An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Thu Nov 28 23:18:23 2019 +0000
Revision:
100:1ff35c07217c
Parent:
99:8139b0c274f4
Child:
101:755f44622abc
Added preliminary support for AEAT-6012 and TCD1103 sensors; use continuous averaging for pot sensor analog in; more AltAnalogIn options for timing and resolution

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 99:8139b0c274f4 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 100:1ff35c07217c 262 #include "rotarySensor.h"
mjr 100:1ff35c07217c 263 #include "tcd1103Sensor.h"
mjr 82:4f6209cb5c33 264
mjr 2:c174f9ee414a 265
mjr 21:5048e16cc9ef 266 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 267 #include "config.h"
mjr 17:ab3cec0c8bf4 268
mjr 76:7f5912b6340e 269 // forward declarations
mjr 76:7f5912b6340e 270 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 271
mjr 53:9b2611964afc 272 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 273 //
mjr 53:9b2611964afc 274 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 275 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 276 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 277 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 278 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 279 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 280 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 281 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 282 // interface.
mjr 53:9b2611964afc 283 //
mjr 53:9b2611964afc 284 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 285 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 286 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 287 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 288 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 289 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 290 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 291 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 292 //
mjr 53:9b2611964afc 293 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 294 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 295 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 296 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 297 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 298 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 299 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 300 //
mjr 53:9b2611964afc 301 const char *getOpenSDAID()
mjr 53:9b2611964afc 302 {
mjr 53:9b2611964afc 303 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 304 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 305 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 306
mjr 53:9b2611964afc 307 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 308 }
mjr 53:9b2611964afc 309
mjr 53:9b2611964afc 310 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 311 //
mjr 53:9b2611964afc 312 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 313 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 314 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 315 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 316 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 317 // want from this.
mjr 53:9b2611964afc 318 //
mjr 53:9b2611964afc 319 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 320 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 321 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 322 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 323 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 324 // macros.
mjr 53:9b2611964afc 325 //
mjr 53:9b2611964afc 326 const char *getBuildID()
mjr 53:9b2611964afc 327 {
mjr 53:9b2611964afc 328 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 329 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 330 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 331
mjr 53:9b2611964afc 332 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 333 }
mjr 53:9b2611964afc 334
mjr 74:822a92bc11d2 335 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 336 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 337 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 338 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 339 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 340 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 341 Timer mainLoopTimer;
mjr 76:7f5912b6340e 342 #endif
mjr 76:7f5912b6340e 343
mjr 53:9b2611964afc 344
mjr 5:a70c0bce770d 345 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 // Forward declarations
mjr 38:091e511ce8a0 348 //
mjr 38:091e511ce8a0 349 void setNightMode(bool on);
mjr 38:091e511ce8a0 350 void toggleNightMode();
mjr 38:091e511ce8a0 351
mjr 38:091e511ce8a0 352 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 353 // utilities
mjr 17:ab3cec0c8bf4 354
mjr 77:0b96f6867312 355 // int/float point square of a number
mjr 77:0b96f6867312 356 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 357 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 358
mjr 26:cb71c4af2912 359 // floating point rounding
mjr 26:cb71c4af2912 360 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 361
mjr 17:ab3cec0c8bf4 362
mjr 33:d832bcab089e 363 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 364 //
mjr 40:cc0d9814522b 365 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 366 // the running state.
mjr 40:cc0d9814522b 367 //
mjr 77:0b96f6867312 368 class ExtTimer: public Timer
mjr 40:cc0d9814522b 369 {
mjr 40:cc0d9814522b 370 public:
mjr 77:0b96f6867312 371 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 372
mjr 40:cc0d9814522b 373 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 374 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 377
mjr 40:cc0d9814522b 378 private:
mjr 40:cc0d9814522b 379 bool running;
mjr 40:cc0d9814522b 380 };
mjr 40:cc0d9814522b 381
mjr 53:9b2611964afc 382
mjr 53:9b2611964afc 383 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 384 //
mjr 33:d832bcab089e 385 // USB product version number
mjr 5:a70c0bce770d 386 //
mjr 47:df7a88cd249c 387 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 388
mjr 33:d832bcab089e 389 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 392 //
mjr 6:cc35eb643e8f 393 #define JOYMAX 4096
mjr 6:cc35eb643e8f 394
mjr 9:fd65b0a94720 395
mjr 17:ab3cec0c8bf4 396 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 397 //
mjr 40:cc0d9814522b 398 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 399 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 400 //
mjr 35:e959ffba78fd 401
mjr 35:e959ffba78fd 402 // unsigned 16-bit integer
mjr 35:e959ffba78fd 403 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 404 {
mjr 35:e959ffba78fd 405 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 406 }
mjr 40:cc0d9814522b 407 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 408 {
mjr 40:cc0d9814522b 409 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 410 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 411 }
mjr 35:e959ffba78fd 412
mjr 35:e959ffba78fd 413 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 414 {
mjr 35:e959ffba78fd 415 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 416 }
mjr 40:cc0d9814522b 417 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 418 {
mjr 40:cc0d9814522b 419 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 420 }
mjr 35:e959ffba78fd 421
mjr 35:e959ffba78fd 422 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 423 {
mjr 35:e959ffba78fd 424 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 425 }
mjr 40:cc0d9814522b 426 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 427 {
mjr 40:cc0d9814522b 428 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 429 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 430 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 431 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 432 }
mjr 35:e959ffba78fd 433
mjr 35:e959ffba78fd 434 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 435 {
mjr 35:e959ffba78fd 436 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 437 }
mjr 35:e959ffba78fd 438
mjr 53:9b2611964afc 439 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // The internal mbed PinName format is
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 444 //
mjr 53:9b2611964afc 445 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 446 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 447 //
mjr 53:9b2611964afc 448 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 449 // pin name fits in 8 bits:
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 456 //
mjr 53:9b2611964afc 457 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 458 {
mjr 53:9b2611964afc 459 if (c == 0xFF)
mjr 53:9b2611964afc 460 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 461 else
mjr 53:9b2611964afc 462 return PinName(
mjr 53:9b2611964afc 463 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 464 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 465 }
mjr 40:cc0d9814522b 466 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 467 {
mjr 53:9b2611964afc 468 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 469 }
mjr 35:e959ffba78fd 470
mjr 35:e959ffba78fd 471
mjr 35:e959ffba78fd 472 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 473 //
mjr 38:091e511ce8a0 474 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 475 //
mjr 38:091e511ce8a0 476 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 477 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 478 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 479 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 480 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 481 // SPI capability.
mjr 38:091e511ce8a0 482 //
mjr 38:091e511ce8a0 483 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 484
mjr 73:4e8ce0b18915 485 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 486 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 487 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 488 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 489
mjr 38:091e511ce8a0 490 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 491 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 492 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 493 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 494 {
mjr 73:4e8ce0b18915 495 // remember the new state
mjr 73:4e8ce0b18915 496 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 497
mjr 73:4e8ce0b18915 498 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 499 // applying it to the blue LED
mjr 73:4e8ce0b18915 500 if (diagLEDState == 0)
mjr 77:0b96f6867312 501 {
mjr 77:0b96f6867312 502 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 503 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 504 }
mjr 73:4e8ce0b18915 505
mjr 73:4e8ce0b18915 506 // set the new state
mjr 38:091e511ce8a0 507 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 508 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 509 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 510 }
mjr 38:091e511ce8a0 511
mjr 73:4e8ce0b18915 512 // update the LEDs with the current state
mjr 73:4e8ce0b18915 513 void diagLED(void)
mjr 73:4e8ce0b18915 514 {
mjr 73:4e8ce0b18915 515 diagLED(
mjr 73:4e8ce0b18915 516 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 517 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 518 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 519 }
mjr 73:4e8ce0b18915 520
mjr 38:091e511ce8a0 521 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 522 // an on-board LED segment
mjr 38:091e511ce8a0 523 struct LedSeg
mjr 38:091e511ce8a0 524 {
mjr 38:091e511ce8a0 525 bool r, g, b;
mjr 38:091e511ce8a0 526 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 527
mjr 38:091e511ce8a0 528 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 529 {
mjr 38:091e511ce8a0 530 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 531 // our on-board LED segments
mjr 38:091e511ce8a0 532 int t = pc.typ;
mjr 38:091e511ce8a0 533 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 534 {
mjr 38:091e511ce8a0 535 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 536 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 537 if (pin == LED1)
mjr 38:091e511ce8a0 538 r = true;
mjr 38:091e511ce8a0 539 else if (pin == LED2)
mjr 38:091e511ce8a0 540 g = true;
mjr 38:091e511ce8a0 541 else if (pin == LED3)
mjr 38:091e511ce8a0 542 b = true;
mjr 38:091e511ce8a0 543 }
mjr 38:091e511ce8a0 544 }
mjr 38:091e511ce8a0 545 };
mjr 38:091e511ce8a0 546
mjr 38:091e511ce8a0 547 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 548 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 549 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 550 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 551 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 552 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 553 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 554 {
mjr 38:091e511ce8a0 555 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 556 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 557 LedSeg l;
mjr 38:091e511ce8a0 558 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 559 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 560
mjr 38:091e511ce8a0 561 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 562 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 563 // LedWiz use.
mjr 38:091e511ce8a0 564 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 565 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 566 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 567 }
mjr 38:091e511ce8a0 568
mjr 38:091e511ce8a0 569
mjr 38:091e511ce8a0 570 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 571 //
mjr 76:7f5912b6340e 572 // LedWiz emulation
mjr 76:7f5912b6340e 573 //
mjr 76:7f5912b6340e 574
mjr 76:7f5912b6340e 575 // LedWiz output states.
mjr 76:7f5912b6340e 576 //
mjr 76:7f5912b6340e 577 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 578 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 579 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 580 // The two axes are independent.
mjr 76:7f5912b6340e 581 //
mjr 76:7f5912b6340e 582 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 583 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 584 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 585 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 586 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 587 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 588 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 589 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 590
mjr 76:7f5912b6340e 591 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 592 static uint8_t *wizOn;
mjr 76:7f5912b6340e 593
mjr 76:7f5912b6340e 594 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 595 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 596 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 597 //
mjr 76:7f5912b6340e 598 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 599 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 600 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 601 // 130 = flash on / off
mjr 76:7f5912b6340e 602 // 131 = on / ramp down
mjr 76:7f5912b6340e 603 // 132 = ramp up / on
mjr 5:a70c0bce770d 604 //
mjr 76:7f5912b6340e 605 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 606 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 607 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 608 static uint8_t *wizVal;
mjr 76:7f5912b6340e 609
mjr 76:7f5912b6340e 610 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 611 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 612 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 613 // by the extended protocol:
mjr 76:7f5912b6340e 614 //
mjr 76:7f5912b6340e 615 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 616 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 617 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 618 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 619 // if the brightness is non-zero.
mjr 76:7f5912b6340e 620 //
mjr 76:7f5912b6340e 621 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 622 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 623 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 624 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 625 // 0..255 range.
mjr 26:cb71c4af2912 626 //
mjr 76:7f5912b6340e 627 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 628 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 629 // level.
mjr 26:cb71c4af2912 630 //
mjr 76:7f5912b6340e 631 static uint8_t *outLevel;
mjr 76:7f5912b6340e 632
mjr 76:7f5912b6340e 633
mjr 76:7f5912b6340e 634 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 635 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 636 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 637 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 638 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 639 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 640 //
mjr 76:7f5912b6340e 641 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 642 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 643 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 644 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 645 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 646 // at the maximum size.
mjr 76:7f5912b6340e 647 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 648 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 649
mjr 26:cb71c4af2912 650 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 651 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 652 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 653 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 654 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 655
mjr 76:7f5912b6340e 656
mjr 76:7f5912b6340e 657 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 658 //
mjr 76:7f5912b6340e 659 // Output Ports
mjr 76:7f5912b6340e 660 //
mjr 76:7f5912b6340e 661 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 662 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 663 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 664 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 665 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 666 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 667 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 668 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 669 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 670 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 671 // you have to ration pins among features.
mjr 76:7f5912b6340e 672 //
mjr 87:8d35c74403af 673 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 674 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 675 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 676 //
mjr 87:8d35c74403af 677 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 678 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 679 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 680 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 681 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 682 //
mjr 87:8d35c74403af 683 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 684 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 685 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 686 //
mjr 87:8d35c74403af 687 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 688 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 689 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 690 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 691 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 692 // for the chime board outputs.
mjr 76:7f5912b6340e 693 //
mjr 76:7f5912b6340e 694 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 695 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 696 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 697 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 698 //
mjr 76:7f5912b6340e 699 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 700 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 701 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 702 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 703 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 704 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 705 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 706 // of physical devices they're connected to.
mjr 76:7f5912b6340e 707
mjr 76:7f5912b6340e 708
mjr 26:cb71c4af2912 709 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 710 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 711 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 712 class LwOut
mjr 6:cc35eb643e8f 713 {
mjr 6:cc35eb643e8f 714 public:
mjr 40:cc0d9814522b 715 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 716 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 717 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 718 };
mjr 26:cb71c4af2912 719
mjr 35:e959ffba78fd 720 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 721 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 722 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 723 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 724 // numbering.
mjr 35:e959ffba78fd 725 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 726 {
mjr 33:d832bcab089e 727 public:
mjr 35:e959ffba78fd 728 LwVirtualOut() { }
mjr 40:cc0d9814522b 729 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 730 };
mjr 26:cb71c4af2912 731
mjr 34:6b981a2afab7 732 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 733 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 734 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 735 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 736 {
mjr 34:6b981a2afab7 737 public:
mjr 34:6b981a2afab7 738 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 739 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 740
mjr 34:6b981a2afab7 741 private:
mjr 53:9b2611964afc 742 // underlying physical output
mjr 34:6b981a2afab7 743 LwOut *out;
mjr 34:6b981a2afab7 744 };
mjr 34:6b981a2afab7 745
mjr 53:9b2611964afc 746 // Global ZB Launch Ball state
mjr 53:9b2611964afc 747 bool zbLaunchOn = false;
mjr 53:9b2611964afc 748
mjr 53:9b2611964afc 749 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 750 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 751 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 752 {
mjr 53:9b2611964afc 753 public:
mjr 53:9b2611964afc 754 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 755 virtual void set(uint8_t val)
mjr 53:9b2611964afc 756 {
mjr 53:9b2611964afc 757 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 758 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 759
mjr 53:9b2611964afc 760 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 761 out->set(val);
mjr 53:9b2611964afc 762 }
mjr 53:9b2611964afc 763
mjr 53:9b2611964afc 764 private:
mjr 53:9b2611964afc 765 // underlying physical or virtual output
mjr 53:9b2611964afc 766 LwOut *out;
mjr 53:9b2611964afc 767 };
mjr 53:9b2611964afc 768
mjr 53:9b2611964afc 769
mjr 40:cc0d9814522b 770 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 771 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 772 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 773 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 774 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 775 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 776 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 777 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 778 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 779 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 780 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 781 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 782 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 783 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 784 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 785 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 786 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 787 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 788 };
mjr 40:cc0d9814522b 789
mjr 40:cc0d9814522b 790 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 791 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 792 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 793 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 794 {
mjr 40:cc0d9814522b 795 public:
mjr 40:cc0d9814522b 796 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 797 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 798
mjr 40:cc0d9814522b 799 private:
mjr 40:cc0d9814522b 800 LwOut *out;
mjr 40:cc0d9814522b 801 };
mjr 40:cc0d9814522b 802
mjr 77:0b96f6867312 803 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 804 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 805 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 806 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 807
mjr 40:cc0d9814522b 808 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 809 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 810 // mode is engaged.
mjr 40:cc0d9814522b 811 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 812 {
mjr 40:cc0d9814522b 813 public:
mjr 40:cc0d9814522b 814 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 815 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 816
mjr 53:9b2611964afc 817 private:
mjr 53:9b2611964afc 818 LwOut *out;
mjr 53:9b2611964afc 819 };
mjr 53:9b2611964afc 820
mjr 53:9b2611964afc 821 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 822 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 823 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 824 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 825 {
mjr 53:9b2611964afc 826 public:
mjr 53:9b2611964afc 827 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 828 virtual void set(uint8_t)
mjr 53:9b2611964afc 829 {
mjr 53:9b2611964afc 830 // ignore the host value and simply show the current
mjr 53:9b2611964afc 831 // night mode setting
mjr 53:9b2611964afc 832 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 833 }
mjr 40:cc0d9814522b 834
mjr 40:cc0d9814522b 835 private:
mjr 40:cc0d9814522b 836 LwOut *out;
mjr 40:cc0d9814522b 837 };
mjr 40:cc0d9814522b 838
mjr 26:cb71c4af2912 839
mjr 89:c43cd923401c 840 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 841 // top of a physical pin output.
mjr 89:c43cd923401c 842 //
mjr 89:c43cd923401c 843 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 844 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 845 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 846 // level is ON.
mjr 89:c43cd923401c 847 //
mjr 89:c43cd923401c 848 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 849 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 850 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 851 //
mjr 89:c43cd923401c 852 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 853 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 854 // power and start a timer.
mjr 89:c43cd923401c 855 //
mjr 89:c43cd923401c 856 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 857 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 858 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 859 //
mjr 89:c43cd923401c 860 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 861 {
mjr 89:c43cd923401c 862 public:
mjr 89:c43cd923401c 863 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 864 // the configuration.
mjr 89:c43cd923401c 865 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 866 : out(o), params(params)
mjr 89:c43cd923401c 867 {
mjr 89:c43cd923401c 868 // initially OFF
mjr 89:c43cd923401c 869 state = 0;
mjr 89:c43cd923401c 870 }
mjr 89:c43cd923401c 871
mjr 89:c43cd923401c 872 virtual void set(uint8_t level)
mjr 89:c43cd923401c 873 {
mjr 98:4df3c0f7e707 874 // remember the new nominal level set by the client
mjr 89:c43cd923401c 875 val = level;
mjr 89:c43cd923401c 876
mjr 89:c43cd923401c 877 // update the physical output according to our current timing state
mjr 89:c43cd923401c 878 switch (state)
mjr 89:c43cd923401c 879 {
mjr 89:c43cd923401c 880 case 0:
mjr 89:c43cd923401c 881 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 882 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 883 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 884 // off, so there's no change.
mjr 89:c43cd923401c 885 if (level != 0)
mjr 89:c43cd923401c 886 {
mjr 89:c43cd923401c 887 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 888 state = 1;
mjr 89:c43cd923401c 889
mjr 89:c43cd923401c 890 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 891 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 892 // requested
mjr 89:c43cd923401c 893 out->set(level);
mjr 89:c43cd923401c 894
mjr 89:c43cd923401c 895 // add myself to the pending timer list
mjr 89:c43cd923401c 896 pending[nPending++] = this;
mjr 89:c43cd923401c 897
mjr 89:c43cd923401c 898 // note the starting time
mjr 89:c43cd923401c 899 t0 = timer.read_us();
mjr 89:c43cd923401c 900 }
mjr 89:c43cd923401c 901 break;
mjr 89:c43cd923401c 902
mjr 89:c43cd923401c 903 case 1:
mjr 89:c43cd923401c 904 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 905 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 906 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 907 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 908 out->set(level);
mjr 89:c43cd923401c 909 if (level == 0)
mjr 89:c43cd923401c 910 {
mjr 89:c43cd923401c 911 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 912 // so we need to remove it from the list.
mjr 89:c43cd923401c 913 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 914 {
mjr 89:c43cd923401c 915 // is this us?
mjr 89:c43cd923401c 916 if (pending[i] == this)
mjr 89:c43cd923401c 917 {
mjr 89:c43cd923401c 918 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 919 // last list entry
mjr 89:c43cd923401c 920 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 921
mjr 89:c43cd923401c 922 // no need to look any further
mjr 89:c43cd923401c 923 break;
mjr 89:c43cd923401c 924 }
mjr 89:c43cd923401c 925 }
mjr 89:c43cd923401c 926
mjr 89:c43cd923401c 927 // switch to state 0 (off)
mjr 89:c43cd923401c 928 state = 0;
mjr 89:c43cd923401c 929 }
mjr 89:c43cd923401c 930 break;
mjr 89:c43cd923401c 931
mjr 89:c43cd923401c 932 case 2:
mjr 89:c43cd923401c 933 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 934 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 935 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 936 // as the upper bound.
mjr 89:c43cd923401c 937 if (level == 0)
mjr 89:c43cd923401c 938 {
mjr 89:c43cd923401c 939 // switching off - turn off the physical output
mjr 89:c43cd923401c 940 out->set(0);
mjr 89:c43cd923401c 941
mjr 89:c43cd923401c 942 // go to state 0 (off)
mjr 89:c43cd923401c 943 state = 0;
mjr 89:c43cd923401c 944 }
mjr 89:c43cd923401c 945 else
mjr 89:c43cd923401c 946 {
mjr 89:c43cd923401c 947 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 948 // lower of the requested power and the hold power
mjr 89:c43cd923401c 949 uint8_t hold = holdPower();
mjr 89:c43cd923401c 950 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 951 }
mjr 89:c43cd923401c 952 break;
mjr 89:c43cd923401c 953 }
mjr 89:c43cd923401c 954 }
mjr 89:c43cd923401c 955
mjr 89:c43cd923401c 956 // Class initialization
mjr 89:c43cd923401c 957 static void classInit(Config &cfg)
mjr 89:c43cd923401c 958 {
mjr 89:c43cd923401c 959 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 960 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 961 // all of these outputs.
mjr 89:c43cd923401c 962 int n = 0;
mjr 89:c43cd923401c 963 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 964 {
mjr 89:c43cd923401c 965 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 966 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 967 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 968 ++n;
mjr 89:c43cd923401c 969 }
mjr 89:c43cd923401c 970
mjr 89:c43cd923401c 971 // allocate space for the pending timer list
mjr 89:c43cd923401c 972 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 973
mjr 89:c43cd923401c 974 // there's nothing in the pending list yet
mjr 89:c43cd923401c 975 nPending = 0;
mjr 89:c43cd923401c 976
mjr 89:c43cd923401c 977 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 978 // use it to figure elapsed times.
mjr 89:c43cd923401c 979 timer.start();
mjr 89:c43cd923401c 980 }
mjr 89:c43cd923401c 981
mjr 89:c43cd923401c 982 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 983 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 984 static void poll()
mjr 89:c43cd923401c 985 {
mjr 89:c43cd923401c 986 // note the current time
mjr 89:c43cd923401c 987 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 988
mjr 89:c43cd923401c 989 // go through the timer list
mjr 89:c43cd923401c 990 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 991 {
mjr 89:c43cd923401c 992 // get the port
mjr 89:c43cd923401c 993 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 994
mjr 89:c43cd923401c 995 // assume we'll keep it
mjr 89:c43cd923401c 996 bool remove = false;
mjr 89:c43cd923401c 997
mjr 89:c43cd923401c 998 // check if the port is still on
mjr 89:c43cd923401c 999 if (port->state != 0)
mjr 89:c43cd923401c 1000 {
mjr 89:c43cd923401c 1001 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1002 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1003 {
mjr 89:c43cd923401c 1004 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1005 port->state = 2;
mjr 89:c43cd923401c 1006
mjr 89:c43cd923401c 1007 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1008 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1009 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1010 uint8_t val = port->val;
mjr 89:c43cd923401c 1011 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1012
mjr 89:c43cd923401c 1013 // we're done with the timer
mjr 89:c43cd923401c 1014 remove = true;
mjr 89:c43cd923401c 1015 }
mjr 89:c43cd923401c 1016 }
mjr 89:c43cd923401c 1017 else
mjr 89:c43cd923401c 1018 {
mjr 89:c43cd923401c 1019 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1020 // it from the timer list
mjr 89:c43cd923401c 1021 remove = true;
mjr 89:c43cd923401c 1022 }
mjr 89:c43cd923401c 1023
mjr 89:c43cd923401c 1024 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1025 if (remove)
mjr 89:c43cd923401c 1026 {
mjr 89:c43cd923401c 1027 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1028 // the last entry in the list.
mjr 89:c43cd923401c 1029 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1030
mjr 89:c43cd923401c 1031 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1032 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1033 }
mjr 89:c43cd923401c 1034 else
mjr 89:c43cd923401c 1035 {
mjr 89:c43cd923401c 1036 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1037 ++i;
mjr 89:c43cd923401c 1038 }
mjr 89:c43cd923401c 1039 }
mjr 89:c43cd923401c 1040 }
mjr 89:c43cd923401c 1041
mjr 89:c43cd923401c 1042 protected:
mjr 89:c43cd923401c 1043 // underlying physical output
mjr 89:c43cd923401c 1044 LwOut *out;
mjr 89:c43cd923401c 1045
mjr 89:c43cd923401c 1046 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1047 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1048 uint32_t t0;
mjr 89:c43cd923401c 1049
mjr 89:c43cd923401c 1050 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1051 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1052 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1053 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1054 // if it's lower.
mjr 89:c43cd923401c 1055 uint8_t val;
mjr 89:c43cd923401c 1056
mjr 89:c43cd923401c 1057 // Current port state:
mjr 89:c43cd923401c 1058 //
mjr 89:c43cd923401c 1059 // 0 = off
mjr 89:c43cd923401c 1060 // 1 = on at initial full power
mjr 89:c43cd923401c 1061 // 2 = on at hold power
mjr 89:c43cd923401c 1062 uint8_t state;
mjr 89:c43cd923401c 1063
mjr 89:c43cd923401c 1064 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1065 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1066 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1067 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1068 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1069 uint8_t params;
mjr 89:c43cd923401c 1070
mjr 99:8139b0c274f4 1071 // Figure the initial full-power time in microseconds: 50ms * (1+N),
mjr 99:8139b0c274f4 1072 // where N is the high 4 bits of the parameter byte.
mjr 99:8139b0c274f4 1073 inline uint32_t fullPowerTime_us() const { return 50000*(1 + ((params >> 4) & 0x0F)); }
mjr 89:c43cd923401c 1074
mjr 89:c43cd923401c 1075 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1076 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1077
mjr 89:c43cd923401c 1078 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1079 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1080 // (which runs continuously).
mjr 89:c43cd923401c 1081 static Timer timer;
mjr 89:c43cd923401c 1082
mjr 89:c43cd923401c 1083 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 98:4df3c0f7e707 1084 // transitions from OFF to ON, we add it to this list. We scan the
mjr 98:4df3c0f7e707 1085 // list in our polling routine to find ports that have reached the
mjr 98:4df3c0f7e707 1086 // expiration of their initial full-power intervals.
mjr 89:c43cd923401c 1087 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1088 static uint8_t nPending;
mjr 89:c43cd923401c 1089 };
mjr 89:c43cd923401c 1090
mjr 89:c43cd923401c 1091 // Flipper Logic statics
mjr 89:c43cd923401c 1092 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1093 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1094 uint8_t LwFlipperLogicOut::nPending;
mjr 99:8139b0c274f4 1095
mjr 99:8139b0c274f4 1096 // Chime Logic. This is a filter output that we layer on a physical
mjr 99:8139b0c274f4 1097 // output to set a minimum and maximum ON time for the output.
mjr 99:8139b0c274f4 1098 class LwChimeLogicOut: public LwOut
mjr 98:4df3c0f7e707 1099 {
mjr 98:4df3c0f7e707 1100 public:
mjr 99:8139b0c274f4 1101 // Set up the output. 'params' encodes the minimum and maximum time.
mjr 99:8139b0c274f4 1102 LwChimeLogicOut(LwOut *o, uint8_t params)
mjr 99:8139b0c274f4 1103 : out(o), params(params)
mjr 98:4df3c0f7e707 1104 {
mjr 98:4df3c0f7e707 1105 // initially OFF
mjr 98:4df3c0f7e707 1106 state = 0;
mjr 98:4df3c0f7e707 1107 }
mjr 98:4df3c0f7e707 1108
mjr 98:4df3c0f7e707 1109 virtual void set(uint8_t level)
mjr 98:4df3c0f7e707 1110 {
mjr 98:4df3c0f7e707 1111 // update the physical output according to our current timing state
mjr 98:4df3c0f7e707 1112 switch (state)
mjr 98:4df3c0f7e707 1113 {
mjr 98:4df3c0f7e707 1114 case 0:
mjr 98:4df3c0f7e707 1115 // We're currently off. If the new level is non-zero, switch
mjr 98:4df3c0f7e707 1116 // to state 1 (initial minimum interval) and set the requested
mjr 98:4df3c0f7e707 1117 // level. If the new level is zero, we're switching from off to
mjr 98:4df3c0f7e707 1118 // off, so there's no change.
mjr 98:4df3c0f7e707 1119 if (level != 0)
mjr 98:4df3c0f7e707 1120 {
mjr 98:4df3c0f7e707 1121 // switch to state 1 (initial minimum interval, port is
mjr 98:4df3c0f7e707 1122 // logically on)
mjr 98:4df3c0f7e707 1123 state = 1;
mjr 98:4df3c0f7e707 1124
mjr 98:4df3c0f7e707 1125 // set the requested output level
mjr 98:4df3c0f7e707 1126 out->set(level);
mjr 98:4df3c0f7e707 1127
mjr 98:4df3c0f7e707 1128 // add myself to the pending timer list
mjr 98:4df3c0f7e707 1129 pending[nPending++] = this;
mjr 98:4df3c0f7e707 1130
mjr 98:4df3c0f7e707 1131 // note the starting time
mjr 98:4df3c0f7e707 1132 t0 = timer.read_us();
mjr 98:4df3c0f7e707 1133 }
mjr 98:4df3c0f7e707 1134 break;
mjr 98:4df3c0f7e707 1135
mjr 98:4df3c0f7e707 1136 case 1: // min ON interval, port on
mjr 98:4df3c0f7e707 1137 case 2: // min ON interval, port off
mjr 98:4df3c0f7e707 1138 // We're in the initial minimum ON interval. If the new power
mjr 98:4df3c0f7e707 1139 // level is non-zero, pass it through to the physical port, since
mjr 98:4df3c0f7e707 1140 // the client is allowed to change the power level during the
mjr 98:4df3c0f7e707 1141 // initial ON interval - they just can't turn it off entirely.
mjr 98:4df3c0f7e707 1142 // Set the state to 1 to indicate that the logical port is on.
mjr 98:4df3c0f7e707 1143 //
mjr 98:4df3c0f7e707 1144 // If the new level is zero, leave the underlying port at its
mjr 98:4df3c0f7e707 1145 // current power level, since we're not allowed to turn it off
mjr 98:4df3c0f7e707 1146 // during this period. Set the state to 2 to indicate that the
mjr 98:4df3c0f7e707 1147 // logical port is off even though the physical port has to stay
mjr 98:4df3c0f7e707 1148 // on for the remainder of the interval.
mjr 98:4df3c0f7e707 1149 if (level != 0)
mjr 98:4df3c0f7e707 1150 {
mjr 98:4df3c0f7e707 1151 // client is leaving the port on - pass through the new
mjr 98:4df3c0f7e707 1152 // power level and set state 1 (logically on)
mjr 98:4df3c0f7e707 1153 out->set(level);
mjr 98:4df3c0f7e707 1154 state = 1;
mjr 98:4df3c0f7e707 1155 }
mjr 98:4df3c0f7e707 1156 else
mjr 98:4df3c0f7e707 1157 {
mjr 98:4df3c0f7e707 1158 // Client is turning off the port - leave the underlying port
mjr 98:4df3c0f7e707 1159 // on at its current level and set state 2 (logically off).
mjr 98:4df3c0f7e707 1160 // When the minimum ON time expires, the polling routine will
mjr 98:4df3c0f7e707 1161 // see that we're logically off and will pass that through to
mjr 98:4df3c0f7e707 1162 // the underlying physical port. Until then, though, we have
mjr 98:4df3c0f7e707 1163 // to leave the physical port on to satisfy the minimum ON
mjr 98:4df3c0f7e707 1164 // time requirement.
mjr 98:4df3c0f7e707 1165 state = 2;
mjr 98:4df3c0f7e707 1166 }
mjr 98:4df3c0f7e707 1167 break;
mjr 98:4df3c0f7e707 1168
mjr 98:4df3c0f7e707 1169 case 3:
mjr 99:8139b0c274f4 1170 // We're after the minimum ON interval and before the maximum
mjr 99:8139b0c274f4 1171 // ON time limit. We can set any new level, including fully off.
mjr 99:8139b0c274f4 1172 // Pass the new power level through to the port.
mjr 98:4df3c0f7e707 1173 out->set(level);
mjr 98:4df3c0f7e707 1174
mjr 98:4df3c0f7e707 1175 // if the port is now off, return to state 0 (OFF)
mjr 98:4df3c0f7e707 1176 if (level == 0)
mjr 99:8139b0c274f4 1177 {
mjr 99:8139b0c274f4 1178 // return to the OFF state
mjr 99:8139b0c274f4 1179 state = 0;
mjr 99:8139b0c274f4 1180
mjr 99:8139b0c274f4 1181 // If we have a timer pending, remove it. A timer will be
mjr 99:8139b0c274f4 1182 // pending if we have a non-infinite maximum on time for the
mjr 99:8139b0c274f4 1183 // port.
mjr 99:8139b0c274f4 1184 for (int i = 0 ; i < nPending ; ++i)
mjr 99:8139b0c274f4 1185 {
mjr 99:8139b0c274f4 1186 // is this us?
mjr 99:8139b0c274f4 1187 if (pending[i] == this)
mjr 99:8139b0c274f4 1188 {
mjr 99:8139b0c274f4 1189 // remove myself by replacing the slot with the
mjr 99:8139b0c274f4 1190 // last list entry
mjr 99:8139b0c274f4 1191 pending[i] = pending[--nPending];
mjr 99:8139b0c274f4 1192
mjr 99:8139b0c274f4 1193 // no need to look any further
mjr 99:8139b0c274f4 1194 break;
mjr 99:8139b0c274f4 1195 }
mjr 99:8139b0c274f4 1196 }
mjr 99:8139b0c274f4 1197 }
mjr 99:8139b0c274f4 1198 break;
mjr 99:8139b0c274f4 1199
mjr 99:8139b0c274f4 1200 case 4:
mjr 99:8139b0c274f4 1201 // We're after the maximum ON time. The physical port stays off
mjr 99:8139b0c274f4 1202 // during this interval, so we don't pass any changes through to
mjr 99:8139b0c274f4 1203 // the physical port. When the client sets the level to 0, we
mjr 99:8139b0c274f4 1204 // turn off the logical port and reset to state 0.
