An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Sun Mar 19 05:30:53 2017 +0000
Revision:
78:1e00b3fa11af
Parent:
77:0b96f6867312
Child:
79:682ae3171a08
Ad hoc IR command send; Shift button 'AND' and 'OR' modes; new accelerometer auto centering options

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 77:0b96f6867312 55 // Note that VP has built-in support for plunger devices like this one, but
mjr 77:0b96f6867312 56 // some VP tables can't use it without some additional scripting work. The
mjr 77:0b96f6867312 57 // Build Guide has advice on adjusting tables to add plunger support when
mjr 77:0b96f6867312 58 // necessary.
mjr 5:a70c0bce770d 59 //
mjr 6:cc35eb643e8f 60 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 61 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 62 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 63 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 64 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 65 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 66 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 67 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 68 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 69 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 70 //
mjr 17:ab3cec0c8bf4 71 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 72 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 73 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 74 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 75 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 76 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 77 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 78 //
mjr 77:0b96f6867312 79 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 80 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 81 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 82 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 83 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 84 //
mjr 53:9b2611964afc 85 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 86 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 87 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 88 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 89 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 90 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 91 // attached devices without any modifications.
mjr 5:a70c0bce770d 92 //
mjr 53:9b2611964afc 93 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 94 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 95 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 96 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 97 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 98 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 99 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 100 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 101 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 102 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 103 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 104 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 105 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 106 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 107 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 108 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 109 //
mjr 26:cb71c4af2912 110 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 111 // external PWM controller chips for controlling device outputs, instead of using
mjr 53:9b2611964afc 112 // the on-board GPIO ports as described above. The software can control a set of
mjr 53:9b2611964afc 113 // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just
mjr 53:9b2611964afc 114 // need two of them to get the full complement of 32 output ports of a real LedWiz.
mjr 53:9b2611964afc 115 // You can hook up even more, though. Four chips gives you 64 ports, which should
mjr 53:9b2611964afc 116 // be plenty for nearly any virtual pinball project. To accommodate the larger
mjr 53:9b2611964afc 117 // supply of ports possible with the PWM chips, the controller software provides
mjr 53:9b2611964afc 118 // a custom, extended version of the LedWiz protocol that can handle up to 128
mjr 53:9b2611964afc 119 // ports. PC software designed only for the real LedWiz obviously won't know
mjr 53:9b2611964afc 120 // about the extended protocol and won't be able to take advantage of its extra
mjr 53:9b2611964afc 121 // capabilities, but the latest version of DOF (DirectOutput Framework) *does*
mjr 53:9b2611964afc 122 // know the new language and can take full advantage. Older software will still
mjr 53:9b2611964afc 123 // work, though - the new extensions are all backward compatible, so old software
mjr 53:9b2611964afc 124 // that only knows about the original LedWiz protocol will still work, with the
mjr 53:9b2611964afc 125 // obvious limitation that it can only access the first 32 ports.
mjr 53:9b2611964afc 126 //
mjr 53:9b2611964afc 127 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 128 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 129 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 130 // outputs with full PWM control and power handling for high-current devices
mjr 53:9b2611964afc 131 // built in to the boards.
mjr 26:cb71c4af2912 132 //
mjr 38:091e511ce8a0 133 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 134 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 135 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 136 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 137 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 138 //
mjr 38:091e511ce8a0 139 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 140 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 141 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 142 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 143 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 144 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 145 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 146 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 147 // remote control transmitter feature below.
mjr 77:0b96f6867312 148 //
mjr 77:0b96f6867312 149 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 150 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 151 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 152 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 153 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 154 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 155 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 156 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 157 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 158 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 159 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 160 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 161 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 162 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 163 //
mjr 35:e959ffba78fd 164 //
mjr 35:e959ffba78fd 165 //
mjr 33:d832bcab089e 166 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 167 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 168 //
mjr 48:058ace2aed1d 169 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 170 //
mjr 48:058ace2aed1d 171 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 172 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 173 // has been established)
mjr 48:058ace2aed1d 174 //
mjr 48:058ace2aed1d 175 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 176 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 177 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 178 //
mjr 38:091e511ce8a0 179 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 180 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 181 // transmissions are failing.
