An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Thu Nov 28 23:18:23 2019 +0000
Revision:
100:1ff35c07217c
Parent:
99:8139b0c274f4
Child:
101:755f44622abc
Added preliminary support for AEAT-6012 and TCD1103 sensors; use continuous averaging for pot sensor analog in; more AltAnalogIn options for timing and resolution

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 99:8139b0c274f4 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 100:1ff35c07217c 262 #include "rotarySensor.h"
mjr 100:1ff35c07217c 263 #include "tcd1103Sensor.h"
mjr 82:4f6209cb5c33 264
mjr 2:c174f9ee414a 265
mjr 21:5048e16cc9ef 266 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 267 #include "config.h"
mjr 17:ab3cec0c8bf4 268
mjr 76:7f5912b6340e 269 // forward declarations
mjr 76:7f5912b6340e 270 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 271
mjr 53:9b2611964afc 272 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 273 //
mjr 53:9b2611964afc 274 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 275 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 276 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 277 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 278 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 279 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 280 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 281 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 282 // interface.
mjr 53:9b2611964afc 283 //
mjr 53:9b2611964afc 284 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 285 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 286 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 287 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 288 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 289 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 290 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 291 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 292 //
mjr 53:9b2611964afc 293 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 294 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 295 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 296 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 297 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 298 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 299 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 300 //
mjr 53:9b2611964afc 301 const char *getOpenSDAID()
mjr 53:9b2611964afc 302 {
mjr 53:9b2611964afc 303 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 304 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 305 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 306
mjr 53:9b2611964afc 307 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 308 }
mjr 53:9b2611964afc 309
mjr 53:9b2611964afc 310 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 311 //
mjr 53:9b2611964afc 312 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 313 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 314 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 315 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 316 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 317 // want from this.
mjr 53:9b2611964afc 318 //
mjr 53:9b2611964afc 319 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 320 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 321 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 322 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 323 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 324 // macros.
mjr 53:9b2611964afc 325 //
mjr 53:9b2611964afc 326 const char *getBuildID()
mjr 53:9b2611964afc 327 {
mjr 53:9b2611964afc 328 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 329 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 330 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 331
mjr 53:9b2611964afc 332 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 333 }
mjr 53:9b2611964afc 334
mjr 74:822a92bc11d2 335 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 336 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 337 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 338 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 339 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 340 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 341 Timer mainLoopTimer;
mjr 76:7f5912b6340e 342 #endif
mjr 76:7f5912b6340e 343
mjr 53:9b2611964afc 344
mjr 5:a70c0bce770d 345 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 // Forward declarations
mjr 38:091e511ce8a0 348 //
mjr 38:091e511ce8a0 349 void setNightMode(bool on);
mjr 38:091e511ce8a0 350 void toggleNightMode();
mjr 38:091e511ce8a0 351
mjr 38:091e511ce8a0 352 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 353 // utilities
mjr 17:ab3cec0c8bf4 354
mjr 77:0b96f6867312 355 // int/float point square of a number
mjr 77:0b96f6867312 356 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 357 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 358
mjr 26:cb71c4af2912 359 // floating point rounding
mjr 26:cb71c4af2912 360 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 361
mjr 17:ab3cec0c8bf4 362
mjr 33:d832bcab089e 363 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 364 //
mjr 40:cc0d9814522b 365 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 366 // the running state.
mjr 40:cc0d9814522b 367 //
mjr 77:0b96f6867312 368 class ExtTimer: public Timer
mjr 40:cc0d9814522b 369 {
mjr 40:cc0d9814522b 370 public:
mjr 77:0b96f6867312 371 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 372
mjr 40:cc0d9814522b 373 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 374 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 377
mjr 40:cc0d9814522b 378 private:
mjr 40:cc0d9814522b 379 bool running;
mjr 40:cc0d9814522b 380 };
mjr 40:cc0d9814522b 381
mjr 53:9b2611964afc 382
mjr 53:9b2611964afc 383 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 384 //
mjr 33:d832bcab089e 385 // USB product version number
mjr 5:a70c0bce770d 386 //
mjr 47:df7a88cd249c 387 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 388
mjr 33:d832bcab089e 389 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 392 //
mjr 6:cc35eb643e8f 393 #define JOYMAX 4096
mjr 6:cc35eb643e8f 394
mjr 9:fd65b0a94720 395
mjr 17:ab3cec0c8bf4 396 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 397 //
mjr 40:cc0d9814522b 398 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 399 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 400 //
mjr 35:e959ffba78fd 401
mjr 35:e959ffba78fd 402 // unsigned 16-bit integer
mjr 35:e959ffba78fd 403 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 404 {
mjr 35:e959ffba78fd 405 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 406 }
mjr 40:cc0d9814522b 407 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 408 {
mjr 40:cc0d9814522b 409 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 410 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 411 }
mjr 35:e959ffba78fd 412
mjr 35:e959ffba78fd 413 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 414 {
mjr 35:e959ffba78fd 415 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 416 }
mjr 40:cc0d9814522b 417 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 418 {
mjr 40:cc0d9814522b 419 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 420 }
mjr 35:e959ffba78fd 421
mjr 35:e959ffba78fd 422 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 423 {
mjr 35:e959ffba78fd 424 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 425 }
mjr 40:cc0d9814522b 426 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 427 {
mjr 40:cc0d9814522b 428 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 429 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 430 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 431 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 432 }
mjr 35:e959ffba78fd 433
mjr 35:e959ffba78fd 434 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 435 {
mjr 35:e959ffba78fd 436 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 437 }
mjr 35:e959ffba78fd 438
mjr 53:9b2611964afc 439 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // The internal mbed PinName format is
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 444 //
mjr 53:9b2611964afc 445 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 446 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 447 //
mjr 53:9b2611964afc 448 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 449 // pin name fits in 8 bits:
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 456 //
mjr 53:9b2611964afc 457 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 458 {
mjr 53:9b2611964afc 459 if (c == 0xFF)
mjr 53:9b2611964afc 460 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 461 else
mjr 53:9b2611964afc 462 return PinName(
mjr 53:9b2611964afc 463 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 464 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 465 }
mjr 40:cc0d9814522b 466 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 467 {
mjr 53:9b2611964afc 468 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 469 }
mjr 35:e959ffba78fd 470
mjr 35:e959ffba78fd 471
mjr 35:e959ffba78fd 472 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 473 //
mjr 38:091e511ce8a0 474 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 475 //
mjr 38:091e511ce8a0 476 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 477 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 478 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 479 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 480 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 481 // SPI capability.
mjr 38:091e511ce8a0 482 //
mjr 38:091e511ce8a0 483 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 484
mjr 73:4e8ce0b18915 485 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 486 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 487 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 488 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 489
mjr 38:091e511ce8a0 490 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 491 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 492 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 493 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 494 {
mjr 73:4e8ce0b18915 495 // remember the new state
mjr 73:4e8ce0b18915 496 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 497
mjr 73:4e8ce0b18915 498 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 499 // applying it to the blue LED
mjr 73:4e8ce0b18915 500 if (diagLEDState == 0)
mjr 77:0b96f6867312 501 {
mjr 77:0b96f6867312 502 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 503 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 504 }
mjr 73:4e8ce0b18915 505
mjr 73:4e8ce0b18915 506 // set the new state
mjr 38:091e511ce8a0 507 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 508 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 509 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 510 }
mjr 38:091e511ce8a0 511
mjr 73:4e8ce0b18915 512 // update the LEDs with the current state
mjr 73:4e8ce0b18915 513 void diagLED(void)
mjr 73:4e8ce0b18915 514 {
mjr 73:4e8ce0b18915 515 diagLED(
mjr 73:4e8ce0b18915 516 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 517 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 518 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 519 }
mjr 73:4e8ce0b18915 520
mjr 38:091e511ce8a0 521 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 522 // an on-board LED segment
mjr 38:091e511ce8a0 523 struct LedSeg
mjr 38:091e511ce8a0 524 {
mjr 38:091e511ce8a0 525 bool r, g, b;
mjr 38:091e511ce8a0 526 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 527
mjr 38:091e511ce8a0 528 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 529 {
mjr 38:091e511ce8a0 530 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 531 // our on-board LED segments
mjr 38:091e511ce8a0 532 int t = pc.typ;
mjr 38:091e511ce8a0 533 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 534 {
mjr 38:091e511ce8a0 535 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 536 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 537 if (pin == LED1)
mjr 38:091e511ce8a0 538 r = true;
mjr 38:091e511ce8a0 539 else if (pin == LED2)
mjr 38:091e511ce8a0 540 g = true;
mjr 38:091e511ce8a0 541 else if (pin == LED3)
mjr 38:091e511ce8a0 542 b = true;
mjr 38:091e511ce8a0 543 }
mjr 38:091e511ce8a0 544 }
mjr 38:091e511ce8a0 545 };
mjr 38:091e511ce8a0 546
mjr 38:091e511ce8a0 547 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 548 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 549 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 550 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 551 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 552 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 553 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 554 {
mjr 38:091e511ce8a0 555 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 556 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 557 LedSeg l;
mjr 38:091e511ce8a0 558 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 559 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 560
mjr 38:091e511ce8a0 561 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 562 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 563 // LedWiz use.
mjr 38:091e511ce8a0 564 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 565 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 566 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 567 }
mjr 38:091e511ce8a0 568
mjr 38:091e511ce8a0 569
mjr 38:091e511ce8a0 570 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 571 //
mjr 76:7f5912b6340e 572 // LedWiz emulation
mjr 76:7f5912b6340e 573 //
mjr 76:7f5912b6340e 574
mjr 76:7f5912b6340e 575 // LedWiz output states.
mjr 76:7f5912b6340e 576 //
mjr 76:7f5912b6340e 577 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 578 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 579 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 580 // The two axes are independent.
mjr 76:7f5912b6340e 581 //
mjr 76:7f5912b6340e 582 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 583 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 584 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 585 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 586 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 587 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 588 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 589 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 590
mjr 76:7f5912b6340e 591 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 592 static uint8_t *wizOn;
mjr 76:7f5912b6340e 593
mjr 76:7f5912b6340e 594 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 595 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 596 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 597 //
mjr 76:7f5912b6340e 598 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 599 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 600 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 601 // 130 = flash on / off
mjr 76:7f5912b6340e 602 // 131 = on / ramp down
mjr 76:7f5912b6340e 603 // 132 = ramp up / on
mjr 5:a70c0bce770d 604 //
mjr 76:7f5912b6340e 605 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 606 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 607 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 608 static uint8_t *wizVal;
mjr 76:7f5912b6340e 609
mjr 76:7f5912b6340e 610 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 611 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 612 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 613 // by the extended protocol:
mjr 76:7f5912b6340e 614 //
mjr 76:7f5912b6340e 615 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 616 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 617 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 618 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 619 // if the brightness is non-zero.
mjr 76:7f5912b6340e 620 //
mjr 76:7f5912b6340e 621 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 622 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 623 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 624 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 625 // 0..255 range.
mjr 26:cb71c4af2912 626 //
mjr 76:7f5912b6340e 627 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 628 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 629 // level.
mjr 26:cb71c4af2912 630 //
mjr 76:7f5912b6340e 631 static uint8_t *outLevel;
mjr 76:7f5912b6340e 632
mjr 76:7f5912b6340e 633
mjr 76:7f5912b6340e 634 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 635 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 636 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 637 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 638 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 639 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 640 //
mjr 76:7f5912b6340e 641 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 642 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 643 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 644 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 645 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 646 // at the maximum size.