mjr 99:8139b0c274f4 1205 if (level == 0)
mjr 98:4df3c0f7e707 1206 state = 0;
mjr 98:4df3c0f7e707 1207 break;
mjr 98:4df3c0f7e707 1208 }
mjr 98:4df3c0f7e707 1209 }
mjr 98:4df3c0f7e707 1210
mjr 98:4df3c0f7e707 1211 // Class initialization
mjr 98:4df3c0f7e707 1212 static void classInit(Config &cfg)
mjr 98:4df3c0f7e707 1213 {
mjr 98:4df3c0f7e707 1214 // Count the Minimum On Time outputs in the configuration. We
mjr 98:4df3c0f7e707 1215 // need to allocate enough pending timer list space to accommodate
mjr 98:4df3c0f7e707 1216 // all of these outputs.
mjr 98:4df3c0f7e707 1217 int n = 0;
mjr 98:4df3c0f7e707 1218 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 98:4df3c0f7e707 1219 {
mjr 98:4df3c0f7e707 1220 // if this port is active and marked as Flipper Logic, count it
mjr 98:4df3c0f7e707 1221 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 99:8139b0c274f4 1222 && (cfg.outPort[i].flags & PortFlagChimeLogic) != 0)
mjr 98:4df3c0f7e707 1223 ++n;
mjr 98:4df3c0f7e707 1224 }
mjr 98:4df3c0f7e707 1225
mjr 98:4df3c0f7e707 1226 // allocate space for the pending timer list
mjr 99:8139b0c274f4 1227 pending = new LwChimeLogicOut*[n];
mjr 98:4df3c0f7e707 1228
mjr 98:4df3c0f7e707 1229 // there's nothing in the pending list yet
mjr 98:4df3c0f7e707 1230 nPending = 0;
mjr 98:4df3c0f7e707 1231
mjr 98:4df3c0f7e707 1232 // Start our shared timer. The epoch is arbitrary, since we only
mjr 98:4df3c0f7e707 1233 // use it to figure elapsed times.
mjr 98:4df3c0f7e707 1234 timer.start();
mjr 98:4df3c0f7e707 1235 }
mjr 98:4df3c0f7e707 1236
mjr 98:4df3c0f7e707 1237 // Check for ports with pending timers. The main routine should
mjr 98:4df3c0f7e707 1238 // call this on each iteration to process our state transitions.
mjr 98:4df3c0f7e707 1239 static void poll()
mjr 98:4df3c0f7e707 1240 {
mjr 98:4df3c0f7e707 1241 // note the current time
mjr 98:4df3c0f7e707 1242 uint32_t t = timer.read_us();
mjr 98:4df3c0f7e707 1243
mjr 98:4df3c0f7e707 1244 // go through the timer list
mjr 98:4df3c0f7e707 1245 for (int i = 0 ; i < nPending ; )
mjr 98:4df3c0f7e707 1246 {
mjr 98:4df3c0f7e707 1247 // get the port
mjr 99:8139b0c274f4 1248 LwChimeLogicOut *port = pending[i];
mjr 98:4df3c0f7e707 1249
mjr 98:4df3c0f7e707 1250 // assume we'll keep it
mjr 98:4df3c0f7e707 1251 bool remove = false;
mjr 98:4df3c0f7e707 1252
mjr 99:8139b0c274f4 1253 // check our state
mjr 99:8139b0c274f4 1254 switch (port->state)
mjr 98:4df3c0f7e707 1255 {
mjr 99:8139b0c274f4 1256 case 1: // initial minimum ON time, port logically on
mjr 99:8139b0c274f4 1257 case 2: // initial minimum ON time, port logically off
mjr 99:8139b0c274f4 1258 // check if the minimum ON time has elapsed
mjr 98:4df3c0f7e707 1259 if (uint32_t(t - port->t0) > port->minOnTime_us())
mjr 98:4df3c0f7e707 1260 {
mjr 98:4df3c0f7e707 1261 // This port has completed its initial ON interval, so
mjr 98:4df3c0f7e707 1262 // it advances to the next state.
mjr 98:4df3c0f7e707 1263 if (port->state == 1)
mjr 98:4df3c0f7e707 1264 {
mjr 99:8139b0c274f4 1265 // The port is logically on, so advance to state 3.
mjr 99:8139b0c274f4 1266 // The underlying port is already at its proper level,
mjr 99:8139b0c274f4 1267 // since we pass through non-zero power settings to the
mjr 99:8139b0c274f4 1268 // underlying port throughout the initial minimum time.
mjr 99:8139b0c274f4 1269 // The timer stays active into state 3.
mjr 98:4df3c0f7e707 1270 port->state = 3;
mjr 99:8139b0c274f4 1271
mjr 99:8139b0c274f4 1272 // Special case: maximum on time 0 means "infinite".
mjr 99:8139b0c274f4 1273 // There's no need for a timer in this case; we'll
mjr 99:8139b0c274f4 1274 // just stay in state 3 until the client turns the
mjr 99:8139b0c274f4 1275 // port off.
mjr 99:8139b0c274f4 1276 if (port->maxOnTime_us() == 0)
mjr 99:8139b0c274f4 1277 remove = true;
mjr 98:4df3c0f7e707 1278 }
mjr 98:4df3c0f7e707 1279 else
mjr 98:4df3c0f7e707 1280 {
mjr 98:4df3c0f7e707 1281 // The port was switched off by the client during the
mjr 98:4df3c0f7e707 1282 // minimum ON period. We haven't passed the OFF state
mjr 98:4df3c0f7e707 1283 // to the underlying port yet, because the port has to
mjr 98:4df3c0f7e707 1284 // stay on throughout the minimum ON period. So turn
mjr 98:4df3c0f7e707 1285 // the port off now.
mjr 98:4df3c0f7e707 1286 port->out->set(0);
mjr 98:4df3c0f7e707 1287
mjr 98:4df3c0f7e707 1288 // return to state 0 (OFF)
mjr 98:4df3c0f7e707 1289 port->state = 0;
mjr 99:8139b0c274f4 1290
mjr 99:8139b0c274f4 1291 // we're done with the timer
mjr 99:8139b0c274f4 1292 remove = true;
mjr 98:4df3c0f7e707 1293 }
mjr 99:8139b0c274f4 1294 }
mjr 99:8139b0c274f4 1295 break;
mjr 99:8139b0c274f4 1296
mjr 99:8139b0c274f4 1297 case 3: // between minimum ON time and maximum ON time
mjr 99:8139b0c274f4 1298 // check if the maximum ON time has expired
mjr 99:8139b0c274f4 1299 if (uint32_t(t - port->t0) > port->maxOnTime_us())
mjr 99:8139b0c274f4 1300 {
mjr 99:8139b0c274f4 1301 // The maximum ON time has expired. Turn off the physical
mjr 99:8139b0c274f4 1302 // port.
mjr 99:8139b0c274f4 1303 port->out->set(0);
mjr 98:4df3c0f7e707 1304
mjr 99:8139b0c274f4 1305 // Switch to state 4 (logically ON past maximum time)
mjr 99:8139b0c274f4 1306 port->state = 4;
mjr 99:8139b0c274f4 1307
mjr 99:8139b0c274f4 1308 // Remove the timer on this port. This port simply stays
mjr 99:8139b0c274f4 1309 // in state 4 until the client turns off the port.
mjr 98:4df3c0f7e707 1310 remove = true;
mjr 98:4df3c0f7e707 1311 }
mjr 99:8139b0c274f4 1312 break;
mjr 98:4df3c0f7e707 1313 }
mjr 98:4df3c0f7e707 1314
mjr 98:4df3c0f7e707 1315 // if desired, remove the port from the timer list
mjr 98:4df3c0f7e707 1316 if (remove)
mjr 98:4df3c0f7e707 1317 {
mjr 98:4df3c0f7e707 1318 // Remove the list entry by overwriting the slot with
mjr 98:4df3c0f7e707 1319 // the last entry in the list.
mjr 98:4df3c0f7e707 1320 pending[i] = pending[--nPending];
mjr 98:4df3c0f7e707 1321
mjr 98:4df3c0f7e707 1322 // Note that we don't increment the loop counter, since
mjr 98:4df3c0f7e707 1323 // we now need to revisit this same slot.
mjr 98:4df3c0f7e707 1324 }
mjr 98:4df3c0f7e707 1325 else
mjr 98:4df3c0f7e707 1326 {
mjr 98:4df3c0f7e707 1327 // we're keeping this item; move on to the next one
mjr 98:4df3c0f7e707 1328 ++i;
mjr 98:4df3c0f7e707 1329 }
mjr 98:4df3c0f7e707 1330 }
mjr 98:4df3c0f7e707 1331 }
mjr 98:4df3c0f7e707 1332
mjr 98:4df3c0f7e707 1333 protected:
mjr 98:4df3c0f7e707 1334 // underlying physical output
mjr 98:4df3c0f7e707 1335 LwOut *out;
mjr 98:4df3c0f7e707 1336
mjr 98:4df3c0f7e707 1337 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 98:4df3c0f7e707 1338 // to the current 'timer' timestamp when entering state 1.
mjr 98:4df3c0f7e707 1339 uint32_t t0;
mjr 98:4df3c0f7e707 1340
mjr 98:4df3c0f7e707 1341 // Current port state:
mjr 98:4df3c0f7e707 1342 //
mjr 98:4df3c0f7e707 1343 // 0 = off
mjr 99:8139b0c274f4 1344 // 1 = in initial minimum ON interval, logical port is on
mjr 99:8139b0c274f4 1345 // 2 = in initial minimum ON interval, logical port is off
mjr 99:8139b0c274f4 1346 // 3 = in interval between minimum and maximum ON times
mjr 99:8139b0c274f4 1347 // 4 = after the maximum ON interval
mjr 99:8139b0c274f4 1348 //
mjr 99:8139b0c274f4 1349 // The "logical" on/off state of the port is the state set by the
mjr 99:8139b0c274f4 1350 // client. The "physical" state is the state of the underlying port.
mjr 99:8139b0c274f4 1351 // The relationships between logical and physical port state, and the
mjr 99:8139b0c274f4 1352 // effects of updates by the client, are as follows:
mjr 99:8139b0c274f4 1353 //
mjr 99:8139b0c274f4 1354 // State | Logical | Physical | Client set on | Client set off
mjr 99:8139b0c274f4 1355 // -----------------------------------------------------------
mjr 99:8139b0c274f4 1356 // 0 | Off | Off | phys on, -> 1 | no effect
mjr 99:8139b0c274f4 1357 // 1 | On | On | no effect | -> 2
mjr 99:8139b0c274f4 1358 // 2 | Off | On | -> 1 | no effect
mjr 99:8139b0c274f4 1359 // 3 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1360 // 4 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1361 //
mjr 99:8139b0c274f4 1362 // The polling routine makes the following transitions when the current
mjr 99:8139b0c274f4 1363 // time limit expires:
mjr 99:8139b0c274f4 1364 //
mjr 99:8139b0c274f4 1365 // 1: at end of minimum ON, -> 3 (or 4 if max == infinity)
mjr 99:8139b0c274f4 1366 // 2: at end of minimum ON, port off, -> 0
mjr 99:8139b0c274f4 1367 // 3: at end of maximum ON, port off, -> 4
mjr 98:4df3c0f7e707 1368 //
mjr 98:4df3c0f7e707 1369 uint8_t state;
mjr 98:4df3c0f7e707 1370
mjr 99:8139b0c274f4 1371 // Configuration parameters byte. This encodes the minimum and maximum
mjr 99:8139b0c274f4 1372 // ON times.
mjr 99:8139b0c274f4 1373 uint8_t params;
mjr 98:4df3c0f7e707 1374
mjr 98:4df3c0f7e707 1375 // Timer. This is a shared timer for all of the minimum ON time ports.
mjr 98:4df3c0f7e707 1376 // When we transition from OFF to ON, we note the current time on this
mjr 98:4df3c0f7e707 1377 // timer to establish the start of our minimum ON period.
mjr 98:4df3c0f7e707 1378 static Timer timer;
mjr 98:4df3c0f7e707 1379
mjr 98:4df3c0f7e707 1380 // translaton table from timing parameter in config to minimum ON time
mjr 98:4df3c0f7e707 1381 static const uint32_t paramToTime_us[];
mjr 98:4df3c0f7e707 1382
mjr 99:8139b0c274f4 1383 // Figure the minimum ON time. The minimum ON time is given by the
mjr 99:8139b0c274f4 1384 // low-order 4 bits of the parameters byte, which serves as an index
mjr 99:8139b0c274f4 1385 // into our time table.
mjr 99:8139b0c274f4 1386 inline uint32_t minOnTime_us() const { return paramToTime_us[params & 0x0F]; }
mjr 99:8139b0c274f4 1387
mjr 99:8139b0c274f4 1388 // Figure the maximum ON time. The maximum time is the high 4 bits
mjr 99:8139b0c274f4 1389 // of the parameters byte. This is an index into our time table, but
mjr 99:8139b0c274f4 1390 // 0 has the special meaning "infinite".
mjr 99:8139b0c274f4 1391 inline uint32_t maxOnTime_us() const { return paramToTime_us[((params >> 4) & 0x0F)]; }
mjr 98:4df3c0f7e707 1392
mjr 98:4df3c0f7e707 1393 // Pending timer list. Whenever one of our ports transitions from OFF
mjr 98:4df3c0f7e707 1394 // to ON, we add it to this list. We scan this list in our polling
mjr 98:4df3c0f7e707 1395 // routine to find ports that have reached the ends of their initial
mjr 98:4df3c0f7e707 1396 // ON intervals.
mjr 99:8139b0c274f4 1397 static LwChimeLogicOut **pending;
mjr 98:4df3c0f7e707 1398 static uint8_t nPending;
mjr 98:4df3c0f7e707 1399 };
mjr 98:4df3c0f7e707 1400
mjr 98:4df3c0f7e707 1401 // Min Time Out statics
mjr 99:8139b0c274f4 1402 Timer LwChimeLogicOut::timer;
mjr 99:8139b0c274f4 1403 LwChimeLogicOut **LwChimeLogicOut::pending;
mjr 99:8139b0c274f4 1404 uint8_t LwChimeLogicOut::nPending;
mjr 99:8139b0c274f4 1405 const uint32_t LwChimeLogicOut::paramToTime_us[] = {
mjr 99:8139b0c274f4 1406 0, // for the max time, this means "infinite"
mjr 98:4df3c0f7e707 1407 1000,
mjr 98:4df3c0f7e707 1408 2000,
mjr 98:4df3c0f7e707 1409 5000,
mjr 98:4df3c0f7e707 1410 10000,
mjr 98:4df3c0f7e707 1411 20000,
mjr 98:4df3c0f7e707 1412 40000,
mjr 98:4df3c0f7e707 1413 80000,
mjr 98:4df3c0f7e707 1414 100000,
mjr 98:4df3c0f7e707 1415 200000,
mjr 98:4df3c0f7e707 1416 300000,
mjr 98:4df3c0f7e707 1417 400000,
mjr 98:4df3c0f7e707 1418 500000,
mjr 98:4df3c0f7e707 1419 600000,
mjr 98:4df3c0f7e707 1420 700000,
mjr 98:4df3c0f7e707 1421 800000
mjr 98:4df3c0f7e707 1422 };
mjr 89:c43cd923401c 1423
mjr 35:e959ffba78fd 1424 //
mjr 35:e959ffba78fd 1425 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1426 // assignments set in config.h.
mjr 33:d832bcab089e 1427 //
mjr 35:e959ffba78fd 1428 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1429 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1430 {
mjr 35:e959ffba78fd 1431 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1432 {
mjr 53:9b2611964afc 1433 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1434 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1435 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1436 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1437 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1438 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1439 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1440 }
mjr 35:e959ffba78fd 1441 }
mjr 26:cb71c4af2912 1442
mjr 40:cc0d9814522b 1443 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1444 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1445 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1446 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1447 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1448 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1449 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1450 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1451 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1452 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1453 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1454 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1455 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1456 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1457 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1458 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1459 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1460 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1461 };
mjr 40:cc0d9814522b 1462
mjr 40:cc0d9814522b 1463 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1464 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1465 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1466 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1467 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1468 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1469 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1470 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1471 // are always 8 bits.
mjr 40:cc0d9814522b 1472 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1473 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1474 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1475 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1476 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1477 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1478 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1479 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1480 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1481 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1482 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1483 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1484 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1485 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1486 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1487 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1488 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1489 };
mjr 40:cc0d9814522b 1490
mjr 26:cb71c4af2912 1491 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1492 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1493 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1494 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1495 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1496 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1497 {
mjr 26:cb71c4af2912 1498 public:
mjr 60:f38da020aa13 1499 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1500 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1501 {
mjr 26:cb71c4af2912 1502 if (val != prv)
mjr 40:cc0d9814522b 1503 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1504 }
mjr 60:f38da020aa13 1505 uint8_t idx;
mjr 40:cc0d9814522b 1506 uint8_t prv;
mjr 26:cb71c4af2912 1507 };
mjr 26:cb71c4af2912 1508
mjr 40:cc0d9814522b 1509 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1510 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1511 {
mjr 40:cc0d9814522b 1512 public:
mjr 60:f38da020aa13 1513 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1514 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1515 {
mjr 40:cc0d9814522b 1516 if (val != prv)
mjr 40:cc0d9814522b 1517 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1518 }
mjr 60:f38da020aa13 1519 uint8_t idx;
mjr 40:cc0d9814522b 1520 uint8_t prv;
mjr 40:cc0d9814522b 1521 };
mjr 40:cc0d9814522b 1522
mjr 87:8d35c74403af 1523 //
mjr 87:8d35c74403af 1524 // TLC59116 interface object
mjr 87:8d35c74403af 1525 //
mjr 87:8d35c74403af 1526 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1527 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1528 {
mjr 87:8d35c74403af 1529 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1530 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1531 {
mjr 87:8d35c74403af 1532 // set up the interface
mjr 87:8d35c74403af 1533 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1534 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1535 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1536 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1537
mjr 87:8d35c74403af 1538 // initialize the chips
mjr 87:8d35c74403af 1539 tlc59116->init();
mjr 87:8d35c74403af 1540 }
mjr 87:8d35c74403af 1541 }
mjr 87:8d35c74403af 1542
mjr 87:8d35c74403af 1543 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1544 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1545 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1546 // (0-15).
mjr 87:8d35c74403af 1547 //
mjr 87:8d35c74403af 1548 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1549 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1550 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1551 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1552 {
mjr 87:8d35c74403af 1553 public:
mjr 87:8d35c74403af 1554 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1555 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1556 {
mjr 87:8d35c74403af 1557 if (val != prv)
mjr 87:8d35c74403af 1558 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1559 }
mjr 87:8d35c74403af 1560
mjr 87:8d35c74403af 1561 protected:
mjr 87:8d35c74403af 1562 uint8_t addr;
mjr 87:8d35c74403af 1563 uint8_t port;
mjr 87:8d35c74403af 1564 uint8_t prv;
mjr 87:8d35c74403af 1565 };
mjr 87:8d35c74403af 1566
mjr 87:8d35c74403af 1567
mjr 87:8d35c74403af 1568 //
mjr 34:6b981a2afab7 1569 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1570 // config.h.
mjr 87:8d35c74403af 1571 //
mjr 35:e959ffba78fd 1572 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1573
mjr 35:e959ffba78fd 1574 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1575 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1576 {
mjr 35:e959ffba78fd 1577 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1578 {
mjr 53:9b2611964afc 1579 hc595 = new HC595(
mjr 53:9b2611964afc 1580 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1581 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1582 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1583 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1584 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1585 hc595->init();
mjr 35:e959ffba78fd 1586 hc595->update();
mjr 35:e959ffba78fd 1587 }
mjr 35:e959ffba78fd 1588 }
mjr 34:6b981a2afab7 1589
mjr 34:6b981a2afab7 1590 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1591 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1592 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1593 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1594 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1595 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1596 {
mjr 33:d832bcab089e 1597 public:
mjr 60:f38da020aa13 1598 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1599 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1600 {
mjr 34:6b981a2afab7 1601 if (val != prv)
mjr 40:cc0d9814522b 1602 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1603 }
mjr 60:f38da020aa13 1604 uint8_t idx;
mjr 40:cc0d9814522b 1605 uint8_t prv;
mjr 33:d832bcab089e 1606 };
mjr 33:d832bcab089e 1607
mjr 26:cb71c4af2912 1608
mjr 40:cc0d9814522b 1609
mjr 64:ef7ca92dff36 1610 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1611 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1612 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1613 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1614 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1615 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1616 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1617 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1618 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1619 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1620 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1621 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1622 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1623 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1624 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1625 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1626 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1627 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1628 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1629 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1630 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1631 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1632 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1633 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1634 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1635 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1636 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1637 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1638 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1639 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1640 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1641 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1642 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1643 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1644 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1645 };
mjr 26:cb71c4af2912 1646
mjr 64:ef7ca92dff36 1647
mjr 92:f264fbaa1be5 1648 // Conversion table for 8-bit DOF level to pulse width, with gamma correction
mjr 92:f264fbaa1be5 1649 // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0.
mjr 92:f264fbaa1be5 1650 // Note that we could use the layered gamma output on top of the regular
mjr 92:f264fbaa1be5 1651 // LwPwmOut class for this instead of a separate table, but we get much better
mjr 92:f264fbaa1be5 1652 // precision with a dedicated table, because we apply gamma correction to the
mjr 92:f264fbaa1be5 1653 // actual duty cycle values (as 'float') rather than the 8-bit DOF values.
mjr 64:ef7ca92dff36 1654 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1655 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1656 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1657 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1658 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1659 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1660 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1661 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1662 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1663 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1664 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1665 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1666 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1667 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1668 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1669 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1670 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1671 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1672 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1673 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1674 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1675 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1676 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1677 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1678 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1679 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1680 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1681 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1682 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1683 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1684 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1685 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1686 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1687 };
mjr 64:ef7ca92dff36 1688
mjr 77:0b96f6867312 1689 // Polled-update PWM output list
mjr 74:822a92bc11d2 1690 //
mjr 77:0b96f6867312 1691 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1692 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1693 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1694 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1695 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1696 //
mjr 92:f264fbaa1be5 1697 // The symptom of the problem, if it's not worked around somehow, is that
mjr 92:f264fbaa1be5 1698 // an output will get "stuck" due to a missed write. This is especially
mjr 92:f264fbaa1be5 1699 // noticeable during a series of updates such as a fade. If the last
mjr 92:f264fbaa1be5 1700 // couple of updates in a fade are lost, the output will get stuck at some
mjr 92:f264fbaa1be5 1701 // value above or below the desired final value. The stuck setting will
mjr 92:f264fbaa1be5 1702 // persist until the output is deliberately changed again later.
mjr 92:f264fbaa1be5 1703 //
mjr 92:f264fbaa1be5 1704 // Our solution: Simply repeat all PWM updates periodically. This way, any
mjr 92:f264fbaa1be5 1705 // lost write will *eventually* take hold on one of the repeats. Repeats of
mjr 92:f264fbaa1be5 1706 // the same value won't change anything and thus won't be noticeable. We do
mjr 92:f264fbaa1be5 1707 // these periodic updates during the main loop, which makes them very low
mjr 92:f264fbaa1be5 1708 // overhead (there's no interrupt overhead; we just do them when convenient
mjr 92:f264fbaa1be5 1709 // in the main loop), and also makes them very frequent. The frequency
mjr 92:f264fbaa1be5 1710 // is crucial because it ensures that updates will never be lost for long
mjr 92:f264fbaa1be5 1711 // enough to become noticeable.
mjr 92:f264fbaa1be5 1712 //
mjr 92:f264fbaa1be5 1713 // The mbed library has its own, different solution to this bug, but the
mjr 92:f264fbaa1be5 1714 // mbed solution isn't really a solution at all because it creates a separate
mjr 100:1ff35c07217c 1715 // problem of its own. The mbed approach is to reset the TPM "count" register
mjr 92:f264fbaa1be5 1716 // on every value register write. The count reset truncates the current
mjr 92:f264fbaa1be5 1717 // PWM cycle, which bypasses the hardware problem. Remember, the hardware
mjr 92:f264fbaa1be5 1718 // problem is that you can only write once per cycle; the mbed "solution" gets
mjr 92:f264fbaa1be5 1719 // around that by making sure the cycle ends immediately after the write.
mjr 92:f264fbaa1be5 1720 // The problem with this approach is that the truncated cycle causes visible
mjr 92:f264fbaa1be5 1721 // flicker if the output is connected to an LED. This is particularly
mjr 92:f264fbaa1be5 1722 // noticeable during fades, when we're updating the value register repeatedly
mjr 92:f264fbaa1be5 1723 // and rapidly: an attempt to fade from fully on to fully off causes rapid
mjr 92:f264fbaa1be5 1724 // fluttering and flashing rather than a smooth brightness fade. That's why
mjr 92:f264fbaa1be5 1725 // I had to come up with something different - the mbed solution just trades
mjr 92:f264fbaa1be5 1726 // one annoying bug for another that's just as bad.
mjr 92:f264fbaa1be5 1727 //
mjr 92:f264fbaa1be5 1728 // The hardware bug, by the way, is a case of good intentions gone bad.
mjr 92:f264fbaa1be5 1729 // The whole point of the staging register is to make things easier for
mjr 92:f264fbaa1be5 1730 // us software writers. In most PWM hardware, software has to coordinate
mjr 92:f264fbaa1be5 1731 // with the PWM duty cycle when updating registers to avoid a glitch that
mjr 92:f264fbaa1be5 1732 // you'd get by scribbling to the duty cycle register mid-cycle. The
mjr 92:f264fbaa1be5 1733 // staging register solves this by letting the software write an update at
mjr 92:f264fbaa1be5 1734 // any time, knowing that the hardware will apply the update at exactly the
mjr 92:f264fbaa1be5 1735 // end of the cycle, ensuring glitch-free updates. It's a great design,
mjr 92:f264fbaa1be5 1736 // except that it doesn't quite work. The problem is that they implemented
mjr 92:f264fbaa1be5 1737 // this clever staging register as a one-element FIFO that refuses any more
mjr 92:f264fbaa1be5 1738 // writes when full. That is, writing a value to the FIFO fills it; once
mjr 92:f264fbaa1be5 1739 // full, it ignores writes until it gets emptied out. How's it emptied out?
mjr 92:f264fbaa1be5 1740 // By the hardware moving the staged value to the real register. Sadly, they
mjr 92:f264fbaa1be5 1741 // didn't provide any way for the software to clear the register, and no way
mjr 92:f264fbaa1be5 1742 // to even tell that it's full. So we don't have glitches on write, but we're
mjr 92:f264fbaa1be5 1743 // back to the original problem that the software has to be aware of the PWM
mjr 92:f264fbaa1be5 1744 // cycle timing, because the only way for the software to know that a write
mjr 92:f264fbaa1be5 1745 // actually worked is to know that it's been at least one PWM cycle since the
mjr 92:f264fbaa1be5 1746 // last write. That largely defeats the whole purpose of the staging register,
mjr 92:f264fbaa1be5 1747 // since the whole point was to free software writers of these timing
mjr 92:f264fbaa1be5 1748 // considerations. It's still an improvement over no staging register at
mjr 92:f264fbaa1be5 1749 // all, since we at least don't have to worry about glitches, but it leaves
mjr 92:f264fbaa1be5 1750 // us with this somewhat similar hassle.
mjr 74:822a92bc11d2 1751 //
mjr 77:0b96f6867312 1752 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1753 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1754 // of polled items.
mjr 74:822a92bc11d2 1755 static int numPolledPwm;
mjr 74:822a92bc11d2 1756 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1757
mjr 74:822a92bc11d2 1758 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1759 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1760 {
mjr 6:cc35eb643e8f 1761 public:
mjr 43:7a6364d82a41 1762 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1763 {
mjr 77:0b96f6867312 1764 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1765 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1766 polledPwm[numPolledPwm++] = this;
mjr 93:177832c29041 1767
mjr 94:0476b3e2b996 1768 // IMPORTANT: Do not set the PWM period (frequency) here explicitly.
mjr 94:0476b3e2b996 1769 // We instead want to accept the current setting for the TPM unit
mjr 94:0476b3e2b996 1770 // we're assigned to. The KL25Z hardware can only set the period at
mjr 94:0476b3e2b996 1771 // the TPM unit level, not per channel, so if we changed the frequency
mjr 94:0476b3e2b996 1772 // here, we'd change it for everything attached to our TPM unit. LW
mjr 94:0476b3e2b996 1773 // outputs don't care about frequency other than that it's fast enough
mjr 94:0476b3e2b996 1774 // that attached LEDs won't flicker. Some other PWM users (IR remote,
mjr 94:0476b3e2b996 1775 // TLC5940) DO care about exact frequencies, because they use the PWM
mjr 94:0476b3e2b996 1776 // as a signal generator rather than merely for brightness control.
mjr 94:0476b3e2b996 1777 // If we changed the frequency here, we could clobber one of those
mjr 94:0476b3e2b996 1778 // carefully chosen frequencies and break the other subsystem. So
mjr 94:0476b3e2b996 1779 // we need to be the "free variable" here and accept whatever setting
mjr 94:0476b3e2b996 1780 // is currently on our assigned unit. To minimize flicker, the main()
mjr 94:0476b3e2b996 1781 // entrypoint sets a default PWM rate of 1kHz on all channels. All
mjr 94:0476b3e2b996 1782 // of the other subsystems that might set specific frequencies will
mjr 94:0476b3e2b996 1783 // set much high frequencies, so that should only be good for us.
mjr 94:0476b3e2b996 1784
mjr 94:0476b3e2b996 1785 // set the initial brightness value
mjr 77:0b96f6867312 1786 set(initVal);
mjr 43:7a6364d82a41 1787 }
mjr 74:822a92bc11d2 1788
mjr 40:cc0d9814522b 1789 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1790 {
mjr 77:0b96f6867312 1791 // save the new value
mjr 74:822a92bc11d2 1792 this->val = val;
mjr 77:0b96f6867312 1793
mjr 77:0b96f6867312 1794 // commit it to the hardware
mjr 77:0b96f6867312 1795 commit();
mjr 13:72dda449c3c0 1796 }
mjr 74:822a92bc11d2 1797
mjr 74:822a92bc11d2 1798 // handle periodic update polling
mjr 74:822a92bc11d2 1799 void poll()
mjr 74:822a92bc11d2 1800 {
mjr 77:0b96f6867312 1801 commit();
mjr 74:822a92bc11d2 1802 }
mjr 74:822a92bc11d2 1803
mjr 74:822a92bc11d2 1804 protected:
mjr 77:0b96f6867312 1805 virtual void commit()
mjr 74:822a92bc11d2 1806 {
mjr 74:822a92bc11d2 1807 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1808 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1809 }
mjr 74:822a92bc11d2 1810
mjr 77:0b96f6867312 1811 NewPwmOut p;
mjr 77:0b96f6867312 1812 uint8_t val;
mjr 6:cc35eb643e8f 1813 };
mjr 26:cb71c4af2912 1814
mjr 74:822a92bc11d2 1815 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1816 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1817 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1818 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1819 {
mjr 64:ef7ca92dff36 1820 public:
mjr 64:ef7ca92dff36 1821 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1822 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1823 {
mjr 64:ef7ca92dff36 1824 }
mjr 74:822a92bc11d2 1825
mjr 74:822a92bc11d2 1826 protected:
mjr 77:0b96f6867312 1827 virtual void commit()
mjr 64:ef7ca92dff36 1828 {
mjr 74:822a92bc11d2 1829 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1830 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1831 }
mjr 64:ef7ca92dff36 1832 };
mjr 64:ef7ca92dff36 1833
mjr 74:822a92bc11d2 1834 // poll the PWM outputs
mjr 74:822a92bc11d2 1835 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1836 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1837 void pollPwmUpdates()
mjr 74:822a92bc11d2 1838 {
mjr 94:0476b3e2b996 1839 // If it's been long enough since the last update, do another update.
mjr 94:0476b3e2b996 1840 // Note that the time limit is fairly arbitrary: it has to be at least
mjr 94:0476b3e2b996 1841 // 1.5X the PWM period, so that we can be sure that at least one PWM
mjr 94:0476b3e2b996 1842 // period has elapsed since the last update, but there's no hard upper
mjr 94:0476b3e2b996 1843 // bound. Instead, it only has to be short enough that fades don't
mjr 94:0476b3e2b996 1844 // become noticeably chunky. The competing interest is that we don't
mjr 94:0476b3e2b996 1845 // want to do this more often than necessary to provide incremental
mjr 94:0476b3e2b996 1846 // benefit, because the polling adds overhead to the main loop and
mjr 94:0476b3e2b996 1847 // takes time away from other tasks we could be performing. The
mjr 94:0476b3e2b996 1848 // shortest time with practical benefit is probably around 50-60Hz,
mjr 94:0476b3e2b996 1849 // since that gives us "video rate" granularity in fades. Anything
mjr 94:0476b3e2b996 1850 // faster wouldn't probably make fades look any smoother to a human
mjr 94:0476b3e2b996 1851 // viewer.
mjr 94:0476b3e2b996 1852 if (polledPwmTimer.read_us() >= 15000)
mjr 74:822a92bc11d2 1853 {
mjr 74:822a92bc11d2 1854 // time the run for statistics collection
mjr 74:822a92bc11d2 1855 IF_DIAG(
mjr 74:822a92bc11d2 1856 Timer t;
mjr 74:822a92bc11d2 1857 t.start();
mjr 74:822a92bc11d2 1858 )
mjr 74:822a92bc11d2 1859
mjr 74:822a92bc11d2 1860 // poll each output
mjr 74:822a92bc11d2 1861 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1862 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1863
mjr 74:822a92bc11d2 1864 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1865 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1866
mjr 74:822a92bc11d2 1867 // collect statistics
mjr 74:822a92bc11d2 1868 IF_DIAG(
mjr 76:7f5912b6340e 1869 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1870 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1871 )
mjr 74:822a92bc11d2 1872 }
mjr 74:822a92bc11d2 1873 }
mjr 64:ef7ca92dff36 1874
mjr 26:cb71c4af2912 1875 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1876 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1877 {
mjr 6:cc35eb643e8f 1878 public:
mjr 43:7a6364d82a41 1879 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1880 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1881 {
mjr 13:72dda449c3c0 1882 if (val != prv)
mjr 40:cc0d9814522b 1883 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1884 }
mjr 6:cc35eb643e8f 1885 DigitalOut p;
mjr 40:cc0d9814522b 1886 uint8_t prv;
mjr 6:cc35eb643e8f 1887 };
mjr 26:cb71c4af2912 1888
mjr 29:582472d0bc57 1889 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1890 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1891 // port n (0-based).
mjr 35:e959ffba78fd 1892 //
mjr 35:e959ffba78fd 1893 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1894 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1895 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1896 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1897 // 74HC595 ports).