mjr 38:091e511ce8a0 182 //
mjr 73:4e8ce0b18915 183 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 184 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 185 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 186 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 187 // enabled.
mjr 73:4e8ce0b18915 188 //
mjr 6:cc35eb643e8f 189 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 190 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 191 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 192 // no plunger sensor configured.
mjr 6:cc35eb643e8f 193 //
mjr 38:091e511ce8a0 194 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 195 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 196 //
mjr 48:058ace2aed1d 197 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 198 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 199 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 200 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 201 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 202 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 203 //
mjr 48:058ace2aed1d 204 //
mjr 48:058ace2aed1d 205 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 206 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 207 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 208 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 209 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 210 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 211 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 212 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 213
mjr 33:d832bcab089e 214
mjr 0:5acbbe3f4cf4 215 #include "mbed.h"
mjr 6:cc35eb643e8f 216 #include "math.h"
mjr 74:822a92bc11d2 217 #include "diags.h"
mjr 48:058ace2aed1d 218 #include "pinscape.h"
mjr 0:5acbbe3f4cf4 219 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 220 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 221 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 222 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 223 #include "crc32.h"
mjr 26:cb71c4af2912 224 #include "TLC5940.h"
mjr 34:6b981a2afab7 225 #include "74HC595.h"
mjr 35:e959ffba78fd 226 #include "nvm.h"
mjr 35:e959ffba78fd 227 #include "plunger.h"
mjr 35:e959ffba78fd 228 #include "ccdSensor.h"
mjr 35:e959ffba78fd 229 #include "potSensor.h"
mjr 35:e959ffba78fd 230 #include "nullSensor.h"
mjr 48:058ace2aed1d 231 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 232 #include "IRReceiver.h"
mjr 77:0b96f6867312 233 #include "IRTransmitter.h"
mjr 77:0b96f6867312 234 #include "NewPwm.h"
mjr 74:822a92bc11d2 235
mjr 2:c174f9ee414a 236
mjr 21:5048e16cc9ef 237 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 238 #include "config.h"
mjr 17:ab3cec0c8bf4 239
mjr 76:7f5912b6340e 240 // forward declarations
mjr 76:7f5912b6340e 241 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 242
mjr 53:9b2611964afc 243 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 244 //
mjr 53:9b2611964afc 245 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 246 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 247 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 248 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 249 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 250 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 251 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 252 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 253 // interface.
mjr 53:9b2611964afc 254 //
mjr 53:9b2611964afc 255 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 256 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 257 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 258 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 259 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 260 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 261 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 262 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 263 //
mjr 53:9b2611964afc 264 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 265 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 266 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 267 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 268 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 269 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 270 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 const char *getOpenSDAID()
mjr 53:9b2611964afc 273 {
mjr 53:9b2611964afc 274 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 275 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 276 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 277
mjr 53:9b2611964afc 278 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 279 }
mjr 53:9b2611964afc 280
mjr 53:9b2611964afc 281 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 282 //
mjr 53:9b2611964afc 283 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 284 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 285 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 286 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 287 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 288 // want from this.
mjr 53:9b2611964afc 289 //
mjr 53:9b2611964afc 290 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 291 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 292 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 293 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 294 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 295 // macros.
mjr 53:9b2611964afc 296 //
mjr 53:9b2611964afc 297 const char *getBuildID()
mjr 53:9b2611964afc 298 {
mjr 53:9b2611964afc 299 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 300 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 301 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 302
mjr 53:9b2611964afc 303 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 304 }
mjr 53:9b2611964afc 305
mjr 74:822a92bc11d2 306 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 307 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 308 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 309 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 310 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 311 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 312 Timer mainLoopTimer;
mjr 76:7f5912b6340e 313 #endif
mjr 76:7f5912b6340e 314
mjr 53:9b2611964afc 315
mjr 48:058ace2aed1d 316 // --------------------------------------------------------------------------
mjr 48:058ace2aed1d 317 //
mjr 59:94eb9265b6d7 318 // Custom memory allocator. We use our own version of malloc() for more
mjr 59:94eb9265b6d7 319 // efficient memory usage, and to provide diagnostics if we run out of heap.