mjr 76:7f5912b6340e 647 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 648 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 649
mjr 26:cb71c4af2912 650 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 651 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 652 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 653 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 654 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 655
mjr 76:7f5912b6340e 656
mjr 76:7f5912b6340e 657 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 658 //
mjr 76:7f5912b6340e 659 // Output Ports
mjr 76:7f5912b6340e 660 //
mjr 76:7f5912b6340e 661 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 662 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 663 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 664 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 665 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 666 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 667 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 668 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 669 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 670 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 671 // you have to ration pins among features.
mjr 76:7f5912b6340e 672 //
mjr 87:8d35c74403af 673 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 674 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 675 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 676 //
mjr 87:8d35c74403af 677 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 678 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 679 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 680 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 681 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 682 //
mjr 87:8d35c74403af 683 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 684 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 685 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 686 //
mjr 87:8d35c74403af 687 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 688 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 689 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 690 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 691 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 692 // for the chime board outputs.
mjr 76:7f5912b6340e 693 //
mjr 76:7f5912b6340e 694 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 695 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 696 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 697 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 698 //
mjr 76:7f5912b6340e 699 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 700 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 701 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 702 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 703 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 704 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 705 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 706 // of physical devices they're connected to.
mjr 76:7f5912b6340e 707
mjr 76:7f5912b6340e 708
mjr 26:cb71c4af2912 709 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 710 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 711 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 712 class LwOut
mjr 6:cc35eb643e8f 713 {
mjr 6:cc35eb643e8f 714 public:
mjr 40:cc0d9814522b 715 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 716 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 717 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 718 };
mjr 26:cb71c4af2912 719
mjr 35:e959ffba78fd 720 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 721 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 722 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 723 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 724 // numbering.
mjr 35:e959ffba78fd 725 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 726 {
mjr 33:d832bcab089e 727 public:
mjr 35:e959ffba78fd 728 LwVirtualOut() { }
mjr 40:cc0d9814522b 729 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 730 };
mjr 26:cb71c4af2912 731
mjr 34:6b981a2afab7 732 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 733 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 734 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 735 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 736 {
mjr 34:6b981a2afab7 737 public:
mjr 34:6b981a2afab7 738 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 739 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 740
mjr 34:6b981a2afab7 741 private:
mjr 53:9b2611964afc 742 // underlying physical output
mjr 34:6b981a2afab7 743 LwOut *out;
mjr 34:6b981a2afab7 744 };
mjr 34:6b981a2afab7 745
mjr 53:9b2611964afc 746 // Global ZB Launch Ball state
mjr 53:9b2611964afc 747 bool zbLaunchOn = false;
mjr 53:9b2611964afc 748
mjr 53:9b2611964afc 749 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 750 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 751 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 752 {
mjr 53:9b2611964afc 753 public:
mjr 53:9b2611964afc 754 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 755 virtual void set(uint8_t val)
mjr 53:9b2611964afc 756 {
mjr 53:9b2611964afc 757 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 758 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 759
mjr 53:9b2611964afc 760 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 761 out->set(val);
mjr 53:9b2611964afc 762 }
mjr 53:9b2611964afc 763
mjr 53:9b2611964afc 764 private:
mjr 53:9b2611964afc 765 // underlying physical or virtual output
mjr 53:9b2611964afc 766 LwOut *out;
mjr 53:9b2611964afc 767 };
mjr 53:9b2611964afc 768
mjr 53:9b2611964afc 769
mjr 40:cc0d9814522b 770 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 771 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 772 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 773 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 774 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 775 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 776 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 777 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 778 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 779 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 780 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 781 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 782 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 783 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 784 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 785 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 786 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 787 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 788 };
mjr 40:cc0d9814522b 789
mjr 40:cc0d9814522b 790 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 791 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 792 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 793 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 794 {
mjr 40:cc0d9814522b 795 public:
mjr 40:cc0d9814522b 796 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 797 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 798
mjr 40:cc0d9814522b 799 private:
mjr 40:cc0d9814522b 800 LwOut *out;
mjr 40:cc0d9814522b 801 };
mjr 40:cc0d9814522b 802
mjr 77:0b96f6867312 803 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 804 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 805 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 806 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 807
mjr 40:cc0d9814522b 808 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 809 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 810 // mode is engaged.
mjr 40:cc0d9814522b 811 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 812 {
mjr 40:cc0d9814522b 813 public:
mjr 40:cc0d9814522b 814 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 815 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 816
mjr 53:9b2611964afc 817 private:
mjr 53:9b2611964afc 818 LwOut *out;
mjr 53:9b2611964afc 819 };
mjr 53:9b2611964afc 820
mjr 53:9b2611964afc 821 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 822 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 823 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 824 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 825 {
mjr 53:9b2611964afc 826 public:
mjr 53:9b2611964afc 827 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 828 virtual void set(uint8_t)
mjr 53:9b2611964afc 829 {
mjr 53:9b2611964afc 830 // ignore the host value and simply show the current
mjr 53:9b2611964afc 831 // night mode setting
mjr 53:9b2611964afc 832 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 833 }
mjr 40:cc0d9814522b 834
mjr 40:cc0d9814522b 835 private:
mjr 40:cc0d9814522b 836 LwOut *out;
mjr 40:cc0d9814522b 837 };
mjr 40:cc0d9814522b 838
mjr 26:cb71c4af2912 839
mjr 89:c43cd923401c 840 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 841 // top of a physical pin output.
mjr 89:c43cd923401c 842 //
mjr 89:c43cd923401c 843 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 844 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 845 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 846 // level is ON.
mjr 89:c43cd923401c 847 //
mjr 89:c43cd923401c 848 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 849 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 850 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 851 //
mjr 89:c43cd923401c 852 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 853 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 854 // power and start a timer.
mjr 89:c43cd923401c 855 //
mjr 89:c43cd923401c 856 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 857 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 858 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 859 //
mjr 89:c43cd923401c 860 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 861 {
mjr 89:c43cd923401c 862 public:
mjr 89:c43cd923401c 863 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 864 // the configuration.
mjr 89:c43cd923401c 865 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 866 : out(o), params(params)
mjr 89:c43cd923401c 867 {
mjr 89:c43cd923401c 868 // initially OFF
mjr 89:c43cd923401c 869 state = 0;
mjr 89:c43cd923401c 870 }
mjr 89:c43cd923401c 871
mjr 89:c43cd923401c 872 virtual void set(uint8_t level)
mjr 89:c43cd923401c 873 {
mjr 98:4df3c0f7e707 874 // remember the new nominal level set by the client
mjr 89:c43cd923401c 875 val = level;
mjr 89:c43cd923401c 876
mjr 89:c43cd923401c 877 // update the physical output according to our current timing state
mjr 89:c43cd923401c 878 switch (state)
mjr 89:c43cd923401c 879 {
mjr 89:c43cd923401c 880 case 0:
mjr 89:c43cd923401c 881 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 882 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 883 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 884 // off, so there's no change.
mjr 89:c43cd923401c 885 if (level != 0)
mjr 89:c43cd923401c 886 {
mjr 89:c43cd923401c 887 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 888 state = 1;
mjr 89:c43cd923401c 889
mjr 89:c43cd923401c 890 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 891 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 892 // requested
mjr 89:c43cd923401c 893 out->set(level);
mjr 89:c43cd923401c 894
mjr 89:c43cd923401c 895 // add myself to the pending timer list
mjr 89:c43cd923401c 896 pending[nPending++] = this;
mjr 89:c43cd923401c 897
mjr 89:c43cd923401c 898 // note the starting time
mjr 89:c43cd923401c 899 t0 = timer.read_us();
mjr 89:c43cd923401c 900 }
mjr 89:c43cd923401c 901 break;
mjr 89:c43cd923401c 902
mjr 89:c43cd923401c 903 case 1:
mjr 89:c43cd923401c 904 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 905 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 906 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 907 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 908 out->set(level);
mjr 89:c43cd923401c 909 if (level == 0)
mjr 89:c43cd923401c 910 {
mjr 89:c43cd923401c 911 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 912 // so we need to remove it from the list.
mjr 89:c43cd923401c 913 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 914 {
mjr 89:c43cd923401c 915 // is this us?
mjr 89:c43cd923401c 916 if (pending[i] == this)
mjr 89:c43cd923401c 917 {
mjr 89:c43cd923401c 918 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 919 // last list entry
mjr 89:c43cd923401c 920 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 921
mjr 89:c43cd923401c 922 // no need to look any further
mjr 89:c43cd923401c 923 break;
mjr 89:c43cd923401c 924 }
mjr 89:c43cd923401c 925 }
mjr 89:c43cd923401c 926
mjr 89:c43cd923401c 927 // switch to state 0 (off)
mjr 89:c43cd923401c 928 state = 0;
mjr 89:c43cd923401c 929 }
mjr 89:c43cd923401c 930 break;
mjr 89:c43cd923401c 931
mjr 89:c43cd923401c 932 case 2:
mjr 89:c43cd923401c 933 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 934 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 935 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 936 // as the upper bound.
mjr 89:c43cd923401c 937 if (level == 0)
mjr 89:c43cd923401c 938 {
mjr 89:c43cd923401c 939 // switching off - turn off the physical output
mjr 89:c43cd923401c 940 out->set(0);
mjr 89:c43cd923401c 941
mjr 89:c43cd923401c 942 // go to state 0 (off)
mjr 89:c43cd923401c 943 state = 0;
mjr 89:c43cd923401c 944 }
mjr 89:c43cd923401c 945 else
mjr 89:c43cd923401c 946 {
mjr 89:c43cd923401c 947 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 948 // lower of the requested power and the hold power
mjr 89:c43cd923401c 949 uint8_t hold = holdPower();
mjr 89:c43cd923401c 950 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 951 }
mjr 89:c43cd923401c 952 break;
mjr 89:c43cd923401c 953 }
mjr 89:c43cd923401c 954 }
mjr 89:c43cd923401c 955
mjr 89:c43cd923401c 956 // Class initialization
mjr 89:c43cd923401c 957 static void classInit(Config &cfg)
mjr 89:c43cd923401c 958 {
mjr 89:c43cd923401c 959 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 960 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 961 // all of these outputs.
mjr 89:c43cd923401c 962 int n = 0;
mjr 89:c43cd923401c 963 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 964 {
mjr 89:c43cd923401c 965 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 966 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 967 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 968 ++n;
mjr 89:c43cd923401c 969 }
mjr 89:c43cd923401c 970
mjr 89:c43cd923401c 971 // allocate space for the pending timer list
mjr 89:c43cd923401c 972 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 973
mjr 89:c43cd923401c 974 // there's nothing in the pending list yet
mjr 89:c43cd923401c 975 nPending = 0;
mjr 89:c43cd923401c 976
mjr 89:c43cd923401c 977 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 978 // use it to figure elapsed times.