mjr 33:d832bcab089e 1898 static int numOutputs;
mjr 33:d832bcab089e 1899 static LwOut **lwPin;
mjr 33:d832bcab089e 1900
mjr 38:091e511ce8a0 1901 // create a single output pin
mjr 53:9b2611964afc 1902 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1903 {
mjr 38:091e511ce8a0 1904 // get this item's values
mjr 38:091e511ce8a0 1905 int typ = pc.typ;
mjr 38:091e511ce8a0 1906 int pin = pc.pin;
mjr 38:091e511ce8a0 1907 int flags = pc.flags;
mjr 40:cc0d9814522b 1908 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1909 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1910 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 1911 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 99:8139b0c274f4 1912 int chimeLogic = flags & PortFlagChimeLogic;
mjr 89:c43cd923401c 1913
mjr 89:c43cd923401c 1914 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 1915 if (flipperLogic)
mjr 89:c43cd923401c 1916 gamma = false;
mjr 38:091e511ce8a0 1917
mjr 38:091e511ce8a0 1918 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1919 LwOut *lwp;
mjr 38:091e511ce8a0 1920 switch (typ)
mjr 38:091e511ce8a0 1921 {
mjr 38:091e511ce8a0 1922 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1923 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1924 if (pin != 0)
mjr 64:ef7ca92dff36 1925 {
mjr 64:ef7ca92dff36 1926 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1927 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1928 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1929 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1930 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1931 {
mjr 64:ef7ca92dff36 1932 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1933 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1934
mjr 64:ef7ca92dff36 1935 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1936 gamma = false;
mjr 64:ef7ca92dff36 1937 }
mjr 64:ef7ca92dff36 1938 else
mjr 64:ef7ca92dff36 1939 {
mjr 64:ef7ca92dff36 1940 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1941 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1942 }
mjr 64:ef7ca92dff36 1943 }
mjr 48:058ace2aed1d 1944 else
mjr 48:058ace2aed1d 1945 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1946 break;
mjr 38:091e511ce8a0 1947
mjr 38:091e511ce8a0 1948 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1949 // Digital GPIO port
mjr 48:058ace2aed1d 1950 if (pin != 0)
mjr 48:058ace2aed1d 1951 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1952 else
mjr 48:058ace2aed1d 1953 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1954 break;
mjr 38:091e511ce8a0 1955
mjr 38:091e511ce8a0 1956 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1957 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1958 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1959 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1960 {
mjr 40:cc0d9814522b 1961 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1962 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1963 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1964 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1965 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1966 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1967 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1968 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1969 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1970 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1971 // for this unlikely case.
mjr 40:cc0d9814522b 1972 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1973 {
mjr 40:cc0d9814522b 1974 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1975 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1976
mjr 40:cc0d9814522b 1977 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1978 gamma = false;
mjr 40:cc0d9814522b 1979 }
mjr 40:cc0d9814522b 1980 else
mjr 40:cc0d9814522b 1981 {
mjr 40:cc0d9814522b 1982 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1983 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1984 }
mjr 40:cc0d9814522b 1985 }
mjr 38:091e511ce8a0 1986 else
mjr 40:cc0d9814522b 1987 {
mjr 40:cc0d9814522b 1988 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1989 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1990 }
mjr 38:091e511ce8a0 1991 break;
mjr 38:091e511ce8a0 1992
mjr 38:091e511ce8a0 1993 case PortType74HC595:
mjr 87:8d35c74403af 1994 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 1995 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 1996 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1997 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1998 else
mjr 38:091e511ce8a0 1999 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2000 break;
mjr 87:8d35c74403af 2001
mjr 87:8d35c74403af 2002 case PortTypeTLC59116:
mjr 87:8d35c74403af 2003 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 2004 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 2005 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 2006 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 2007 if (tlc59116 != 0)
mjr 87:8d35c74403af 2008 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 2009 break;
mjr 38:091e511ce8a0 2010
mjr 38:091e511ce8a0 2011 case PortTypeVirtual:
mjr 43:7a6364d82a41 2012 case PortTypeDisabled:
mjr 38:091e511ce8a0 2013 default:
mjr 38:091e511ce8a0 2014 // virtual or unknown
mjr 38:091e511ce8a0 2015 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2016 break;
mjr 38:091e511ce8a0 2017 }
mjr 38:091e511ce8a0 2018
mjr 40:cc0d9814522b 2019 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 2020 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 2021 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 2022 if (activeLow)
mjr 38:091e511ce8a0 2023 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 2024
mjr 89:c43cd923401c 2025 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 2026 if (flipperLogic)
mjr 89:c43cd923401c 2027 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 2028
mjr 99:8139b0c274f4 2029 // Layer on Chime Logic if desired. Note that Chime Logic and
mjr 99:8139b0c274f4 2030 // Flipper Logic are mutually exclusive, and Flipper Logic takes
mjr 99:8139b0c274f4 2031 // precedence, so ignore the Chime Logic bit if both are set.
mjr 99:8139b0c274f4 2032 if (chimeLogic && !flipperLogic)
mjr 99:8139b0c274f4 2033 lwp = new LwChimeLogicOut(lwp, pc.flipperLogic);
mjr 98:4df3c0f7e707 2034
mjr 89:c43cd923401c 2035 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 2036 if (noisy)
mjr 40:cc0d9814522b 2037 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 2038
mjr 40:cc0d9814522b 2039 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 2040 if (gamma)
mjr 40:cc0d9814522b 2041 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 2042
mjr 53:9b2611964afc 2043 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 2044 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 2045 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 2046 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 2047 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 2048
mjr 53:9b2611964afc 2049 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 2050 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 2051 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 2052
mjr 38:091e511ce8a0 2053 // turn it off initially
mjr 38:091e511ce8a0 2054 lwp->set(0);
mjr 38:091e511ce8a0 2055
mjr 38:091e511ce8a0 2056 // return the pin
mjr 38:091e511ce8a0 2057 return lwp;
mjr 38:091e511ce8a0 2058 }
mjr 38:091e511ce8a0 2059
mjr 6:cc35eb643e8f 2060 // initialize the output pin array
mjr 35:e959ffba78fd 2061 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 2062 {
mjr 99:8139b0c274f4 2063 // Initialize the Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 2064 LwFlipperLogicOut::classInit(cfg);
mjr 99:8139b0c274f4 2065 LwChimeLogicOut::classInit(cfg);
mjr 89:c43cd923401c 2066
mjr 35:e959ffba78fd 2067 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 2068 // total number of ports.
mjr 35:e959ffba78fd 2069 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 2070 int i;
mjr 35:e959ffba78fd 2071 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 2072 {
mjr 35:e959ffba78fd 2073 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 2074 {
mjr 35:e959ffba78fd 2075 numOutputs = i;
mjr 34:6b981a2afab7 2076 break;
mjr 34:6b981a2afab7 2077 }
mjr 33:d832bcab089e 2078 }
mjr 33:d832bcab089e 2079
mjr 73:4e8ce0b18915 2080 // allocate the pin array
mjr 73:4e8ce0b18915 2081 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 2082
mjr 73:4e8ce0b18915 2083 // Allocate the current brightness array
mjr 73:4e8ce0b18915 2084 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 2085
mjr 73:4e8ce0b18915 2086 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 2087 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2088 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2089
mjr 73:4e8ce0b18915 2090 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 2091 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 2092 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 2093
mjr 73:4e8ce0b18915 2094 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 2095 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2096 wizSpeed[i] = 2;
mjr 33:d832bcab089e 2097
mjr 35:e959ffba78fd 2098 // create the pin interface object for each port
mjr 35:e959ffba78fd 2099 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 2100 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 2101 }
mjr 6:cc35eb643e8f 2102
mjr 76:7f5912b6340e 2103 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 2104 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 2105 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 2106 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 2107 // equivalent to 48.
mjr 40:cc0d9814522b 2108 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 2109 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 2110 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 2111 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 2112 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 2113 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 2114 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 2115 255, 255
mjr 40:cc0d9814522b 2116 };
mjr 40:cc0d9814522b 2117
mjr 76:7f5912b6340e 2118 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 2119 // level (1..48)
mjr 76:7f5912b6340e 2120 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 2121 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 2122 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 2123 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 2124 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 2125 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 2126 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 2127 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 2128 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 2129 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 2130 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 2131 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 2132 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 2133 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 2134 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 2135 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 2136 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 2137 };
mjr 76:7f5912b6340e 2138
mjr 74:822a92bc11d2 2139 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 2140 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 2141 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 2142 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 2143 //
mjr 74:822a92bc11d2 2144 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2145 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2146 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 2147 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 2148 //
mjr 74:822a92bc11d2 2149 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 2150 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 2151 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 2152 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2153 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 2154 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 2155 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 2156 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 2157 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 2158 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 2159 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 2160 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 2161 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2162 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2163 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2164 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2165 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2166 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2167 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2168 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2169
mjr 74:822a92bc11d2 2170 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2171 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2172 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2173 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2174 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2175 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2176 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2177 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2178 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2179 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2180 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2181 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2182 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2183 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2184 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2185 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2186 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2187
mjr 74:822a92bc11d2 2188 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 2189 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2190 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2191 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2192 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2193 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2194 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2195 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2196 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2197 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2198 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2199 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2200 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2201 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2202 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2203 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2204 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2205
mjr 74:822a92bc11d2 2206 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 2207 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 2208 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 2209 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 2210 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 2211 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 2212 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 2213 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 2214 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 2215 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2216 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2217 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2218 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2219 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2220 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2221 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2222 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 2223 };
mjr 74:822a92bc11d2 2224
mjr 74:822a92bc11d2 2225 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 2226 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 2227 Timer wizCycleTimer;
mjr 74:822a92bc11d2 2228
mjr 76:7f5912b6340e 2229 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 2230 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 2231
mjr 76:7f5912b6340e 2232 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 2233 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 2234 // outputs on each cycle.
mjr 29:582472d0bc57 2235 static void wizPulse()
mjr 29:582472d0bc57 2236 {
mjr 76:7f5912b6340e 2237 // current bank
mjr 76:7f5912b6340e 2238 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 2239
mjr 76:7f5912b6340e 2240 // start a timer for statistics collection
mjr 76:7f5912b6340e 2241 IF_DIAG(
mjr 76:7f5912b6340e 2242 Timer t;
mjr 76:7f5912b6340e 2243 t.start();
mjr 76:7f5912b6340e 2244 )
mjr 76:7f5912b6340e 2245
mjr 76:7f5912b6340e 2246 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 2247 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 2248 //
mjr 76:7f5912b6340e 2249 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 2250 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 2251 //
mjr 76:7f5912b6340e 2252 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 2253 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 2254 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 2255 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 2256 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 2257 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 2258 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 2259 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 2260 // current cycle.
mjr 76:7f5912b6340e 2261 //
mjr 76:7f5912b6340e 2262 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 2263 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 2264 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 2265 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 2266 // there by less-than-obvious means.
mjr 76:7f5912b6340e 2267 //
mjr 76:7f5912b6340e 2268 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 2269 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 2270 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 2271 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 2272 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 2273 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 2274 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 2275 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 2276 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 2277 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 2278 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 2279 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 2280 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 2281 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 2282 // bit counts.
mjr 76:7f5912b6340e 2283 //
mjr 76:7f5912b6340e 2284 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 2285 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 2286 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 2287 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 2288 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 2289 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 2290 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 2291 // one division for another!
mjr 76:7f5912b6340e 2292 //
mjr 76:7f5912b6340e 2293 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 2294 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 2295 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 2296 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 2297 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 2298 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 2299 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 2300 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 2301 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 2302 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 2303 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 2304 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 2305 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 2306 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 2307 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 2308 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 2309 // remainder calculation anyway.
mjr 76:7f5912b6340e 2310 //
mjr 76:7f5912b6340e 2311 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 2312 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 2313 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 2314 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 2315 //
mjr 76:7f5912b6340e 2316 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 2317 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 2318 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 2319 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 2320 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 2321 // the result, since we started with 32.
mjr 76:7f5912b6340e 2322 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 2323 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 2324 };
mjr 76:7f5912b6340e 2325 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 2326
mjr 76:7f5912b6340e 2327 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 2328 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 2329 int toPort = fromPort+32;
mjr 76:7f5912b6340e 2330 if (toPort > numOutputs)
mjr 76:7f5912b6340e 2331 toPort = numOutputs;
mjr 76:7f5912b6340e 2332
mjr 76:7f5912b6340e 2333 // update all outputs set to flashing values
mjr 76:7f5912b6340e 2334 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 2335 {
mjr 76:7f5912b6340e 2336 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 2337 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 2338 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 2339 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 2340 if (wizOn[i])
mjr 29:582472d0bc57 2341 {
mjr 76:7f5912b6340e 2342 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 2343 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 2344 {
mjr 76:7f5912b6340e 2345 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 2346 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 2347 }
mjr 29:582472d0bc57 2348 }
mjr 76:7f5912b6340e 2349 }
mjr 76:7f5912b6340e 2350
mjr 34:6b981a2afab7 2351 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 2352 if (hc595 != 0)
mjr 35:e959ffba78fd 2353 hc595->update();
mjr 76:7f5912b6340e 2354
mjr 76:7f5912b6340e 2355 // switch to the next bank
mjr 76:7f5912b6340e 2356 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 2357 wizPulseBank = 0;
mjr 76:7f5912b6340e 2358
mjr 76:7f5912b6340e 2359 // collect timing statistics
mjr 76:7f5912b6340e 2360 IF_DIAG(
mjr 76:7f5912b6340e 2361 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 2362 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 2363 )
mjr 1:d913e0afb2ac 2364 }
mjr 38:091e511ce8a0 2365
mjr 76:7f5912b6340e 2366 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 2367 static void updateLwPort(int port)
mjr 38:091e511ce8a0 2368 {
mjr 76:7f5912b6340e 2369 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 2370 if (wizOn[port])
mjr 76:7f5912b6340e 2371 {
mjr 76:7f5912b6340e 2372 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 2373 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 2374 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 2375 // it on the next cycle.
mjr 76:7f5912b6340e 2376 int val = wizVal[port];
mjr 76:7f5912b6340e 2377 if (val <= 49)
mjr 76:7f5912b6340e 2378 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 2379 }
mjr 76:7f5912b6340e 2380 else
mjr 76:7f5912b6340e 2381 {
mjr 76:7f5912b6340e 2382 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 2383 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 2384 }
mjr 73:4e8ce0b18915 2385 }
mjr 73:4e8ce0b18915 2386
mjr 73:4e8ce0b18915 2387 // Turn off all outputs and restore everything to the default LedWiz
mjr 92:f264fbaa1be5 2388 // state. This sets all outputs to LedWiz profile value 48 (full
mjr 92:f264fbaa1be5 2389 // brightness) and switch state Off, and sets the LedWiz flash rate
mjr 92:f264fbaa1be5 2390 // to 2. This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2391 //
mjr 73:4e8ce0b18915 2392 void allOutputsOff()
mjr 73:4e8ce0b18915 2393 {
mjr 92:f264fbaa1be5 2394 // reset all outputs to OFF/48
mjr 73:4e8ce0b18915 2395 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2396 {
mjr 73:4e8ce0b18915 2397 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2398 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2399 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2400 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2401 }
mjr 73:4e8ce0b18915 2402
mjr 73:4e8ce0b18915 2403 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2404 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2405 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2406
mjr 73:4e8ce0b18915 2407 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2408 if (hc595 != 0)
mjr 38:091e511ce8a0 2409 hc595->update();
mjr 38:091e511ce8a0 2410 }
mjr 38:091e511ce8a0 2411
mjr 74:822a92bc11d2 2412 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2413 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2414 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2415 // address any port group.
mjr 74:822a92bc11d2 2416 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2417 {
mjr 76:7f5912b6340e 2418 // update all on/off states in the group
mjr 74:822a92bc11d2 2419 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2420 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2421 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2422 {
mjr 74:822a92bc11d2 2423 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2424 if (bit == 0x100) {
mjr 74:822a92bc11d2 2425 bit = 1;
mjr 74:822a92bc11d2 2426 ++imsg;
mjr 74:822a92bc11d2 2427 }
mjr 74:822a92bc11d2 2428
mjr 74:822a92bc11d2 2429 // set the on/off state
mjr 76:7f5912b6340e 2430 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2431
mjr 76:7f5912b6340e 2432 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2433 updateLwPort(port);
mjr 74:822a92bc11d2 2434 }
mjr 74:822a92bc11d2 2435
mjr 74:822a92bc11d2 2436 // set the flash speed for the port group
mjr 74:822a92bc11d2 2437 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2438 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2439
mjr 76:7f5912b6340e 2440 // update 74HC959 outputs
mjr 76:7f5912b6340e 2441 if (hc595 != 0)
mjr 76:7f5912b6340e 2442 hc595->update();
mjr 74:822a92bc11d2 2443 }
mjr 74:822a92bc11d2 2444
mjr 74:822a92bc11d2 2445 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2446 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2447 {
mjr 74:822a92bc11d2 2448 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2449 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2450 {
mjr 74:822a92bc11d2 2451 // get the value
mjr 74:822a92bc11d2 2452 uint8_t v = data[i];
mjr 74:822a92bc11d2 2453
mjr 74:822a92bc11d2 2454 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2455 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2456 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2457 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2458 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2459 // as such.
mjr 74:822a92bc11d2 2460 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2461 v = 48;
mjr 74:822a92bc11d2 2462
mjr 74:822a92bc11d2 2463 // store it
mjr 76:7f5912b6340e 2464 wizVal[port] = v;
mjr 76:7f5912b6340e 2465
mjr 76:7f5912b6340e 2466 // update the port
mjr 76:7f5912b6340e 2467 updateLwPort(port);
mjr 74:822a92bc11d2 2468 }
mjr 74:822a92bc11d2 2469
mjr 76:7f5912b6340e 2470 // update 74HC595 outputs
mjr 76:7f5912b6340e 2471 if (hc595 != 0)
mjr 76:7f5912b6340e 2472 hc595->update();
mjr 74:822a92bc11d2 2473 }
mjr 74:822a92bc11d2 2474
mjr 77:0b96f6867312 2475 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2476 //
mjr 77:0b96f6867312 2477 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2478 //
mjr 77:0b96f6867312 2479
mjr 77:0b96f6867312 2480 // receiver
mjr 77:0b96f6867312 2481 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2482
mjr 77:0b96f6867312 2483 // transmitter
mjr 77:0b96f6867312 2484 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2485
mjr 77:0b96f6867312 2486 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2487 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2488 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2489 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2490 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2491 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2492 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2493 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2494 // configuration slot n
mjr 77:0b96f6867312 2495 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2496
mjr 78:1e00b3fa11af 2497 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2498 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2499 // protocol.
mjr 78:1e00b3fa11af 2500 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2501
mjr 78:1e00b3fa11af 2502 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2503 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2504 // while waiting for the rest.
mjr 78:1e00b3fa11af 2505 static struct
mjr 78:1e00b3fa11af 2506 {
mjr 78:1e00b3fa11af 2507 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 2508 uint64_t code; // code
mjr 78:1e00b3fa11af 2509 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 2510 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 2511 } IRAdHocCmd;
mjr 88:98bce687e6c0 2512
mjr 77:0b96f6867312 2513
mjr 77:0b96f6867312 2514 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 2515 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 2516 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 2517 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 2518 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 2519 // amount of time.
mjr 77:0b96f6867312 2520 Timer IRTimer;
mjr 77:0b96f6867312 2521
mjr 77:0b96f6867312 2522 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 2523 // The states are:
mjr 77:0b96f6867312 2524 //
mjr 77:0b96f6867312 2525 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 2526 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 2527 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 2528 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 2529 //
mjr 77:0b96f6867312 2530 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 2531 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 2532 // received within a reasonable time.
mjr 77:0b96f6867312 2533 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 2534
mjr 77:0b96f6867312 2535 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 2536 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 2537 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 2538 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 2539 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 2540 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 2541 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 2542 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 2543 IRCommand learnedIRCode;
mjr 77:0b96f6867312 2544
mjr 78:1e00b3fa11af 2545 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 2546 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 2547 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 2548 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 2549 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 2550 // index; 0 represents no command.
mjr 77:0b96f6867312 2551 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 2552
mjr 77:0b96f6867312 2553 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 2554 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 2555 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 2556 // command we received.
mjr 77:0b96f6867312 2557 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 2558
mjr 77:0b96f6867312 2559 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 2560 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 2561 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 2562 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 2563 // distinct key press.
mjr 77:0b96f6867312 2564 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 2565
mjr 78:1e00b3fa11af 2566
mjr 77:0b96f6867312 2567 // initialize
mjr 77:0b96f6867312 2568 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 2569 {
mjr 77:0b96f6867312 2570 PinName pin;
mjr 77:0b96f6867312 2571
mjr 77:0b96f6867312 2572 // start the IR timer
mjr 77:0b96f6867312 2573 IRTimer.start();
mjr 77:0b96f6867312 2574
mjr 77:0b96f6867312 2575 // if there's a transmitter, set it up
mjr 77:0b96f6867312 2576 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 2577 {
mjr 77:0b96f6867312 2578 // no virtual buttons yet
mjr 77:0b96f6867312 2579 int nVirtualButtons = 0;
mjr 77:0b96f6867312 2580 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 2581
mjr 77:0b96f6867312 2582 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 2583 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2584 {
mjr 77:0b96f6867312 2585 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 2586 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 2587 }
mjr 77:0b96f6867312 2588
mjr 77:0b96f6867312 2589 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 2590 // real button inputs
mjr 77:0b96f6867312 2591 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 2592 {
mjr 77:0b96f6867312 2593 // get the button
mjr 77:0b96f6867312 2594 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 2595
mjr 77:0b96f6867312 2596 // check the unshifted button
mjr 77:0b96f6867312 2597 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 2598 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2599 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2600 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2601
mjr 77:0b96f6867312 2602 // check the shifted button
mjr 77:0b96f6867312 2603 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 2604 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2605 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2606 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2607 }
mjr 77:0b96f6867312 2608
mjr 77:0b96f6867312 2609 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 2610 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 2611 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 2612
mjr 77:0b96f6867312 2613 // create the transmitter
mjr 77:0b96f6867312 2614 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 2615
mjr 77:0b96f6867312 2616 // program the commands into the virtual button slots
mjr 77:0b96f6867312 2617 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2618 {
mjr 77:0b96f6867312 2619 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 2620 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 2621 if (vb != 0xFF)
mjr 77:0b96f6867312 2622 {
mjr 77:0b96f6867312 2623 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2624 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 2625 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 2626 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 2627 }
mjr 77:0b96f6867312 2628 }
mjr 77:0b96f6867312 2629 }
mjr 77:0b96f6867312 2630
mjr 77:0b96f6867312 2631 // if there's a receiver, set it up
mjr 77:0b96f6867312 2632 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 2633 {
mjr 77:0b96f6867312 2634 // create the receiver
mjr 77:0b96f6867312 2635 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 2636
mjr 77:0b96f6867312 2637 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 2638 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 2639 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 2640
mjr 77:0b96f6867312 2641 // enable it
mjr 77:0b96f6867312 2642 ir_rx->enable();
mjr 77:0b96f6867312 2643
mjr 77:0b96f6867312 2644 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 2645 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 2646 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 2647 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2648 {
mjr 77:0b96f6867312 2649 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2650 if (cb.protocol != 0
mjr 77:0b96f6867312 2651 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2652 {
mjr 77:0b96f6867312 2653 kbKeys = true;
mjr 77:0b96f6867312 2654 break;
mjr 77:0b96f6867312 2655 }
mjr 77:0b96f6867312 2656 }
mjr 77:0b96f6867312 2657 }
mjr 77:0b96f6867312 2658 }
mjr 77:0b96f6867312 2659
mjr 77:0b96f6867312 2660 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2661 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2662 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2663 {
mjr 77:0b96f6867312 2664 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2665 if (ir_tx != 0)
mjr 77:0b96f6867312 2666 {
mjr 77:0b96f6867312 2667 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2668 int slot = cmd - 1;
mjr 77:0b96f6867312 2669
mjr 77:0b96f6867312 2670 // press or release the virtual button
mjr 77:0b96f6867312 2671 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2672 }
mjr 77:0b96f6867312 2673 }
mjr 77:0b96f6867312 2674
mjr 78:1e00b3fa11af 2675 // Process IR input and output
mjr 77:0b96f6867312 2676 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2677 {
mjr 78:1e00b3fa11af 2678 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2679 if (ir_tx != 0)
mjr 77:0b96f6867312 2680 {
mjr 78:1e00b3fa11af 2681 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2682 // is ready to send, send it.
mjr 78:1e00b3fa11af 2683 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2684 {
mjr 78:1e00b3fa11af 2685 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2686 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2687 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2688 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2689
mjr 78:1e00b3fa11af 2690 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2691 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2692 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2693
mjr 78:1e00b3fa11af 2694 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2695 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2696 }
mjr 77:0b96f6867312 2697 }
mjr 78:1e00b3fa11af 2698
mjr 78:1e00b3fa11af 2699 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2700 if (ir_rx != 0)
mjr 77:0b96f6867312 2701 {
mjr 78:1e00b3fa11af 2702 // Time out any received command
mjr 78:1e00b3fa11af 2703 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2704 {
mjr 80:94dc2946871b 2705 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 2706 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 2707 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 2708 if (t > 200000)
mjr 78:1e00b3fa11af 2709 IRCommandIn = 0;
mjr 80:94dc2946871b 2710 else if (t > 50000)
mjr 78:1e00b3fa11af 2711 IRKeyGap = false;
mjr 78:1e00b3fa11af 2712 }
mjr 78:1e00b3fa11af 2713
mjr 78:1e00b3fa11af 2714 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2715 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2716 {
mjr 78:1e00b3fa11af 2717 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2718 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2719 // limit.
mjr 78:1e00b3fa11af 2720 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2721 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2722 int n;
mjr 78:1e00b3fa11af 2723 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2724
mjr 78:1e00b3fa11af 2725 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2726 if (n != 0)
mjr 78:1e00b3fa11af 2727 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2728
mjr 78:1e00b3fa11af 2729 // check for a command
mjr 78:1e00b3fa11af 2730 IRCommand c;
mjr 78:1e00b3fa11af 2731 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2732 {
mjr 78:1e00b3fa11af 2733 // check the current learning state
mjr 78:1e00b3fa11af 2734 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2735 {
mjr 78:1e00b3fa11af 2736 case 1:
mjr 78:1e00b3fa11af 2737 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2738 // This is it.
mjr 78:1e00b3fa11af 2739 learnedIRCode = c;
mjr 78:1e00b3fa11af 2740
mjr 78:1e00b3fa11af 2741 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2742 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2743 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2744 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2745 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2746 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2747 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2748 break;
mjr 78:1e00b3fa11af 2749
mjr 78:1e00b3fa11af 2750 case 2:
mjr 78:1e00b3fa11af 2751 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2752 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2753 //
mjr 78:1e00b3fa11af 2754 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2755 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2756 //
mjr 78:1e00b3fa11af 2757 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2758 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2759 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2760 // them.
mjr 78:1e00b3fa11af 2761 //
mjr 78:1e00b3fa11af 2762 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2763 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2764 // over.
mjr 78:1e00b3fa11af 2765 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2766 && c.hasDittos
mjr 78:1e00b3fa11af 2767 && c.ditto)
mjr 78:1e00b3fa11af 2768 {
mjr 78:1e00b3fa11af 2769 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2770 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2771 }
mjr 78:1e00b3fa11af 2772 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2773 && c.hasDittos
mjr 78:1e00b3fa11af 2774 && !c.ditto
mjr 78:1e00b3fa11af 2775 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2776 {
mjr 78:1e00b3fa11af 2777 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2778 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2779 // protocol supports them
mjr 78:1e00b3fa11af 2780 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2781 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2782 }
mjr 78:1e00b3fa11af 2783 else
mjr 78:1e00b3fa11af 2784 {
mjr 78:1e00b3fa11af 2785 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2786 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2787 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2788 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2789 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2790 }
mjr 78:1e00b3fa11af 2791 break;
mjr 78:1e00b3fa11af 2792 }
mjr 77:0b96f6867312 2793
mjr 78:1e00b3fa11af 2794 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2795 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2796 // learning mode.
mjr 78:1e00b3fa11af 2797 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2798 {
mjr 78:1e00b3fa11af 2799 // figure the flags:
mjr 78:1e00b3fa11af 2800 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2801 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2802 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2803 flags |= 0x02;
mjr 78:1e00b3fa11af 2804
mjr 78:1e00b3fa11af 2805 // report the code
mjr 78:1e00b3fa11af 2806 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2807
mjr 78:1e00b3fa11af 2808 // exit learning mode
mjr 78:1e00b3fa11af 2809 IRLearningMode = 0;
mjr 77:0b96f6867312 2810 }
mjr 77:0b96f6867312 2811 }
mjr 77:0b96f6867312 2812
mjr 78:1e00b3fa11af 2813 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2814 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2815 {
mjr 78:1e00b3fa11af 2816 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2817 // zero data elements
mjr 78:1e00b3fa11af 2818 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2819
mjr 78:1e00b3fa11af 2820
mjr 78:1e00b3fa11af 2821 // cancel learning mode
mjr 77:0b96f6867312 2822 IRLearningMode = 0;
mjr 77:0b96f6867312 2823 }
mjr 77:0b96f6867312 2824 }
mjr 78:1e00b3fa11af 2825 else
mjr 77:0b96f6867312 2826 {
mjr 78:1e00b3fa11af 2827 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2828 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2829 ir_rx->process();
mjr 78:1e00b3fa11af 2830
mjr 78:1e00b3fa11af 2831 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2832 // have been read.
mjr 78:1e00b3fa11af 2833 IRCommand c;
mjr 78:1e00b3fa11af 2834 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2835 {
mjr 78:1e00b3fa11af 2836 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2837 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2838 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2839 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2840 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2841 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2842 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2843 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2844 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2845 //
mjr 78:1e00b3fa11af 2846 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2847 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2848 // command.
mjr 78:1e00b3fa11af 2849 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2850 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2851 {
mjr 78:1e00b3fa11af 2852 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2853 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2854 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2855 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2856 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2857 if (c.ditto)
mjr 78:1e00b3fa11af 2858 {
mjr 78:1e00b3fa11af 2859 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2860 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2861 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2862 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2863 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2864 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2865 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2866 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2867 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2868 }
mjr 78:1e00b3fa11af 2869 else
mjr 78:1e00b3fa11af 2870 {
mjr 78:1e00b3fa11af 2871 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2872 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2873 // prior command.
mjr 78:1e00b3fa11af 2874 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2875 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2876 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2877
mjr 78:1e00b3fa11af 2878 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2879 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2880 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2881 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2882 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2883 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2884 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2885 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2886 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2887 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2888 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2889 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2890 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2891 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2892 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2893 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2894 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2895 autoRepeat =
mjr 78:1e00b3fa11af 2896 repeat
mjr 78:1e00b3fa11af 2897 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2898 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2899 }
mjr 78:1e00b3fa11af 2900 }
mjr 78:1e00b3fa11af 2901
mjr 78:1e00b3fa11af 2902 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2903 if (repeat)
mjr 78:1e00b3fa11af 2904 {
mjr 78:1e00b3fa11af 2905 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2906 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2907 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2908 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2909 // key press event.
mjr 78:1e00b3fa11af 2910 if (!autoRepeat)
mjr 78:1e00b3fa11af 2911 IRKeyGap = true;
mjr 78:1e00b3fa11af 2912
mjr 78:1e00b3fa11af 2913 // restart the key-up timer
mjr 78:1e00b3fa11af 2914 IRTimer.reset();
mjr 78:1e00b3fa11af 2915 }
mjr 78:1e00b3fa11af 2916 else if (c.ditto)
mjr 78:1e00b3fa11af 2917 {
mjr 78:1e00b3fa11af 2918 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2919 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2920 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2921 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2922 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2923 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2924 // a full command for a new key press.
mjr 78:1e00b3fa11af 2925 IRCommandIn = 0;
mjr 77:0b96f6867312 2926 }
mjr 77:0b96f6867312 2927 else
mjr 77:0b96f6867312 2928 {
mjr 78:1e00b3fa11af 2929 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2930 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2931 // the new command).
mjr 78:1e00b3fa11af 2932 IRCommandIn = 0;
mjr 77:0b96f6867312 2933
mjr 78:1e00b3fa11af 2934 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2935 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2936 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2937 {
mjr 78:1e00b3fa11af 2938 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2939 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2940 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2941 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2942 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2943 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2944 {
mjr 78:1e00b3fa11af 2945 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2946 // remember the starting time.
mjr 78:1e00b3fa11af 2947 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2948 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2949 IRTimer.reset();
mjr 78:1e00b3fa11af 2950
mjr 78:1e00b3fa11af 2951 // no need to keep searching
mjr 78:1e00b3fa11af 2952 break;
mjr 78:1e00b3fa11af 2953 }
mjr 77:0b96f6867312 2954 }
mjr 77:0b96f6867312 2955 }
mjr 77:0b96f6867312 2956 }
mjr 77:0b96f6867312 2957 }
mjr 77:0b96f6867312 2958 }
mjr 77:0b96f6867312 2959 }
mjr 77:0b96f6867312 2960
mjr 74:822a92bc11d2 2961
mjr 11:bd9da7088e6e 2962 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2963 //
mjr 11:bd9da7088e6e 2964 // Button input
mjr 11:bd9da7088e6e 2965 //
mjr 11:bd9da7088e6e 2966
mjr 18:5e890ebd0023 2967 // button state
mjr 18:5e890ebd0023 2968 struct ButtonState
mjr 18:5e890ebd0023 2969 {
mjr 38:091e511ce8a0 2970 ButtonState()
mjr 38:091e511ce8a0 2971 {
mjr 53:9b2611964afc 2972 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2973 virtState = 0;
mjr 53:9b2611964afc 2974 dbState = 0;
mjr 38:091e511ce8a0 2975 pulseState = 0;
mjr 53:9b2611964afc 2976 pulseTime = 0;
mjr 38:091e511ce8a0 2977 }
mjr 35:e959ffba78fd 2978
mjr 53:9b2611964afc 2979 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2980 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2981 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2982 //
mjr 53:9b2611964afc 2983 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2984 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2985 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2986 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2987 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2988 void virtPress(bool on)
mjr 53:9b2611964afc 2989 {
mjr 53:9b2611964afc 2990 // Increment or decrement the current state
mjr 53:9b2611964afc 2991 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2992 }
mjr 53:9b2611964afc 2993
mjr 53:9b2611964afc 2994 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2995 TinyDigitalIn di;
mjr 38:091e511ce8a0 2996
mjr 65:739875521aae 2997 // Time of last pulse state transition.
mjr 65:739875521aae 2998 //
mjr 65:739875521aae 2999 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 3000 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 3001 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 3002 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 3003 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 3004 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 3005 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 3006 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 3007 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 3008 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 3009 // This software system can't be fooled that way.)
