal values are 0..49 for brightness |
mjr | 74:822a92bc11d2 | 2455 | // levels, and 128..132 for flash modes. Set anything invalid |
mjr | 74:822a92bc11d2 | 2456 | // to full brightness (48) instead. Note that 49 isn't actually |
mjr | 74:822a92bc11d2 | 2457 | // a valid documented value, but in practice some clients send |
mjr | 74:822a92bc11d2 | 2458 | // this to mean 100% brightness, and the real LedWiz treats it |
mjr | 74:822a92bc11d2 | 2459 | // as such. |
mjr | 74:822a92bc11d2 | 2460 | if ((v > 49 && v < 129) || v > 132) |
mjr | 74:822a92bc11d2 | 2461 | v = 48; |
mjr | 74:822a92bc11d2 | 2462 | |
mjr | 74:822a92bc11d2 | 2463 | // store it |
mjr | 76:7f5912b6340e | 2464 | wizVal[port] = v; |
mjr | 76:7f5912b6340e | 2465 | |
mjr | 76:7f5912b6340e | 2466 | // update the port |
mjr | 76:7f5912b6340e | 2467 | updateLwPort(port); |
mjr | 74:822a92bc11d2 | 2468 | } |
mjr | 74:822a92bc11d2 | 2469 | |
mjr | 76:7f5912b6340e | 2470 | // update 74HC595 outputs |
mjr | 76:7f5912b6340e | 2471 | if (hc595 != 0) |
mjr | 76:7f5912b6340e | 2472 | hc595->update(); |
mjr | 74:822a92bc11d2 | 2473 | } |
mjr | 74:822a92bc11d2 | 2474 | |
mjr | 77:0b96f6867312 | 2475 | // --------------------------------------------------------------------------- |
mjr | 77:0b96f6867312 | 2476 | // |
mjr | 77:0b96f6867312 | 2477 | // IR Remote Control transmitter & receiver |
mjr | 77:0b96f6867312 | 2478 | // |
mjr | 77:0b96f6867312 | 2479 | |
mjr | 77:0b96f6867312 | 2480 | // receiver |
mjr | 77:0b96f6867312 | 2481 | IRReceiver *ir_rx; |
mjr | 77:0b96f6867312 | 2482 | |
mjr | 77:0b96f6867312 | 2483 | // transmitter |
mjr | 77:0b96f6867312 | 2484 | IRTransmitter *ir_tx; |
mjr | 77:0b96f6867312 | 2485 | |
mjr | 77:0b96f6867312 | 2486 | // Mapping from IR commands slots in the configuration to "virtual button" |
mjr | 77:0b96f6867312 | 2487 | // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage, |
mjr | 77:0b96f6867312 | 2488 | // we only create virtual buttons on the transmitter object for code slots |
mjr | 77:0b96f6867312 | 2489 | // that are configured for transmission, which includes slots used for TV |
mjr | 77:0b96f6867312 | 2490 | // ON commands and slots that can be triggered by button presses. This |
mjr | 77:0b96f6867312 | 2491 | // means that virtual button numbers won't necessarily match the config |
mjr | 77:0b96f6867312 | 2492 | // slot numbers. This table provides the mapping: |
mjr | 77:0b96f6867312 | 2493 | // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for |
mjr | 77:0b96f6867312 | 2494 | // configuration slot n |
mjr | 77:0b96f6867312 | 2495 | uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES]; |
mjr | 78:1e00b3fa11af | 2496 | |
mjr | 78:1e00b3fa11af | 2497 | // IR transmitter virtual button number for ad hoc IR command. We allocate |
mjr | 78:1e00b3fa11af | 2498 | // one virtual button for sending ad hoc IR codes, such as through the USB |
mjr | 78:1e00b3fa11af | 2499 | // protocol. |
mjr | 78:1e00b3fa11af | 2500 | uint8_t IRAdHocBtn; |
mjr | 78:1e00b3fa11af | 2501 | |
mjr | 78:1e00b3fa11af | 2502 | // Staging area for ad hoc IR commands. It takes multiple messages |
mjr | 78:1e00b3fa11af | 2503 | // to fill out an IR command, so we store the partial command here |
mjr | 78:1e00b3fa11af | 2504 | // while waiting for the rest. |
mjr | 78:1e00b3fa11af | 2505 | static struct |
mjr | 78:1e00b3fa11af | 2506 | { |
mjr | 78:1e00b3fa11af | 2507 | uint8_t protocol; // protocol ID |
mjr | 78:1e00b3fa11af | 2508 | uint64_t code; // code |
mjr | 78:1e00b3fa11af | 2509 | uint8_t dittos : 1; // using dittos? |
mjr | 78:1e00b3fa11af | 2510 | uint8_t ready : 1; // do we have a code ready to transmit? |