mjr 89:c43cd923401c 979 timer.start();
mjr 89:c43cd923401c 980 }
mjr 89:c43cd923401c 981
mjr 89:c43cd923401c 982 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 983 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 984 static void poll()
mjr 89:c43cd923401c 985 {
mjr 89:c43cd923401c 986 // note the current time
mjr 89:c43cd923401c 987 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 988
mjr 89:c43cd923401c 989 // go through the timer list
mjr 89:c43cd923401c 990 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 991 {
mjr 89:c43cd923401c 992 // get the port
mjr 89:c43cd923401c 993 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 994
mjr 89:c43cd923401c 995 // assume we'll keep it
mjr 89:c43cd923401c 996 bool remove = false;
mjr 89:c43cd923401c 997
mjr 89:c43cd923401c 998 // check if the port is still on
mjr 89:c43cd923401c 999 if (port->state != 0)
mjr 89:c43cd923401c 1000 {
mjr 89:c43cd923401c 1001 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1002 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1003 {
mjr 89:c43cd923401c 1004 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1005 port->state = 2;
mjr 89:c43cd923401c 1006
mjr 89:c43cd923401c 1007 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1008 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1009 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1010 uint8_t val = port->val;
mjr 89:c43cd923401c 1011 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1012
mjr 89:c43cd923401c 1013 // we're done with the timer
mjr 89:c43cd923401c 1014 remove = true;
mjr 89:c43cd923401c 1015 }
mjr 89:c43cd923401c 1016 }
mjr 89:c43cd923401c 1017 else
mjr 89:c43cd923401c 1018 {
mjr 89:c43cd923401c 1019 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1020 // it from the timer list
mjr 89:c43cd923401c 1021 remove = true;
mjr 89:c43cd923401c 1022 }
mjr 89:c43cd923401c 1023
mjr 89:c43cd923401c 1024 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1025 if (remove)
mjr 89:c43cd923401c 1026 {
mjr 89:c43cd923401c 1027 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1028 // the last entry in the list.
mjr 89:c43cd923401c 1029 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1030
mjr 89:c43cd923401c 1031 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1032 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1033 }
mjr 89:c43cd923401c 1034 else
mjr 89:c43cd923401c 1035 {
mjr 89:c43cd923401c 1036 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1037 ++i;
mjr 89:c43cd923401c 1038 }
mjr 89:c43cd923401c 1039 }
mjr 89:c43cd923401c 1040 }
mjr 89:c43cd923401c 1041
mjr 89:c43cd923401c 1042 protected:
mjr 89:c43cd923401c 1043 // underlying physical output
mjr 89:c43cd923401c 1044 LwOut *out;
mjr 89:c43cd923401c 1045
mjr 89:c43cd923401c 1046 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1047 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1048 uint32_t t0;
mjr 89:c43cd923401c 1049
mjr 89:c43cd923401c 1050 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1051 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1052 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1053 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1054 // if it's lower.
mjr 89:c43cd923401c 1055 uint8_t val;
mjr 89:c43cd923401c 1056
mjr 89:c43cd923401c 1057 // Current port state:
mjr 89:c43cd923401c 1058 //
mjr 89:c43cd923401c 1059 // 0 = off
mjr 89:c43cd923401c 1060 // 1 = on at initial full power
mjr 89:c43cd923401c 1061 // 2 = on at hold power
mjr 89:c43cd923401c 1062 uint8_t state;
mjr 89:c43cd923401c 1063
mjr 89:c43cd923401c 1064 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1065 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1066 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1067 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1068 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1069 uint8_t params;
mjr 89:c43cd923401c 1070
mjr 99:8139b0c274f4 1071 // Figure the initial full-power time in microseconds: 50ms * (1+N),
mjr 99:8139b0c274f4 1072 // where N is the high 4 bits of the parameter byte.
mjr 99:8139b0c274f4 1073 inline uint32_t fullPowerTime_us() const { return 50000*(1 + ((params >> 4) & 0x0F)); }
mjr 89:c43cd923401c 1074
mjr 89:c43cd923401c 1075 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1076 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1077
mjr 89:c43cd923401c 1078 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1079 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1080 // (which runs continuously).
mjr 89:c43cd923401c 1081 static Timer timer;
mjr 89:c43cd923401c 1082
mjr 89:c43cd923401c 1083 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 98:4df3c0f7e707 1084 // transitions from OFF to ON, we add it to this list. We scan the
mjr 98:4df3c0f7e707 1085 // list in our polling routine to find ports that have reached the
mjr 98:4df3c0f7e707 1086 // expiration of their initial full-power intervals.
mjr 89:c43cd923401c 1087 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1088 static uint8_t nPending;
mjr 89:c43cd923401c 1089 };
mjr 89:c43cd923401c 1090
mjr 89:c43cd923401c 1091 // Flipper Logic statics
mjr 89:c43cd923401c 1092 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1093 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1094 uint8_t LwFlipperLogicOut::nPending;
mjr 99:8139b0c274f4 1095
mjr 99:8139b0c274f4 1096 // Chime Logic. This is a filter output that we layer on a physical
mjr 99:8139b0c274f4 1097 // output to set a minimum and maximum ON time for the output.
mjr 99:8139b0c274f4 1098 class LwChimeLogicOut: public LwOut
mjr 98:4df3c0f7e707 1099 {
mjr 98:4df3c0f7e707 1100 public:
mjr 99:8139b0c274f4 1101 // Set up the output. 'params' encodes the minimum and maximum time.
mjr 99:8139b0c274f4 1102 LwChimeLogicOut(LwOut *o, uint8_t params)
mjr 99:8139b0c274f4 1103 : out(o), params(params)
mjr 98:4df3c0f7e707 1104 {
mjr 98:4df3c0f7e707 1105 // initially OFF
mjr 98:4df3c0f7e707 1106 state = 0;
mjr 98:4df3c0f7e707 1107 }
mjr 98:4df3c0f7e707 1108
mjr 98:4df3c0f7e707 1109 virtual void set(uint8_t level)
mjr 98:4df3c0f7e707 1110 {
mjr 98:4df3c0f7e707 1111 // update the physical output according to our current timing state
mjr 98:4df3c0f7e707 1112 switch (state)
mjr 98:4df3c0f7e707 1113 {
mjr 98:4df3c0f7e707 1114 case 0:
mjr 98:4df3c0f7e707 1115 // We're currently off. If the new level is non-zero, switch
mjr 98:4df3c0f7e707 1116 // to state 1 (initial minimum interval) and set the requested
mjr 98:4df3c0f7e707 1117 // level. If the new level is zero, we're switching from off to
mjr 98:4df3c0f7e707 1118 // off, so there's no change.
mjr 98:4df3c0f7e707 1119 if (level != 0)
mjr 98:4df3c0f7e707 1120 {
mjr 98:4df3c0f7e707 1121 // switch to state 1 (initial minimum interval, port is
mjr 98:4df3c0f7e707 1122 // logically on)
mjr 98:4df3c0f7e707 1123 state = 1;
mjr 98:4df3c0f7e707 1124
mjr 98:4df3c0f7e707 1125 // set the requested output level
mjr 98:4df3c0f7e707 1126 out->set(level);
mjr 98:4df3c0f7e707 1127
mjr 98:4df3c0f7e707 1128 // add myself to the pending timer list
mjr 98:4df3c0f7e707 1129 pending[nPending++] = this;
mjr 98:4df3c0f7e707 1130
mjr 98:4df3c0f7e707 1131 // note the starting time
mjr 98:4df3c0f7e707 1132 t0 = timer.read_us();
mjr 98:4df3c0f7e707 1133 }
mjr 98:4df3c0f7e707 1134 break;
mjr 98:4df3c0f7e707 1135
mjr 98:4df3c0f7e707 1136 case 1: // min ON interval, port on
mjr 98:4df3c0f7e707 1137 case 2: // min ON interval, port off
mjr 98:4df3c0f7e707 1138 // We're in the initial minimum ON interval. If the new power
mjr 98:4df3c0f7e707 1139 // level is non-zero, pass it through to the physical port, since
mjr 98:4df3c0f7e707 1140 // the client is allowed to change the power level during the
mjr 98:4df3c0f7e707 1141 // initial ON interval - they just can't turn it off entirely.
mjr 98:4df3c0f7e707 1142 // Set the state to 1 to indicate that the logical port is on.
mjr 98:4df3c0f7e707 1143 //
mjr 98:4df3c0f7e707 1144 // If the new level is zero, leave the underlying port at its
mjr 98:4df3c0f7e707 1145 // current power level, since we're not allowed to turn it off
mjr 98:4df3c0f7e707 1146 // during this period. Set the state to 2 to indicate that the
mjr 98:4df3c0f7e707 1147 // logical port is off even though the physical port has to stay
mjr 98:4df3c0f7e707 1148 // on for the remainder of the interval.
mjr 98:4df3c0f7e707 1149 if (level != 0)
mjr 98:4df3c0f7e707 1150 {
mjr 98:4df3c0f7e707 1151 // client is leaving the port on - pass through the new
mjr 98:4df3c0f7e707 1152 // power level and set state 1 (logically on)
mjr 98:4df3c0f7e707 1153 out->set(level);
mjr 98:4df3c0f7e707 1154 state = 1;
mjr 98:4df3c0f7e707 1155 }
mjr 98:4df3c0f7e707 1156 else
mjr 98:4df3c0f7e707 1157 {
mjr 98:4df3c0f7e707 1158 // Client is turning off the port - leave the underlying port
mjr 98:4df3c0f7e707 1159 // on at its current level and set state 2 (logically off).
mjr 98:4df3c0f7e707 1160 // When the minimum ON time expires, the polling routine will
mjr 98:4df3c0f7e707 1161 // see that we're logically off and will pass that through to
mjr 98:4df3c0f7e707 1162 // the underlying physical port. Until then, though, we have
mjr 98:4df3c0f7e707 1163 // to leave the physical port on to satisfy the minimum ON
mjr 98:4df3c0f7e707 1164 // time requirement.
mjr 98:4df3c0f7e707 1165 state = 2;
mjr 98:4df3c0f7e707 1166 }
mjr 98:4df3c0f7e707 1167 break;
mjr 98:4df3c0f7e707 1168
mjr 98:4df3c0f7e707 1169 case 3:
mjr 99:8139b0c274f4 1170 // We're after the minimum ON interval and before the maximum
mjr 99:8139b0c274f4 1171 // ON time limit. We can set any new level, including fully off.
mjr 99:8139b0c274f4 1172 // Pass the new power level through to the port.
mjr 98:4df3c0f7e707 1173 out->set(level);
mjr 98:4df3c0f7e707 1174
mjr 98:4df3c0f7e707 1175 // if the port is now off, return to state 0 (OFF)
mjr 98:4df3c0f7e707 1176 if (level == 0)
mjr 99:8139b0c274f4 1177 {
mjr 99:8139b0c274f4 1178 // return to the OFF state
mjr 99:8139b0c274f4 1179 state = 0;
mjr 99:8139b0c274f4 1180
mjr 99:8139b0c274f4 1181 // If we have a timer pending, remove it. A timer will be
mjr 99:8139b0c274f4 1182 // pending if we have a non-infinite maximum on time for the
mjr 99:8139b0c274f4 1183 // port.
mjr 99:8139b0c274f4 1184 for (int i = 0 ; i < nPending ; ++i)
mjr 99:8139b0c274f4 1185 {
mjr 99:8139b0c274f4 1186 // is this us?