mjr 65:739875521aae 3010 uint32_t pulseTime;
mjr 18:5e890ebd0023 3011
mjr 65:739875521aae 3012 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 3013 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 3014 uint8_t cfgIndex;
mjr 53:9b2611964afc 3015
mjr 53:9b2611964afc 3016 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 3017 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 3018 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 3019 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 3020 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 3021 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 3022 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 3023 // and physical source states.
mjr 53:9b2611964afc 3024 uint8_t virtState;
mjr 38:091e511ce8a0 3025
mjr 38:091e511ce8a0 3026 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 3027 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 3028 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 3029 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 3030 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 3031 uint8_t dbState;
mjr 38:091e511ce8a0 3032
mjr 65:739875521aae 3033 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 3034 uint8_t physState : 1;
mjr 65:739875521aae 3035
mjr 65:739875521aae 3036 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 3037 uint8_t logState : 1;
mjr 65:739875521aae 3038
mjr 79:682ae3171a08 3039 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 3040 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 3041 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 3042 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 3043 uint8_t prevLogState : 1;
mjr 65:739875521aae 3044
mjr 65:739875521aae 3045 // Pulse state
mjr 65:739875521aae 3046 //
mjr 65:739875521aae 3047 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 3048 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 3049 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 3050 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 3051 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 3052 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 3053 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 3054 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 3055 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 3056 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 3057 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 3058 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 3059 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 3060 //
mjr 38:091e511ce8a0 3061 // Pulse state:
mjr 38:091e511ce8a0 3062 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 3063 // 1 -> off
mjr 38:091e511ce8a0 3064 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 3065 // 3 -> on
mjr 38:091e511ce8a0 3066 // 4 -> transitioning on-off
mjr 65:739875521aae 3067 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 3068
mjr 65:739875521aae 3069 } __attribute__((packed));
mjr 65:739875521aae 3070
mjr 65:739875521aae 3071 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 3072 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 3073 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 3074
mjr 66:2e3583fbd2f4 3075 // Shift button state
mjr 66:2e3583fbd2f4 3076 struct
mjr 66:2e3583fbd2f4 3077 {
mjr 66:2e3583fbd2f4 3078 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 3079 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 3080 // 0 = not shifted
mjr 66:2e3583fbd2f4 3081 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 3082 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 3083 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 3084 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 3085 }
mjr 66:2e3583fbd2f4 3086 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 3087
mjr 38:091e511ce8a0 3088 // Button data
mjr 38:091e511ce8a0 3089 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 3090
mjr 38:091e511ce8a0 3091 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 3092 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 3093 // modifier keys.
mjr 38:091e511ce8a0 3094 struct
mjr 38:091e511ce8a0 3095 {
mjr 38:091e511ce8a0 3096 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 3097 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 3098 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 3099 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 3100 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 3101
mjr 38:091e511ce8a0 3102 // Media key state
mjr 38:091e511ce8a0 3103 struct
mjr 38:091e511ce8a0 3104 {
mjr 38:091e511ce8a0 3105 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 3106 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 3107 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 3108
mjr 79:682ae3171a08 3109 // button scan interrupt timer
mjr 79:682ae3171a08 3110 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 3111
mjr 38:091e511ce8a0 3112 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 3113 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 3114 void scanButtons()
mjr 38:091e511ce8a0 3115 {
mjr 79:682ae3171a08 3116 // schedule the next interrupt
mjr 79:682ae3171a08 3117 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 3118
mjr 38:091e511ce8a0 3119 // scan all button input pins
mjr 73:4e8ce0b18915 3120 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 3121 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 3122 {
mjr 73:4e8ce0b18915 3123 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 3124 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 3125 bs->dbState = db;
mjr 73:4e8ce0b18915 3126
mjr 73:4e8ce0b18915 3127 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 3128 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 3129 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 3130 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 3131 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 3132 db &= stable;
mjr 73:4e8ce0b18915 3133 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 3134 bs->physState = !db;
mjr 38:091e511ce8a0 3135 }
mjr 38:091e511ce8a0 3136 }
mjr 38:091e511ce8a0 3137
mjr 38:091e511ce8a0 3138 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 3139 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 3140 // in the physical button state.
mjr 38:091e511ce8a0 3141 Timer buttonTimer;
mjr 12:669df364a565 3142
mjr 65:739875521aae 3143 // Count a button during the initial setup scan
mjr 72:884207c0aab0 3144 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 3145 {
mjr 65:739875521aae 3146 // count it
mjr 65:739875521aae 3147 ++nButtons;
mjr 65:739875521aae 3148
mjr 67:c39e66c4e000 3149 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 3150 // keyboard interface
mjr 72:884207c0aab0 3151 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 3152 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 3153 kbKeys = true;
mjr 65:739875521aae 3154 }
mjr 65:739875521aae 3155
mjr 11:bd9da7088e6e 3156 // initialize the button inputs
mjr 35:e959ffba78fd 3157 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 3158 {
mjr 66:2e3583fbd2f4 3159 // presume no shift key
mjr 66:2e3583fbd2f4 3160 shiftButton.index = -1;
mjr 82:4f6209cb5c33 3161 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 3162
mjr 65:739875521aae 3163 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 3164 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 3165 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 3166 nButtons = 0;
mjr 65:739875521aae 3167 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 3168 {
mjr 65:739875521aae 3169 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 3170 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 3171 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 3172 }
mjr 65:739875521aae 3173
mjr 65:739875521aae 3174 // Count virtual buttons
mjr 65:739875521aae 3175
mjr 65:739875521aae 3176 // ZB Launch
mjr 65:739875521aae 3177 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 3178 {
mjr 65:739875521aae 3179 // valid - remember the live button index
mjr 65:739875521aae 3180 zblButtonIndex = nButtons;
mjr 65:739875521aae 3181
mjr 65:739875521aae 3182 // count it
mjr 72:884207c0aab0 3183 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 3184 }
mjr 65:739875521aae 3185
mjr 65:739875521aae 3186 // Allocate the live button slots
mjr 65:739875521aae 3187 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 3188
mjr 65:739875521aae 3189 // Configure the physical inputs
mjr 65:739875521aae 3190 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 3191 {
mjr 65:739875521aae 3192 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 3193 if (pin != NC)
mjr 65:739875521aae 3194 {
mjr 65:739875521aae 3195 // point back to the config slot for the keyboard data
mjr 65:739875521aae 3196 bs->cfgIndex = i;
mjr 65:739875521aae 3197
mjr 65:739875521aae 3198 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 3199 bs->di.assignPin(pin);
mjr 65:739875521aae 3200
mjr 65:739875521aae 3201 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 3202 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 3203 bs->pulseState = 1;
mjr 65:739875521aae 3204
mjr 66:2e3583fbd2f4 3205 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 3206 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 3207 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 3208 // config slots are left unused.
mjr 78:1e00b3fa11af 3209 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 3210 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 3211
mjr 65:739875521aae 3212 // advance to the next button
mjr 65:739875521aae 3213 ++bs;
mjr 65:739875521aae 3214 }
mjr 65:739875521aae 3215 }
mjr 65:739875521aae 3216
mjr 53:9b2611964afc 3217 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 3218 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 3219 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 3220 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 3221
mjr 53:9b2611964afc 3222 // ZB Launch Ball button
mjr 65:739875521aae 3223 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 3224 {
mjr 65:739875521aae 3225 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 3226 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 3227 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 3228 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 3229 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 3230 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 3231 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 3232 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 3233
mjr 66:2e3583fbd2f4 3234 // advance to the next button
mjr 65:739875521aae 3235 ++bs;
mjr 11:bd9da7088e6e 3236 }
mjr 12:669df364a565 3237
mjr 38:091e511ce8a0 3238 // start the button scan thread
mjr 79:682ae3171a08 3239 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 3240
mjr 38:091e511ce8a0 3241 // start the button state transition timer
mjr 12:669df364a565 3242 buttonTimer.start();
mjr 11:bd9da7088e6e 3243 }
mjr 11:bd9da7088e6e 3244
mjr 67:c39e66c4e000 3245 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 3246 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 3247 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 3248 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 3249 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 3250 //
mjr 67:c39e66c4e000 3251 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 3252 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 3253 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 3254 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 3255 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 3256 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 3257 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 3258 //
mjr 67:c39e66c4e000 3259 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 3260 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 3261 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 3262 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 3263 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 3264 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 3265 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 3266 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 3267 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 3268 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 3269 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 3270 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 3271 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 3272 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 3273 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 3274 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 3275 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 3276 };
mjr 77:0b96f6867312 3277
mjr 77:0b96f6867312 3278 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 3279 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 3280 // states of the button iputs.
mjr 77:0b96f6867312 3281 struct KeyState
mjr 77:0b96f6867312 3282 {
mjr 77:0b96f6867312 3283 KeyState()
mjr 77:0b96f6867312 3284 {
mjr 77:0b96f6867312 3285 // zero all members
mjr 77:0b96f6867312 3286 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 3287 }
mjr 77:0b96f6867312 3288
mjr 77:0b96f6867312 3289 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 3290 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 3291 uint8_t mediakeys;
mjr 77:0b96f6867312 3292
mjr 77:0b96f6867312 3293 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 3294 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 3295 // USBJoystick.cpp).
mjr 77:0b96f6867312 3296 uint8_t modkeys;
mjr 77:0b96f6867312 3297
mjr 77:0b96f6867312 3298 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 3299 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 3300 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 3301 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 3302 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 3303 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 3304 uint8_t keys[7];
mjr 77:0b96f6867312 3305
mjr 77:0b96f6867312 3306 // number of valid entries in keys[] array
mjr 77:0b96f6867312 3307 int nkeys;
mjr 77:0b96f6867312 3308
mjr 77:0b96f6867312 3309 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 3310 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 3311 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 3312 uint32_t js;
mjr 77:0b96f6867312 3313
mjr 77:0b96f6867312 3314
mjr 77:0b96f6867312 3315 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 3316 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 3317 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 3318 {
mjr 77:0b96f6867312 3319 // add the key according to the type
mjr 77:0b96f6867312 3320 switch (typ)
mjr 77:0b96f6867312 3321 {
mjr 77:0b96f6867312 3322 case BtnTypeJoystick:
mjr 77:0b96f6867312 3323 // joystick button
mjr 77:0b96f6867312 3324 js |= (1 << (val - 1));
mjr 77:0b96f6867312 3325 break;
mjr 77:0b96f6867312 3326
mjr 77:0b96f6867312 3327 case BtnTypeKey:
mjr 77:0b96f6867312 3328 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 3329 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 3330 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 3331 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 3332 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 3333 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 3334 // explicitly using media keys if desired.
mjr 77:0b96f6867312 3335 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 3336 {
mjr 77:0b96f6867312 3337 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 3338 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 3339 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 3340 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 3341 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 3342 }
mjr 77:0b96f6867312 3343 else
mjr 77:0b96f6867312 3344 {
mjr 77:0b96f6867312 3345 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 3346 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 3347 // apply, add the key to the key array.
mjr 77:0b96f6867312 3348 if (nkeys < 7)
mjr 77:0b96f6867312 3349 {
mjr 77:0b96f6867312 3350 bool found = false;
mjr 77:0b96f6867312 3351 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 3352 {
mjr 77:0b96f6867312 3353 if (keys[i] == val)
mjr 77:0b96f6867312 3354 {
mjr 77:0b96f6867312 3355 found = true;
mjr 77:0b96f6867312 3356 break;
mjr 77:0b96f6867312 3357 }
mjr 77:0b96f6867312 3358 }
mjr 77:0b96f6867312 3359 if (!found)
mjr 77:0b96f6867312 3360 keys[nkeys++] = val;
mjr 77:0b96f6867312 3361 }
mjr 77:0b96f6867312 3362 }
mjr 77:0b96f6867312 3363 break;
mjr 77:0b96f6867312 3364
mjr 77:0b96f6867312 3365 case BtnTypeMedia:
mjr 77:0b96f6867312 3366 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 3367 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 3368 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 3369 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 3370 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 3371 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 3372 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 3373 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 3374 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 3375 break;
mjr 77:0b96f6867312 3376 }
mjr 77:0b96f6867312 3377 }
mjr 77:0b96f6867312 3378 };
mjr 67:c39e66c4e000 3379
mjr 67:c39e66c4e000 3380
mjr 38:091e511ce8a0 3381 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 3382 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 3383 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 3384 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 3385 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 3386 {
mjr 77:0b96f6867312 3387 // key state
mjr 77:0b96f6867312 3388 KeyState ks;
mjr 38:091e511ce8a0 3389
mjr 38:091e511ce8a0 3390 // calculate the time since the last run
mjr 53:9b2611964afc 3391 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 3392 buttonTimer.reset();
mjr 66:2e3583fbd2f4 3393
mjr 66:2e3583fbd2f4 3394 // check the shift button state
mjr 66:2e3583fbd2f4 3395 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 3396 {
mjr 78:1e00b3fa11af 3397 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 3398 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 3399
mjr 78:1e00b3fa11af 3400 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 3401 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3402 {
mjr 66:2e3583fbd2f4 3403 case 0:
mjr 78:1e00b3fa11af 3404 default:
mjr 78:1e00b3fa11af 3405 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 3406 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 3407 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 3408 switch (shiftButton.state)
mjr 78:1e00b3fa11af 3409 {
mjr 78:1e00b3fa11af 3410 case 0:
mjr 78:1e00b3fa11af 3411 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 3412 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 3413 if (sbs->physState)
mjr 78:1e00b3fa11af 3414 shiftButton.state = 1;
mjr 78:1e00b3fa11af 3415 break;
mjr 78:1e00b3fa11af 3416
mjr 78:1e00b3fa11af 3417 case 1:
mjr 78:1e00b3fa11af 3418 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 3419 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 3420 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 3421 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 3422 // pulse event.
mjr 78:1e00b3fa11af 3423 if (!sbs->physState)
mjr 78:1e00b3fa11af 3424 {
mjr 78:1e00b3fa11af 3425 shiftButton.state = 3;
mjr 78:1e00b3fa11af 3426 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 3427 }
mjr 78:1e00b3fa11af 3428 break;
mjr 78:1e00b3fa11af 3429
mjr 78:1e00b3fa11af 3430 case 2:
mjr 78:1e00b3fa11af 3431 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 3432 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 3433 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 3434 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 3435 // suppressed.
mjr 78:1e00b3fa11af 3436 if (!sbs->physState)
mjr 78:1e00b3fa11af 3437 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3438 break;
mjr 78:1e00b3fa11af 3439
mjr 78:1e00b3fa11af 3440 case 3:
mjr 78:1e00b3fa11af 3441 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 3442 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 3443 // has expired.
mjr 78:1e00b3fa11af 3444 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 3445 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 3446 else
mjr 78:1e00b3fa11af 3447 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3448 break;
mjr 78:1e00b3fa11af 3449 }
mjr 66:2e3583fbd2f4 3450 break;
mjr 66:2e3583fbd2f4 3451
mjr 66:2e3583fbd2f4 3452 case 1:
mjr 78:1e00b3fa11af 3453 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 3454 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 3455 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 3456 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 3457 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 3458 break;
mjr 66:2e3583fbd2f4 3459 }
mjr 66:2e3583fbd2f4 3460 }
mjr 38:091e511ce8a0 3461
mjr 11:bd9da7088e6e 3462 // scan the button list
mjr 18:5e890ebd0023 3463 ButtonState *bs = buttonState;
mjr 65:739875521aae 3464 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 3465 {
mjr 77:0b96f6867312 3466 // get the config entry for the button
mjr 77:0b96f6867312 3467 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 3468
mjr 66:2e3583fbd2f4 3469 // Check the button type:
mjr 66:2e3583fbd2f4 3470 // - shift button
mjr 66:2e3583fbd2f4 3471 // - pulsed button
mjr 66:2e3583fbd2f4 3472 // - regular button
mjr 66:2e3583fbd2f4 3473 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 3474 {
mjr 78:1e00b3fa11af 3475 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 3476 // depends on the mode.
mjr 78:1e00b3fa11af 3477 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3478 {
mjr 78:1e00b3fa11af 3479 case 0:
mjr 78:1e00b3fa11af 3480 default:
mjr 78:1e00b3fa11af 3481 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 3482 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 3483 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 3484 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 3485 break;
mjr 78:1e00b3fa11af 3486
mjr 78:1e00b3fa11af 3487 case 1:
mjr 78:1e00b3fa11af 3488 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 3489 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 3490 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 3491 break;
mjr 66:2e3583fbd2f4 3492 }
mjr 66:2e3583fbd2f4 3493 }
mjr 66:2e3583fbd2f4 3494 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 3495 {
mjr 38:091e511ce8a0 3496 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 3497 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 3498 {
mjr 53:9b2611964afc 3499 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 3500 bs->pulseTime -= dt;
mjr 53:9b2611964afc 3501 }
mjr 53:9b2611964afc 3502 else
mjr 53:9b2611964afc 3503 {
mjr 53:9b2611964afc 3504 // pulse time expired - check for a state change
mjr 53:9b2611964afc 3505 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 3506 switch (bs->pulseState)
mjr 18:5e890ebd0023 3507 {
mjr 38:091e511ce8a0 3508 case 1:
mjr 38:091e511ce8a0 3509 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 3510 if (bs->physState)
mjr 53:9b2611964afc 3511 {
mjr 38:091e511ce8a0 3512 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3513 bs->pulseState = 2;
mjr 53:9b2611964afc 3514 bs->logState = 1;
mjr 38:091e511ce8a0 3515 }
mjr 38:091e511ce8a0 3516 break;
mjr 18:5e890ebd0023 3517
mjr 38:091e511ce8a0 3518 case 2:
mjr 38:091e511ce8a0 3519 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 3520 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 3521 // change in state in the logical button
mjr 38:091e511ce8a0 3522 bs->pulseState = 3;
mjr 38:091e511ce8a0 3523 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3524 bs->logState = 0;
mjr 38:091e511ce8a0 3525 break;
mjr 38:091e511ce8a0 3526
mjr 38:091e511ce8a0 3527 case 3:
mjr 38:091e511ce8a0 3528 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 3529 if (!bs->physState)
mjr 53:9b2611964afc 3530 {
mjr 38:091e511ce8a0 3531 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3532 bs->pulseState = 4;
mjr 53:9b2611964afc 3533 bs->logState = 1;
mjr 38:091e511ce8a0 3534 }
mjr 38:091e511ce8a0 3535 break;
mjr 38:091e511ce8a0 3536
mjr 38:091e511ce8a0 3537 case 4:
mjr 38:091e511ce8a0 3538 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 3539 bs->pulseState = 1;
mjr 38:091e511ce8a0 3540 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3541 bs->logState = 0;
mjr 38:091e511ce8a0 3542 break;
mjr 18:5e890ebd0023 3543 }
mjr 18:5e890ebd0023 3544 }
mjr 38:091e511ce8a0 3545 }
mjr 38:091e511ce8a0 3546 else
mjr 38:091e511ce8a0 3547 {
mjr 38:091e511ce8a0 3548 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 3549 bs->logState = bs->physState;
mjr 38:091e511ce8a0 3550 }
mjr 77:0b96f6867312 3551
mjr 77:0b96f6867312 3552 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 3553 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 3554 //
mjr 78:1e00b3fa11af 3555 // - the shift button is down, AND
mjr 78:1e00b3fa11af 3556 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 3557 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 3558 //
mjr 78:1e00b3fa11af 3559 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 3560 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 3561 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 3562 //
mjr 78:1e00b3fa11af 3563 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 3564 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 3565 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 3566 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 3567 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 3568 bool useShift =
mjr 77:0b96f6867312 3569 (shiftButton.state != 0
mjr 78:1e00b3fa11af 3570 && shiftButton.index != i
mjr 77:0b96f6867312 3571 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 3572 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 3573 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 3574
mjr 77:0b96f6867312 3575 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 3576 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 3577 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 3578 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 3579 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 3580 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 3581 shiftButton.state = 2;
mjr 35:e959ffba78fd 3582
mjr 38:091e511ce8a0 3583 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 3584 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 3585 {
mjr 77:0b96f6867312 3586 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 3587 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 3588 {
mjr 77:0b96f6867312 3589 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 3590 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 3591 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 3592 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 3593 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 3594 // the night mode state.
mjr 77:0b96f6867312 3595 //
mjr 77:0b96f6867312 3596 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 3597 // mode. Shifting only works for toggle mode.
mjr 82:4f6209cb5c33 3598 if ((cfg.nightMode.flags & 0x01) != 0)
mjr 53:9b2611964afc 3599 {
mjr 77:0b96f6867312 3600 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 3601 // current switch state.
mjr 53:9b2611964afc 3602 setNightMode(bs->logState);
mjr 53:9b2611964afc 3603 }
mjr 82:4f6209cb5c33 3604 else if (bs->logState)
mjr 53:9b2611964afc 3605 {
mjr 77:0b96f6867312 3606 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 3607 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 3608 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 3609 // OFF to ON.
mjr 66:2e3583fbd2f4 3610 //
mjr 77:0b96f6867312 3611 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 3612 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 3613 // button.
mjr 77:0b96f6867312 3614 bool pressed;
mjr 98:4df3c0f7e707 3615 if (shiftButton.index == i)
mjr 98:4df3c0f7e707 3616 {
mjr 98:4df3c0f7e707 3617 // This button is both the Shift button AND the Night
mjr 98:4df3c0f7e707 3618 // Mode button. This is a special case in that the
mjr 98:4df3c0f7e707 3619 // Shift status is irrelevant, because it's obviously
mjr 98:4df3c0f7e707 3620 // identical to the Night Mode status. So it doesn't
mjr 98:4df3c0f7e707 3621 // matter whether or not the Night Mode button has the
mjr 98:4df3c0f7e707 3622 // shifted flags; the raw button state is all that
mjr 98:4df3c0f7e707 3623 // counts in this case.
mjr 98:4df3c0f7e707 3624 pressed = true;
mjr 98:4df3c0f7e707 3625 }
mjr 98:4df3c0f7e707 3626 else if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 3627 {
mjr 77:0b96f6867312 3628 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 3629 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 3630 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 3631 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 3632 }
mjr 77:0b96f6867312 3633 else
mjr 77:0b96f6867312 3634 {
mjr 77:0b96f6867312 3635 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 3636 // regular unshifted button. The button press only
mjr 77:0b96f6867312 3637 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 3638 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 3639 }
mjr 66:2e3583fbd2f4 3640
mjr 66:2e3583fbd2f4 3641 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 3642 // toggle night mode
mjr 66:2e3583fbd2f4 3643 if (pressed)
mjr 53:9b2611964afc 3644 toggleNightMode();
mjr 53:9b2611964afc 3645 }
mjr 35:e959ffba78fd 3646 }
mjr 38:091e511ce8a0 3647
mjr 77:0b96f6867312 3648 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 3649 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 3650 if (irc != 0)
mjr 77:0b96f6867312 3651 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 3652
mjr 38:091e511ce8a0 3653 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 3654 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 3655 }
mjr 38:091e511ce8a0 3656
mjr 53:9b2611964afc 3657 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 3658 // key state list
mjr 53:9b2611964afc 3659 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 3660 {
mjr 70:9f58735a1732 3661 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 3662 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 3663 uint8_t typ, val;
mjr 77:0b96f6867312 3664 if (useShift)
mjr 66:2e3583fbd2f4 3665 {
mjr 77:0b96f6867312 3666 typ = bc->typ2;
mjr 77:0b96f6867312 3667 val = bc->val2;
mjr 66:2e3583fbd2f4 3668 }
mjr 77:0b96f6867312 3669 else
mjr 77:0b96f6867312 3670 {
mjr 77:0b96f6867312 3671 typ = bc->typ;
mjr 77:0b96f6867312 3672 val = bc->val;
mjr 77:0b96f6867312 3673 }
mjr 77:0b96f6867312 3674
mjr 70:9f58735a1732 3675 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 3676 // the keyboard or joystick event.
mjr 77:0b96f6867312 3677 ks.addKey(typ, val);
mjr 18:5e890ebd0023 3678 }
mjr 11:bd9da7088e6e 3679 }
mjr 77:0b96f6867312 3680
mjr 77:0b96f6867312 3681 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 3682 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 3683 // the IR key.
mjr 77:0b96f6867312 3684 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 3685 {
mjr 77:0b96f6867312 3686 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 3687 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 3688 }
mjr 77:0b96f6867312 3689
mjr 77:0b96f6867312 3690 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 3691 // key state variables to reflect the new state.
mjr 77:0b96f6867312 3692
mjr 77:0b96f6867312 3693 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 3694 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 3695 jsButtons = ks.js;
mjr 77:0b96f6867312 3696
mjr 77:0b96f6867312 3697 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 3698 // something changes)
mjr 77:0b96f6867312 3699 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 3700 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 3701 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 3702 {
mjr 35:e959ffba78fd 3703 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3704 kbState.changed = true;
mjr 77:0b96f6867312 3705 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 3706 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 3707 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 3708 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 3709 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 3710 }
mjr 35:e959ffba78fd 3711 else {
mjr 35:e959ffba78fd 3712 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 3713 kbState.nkeys = 6;
mjr 35:e959ffba78fd 3714 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 3715 }
mjr 35:e959ffba78fd 3716 }
mjr 35:e959ffba78fd 3717
mjr 77:0b96f6867312 3718 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 3719 // something changes)
mjr 77:0b96f6867312 3720 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 3721 {
mjr 77:0b96f6867312 3722 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3723 mediaState.changed = true;
mjr 77:0b96f6867312 3724 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 3725 }
mjr 11:bd9da7088e6e 3726 }
mjr 11:bd9da7088e6e 3727
mjr 73:4e8ce0b18915 3728 // Send a button status report
mjr 73:4e8ce0b18915 3729 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 3730 {
mjr 73:4e8ce0b18915 3731 // start with all buttons off
mjr 73:4e8ce0b18915 3732 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 3733 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 3734
mjr 73:4e8ce0b18915 3735 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 3736 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 3737 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 3738 {
mjr 73:4e8ce0b18915 3739 // get the physical state
mjr 73:4e8ce0b18915 3740 int b = bs->physState;
mjr 73:4e8ce0b18915 3741
mjr 73:4e8ce0b18915 3742 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 3743 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 3744 int si = idx / 8;
mjr 73:4e8ce0b18915 3745 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 3746 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3747 }
mjr 73:4e8ce0b18915 3748
mjr 73:4e8ce0b18915 3749 // send the report
mjr 73:4e8ce0b18915 3750 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3751 }
mjr 73:4e8ce0b18915 3752
mjr 5:a70c0bce770d 3753 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3754 //
mjr 5:a70c0bce770d 3755 // Customization joystick subbclass
mjr 5:a70c0bce770d 3756 //
mjr 5:a70c0bce770d 3757
mjr 5:a70c0bce770d 3758 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3759 {
mjr 5:a70c0bce770d 3760 public:
mjr 35:e959ffba78fd 3761 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 90:aa4e571da8e8 3762 bool waitForConnect, bool enableJoystick, int axisFormat, bool useKB)
mjr 90:aa4e571da8e8 3763 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, axisFormat, useKB)
mjr 5:a70c0bce770d 3764 {
mjr 54:fd77a6b2f76c 3765 sleeping_ = false;
mjr 54:fd77a6b2f76c 3766 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3767 timer_.start();
mjr 54:fd77a6b2f76c 3768 }
mjr 54:fd77a6b2f76c 3769
mjr 54:fd77a6b2f76c 3770 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3771 void diagFlash()
mjr 54:fd77a6b2f76c 3772 {
mjr 54:fd77a6b2f76c 3773 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3774 {
mjr 54:fd77a6b2f76c 3775 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3776 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3777 {
mjr 54:fd77a6b2f76c 3778 // short red flash
mjr 54:fd77a6b2f76c 3779 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3780 wait_us(50000);
mjr 54:fd77a6b2f76c 3781 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3782 wait_us(50000);
mjr 54:fd77a6b2f76c 3783 }
mjr 54:fd77a6b2f76c 3784 }
mjr 5:a70c0bce770d 3785 }
mjr 5:a70c0bce770d 3786
mjr 5:a70c0bce770d 3787 // are we connected?
mjr 5:a70c0bce770d 3788 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3789
mjr 54:fd77a6b2f76c 3790 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3791 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3792 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3793 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3794 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3795
mjr 54:fd77a6b2f76c 3796 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3797 //
mjr 54:fd77a6b2f76c 3798 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3799 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3800 // other way.
mjr 54:fd77a6b2f76c 3801 //
mjr 54:fd77a6b2f76c 3802 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3803 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3804 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3805 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3806 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3807 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3808 //
mjr 54:fd77a6b2f76c 3809 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3810 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3811 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3812 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3813 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3814 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3815 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3816 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3817 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3818 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3819 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3820 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3821 // is effectively dead.
mjr 54:fd77a6b2f76c 3822 //
mjr 54:fd77a6b2f76c 3823 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3824 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3825 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3826 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3827 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3828 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3829 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3830 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3831 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3832 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3833 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3834 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3835 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3836 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3837 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3838 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3839 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3840 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3841 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3842 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3843 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3844 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3845 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3846 // a disconnect.
mjr 54:fd77a6b2f76c 3847 //
mjr 54:fd77a6b2f76c 3848 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3849 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3850 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3851 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3852 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3853 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3854 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3855 //
mjr 54:fd77a6b2f76c 3856 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3857 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3858 //
mjr 54:fd77a6b2f76c 3859 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3860 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3861 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3862 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3863 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3864 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3865 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3866 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3867 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3868 // reliable in practice.
mjr 54:fd77a6b2f76c 3869 //
mjr 54:fd77a6b2f76c 3870 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3871 //
mjr 54:fd77a6b2f76c 3872 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3873 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3874 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3875 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3876 // return.
mjr 54:fd77a6b2f76c 3877 //
mjr 54:fd77a6b2f76c 3878 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3879 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3880 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3881 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3882 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3883 //
mjr 54:fd77a6b2f76c 3884 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3885 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3886 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3887 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3888 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3889 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3890 //
mjr 54:fd77a6b2f76c 3891 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3892 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3893 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3894 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3895 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3896 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3897 // freezes over.
mjr 54:fd77a6b2f76c 3898 //
mjr 54:fd77a6b2f76c 3899 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3900 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3901 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3902 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3903 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3904 void recoverConnection()
mjr 54:fd77a6b2f76c 3905 {
mjr 54:fd77a6b2f76c 3906 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3907 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3908 {
mjr 54:fd77a6b2f76c 3909 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3910 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 3911 {
mjr 54:fd77a6b2f76c 3912 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 3913 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 3914 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 3915 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 3916 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 3917 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 3918 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 3919 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 3920 __disable_irq();
mjr 54:fd77a6b2f76c 3921 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 3922 {
mjr 54:fd77a6b2f76c 3923 connect(false);
mjr 54:fd77a6b2f76c 3924 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3925 done = true;
mjr 54:fd77a6b2f76c 3926 }
mjr 54:fd77a6b2f76c 3927 __enable_irq();
mjr 54:fd77a6b2f76c 3928 }
mjr 54:fd77a6b2f76c 3929 }
mjr 54:fd77a6b2f76c 3930 }
mjr 5:a70c0bce770d 3931
mjr 5:a70c0bce770d 3932 protected:
mjr 54:fd77a6b2f76c 3933 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 3934 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 3935 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 3936 //
mjr 54:fd77a6b2f76c 3937 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 3938 //
mjr 54:fd77a6b2f76c 3939 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 3940 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 3941 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 3942 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 3943 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 3944 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 3945 {
mjr 54:fd77a6b2f76c 3946 // note the new state
mjr 54:fd77a6b2f76c 3947 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 3948
mjr 54:fd77a6b2f76c 3949 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 3950 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 3951 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 3952 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 3953 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 3954 {
mjr 54:fd77a6b2f76c 3955 disconnect();
mjr 54:fd77a6b2f76c 3956 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 3957 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 3958 }
mjr 54:fd77a6b2f76c 3959 }
mjr 54:fd77a6b2f76c 3960
mjr 54:fd77a6b2f76c 3961 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 3962 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 3963
mjr 54:fd77a6b2f76c 3964 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 3965 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 3966
mjr 54:fd77a6b2f76c 3967 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 3968 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 3969
mjr 54:fd77a6b2f76c 3970 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 3971 Timer timer_;
mjr 5:a70c0bce770d 3972 };
mjr 5:a70c0bce770d 3973
mjr 5:a70c0bce770d 3974 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3975 //
mjr 5:a70c0bce770d 3976 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 3977 //
mjr 5:a70c0bce770d 3978
mjr 5:a70c0bce770d 3979 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 3980 //
mjr 5:a70c0bce770d 3981 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 3982 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 3983 // automatic calibration.
mjr 5:a70c0bce770d 3984 //
mjr 77:0b96f6867312 3985 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 3986 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 3987 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 3988 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 3989 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 3990 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 3991 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 3992 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 3993 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 3994 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 3995 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 3996 //
mjr 77:0b96f6867312 3997 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 3998 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 3999 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 4000 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 4001 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 4002 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 4003 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 4004 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 4005 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 4006 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 4007 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 4008 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 4009 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 4010 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 4011 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 4012 // rather than change it across the board.
mjr 5:a70c0bce770d 4013 //
mjr 6:cc35eb643e8f 4014 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 4015 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 4016 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 4017 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 4018 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 4019 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 4020 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 4021 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 4022 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 4023 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 4024 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 4025 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 4026 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 4027 // of nudging, say).