mjr 48:058ace2aed1d 320 //
mjr 59:94eb9265b6d7 321 // We can implement a more efficient malloc than the library can because we
mjr 59:94eb9265b6d7 322 // can make an assumption that the library can't: allocations are permanent.
mjr 59:94eb9265b6d7 323 // The normal malloc has to assume that allocations can be freed, so it has
mjr 59:94eb9265b6d7 324 // to track blocks individually. For the purposes of this program, though,
mjr 59:94eb9265b6d7 325 // we don't have to do this because virtually all of our allocations are
mjr 59:94eb9265b6d7 326 // de facto permanent. We only allocate dyanmic memory during setup, and
mjr 59:94eb9265b6d7 327 // once we set things up, we never delete anything. This means that we can
mjr 59:94eb9265b6d7 328 // allocate memory in bare blocks without any bookkeeping overhead.
mjr 59:94eb9265b6d7 329 //
mjr 78:1e00b3fa11af 330 // In addition, we can make a larger overall pool of memory available in
mjr 78:1e00b3fa11af 331 // a custom allocator. The RTL malloc() seems to have a pool of about 3K
mjr 78:1e00b3fa11af 332 // to work with, even though there really seems to be at least 8K left after
mjr 78:1e00b3fa11af 333 // reserving a reasonable amount of space for the stack.
mjr 77:0b96f6867312 334
mjr 77:0b96f6867312 335 // halt with a diagnostic display if we run out of memory
mjr 77:0b96f6867312 336 void HaltOutOfMem()
mjr 77:0b96f6867312 337 {
mjr 77:0b96f6867312 338 printf("\r\nOut Of Memory\r\n");
mjr 77:0b96f6867312 339 // halt with the diagnostic display (by looping forever)
mjr 77:0b96f6867312 340 for (;;)
mjr 77:0b96f6867312 341 {
mjr 77:0b96f6867312 342 diagLED(1, 0, 0);
mjr 77:0b96f6867312 343 wait_us(200000);
mjr 77:0b96f6867312 344 diagLED(1, 0, 1);
mjr 77:0b96f6867312 345 wait_us(200000);
mjr 77:0b96f6867312 346 }
mjr 77:0b96f6867312 347 }
mjr 77:0b96f6867312 348
mjr 77:0b96f6867312 349 // For our custom malloc, we take advantage of the known layout of the
mjr 77:0b96f6867312 350 // mbed library memory management. The mbed library puts all of the
mjr 77:0b96f6867312 351 // static read/write data at the low end of RAM; this includes the
mjr 77:0b96f6867312 352 // initialized statics and the "ZI" (zero-initialized) statics. The
mjr 77:0b96f6867312 353 // malloc heap starts just after the last static, growing upwards as
mjr 77:0b96f6867312 354 // memory is allocated. The stack starts at the top of RAM and grows
mjr 77:0b96f6867312 355 // downwards.
mjr 77:0b96f6867312 356 //
mjr 77:0b96f6867312 357 // To figure out where the free memory starts, we simply call the system
mjr 77:0b96f6867312 358 // malloc() to make a dummy allocation the first time we're called, and
mjr 77:0b96f6867312 359 // use the address it returns as the start of our free memory pool. The
mjr 77:0b96f6867312 360 // first malloc() call presumably returns the lowest byte of the pool in
mjr 77:0b96f6867312 361 // the compiler RTL's way of thinking, and from what we know about the
mjr 77:0b96f6867312 362 // mbed heap layout, we know everything above this point should be free,
mjr 77:0b96f6867312 363 // at least until we reach the lowest address used by the stack.
mjr 77:0b96f6867312 364 //
mjr 77:0b96f6867312 365 // The ultimate size of the stack is of course dynamic and unpredictable.
mjr 77:0b96f6867312 366 // In testing, it appears that we currently need a little over 1K. To be
mjr 77:0b96f6867312 367 // conservative, we'll reserve 2K for the stack, by taking it out of the
mjr 77:0b96f6867312 368 // space at top of memory we consider fair game for malloc.