mjr 99:8139b0c274f4 1187 if (pending[i] == this)
mjr 99:8139b0c274f4 1188 {
mjr 99:8139b0c274f4 1189 // remove myself by replacing the slot with the
mjr 99:8139b0c274f4 1190 // last list entry
mjr 99:8139b0c274f4 1191 pending[i] = pending[--nPending];
mjr 99:8139b0c274f4 1192
mjr 99:8139b0c274f4 1193 // no need to look any further
mjr 99:8139b0c274f4 1194 break;
mjr 99:8139b0c274f4 1195 }
mjr 99:8139b0c274f4 1196 }
mjr 99:8139b0c274f4 1197 }
mjr 99:8139b0c274f4 1198 break;
mjr 99:8139b0c274f4 1199
mjr 99:8139b0c274f4 1200 case 4:
mjr 99:8139b0c274f4 1201 // We're after the maximum ON time. The physical port stays off
mjr 99:8139b0c274f4 1202 // during this interval, so we don't pass any changes through to
mjr 99:8139b0c274f4 1203 // the physical port. When the client sets the level to 0, we
mjr 99:8139b0c274f4 1204 // turn off the logical port and reset to state 0.
mjr 99:8139b0c274f4 1205 if (level == 0)
mjr 98:4df3c0f7e707 1206 state = 0;
mjr 98:4df3c0f7e707 1207 break;
mjr 98:4df3c0f7e707 1208 }
mjr 98:4df3c0f7e707 1209 }
mjr 98:4df3c0f7e707 1210
mjr 98:4df3c0f7e707 1211 // Class initialization
mjr 98:4df3c0f7e707 1212 static void classInit(Config &cfg)
mjr 98:4df3c0f7e707 1213 {
mjr 98:4df3c0f7e707 1214 // Count the Minimum On Time outputs in the configuration. We
mjr 98:4df3c0f7e707 1215 // need to allocate enough pending timer list space to accommodate
mjr 98:4df3c0f7e707 1216 // all of these outputs.
mjr 98:4df3c0f7e707 1217 int n = 0;
mjr 98:4df3c0f7e707 1218 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 98:4df3c0f7e707 1219 {
mjr 98:4df3c0f7e707 1220 // if this port is active and marked as Flipper Logic, count it
mjr 98:4df3c0f7e707 1221 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 99:8139b0c274f4 1222 && (cfg.outPort[i].flags & PortFlagChimeLogic) != 0)
mjr 98:4df3c0f7e707 1223 ++n;
mjr 98:4df3c0f7e707 1224 }
mjr 98:4df3c0f7e707 1225
mjr 98:4df3c0f7e707 1226 // allocate space for the pending timer list
mjr 99:8139b0c274f4 1227 pending = new LwChimeLogicOut*[n];
mjr 98:4df3c0f7e707 1228
mjr 98:4df3c0f7e707 1229 // there's nothing in the pending list yet
mjr 98:4df3c0f7e707 1230 nPending = 0;
mjr 98:4df3c0f7e707 1231
mjr 98:4df3c0f7e707 1232 // Start our shared timer. The epoch is arbitrary, since we only
mjr 98:4df3c0f7e707 1233 // use it to figure elapsed times.
mjr 98:4df3c0f7e707 1234 timer.start();
mjr 98:4df3c0f7e707 1235 }
mjr 98:4df3c0f7e707 1236
mjr 98:4df3c0f7e707 1237 // Check for ports with pending timers. The main routine should
mjr 98:4df3c0f7e707 1238 // call this on each iteration to process our state transitions.
mjr 98:4df3c0f7e707 1239 static void poll()
mjr 98:4df3c0f7e707 1240 {
mjr 98:4df3c0f7e707 1241 // note the current time
mjr 98:4df3c0f7e707 1242 uint32_t t = timer.read_us();
mjr 98:4df3c0f7e707 1243
mjr 98:4df3c0f7e707 1244 // go through the timer list
mjr 98:4df3c0f7e707 1245 for (int i = 0 ; i < nPending ; )
mjr 98:4df3c0f7e707 1246 {
mjr 98:4df3c0f7e707 1247 // get the port
mjr 99:8139b0c274f4 1248 LwChimeLogicOut *port = pending[i];
mjr 98:4df3c0f7e707 1249
mjr 98:4df3c0f7e707 1250 // assume we'll keep it
mjr 98:4df3c0f7e707 1251 bool remove = false;
mjr 98:4df3c0f7e707 1252
mjr 99:8139b0c274f4 1253 // check our state
mjr 99:8139b0c274f4 1254 switch (port->state)
mjr 98:4df3c0f7e707 1255 {
mjr 99:8139b0c274f4 1256 case 1: // initial minimum ON time, port logically on
mjr 99:8139b0c274f4 1257 case 2: // initial minimum ON time, port logically off
mjr 99:8139b0c274f4 1258 // check if the minimum ON time has elapsed
mjr 98:4df3c0f7e707 1259 if (uint32_t(t - port->t0) > port->minOnTime_us())
mjr 98:4df3c0f7e707 1260 {
mjr 98:4df3c0f7e707 1261 // This port has completed its initial ON interval, so
mjr 98:4df3c0f7e707 1262 // it advances to the next state.
mjr 98:4df3c0f7e707 1263 if (port->state == 1)
mjr 98:4df3c0f7e707 1264 {
mjr 99:8139b0c274f4 1265 // The port is logically on, so advance to state 3.
mjr 99:8139b0c274f4 1266 // The underlying port is already at its proper level,
mjr 99:8139b0c274f4 1267 // since we pass through non-zero power settings to the
mjr 99:8139b0c274f4 1268 // underlying port throughout the initial minimum time.
mjr 99:8139b0c274f4 1269 // The timer stays active into state 3.
mjr 98:4df3c0f7e707 1270 port->state = 3;
mjr 99:8139b0c274f4 1271
mjr 99:8139b0c274f4 1272 // Special case: maximum on time 0 means "infinite".
mjr 99:8139b0c274f4 1273 // There's no need for a timer in this case; we'll
mjr 99:8139b0c274f4 1274 // just stay in state 3 until the client turns the
mjr 99:8139b0c274f4 1275 // port off.
mjr 99:8139b0c274f4 1276 if (port->maxOnTime_us() == 0)
mjr 99:8139b0c274f4 1277 remove = true;
mjr 98:4df3c0f7e707 1278 }
mjr 98:4df3c0f7e707 1279 else
mjr 98:4df3c0f7e707 1280 {
mjr 98:4df3c0f7e707 1281 // The port was switched off by the client during the
mjr 98:4df3c0f7e707 1282 // minimum ON period. We haven't passed the OFF state
mjr 98:4df3c0f7e707 1283 // to the underlying port yet, because the port has to
mjr 98:4df3c0f7e707 1284 // stay on throughout the minimum ON period. So turn
mjr 98:4df3c0f7e707 1285 // the port off now.
mjr 98:4df3c0f7e707 1286 port->out->set(0);
mjr 98:4df3c0f7e707 1287
mjr 98:4df3c0f7e707 1288 // return to state 0 (OFF)
mjr 98:4df3c0f7e707 1289 port->state = 0;
mjr 99:8139b0c274f4 1290
mjr 99:8139b0c274f4 1291 // we're done with the timer
mjr 99:8139b0c274f4 1292 remove = true;
mjr 98:4df3c0f7e707 1293 }
mjr 99:8139b0c274f4 1294 }
mjr 99:8139b0c274f4 1295 break;
mjr 99:8139b0c274f4 1296
mjr 99:8139b0c274f4 1297 case 3: // between minimum ON time and maximum ON time
mjr 99:8139b0c274f4 1298 // check if the maximum ON time has expired
mjr 99:8139b0c274f4 1299 if (uint32_t(t - port->t0) > port->maxOnTime_us())
mjr 99:8139b0c274f4 1300 {
mjr 99:8139b0c274f4 1301 // The maximum ON time has expired. Turn off the physical
mjr 99:8139b0c274f4 1302 // port.
mjr 99:8139b0c274f4 1303 port->out->set(0);
mjr 98:4df3c0f7e707 1304
mjr 99:8139b0c274f4 1305 // Switch to state 4 (logically ON past maximum time)
mjr 99:8139b0c274f4 1306 port->state = 4;
mjr 99:8139b0c274f4 1307
mjr 99:8139b0c274f4 1308 // Remove the timer on this port. This port simply stays
mjr 99:8139b0c274f4 1309 // in state 4 until the client turns off the port.
mjr 98:4df3c0f7e707 1310 remove = true;
mjr 98:4df3c0f7e707 1311 }
mjr 99:8139b0c274f4 1312 break;
mjr 98:4df3c0f7e707 1313 }
mjr 98:4df3c0f7e707 1314
mjr 98:4df3c0f7e707 1315 // if desired, remove the port from the timer list
mjr 98:4df3c0f7e707 1316 if (remove)
mjr 98:4df3c0f7e707 1317 {
mjr 98:4df3c0f7e707 1318 // Remove the list entry by overwriting the slot with
mjr 98:4df3c0f7e707 1319 // the last entry in the list.
mjr 98:4df3c0f7e707 1320 pending[i] = pending[--nPending];
mjr 98:4df3c0f7e707 1321
mjr 98:4df3c0f7e707 1322 // Note that we don't increment the loop counter, since
mjr 98:4df3c0f7e707 1323 // we now need to revisit this same slot.
mjr 98:4df3c0f7e707 1324 }
mjr 98:4df3c0f7e707 1325 else
mjr 98:4df3c0f7e707 1326 {
mjr 98:4df3c0f7e707 1327 // we're keeping this item; move on to the next one
mjr 98:4df3c0f7e707 1328 ++i;
mjr 98:4df3c0f7e707 1329 }
mjr 98:4df3c0f7e707 1330 }
mjr 98:4df3c0f7e707 1331 }
mjr 98:4df3c0f7e707 1332
mjr 98:4df3c0f7e707 1333 protected:
mjr 98:4df3c0f7e707 1334 // underlying physical output
mjr 98:4df3c0f7e707 1335 LwOut *out;
mjr 98:4df3c0f7e707 1336
mjr 98:4df3c0f7e707 1337 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 98:4df3c0f7e707 1338 // to the current 'timer' timestamp when entering state 1.
mjr 98:4df3c0f7e707 1339 uint32_t t0;
mjr 98:4df3c0f7e707 1340
mjr 98:4df3c0f7e707 1341 // Current port state:
mjr 98:4df3c0f7e707 1342 //
mjr 98:4df3c0f7e707 1343 // 0 = off
mjr 99:8139b0c274f4 1344 // 1 = in initial minimum ON interval, logical port is on
mjr 99:8139b0c274f4 1345 // 2 = in initial minimum ON interval, logical port is off
mjr 99:8139b0c274f4 1346 // 3 = in interval between minimum and maximum ON times
mjr 99:8139b0c274f4 1347 // 4 = after the maximum ON interval
mjr 99:8139b0c274f4 1348 //
mjr 99:8139b0c274f4 1349 // The "logical" on/off state of the port is the state set by the
mjr 99:8139b0c274f4 1350 // client. The "physical" state is the state of the underlying port.