mjr 5:a70c0bce770d 4028 //
mjr 5:a70c0bce770d 4029
mjr 17:ab3cec0c8bf4 4030 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 4031 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 4032
mjr 17:ab3cec0c8bf4 4033 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 4034 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 4035 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 4036
mjr 17:ab3cec0c8bf4 4037 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 4038 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 4039 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 4040 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 4041
mjr 17:ab3cec0c8bf4 4042
mjr 6:cc35eb643e8f 4043 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 4044 struct AccHist
mjr 5:a70c0bce770d 4045 {
mjr 77:0b96f6867312 4046 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 4047 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 4048 {
mjr 6:cc35eb643e8f 4049 // save the raw position
mjr 6:cc35eb643e8f 4050 this->x = x;
mjr 6:cc35eb643e8f 4051 this->y = y;
mjr 77:0b96f6867312 4052 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 4053 }
mjr 6:cc35eb643e8f 4054
mjr 6:cc35eb643e8f 4055 // reading for this entry
mjr 77:0b96f6867312 4056 int x, y;
mjr 77:0b96f6867312 4057
mjr 77:0b96f6867312 4058 // (distance from previous entry) squared
mjr 77:0b96f6867312 4059 int dsq;
mjr 5:a70c0bce770d 4060
mjr 6:cc35eb643e8f 4061 // total and count of samples averaged over this period
mjr 77:0b96f6867312 4062 int xtot, ytot;
mjr 6:cc35eb643e8f 4063 int cnt;
mjr 6:cc35eb643e8f 4064
mjr 77:0b96f6867312 4065 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 4066 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 4067 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 4068 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 4069
mjr 77:0b96f6867312 4070 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 4071 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 4072 };
mjr 5:a70c0bce770d 4073
mjr 5:a70c0bce770d 4074 // accelerometer wrapper class
mjr 3:3514575d4f86 4075 class Accel
mjr 3:3514575d4f86 4076 {
mjr 3:3514575d4f86 4077 public:
mjr 78:1e00b3fa11af 4078 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin,
mjr 78:1e00b3fa11af 4079 int range, int autoCenterMode)
mjr 77:0b96f6867312 4080 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 4081 {
mjr 5:a70c0bce770d 4082 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 4083 irqPin_ = irqPin;
mjr 77:0b96f6867312 4084
mjr 77:0b96f6867312 4085 // remember the range
mjr 77:0b96f6867312 4086 range_ = range;
mjr 78:1e00b3fa11af 4087
mjr 78:1e00b3fa11af 4088 // set the auto-centering mode
mjr 78:1e00b3fa11af 4089 setAutoCenterMode(autoCenterMode);
mjr 78:1e00b3fa11af 4090
mjr 78:1e00b3fa11af 4091 // no manual centering request has been received
mjr 78:1e00b3fa11af 4092 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 4093
mjr 5:a70c0bce770d 4094 // reset and initialize
mjr 5:a70c0bce770d 4095 reset();
mjr 5:a70c0bce770d 4096 }
mjr 5:a70c0bce770d 4097
mjr 78:1e00b3fa11af 4098 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 4099 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 4100 // as soon as we have enough data.
mjr 78:1e00b3fa11af 4101 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 4102
mjr 78:1e00b3fa11af 4103 // set the auto-centering mode
mjr 78:1e00b3fa11af 4104 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 4105 {
mjr 78:1e00b3fa11af 4106 // remember the mode
mjr 78:1e00b3fa11af 4107 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 4108
mjr 78:1e00b3fa11af 4109 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 4110 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 4111 if (mode == 0)
mjr 78:1e00b3fa11af 4112 {
mjr 78:1e00b3fa11af 4113 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 4114 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 4115 }
mjr 78:1e00b3fa11af 4116 else if (mode <= 60)
mjr 78:1e00b3fa11af 4117 {
mjr 78:1e00b3fa11af 4118 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 4119 // interval is 1/5 of this
mjr 78:1e00b3fa11af 4120 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 4121 }
mjr 78:1e00b3fa11af 4122 else
mjr 78:1e00b3fa11af 4123 {
mjr 78:1e00b3fa11af 4124 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 4125 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 4126 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 4127 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 4128 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 4129 // includes recent data.
mjr 78:1e00b3fa11af 4130 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 4131 }
mjr 78:1e00b3fa11af 4132 }
mjr 78:1e00b3fa11af 4133
mjr 5:a70c0bce770d 4134 void reset()
mjr 5:a70c0bce770d 4135 {
mjr 6:cc35eb643e8f 4136 // clear the center point
mjr 77:0b96f6867312 4137 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 4138
mjr 77:0b96f6867312 4139 // start the auto-centering timer
mjr 5:a70c0bce770d 4140 tCenter_.start();
mjr 5:a70c0bce770d 4141 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 4142
mjr 5:a70c0bce770d 4143 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 4144 mma_.init();
mjr 77:0b96f6867312 4145
mjr 77:0b96f6867312 4146 // set the range
mjr 77:0b96f6867312 4147 mma_.setRange(
mjr 77:0b96f6867312 4148 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 4149 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 4150 2);
mjr 6:cc35eb643e8f 4151
mjr 77:0b96f6867312 4152 // set the average accumulators to zero
mjr 77:0b96f6867312 4153 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 4154 nSum_ = 0;
mjr 3:3514575d4f86 4155
mjr 3:3514575d4f86 4156 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 4157 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 4158 }
mjr 3:3514575d4f86 4159
mjr 77:0b96f6867312 4160 void poll()
mjr 76:7f5912b6340e 4161 {
mjr 77:0b96f6867312 4162 // read samples until we clear the FIFO
mjr 77:0b96f6867312 4163 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 4164 {
mjr 77:0b96f6867312 4165 int x, y, z;
mjr 77:0b96f6867312 4166 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 4167
mjr 77:0b96f6867312 4168 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 4169 xSum_ += (x - cx_);
mjr 77:0b96f6867312 4170 ySum_ += (y - cy_);
mjr 77:0b96f6867312 4171 ++nSum_;
mjr 77:0b96f6867312 4172
mjr 77:0b96f6867312 4173 // store the updates
mjr 77:0b96f6867312 4174 ax_ = x;
mjr 77:0b96f6867312 4175 ay_ = y;
mjr 77:0b96f6867312 4176 az_ = z;
mjr 77:0b96f6867312 4177 }
mjr 76:7f5912b6340e 4178 }
mjr 77:0b96f6867312 4179
mjr 9:fd65b0a94720 4180 void get(int &x, int &y)
mjr 3:3514575d4f86 4181 {
mjr 77:0b96f6867312 4182 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 4183 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 4184 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 4185 int nSum = nSum_;
mjr 6:cc35eb643e8f 4186
mjr 77:0b96f6867312 4187 // reset the average accumulators for the next run
mjr 77:0b96f6867312 4188 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 4189 nSum_ = 0;
mjr 77:0b96f6867312 4190
mjr 77:0b96f6867312 4191 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 4192 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 4193 p->addAvg(ax, ay);
mjr 77:0b96f6867312 4194
mjr 78:1e00b3fa11af 4195 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 4196 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 4197 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 4198 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 4199 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 4200 {
mjr 77:0b96f6867312 4201 // add the latest raw sample to the history list
mjr 77:0b96f6867312 4202 AccHist *prv = p;
mjr 77:0b96f6867312 4203 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 4204 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 4205 iAccPrv_ = 0;
mjr 77:0b96f6867312 4206 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 4207 p->set(ax, ay, prv);
mjr 77:0b96f6867312 4208
mjr 78:1e00b3fa11af 4209 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 4210 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 4211 {
mjr 78:1e00b3fa11af 4212 // Center if:
mjr 78:1e00b3fa11af 4213 //
mjr 78:1e00b3fa11af 4214 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 4215 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 4216 //
mjr 78:1e00b3fa11af 4217 // - A manual centering request is pending
mjr 78:1e00b3fa11af 4218 //
mjr 77:0b96f6867312 4219 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 4220 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 4221 if (manualCenterRequest_
mjr 78:1e00b3fa11af 4222 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 4223 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 4224 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 4225 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 4226 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 4227 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 4228 {
mjr 77:0b96f6867312 4229 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 4230 // the samples over the rest period
mjr 77:0b96f6867312 4231 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 4232 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 4233
mjr 78:1e00b3fa11af 4234 // clear any pending manual centering request
mjr 78:1e00b3fa11af 4235 manualCenterRequest_ = false;
mjr 77:0b96f6867312 4236 }
mjr 77:0b96f6867312 4237 }
mjr 77:0b96f6867312 4238 else
mjr 77:0b96f6867312 4239 {
mjr 77:0b96f6867312 4240 // not enough samples yet; just up the count
mjr 77:0b96f6867312 4241 ++nAccPrv_;
mjr 77:0b96f6867312 4242 }
mjr 6:cc35eb643e8f 4243
mjr 77:0b96f6867312 4244 // clear the new item's running totals
mjr 77:0b96f6867312 4245 p->clearAvg();
mjr 5:a70c0bce770d 4246
mjr 77:0b96f6867312 4247 // reset the timer
mjr 77:0b96f6867312 4248 tCenter_.reset();
mjr 77:0b96f6867312 4249 }
mjr 5:a70c0bce770d 4250
mjr 77:0b96f6867312 4251 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 4252 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 4253 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 4254
mjr 6:cc35eb643e8f 4255 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 4256 if (x != 0 || y != 0)
mjr 77:0b96f6867312 4257 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 4258 #endif
mjr 77:0b96f6867312 4259 }
mjr 29:582472d0bc57 4260
mjr 3:3514575d4f86 4261 private:
mjr 6:cc35eb643e8f 4262 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 4263 int rawToReport(int v)
mjr 5:a70c0bce770d 4264 {
mjr 77:0b96f6867312 4265 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 4266 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 4267 // so their scale is 2^13.
mjr 77:0b96f6867312 4268 //
mjr 77:0b96f6867312 4269 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 4270 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 4271 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 4272 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 4273 int i = v*JOYMAX;
mjr 77:0b96f6867312 4274 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 4275
mjr 6:cc35eb643e8f 4276 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 4277 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 4278 static const int filter[] = {
mjr 6:cc35eb643e8f 4279 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 4280 0,
mjr 6:cc35eb643e8f 4281 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 4282 };
mjr 6:cc35eb643e8f 4283 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 4284 }
mjr 5:a70c0bce770d 4285
mjr 3:3514575d4f86 4286 // underlying accelerometer object
mjr 3:3514575d4f86 4287 MMA8451Q mma_;
mjr 3:3514575d4f86 4288
mjr 77:0b96f6867312 4289 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 4290 // scale -8192..+8191
mjr 77:0b96f6867312 4291 int ax_, ay_, az_;
mjr 77:0b96f6867312 4292
mjr 77:0b96f6867312 4293 // running sum of readings since last get()
mjr 77:0b96f6867312 4294 int xSum_, ySum_;
mjr 77:0b96f6867312 4295
mjr 77:0b96f6867312 4296 // number of readings since last get()
mjr 77:0b96f6867312 4297 int nSum_;
mjr 6:cc35eb643e8f 4298
mjr 6:cc35eb643e8f 4299 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 4300 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 4301 // at rest.
mjr 77:0b96f6867312 4302 int cx_, cy_;
mjr 77:0b96f6867312 4303
mjr 77:0b96f6867312 4304 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 4305 uint8_t range_;
mjr 78:1e00b3fa11af 4306
mjr 78:1e00b3fa11af 4307 // auto-center mode:
mjr 78:1e00b3fa11af 4308 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 4309 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 4310 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 4311 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 4312
mjr 78:1e00b3fa11af 4313 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 4314 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 4315
mjr 78:1e00b3fa11af 4316 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 4317 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 4318
mjr 77:0b96f6867312 4319 // atuo-centering timer
mjr 5:a70c0bce770d 4320 Timer tCenter_;
mjr 6:cc35eb643e8f 4321
mjr 6:cc35eb643e8f 4322 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 4323 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 4324 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 4325 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 4326 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 4327 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 4328 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 4329 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 4330 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 4331 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 4332 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 4333 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 4334 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 4335 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 4336 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 4337
mjr 5:a70c0bce770d 4338 // interurupt pin name
mjr 5:a70c0bce770d 4339 PinName irqPin_;
mjr 3:3514575d4f86 4340 };
mjr 3:3514575d4f86 4341
mjr 5:a70c0bce770d 4342 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 4343 //
mjr 14:df700b22ca08 4344 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 4345 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 4346 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 4347 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 4348 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 4349 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 4350 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 4351 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 4352 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 4353 //
mjr 14:df700b22ca08 4354 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 4355 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 4356 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 4357 //
mjr 5:a70c0bce770d 4358 void clear_i2c()
mjr 5:a70c0bce770d 4359 {
mjr 38:091e511ce8a0 4360 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 4361 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 4362 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 4363
mjr 5:a70c0bce770d 4364 // clock the SCL 9 times
mjr 5:a70c0bce770d 4365 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 4366 {
mjr 5:a70c0bce770d 4367 scl = 1;
mjr 5:a70c0bce770d 4368 wait_us(20);
mjr 5:a70c0bce770d 4369 scl = 0;
mjr 5:a70c0bce770d 4370 wait_us(20);
mjr 5:a70c0bce770d 4371 }
mjr 5:a70c0bce770d 4372 }
mjr 76:7f5912b6340e 4373
mjr 76:7f5912b6340e 4374
mjr 14:df700b22ca08 4375 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 4376 //
mjr 33:d832bcab089e 4377 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 4378 // for a given interval before allowing an update.
mjr 33:d832bcab089e 4379 //
mjr 33:d832bcab089e 4380 class Debouncer
mjr 33:d832bcab089e 4381 {
mjr 33:d832bcab089e 4382 public:
mjr 33:d832bcab089e 4383 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 4384 {
mjr 33:d832bcab089e 4385 t.start();
mjr 33:d832bcab089e 4386 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 4387 this->tmin = tmin;
mjr 33:d832bcab089e 4388 }
mjr 33:d832bcab089e 4389
mjr 33:d832bcab089e 4390 // Get the current stable value
mjr 33:d832bcab089e 4391 bool val() const { return stable; }
mjr 33:d832bcab089e 4392
mjr 33:d832bcab089e 4393 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 4394 // input device.
mjr 33:d832bcab089e 4395 void sampleIn(bool val)
mjr 33:d832bcab089e 4396 {
mjr 33:d832bcab089e 4397 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 4398 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 4399 // on the sample reader.
mjr 33:d832bcab089e 4400 if (val != prv)
mjr 33:d832bcab089e 4401 {
mjr 33:d832bcab089e 4402 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 4403 t.reset();
mjr 33:d832bcab089e 4404
mjr 33:d832bcab089e 4405 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 4406 prv = val;
mjr 33:d832bcab089e 4407 }
mjr 33:d832bcab089e 4408 else if (val != stable)
mjr 33:d832bcab089e 4409 {
mjr 33:d832bcab089e 4410 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 4411 // and different from the stable value. This means that
mjr 33:d832bcab089e 4412 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 4413 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 4414 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 4415 if (t.read() > tmin)
mjr 33:d832bcab089e 4416 stable = val;
mjr 33:d832bcab089e 4417 }
mjr 33:d832bcab089e 4418 }
mjr 33:d832bcab089e 4419
mjr 33:d832bcab089e 4420 private:
mjr 33:d832bcab089e 4421 // current stable value
mjr 33:d832bcab089e 4422 bool stable;
mjr 33:d832bcab089e 4423
mjr 33:d832bcab089e 4424 // last raw sample value
mjr 33:d832bcab089e 4425 bool prv;
mjr 33:d832bcab089e 4426
mjr 33:d832bcab089e 4427 // elapsed time since last raw input change
mjr 33:d832bcab089e 4428 Timer t;
mjr 33:d832bcab089e 4429
mjr 33:d832bcab089e 4430 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 4431 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 4432 float tmin;
mjr 33:d832bcab089e 4433 };
mjr 33:d832bcab089e 4434
mjr 33:d832bcab089e 4435
mjr 33:d832bcab089e 4436 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 4437 //
mjr 33:d832bcab089e 4438 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 4439 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 4440 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 4441 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 4442 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 4443 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 4444 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 4445 //
mjr 33:d832bcab089e 4446 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 4447 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 4448 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 4449 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 4450 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 4451 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 4452 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 4453 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 4454 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 4455 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 4456 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 4457 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 4458 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 4459 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 4460 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 4461 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 4462 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 4463 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 4464 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 4465 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 4466 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 4467 //
mjr 40:cc0d9814522b 4468 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 4469 // of tricky but likely scenarios:
mjr 33:d832bcab089e 4470 //
mjr 33:d832bcab089e 4471 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 4472 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 4473 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 4474 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 4475 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 4476 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 4477 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 4478 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 4479 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 4480 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 4481 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 4482 //
mjr 33:d832bcab089e 4483 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 4484 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 4485 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 4486 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 4487 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 4488 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 4489 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 4490 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 4491 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 4492 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 4493 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 4494 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 4495 // first check.
mjr 33:d832bcab089e 4496 //
mjr 33:d832bcab089e 4497 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 4498 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 4499 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 4500 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 4501 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 4502 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 4503 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 4504 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 4505 //
mjr 33:d832bcab089e 4506
mjr 77:0b96f6867312 4507 // Current PSU2 power state:
mjr 33:d832bcab089e 4508 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 4509 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 4510 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 4511 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 4512 // 5 -> TV relay on
mjr 77:0b96f6867312 4513 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 4514 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 4515
mjr 73:4e8ce0b18915 4516 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 4517 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 4518 // separate state for each:
mjr 73:4e8ce0b18915 4519 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 4520 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 4521 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 4522 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 4523 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 4524
mjr 79:682ae3171a08 4525 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 4526 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 4527
mjr 77:0b96f6867312 4528 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 4529 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 4530 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 4531 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 4532 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 4533 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 4534 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 4535 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 4536 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 4537 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 4538 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 4539
mjr 77:0b96f6867312 4540 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 4541 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 4542
mjr 35:e959ffba78fd 4543 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 4544 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 4545 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 4546
mjr 73:4e8ce0b18915 4547 // Apply the current TV relay state
mjr 73:4e8ce0b18915 4548 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 4549 {
mjr 73:4e8ce0b18915 4550 // update the state
mjr 73:4e8ce0b18915 4551 if (state)
mjr 73:4e8ce0b18915 4552 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 4553 else
mjr 73:4e8ce0b18915 4554 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 4555
mjr 73:4e8ce0b18915 4556 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 4557 if (tv_relay != 0)
mjr 73:4e8ce0b18915 4558 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 4559 }
mjr 35:e959ffba78fd 4560
mjr 86:e30a1f60f783 4561 // Does the current power status allow a reboot? We shouldn't reboot
mjr 86:e30a1f60f783 4562 // in certain power states, because some states are purely internal:
mjr 86:e30a1f60f783 4563 // we can't get enough information from the external power sensor to
mjr 86:e30a1f60f783 4564 // return to the same state later. Code that performs discretionary
mjr 86:e30a1f60f783 4565 // reboots should always check here first, and delay any reboot until
mjr 86:e30a1f60f783 4566 // we say it's okay.
mjr 86:e30a1f60f783 4567 static inline bool powerStatusAllowsReboot()
mjr 86:e30a1f60f783 4568 {
mjr 86:e30a1f60f783 4569 // The only safe state for rebooting is state 1, idle/default.
mjr 86:e30a1f60f783 4570 // In other states, we can't reboot, because the external sensor
mjr 86:e30a1f60f783 4571 // and latch circuit doesn't give us enough information to return
mjr 86:e30a1f60f783 4572 // to the same state later.
mjr 86:e30a1f60f783 4573 return psu2_state == 1;
mjr 86:e30a1f60f783 4574 }
mjr 86:e30a1f60f783 4575
mjr 77:0b96f6867312 4576 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 4577 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 4578 // functions.
mjr 77:0b96f6867312 4579 Timer powerStatusTimer;
mjr 77:0b96f6867312 4580 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 4581 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 4582 {
mjr 79:682ae3171a08 4583 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 4584 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 4585 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 4586 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 4587 {
mjr 79:682ae3171a08 4588 // turn off the relay and disable the timer
mjr 79:682ae3171a08 4589 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 4590 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 4591 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4592 }
mjr 79:682ae3171a08 4593
mjr 77:0b96f6867312 4594 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 4595 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 4596 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 4597 // skip this whole routine.
mjr 77:0b96f6867312 4598 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 4599 return;
mjr 77:0b96f6867312 4600
mjr 77:0b96f6867312 4601 // reset the update timer for next time
mjr 77:0b96f6867312 4602 powerStatusTimer.reset();
mjr 77:0b96f6867312 4603
mjr 77:0b96f6867312 4604 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 4605 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 4606 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 4607 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 4608 static Timer tv_timer;
mjr 35:e959ffba78fd 4609
mjr 33:d832bcab089e 4610 // Check our internal state
mjr 33:d832bcab089e 4611 switch (psu2_state)
mjr 33:d832bcab089e 4612 {
mjr 33:d832bcab089e 4613 case 1:
mjr 33:d832bcab089e 4614 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 4615 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 4616 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 4617 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 4618 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 4619 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 4620 {
mjr 33:d832bcab089e 4621 // switch to OFF state
mjr 33:d832bcab089e 4622 psu2_state = 2;
mjr 33:d832bcab089e 4623
mjr 33:d832bcab089e 4624 // try setting the latch
mjr 35:e959ffba78fd 4625 psu2_status_set->write(1);
mjr 33:d832bcab089e 4626 }
mjr 77:0b96f6867312 4627 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4628 break;
mjr 33:d832bcab089e 4629
mjr 33:d832bcab089e 4630 case 2:
mjr 33:d832bcab089e 4631 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 4632 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 4633 psu2_status_set->write(0);
mjr 33:d832bcab089e 4634 psu2_state = 3;
mjr 77:0b96f6867312 4635 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4636 break;
mjr 33:d832bcab089e 4637
mjr 33:d832bcab089e 4638 case 3:
mjr 33:d832bcab089e 4639 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 4640 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 4641 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 4642 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 4643 if (psu2_status_sense->read())
mjr 33:d832bcab089e 4644 {
mjr 33:d832bcab089e 4645 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 4646 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 4647 tv_timer.reset();
mjr 33:d832bcab089e 4648 tv_timer.start();
mjr 33:d832bcab089e 4649 psu2_state = 4;
mjr 73:4e8ce0b18915 4650
mjr 73:4e8ce0b18915 4651 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 4652 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4653 }
mjr 33:d832bcab089e 4654 else
mjr 33:d832bcab089e 4655 {
mjr 33:d832bcab089e 4656 // The latch didn't stick, so PSU2 was still off at
mjr 87:8d35c74403af 4657 // our last check. Return to idle state.
mjr 87:8d35c74403af 4658 psu2_state = 1;
mjr 33:d832bcab089e 4659 }
mjr 33:d832bcab089e 4660 break;
mjr 33:d832bcab089e 4661
mjr 33:d832bcab089e 4662 case 4:
mjr 77:0b96f6867312 4663 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 4664 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 4665 // off again before the countdown finished.
mjr 77:0b96f6867312 4666 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 4667 {
mjr 77:0b96f6867312 4668 // power is off - start a new check cycle
mjr 77:0b96f6867312 4669 psu2_status_set->write(1);
mjr 77:0b96f6867312 4670 psu2_state = 2;
mjr 77:0b96f6867312 4671 break;
mjr 77:0b96f6867312 4672 }
mjr 77:0b96f6867312 4673
mjr 77:0b96f6867312 4674 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 4675 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 4676
mjr 77:0b96f6867312 4677 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 4678 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 4679 {
mjr 33:d832bcab089e 4680 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 4681 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 4682 psu2_state = 5;
mjr 77:0b96f6867312 4683
mjr 77:0b96f6867312 4684 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 4685 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4686 }
mjr 33:d832bcab089e 4687 break;
mjr 33:d832bcab089e 4688
mjr 33:d832bcab089e 4689 case 5:
mjr 33:d832bcab089e 4690 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 4691 // it's now time to turn it off.
mjr 73:4e8ce0b18915 4692 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 4693
mjr 77:0b96f6867312 4694 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 4695 psu2_state = 6;
mjr 77:0b96f6867312 4696 tvon_ir_state = 0;
mjr 77:0b96f6867312 4697
mjr 77:0b96f6867312 4698 // diagnostic LEDs off for now
mjr 77:0b96f6867312 4699 powerTimerDiagState = 0;
mjr 77:0b96f6867312 4700 break;
mjr 77:0b96f6867312 4701
mjr 77:0b96f6867312 4702 case 6:
mjr 77:0b96f6867312 4703 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 4704 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 4705 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 4706 psu2_state = 1;
mjr 77:0b96f6867312 4707 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 4708
mjr 77:0b96f6867312 4709 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 4710 if (ir_tx != 0)
mjr 77:0b96f6867312 4711 {
mjr 77:0b96f6867312 4712 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 4713 if (ir_tx->isSending())
mjr 77:0b96f6867312 4714 {
mjr 77:0b96f6867312 4715 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 4716 // state 6.
mjr 77:0b96f6867312 4717 psu2_state = 6;
mjr 77:0b96f6867312 4718 powerTimerDiagState = 4;
mjr 77:0b96f6867312 4719 break;
mjr 77:0b96f6867312 4720 }
mjr 77:0b96f6867312 4721
mjr 77:0b96f6867312 4722 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 4723 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 4724 // number.
mjr 77:0b96f6867312 4725 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 4726 {
mjr 77:0b96f6867312 4727 // is this a TV ON command?
mjr 77:0b96f6867312 4728 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 4729 {
mjr 77:0b96f6867312 4730 // It's a TV ON command - check if it's the one we're
mjr 77:0b96f6867312 4731 // looking for.
mjr 77:0b96f6867312 4732 if (n == tvon_ir_state)
mjr 77:0b96f6867312 4733 {
mjr 77:0b96f6867312 4734 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 4735 // pushing its virtual button.
mjr 77:0b96f6867312 4736 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 4737 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 4738
mjr 77:0b96f6867312 4739 // Pushing the button starts transmission, and once
mjr 88:98bce687e6c0 4740 // started, the transmission runs to completion even
mjr 88:98bce687e6c0 4741 // if the button is no longer pushed. So we can
mjr 88:98bce687e6c0 4742 // immediately un-push the button, since we only need
mjr 88:98bce687e6c0 4743 // to send the code once.
mjr 77:0b96f6867312 4744 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 4745
mjr 77:0b96f6867312 4746 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 4747 // await the end of this transmission and move on to
mjr 77:0b96f6867312 4748 // the next one.
mjr 77:0b96f6867312 4749 psu2_state = 6;
mjr 77:0b96f6867312 4750 tvon_ir_state++;
mjr 77:0b96f6867312 4751 break;
mjr 77:0b96f6867312 4752 }
mjr 77:0b96f6867312 4753
mjr 77:0b96f6867312 4754 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 4755 ++n;
mjr 77:0b96f6867312 4756 }
mjr 77:0b96f6867312 4757 }
mjr 77:0b96f6867312 4758 }
mjr 33:d832bcab089e 4759 break;
mjr 33:d832bcab089e 4760 }
mjr 77:0b96f6867312 4761
mjr 77:0b96f6867312 4762 // update the diagnostic LEDs
mjr 77:0b96f6867312 4763 diagLED();
mjr 33:d832bcab089e 4764 }
mjr 33:d832bcab089e 4765
mjr 77:0b96f6867312 4766 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4767 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4768 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4769 // are configured as NC.
mjr 77:0b96f6867312 4770 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4771 {
mjr 55:4db125cd11a0 4772 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4773 // time is nonzero
mjr 77:0b96f6867312 4774 powerStatusTimer.reset();
mjr 77:0b96f6867312 4775 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4776 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4777 {
mjr 77:0b96f6867312 4778 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4779 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4780 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4781
mjr 77:0b96f6867312 4782 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4783 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4784 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4785
mjr 77:0b96f6867312 4786 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4787 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4788 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4789 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4790
mjr 77:0b96f6867312 4791 // Start the TV timer
mjr 77:0b96f6867312 4792 powerStatusTimer.start();
mjr 35:e959ffba78fd 4793 }
mjr 35:e959ffba78fd 4794 }
mjr 35:e959ffba78fd 4795
mjr 73:4e8ce0b18915 4796 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4797 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4798 //
mjr 73:4e8ce0b18915 4799 // Mode:
mjr 73:4e8ce0b18915 4800 // 0 = turn relay off
mjr 73:4e8ce0b18915 4801 // 1 = turn relay on
mjr 73:4e8ce0b18915 4802 // 2 = pulse relay
mjr 73:4e8ce0b18915 4803 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4804 {
mjr 73:4e8ce0b18915 4805 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4806 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4807 return;
mjr 73:4e8ce0b18915 4808
mjr 73:4e8ce0b18915 4809 switch (mode)
mjr 73:4e8ce0b18915 4810 {
mjr 73:4e8ce0b18915 4811 case 0:
mjr 73:4e8ce0b18915 4812 // relay off
mjr 73:4e8ce0b18915 4813 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4814 break;
mjr 73:4e8ce0b18915 4815
mjr 73:4e8ce0b18915 4816 case 1:
mjr 73:4e8ce0b18915 4817 // relay on
mjr 73:4e8ce0b18915 4818 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4819 break;
mjr 73:4e8ce0b18915 4820
mjr 73:4e8ce0b18915 4821 case 2:
mjr 79:682ae3171a08 4822 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 4823 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 4824 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4825 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 4826 break;
mjr 73:4e8ce0b18915 4827 }
mjr 73:4e8ce0b18915 4828 }
mjr 73:4e8ce0b18915 4829
mjr 73:4e8ce0b18915 4830
mjr 35:e959ffba78fd 4831 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4832 //
mjr 35:e959ffba78fd 4833 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4834 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4835 //
mjr 35:e959ffba78fd 4836 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4837 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4838 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4839 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4840 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4841 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4842 //
mjr 35:e959ffba78fd 4843 NVM nvm;
mjr 35:e959ffba78fd 4844
mjr 86:e30a1f60f783 4845 // Save Config followup time, in seconds. After a successful save,
mjr 86:e30a1f60f783 4846 // we leave the success flag on in the status for this interval. At
mjr 86:e30a1f60f783 4847 // the end of the interval, we reboot the device if requested.
mjr 86:e30a1f60f783 4848 uint8_t saveConfigFollowupTime;
mjr 86:e30a1f60f783 4849
mjr 86:e30a1f60f783 4850 // is a reboot pending at the end of the config save followup interval?
mjr 86:e30a1f60f783 4851 uint8_t saveConfigRebootPending;
mjr 77:0b96f6867312 4852
mjr 79:682ae3171a08 4853 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 4854 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 4855
mjr 86:e30a1f60f783 4856 // Timer for configuration change followup timer
mjr 86:e30a1f60f783 4857 ExtTimer saveConfigFollowupTimer;
mjr 86:e30a1f60f783 4858
mjr 86:e30a1f60f783 4859
mjr 35:e959ffba78fd 4860 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4861 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4862
mjr 35:e959ffba78fd 4863 // flash memory controller interface
mjr 35:e959ffba78fd 4864 FreescaleIAP iap;
mjr 35:e959ffba78fd 4865
mjr 79:682ae3171a08 4866 // figure the flash address for the config data
mjr 79:682ae3171a08 4867 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 4868 {
mjr 79:682ae3171a08 4869 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 4870 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 4871
mjr 79:682ae3171a08 4872 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 4873 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 4874
mjr 79:682ae3171a08 4875 // locate it at the top of memory
mjr 79:682ae3171a08 4876 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 4877
mjr 79:682ae3171a08 4878 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 4879 return (const NVM *)addr;
mjr 35:e959ffba78fd 4880 }
mjr 35:e959ffba78fd 4881
mjr 76:7f5912b6340e 4882 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4883 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4884 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4885 // in either case.
mjr 76:7f5912b6340e 4886 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4887 {
mjr 35:e959ffba78fd 4888 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4889 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4890 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4891 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4892 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4893 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4894 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4895 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4896 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4897 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4898 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4899 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4900 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4901 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4902 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4903 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4904
mjr 35:e959ffba78fd 4905 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 4906 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4907
mjr 35:e959ffba78fd 4908 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 4909 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 4910 if (nvm_valid)
mjr 35:e959ffba78fd 4911 {
mjr 35:e959ffba78fd 4912 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 4913 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 4914 }
mjr 35:e959ffba78fd 4915 else
mjr 35:e959ffba78fd 4916 {
mjr 76:7f5912b6340e 4917 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 4918 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 4919 }
mjr 76:7f5912b6340e 4920
mjr 76:7f5912b6340e 4921 // tell the caller what happened
mjr 76:7f5912b6340e 4922 return nvm_valid;
mjr 35:e959ffba78fd 4923 }
mjr 35:e959ffba78fd 4924
mjr 86:e30a1f60f783 4925 // Save the config. Returns true on success, false on failure.
mjr 86:e30a1f60f783 4926 // 'tFollowup' is the follow-up time in seconds. If the write is
mjr 86:e30a1f60f783 4927 // successful, we'll turn on the success flag in the status reports
mjr 86:e30a1f60f783 4928 // and leave it on for this interval. If 'reboot' is true, we'll
mjr 86:e30a1f60f783 4929 // also schedule a reboot at the end of the followup interval.
mjr 86:e30a1f60f783 4930 bool saveConfigToFlash(int tFollowup, bool reboot)
mjr 33:d832bcab089e 4931 {
mjr 76:7f5912b6340e 4932 // make sure the plunger sensor isn't busy
mjr 76:7f5912b6340e 4933 waitPlungerIdle();
mjr 76:7f5912b6340e 4934
mjr 76:7f5912b6340e 4935 // get the config block location in the flash memory
mjr 77:0b96f6867312 4936 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 4937
mjr 79:682ae3171a08 4938 // save the data
mjr 86:e30a1f60f783 4939 if (nvm.save(iap, addr))
mjr 86:e30a1f60f783 4940 {
mjr 86:e30a1f60f783 4941 // success - report the successful save in the status flags
mjr 86:e30a1f60f783 4942 saveConfigSucceededFlag = 0x40;
mjr 86:e30a1f60f783 4943
mjr 86:e30a1f60f783 4944 // start the followup timer
mjr 87:8d35c74403af 4945 saveConfigFollowupTime = tFollowup;
mjr 87:8d35c74403af 4946 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 4947 saveConfigFollowupTimer.start();
mjr 86:e30a1f60f783 4948
mjr 86:e30a1f60f783 4949 // if a reboot is pending, flag it
mjr 86:e30a1f60f783 4950 saveConfigRebootPending = reboot;
mjr 86:e30a1f60f783 4951
mjr 86:e30a1f60f783 4952 // return success
mjr 86:e30a1f60f783 4953 return true;
mjr 86:e30a1f60f783 4954 }
mjr 86:e30a1f60f783 4955 else
mjr 86:e30a1f60f783 4956 {
mjr 86:e30a1f60f783 4957 // return failure
mjr 86:e30a1f60f783 4958 return false;
mjr 86:e30a1f60f783 4959 }
mjr 76:7f5912b6340e 4960 }
mjr 76:7f5912b6340e 4961
mjr 76:7f5912b6340e 4962 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 4963 //
mjr 76:7f5912b6340e 4964 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 4965 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 4966 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 4967 // downloading it to the device.
mjr 76:7f5912b6340e 4968 //
mjr 100:1ff35c07217c 4969 // Ideally, we'd use the host-loaded memory for all configuration updates
mjr 100:1ff35c07217c 4970 // from the host - that is, any time the host wants to update config settings,
mjr 100:1ff35c07217c 4971 // such as via user input in the config tool. In the past, I wanted to do
mjr 100:1ff35c07217c 4972 // it this way because it seemed to be unreliable to write flash memory via
mjr 100:1ff35c07217c 4973 // the device. But that turned out to be due to a bug in the mbed Ticker
mjr 100:1ff35c07217c 4974 // code (of all things!), which we've fixed - since then, flash writing on
mjr 100:1ff35c07217c 4975 // the device has been bulletproof. Even so, doing host-to-device flash
mjr 100:1ff35c07217c 4976 // writing for config updates would be nice just for the sake of speed, as
mjr 100:1ff35c07217c 4977 // the alternative is that we send the variables one at a time by USB, which
mjr 100:1ff35c07217c 4978 // takes noticeable time when reprogramming the whole config set. But
mjr 100:1ff35c07217c 4979 // there's no way to accomplish a single-sector flash write via OpenSDA; you
mjr 100:1ff35c07217c 4980 // can only rewrite the entire flash memory as a unit.