mjr 77:0b96f6867312 369 //
mjr 77:0b96f6867312 370 // Note that we could do this a little more low-level-ly if we wanted.
mjr 77:0b96f6867312 371 // The ARM linker provides a pre-defined extern char[] variable named
mjr 77:0b96f6867312 372 // Image$$RW_IRAM1$$ZI$$Limit, which is always placed just after the
mjr 77:0b96f6867312 373 // last static data variable. In principle, this tells us the start
mjr 77:0b96f6867312 374 // of the available malloc pool. However, in testing, it doesn't seem
mjr 77:0b96f6867312 375 // safe to use this as the start of our malloc pool. I'm not sure why,
mjr 77:0b96f6867312 376 // but probably something in the startup code (either in the C RTL or
mjr 77:0b96f6867312 377 // the mbed library) is allocating from the pool before we get control.
mjr 77:0b96f6867312 378 // So we won't use that approach. Besides, that would tie us even more
mjr 77:0b96f6867312 379 // closely to the ARM compiler. With our malloc() probe approach, we're
mjr 77:0b96f6867312 380 // at least portable to any compiler that uses the same basic memory
mjr 77:0b96f6867312 381 // layout, with the heap above the statics and the stack at top of
mjr 77:0b96f6867312 382 // memory; this isn't universal, but it's very typical.
mjr 77:0b96f6867312 383
mjr 77:0b96f6867312 384 static char *xmalloc_nxt = 0;
mjr 77:0b96f6867312 385 size_t xmalloc_rem = 0;
mjr 77:0b96f6867312 386 void *xmalloc(size_t siz)
mjr 77:0b96f6867312 387 {
mjr 77:0b96f6867312 388 if (xmalloc_nxt == 0)
mjr 77:0b96f6867312 389 {
mjr 77:0b96f6867312 390 xmalloc_nxt = (char *)malloc(4);
mjr 77:0b96f6867312 391 xmalloc_rem = 0x20003000UL - 2*1024 - uint32_t(xmalloc_nxt);
mjr 77:0b96f6867312 392 }
mjr 77:0b96f6867312 393
mjr 77:0b96f6867312 394 siz = (siz + 3) & ~3;
mjr 77:0b96f6867312 395 if (siz > xmalloc_rem)
mjr 77:0b96f6867312 396 HaltOutOfMem();
mjr 77:0b96f6867312 397
mjr 77:0b96f6867312 398 char *ret = xmalloc_nxt;
mjr 77:0b96f6867312 399 xmalloc_nxt += siz;
mjr 77:0b96f6867312 400 xmalloc_rem -= siz;
mjr 77:0b96f6867312 401
mjr 77:0b96f6867312 402 return ret;
mjr 77:0b96f6867312 403 }
mjr 48:058ace2aed1d 404
mjr 59:94eb9265b6d7 405 // Overload operator new to call our custom malloc. This ensures that
mjr 59:94eb9265b6d7 406 // all 'new' allocations throughout the program (including library code)
mjr 59:94eb9265b6d7 407 // go through our private allocator.
mjr 48:058ace2aed1d 408 void *operator new(size_t siz) { return xmalloc(siz); }
mjr 48:058ace2aed1d 409 void *operator new[](size_t siz) { return xmalloc(siz); }
mjr 5:a70c0bce770d 410
mjr 59:94eb9265b6d7 411 // Since we don't do bookkeeping to track released memory, 'delete' does
mjr 59:94eb9265b6d7 412 // nothing. In actual testing, this routine appears to never be called.
mjr 59:94eb9265b6d7 413 // If it *is* ever called, it will simply leave the block in place, which
mjr 59:94eb9265b6d7 414 // will make it unavailable for re-use but will otherwise be harmless.