mjr 99:8139b0c274f4 1351 // The relationships between logical and physical port state, and the
mjr 99:8139b0c274f4 1352 // effects of updates by the client, are as follows:
mjr 99:8139b0c274f4 1353 //
mjr 99:8139b0c274f4 1354 // State | Logical | Physical | Client set on | Client set off
mjr 99:8139b0c274f4 1355 // -----------------------------------------------------------
mjr 99:8139b0c274f4 1356 // 0 | Off | Off | phys on, -> 1 | no effect
mjr 99:8139b0c274f4 1357 // 1 | On | On | no effect | -> 2
mjr 99:8139b0c274f4 1358 // 2 | Off | On | -> 1 | no effect
mjr 99:8139b0c274f4 1359 // 3 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1360 // 4 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1361 //
mjr 99:8139b0c274f4 1362 // The polling routine makes the following transitions when the current
mjr 99:8139b0c274f4 1363 // time limit expires:
mjr 99:8139b0c274f4 1364 //
mjr 99:8139b0c274f4 1365 // 1: at end of minimum ON, -> 3 (or 4 if max == infinity)
mjr 99:8139b0c274f4 1366 // 2: at end of minimum ON, port off, -> 0
mjr 99:8139b0c274f4 1367 // 3: at end of maximum ON, port off, -> 4
mjr 98:4df3c0f7e707 1368 //
mjr 98:4df3c0f7e707 1369 uint8_t state;
mjr 98:4df3c0f7e707 1370
mjr 99:8139b0c274f4 1371 // Configuration parameters byte. This encodes the minimum and maximum
mjr 99:8139b0c274f4 1372 // ON times.
mjr 99:8139b0c274f4 1373 uint8_t params;
mjr 98:4df3c0f7e707 1374
mjr 98:4df3c0f7e707 1375 // Timer. This is a shared timer for all of the minimum ON time ports.
mjr 98:4df3c0f7e707 1376 // When we transition from OFF to ON, we note the current time on this
mjr 98:4df3c0f7e707 1377 // timer to establish the start of our minimum ON period.
mjr 98:4df3c0f7e707 1378 static Timer timer;
mjr 98:4df3c0f7e707 1379
mjr 98:4df3c0f7e707 1380 // translaton table from timing parameter in config to minimum ON time
mjr 98:4df3c0f7e707 1381 static const uint32_t paramToTime_us[];
mjr 98:4df3c0f7e707 1382
mjr 99:8139b0c274f4 1383 // Figure the minimum ON time. The minimum ON time is given by the
mjr 99:8139b0c274f4 1384 // low-order 4 bits of the parameters byte, which serves as an index
mjr 99:8139b0c274f4 1385 // into our time table.
mjr 99:8139b0c274f4 1386 inline uint32_t minOnTime_us() const { return paramToTime_us[params & 0x0F]; }
mjr 99:8139b0c274f4 1387
mjr 99:8139b0c274f4 1388 // Figure the maximum ON time. The maximum time is the high 4 bits
mjr 99:8139b0c274f4 1389 // of the parameters byte. This is an index into our time table, but
mjr 99:8139b0c274f4 1390 // 0 has the special meaning "infinite".
mjr 99:8139b0c274f4 1391 inline uint32_t maxOnTime_us() const { return paramToTime_us[((params >> 4) & 0x0F)]; }
mjr 98:4df3c0f7e707 1392
mjr 98:4df3c0f7e707 1393 // Pending timer list. Whenever one of our ports transitions from OFF
mjr 98:4df3c0f7e707 1394 // to ON, we add it to this list. We scan this list in our polling
mjr 98:4df3c0f7e707 1395 // routine to find ports that have reached the ends of their initial
mjr 98:4df3c0f7e707 1396 // ON intervals.
mjr 99:8139b0c274f4 1397 static LwChimeLogicOut **pending;
mjr 98:4df3c0f7e707 1398 static uint8_t nPending;
mjr 98:4df3c0f7e707 1399 };
mjr 98:4df3c0f7e707 1400
mjr 98:4df3c0f7e707 1401 // Min Time Out statics
mjr 99:8139b0c274f4 1402 Timer LwChimeLogicOut::timer;
mjr 99:8139b0c274f4 1403 LwChimeLogicOut **LwChimeLogicOut::pending;
mjr 99:8139b0c274f4 1404 uint8_t LwChimeLogicOut::nPending;
mjr 99:8139b0c274f4 1405 const uint32_t LwChimeLogicOut::paramToTime_us[] = {
mjr 99:8139b0c274f4 1406 0, // for the max time, this means "infinite"
mjr 98:4df3c0f7e707 1407 1000,
mjr 98:4df3c0f7e707 1408 2000,
mjr 98:4df3c0f7e707 1409 5000,
mjr 98:4df3c0f7e707 1410 10000,
mjr 98:4df3c0f7e707 1411 20000,
mjr 98:4df3c0f7e707 1412 40000,
mjr 98:4df3c0f7e707 1413 80000,
mjr 98:4df3c0f7e707 1414 100000,
mjr 98:4df3c0f7e707 1415 200000,
mjr 98:4df3c0f7e707 1416 300000,
mjr 98:4df3c0f7e707 1417 400000,
mjr 98:4df3c0f7e707 1418 500000,
mjr 98:4df3c0f7e707 1419 600000,
mjr 98:4df3c0f7e707 1420 700000,
mjr 98:4df3c0f7e707 1421 800000
mjr 98:4df3c0f7e707 1422 };
mjr 89:c43cd923401c 1423
mjr 35:e959ffba78fd 1424 //
mjr 35:e959ffba78fd 1425 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1426 // assignments set in config.h.
mjr 33:d832bcab089e 1427 //
mjr 35:e959ffba78fd 1428 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1429 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1430 {
mjr 35:e959ffba78fd 1431 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1432 {
mjr 53:9b2611964afc 1433 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1434 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1435 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1436 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1437 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1438 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1439 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1440 }
mjr 35:e959ffba78fd 1441 }
mjr 26:cb71c4af2912 1442
mjr 40:cc0d9814522b 1443 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1444 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1445 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1446 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1447 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1448 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1449 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1450 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1451 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1452 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1453 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1454 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1455 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1456 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1457 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1458 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1459 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1460 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1461 };
mjr 40:cc0d9814522b 1462
mjr 40:cc0d9814522b 1463 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1464 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1465 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1466 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1467 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1468 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1469 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1470 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1471 // are always 8 bits.
mjr 40:cc0d9814522b 1472 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1473 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1474 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1475 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1476 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1477 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1478 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1479 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1480 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1481 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1482 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1483 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1484 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1485 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1486 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1487 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1488 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1489 };
mjr 40:cc0d9814522b 1490
mjr 26:cb71c4af2912 1491 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1492 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1493 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1494 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1495 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1496 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1497 {
mjr 26:cb71c4af2912 1498 public:
mjr 60:f38da020aa13 1499 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1500 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1501 {
mjr 26:cb71c4af2912 1502 if (val != prv)
mjr 40:cc0d9814522b 1503 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1504 }
mjr 60:f38da020aa13 1505 uint8_t idx;
mjr 40:cc0d9814522b 1506 uint8_t prv;
mjr 26:cb71c4af2912 1507 };
mjr 26:cb71c4af2912 1508
mjr 40:cc0d9814522b 1509 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1510 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1511 {
mjr 40:cc0d9814522b 1512 public:
mjr 60:f38da020aa13 1513 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1514 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1515 {
mjr 40:cc0d9814522b 1516 if (val != prv)
mjr 40:cc0d9814522b 1517 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1518 }
mjr 60:f38da020aa13 1519 uint8_t idx;
mjr 40:cc0d9814522b 1520 uint8_t prv;
mjr 40:cc0d9814522b 1521 };
mjr 40:cc0d9814522b 1522
mjr 87:8d35c74403af 1523 //
mjr 87:8d35c74403af 1524 // TLC59116 interface object
mjr 87:8d35c74403af 1525 //
mjr 87:8d35c74403af 1526 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1527 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1528 {
mjr 87:8d35c74403af 1529 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1530 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1531 {
mjr 87:8d35c74403af 1532 // set up the interface
mjr 87:8d35c74403af 1533 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1534 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1535 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1536 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1537
mjr 87:8d35c74403af 1538 // initialize the chips
mjr 87:8d35c74403af 1539 tlc59116->init();
mjr 87:8d35c74403af 1540 }
mjr 87:8d35c74403af 1541 }
mjr 87:8d35c74403af 1542
mjr 87:8d35c74403af 1543 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1544 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1545 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1546 // (0-15).
mjr 87:8d35c74403af 1547 //
mjr 87:8d35c74403af 1548 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1549 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1550 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1551 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1552 {
mjr 87:8d35c74403af 1553 public:
mjr 87:8d35c74403af 1554 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1555 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1556 {
mjr 87:8d35c74403af 1557 if (val != prv)
mjr 87:8d35c74403af 1558 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1559 }
mjr 87:8d35c74403af 1560
mjr 87:8d35c74403af 1561 protected:
mjr 87:8d35c74403af 1562 uint8_t addr;
mjr 87:8d35c74403af 1563 uint8_t port;
mjr 87:8d35c74403af 1564 uint8_t prv;
mjr 87:8d35c74403af 1565 };
mjr 87:8d35c74403af 1566
mjr 87:8d35c74403af 1567
mjr 87:8d35c74403af 1568 //
mjr 34:6b981a2afab7 1569 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1570 // config.h.
mjr 87:8d35c74403af 1571 //
mjr 35:e959ffba78fd 1572 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1573
mjr 35:e959ffba78fd 1574 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1575 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1576 {
mjr 35:e959ffba78fd 1577 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1578 {
mjr 53:9b2611964afc 1579 hc595 = new HC595(
mjr 53:9b2611964afc 1580 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1581 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1582 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1583 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1584 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1585 hc595->init();
mjr 35:e959ffba78fd 1586 hc595->update();
mjr 35:e959ffba78fd 1587 }
mjr 35:e959ffba78fd 1588 }
mjr 34:6b981a2afab7 1589
mjr 34:6b981a2afab7 1590 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1591 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1592 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1593 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1594 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1595 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1596 {
mjr 33:d832bcab089e 1597 public:
mjr 60:f38da020aa13 1598 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1599 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1600 {
mjr 34:6b981a2afab7 1601 if (val != prv)
mjr 40:cc0d9814522b 1602 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1603 }
mjr 60:f38da020aa13 1604 uint8_t idx;
mjr 40:cc0d9814522b 1605 uint8_t prv;
mjr 33:d832bcab089e 1606 };
mjr 33:d832bcab089e 1607
mjr 26:cb71c4af2912 1608
mjr 40:cc0d9814522b 1609
mjr 64:ef7ca92dff36 1610 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1611 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1612 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1613 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1614 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1615 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1616 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1617 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1618 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1619 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1620 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1621 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1622 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1623 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1624 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1625 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1626 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1627 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1628 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1629 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1630 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1631 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1632 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1633 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1634 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1635 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1636 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1637 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1638 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1639 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1640 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1641 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1642 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1643 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1644 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1645 };
mjr 26:cb71c4af2912 1646
mjr 64:ef7ca92dff36 1647
mjr 92:f264fbaa1be5 1648 // Conversion table for 8-bit DOF level to pulse width, with gamma correction
mjr 92:f264fbaa1be5 1649 // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0.
mjr 92:f264fbaa1be5 1650 // Note that we could use the layered gamma output on top of the regular
mjr 92:f264fbaa1be5 1651 // LwPwmOut class for this instead of a separate table, but we get much better
mjr 92:f264fbaa1be5 1652 // precision with a dedicated table, because we apply gamma correction to the
mjr 92:f264fbaa1be5 1653 // actual duty cycle values (as 'float') rather than the 8-bit DOF values.