mjr 100:1ff35c07217c 4981 //
mjr 100:1ff35c07217c 4982 // We can at least use this approach to do a fast configuration restore
mjr 100:1ff35c07217c 4983 // when downloading new firmware. In that case, we're rewriting all of
mjr 100:1ff35c07217c 4984 // flash memory anyway, so we might as well include the config data.
mjr 76:7f5912b6340e 4985 //
mjr 76:7f5912b6340e 4986 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 4987 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 4988 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 4989 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 4990 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 4991 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 4992 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 4993 //
mjr 76:7f5912b6340e 4994 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 4995 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 4996 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 4997 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 4998 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 4999 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 5000 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 5001 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 5002 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 5003 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 5004
mjr 76:7f5912b6340e 5005 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 5006 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 5007 {
mjr 76:7f5912b6340e 5008 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 5009 // 32-byte signature header
mjr 76:7f5912b6340e 5010 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 5011 };
mjr 76:7f5912b6340e 5012
mjr 76:7f5912b6340e 5013 // forward reference to config var store function
mjr 76:7f5912b6340e 5014 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 5015
mjr 76:7f5912b6340e 5016 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 5017 // configuration object.
mjr 76:7f5912b6340e 5018 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 5019 {
mjr 76:7f5912b6340e 5020 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 5021 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 5022 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 5023 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 5024 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 5025 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 5026 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 5027 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 5028 {
mjr 76:7f5912b6340e 5029 // load this variable
mjr 76:7f5912b6340e 5030 configVarSet(p);
mjr 76:7f5912b6340e 5031 }
mjr 35:e959ffba78fd 5032 }
mjr 35:e959ffba78fd 5033
mjr 35:e959ffba78fd 5034 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5035 //
mjr 55:4db125cd11a0 5036 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 5037 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 5038 //
mjr 55:4db125cd11a0 5039 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 5040 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 5041 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 5042
mjr 55:4db125cd11a0 5043
mjr 55:4db125cd11a0 5044
mjr 55:4db125cd11a0 5045 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 5046 //
mjr 40:cc0d9814522b 5047 // Night mode setting updates
mjr 40:cc0d9814522b 5048 //
mjr 38:091e511ce8a0 5049
mjr 38:091e511ce8a0 5050 // Turn night mode on or off
mjr 38:091e511ce8a0 5051 static void setNightMode(bool on)
mjr 38:091e511ce8a0 5052 {
mjr 77:0b96f6867312 5053 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 5054 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 5055 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 5056 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 5057
mjr 40:cc0d9814522b 5058 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 5059 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 5060 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 5061 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 5062
mjr 76:7f5912b6340e 5063 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 5064 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 5065 // mode change.
mjr 76:7f5912b6340e 5066 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 5067 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 5068
mjr 76:7f5912b6340e 5069 // update 74HC595 outputs
mjr 76:7f5912b6340e 5070 if (hc595 != 0)
mjr 76:7f5912b6340e 5071 hc595->update();
mjr 38:091e511ce8a0 5072 }
mjr 38:091e511ce8a0 5073
mjr 38:091e511ce8a0 5074 // Toggle night mode
mjr 38:091e511ce8a0 5075 static void toggleNightMode()
mjr 38:091e511ce8a0 5076 {
mjr 53:9b2611964afc 5077 setNightMode(!nightMode);
mjr 38:091e511ce8a0 5078 }
mjr 38:091e511ce8a0 5079
mjr 38:091e511ce8a0 5080
mjr 38:091e511ce8a0 5081 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5082 //
mjr 35:e959ffba78fd 5083 // Plunger Sensor
mjr 35:e959ffba78fd 5084 //
mjr 35:e959ffba78fd 5085
mjr 35:e959ffba78fd 5086 // the plunger sensor interface object
mjr 35:e959ffba78fd 5087 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 5088
mjr 87:8d35c74403af 5089 // wait for the plunger sensor to complete any outstanding DMA transfer
mjr 76:7f5912b6340e 5090 static void waitPlungerIdle(void)
mjr 76:7f5912b6340e 5091 {
mjr 87:8d35c74403af 5092 while (plungerSensor->dmaBusy()) { }
mjr 76:7f5912b6340e 5093 }
mjr 76:7f5912b6340e 5094
mjr 35:e959ffba78fd 5095 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 5096 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 5097 void createPlunger()
mjr 35:e959ffba78fd 5098 {
mjr 35:e959ffba78fd 5099 // create the new sensor object according to the type
mjr 35:e959ffba78fd 5100 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 5101 {
mjr 82:4f6209cb5c33 5102 case PlungerType_TSL1410R:
mjr 82:4f6209cb5c33 5103 // TSL1410R, shadow edge detector
mjr 35:e959ffba78fd 5104 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 5105 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 5106 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 5107 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5108 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 5109 break;
mjr 35:e959ffba78fd 5110
mjr 82:4f6209cb5c33 5111 case PlungerType_TSL1412S:
mjr 82:4f6209cb5c33 5112 // TSL1412S, shadow edge detector
mjr 82:4f6209cb5c33 5113 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 5114 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 5115 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 5116 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5117 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 5118 break;
mjr 35:e959ffba78fd 5119
mjr 35:e959ffba78fd 5120 case PlungerType_Pot:
mjr 82:4f6209cb5c33 5121 // Potentiometer (or any other sensor with a linear analog voltage
mjr 82:4f6209cb5c33 5122 // reading as the proxy for the position)
mjr 82:4f6209cb5c33 5123 // pins are: AO (analog in)
mjr 53:9b2611964afc 5124 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 5125 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 5126 break;
mjr 82:4f6209cb5c33 5127
mjr 82:4f6209cb5c33 5128 case PlungerType_OptQuad:
mjr 82:4f6209cb5c33 5129 // Optical quadrature sensor, AEDR8300-K or similar. The -K is
mjr 82:4f6209cb5c33 5130 // designed for a 75 LPI scale, which translates to 300 pulses/inch.
mjr 82:4f6209cb5c33 5131 // Pins are: CHA, CHB (quadrature pulse inputs).
mjr 82:4f6209cb5c33 5132 plungerSensor = new PlungerSensorQuad(
mjr 82:4f6209cb5c33 5133 300,
mjr 82:4f6209cb5c33 5134 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5135 wirePinName(cfg.plunger.sensorPin[1]));
mjr 82:4f6209cb5c33 5136 break;
mjr 82:4f6209cb5c33 5137
mjr 82:4f6209cb5c33 5138 case PlungerType_TSL1401CL:
mjr 82:4f6209cb5c33 5139 // TSL1401CL, absolute position encoder with bar code scale
mjr 82:4f6209cb5c33 5140 // pins are: SI, CLOCK, AO
mjr 82:4f6209cb5c33 5141 plungerSensor = new PlungerSensorTSL1401CL(
mjr 82:4f6209cb5c33 5142 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5143 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5144 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 5145 break;
mjr 82:4f6209cb5c33 5146
mjr 82:4f6209cb5c33 5147 case PlungerType_VL6180X:
mjr 82:4f6209cb5c33 5148 // VL6180X time-of-flight IR distance sensor
mjr 82:4f6209cb5c33 5149 // pins are: SDL, SCL, GPIO0/CE
mjr 82:4f6209cb5c33 5150 plungerSensor = new PlungerSensorVL6180X(
mjr 82:4f6209cb5c33 5151 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5152 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5153 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 5154 break;
mjr 82:4f6209cb5c33 5155
mjr 100:1ff35c07217c 5156 case PlungerType_AEAT6012:
mjr 100:1ff35c07217c 5157 // Broadcom AEAT-6012-A06 magnetic rotary encoder
mjr 100:1ff35c07217c 5158 // pins are: CS (chip select, dig out), CLK (dig out), DO (data, dig in)
mjr 100:1ff35c07217c 5159 plungerSensor = new PlungerSensorAEAT601X<12>(
mjr 100:1ff35c07217c 5160 wirePinName(cfg.plunger.sensorPin[0]),
mjr 100:1ff35c07217c 5161 wirePinName(cfg.plunger.sensorPin[1]),
mjr 100:1ff35c07217c 5162 wirePinName(cfg.plunger.sensorPin[2]));
mjr 100:1ff35c07217c 5163 break;
mjr 100:1ff35c07217c 5164
mjr 100:1ff35c07217c 5165 case PlungerType_TCD1103:
mjr 100:1ff35c07217c 5166 // Toshiba TCD1103GFG linear CCD, optical edge detection, with
mjr 100:1ff35c07217c 5167 // inverted logic gates.
mjr 100:1ff35c07217c 5168 //
mjr 100:1ff35c07217c 5169 // Pins are: fM (master clock, PWM), OS (sample data, analog in),
mjr 100:1ff35c07217c 5170 // ICG (integration clear gate, dig out), SH (shift gate, dig out)
mjr 100:1ff35c07217c 5171 plungerSensor = new PlungerSensorTCD1103<true>(
mjr 100:1ff35c07217c 5172 wirePinName(cfg.plunger.sensorPin[0]),
mjr 100:1ff35c07217c 5173 wirePinName(cfg.plunger.sensorPin[1]),
mjr 100:1ff35c07217c 5174 wirePinName(cfg.plunger.sensorPin[2]),
mjr 100:1ff35c07217c 5175 wirePinName(cfg.plunger.sensorPin[3]));
mjr 100:1ff35c07217c 5176 break;
mjr 100:1ff35c07217c 5177
mjr 35:e959ffba78fd 5178 case PlungerType_None:
mjr 35:e959ffba78fd 5179 default:
mjr 35:e959ffba78fd 5180 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 5181 break;
mjr 35:e959ffba78fd 5182 }
mjr 100:1ff35c07217c 5183
mjr 100:1ff35c07217c 5184 // initialize the plunger from the saved configuration
mjr 100:1ff35c07217c 5185 plungerSensor->restoreCalibration(cfg);
mjr 86:e30a1f60f783 5186
mjr 87:8d35c74403af 5187 // initialize the config variables affecting the plunger
mjr 87:8d35c74403af 5188 plungerSensor->onConfigChange(19, cfg);
mjr 87:8d35c74403af 5189 plungerSensor->onConfigChange(20, cfg);
mjr 33:d832bcab089e 5190 }
mjr 33:d832bcab089e 5191
mjr 52:8298b2a73eb2 5192 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 5193 bool plungerCalMode;
mjr 52:8298b2a73eb2 5194
mjr 48:058ace2aed1d 5195 // Plunger reader
mjr 51:57eb311faafa 5196 //
mjr 51:57eb311faafa 5197 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 5198 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 5199 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 5200 //
mjr 51:57eb311faafa 5201 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 5202 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 5203 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 5204 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 5205 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 5206 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 5207 // firing motion.
mjr 51:57eb311faafa 5208 //
mjr 51:57eb311faafa 5209 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 5210 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 5211 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 5212 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 5213 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 5214 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 5215 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 5216 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 5217 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 5218 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 5219 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 5220 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 5221 // a classic digital aliasing effect.
mjr 51:57eb311faafa 5222 //
mjr 51:57eb311faafa 5223 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 5224 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 5225 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 5226 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 5227 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 5228 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 5229 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 5230 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 5231 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 5232 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 5233 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 5234 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 5235 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 5236 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 5237 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 5238 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 5239 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 5240 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 5241 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 5242 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 5243 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 5244 //
mjr 48:058ace2aed1d 5245 class PlungerReader
mjr 48:058ace2aed1d 5246 {
mjr 48:058ace2aed1d 5247 public:
mjr 48:058ace2aed1d 5248 PlungerReader()
mjr 48:058ace2aed1d 5249 {
mjr 48:058ace2aed1d 5250 // not in a firing event yet
mjr 48:058ace2aed1d 5251 firing = 0;
mjr 48:058ace2aed1d 5252 }
mjr 76:7f5912b6340e 5253
mjr 48:058ace2aed1d 5254 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 5255 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 5256 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 5257 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 5258 void read()
mjr 48:058ace2aed1d 5259 {
mjr 76:7f5912b6340e 5260 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 5261 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 5262 return;
mjr 76:7f5912b6340e 5263
mjr 48:058ace2aed1d 5264 // Read a sample from the sensor
mjr 48:058ace2aed1d 5265 PlungerReading r;
mjr 48:058ace2aed1d 5266 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 5267 {
mjr 53:9b2611964afc 5268 // check for calibration mode
mjr 53:9b2611964afc 5269 if (plungerCalMode)
mjr 53:9b2611964afc 5270 {
mjr 53:9b2611964afc 5271 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 5272 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 5273 // expand the envelope to include this new value.
mjr 53:9b2611964afc 5274 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 5275 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 5276 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 5277 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 5278
mjr 76:7f5912b6340e 5279 // update our cached calibration data
mjr 76:7f5912b6340e 5280 onUpdateCal();
mjr 50:40015764bbe6 5281
mjr 53:9b2611964afc 5282 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 5283 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 5284 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 5285 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 5286 if (calState == 0)
mjr 53:9b2611964afc 5287 {
mjr 53:9b2611964afc 5288 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 5289 {
mjr 53:9b2611964afc 5290 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 5291 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 5292 {
mjr 53:9b2611964afc 5293 // we've been at rest long enough - count it
mjr 53:9b2611964afc 5294 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 5295 calZeroPosN += 1;
mjr 53:9b2611964afc 5296
mjr 53:9b2611964afc 5297 // update the zero position from the new average
mjr 53:9b2611964afc 5298 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 5299 onUpdateCal();
mjr 53:9b2611964afc 5300
mjr 53:9b2611964afc 5301 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 5302 calState = 1;
mjr 53:9b2611964afc 5303 }
mjr 53:9b2611964afc 5304 }
mjr 53:9b2611964afc 5305 else
mjr 53:9b2611964afc 5306 {
mjr 53:9b2611964afc 5307 // we're not close to the last position - start again here
mjr 53:9b2611964afc 5308 calZeroStart = r;
mjr 53:9b2611964afc 5309 }
mjr 53:9b2611964afc 5310 }
mjr 53:9b2611964afc 5311
mjr 53:9b2611964afc 5312 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 5313 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 5314 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 5315 r.pos = int(
mjr 53:9b2611964afc 5316 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 5317 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 5318 }
mjr 53:9b2611964afc 5319 else
mjr 53:9b2611964afc 5320 {
mjr 53:9b2611964afc 5321 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 5322 // rescale to the joystick range.
mjr 76:7f5912b6340e 5323 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 5324
mjr 53:9b2611964afc 5325 // limit the result to the valid joystick range
mjr 53:9b2611964afc 5326 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 5327 r.pos = JOYMAX;
mjr 53:9b2611964afc 5328 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 5329 r.pos = -JOYMAX;
mjr 53:9b2611964afc 5330 }
mjr 50:40015764bbe6 5331
mjr 87:8d35c74403af 5332 // Look for a firing event - the user releasing the plunger and
mjr 87:8d35c74403af 5333 // allowing it to shoot forward at full speed. Wait at least 5ms
mjr 87:8d35c74403af 5334 // between samples for this, to help distinguish random motion
mjr 87:8d35c74403af 5335 // from the rapid motion of a firing event.
mjr 50:40015764bbe6 5336 //
mjr 87:8d35c74403af 5337 // There's a trade-off in the choice of minimum sampling interval.
mjr 87:8d35c74403af 5338 // The longer we wait, the more certain we can be of the trend.
mjr 87:8d35c74403af 5339 // But if we wait too long, the user will perceive a delay. We
mjr 87:8d35c74403af 5340 // also want to sample frequently enough to see the release motion
mjr 87:8d35c74403af 5341 // at intermediate steps along the way, so the sampling has to be
mjr 87:8d35c74403af 5342 // considerably faster than the whole travel time, which is about
mjr 87:8d35c74403af 5343 // 25-50ms.
mjr 87:8d35c74403af 5344 if (uint32_t(r.t - prv.t) < 5000UL)
mjr 87:8d35c74403af 5345 return;
mjr 87:8d35c74403af 5346
mjr 87:8d35c74403af 5347 // assume that we'll report this reading as-is
mjr 87:8d35c74403af 5348 z = r.pos;
mjr 87:8d35c74403af 5349
mjr 87:8d35c74403af 5350 // Firing event detection.
mjr 87:8d35c74403af 5351 //
mjr 87:8d35c74403af 5352 // A "firing event" is when the player releases the plunger from
mjr 87:8d35c74403af 5353 // a retracted position, allowing it to shoot forward under the
mjr 87:8d35c74403af 5354 // spring tension.
mjr 50:40015764bbe6 5355 //
mjr 87:8d35c74403af 5356 // We monitor the plunger motion for these events, and when they
mjr 87:8d35c74403af 5357 // occur, we report an "idealized" version of the motion to the
mjr 87:8d35c74403af 5358 // PC. The idealized version consists of a series of readings
mjr 87:8d35c74403af 5359 // frozen at the fully retracted position for the whole duration
mjr 87:8d35c74403af 5360 // of the forward travel, followed by a series of readings at the
mjr 87:8d35c74403af 5361 // fully forward position for long enough for the plunger to come
mjr 87:8d35c74403af 5362 // mostly to rest. The series of frozen readings aren't meant to
mjr 87:8d35c74403af 5363 // be perceptible to the player - we try to keep them short enough
mjr 87:8d35c74403af 5364 // that they're not apparent as delay. Instead, they're for the
mjr 87:8d35c74403af 5365 // PC client software's benefit. PC joystick clients use polling,
mjr 87:8d35c74403af 5366 // so they only see an unpredictable subset of the readings we
mjr 87:8d35c74403af 5367 // send. The only way to be sure that the client sees a particular
mjr 87:8d35c74403af 5368 // reading is to hold it for long enough that the client is sure to
mjr 87:8d35c74403af 5369 // poll within the hold interval. In the case of the plunger
mjr 87:8d35c74403af 5370 // firing motion, it's important that the client sees the *ends*
mjr 87:8d35c74403af 5371 // of the travel - the fully retracted starting position in
mjr 87:8d35c74403af 5372 // particular. If the PC client only polls for a sample while the
mjr 87:8d35c74403af 5373 // plunger is somewhere in the middle of the travel, the PC will
mjr 87:8d35c74403af 5374 // think that the firing motion *started* in that middle position,
mjr 87:8d35c74403af 5375 // so it won't be able to model the right amount of momentum when
mjr 87:8d35c74403af 5376 // the plunger hits the ball. We try to ensure that the PC sees
mjr 87:8d35c74403af 5377 // the right starting point by reporting the starting point for
mjr 87:8d35c74403af 5378 // extra time during the forward motion. By the same token, we
mjr 87:8d35c74403af 5379 // want the PC to know that the plunger has moved all the way
mjr 87:8d35c74403af 5380 // forward, rather than mistakenly thinking that it stopped
mjr 87:8d35c74403af 5381 // somewhere in the middle of the travel, so we freeze at the
mjr 87:8d35c74403af 5382 // forward position for a short time.
mjr 76:7f5912b6340e 5383 //
mjr 87:8d35c74403af 5384 // To detect a firing event, we look for forward motion that's
mjr 87:8d35c74403af 5385 // fast enough to be a firing event. To determine how fast is
mjr 87:8d35c74403af 5386 // fast enough, we use a simple model of the plunger motion where
mjr 87:8d35c74403af 5387 // the acceleration is constant. This is only an approximation,
mjr 87:8d35c74403af 5388 // as the spring force actually varies with spring's compression,
mjr 87:8d35c74403af 5389 // but it's close enough for our purposes here.
mjr 87:8d35c74403af 5390 //
mjr 87:8d35c74403af 5391 // Do calculations in fixed-point 2^48 scale with 64-bit ints.
mjr 87:8d35c74403af 5392 // acc2 = acceleration/2 for 50ms release time, units of unit
mjr 87:8d35c74403af 5393 // distances per microsecond squared, where the unit distance
mjr 87:8d35c74403af 5394 // is the overall travel from the starting retracted position
mjr 87:8d35c74403af 5395 // to the park position.
mjr 87:8d35c74403af 5396 const int32_t acc2 = 112590; // 2^48 scale
mjr 50:40015764bbe6 5397 switch (firing)
mjr 50:40015764bbe6 5398 {
mjr 50:40015764bbe6 5399 case 0:
mjr 87:8d35c74403af 5400 // Not in firing mode. If we're retracted a bit, and the
mjr 87:8d35c74403af 5401 // motion is forward at a fast enough rate to look like a
mjr 87:8d35c74403af 5402 // release, enter firing mode.
mjr 87:8d35c74403af 5403 if (r.pos > JOYMAX/6)
mjr 50:40015764bbe6 5404 {
mjr 87:8d35c74403af 5405 const uint32_t dt = uint32_t(r.t - prv.t);
mjr 87:8d35c74403af 5406 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5407 if (r.pos < prv.pos - int((prv.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5408 {
mjr 87:8d35c74403af 5409 // Tentatively enter firing mode. Use the prior reading
mjr 87:8d35c74403af 5410 // as the starting point, and freeze reports for now.
mjr 87:8d35c74403af 5411 firingMode(1);
mjr 87:8d35c74403af 5412 f0 = prv;
mjr 87:8d35c74403af 5413 z = f0.pos;
mjr 87:8d35c74403af 5414
mjr 87:8d35c74403af 5415 // if in calibration state 1 (at rest), switch to
mjr 87:8d35c74403af 5416 // state 2 (not at rest)
mjr 87:8d35c74403af 5417 if (calState == 1)
mjr 87:8d35c74403af 5418 calState = 2;
mjr 87:8d35c74403af 5419 }
mjr 50:40015764bbe6 5420 }
mjr 50:40015764bbe6 5421 break;
mjr 50:40015764bbe6 5422
mjr 50:40015764bbe6 5423 case 1:
mjr 87:8d35c74403af 5424 // Tentative firing mode: the plunger was moving forward
mjr 87:8d35c74403af 5425 // at last check. To stay in firing mode, the plunger has
mjr 87:8d35c74403af 5426 // to keep moving forward fast enough to look like it's
mjr 87:8d35c74403af 5427 // moving under spring force. To figure out how fast is
mjr 87:8d35c74403af 5428 // fast enough, we use a simple model where the acceleration
mjr 87:8d35c74403af 5429 // is constant over the whole travel distance and the total
mjr 87:8d35c74403af 5430 // travel time is 50ms. The acceleration actually varies
mjr 87:8d35c74403af 5431 // slightly since it comes from the spring force, which
mjr 87:8d35c74403af 5432 // is linear in the displacement; but the plunger spring is
mjr 87:8d35c74403af 5433 // fairly compressed even when the plunger is all the way
mjr 87:8d35c74403af 5434 // forward, so the difference in tension from one end of
mjr 87:8d35c74403af 5435 // the travel to the other is fairly small, so it's not too
mjr 87:8d35c74403af 5436 // far off to model it as constant. And the real travel
mjr 87:8d35c74403af 5437 // time obviously isn't a constant, but all we need for
mjr 87:8d35c74403af 5438 // that is an upper bound. So: we'll figure the time since
mjr 87:8d35c74403af 5439 // we entered firing mode, and figure the distance we should
mjr 87:8d35c74403af 5440 // have traveled to complete the trip within the maximum
mjr 87:8d35c74403af 5441 // time allowed. If we've moved far enough, we'll stay
mjr 87:8d35c74403af 5442 // in firing mode; if not, we'll exit firing mode. And if
mjr 87:8d35c74403af 5443 // we cross the finish line while still in firing mode,
mjr 87:8d35c74403af 5444 // we'll switch to the next phase of the firing event.
mjr 50:40015764bbe6 5445 if (r.pos <= 0)
mjr 50:40015764bbe6 5446 {
mjr 87:8d35c74403af 5447 // We crossed the park position. Switch to the second
mjr 87:8d35c74403af 5448 // phase of the firing event, where we hold the reported
mjr 87:8d35c74403af 5449 // position at the "bounce" position (where the plunger
mjr 87:8d35c74403af 5450 // is all the way forward, compressing the barrel spring).
mjr 87:8d35c74403af 5451 // We'll stick here long enough to ensure that the PC
mjr 87:8d35c74403af 5452 // client (Visual Pinball or whatever) sees the reading
mjr 87:8d35c74403af 5453 // and processes the release motion via the simulated
mjr 87:8d35c74403af 5454 // physics.
mjr 50:40015764bbe6 5455 firingMode(2);
mjr 53:9b2611964afc 5456
mjr 53:9b2611964afc 5457 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 5458 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 5459 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 5460 {
mjr 53:9b2611964afc 5461 // collect a new zero point for the average when we
mjr 53:9b2611964afc 5462 // come to rest
mjr 53:9b2611964afc 5463 calState = 0;
mjr 53:9b2611964afc 5464
mjr 87:8d35c74403af 5465 // collect average firing time statistics in millseconds,
mjr 87:8d35c74403af 5466 // if it's in range (20 to 255 ms)
mjr 87:8d35c74403af 5467 const int dt = uint32_t(r.t - f0.t)/1000UL;
mjr 87:8d35c74403af 5468 if (dt >= 15 && dt <= 255)
mjr 53:9b2611964afc 5469 {
mjr 53:9b2611964afc 5470 calRlsTimeSum += dt;
mjr 53:9b2611964afc 5471 calRlsTimeN += 1;
mjr 53:9b2611964afc 5472 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 5473 }
mjr 53:9b2611964afc 5474 }
mjr 87:8d35c74403af 5475
mjr 87:8d35c74403af 5476 // Figure the "bounce" position as forward of the park
mjr 87:8d35c74403af 5477 // position by 1/6 of the starting retraction distance.
mjr 87:8d35c74403af 5478 // This simulates the momentum of the plunger compressing
mjr 87:8d35c74403af 5479 // the barrel spring on the rebound. The barrel spring
mjr 87:8d35c74403af 5480 // can compress by about 1/6 of the maximum retraction
mjr 87:8d35c74403af 5481 // distance, so we'll simply treat its compression as
mjr 87:8d35c74403af 5482 // proportional to the retraction. (It might be more
mjr 87:8d35c74403af 5483 // realistic to use a slightly higher value here, maybe
mjr 87:8d35c74403af 5484 // 1/4 or 1/3 or the retraction distance, capping it at
mjr 87:8d35c74403af 5485 // a maximum of 1/6, because the real plunger probably
mjr 87:8d35c74403af 5486 // compresses the barrel spring by 100% with less than
mjr 87:8d35c74403af 5487 // 100% retraction. But that won't affect the physics
mjr 87:8d35c74403af 5488 // meaningfully, just the animation, and the effect is
mjr 87:8d35c74403af 5489 // small in any case.)
mjr 87:8d35c74403af 5490 z = f0.pos = -f0.pos / 6;
mjr 87:8d35c74403af 5491
mjr 87:8d35c74403af 5492 // reset the starting time for this phase
mjr 87:8d35c74403af 5493 f0.t = r.t;
mjr 50:40015764bbe6 5494 }
mjr 50:40015764bbe6 5495 else
mjr 50:40015764bbe6 5496 {
mjr 87:8d35c74403af 5497 // check for motion since the start of the firing event
mjr 87:8d35c74403af 5498 const uint32_t dt = uint32_t(r.t - f0.t);
mjr 87:8d35c74403af 5499 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5500 if (dt < 50000
mjr 87:8d35c74403af 5501 && r.pos < f0.pos - int((f0.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5502 {
mjr 87:8d35c74403af 5503 // It's moving fast enough to still be in a release
mjr 87:8d35c74403af 5504 // motion. Continue reporting the start position, and
mjr 87:8d35c74403af 5505 // stay in the first release phase.
mjr 87:8d35c74403af 5506 z = f0.pos;
mjr 87:8d35c74403af 5507 }
mjr 87:8d35c74403af 5508 else
mjr 87:8d35c74403af 5509 {
mjr 87:8d35c74403af 5510 // It's not moving fast enough to be a release
mjr 87:8d35c74403af 5511 // motion. Return to the default state.
mjr 87:8d35c74403af 5512 firingMode(0);
mjr 87:8d35c74403af 5513 calState = 1;
mjr 87:8d35c74403af 5514 }
mjr 50:40015764bbe6 5515 }
mjr 50:40015764bbe6 5516 break;
mjr 50:40015764bbe6 5517
mjr 50:40015764bbe6 5518 case 2:
mjr 87:8d35c74403af 5519 // Firing mode, holding at forward compression position.
mjr 87:8d35c74403af 5520 // Hold here for 25ms.
mjr 87:8d35c74403af 5521 if (uint32_t(r.t - f0.t) < 25000)
mjr 50:40015764bbe6 5522 {
mjr 87:8d35c74403af 5523 // stay here for now
mjr 87:8d35c74403af 5524 z = f0.pos;
mjr 50:40015764bbe6 5525 }
mjr 50:40015764bbe6 5526 else
mjr 50:40015764bbe6 5527 {
mjr 87:8d35c74403af 5528 // advance to the next phase, where we report the park
mjr 87:8d35c74403af 5529 // position until the plunger comes to rest
mjr 50:40015764bbe6 5530 firingMode(3);
mjr 50:40015764bbe6 5531 z = 0;
mjr 87:8d35c74403af 5532
mjr 87:8d35c74403af 5533 // remember when we started
mjr 87:8d35c74403af 5534 f0.t = r.t;
mjr 50:40015764bbe6 5535 }
mjr 50:40015764bbe6 5536 break;
mjr 50:40015764bbe6 5537
mjr 50:40015764bbe6 5538 case 3:
mjr 87:8d35c74403af 5539 // Firing event, holding at park position. Stay here for
mjr 87:8d35c74403af 5540 // a few moments so that the PC client can simulate the
mjr 87:8d35c74403af 5541 // full release motion, then return to real readings.
mjr 87:8d35c74403af 5542 if (uint32_t(r.t - f0.t) < 250000)
mjr 50:40015764bbe6 5543 {
mjr 87:8d35c74403af 5544 // stay here a while longer
mjr 87:8d35c74403af 5545 z = 0;
mjr 50:40015764bbe6 5546 }
mjr 50:40015764bbe6 5547 else
mjr 50:40015764bbe6 5548 {
mjr 87:8d35c74403af 5549 // it's been long enough - return to normal mode
mjr 87:8d35c74403af 5550 firingMode(0);
mjr 50:40015764bbe6 5551 }
mjr 50:40015764bbe6 5552 break;
mjr 50:40015764bbe6 5553 }
mjr 50:40015764bbe6 5554
mjr 82:4f6209cb5c33 5555 // Check for auto-zeroing, if enabled
mjr 82:4f6209cb5c33 5556 if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0)
mjr 82:4f6209cb5c33 5557 {
mjr 82:4f6209cb5c33 5558 // If we moved since the last reading, reset and restart the
mjr 82:4f6209cb5c33 5559 // auto-zero timer. Otherwise, if the timer has reached the
mjr 82:4f6209cb5c33 5560 // auto-zero timeout, it means we've been motionless for that
mjr 82:4f6209cb5c33 5561 // long, so auto-zero now.
mjr 82:4f6209cb5c33 5562 if (r.pos != prv.pos)
mjr 82:4f6209cb5c33 5563 {
mjr 82:4f6209cb5c33 5564 // movement detected - reset the timer
mjr 82:4f6209cb5c33 5565 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5566 autoZeroTimer.start();
mjr 82:4f6209cb5c33 5567 }
mjr 82:4f6209cb5c33 5568 else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL)
mjr 82:4f6209cb5c33 5569 {
mjr 82:4f6209cb5c33 5570 // auto-zero now
mjr 82:4f6209cb5c33 5571 plungerSensor->autoZero();
mjr 82:4f6209cb5c33 5572
mjr 82:4f6209cb5c33 5573 // stop the timer so that we don't keep repeating this
mjr 82:4f6209cb5c33 5574 // if the plunger stays still for a long time
mjr 82:4f6209cb5c33 5575 autoZeroTimer.stop();
mjr 82:4f6209cb5c33 5576 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5577 }
mjr 82:4f6209cb5c33 5578 }
mjr 82:4f6209cb5c33 5579
mjr 87:8d35c74403af 5580 // this new reading becomes the previous reading for next time
mjr 87:8d35c74403af 5581 prv = r;
mjr 48:058ace2aed1d 5582 }
mjr 48:058ace2aed1d 5583 }
mjr 48:058ace2aed1d 5584
mjr 48:058ace2aed1d 5585 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 5586 int16_t getPosition()
mjr 58:523fdcffbe6d 5587 {
mjr 86:e30a1f60f783 5588 // return the last reading
mjr 86:e30a1f60f783 5589 return z;
mjr 55:4db125cd11a0 5590 }
mjr 58:523fdcffbe6d 5591
mjr 48:058ace2aed1d 5592 // Set calibration mode on or off
mjr 52:8298b2a73eb2 5593 void setCalMode(bool f)
mjr 48:058ace2aed1d 5594 {
mjr 52:8298b2a73eb2 5595 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 5596 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 5597 {
mjr 52:8298b2a73eb2 5598 // reset the calibration in the configuration
mjr 48:058ace2aed1d 5599 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 5600
mjr 52:8298b2a73eb2 5601 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 5602 calState = 0;
mjr 52:8298b2a73eb2 5603 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 5604 calZeroPosN = 0;
mjr 52:8298b2a73eb2 5605 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 5606 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 5607
mjr 82:4f6209cb5c33 5608 // tell the plunger we're starting calibration
mjr 100:1ff35c07217c 5609 plungerSensor->beginCalibration(cfg);
mjr 82:4f6209cb5c33 5610
mjr 52:8298b2a73eb2 5611 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 5612 PlungerReading r;
mjr 52:8298b2a73eb2 5613 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 5614 {
mjr 52:8298b2a73eb2 5615 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 5616 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 5617 onUpdateCal();
mjr 52:8298b2a73eb2 5618
mjr 52:8298b2a73eb2 5619 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 5620 calZeroStart = r;
mjr 52:8298b2a73eb2 5621 }
mjr 52:8298b2a73eb2 5622 else
mjr 52:8298b2a73eb2 5623 {
mjr 52:8298b2a73eb2 5624 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 5625 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5626 onUpdateCal();
mjr 52:8298b2a73eb2 5627
mjr 52:8298b2a73eb2 5628 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 5629 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 5630 calZeroStart.t = 0;
mjr 53:9b2611964afc 5631 }
mjr 53:9b2611964afc 5632 }
mjr 53:9b2611964afc 5633 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 5634 {
mjr 53:9b2611964afc 5635 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 5636 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 5637 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 5638 // physically meaningless.