mjr 59:94eb9265b6d7 415 void operator delete(void *ptr) { }
mjr 59:94eb9265b6d7 416
mjr 59:94eb9265b6d7 417
mjr 5:a70c0bce770d 418 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 419 //
mjr 38:091e511ce8a0 420 // Forward declarations
mjr 38:091e511ce8a0 421 //
mjr 38:091e511ce8a0 422 void setNightMode(bool on);
mjr 38:091e511ce8a0 423 void toggleNightMode();
mjr 38:091e511ce8a0 424
mjr 38:091e511ce8a0 425 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 426 // utilities
mjr 17:ab3cec0c8bf4 427
mjr 77:0b96f6867312 428 // int/float point square of a number
mjr 77:0b96f6867312 429 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 430 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 431
mjr 26:cb71c4af2912 432 // floating point rounding
mjr 26:cb71c4af2912 433 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 434
mjr 17:ab3cec0c8bf4 435
mjr 33:d832bcab089e 436 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 437 //
mjr 40:cc0d9814522b 438 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 439 // the running state.
mjr 40:cc0d9814522b 440 //
mjr 77:0b96f6867312 441 class ExtTimer: public Timer
mjr 40:cc0d9814522b 442 {
mjr 40:cc0d9814522b 443 public:
mjr 77:0b96f6867312 444 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 445
mjr 40:cc0d9814522b 446 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 447 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 448
mjr 40:cc0d9814522b 449 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 450
mjr 40:cc0d9814522b 451 private:
mjr 40:cc0d9814522b 452 bool running;
mjr 40:cc0d9814522b 453 };
mjr 40:cc0d9814522b 454
mjr 53:9b2611964afc 455
mjr 53:9b2611964afc 456 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 457 //
mjr 33:d832bcab089e 458 // USB product version number
mjr 5:a70c0bce770d 459 //
mjr 47:df7a88cd249c 460 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 461
mjr 33:d832bcab089e 462 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 463 //
mjr 6:cc35eb643e8f 464 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 465 //
mjr 6:cc35eb643e8f 466 #define JOYMAX 4096
mjr 6:cc35eb643e8f 467
mjr 9:fd65b0a94720 468
mjr 17:ab3cec0c8bf4 469 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 470 //
mjr 40:cc0d9814522b 471 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 472 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 473 //
mjr 35:e959ffba78fd 474
mjr 35:e959ffba78fd 475 // unsigned 16-bit integer
mjr 35:e959ffba78fd 476 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 477 {
mjr 35:e959ffba78fd 478 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 479 }
mjr 40:cc0d9814522b 480 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 481 {
mjr 40:cc0d9814522b 482 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 483 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 484 }
mjr 35:e959ffba78fd 485
mjr 35:e959ffba78fd 486 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 487 {
mjr 35:e959ffba78fd 488 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 489 }
mjr 40:cc0d9814522b 490 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 491 {
mjr 40:cc0d9814522b 492 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 493 }
mjr 35:e959ffba78fd 494
mjr 35:e959ffba78fd 495 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 496 {
mjr 35:e959ffba78fd 497 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 498 }
mjr 40:cc0d9814522b 499 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 500 {
mjr 40:cc0d9814522b 501 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 502 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 503 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 504 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 505 }
mjr 35:e959ffba78fd 506
mjr 35:e959ffba78fd 507 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 508 {
mjr 35:e959ffba78fd 509 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 510 }
mjr 35:e959ffba78fd 511
mjr 53:9b2611964afc 512 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 513 //
mjr 53:9b2611964afc 514 // The internal mbed PinName format is
mjr 53:9b2611964afc 515 //
mjr 53:9b2611964afc 516 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 517 //
mjr 53:9b2611964afc 518 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 519 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 520 //
mjr 53:9b2611964afc 521 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 522 // pin name fits in 8 bits:
mjr 53:9b2611964afc 523 //
mjr 53:9b2611964afc 524 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 525 //
mjr 53:9b2611964afc 526 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 527 //
mjr 53:9b2611964afc 528 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 529 //
mjr 53:9b2611964afc 530 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 531 {
mjr 53:9b2611964afc 532 if (c == 0xFF)
mjr 53:9b2611964afc 533 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 534 else
mjr 53:9b2611964afc 535 return PinName(
mjr 53:9b2611964afc 536 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 537 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 538 }
mjr 40:cc0d9814522b 539 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 540 {
mjr 53:9b2611964afc 541 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 542 }
mjr 35:e959ffba78fd 543
mjr 35:e959ffba78fd 544
mjr 35:e959ffba78fd 545 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 546 //
mjr 38:091e511ce8a0 547 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 548 //
mjr 38:091e511ce8a0 549 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 550 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 551 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 552 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 553 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 554 // SPI capability.