mjr 64:ef7ca92dff36 1654 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1655 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1656 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1657 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1658 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1659 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1660 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1661 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1662 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1663 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1664 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1665 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1666 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1667 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1668 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1669 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1670 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1671 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1672 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1673 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1674 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1675 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1676 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1677 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1678 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1679 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1680 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1681 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1682 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1683 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1684 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1685 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1686 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1687 };
mjr 64:ef7ca92dff36 1688
mjr 77:0b96f6867312 1689 // Polled-update PWM output list
mjr 74:822a92bc11d2 1690 //
mjr 77:0b96f6867312 1691 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1692 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1693 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1694 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1695 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1696 //
mjr 92:f264fbaa1be5 1697 // The symptom of the problem, if it's not worked around somehow, is that
mjr 92:f264fbaa1be5 1698 // an output will get "stuck" due to a missed write. This is especially
mjr 92:f264fbaa1be5 1699 // noticeable during a series of updates such as a fade. If the last
mjr 92:f264fbaa1be5 1700 // couple of updates in a fade are lost, the output will get stuck at some
mjr 92:f264fbaa1be5 1701 // value above or below the desired final value. The stuck setting will
mjr 92:f264fbaa1be5 1702 // persist until the output is deliberately changed again later.
mjr 92:f264fbaa1be5 1703 //
mjr 92:f264fbaa1be5 1704 // Our solution: Simply repeat all PWM updates periodically. This way, any
mjr 92:f264fbaa1be5 1705 // lost write will *eventually* take hold on one of the repeats. Repeats of
mjr 92:f264fbaa1be5 1706 // the same value won't change anything and thus won't be noticeable. We do
mjr 92:f264fbaa1be5 1707 // these periodic updates during the main loop, which makes them very low
mjr 92:f264fbaa1be5 1708 // overhead (there's no interrupt overhead; we just do them when convenient
mjr 92:f264fbaa1be5 1709 // in the main loop), and also makes them very frequent. The frequency
mjr 92:f264fbaa1be5 1710 // is crucial because it ensures that updates will never be lost for long
mjr 92:f264fbaa1be5 1711 // enough to become noticeable.
mjr 92:f264fbaa1be5 1712 //
mjr 92:f264fbaa1be5 1713 // The mbed library has its own, different solution to this bug, but the
mjr 92:f264fbaa1be5 1714 // mbed solution isn't really a solution at all because it creates a separate
mjr 100:1ff35c07217c 1715 // problem of its own. The mbed approach is to reset the TPM "count" register
mjr 92:f264fbaa1be5 1716 // on every value register write. The count reset truncates the current
mjr 92:f264fbaa1be5 1717 // PWM cycle, which bypasses the hardware problem. Remember, the hardware
mjr 92:f264fbaa1be5 1718 // problem is that you can only write once per cycle; the mbed "solution" gets
mjr 92:f264fbaa1be5 1719 // around that by making sure the cycle ends immediately after the write.
mjr 92:f264fbaa1be5 1720 // The problem with this approach is that the truncated cycle causes visible
mjr 92:f264fbaa1be5 1721 // flicker if the output is connected to an LED. This is particularly
mjr 92:f264fbaa1be5 1722 // noticeable during fades, when we're updating the value register repeatedly
mjr 92:f264fbaa1be5 1723 // and rapidly: an attempt to fade from fully on to fully off causes rapid
mjr 92:f264fbaa1be5 1724 // fluttering and flashing rather than a smooth brightness fade. That's why
mjr 92:f264fbaa1be5 1725 // I had to come up with something different - the mbed solution just trades
mjr 92:f264fbaa1be5 1726 // one annoying bug for another that's just as bad.
mjr 92:f264fbaa1be5 1727 //
mjr 92:f264fbaa1be5 1728 // The hardware bug, by the way, is a case of good intentions gone bad.
mjr 92:f264fbaa1be5 1729 // The whole point of the staging register is to make things easier for
mjr 92:f264fbaa1be5 1730 // us software writers. In most PWM hardware, software has to coordinate
mjr 92:f264fbaa1be5 1731 // with the PWM duty cycle when updating registers to avoid a glitch that
mjr 92:f264fbaa1be5 1732 // you'd get by scribbling to the duty cycle register mid-cycle. The
mjr 92:f264fbaa1be5 1733 // staging register solves this by letting the software write an update at
mjr 92:f264fbaa1be5 1734 // any time, knowing that the hardware will apply the update at exactly the
mjr 92:f264fbaa1be5 1735 // end of the cycle, ensuring glitch-free updates. It's a great design,
mjr 92:f264fbaa1be5 1736 // except that it doesn't quite work. The problem is that they implemented
mjr 92:f264fbaa1be5 1737 // this clever staging register as a one-element FIFO that refuses any more
mjr 92:f264fbaa1be5 1738 // writes when full. That is, writing a value to the FIFO fills it; once
mjr 92:f264fbaa1be5 1739 // full, it ignores writes until it gets emptied out. How's it emptied out?
mjr 92:f264fbaa1be5 1740 // By the hardware moving the staged value to the real register. Sadly, they
mjr 92:f264fbaa1be5 1741 // didn't provide any way for the software to clear the register, and no way
mjr 92:f264fbaa1be5 1742 // to even tell that it's full. So we don't have glitches on write, but we're
mjr 92:f264fbaa1be5 1743 // back to the original problem that the software has to be aware of the PWM
mjr 92:f264fbaa1be5 1744 // cycle timing, because the only way for the software to know that a write
mjr 92:f264fbaa1be5 1745 // actually worked is to know that it's been at least one PWM cycle since the
mjr 92:f264fbaa1be5 1746 // last write. That largely defeats the whole purpose of the staging register,
mjr 92:f264fbaa1be5 1747 // since the whole point was to free software writers of these timing
mjr 92:f264fbaa1be5 1748 // considerations. It's still an improvement over no staging register at
mjr 92:f264fbaa1be5 1749 // all, since we at least don't have to worry about glitches, but it leaves
mjr 92:f264fbaa1be5 1750 // us with this somewhat similar hassle.
mjr 74:822a92bc11d2 1751 //
mjr 77:0b96f6867312 1752 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1753 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1754 // of polled items.
mjr 74:822a92bc11d2 1755 static int numPolledPwm;
mjr 74:822a92bc11d2 1756 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1757
mjr 74:822a92bc11d2 1758 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1759 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1760 {
mjr 6:cc35eb643e8f 1761 public:
mjr 43:7a6364d82a41 1762 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1763 {
mjr 77:0b96f6867312 1764 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1765 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1766 polledPwm[numPolledPwm++] = this;
mjr 93:177832c29041 1767
mjr 94:0476b3e2b996 1768 // IMPORTANT: Do not set the PWM period (frequency) here explicitly.
mjr 94:0476b3e2b996 1769 // We instead want to accept the current setting for the TPM unit
mjr 94:0476b3e2b996 1770 // we're assigned to. The KL25Z hardware can only set the period at
mjr 94:0476b3e2b996 1771 // the TPM unit level, not per channel, so if we changed the frequency
mjr 94:0476b3e2b996 1772 // here, we'd change it for everything attached to our TPM unit. LW
mjr 94:0476b3e2b996 1773 // outputs don't care about frequency other than that it's fast enough
mjr 94:0476b3e2b996 1774 // that attached LEDs won't flicker. Some other PWM users (IR remote,
mjr 94:0476b3e2b996 1775 // TLC5940) DO care about exact frequencies, because they use the PWM
mjr 94:0476b3e2b996 1776 // as a signal generator rather than merely for brightness control.
mjr 94:0476b3e2b996 1777 // If we changed the frequency here, we could clobber one of those
mjr 94:0476b3e2b996 1778 // carefully chosen frequencies and break the other subsystem. So
mjr 94:0476b3e2b996 1779 // we need to be the "free variable" here and accept whatever setting
mjr 94:0476b3e2b996 1780 // is currently on our assigned unit. To minimize flicker, the main()
mjr 94:0476b3e2b996 1781 // entrypoint sets a default PWM rate of 1kHz on all channels. All
mjr 94:0476b3e2b996 1782 // of the other subsystems that might set specific frequencies will
mjr 94:0476b3e2b996 1783 // set much high frequencies, so that should only be good for us.
mjr 94:0476b3e2b996 1784
mjr 94:0476b3e2b996 1785 // set the initial brightness value
mjr 77:0b96f6867312 1786 set(initVal);
mjr 43:7a6364d82a41 1787 }
mjr 74:822a92bc11d2 1788
mjr 40:cc0d9814522b 1789 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1790 {
mjr 77:0b96f6867312 1791 // save the new value
mjr 74:822a92bc11d2 1792 this->val = val;
mjr 77:0b96f6867312 1793
mjr 77:0b96f6867312 1794 // commit it to the hardware
mjr 77:0b96f6867312 1795 commit();
mjr 13:72dda449c3c0 1796 }
mjr 74:822a92bc11d2 1797
mjr 74:822a92bc11d2 1798 // handle periodic update polling
mjr 74:822a92bc11d2 1799 void poll()
mjr 74:822a92bc11d2 1800 {
mjr 77:0b96f6867312 1801 commit();
mjr 74:822a92bc11d2 1802 }
mjr 74:822a92bc11d2 1803
mjr 74:822a92bc11d2 1804 protected:
mjr 77:0b96f6867312 1805 virtual void commit()
mjr 74:822a92bc11d2 1806 {
mjr 74:822a92bc11d2 1807 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1808 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1809 }
mjr 74:822a92bc11d2 1810
mjr 77:0b96f6867312 1811 NewPwmOut p;
mjr 77:0b96f6867312 1812 uint8_t val;
mjr 6:cc35eb643e8f 1813 };
mjr 26:cb71c4af2912 1814
mjr 74:822a92bc11d2 1815 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1816 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1817 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1818 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1819 {
mjr 64:ef7ca92dff36 1820 public:
mjr 64:ef7ca92dff36 1821 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1822 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1823 {
mjr 64:ef7ca92dff36 1824 }
mjr 74:822a92bc11d2 1825
mjr 74:822a92bc11d2 1826 protected:
mjr 77:0b96f6867312 1827 virtual void commit()
mjr 64:ef7ca92dff36 1828 {
mjr 74:822a92bc11d2 1829 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1830 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1831 }
mjr 64:ef7ca92dff36 1832 };
mjr 64:ef7ca92dff36 1833
mjr 74:822a92bc11d2 1834 // poll the PWM outputs
mjr 74:822a92bc11d2 1835 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1836 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1837 void pollPwmUpdates()
mjr 74:822a92bc11d2 1838 {
mjr 94:0476b3e2b996 1839 // If it's been long enough since the last update, do another update.
mjr 94:0476b3e2b996 1840 // Note that the time limit is fairly arbitrary: it has to be at least
mjr 94:0476b3e2b996 1841 // 1.5X the PWM period, so that we can be sure that at least one PWM
mjr 94:0476b3e2b996 1842 // period has elapsed since the last update, but there's no hard upper
mjr 94:0476b3e2b996 1843 // bound. Instead, it only has to be short enough that fades don't
mjr 94:0476b3e2b996 1844 // become noticeably chunky. The competing interest is that we don't
mjr 94:0476b3e2b996 1845 // want to do this more often than necessary to provide incremental
mjr 94:0476b3e2b996 1846 // benefit, because the polling adds overhead to the main loop and
mjr 94:0476b3e2b996 1847 // takes time away from other tasks we could be performing. The
mjr 94:0476b3e2b996 1848 // shortest time with practical benefit is probably around 50-60Hz,
mjr 94:0476b3e2b996 1849 // since that gives us "video rate" granularity in fades. Anything
mjr 94:0476b3e2b996 1850 // faster wouldn't probably make fades look any smoother to a human
mjr 94:0476b3e2b996 1851 // viewer.