mjr | 78:1e00b3fa11af | 2511 | } IRAdHocCmd; |
mjr | 88:98bce687e6c0 | 2512 | |
mjr | 77:0b96f6867312 | 2513 | |
mjr | 77:0b96f6867312 | 2514 | // IR mode timer. In normal mode, this is the time since the last |
mjr | 77:0b96f6867312 | 2515 | // command received; we use this to handle commands with timed effects, |
mjr | 77:0b96f6867312 | 2516 | // such as sending a key to the PC. In learning mode, this is the time |
mjr | 77:0b96f6867312 | 2517 | // since we activated learning mode, which we use to automatically end |
mjr | 77:0b96f6867312 | 2518 | // learning mode if a decodable command isn't received within a reasonable |
mjr | 77:0b96f6867312 | 2519 | // amount of time. |
mjr | 77:0b96f6867312 | 2520 | Timer IRTimer; |
mjr | 77:0b96f6867312 | 2521 | |
mjr | 77:0b96f6867312 | 2522 | // IR Learning Mode. The PC enters learning mode via special function 65 12. |
mjr | 77:0b96f6867312 | 2523 | // The states are: |
mjr | 77:0b96f6867312 | 2524 | // |
mjr | 77:0b96f6867312 | 2525 | // 0 -> normal operation (not in learning mode) |
mjr | 77:0b96f6867312 | 2526 | // 1 -> learning mode; reading raw codes, no command read yet |
mjr | 77:0b96f6867312 | 2527 | // 2 -> learning mode; command received, awaiting auto-repeat |
mjr | 77:0b96f6867312 | 2528 | // 3 -> learning mode; done, command and repeat mode decoded |
mjr | 77:0b96f6867312 | 2529 | // |
mjr | 77:0b96f6867312 | 2530 | // When we enter learning mode, we reset IRTimer to keep track of how long |
mjr | 77:0b96f6867312 | 2531 | // we've been in the mode. This allows the mode to time out if no code is |
mjr | 77:0b96f6867312 | 2532 | // received within a reasonable time. |
mjr | 77:0b96f6867312 | 2533 | uint8_t IRLearningMode = 0; |
mjr | 77:0b96f6867312 | 2534 | |
mjr | 77:0b96f6867312 | 2535 | // Learning mode command received. This stores the first decoded command |
mjr | 77:0b96f6867312 | 2536 | // when in learning mode. For some protocols, we can't just report the |
mjr | 77:0b96f6867312 | 2537 | // first command we receive, because we need to wait for an auto-repeat to |
mjr | 77:0b96f6867312 | 2538 | // determine what format the remote uses for repeats. This stores the first |
mjr | 77:0b96f6867312 | 2539 | // command while we await a repeat. This is necessary for protocols that |
mjr | 77:0b96f6867312 | 2540 | // have "dittos", since some remotes for such protocols use the dittos and |
mjr | 77:0b96f6867312 | 2541 | // some don't; the only way to find out is to read a repeat code and see if |
mjr | 77:0b96f6867312 | 2542 | // it's a ditto or just a repeat of the full code. |
mjr | 77:0b96f6867312 | 2543 | IRCommand learnedIRCode; |
mjr | 77:0b96f6867312 | 2544 | |
mjr | 78:1e00b3fa11af | 2545 | // IR command received, as a config slot index, 1..MAX_IR_CODES. |
mjr | 77:0b96f6867312 | 2546 | // When we receive a command that matches one of our programmed commands, |
mjr | 77:0b96f6867312 | 2547 | // we note the slot here. We also reset the IR timer so that we know how |
mjr | 77:0b96f6867312 | 2548 | // long it's been since the command came in. This lets us handle commands |
mjr | 77:0b96f6867312 | 2549 | // with timed effects, such as PC key input. Note that this is a 1-based |
mjr | 77:0b96f6867312 | 2550 | // index; 0 represents no command. |
mjr | 77:0b96f6867312 | 2551 | uint8_t IRCommandIn = 0; |
mjr | 77:0b96f6867312 | 2552 | |
mjr | 77:0b96f6867312 | 2553 | // "Toggle bit" of last command. Some IR protocols have a toggle bit |
mjr | 77:0b96f6867312 | 2554 | // that distinguishes an auto-repeating key from a key being pressed |
mjr | 77:0b96f6867312 | 2555 |