mjr 38:091e511ce8a0 555 //
mjr 38:091e511ce8a0 556 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 557
mjr 73:4e8ce0b18915 558 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 559 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 560 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 561 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 562
mjr 38:091e511ce8a0 563 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 564 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 565 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 566 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 567 {
mjr 73:4e8ce0b18915 568 // remember the new state
mjr 73:4e8ce0b18915 569 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 570
mjr 73:4e8ce0b18915 571 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 572 // applying it to the blue LED
mjr 73:4e8ce0b18915 573 if (diagLEDState == 0)
mjr 77:0b96f6867312 574 {
mjr 77:0b96f6867312 575 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 576 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 577 }
mjr 73:4e8ce0b18915 578
mjr 73:4e8ce0b18915 579 // set the new state
mjr 38:091e511ce8a0 580 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 581 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 582 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 583 }
mjr 38:091e511ce8a0 584
mjr 73:4e8ce0b18915 585 // update the LEDs with the current state
mjr 73:4e8ce0b18915 586 void diagLED(void)
mjr 73:4e8ce0b18915 587 {
mjr 73:4e8ce0b18915 588 diagLED(
mjr 73:4e8ce0b18915 589 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 590 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 591 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 592 }
mjr 73:4e8ce0b18915 593
mjr 38:091e511ce8a0 594 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 595 // an on-board LED segment
mjr 38:091e511ce8a0 596 struct LedSeg
mjr 38:091e511ce8a0 597 {
mjr 38:091e511ce8a0 598 bool r, g, b;
mjr 38:091e511ce8a0 599 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 600
mjr 38:091e511ce8a0 601 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 602 {
mjr 38:091e511ce8a0 603 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 604 // our on-board LED segments
mjr 38:091e511ce8a0 605 int t = pc.typ;
mjr 38:091e511ce8a0 606 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 607 {
mjr 38:091e511ce8a0 608 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 609 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 610 if (pin == LED1)
mjr 38:091e511ce8a0 611 r = true;
mjr 38:091e511ce8a0 612 else if (pin == LED2)
mjr 38:091e511ce8a0 613 g = true;
mjr 38:091e511ce8a0 614 else if (pin == LED3)
mjr 38:091e511ce8a0 615 b = true;
mjr 38:091e511ce8a0 616 }
mjr 38:091e511ce8a0 617 }
mjr 38:091e511ce8a0 618 };
mjr 38:091e511ce8a0 619
mjr 38:091e511ce8a0 620 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 621 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 622 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 623 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 624 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 625 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 626 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 627 {
mjr 38:091e511ce8a0 628 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 629 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 630 LedSeg l;
mjr 38:091e511ce8a0 631 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 632 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 633
mjr 38:091e511ce8a0 634 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 635 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 636 // LedWiz use.
mjr 38:091e511ce8a0 637 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 638 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 639 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 640 }
mjr 38:091e511ce8a0 641
mjr 38:091e511ce8a0 642
mjr 38:091e511ce8a0 643 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 644 //
mjr 76:7f5912b6340e 645 // LedWiz emulation
mjr 76:7f5912b6340e 646 //
mjr 76:7f5912b6340e 647
mjr 76:7f5912b6340e 648 // LedWiz output states.
mjr 76:7f5912b6340e 649 //
mjr 76:7f5912b6340e 650 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 651 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 652 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 653 // The two axes are independent.
mjr 76:7f5912b6340e 654 //
mjr 76:7f5912b6340e 655 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 656 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 657 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 658 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 659 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 660 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 661 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 662 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 663
mjr 76:7f5912b6340e 664 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 665 static uint8_t *wizOn;
mjr 76:7f5912b6340e 666
mjr 76:7f5912b6340e 667 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 668 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 669 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 670 //
mjr 76:7f5912b6340e 671 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 672 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 673 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 674 // 130 = flash on / off
mjr 76:7f5912b6340e 675 // 131 = on / ramp down
mjr 76:7f5912b6340e 676 // 132 = ramp up / on
mjr 5:a70c0bce770d 677 //
mjr 76:7f5912b6340e 678 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 679 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 680 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 681 static uint8_t *wizVal;
mjr 76:7f5912b6340e 682
mjr 76:7f5912b6340e 683 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 684 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 685 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 686 // by the extended protocol:
mjr 76:7f5912b6340e 687 //
mjr 76:7f5912b6340e 688 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 689 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 690 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 691 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 692 // if the brightness is non-zero.