mjr 94:0476b3e2b996 1852 if (polledPwmTimer.read_us() >= 15000)
mjr 74:822a92bc11d2 1853 {
mjr 74:822a92bc11d2 1854 // time the run for statistics collection
mjr 74:822a92bc11d2 1855 IF_DIAG(
mjr 74:822a92bc11d2 1856 Timer t;
mjr 74:822a92bc11d2 1857 t.start();
mjr 74:822a92bc11d2 1858 )
mjr 74:822a92bc11d2 1859
mjr 74:822a92bc11d2 1860 // poll each output
mjr 74:822a92bc11d2 1861 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1862 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1863
mjr 74:822a92bc11d2 1864 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1865 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1866
mjr 74:822a92bc11d2 1867 // collect statistics
mjr 74:822a92bc11d2 1868 IF_DIAG(
mjr 76:7f5912b6340e 1869 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1870 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1871 )
mjr 74:822a92bc11d2 1872 }
mjr 74:822a92bc11d2 1873 }
mjr 64:ef7ca92dff36 1874
mjr 26:cb71c4af2912 1875 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1876 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1877 {
mjr 6:cc35eb643e8f 1878 public:
mjr 43:7a6364d82a41 1879 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1880 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1881 {
mjr 13:72dda449c3c0 1882 if (val != prv)
mjr 40:cc0d9814522b 1883 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1884 }
mjr 6:cc35eb643e8f 1885 DigitalOut p;
mjr 40:cc0d9814522b 1886 uint8_t prv;
mjr 6:cc35eb643e8f 1887 };
mjr 26:cb71c4af2912 1888
mjr 29:582472d0bc57 1889 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1890 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1891 // port n (0-based).
mjr 35:e959ffba78fd 1892 //
mjr 35:e959ffba78fd 1893 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1894 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1895 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1896 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1897 // 74HC595 ports).
mjr 33:d832bcab089e 1898 static int numOutputs;
mjr 33:d832bcab089e 1899 static LwOut **lwPin;
mjr 33:d832bcab089e 1900
mjr 38:091e511ce8a0 1901 // create a single output pin
mjr 53:9b2611964afc 1902 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1903 {
mjr 38:091e511ce8a0 1904 // get this item's values
mjr 38:091e511ce8a0 1905 int typ = pc.typ;
mjr 38:091e511ce8a0 1906 int pin = pc.pin;
mjr 38:091e511ce8a0 1907 int flags = pc.flags;
mjr 40:cc0d9814522b 1908 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1909 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1910 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 1911 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 99:8139b0c274f4 1912 int chimeLogic = flags & PortFlagChimeLogic;
mjr 89:c43cd923401c 1913
mjr 89:c43cd923401c 1914 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 1915 if (flipperLogic)
mjr 89:c43cd923401c 1916 gamma = false;
mjr 38:091e511ce8a0 1917
mjr 38:091e511ce8a0 1918 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1919 LwOut *lwp;
mjr 38:091e511ce8a0 1920 switch (typ)
mjr 38:091e511ce8a0 1921 {
mjr 38:091e511ce8a0 1922 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1923 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1924 if (pin != 0)
mjr 64:ef7ca92dff36 1925 {
mjr 64:ef7ca92dff36 1926 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1927 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1928 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1929 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1930 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1931 {
mjr 64:ef7ca92dff36 1932 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1933 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1934
mjr 64:ef7ca92dff36 1935 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1936 gamma = false;
mjr 64:ef7ca92dff36 1937 }
mjr 64:ef7ca92dff36 1938 else
mjr 64:ef7ca92dff36 1939 {
mjr 64:ef7ca92dff36 1940 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1941 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1942 }
mjr 64:ef7ca92dff36 1943 }
mjr 48:058ace2aed1d 1944 else
mjr 48:058ace2aed1d 1945 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1946 break;
mjr 38:091e511ce8a0 1947
mjr 38:091e511ce8a0 1948 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1949 // Digital GPIO port
mjr 48:058ace2aed1d 1950 if (pin != 0)
mjr 48:058ace2aed1d 1951 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1952 else
mjr 48:058ace2aed1d 1953 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1954 break;
mjr 38:091e511ce8a0 1955
mjr 38:091e511ce8a0 1956 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1957 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1958 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1959 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1960 {
mjr 40:cc0d9814522b 1961 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1962 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1963 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1964 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1965 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1966 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1967 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1968 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1969 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1970 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1971 // for this unlikely case.
mjr 40:cc0d9814522b 1972 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1973 {
mjr 40:cc0d9814522b 1974 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1975 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1976
mjr 40:cc0d9814522b 1977 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1978 gamma = false;
mjr 40:cc0d9814522b 1979 }
mjr 40:cc0d9814522b 1980 else
mjr 40:cc0d9814522b 1981 {
mjr 40:cc0d9814522b 1982 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1983 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1984 }
mjr 40:cc0d9814522b 1985 }
mjr 38:091e511ce8a0 1986 else
mjr 40:cc0d9814522b 1987 {
mjr 40:cc0d9814522b 1988 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1989 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1990 }
mjr 38:091e511ce8a0 1991 break;
mjr 38:091e511ce8a0 1992
mjr 38:091e511ce8a0 1993 case PortType74HC595:
mjr 87:8d35c74403af 1994 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 1995 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 1996 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1997 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1998 else
mjr 38:091e511ce8a0 1999 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2000 break;
mjr 87:8d35c74403af 2001
mjr 87:8d35c74403af 2002 case PortTypeTLC59116:
mjr 87:8d35c74403af 2003 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 2004 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 2005 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 2006 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 2007 if (tlc59116 != 0)
mjr 87:8d35c74403af 2008 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 2009 break;
mjr 38:091e511ce8a0 2010
mjr 38:091e511ce8a0 2011 case PortTypeVirtual:
mjr 43:7a6364d82a41 2012 case PortTypeDisabled:
mjr 38:091e511ce8a0 2013 default:
mjr 38:091e511ce8a0 2014 // virtual or unknown
mjr 38:091e511ce8a0 2015 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2016 break;
mjr 38:091e511ce8a0 2017 }
mjr 38:091e511ce8a0 2018
mjr 40:cc0d9814522b 2019 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 2020 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 2021 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 2022 if (activeLow)
mjr 38:091e511ce8a0 2023 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 2024
mjr 89:c43cd923401c 2025 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 2026 if (flipperLogic)
mjr 89:c43cd923401c 2027 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 2028
mjr 99:8139b0c274f4 2029 // Layer on Chime Logic if desired. Note that Chime Logic and
mjr 99:8139b0c274f4 2030 // Flipper Logic are mutually exclusive, and Flipper Logic takes
mjr 99:8139b0c274f4 2031 // precedence, so ignore the Chime Logic bit if both are set.
mjr 99:8139b0c274f4 2032 if (chimeLogic && !flipperLogic)
mjr 99:8139b0c274f4 2033 lwp = new LwChimeLogicOut(lwp, pc.flipperLogic);
mjr 98:4df3c0f7e707 2034
mjr 89:c43cd923401c 2035 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 2036 if (noisy)
mjr 40:cc0d9814522b 2037 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 2038
mjr 40:cc0d9814522b 2039 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 2040 if (gamma)
mjr 40:cc0d9814522b 2041 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 2042
mjr 53:9b2611964afc 2043 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 2044 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 2045 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 2046 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 2047 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 2048
mjr 53:9b2611964afc 2049 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 2050 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 2051 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 2052
mjr 38:091e511ce8a0 2053 // turn it off initially
mjr 38:091e511ce8a0 2054 lwp->set(0);
mjr 38:091e511ce8a0 2055
mjr 38:091e511ce8a0 2056 // return the pin
mjr 38:091e511ce8a0 2057 return lwp;
mjr 38:091e511ce8a0 2058 }
mjr 38:091e511ce8a0 2059
mjr 6:cc35eb643e8f 2060 // initialize the output pin array
mjr 35:e959ffba78fd 2061 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 2062 {
mjr 99:8139b0c274f4 2063 // Initialize the Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 2064 LwFlipperLogicOut::classInit(cfg);
mjr 99:8139b0c274f4 2065 LwChimeLogicOut::classInit(cfg);
mjr 89:c43cd923401c 2066
mjr 35:e959ffba78fd 2067 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 2068 // total number of ports.
mjr 35:e959ffba78fd 2069 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 2070 int i;
mjr 35:e959ffba78fd 2071 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 2072 {
mjr 35:e959ffba78fd 2073 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 2074 {
mjr 35:e959ffba78fd 2075 numOutputs = i;
mjr 34:6b981a2afab7 2076 break;
mjr 34:6b981a2afab7 2077 }
mjr 33:d832bcab089e 2078 }
mjr 33:d832bcab089e 2079
mjr 73:4e8ce0b18915 2080 // allocate the pin array
mjr 73:4e8ce0b18915 2081 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 2082
mjr 73:4e8ce0b18915 2083 // Allocate the current brightness array
mjr 73:4e8ce0b18915 2084 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 2085
mjr 73:4e8ce0b18915 2086 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 2087 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2088 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2089
mjr 73:4e8ce0b18915 2090 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 2091 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 2092 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 2093
mjr 73:4e8ce0b18915 2094 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 2095 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2096 wizSpeed[i] = 2;
mjr 33:d832bcab089e 2097
mjr 35:e959ffba78fd 2098 // create the pin interface object for each port
mjr 35:e959ffba78fd 2099 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 2100 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 2101 }
mjr 6:cc35eb643e8f 2102
mjr 76:7f5912b6340e 2103 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 2104 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 2105 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 2106 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 2107 // equivalent to 48.
mjr 40:cc0d9814522b 2108 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 2109 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 2110 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 2111 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 2112 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 2113 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 2114 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 2115 255, 255
mjr 40:cc0d9814522b 2116 };
mjr 40:cc0d9814522b 2117
mjr 76:7f5912b6340e 2118 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 2119 // level (1..48)
mjr 76:7f5912b6340e 2120 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 2121 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 2122 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 2123 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 2124 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 2125 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 2126 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 2127 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 2128 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 2129 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 2130 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 2131 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 2132 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 2133 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 2134 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 2135 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 2136 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 2137 };
mjr 76:7f5912b6340e 2138
mjr 74:822a92bc11d2 2139 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 2140 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 2141 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 2142 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 2143 //
mjr 74:822a92bc11d2 2144 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2145 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2146 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 2147 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 2148 //
mjr 74:822a92bc11d2 2149 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 2150 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 2151 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 2152 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2153 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 2154 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 2155 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 2156 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 2157 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 2158 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 2159 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 2160 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 2161 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2162 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2163 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2164 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2165 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2166 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2167 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2168 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2169
mjr 74:822a92bc11d2 2170 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2171 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2172 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2173 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2174 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2175 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2176 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2177 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2178 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2179 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2180 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2181 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2182 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2183 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2184 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2185 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2186 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2187
mjr 74:822a92bc11d2 2188 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 2189 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2190 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2191 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2192 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2193 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2194 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2195 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2196 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2197 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2198 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2199 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2200 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2201 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2202 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2203 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2204 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2205
mjr 74:822a92bc11d2 2206 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 2207 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 2208 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 2209 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 2210 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 2211 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 2212 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 2213 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 2214 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 2215 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2216 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2217 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2218 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2219 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2220 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2221 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2222 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 2223 };
mjr 74:822a92bc11d2 2224
mjr 74:822a92bc11d2 2225 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 2226 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 2227 Timer wizCycleTimer;
mjr 74:822a92bc11d2 2228
mjr 76:7f5912b6340e 2229 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 2230 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 2231
mjr 76:7f5912b6340e 2232 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 2233 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 2234 // outputs on each cycle.