mjr 53:9b2611964afc 5639 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 5640 {
mjr 53:9b2611964afc 5641 // bad settings - reset to defaults
mjr 53:9b2611964afc 5642 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 5643 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 5644 }
mjr 100:1ff35c07217c 5645
mjr 100:1ff35c07217c 5646 // finalize the configuration in the plunger object
mjr 100:1ff35c07217c 5647 plungerSensor->endCalibration(cfg);
mjr 100:1ff35c07217c 5648
mjr 100:1ff35c07217c 5649 // update our internal cached information for the new calibration
mjr 100:1ff35c07217c 5650 onUpdateCal();
mjr 52:8298b2a73eb2 5651 }
mjr 52:8298b2a73eb2 5652
mjr 48:058ace2aed1d 5653 // remember the new mode
mjr 52:8298b2a73eb2 5654 plungerCalMode = f;
mjr 48:058ace2aed1d 5655 }
mjr 48:058ace2aed1d 5656
mjr 76:7f5912b6340e 5657 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 5658 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 5659 // cached inverse is calculated as
mjr 76:7f5912b6340e 5660 //
mjr 76:7f5912b6340e 5661 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 5662 //
mjr 76:7f5912b6340e 5663 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 5664 //
mjr 76:7f5912b6340e 5665 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 5666 //
mjr 76:7f5912b6340e 5667 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 5668 int invCalRange;
mjr 76:7f5912b6340e 5669
mjr 76:7f5912b6340e 5670 // apply the calibration range to a reading
mjr 76:7f5912b6340e 5671 inline int applyCal(int reading)
mjr 76:7f5912b6340e 5672 {
mjr 76:7f5912b6340e 5673 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 5674 }
mjr 76:7f5912b6340e 5675
mjr 76:7f5912b6340e 5676 void onUpdateCal()
mjr 76:7f5912b6340e 5677 {
mjr 76:7f5912b6340e 5678 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 5679 }
mjr 76:7f5912b6340e 5680
mjr 48:058ace2aed1d 5681 // is a firing event in progress?
mjr 53:9b2611964afc 5682 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 5683
mjr 48:058ace2aed1d 5684 private:
mjr 87:8d35c74403af 5685 // current reported joystick reading
mjr 87:8d35c74403af 5686 int z;
mjr 87:8d35c74403af 5687
mjr 87:8d35c74403af 5688 // previous reading
mjr 87:8d35c74403af 5689 PlungerReading prv;
mjr 87:8d35c74403af 5690
mjr 52:8298b2a73eb2 5691 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 5692 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 5693 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 5694 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5695 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5696 // 1 = at rest
mjr 52:8298b2a73eb2 5697 // 2 = retracting
mjr 52:8298b2a73eb2 5698 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5699 uint8_t calState;
mjr 52:8298b2a73eb2 5700
mjr 52:8298b2a73eb2 5701 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5702 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5703 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5704 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5705 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5706 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5707 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5708 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5709 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5710 long calZeroPosSum;
mjr 52:8298b2a73eb2 5711 int calZeroPosN;
mjr 52:8298b2a73eb2 5712
mjr 52:8298b2a73eb2 5713 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5714 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5715 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5716 int calRlsTimeN;
mjr 52:8298b2a73eb2 5717
mjr 85:3c28aee81cde 5718 // Auto-zeroing timer
mjr 85:3c28aee81cde 5719 Timer autoZeroTimer;
mjr 85:3c28aee81cde 5720
mjr 48:058ace2aed1d 5721 // set a firing mode
mjr 48:058ace2aed1d 5722 inline void firingMode(int m)
mjr 48:058ace2aed1d 5723 {
mjr 48:058ace2aed1d 5724 firing = m;
mjr 48:058ace2aed1d 5725 }
mjr 48:058ace2aed1d 5726
mjr 48:058ace2aed1d 5727 // Firing event state.
mjr 48:058ace2aed1d 5728 //
mjr 87:8d35c74403af 5729 // 0 - Default state: not in firing event. We report the true
mjr 87:8d35c74403af 5730 // instantaneous plunger position to the joystick interface.
mjr 48:058ace2aed1d 5731 //
mjr 87:8d35c74403af 5732 // 1 - Moving forward at release speed
mjr 48:058ace2aed1d 5733 //
mjr 87:8d35c74403af 5734 // 2 - Firing - reporting the bounce position
mjr 87:8d35c74403af 5735 //
mjr 87:8d35c74403af 5736 // 3 - Firing - reporting the park position
mjr 48:058ace2aed1d 5737 //
mjr 48:058ace2aed1d 5738 int firing;
mjr 48:058ace2aed1d 5739
mjr 87:8d35c74403af 5740 // Starting position for current firing mode phase
mjr 87:8d35c74403af 5741 PlungerReading f0;
mjr 48:058ace2aed1d 5742 };
mjr 48:058ace2aed1d 5743
mjr 48:058ace2aed1d 5744 // plunger reader singleton
mjr 48:058ace2aed1d 5745 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5746
mjr 48:058ace2aed1d 5747 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5748 //
mjr 48:058ace2aed1d 5749 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5750 //
mjr 48:058ace2aed1d 5751 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5752 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5753 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5754 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5755 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5756 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5757 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5758 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5759 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5760 //
mjr 48:058ace2aed1d 5761 // This feature has two configuration components:
mjr 48:058ace2aed1d 5762 //
mjr 48:058ace2aed1d 5763 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5764 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5765 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5766 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5767 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5768 // plunger/launch button connection.
mjr 48:058ace2aed1d 5769 //
mjr 48:058ace2aed1d 5770 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5771 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5772 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5773 // position.
mjr 48:058ace2aed1d 5774 //
mjr 48:058ace2aed1d 5775 class ZBLaunchBall
mjr 48:058ace2aed1d 5776 {
mjr 48:058ace2aed1d 5777 public:
mjr 48:058ace2aed1d 5778 ZBLaunchBall()
mjr 48:058ace2aed1d 5779 {
mjr 48:058ace2aed1d 5780 // start in the default state
mjr 48:058ace2aed1d 5781 lbState = 0;
mjr 53:9b2611964afc 5782 btnState = false;
mjr 48:058ace2aed1d 5783 }
mjr 48:058ace2aed1d 5784
mjr 48:058ace2aed1d 5785 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5786 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5787 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5788 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5789 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5790 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5791 void update()
mjr 48:058ace2aed1d 5792 {
mjr 53:9b2611964afc 5793 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5794 // plunger firing event
mjr 53:9b2611964afc 5795 if (zbLaunchOn)
mjr 48:058ace2aed1d 5796 {
mjr 53:9b2611964afc 5797 // note the new position
mjr 48:058ace2aed1d 5798 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5799
mjr 53:9b2611964afc 5800 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5801 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5802
mjr 53:9b2611964afc 5803 // check the state
mjr 48:058ace2aed1d 5804 switch (lbState)
mjr 48:058ace2aed1d 5805 {
mjr 48:058ace2aed1d 5806 case 0:
mjr 53:9b2611964afc 5807 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5808 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5809 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5810 // the button.
mjr 53:9b2611964afc 5811 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5812 {
mjr 53:9b2611964afc 5813 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5814 lbTimer.reset();
mjr 53:9b2611964afc 5815 lbTimer.start();
mjr 53:9b2611964afc 5816 setButton(true);
mjr 53:9b2611964afc 5817
mjr 53:9b2611964afc 5818 // switch to state 1
mjr 53:9b2611964afc 5819 lbState = 1;
mjr 53:9b2611964afc 5820 }
mjr 48:058ace2aed1d 5821 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5822 {
mjr 53:9b2611964afc 5823 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5824 // button as long as we're pushed forward
mjr 53:9b2611964afc 5825 setButton(true);
mjr 53:9b2611964afc 5826 }
mjr 53:9b2611964afc 5827 else
mjr 53:9b2611964afc 5828 {
mjr 53:9b2611964afc 5829 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5830 setButton(false);
mjr 53:9b2611964afc 5831 }
mjr 48:058ace2aed1d 5832 break;
mjr 48:058ace2aed1d 5833
mjr 48:058ace2aed1d 5834 case 1:
mjr 53:9b2611964afc 5835 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5836 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5837 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5838 {
mjr 53:9b2611964afc 5839 // timer expired - turn off the button
mjr 53:9b2611964afc 5840 setButton(false);
mjr 53:9b2611964afc 5841
mjr 53:9b2611964afc 5842 // switch to state 2
mjr 53:9b2611964afc 5843 lbState = 2;
mjr 53:9b2611964afc 5844 }
mjr 48:058ace2aed1d 5845 break;
mjr 48:058ace2aed1d 5846
mjr 48:058ace2aed1d 5847 case 2:
mjr 53:9b2611964afc 5848 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5849 // plunger launch event to end.
mjr 53:9b2611964afc 5850 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5851 {
mjr 53:9b2611964afc 5852 // firing event done - return to default state
mjr 53:9b2611964afc 5853 lbState = 0;
mjr 53:9b2611964afc 5854 }
mjr 48:058ace2aed1d 5855 break;
mjr 48:058ace2aed1d 5856 }
mjr 53:9b2611964afc 5857 }
mjr 53:9b2611964afc 5858 else
mjr 53:9b2611964afc 5859 {
mjr 53:9b2611964afc 5860 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5861 setButton(false);
mjr 48:058ace2aed1d 5862
mjr 53:9b2611964afc 5863 // return to the default state
mjr 53:9b2611964afc 5864 lbState = 0;
mjr 48:058ace2aed1d 5865 }
mjr 48:058ace2aed1d 5866 }
mjr 53:9b2611964afc 5867
mjr 53:9b2611964afc 5868 // Set the button state
mjr 53:9b2611964afc 5869 void setButton(bool on)
mjr 53:9b2611964afc 5870 {
mjr 53:9b2611964afc 5871 if (btnState != on)
mjr 53:9b2611964afc 5872 {
mjr 53:9b2611964afc 5873 // remember the new state
mjr 53:9b2611964afc 5874 btnState = on;
mjr 53:9b2611964afc 5875
mjr 53:9b2611964afc 5876 // update the virtual button state
mjr 65:739875521aae 5877 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5878 }
mjr 53:9b2611964afc 5879 }
mjr 53:9b2611964afc 5880
mjr 48:058ace2aed1d 5881 private:
mjr 48:058ace2aed1d 5882 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5883 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5884 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5885 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5886 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5887 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5888 //
mjr 48:058ace2aed1d 5889 // States:
mjr 48:058ace2aed1d 5890 // 0 = default
mjr 53:9b2611964afc 5891 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5892 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5893 // firing event to end)
mjr 53:9b2611964afc 5894 uint8_t lbState;
mjr 48:058ace2aed1d 5895
mjr 53:9b2611964afc 5896 // button state
mjr 53:9b2611964afc 5897 bool btnState;
mjr 48:058ace2aed1d 5898
mjr 48:058ace2aed1d 5899 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5900 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5901 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5902 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5903 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5904 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5905 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5906 Timer lbTimer;
mjr 48:058ace2aed1d 5907 };
mjr 48:058ace2aed1d 5908
mjr 35:e959ffba78fd 5909 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5910 //
mjr 35:e959ffba78fd 5911 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 5912 //
mjr 54:fd77a6b2f76c 5913 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 5914 {
mjr 35:e959ffba78fd 5915 // disconnect from USB
mjr 54:fd77a6b2f76c 5916 if (disconnect)
mjr 54:fd77a6b2f76c 5917 js.disconnect();
mjr 35:e959ffba78fd 5918
mjr 35:e959ffba78fd 5919 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 5920 wait_us(pause_us);
mjr 35:e959ffba78fd 5921
mjr 35:e959ffba78fd 5922 // reset the device
mjr 35:e959ffba78fd 5923 NVIC_SystemReset();
mjr 35:e959ffba78fd 5924 while (true) { }
mjr 35:e959ffba78fd 5925 }
mjr 35:e959ffba78fd 5926
mjr 35:e959ffba78fd 5927 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5928 //
mjr 35:e959ffba78fd 5929 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 5930 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 5931 //
mjr 35:e959ffba78fd 5932 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 5933 {
mjr 35:e959ffba78fd 5934 int tmp;
mjr 78:1e00b3fa11af 5935 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 5936 {
mjr 35:e959ffba78fd 5937 case OrientationFront:
mjr 35:e959ffba78fd 5938 tmp = x;
mjr 35:e959ffba78fd 5939 x = y;
mjr 35:e959ffba78fd 5940 y = tmp;
mjr 35:e959ffba78fd 5941 break;
mjr 35:e959ffba78fd 5942
mjr 35:e959ffba78fd 5943 case OrientationLeft:
mjr 35:e959ffba78fd 5944 x = -x;
mjr 35:e959ffba78fd 5945 break;
mjr 35:e959ffba78fd 5946
mjr 35:e959ffba78fd 5947 case OrientationRight:
mjr 35:e959ffba78fd 5948 y = -y;
mjr 35:e959ffba78fd 5949 break;
mjr 35:e959ffba78fd 5950
mjr 35:e959ffba78fd 5951 case OrientationRear:
mjr 35:e959ffba78fd 5952 tmp = -x;
mjr 35:e959ffba78fd 5953 x = -y;
mjr 35:e959ffba78fd 5954 y = tmp;
mjr 35:e959ffba78fd 5955 break;
mjr 35:e959ffba78fd 5956 }
mjr 35:e959ffba78fd 5957 }
mjr 35:e959ffba78fd 5958
mjr 35:e959ffba78fd 5959 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5960 //
mjr 35:e959ffba78fd 5961 // Calibration button state:
mjr 35:e959ffba78fd 5962 // 0 = not pushed
mjr 35:e959ffba78fd 5963 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 5964 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 5965 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 5966 int calBtnState = 0;
mjr 35:e959ffba78fd 5967
mjr 35:e959ffba78fd 5968 // calibration button debounce timer
mjr 35:e959ffba78fd 5969 Timer calBtnTimer;
mjr 35:e959ffba78fd 5970
mjr 35:e959ffba78fd 5971 // calibration button light state
mjr 35:e959ffba78fd 5972 int calBtnLit = false;
mjr 35:e959ffba78fd 5973
mjr 35:e959ffba78fd 5974
mjr 35:e959ffba78fd 5975 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5976 //
mjr 40:cc0d9814522b 5977 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 5978 //
mjr 40:cc0d9814522b 5979
mjr 40:cc0d9814522b 5980 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 5981 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 5982 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 91:ae9be42652bf 5983 #define v_byte_wo(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 5984 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 5985 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 5986 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 5987 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5988 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5989 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 5990 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 5991 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 5992
mjr 40:cc0d9814522b 5993 // redefine everything for the SET messages
mjr 40:cc0d9814522b 5994 #undef if_msg_valid
mjr 40:cc0d9814522b 5995 #undef v_byte
mjr 40:cc0d9814522b 5996 #undef v_ui16
mjr 77:0b96f6867312 5997 #undef v_ui32
mjr 40:cc0d9814522b 5998 #undef v_pin
mjr 53:9b2611964afc 5999 #undef v_byte_ro
mjr 91:ae9be42652bf 6000 #undef v_byte_wo
mjr 74:822a92bc11d2 6001 #undef v_ui32_ro
mjr 74:822a92bc11d2 6002 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 6003 #undef v_func
mjr 38:091e511ce8a0 6004
mjr 91:ae9be42652bf 6005 // Handle GET messages - read variable values and return in USB message data
mjr 40:cc0d9814522b 6006 #define if_msg_valid(test)
mjr 53:9b2611964afc 6007 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 6008 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 6009 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 6010 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 6011 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 6012 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 6013 #define VAR_MODE_SET 0 // we're in GET mode
mjr 91:ae9be42652bf 6014 #define v_byte_wo(var, ofs) // ignore write-only variables in GET mode
mjr 76:7f5912b6340e 6015 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 6016 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 6017
mjr 35:e959ffba78fd 6018
mjr 35:e959ffba78fd 6019 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6020 //
mjr 35:e959ffba78fd 6021 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 6022 // LedWiz protocol.
mjr 33:d832bcab089e 6023 //
mjr 78:1e00b3fa11af 6024 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 6025 {
mjr 38:091e511ce8a0 6026 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 6027 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 6028 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 6029 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 6030 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 6031 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 6032 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 6033 // So our full protocol is as follows:
mjr 38:091e511ce8a0 6034 //
mjr 38:091e511ce8a0 6035 // first byte =
mjr 74:822a92bc11d2 6036 // 0-48 -> PBA
mjr 74:822a92bc11d2 6037 // 64 -> SBA
mjr 38:091e511ce8a0 6038 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 6039 // 129-132 -> PBA
mjr 38:091e511ce8a0 6040 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 6041 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 6042 // other -> reserved for future use
mjr 38:091e511ce8a0 6043 //
mjr 39:b3815a1c3802 6044 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 6045 if (data[0] == 64)
mjr 35:e959ffba78fd 6046 {
mjr 74:822a92bc11d2 6047 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 6048 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 6049 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 6050 sba_sbx(0, data);
mjr 74:822a92bc11d2 6051
mjr 74:822a92bc11d2 6052 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 6053 pbaIdx = 0;
mjr 38:091e511ce8a0 6054 }
mjr 38:091e511ce8a0 6055 else if (data[0] == 65)
mjr 38:091e511ce8a0 6056 {
mjr 38:091e511ce8a0 6057 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 6058 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 6059 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 6060 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 6061 // message type.
mjr 39:b3815a1c3802 6062 switch (data[1])
mjr 38:091e511ce8a0 6063 {
mjr 39:b3815a1c3802 6064 case 0:
mjr 39:b3815a1c3802 6065 // No Op
mjr 39:b3815a1c3802 6066 break;
mjr 39:b3815a1c3802 6067
mjr 39:b3815a1c3802 6068 case 1:
mjr 38:091e511ce8a0 6069 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 6070 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 6071 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 6072 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 6073 {
mjr 39:b3815a1c3802 6074
mjr 39:b3815a1c3802 6075 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 6076 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 6077 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 6078
mjr 86:e30a1f60f783 6079 // we'll need a reboot if the LedWiz unit number is changing
mjr 86:e30a1f60f783 6080 bool reboot = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 6081
mjr 39:b3815a1c3802 6082 // set the configuration parameters from the message
mjr 39:b3815a1c3802 6083 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 6084 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 6085
mjr 77:0b96f6867312 6086 // set the flag to do the save
mjr 86:e30a1f60f783 6087 saveConfigToFlash(0, reboot);
mjr 39:b3815a1c3802 6088 }
mjr 39:b3815a1c3802 6089 break;
mjr 38:091e511ce8a0 6090
mjr 39:b3815a1c3802 6091 case 2:
mjr 38:091e511ce8a0 6092 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 6093 // (No parameters)
mjr 38:091e511ce8a0 6094
mjr 38:091e511ce8a0 6095 // enter calibration mode
mjr 38:091e511ce8a0 6096 calBtnState = 3;
mjr 52:8298b2a73eb2 6097 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 6098 calBtnTimer.reset();
mjr 39:b3815a1c3802 6099 break;
mjr 39:b3815a1c3802 6100
mjr 39:b3815a1c3802 6101 case 3:
mjr 52:8298b2a73eb2 6102 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 6103 // data[2] = flag bits
mjr 53:9b2611964afc 6104 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 6105 reportPlungerStat = true;
mjr 53:9b2611964afc 6106 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 6107 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 6108
mjr 38:091e511ce8a0 6109 // show purple until we finish sending the report
mjr 38:091e511ce8a0 6110 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 6111 break;
mjr 39:b3815a1c3802 6112
mjr 39:b3815a1c3802 6113 case 4:
mjr 38:091e511ce8a0 6114 // 4 = hardware configuration query
mjr 38:091e511ce8a0 6115 // (No parameters)
mjr 38:091e511ce8a0 6116 js.reportConfig(
mjr 38:091e511ce8a0 6117 numOutputs,
mjr 38:091e511ce8a0 6118 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 6119 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 6120 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 6121 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 6122 true, // we support the new accelerometer settings
mjr 82:4f6209cb5c33 6123 true, // we support the "flash write ok" status bit in joystick reports
mjr 92:f264fbaa1be5 6124 true, // we support the configurable joystick report timing features
mjr 99:8139b0c274f4 6125 true, // chime logic is supported
mjr 79:682ae3171a08 6126 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 6127 break;
mjr 39:b3815a1c3802 6128
mjr 39:b3815a1c3802 6129 case 5:
mjr 38:091e511ce8a0 6130 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 6131 allOutputsOff();
mjr 39:b3815a1c3802 6132 break;
mjr 39:b3815a1c3802 6133
mjr 39:b3815a1c3802 6134 case 6:
mjr 85:3c28aee81cde 6135 // 6 = Save configuration to flash. Optionally reboot after the
mjr 85:3c28aee81cde 6136 // delay time in seconds given in data[2].
mjr 85:3c28aee81cde 6137 //
mjr 85:3c28aee81cde 6138 // data[2] = delay time in seconds
mjr 85:3c28aee81cde 6139 // data[3] = flags:
mjr 85:3c28aee81cde 6140 // 0x01 -> do not reboot
mjr 86:e30a1f60f783 6141 saveConfigToFlash(data[2], !(data[3] & 0x01));
mjr 39:b3815a1c3802 6142 break;
mjr 40:cc0d9814522b 6143
mjr 40:cc0d9814522b 6144 case 7:
mjr 40:cc0d9814522b 6145 // 7 = Device ID report
mjr 53:9b2611964afc 6146 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 6147 js.reportID(data[2]);
mjr 40:cc0d9814522b 6148 break;
mjr 40:cc0d9814522b 6149
mjr 40:cc0d9814522b 6150 case 8:
mjr 40:cc0d9814522b 6151 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 6152 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 6153 setNightMode(data[2]);
mjr 40:cc0d9814522b 6154 break;
mjr 52:8298b2a73eb2 6155
mjr 52:8298b2a73eb2 6156 case 9:
mjr 52:8298b2a73eb2 6157 // 9 = Config variable query.
mjr 52:8298b2a73eb2 6158 // data[2] = config var ID
mjr 52:8298b2a73eb2 6159 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 6160 {
mjr 53:9b2611964afc 6161 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 6162 // the rest of the buffer
mjr 52:8298b2a73eb2 6163 uint8_t reply[8];
mjr 52:8298b2a73eb2 6164 reply[1] = data[2];
mjr 52:8298b2a73eb2 6165 reply[2] = data[3];
mjr 53:9b2611964afc 6166 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 6167
mjr 52:8298b2a73eb2 6168 // query the value
mjr 52:8298b2a73eb2 6169 configVarGet(reply);
mjr 52:8298b2a73eb2 6170
mjr 52:8298b2a73eb2 6171 // send the reply
mjr 52:8298b2a73eb2 6172 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 6173 }
mjr 52:8298b2a73eb2 6174 break;
mjr 53:9b2611964afc 6175
mjr 53:9b2611964afc 6176 case 10:
mjr 53:9b2611964afc 6177 // 10 = Build ID query.
mjr 53:9b2611964afc 6178 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 6179 break;
mjr 73:4e8ce0b18915 6180
mjr 73:4e8ce0b18915 6181 case 11:
mjr 73:4e8ce0b18915 6182 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 6183 // data[2] = operation:
mjr 73:4e8ce0b18915 6184 // 0 = turn relay off
mjr 73:4e8ce0b18915 6185 // 1 = turn relay on
mjr 73:4e8ce0b18915 6186 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 6187 TVRelay(data[2]);
mjr 73:4e8ce0b18915 6188 break;
mjr 73:4e8ce0b18915 6189
mjr 73:4e8ce0b18915 6190 case 12:
mjr 77:0b96f6867312 6191 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 6192 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 6193 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 6194 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 6195 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 6196
mjr 77:0b96f6867312 6197 // enter IR learning mode
mjr 77:0b96f6867312 6198 IRLearningMode = 1;
mjr 77:0b96f6867312 6199
mjr 77:0b96f6867312 6200 // cancel any regular IR input in progress
mjr 77:0b96f6867312 6201 IRCommandIn = 0;
mjr 77:0b96f6867312 6202
mjr 77:0b96f6867312 6203 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 6204 IRTimer.reset();
mjr 73:4e8ce0b18915 6205 break;
mjr 73:4e8ce0b18915 6206
mjr 73:4e8ce0b18915 6207 case 13:
mjr 73:4e8ce0b18915 6208 // 13 = Send button status report
mjr 73:4e8ce0b18915 6209 reportButtonStatus(js);
mjr 73:4e8ce0b18915 6210 break;
mjr 78:1e00b3fa11af 6211
mjr 78:1e00b3fa11af 6212 case 14:
mjr 78:1e00b3fa11af 6213 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 6214 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 6215 break;
mjr 78:1e00b3fa11af 6216
mjr 78:1e00b3fa11af 6217 case 15:
mjr 78:1e00b3fa11af 6218 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 6219 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 6220 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 6221 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 6222 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 6223 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 6224 break;
mjr 78:1e00b3fa11af 6225
mjr 78:1e00b3fa11af 6226 case 16:
mjr 78:1e00b3fa11af 6227 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 6228 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 6229 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 6230 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 6231 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 6232 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 6233 break;
mjr 88:98bce687e6c0 6234
mjr 88:98bce687e6c0 6235 case 17:
mjr 88:98bce687e6c0 6236 // 17 = send pre-programmed IR command. This works just like
mjr 88:98bce687e6c0 6237 // sending an ad hoc command above, but we get the command data
mjr 88:98bce687e6c0 6238 // from an IR slot in the config rather than from the client.
mjr 88:98bce687e6c0 6239 // First make sure we have a valid slot number.
mjr 88:98bce687e6c0 6240 if (data[2] >= 1 && data[2] <= MAX_IR_CODES)
mjr 88:98bce687e6c0 6241 {
mjr 88:98bce687e6c0 6242 // get the IR command slot in the config
mjr 88:98bce687e6c0 6243 IRCommandCfg &cmd = cfg.IRCommand[data[2] - 1];
mjr 88:98bce687e6c0 6244
mjr 88:98bce687e6c0 6245 // copy the IR command data from the config
mjr 88:98bce687e6c0 6246 IRAdHocCmd.protocol = cmd.protocol;
mjr 88:98bce687e6c0 6247 IRAdHocCmd.dittos = (cmd.flags & IRFlagDittos) != 0;
mjr 88:98bce687e6c0 6248 IRAdHocCmd.code = (uint64_t(cmd.code.hi) << 32) | cmd.code.lo;
mjr 88:98bce687e6c0 6249
mjr 88:98bce687e6c0 6250 // mark the command as ready - this will trigger the polling
mjr 88:98bce687e6c0 6251 // routine to send the command as soon as the transmitter
mjr 88:98bce687e6c0 6252 // is free
mjr 88:98bce687e6c0 6253 IRAdHocCmd.ready = 1;
mjr 88:98bce687e6c0 6254 }
mjr 88:98bce687e6c0 6255 break;
mjr 38:091e511ce8a0 6256 }
mjr 38:091e511ce8a0 6257 }
mjr 38:091e511ce8a0 6258 else if (data[0] == 66)
mjr 38:091e511ce8a0 6259 {
mjr 38:091e511ce8a0 6260 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 6261 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 6262 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 6263 // in a variable-dependent format.
mjr 40:cc0d9814522b 6264 configVarSet(data);
mjr 86:e30a1f60f783 6265
mjr 87:8d35c74403af 6266 // notify the plunger, so that it can update relevant variables
mjr 87:8d35c74403af 6267 // dynamically
mjr 87:8d35c74403af 6268 plungerSensor->onConfigChange(data[1], cfg);
mjr 38:091e511ce8a0 6269 }
mjr 74:822a92bc11d2 6270 else if (data[0] == 67)
mjr 74:822a92bc11d2 6271 {
mjr 74:822a92bc11d2 6272 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 6273 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 6274 // to ports beyond the first 32.
mjr 74:822a92bc11d2 6275 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 6276 }
mjr 74:822a92bc11d2 6277 else if (data[0] == 68)
mjr 74:822a92bc11d2 6278 {
mjr 74:822a92bc11d2 6279 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 6280 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 6281 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 6282
mjr 74:822a92bc11d2 6283 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 6284 int portGroup = data[1];
mjr 74:822a92bc11d2 6285
mjr 74:822a92bc11d2 6286 // unpack the brightness values
mjr 74:822a92bc11d2 6287 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 6288 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 6289 uint8_t bri[8] = {
mjr 74:822a92bc11d2 6290 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 6291 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 6292 };
mjr 74:822a92bc11d2 6293
mjr 74:822a92bc11d2 6294 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 6295 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 6296 {
mjr 74:822a92bc11d2 6297 if (bri[i] >= 60)
mjr 74:822a92bc11d2 6298 bri[i] += 129-60;
mjr 74:822a92bc11d2 6299 }
mjr 74:822a92bc11d2 6300
mjr 74:822a92bc11d2 6301 // Carry out the PBA
mjr 74:822a92bc11d2 6302 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 6303 }
mjr 38:091e511ce8a0 6304 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 6305 {
mjr 38:091e511ce8a0 6306 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 6307 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 6308 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 6309 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 6310 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 6311 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 6312 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 6313 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 6314 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 6315 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 6316 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 6317 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 6318 //
mjr 38:091e511ce8a0 6319 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 6320 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 6321 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 6322 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 6323 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 6324 // address those ports anyway.
mjr 63:5cd1a5f3a41b 6325
mjr 63:5cd1a5f3a41b 6326 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 6327 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 6328 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 6329
mjr 63:5cd1a5f3a41b 6330 // update each port
mjr 38:091e511ce8a0 6331 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 6332 {
mjr 38:091e511ce8a0 6333 // set the brightness level for the output
mjr 40:cc0d9814522b 6334 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 6335 outLevel[i] = b;
mjr 38:091e511ce8a0 6336
mjr 74:822a92bc11d2 6337 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 6338 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 6339 // LedWiz mode on a future update
mjr 76:7f5912b6340e 6340 if (b != 0)
mjr 76:7f5912b6340e 6341 {
mjr 76:7f5912b6340e 6342 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 6343 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 6344 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 6345 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 6346 // forward unchanged.
mjr 76:7f5912b6340e 6347 wizOn[i] = 1;
mjr 76:7f5912b6340e 6348 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 6349 }
mjr 76:7f5912b6340e 6350 else
mjr 76:7f5912b6340e 6351 {
mjr 76:7f5912b6340e 6352 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 6353 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 6354 wizOn[i] = 0;
mjr 76:7f5912b6340e 6355 }
mjr 74:822a92bc11d2 6356
mjr 38:091e511ce8a0 6357 // set the output
mjr 40:cc0d9814522b 6358 lwPin[i]->set(b);
mjr 38:091e511ce8a0 6359 }
mjr 38:091e511ce8a0 6360
mjr 38:091e511ce8a0 6361 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 6362 if (hc595 != 0)
mjr 38:091e511ce8a0 6363 hc595->update();
mjr 38:091e511ce8a0 6364 }
mjr 38:091e511ce8a0 6365 else
mjr 38:091e511ce8a0 6366 {
mjr 74:822a92bc11d2 6367 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 6368 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 6369 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 6370 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 6371 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 6372 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 6373 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 6374 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 6375 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 6376 //
mjr 38:091e511ce8a0 6377 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 6378 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 6379 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 6380 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 6381 // protocol mode.
mjr 38:091e511ce8a0 6382 //
mjr 38:091e511ce8a0 6383 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 6384 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 6385
mjr 74:822a92bc11d2 6386 // carry out the PBA
mjr 74:822a92bc11d2 6387 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 6388
mjr 74:822a92bc11d2 6389 // update the PBX index state for the next message
mjr 74:822a92bc11d2 6390 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 6391 }
mjr 38:091e511ce8a0 6392 }
mjr 35:e959ffba78fd 6393
mjr 38:091e511ce8a0 6394 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 6395 //
mjr 5:a70c0bce770d 6396 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 6397 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 6398 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 6399 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 6400 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 6401 // port outputs.
mjr 5:a70c0bce770d 6402 //
mjr 0:5acbbe3f4cf4 6403 int main(void)
mjr 0:5acbbe3f4cf4 6404 {
mjr 60:f38da020aa13 6405 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 6406 printf("\r\nPinscape Controller starting\r\n");
mjr 94:0476b3e2b996 6407
mjr 98:4df3c0f7e707 6408 // Set the default PWM period to 0.5ms = 2 kHz. This will be used
mjr 98:4df3c0f7e707 6409 // for PWM channels on PWM units whose periods aren't changed
mjr 98:4df3c0f7e707 6410 // explicitly, so it'll apply to LW outputs assigned to GPIO pins.
mjr 98:4df3c0f7e707 6411 // The KL25Z only allows the period to be set at the TPM unit
mjr 94:0476b3e2b996 6412 // level, not per channel, so all channels on a given unit will
mjr 94:0476b3e2b996 6413 // necessarily use the same frequency. We (currently) have two
mjr 94:0476b3e2b996 6414 // subsystems that need specific PWM frequencies: TLC5940NT (which
mjr 94:0476b3e2b996 6415 // uses PWM to generate the grayscale clock signal) and IR remote
mjr 94:0476b3e2b996 6416 // (which uses PWM to generate the IR carrier signal). Since
mjr 94:0476b3e2b996 6417 // those require specific PWM frequencies, it's important to assign
mjr 94:0476b3e2b996 6418 // those to separate TPM units if both are in use simultaneously;
mjr 94:0476b3e2b996 6419 // the Config Tool includes checks to ensure that will happen when
mjr 94:0476b3e2b996 6420 // setting a config interactively. In addition, for the greatest
mjr 94:0476b3e2b996 6421 // flexibility, we take care NOT to assign explicit PWM frequencies
mjr 94:0476b3e2b996 6422 // to pins that don't require special frequences. That way, if a
mjr 94:0476b3e2b996 6423 // pin that doesn't need anything special happens to be sharing a
mjr 94:0476b3e2b996 6424 // TPM unit with a pin that does require a specific frequency, the
mjr 94:0476b3e2b996 6425 // two will co-exist peacefully on the TPM.
mjr 94:0476b3e2b996 6426 //
mjr 94:0476b3e2b996 6427 // We set this default first, before we create any PWM GPIOs, so
mjr 94:0476b3e2b996 6428 // that it will apply to all channels by default but won't override
mjr 94:0476b3e2b996 6429 // any channels that need specific frequences. Currently, the only
mjr 94:0476b3e2b996 6430 // frequency-agnostic PWM user is the LW outputs, so we can choose
mjr 94:0476b3e2b996 6431 // the default to be suitable for those. This is chosen to minimize
mjr 94:0476b3e2b996 6432 // flicker on attached LEDs.
mjr 94:0476b3e2b996 6433 NewPwmUnit::defaultPeriod = 0.0005f;
mjr 82:4f6209cb5c33 6434
mjr 76:7f5912b6340e 6435 // clear the I2C connection
mjr 35:e959ffba78fd 6436 clear_i2c();
mjr 82:4f6209cb5c33 6437
mjr 82:4f6209cb5c33 6438 // Elevate GPIO pin interrupt priorities, so that they can preempt
mjr 82:4f6209cb5c33 6439 // other interrupts. This is important for some external peripherals,
mjr 82:4f6209cb5c33 6440 // particularly the quadrature plunger sensors, which can generate
mjr 82:4f6209cb5c33 6441 // high-speed interrupts that need to be serviced quickly to keep
mjr 82:4f6209cb5c33 6442 // proper count of the quadrature position.
mjr 82:4f6209cb5c33 6443 FastInterruptIn::elevatePriority();
mjr 38:091e511ce8a0 6444
mjr 76:7f5912b6340e 6445 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 6446 // configuration data:
mjr 76:7f5912b6340e 6447 //
mjr 76:7f5912b6340e 6448 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 6449 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 6450 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 6451 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 6452 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 6453 // to store user settings updates.
mjr 76:7f5912b6340e 6454 //
mjr 76:7f5912b6340e 6455 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 6456 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 6457 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 6458 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 6459 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 6460 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 6461 // without a separate download of the config data.
mjr 76:7f5912b6340e 6462 //
mjr 76:7f5912b6340e 6463 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 6464 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 6465 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 6466 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 6467 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 6468 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 6469 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 6470 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 6471 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 6472 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 6473 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 6474 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 6475 loadHostLoadedConfig();
mjr 35:e959ffba78fd 6476
mjr 38:091e511ce8a0 6477 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 6478 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 6479
mjr 33:d832bcab089e 6480 // we're not connected/awake yet
mjr 33:d832bcab089e 6481 bool connected = false;
mjr 40:cc0d9814522b 6482 Timer connectChangeTimer;
mjr 33:d832bcab089e 6483
mjr 35:e959ffba78fd 6484 // create the plunger sensor interface
mjr 35:e959ffba78fd 6485 createPlunger();
mjr 76:7f5912b6340e 6486
mjr 76:7f5912b6340e 6487 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 6488 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 6489
mjr 60:f38da020aa13 6490 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 6491 init_tlc5940(cfg);
mjr 34:6b981a2afab7 6492
mjr 87:8d35c74403af 6493 // initialize the TLC5916 interface, if these chips are present
mjr 87:8d35c74403af 6494 init_tlc59116(cfg);
mjr 87:8d35c74403af 6495
mjr 60:f38da020aa13 6496 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 6497 init_hc595(cfg);
mjr 6:cc35eb643e8f 6498
mjr 54:fd77a6b2f76c 6499 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 6500 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 6501 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 6502 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 6503 initLwOut(cfg);
mjr 48:058ace2aed1d 6504
mjr 60:f38da020aa13 6505 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 6506 if (tlc5940 != 0)
mjr 35:e959ffba78fd 6507 tlc5940->start();
mjr 87:8d35c74403af 6508
mjr 77:0b96f6867312 6509 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 6510 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 6511 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 6512 // USB keyboard interface.
mjr 77:0b96f6867312 6513 bool kbKeys = false;
mjr 77:0b96f6867312 6514
mjr 77:0b96f6867312 6515 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 6516 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 6517
mjr 77:0b96f6867312 6518 // start the power status time, if applicable
mjr 77:0b96f6867312 6519 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 6520
mjr 35:e959ffba78fd 6521 // initialize the button input ports
mjr 35:e959ffba78fd 6522 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 6523
mjr 60:f38da020aa13 6524 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 6525 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 6526 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 6527 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 6528 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 6529 // to the joystick interface.
mjr 51:57eb311faafa 6530 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 90:aa4e571da8e8 6531 cfg.joystickEnabled, cfg.joystickAxisFormat, kbKeys);
mjr 51:57eb311faafa 6532
mjr 60:f38da020aa13 6533 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 6534 // flash pattern while waiting.
mjr 70:9f58735a1732 6535 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 6536 connTimeoutTimer.start();
mjr 70:9f58735a1732 6537 connFlashTimer.start();
mjr 51:57eb311faafa 6538 while (!js.configured())
mjr 51:57eb311faafa 6539 {
mjr 51:57eb311faafa 6540 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 6541 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6542 {
mjr 51:57eb311faafa 6543 // short yellow flash
mjr 51:57eb311faafa 6544 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 6545 wait_us(50000);
mjr 51:57eb311faafa 6546 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6547
mjr 51:57eb311faafa 6548 // reset the flash timer
mjr 70:9f58735a1732 6549 connFlashTimer.reset();
mjr 51:57eb311faafa 6550 }
mjr 70:9f58735a1732 6551
mjr 77:0b96f6867312 6552 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 6553 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 6554 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 6555 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 86:e30a1f60f783 6556 // Don't do this if we're in a non-recoverable PSU2 power state.
mjr 70:9f58735a1732 6557 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6558 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6559 && powerStatusAllowsReboot())
mjr 70:9f58735a1732 6560 reboot(js, false, 0);
mjr 77:0b96f6867312 6561
mjr 77:0b96f6867312 6562 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6563 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 6564 }
mjr 60:f38da020aa13 6565
mjr 60:f38da020aa13 6566 // we're now connected to the host
mjr 54:fd77a6b2f76c 6567 connected = true;
mjr 40:cc0d9814522b 6568
mjr 92:f264fbaa1be5 6569 // Set up a timer for keeping track of how long it's been since we
mjr 92:f264fbaa1be5 6570 // sent the last joystick report. We use this to determine when it's
mjr 92:f264fbaa1be5 6571 // time to send the next joystick report.
mjr 92:f264fbaa1be5 6572 //
mjr 92:f264fbaa1be5 6573 // We have to use a timer for two reasons. The first is that our main
mjr 92:f264fbaa1be5 6574 // loop runs too fast (about .25ms to 2.5ms per loop, depending on the
mjr 92:f264fbaa1be5 6575 // type of plunger sensor attached and other factors) for us to send
mjr 92:f264fbaa1be5 6576 // joystick reports on every iteration. We *could*, but the PC couldn't
mjr 92:f264fbaa1be5 6577 // digest them at that pace. So we need to slow down the reports to a
mjr 92:f264fbaa1be5 6578 // reasonable pace. The second is that VP has some complicated timing
mjr 92:f264fbaa1be5 6579 // issues of its own, so we not only need to slow down the reports from
mjr 92:f264fbaa1be5 6580 // our "natural" pace, but also time them to sync up with VP's input
mjr 92:f264fbaa1be5 6581 // sampling rate as best we can.
mjr 38:091e511ce8a0 6582 Timer jsReportTimer;
mjr 38:091e511ce8a0 6583 jsReportTimer.start();
mjr 38:091e511ce8a0 6584
mjr 92:f264fbaa1be5 6585 // Accelerometer sample "stutter" counter. Each time we send a joystick
mjr 92:f264fbaa1be5 6586 // report, we increment this counter, and check to see if it has reached
mjr 92:f264fbaa1be5 6587 // the threshold set in the configuration. If so, we take a new
mjr 92:f264fbaa1be5 6588 // accelerometer sample and send it with the new joystick report. It
mjr 92:f264fbaa1be5 6589 // not, we don't take a new sample, but simply repeat the last sample.
mjr 92:f264fbaa1be5 6590 //
mjr 92:f264fbaa1be5 6591 // This lets us send joystick reports more frequently than accelerometer
mjr 92:f264fbaa1be5 6592 // samples. The point is to let us slow down accelerometer reports to
mjr 92:f264fbaa1be5 6593 // a pace that matches VP's input sampling frequency, while still sending
mjr 92:f264fbaa1be5 6594 // joystick button updates more frequently, so that other programs that
mjr 92:f264fbaa1be5 6595 // can read input faster will see button changes with less latency.
mjr 92:f264fbaa1be5 6596 int jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6597
mjr 92:f264fbaa1be5 6598 // Last accelerometer report, in joystick units. We normally report the
mjr 92:f264fbaa1be5 6599 // acceleromter reading via the joystick X and Y axes, per the VP
mjr 92:f264fbaa1be5 6600 // convention. We can alternatively report in the RX and RY axes; this
mjr 92:f264fbaa1be5 6601 // can be set in the configuration.
mjr 92:f264fbaa1be5 6602 int x = 0, y = 0;
mjr 92:f264fbaa1be5 6603
mjr 60:f38da020aa13 6604 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 6605 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 6606 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 6607 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 6608 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 6609 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 6610 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 6611 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 6612 Timer jsOKTimer;
mjr 38:091e511ce8a0 6613 jsOKTimer.start();
mjr 35:e959ffba78fd 6614
mjr 55:4db125cd11a0 6615 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 6616 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 6617 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 6618 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 6619 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 6620
mjr 55:4db125cd11a0 6621 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 6622 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 6623 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 6624
mjr 55:4db125cd11a0 6625 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 6626 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 6627 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 6628
mjr 35:e959ffba78fd 6629 // initialize the calibration button
mjr 1:d913e0afb2ac 6630 calBtnTimer.start();
mjr 35:e959ffba78fd 6631 calBtnState = 0;
mjr 1:d913e0afb2ac 6632
mjr 1:d913e0afb2ac 6633 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 6634 Timer hbTimer;
mjr 1:d913e0afb2ac 6635 hbTimer.start();
mjr 1:d913e0afb2ac 6636 int hb = 0;
mjr 5:a70c0bce770d 6637 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 6638
mjr 1:d913e0afb2ac 6639 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 6640 Timer acTimer;
mjr 1:d913e0afb2ac 6641 acTimer.start();
mjr 1:d913e0afb2ac 6642
mjr 0:5acbbe3f4cf4 6643 // create the accelerometer object
mjr 77:0b96f6867312 6644 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 78:1e00b3fa11af 6645 MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime);
mjr 76:7f5912b6340e 6646
mjr 48:058ace2aed1d 6647 // initialize the plunger sensor
mjr 35:e959ffba78fd 6648 plungerSensor->init();
mjr 10:976666ffa4ef 6649
mjr 48:058ace2aed1d 6650 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 6651 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 6652
mjr 54:fd77a6b2f76c 6653 // enable the peripheral chips
mjr 54:fd77a6b2f76c 6654 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6655 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6656 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6657 hc595->enable(true);
mjr 87:8d35c74403af 6658 if (tlc59116 != 0)
mjr 87:8d35c74403af 6659 tlc59116->enable(true);
mjr 74:822a92bc11d2 6660
mjr 76:7f5912b6340e 6661 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 6662 wizCycleTimer.start();
mjr 74:822a92bc11d2 6663
mjr 74:822a92bc11d2 6664 // start the PWM update polling timer
mjr 74:822a92bc11d2 6665 polledPwmTimer.start();
mjr 43:7a6364d82a41 6666
mjr 1:d913e0afb2ac 6667 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 6668 // host requests
mjr 0:5acbbe3f4cf4 6669 for (;;)
mjr 0:5acbbe3f4cf4 6670 {
mjr 74:822a92bc11d2 6671 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 6672 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 96:68d5621ff49f 6673
mjr 48:058ace2aed1d 6674 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 6675 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 6676 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 6677 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 6678 LedWizMsg lwm;
mjr 48:058ace2aed1d 6679 Timer lwt;
mjr 48:058ace2aed1d 6680 lwt.start();
mjr 77:0b96f6867312 6681 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 6682 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 6683 {
mjr 78:1e00b3fa11af 6684 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 6685 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 6686 }
mjr 74:822a92bc11d2 6687
mjr 74:822a92bc11d2 6688 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 6689 IF_DIAG(
mjr 74:822a92bc11d2 6690 if (msgCount != 0)
mjr 74:822a92bc11d2 6691 {
mjr 76:7f5912b6340e 6692 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 6693 mainLoopMsgCount++;
mjr 74:822a92bc11d2 6694 }
mjr 74:822a92bc11d2 6695 )
mjr 74:822a92bc11d2 6696
mjr 77:0b96f6867312 6697 // process IR input
mjr 77:0b96f6867312 6698 process_IR(cfg, js);
mjr 77:0b96f6867312 6699
mjr 77:0b96f6867312 6700 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6701 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 6702
mjr 74:822a92bc11d2 6703 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 6704 wizPulse();
mjr 74:822a92bc11d2 6705
mjr 74:822a92bc11d2 6706 // update PWM outputs
mjr 74:822a92bc11d2 6707 pollPwmUpdates();
mjr 77:0b96f6867312 6708
mjr 99:8139b0c274f4 6709 // update Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 6710 LwFlipperLogicOut::poll();
mjr 99:8139b0c274f4 6711 LwChimeLogicOut::poll();
mjr 89:c43cd923401c 6712
mjr 77:0b96f6867312 6713 // poll the accelerometer
mjr 77:0b96f6867312 6714 accel.poll();
mjr 55:4db125cd11a0 6715
mjr 96:68d5621ff49f 6716 // Note the "effective" plunger enabled status. This has two
mjr 96:68d5621ff49f 6717 // components: the explicit "enabled" bit, and the plunger sensor
mjr 96:68d5621ff49f 6718 // type setting. For most purposes, a plunger type of NONE is
mjr 96:68d5621ff49f 6719 // equivalent to disabled. Set this to explicit 0x01 or 0x00
mjr 96:68d5621ff49f 6720 // so that we can OR the bit into status reports.
mjr 96:68d5621ff49f 6721 uint8_t effectivePlungerEnabled = (cfg.plunger.enabled
mjr 96:68d5621ff49f 6722 && cfg.plunger.sensorType != PlungerType_None) ? 0x01 : 0x00;
mjr 96:68d5621ff49f 6723
mjr 76:7f5912b6340e 6724 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 6725 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6726
mjr 55:4db125cd11a0 6727 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 6728 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6729 tlc5940->send();
mjr 87:8d35c74403af 6730
mjr 87:8d35c74403af 6731 // send TLC59116 data updates
mjr 87:8d35c74403af 6732 if (tlc59116 != 0)
mjr 87:8d35c74403af 6733 tlc59116->send();
mjr 1:d913e0afb2ac 6734
mjr 76:7f5912b6340e 6735 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 6736 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 6737
mjr 1:d913e0afb2ac 6738 // check for plunger calibration
mjr 17:ab3cec0c8bf4 6739 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 6740 {
mjr 1:d913e0afb2ac 6741 // check the state
mjr 1:d913e0afb2ac 6742 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6743 {
mjr 1:d913e0afb2ac 6744 case 0:
mjr 1:d913e0afb2ac 6745 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 6746 calBtnTimer.reset();
mjr 1:d913e0afb2ac 6747 calBtnState = 1;
mjr 1:d913e0afb2ac 6748 break;
mjr 1:d913e0afb2ac 6749
mjr 1:d913e0afb2ac 6750 case 1:
mjr 1:d913e0afb2ac 6751 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 6752 // passed, start the hold period
mjr 48:058ace2aed1d 6753 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 6754 calBtnState = 2;
mjr 1:d913e0afb2ac 6755 break;
mjr 1:d913e0afb2ac 6756
mjr 1:d913e0afb2ac 6757 case 2:
mjr 1:d913e0afb2ac 6758 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 6759 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 6760 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 6761 {
mjr 1:d913e0afb2ac 6762 // enter calibration mode
mjr 1:d913e0afb2ac 6763 calBtnState = 3;
mjr 9:fd65b0a94720 6764 calBtnTimer.reset();
mjr 35:e959ffba78fd 6765
mjr 44:b5ac89b9cd5d 6766 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 6767 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 6768 }
mjr 1:d913e0afb2ac 6769 break;
mjr 2:c174f9ee414a 6770
mjr 2:c174f9ee414a 6771 case 3:
mjr 9:fd65b0a94720 6772 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6773 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6774 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6775 break;
mjr 0:5acbbe3f4cf4 6776 }
mjr 0:5acbbe3f4cf4 6777 }
mjr 1:d913e0afb2ac 6778 else
mjr 1:d913e0afb2ac 6779 {
mjr 2:c174f9ee414a 6780 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6781 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6782 // and save the results to flash.
mjr 2:c174f9ee414a 6783 //
mjr 2:c174f9ee414a 6784 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6785 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6786 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 6787 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6788 {
mjr 2:c174f9ee414a 6789 // exit calibration mode
mjr 1:d913e0afb2ac 6790 calBtnState = 0;
mjr 52:8298b2a73eb2 6791 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6792
mjr 6:cc35eb643e8f 6793 // save the updated configuration
mjr 35:e959ffba78fd 6794 cfg.plunger.cal.calibrated = 1;
mjr 86:e30a1f60f783 6795 saveConfigToFlash(0, false);
mjr 2:c174f9ee414a 6796 }
mjr 2:c174f9ee414a 6797 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6798 {
mjr 2:c174f9ee414a 6799 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6800 calBtnState = 0;
mjr 2:c174f9ee414a 6801 }
mjr 1:d913e0afb2ac 6802 }
mjr 1:d913e0afb2ac 6803
mjr 1:d913e0afb2ac 6804 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6805 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6806 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6807 {
mjr 1:d913e0afb2ac 6808 case 2:
mjr 1:d913e0afb2ac 6809 // in the hold period - flash the light
mjr 48:058ace2aed1d 6810 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6811 break;
mjr 1:d913e0afb2ac 6812
mjr 1:d913e0afb2ac 6813 case 3:
mjr 1:d913e0afb2ac 6814 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6815 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6816 break;
mjr 1:d913e0afb2ac 6817
mjr 1:d913e0afb2ac 6818 default:
mjr 1:d913e0afb2ac 6819 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6820 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6821 break;
mjr 1:d913e0afb2ac 6822 }
mjr 3:3514575d4f86 6823
mjr 3:3514575d4f86 6824 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6825 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6826 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6827 {
mjr 1:d913e0afb2ac 6828 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6829 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6830 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6831 calBtnLed->write(1);
mjr 38:091e511ce8a0 6832 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6833 }
mjr 2:c174f9ee414a 6834 else {
mjr 17:ab3cec0c8bf4 6835 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6836 calBtnLed->write(0);
mjr 38:091e511ce8a0 6837 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6838 }
mjr 1:d913e0afb2ac 6839 }
mjr 35:e959ffba78fd 6840
mjr 76:7f5912b6340e 6841 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6842 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6843
mjr 48:058ace2aed1d 6844 // read the plunger sensor
mjr 48:058ace2aed1d 6845 plungerReader.read();
mjr 48:058ace2aed1d 6846
mjr 76:7f5912b6340e 6847 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6848 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6849
mjr 53:9b2611964afc 6850 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6851 zbLaunchBall.update();
mjr 37:ed52738445fc 6852
mjr 76:7f5912b6340e 6853 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6854 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6855
mjr 53:9b2611964afc 6856 // process button updates
mjr 53:9b2611964afc 6857 processButtons(cfg);
mjr 53:9b2611964afc 6858
mjr 76:7f5912b6340e 6859 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6860 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6861
mjr 38:091e511ce8a0 6862 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6863 if (kbState.changed)
mjr 37:ed52738445fc 6864 {
mjr 38:091e511ce8a0 6865 // send a keyboard report
mjr 37:ed52738445fc 6866 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6867 kbState.changed = false;
mjr 37:ed52738445fc 6868 }
mjr 38:091e511ce8a0 6869
mjr 38:091e511ce8a0 6870 // likewise for the media controller
mjr 37:ed52738445fc 6871 if (mediaState.changed)
mjr 37:ed52738445fc 6872 {
mjr 38:091e511ce8a0 6873 // send a media report
mjr 37:ed52738445fc 6874 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6875 mediaState.changed = false;
mjr 37:ed52738445fc 6876 }
mjr 38:091e511ce8a0 6877
mjr 76:7f5912b6340e 6878 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6879 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6880
mjr 38:091e511ce8a0 6881 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6882 bool jsOK = false;
mjr 55:4db125cd11a0 6883
mjr 55:4db125cd11a0 6884 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6885 uint16_t statusFlags =
mjr 96:68d5621ff49f 6886 effectivePlungerEnabled // 0x01
mjr 77:0b96f6867312 6887 | nightMode // 0x02
mjr 79:682ae3171a08 6888 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 6889 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 6890 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6891 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6892
mjr 50:40015764bbe6 6893 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6894 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6895 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 6896 // More frequent reporting would only add USB I/O overhead.
mjr 92:f264fbaa1be5 6897 if (cfg.joystickEnabled && jsReportTimer.read_us() > cfg.jsReportInterval_us)
mjr 17:ab3cec0c8bf4 6898 {
mjr 92:f264fbaa1be5 6899 // Increment the "stutter" counter. If it has reached the
mjr 92:f264fbaa1be5 6900 // stutter threshold, read a new accelerometer sample. If
mjr 92:f264fbaa1be5 6901 // not, repeat the last sample.
mjr 92:f264fbaa1be5 6902 if (++jsAccelStutterCounter >= cfg.accel.stutter)
mjr 92:f264fbaa1be5 6903 {
mjr 92:f264fbaa1be5 6904 // read the accelerometer
mjr 92:f264fbaa1be5 6905 int xa, ya;
mjr 92:f264fbaa1be5 6906 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 6907
mjr 92:f264fbaa1be5 6908 // confine the results to our joystick axis range
mjr 92:f264fbaa1be5 6909 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 92:f264fbaa1be5 6910 if (xa > JOYMAX) xa = JOYMAX;
mjr 92:f264fbaa1be5 6911 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 92:f264fbaa1be5 6912 if (ya > JOYMAX) ya = JOYMAX;
mjr 92:f264fbaa1be5 6913
mjr 92:f264fbaa1be5 6914 // store the updated accelerometer coordinates
mjr 92:f264fbaa1be5 6915 x = xa;
mjr 92:f264fbaa1be5 6916 y = ya;
mjr 92:f264fbaa1be5 6917
mjr 95:8eca8acbb82c 6918 // rotate X and Y according to the device orientation in the cabinet
mjr 95:8eca8acbb82c 6919 accelRotate(x, y);
mjr 95:8eca8acbb82c 6920
mjr 92:f264fbaa1be5 6921 // reset the stutter counter
mjr 92:f264fbaa1be5 6922 jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6923 }
mjr 17:ab3cec0c8bf4 6924
mjr 48:058ace2aed1d 6925 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 6926 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 6927 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 6928 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 6929 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 6930 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 6931 // regular plunger inputs.
mjr 92:f264fbaa1be5 6932 int zActual = plungerReader.getPosition();
mjr 96:68d5621ff49f 6933 int zReported = (!effectivePlungerEnabled || zbLaunchOn ? 0 : zActual);
mjr 35:e959ffba78fd 6934
mjr 35:e959ffba78fd 6935 // send the joystick report
mjr 92:f264fbaa1be5 6936 jsOK = js.update(x, y, zReported, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 6937
mjr 17:ab3cec0c8bf4 6938 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 6939 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 6940 }
mjr 21:5048e16cc9ef 6941
mjr 52:8298b2a73eb2 6942 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 6943 if (reportPlungerStat)
mjr 10:976666ffa4ef 6944 {
mjr 17:ab3cec0c8bf4 6945 // send the report
mjr 53:9b2611964afc 6946 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 6947
mjr 10:976666ffa4ef 6948 // we have satisfied this request
mjr 52:8298b2a73eb2 6949 reportPlungerStat = false;
mjr 10:976666ffa4ef 6950 }
mjr 10:976666ffa4ef 6951
mjr 35:e959ffba78fd 6952 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 6953 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 6954 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 6955 {
mjr 55:4db125cd11a0 6956 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 6957 jsReportTimer.reset();
mjr 38:091e511ce8a0 6958 }
mjr 38:091e511ce8a0 6959
mjr 38:091e511ce8a0 6960 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 6961 if (jsOK)
mjr 38:091e511ce8a0 6962 {
mjr 38:091e511ce8a0 6963 jsOKTimer.reset();
mjr 38:091e511ce8a0 6964 jsOKTimer.start();
mjr 21:5048e16cc9ef 6965 }
mjr 21:5048e16cc9ef 6966
mjr 76:7f5912b6340e 6967 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 6968 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6969
mjr 6:cc35eb643e8f 6970 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 6971 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 6972 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 6973 #endif
mjr 6:cc35eb643e8f 6974
mjr 33:d832bcab089e 6975 // check for connection status changes
mjr 54:fd77a6b2f76c 6976 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 6977 if (newConnected != connected)
mjr 33:d832bcab089e 6978 {
mjr 54:fd77a6b2f76c 6979 // give it a moment to stabilize
mjr 40:cc0d9814522b 6980 connectChangeTimer.start();
mjr 55:4db125cd11a0 6981 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 6982 {
mjr 33:d832bcab089e 6983 // note the new status
mjr 33:d832bcab089e 6984 connected = newConnected;
mjr 40:cc0d9814522b 6985
mjr 40:cc0d9814522b 6986 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 6987 connectChangeTimer.stop();
mjr 40:cc0d9814522b 6988 connectChangeTimer.reset();
mjr 33:d832bcab089e 6989
mjr 54:fd77a6b2f76c 6990 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 6991 if (!connected)
mjr 40:cc0d9814522b 6992 {
mjr 54:fd77a6b2f76c 6993 // turn off all outputs
mjr 33:d832bcab089e 6994 allOutputsOff();
mjr 40:cc0d9814522b 6995
mjr 40:cc0d9814522b 6996 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 6997 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 6998 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 6999 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 7000 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 7001 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 7002 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 7003 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 7004 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 7005 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 7006 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 7007 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 7008 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 7009 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 7010 // the power first comes on.
mjr 40:cc0d9814522b 7011 if (tlc5940 != 0)
mjr 40:cc0d9814522b 7012 tlc5940->enable(false);
mjr 87:8d35c74403af 7013 if (tlc59116 != 0)
mjr 87:8d35c74403af 7014 tlc59116->enable(false);
mjr 40:cc0d9814522b 7015 if (hc595 != 0)
mjr 40:cc0d9814522b 7016 hc595->enable(false);
mjr 40:cc0d9814522b 7017 }
mjr 33:d832bcab089e 7018 }
mjr 33:d832bcab089e 7019 }
mjr 48:058ace2aed1d 7020
mjr 53:9b2611964afc 7021 // if we have a reboot timer pending, check for completion
mjr 86:e30a1f60f783 7022 if (saveConfigFollowupTimer.isRunning()
mjr 87:8d35c74403af 7023 && saveConfigFollowupTimer.read_us() > saveConfigFollowupTime*1000000UL)
mjr 85:3c28aee81cde 7024 {
mjr 85:3c28aee81cde 7025 // if a reboot is pending, execute it now
mjr 86:e30a1f60f783 7026 if (saveConfigRebootPending)
mjr 82:4f6209cb5c33 7027 {
mjr 86:e30a1f60f783 7028 // Only reboot if the PSU2 power state allows it. If it
mjr 86:e30a1f60f783 7029 // doesn't, suppress the reboot for now, but leave the boot
mjr 86:e30a1f60f783 7030 // flags set so that we keep checking on future rounds.
mjr 86:e30a1f60f783 7031 // That way we should eventually reboot when the power
mjr 86:e30a1f60f783 7032 // status allows it.
mjr 86:e30a1f60f783 7033 if (powerStatusAllowsReboot())
mjr 86:e30a1f60f783 7034 reboot(js);
mjr 82:4f6209cb5c33 7035 }
mjr 85:3c28aee81cde 7036 else
mjr 85:3c28aee81cde 7037 {
mjr 86:e30a1f60f783 7038 // No reboot required. Exit the timed post-save state.
mjr 86:e30a1f60f783 7039
mjr 86:e30a1f60f783 7040 // stop and reset the post-save timer
mjr 86:e30a1f60f783 7041 saveConfigFollowupTimer.stop();
mjr 86:e30a1f60f783 7042 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 7043
mjr 86:e30a1f60f783 7044 // clear the post-save success flag
mjr 86:e30a1f60f783 7045 saveConfigSucceededFlag = 0;
mjr 85:3c28aee81cde 7046 }
mjr 77:0b96f6867312 7047 }
mjr 86:e30a1f60f783 7048
mjr 48:058ace2aed1d 7049 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 7050 if (!connected)
mjr 48:058ace2aed1d 7051 {
mjr 54:fd77a6b2f76c 7052 // show USB HAL debug events
mjr 54:fd77a6b2f76c 7053 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 7054 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 7055
mjr 54:fd77a6b2f76c 7056 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 7057 js.diagFlash();
mjr 54:fd77a6b2f76c 7058
mjr 54:fd77a6b2f76c 7059 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 7060 diagLED(0, 0, 0);
mjr 51:57eb311faafa 7061
mjr 51:57eb311faafa 7062 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 7063 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 7064 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 7065
mjr 54:fd77a6b2f76c 7066 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 7067 Timer diagTimer;
mjr 54:fd77a6b2f76c 7068 diagTimer.reset();
mjr 54:fd77a6b2f76c 7069 diagTimer.start();
mjr 74:822a92bc11d2 7070
mjr 74:822a92bc11d2 7071 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 7072 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 7073
mjr 54:fd77a6b2f76c 7074 // loop until we get our connection back
mjr 54:fd77a6b2f76c 7075 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 7076 {
mjr 54:fd77a6b2f76c 7077 // try to recover the connection
mjr 54:fd77a6b2f76c 7078 js.recoverConnection();
mjr 54:fd77a6b2f76c 7079
mjr 99:8139b0c274f4 7080 // update Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 7081 LwFlipperLogicOut::poll();
mjr 99:8139b0c274f4 7082 LwChimeLogicOut::poll();
mjr 89:c43cd923401c 7083
mjr 55:4db125cd11a0 7084 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 7085 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7086 tlc5940->send();
mjr 87:8d35c74403af 7087
mjr 87:8d35c74403af 7088 // update TLC59116 outputs
mjr 87:8d35c74403af 7089 if (tlc59116 != 0)
mjr 87:8d35c74403af 7090 tlc59116->send();
mjr 55:4db125cd11a0 7091
mjr 54:fd77a6b2f76c 7092 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 7093 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 7094 {
mjr 54:fd77a6b2f76c 7095 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 7096 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 7097
mjr 54:fd77a6b2f76c 7098 // show diagnostic feedback
mjr 54:fd77a6b2f76c 7099 js.diagFlash();
mjr 51:57eb311faafa 7100
mjr 51:57eb311faafa 7101 // reset the flash timer
mjr 54:fd77a6b2f76c 7102 diagTimer.reset();
mjr 51:57eb311faafa 7103 }
mjr 51:57eb311faafa 7104
mjr 77:0b96f6867312 7105 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 7106 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 7107 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 7108 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 7109 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 7110 // reliable way to get Windows to notice us again after one
mjr 86:e30a1f60f783 7111 // of these events and make it reconnect. Only reboot if
mjr 86:e30a1f60f783 7112 // the PSU2 power status allows it - if not, skip it on this
mjr 86:e30a1f60f783 7113 // round and keep waiting.
mjr 51:57eb311faafa 7114 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 7115 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 7116 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 7117 reboot(js, false, 0);
mjr 77:0b96f6867312 7118
mjr 77:0b96f6867312 7119 // update the PSU2 power sensing status
mjr 77:0b96f6867312 7120 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 7121 }
mjr 54:fd77a6b2f76c 7122
mjr 74:822a92bc11d2 7123 // resume the main loop timer
mjr 74:822a92bc11d2 7124 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 7125
mjr 54:fd77a6b2f76c 7126 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 7127 connected = true;
mjr 54:fd77a6b2f76c 7128 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 7129
mjr 54:fd77a6b2f76c 7130 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 7131 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7132 tlc5940->enable(true);
mjr 87:8d35c74403af 7133 if (tlc59116 != 0)
mjr 87:8d35c74403af 7134 tlc59116->enable(true);
mjr 54:fd77a6b2f76c 7135 if (hc595 != 0)
mjr 54:fd77a6b2f76c 7136 {
mjr 55:4db125cd11a0 7137 hc595->enable(true);
mjr 54:fd77a6b2f76c 7138 hc595->update(true);
mjr 51:57eb311faafa 7139 }
mjr 48:058ace2aed1d 7140 }
mjr 43:7a6364d82a41 7141
mjr 6:cc35eb643e8f 7142 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 7143 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 7144 {
mjr 54:fd77a6b2f76c 7145 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 7146 {
mjr 39:b3815a1c3802 7147 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 7148 //
mjr 54:fd77a6b2f76c 7149 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 7150 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 7151 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 7152 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 7153 hb = !hb;
mjr 38:091e511ce8a0 7154 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 7155
mjr 54:fd77a6b2f76c 7156 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 7157 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 7158 // with the USB connection.
mjr 54:fd77a6b2f76c 7159 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 7160 {
mjr 54:fd77a6b2f76c 7161 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 7162 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 7163 // limit, keep running for now, and leave the OK timer running so
mjr 86:e30a1f60f783 7164 // that we can continue to monitor this. Only reboot if the PSU2
mjr 86:e30a1f60f783 7165 // power status allows it.
mjr 86:e30a1f60f783 7166 if (jsOKTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 7167 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 7168 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 7169 }
mjr 54:fd77a6b2f76c 7170 else
mjr 54:fd77a6b2f76c 7171 {
mjr 54:fd77a6b2f76c 7172 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 7173 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 7174 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 7175 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 7176 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 7177 }
mjr 38:091e511ce8a0 7178 }
mjr 73:4e8ce0b18915 7179 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 7180 {
mjr 73:4e8ce0b18915 7181 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 7182 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 7183 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 7184 }
mjr 96:68d5621ff49f 7185 else if (effectivePlungerEnabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 7186 {
mjr 6:cc35eb643e8f 7187 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 7188 hb = !hb;
mjr 38:091e511ce8a0 7189 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 7190 }
mjr 6:cc35eb643e8f 7191 else
mjr 6:cc35eb643e8f 7192 {
mjr 6:cc35eb643e8f 7193 // connected - flash blue/green
mjr 2:c174f9ee414a 7194 hb = !hb;
mjr 38:091e511ce8a0 7195 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 7196 }
mjr 1:d913e0afb2ac 7197
mjr 1:d913e0afb2ac 7198 // reset the heartbeat timer
mjr 1:d913e0afb2ac 7199 hbTimer.reset();
mjr 5:a70c0bce770d 7200 ++hbcnt;
mjr 1:d913e0afb2ac 7201 }
mjr 74:822a92bc11d2 7202
mjr 74:822a92bc11d2 7203 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 7204 IF_DIAG(
mjr 76:7f5912b6340e 7205 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 7206 mainLoopIterCount++;
mjr 74:822a92bc11d2 7207 )
mjr 1:d913e0afb2ac 7208 }
mjr 0:5acbbe3f4cf4 7209 }