mjr 29:582472d0bc57 2235 static void wizPulse()
mjr 29:582472d0bc57 2236 {
mjr 76:7f5912b6340e 2237 // current bank
mjr 76:7f5912b6340e 2238 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 2239
mjr 76:7f5912b6340e 2240 // start a timer for statistics collection
mjr 76:7f5912b6340e 2241 IF_DIAG(
mjr 76:7f5912b6340e 2242 Timer t;
mjr 76:7f5912b6340e 2243 t.start();
mjr 76:7f5912b6340e 2244 )
mjr 76:7f5912b6340e 2245
mjr 76:7f5912b6340e 2246 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 2247 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 2248 //
mjr 76:7f5912b6340e 2249 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 2250 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 2251 //
mjr 76:7f5912b6340e 2252 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 2253 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 2254 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 2255 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 2256 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 2257 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 2258 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 2259 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 2260 // current cycle.
mjr 76:7f5912b6340e 2261 //
mjr 76:7f5912b6340e 2262 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 2263 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 2264 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 2265 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 2266 // there by less-than-obvious means.
mjr 76:7f5912b6340e 2267 //
mjr 76:7f5912b6340e 2268 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 2269 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 2270 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 2271 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 2272 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 2273 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 2274 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 2275 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 2276 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 2277 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 2278 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 2279 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 2280 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 2281 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 2282 // bit counts.
mjr 76:7f5912b6340e 2283 //
mjr 76:7f5912b6340e 2284 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 2285 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 2286 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 2287 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 2288 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 2289 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 2290 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 2291 // one division for another!
mjr 76:7f5912b6340e 2292 //
mjr 76:7f5912b6340e 2293 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 2294 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 2295 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 2296 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 2297 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 2298 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 2299 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 2300 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 2301 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 2302 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 2303 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 2304 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 2305 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 2306 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 2307 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 2308 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 2309 // remainder calculation anyway.
mjr 76:7f5912b6340e 2310 //
mjr 76:7f5912b6340e 2311 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 2312 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 2313 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 2314 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 2315 //
mjr 76:7f5912b6340e 2316 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 2317 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 2318 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 2319 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 2320 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 2321 // the result, since we started with 32.
mjr 76:7f5912b6340e 2322 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 2323 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 2324 };
mjr 76:7f5912b6340e 2325 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 2326
mjr 76:7f5912b6340e 2327 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 2328 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 2329 int toPort = fromPort+32;
mjr 76:7f5912b6340e 2330 if (toPort > numOutputs)
mjr 76:7f5912b6340e 2331 toPort = numOutputs;
mjr 76:7f5912b6340e 2332
mjr 76:7f5912b6340e 2333 // update all outputs set to flashing values
mjr 76:7f5912b6340e 2334 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 2335 {
mjr 76:7f5912b6340e 2336 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 2337 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 2338 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 2339 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 2340 if (wizOn[i])
mjr 29:582472d0bc57 2341 {
mjr 76:7f5912b6340e 2342 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 2343 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 2344 {
mjr 76:7f5912b6340e 2345 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 2346 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 2347 }
mjr 29:582472d0bc57 2348 }
mjr 76:7f5912b6340e 2349 }
mjr 76:7f5912b6340e 2350
mjr 34:6b981a2afab7 2351 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 2352 if (hc595 != 0)
mjr 35:e959ffba78fd 2353 hc595->update();
mjr 76:7f5912b6340e 2354
mjr 76:7f5912b6340e 2355 // switch to the next bank
mjr 76:7f5912b6340e 2356 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 2357 wizPulseBank = 0;
mjr 76:7f5912b6340e 2358
mjr 76:7f5912b6340e 2359 // collect timing statistics
mjr 76:7f5912b6340e 2360 IF_DIAG(
mjr 76:7f5912b6340e 2361 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 2362 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 2363 )
mjr 1:d913e0afb2ac 2364 }
mjr 38:091e511ce8a0 2365
mjr 76:7f5912b6340e 2366 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 2367 static void updateLwPort(int port)
mjr 38:091e511ce8a0 2368 {
mjr 76:7f5912b6340e 2369 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 2370 if (wizOn[port])
mjr 76:7f5912b6340e 2371 {
mjr 76:7f5912b6340e 2372 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 2373 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 2374 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 2375 // it on the next cycle.
mjr 76:7f5912b6340e 2376 int val = wizVal[port];
mjr 76:7f5912b6340e 2377 if (val <= 49)
mjr 76:7f5912b6340e 2378 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 2379 }
mjr 76:7f5912b6340e 2380 else
mjr 76:7f5912b6340e 2381 {
mjr 76:7f5912b6340e 2382 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 2383 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 2384 }
mjr 73:4e8ce0b18915 2385 }
mjr 73:4e8ce0b18915 2386
mjr 73:4e8ce0b18915 2387 // Turn off all outputs and restore everything to the default LedWiz
mjr 92:f264fbaa1be5 2388 // state. This sets all outputs to LedWiz profile value 48 (full
mjr 92:f264fbaa1be5 2389 // brightness) and switch state Off, and sets the LedWiz flash rate
mjr 92:f264fbaa1be5 2390 // to 2. This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2391 //
mjr 73:4e8ce0b18915 2392 void allOutputsOff()
mjr 73:4e8ce0b18915 2393 {
mjr 92:f264fbaa1be5 2394 // reset all outputs to OFF/48
mjr 73:4e8ce0b18915 2395 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2396 {
mjr 73:4e8ce0b18915 2397 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2398 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2399 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2400 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2401 }
mjr 73:4e8ce0b18915 2402
mjr 73:4e8ce0b18915 2403 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2404 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2405 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2406
mjr 73:4e8ce0b18915 2407 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2408 if (hc595 != 0)
mjr 38:091e511ce8a0 2409 hc595->update();
mjr 38:091e511ce8a0 2410 }
mjr 38:091e511ce8a0 2411
mjr 74:822a92bc11d2 2412 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2413 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2414 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2415 // address any port group.
mjr 74:822a92bc11d2 2416 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2417 {
mjr 76:7f5912b6340e 2418 // update all on/off states in the group
mjr 74:822a92bc11d2 2419 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2420 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2421 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2422 {
mjr 74:822a92bc11d2 2423 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2424 if (bit == 0x100) {
mjr 74:822a92bc11d2 2425 bit = 1;
mjr 74:822a92bc11d2 2426 ++imsg;
mjr 74:822a92bc11d2 2427 }
mjr 74:822a92bc11d2 2428
mjr 74:822a92bc11d2 2429 // set the on/off state
mjr 76:7f5912b6340e 2430 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2431
mjr 76:7f5912b6340e 2432 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2433 updateLwPort(port);
mjr 74:822a92bc11d2 2434 }
mjr 74:822a92bc11d2 2435
mjr 74:822a92bc11d2 2436 // set the flash speed for the port group
mjr 74:822a92bc11d2 2437 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2438 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2439
mjr 76:7f5912b6340e 2440 // update 74HC959 outputs
mjr 76:7f5912b6340e 2441 if (hc595 != 0)
mjr 76:7f5912b6340e 2442 hc595->update();
mjr 74:822a92bc11d2 2443 }
mjr 74:822a92bc11d2 2444
mjr 74:822a92bc11d2 2445 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2446 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2447 {
mjr 74:822a92bc11d2 2448 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2449 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2450 {
mjr 74:822a92bc11d2 2451 // get the value
mjr 74:822a92bc11d2 2452 uint8_t v = data[i];
mjr 74:822a92bc11d2 2453
mjr 74:822a92bc11d2 2454 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2455 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2456 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2457 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2458 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2459 // as such.
mjr 74:822a92bc11d2 2460 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2461 v = 48;
mjr 74:822a92bc11d2 2462
mjr 74:822a92bc11d2 2463 // store it
mjr 76:7f5912b6340e 2464 wizVal[port] = v;
mjr 76:7f5912b6340e 2465
mjr 76:7f5912b6340e 2466 // update the port
mjr 76:7f5912b6340e 2467 updateLwPort(port);
mjr 74:822a92bc11d2 2468 }
mjr 74:822a92bc11d2 2469
mjr 76:7f5912b6340e 2470 // update 74HC595 outputs
mjr 76:7f5912b6340e 2471 if (hc595 != 0)
mjr 76:7f5912b6340e 2472 hc595->update();
mjr 74:822a92bc11d2 2473 }
mjr 74:822a92bc11d2 2474
mjr 77:0b96f6867312 2475 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2476 //
mjr 77:0b96f6867312 2477 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2478 //
mjr 77:0b96f6867312 2479
mjr 77:0b96f6867312 2480 // receiver
mjr 77:0b96f6867312 2481 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2482
mjr 77:0b96f6867312 2483 // transmitter
mjr 77:0b96f6867312 2484 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2485
mjr 77:0b96f6867312 2486 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2487 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2488 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2489 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2490 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2491 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2492 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2493 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2494 // configuration slot n
mjr 77:0b96f6867312 2495 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2496
mjr 78:1e00b3fa11af 2497 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2498 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2499 // protocol.
mjr 78:1e00b3fa11af 2500 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2501
mjr 78:1e00b3fa11af 2502 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2503 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2504 // while waiting for the rest.
mjr 78:1e00b3fa11af 2505 static struct
mjr 78:1e00b3fa11af 2506 {
mjr 78:1e00b3fa11af 2507 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 2508 uint64_t code; // code
mjr 78:1e00b3fa11af 2509 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 2510 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 2511 } IRAdHocCmd;
mjr 88:98bce687e6c0 2512
mjr 77:0b96f6867312 2513
mjr 77:0b96f6867312 2514 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 2515 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 2516 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 2517 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 2518 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 2519 // amount of time.
mjr 77:0b96f6867312 2520 Timer IRTimer;
mjr 77:0b96f6867312 2521
mjr 77:0b96f6867312 2522 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 2523 // The states are:
mjr 77:0b96f6867312 2524 //
mjr 77:0b96f6867312 2525 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 2526 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 2527 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 2528 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 2529 //
mjr 77:0b96f6867312 2530 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 2531 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 2532 // received within a reasonable time.
mjr 77:0b96f6867312 2533 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 2534
mjr 77:0b96f6867312 2535 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 2536 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 2537 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 2538 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 2539 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 2540 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 2541 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 2542 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 2543 IRCommand learnedIRCode;
mjr 77:0b96f6867312 2544
mjr 78:1e00b3fa11af 2545 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 2546 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 2547 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 2548 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 2549 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 2550 // index; 0 represents no command.
mjr 77:0b96f6867312 2551 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 2552
mjr 77:0b96f6867312 2553 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 2554 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 2555