mjr 76:7f5912b6340e 693 //
mjr 76:7f5912b6340e 694 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 695 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 696 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 697 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 698 // 0..255 range.
mjr 26:cb71c4af2912 699 //
mjr 76:7f5912b6340e 700 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 701 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 702 // level.
mjr 26:cb71c4af2912 703 //
mjr 76:7f5912b6340e 704 static uint8_t *outLevel;
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706
mjr 76:7f5912b6340e 707 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 708 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 709 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 710 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 711 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 712 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 713 //
mjr 76:7f5912b6340e 714 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 715 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 716 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 717 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 718 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 719 // at the maximum size.
mjr 76:7f5912b6340e 720 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 721 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 722
mjr 26:cb71c4af2912 723 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 724 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 725 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 726 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 727 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 728
mjr 76:7f5912b6340e 729
mjr 76:7f5912b6340e 730 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 731 //
mjr 76:7f5912b6340e 732 // Output Ports
mjr 76:7f5912b6340e 733 //
mjr 76:7f5912b6340e 734 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 735 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 736 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 737 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 738 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 739 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 740 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 741 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 742 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 743 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 744 // you have to ration pins among features.
mjr 76:7f5912b6340e 745 //
mjr 76:7f5912b6340e 746 // To overcome some of these limitations, we also provide two types of
mjr 76:7f5912b6340e 747 // peripheral controllers that allow adding many more outputs, using only
mjr 76:7f5912b6340e 748 // a small number of GPIO pins to interface with the peripherals. First,
mjr 76:7f5912b6340e 749 // we support TLC5940 PWM controller chips. Each TLC5940 provides 16 ports
mjr 76:7f5912b6340e 750 // with full PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 76:7f5912b6340e 751 // chip only requires 5 GPIO pins for the interface, no matter how many
mjr 76:7f5912b6340e 752 // chips are in the chain, so it effectively converts 5 GPIO pins into
mjr 76:7f5912b6340e 753 // almost any number of PWM outputs. Second, we support 74HC595 chips.
mjr 76:7f5912b6340e 754 // These provide only digital outputs, but like the TLC5940 they can be
mjr 76:7f5912b6340e 755 // daisy-chained to provide almost unlimited outputs with a few GPIO pins
mjr 76:7f5912b6340e 756 // to control the whole chain.
mjr 76:7f5912b6340e 757 //
mjr 76:7f5912b6340e 758 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 759 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 760 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 761 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 762 //
mjr 76:7f5912b6340e 763 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 764 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 765 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 766 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 767 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 768 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 769 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 770 // of physical devices they're connected to.
mjr 76:7f5912b6340e 771
mjr 76:7f5912b6340e 772
mjr 26:cb71c4af2912 773 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 774 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 775 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 776 class LwOut
mjr 6:cc35eb643e8f 777 {
mjr 6:cc35eb643e8f 778 public:
mjr 40:cc0d9814522b 779 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 780 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 781 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 782 };
mjr 26:cb71c4af2912 783
mjr 35:e959ffba78fd 784 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 785 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 786 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 787 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 788 // numbering.
mjr 35:e959ffba78fd 789 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 790 {
mjr 33:d832bcab089e 791 public:
mjr 35:e959ffba78fd 792 LwVirtualOut() { }
mjr 40:cc0d9814522b 793 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 794 };
mjr 26:cb71c4af2912 795
mjr 34:6b981a2afab7 796 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 797 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 798 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 799 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 800 {
mjr 34:6b981a2afab7 801 public:
mjr 34:6b981a2afab7 802 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 803 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 804
mjr 34:6b981a2afab7 805 private:
mjr 53:9b2611964afc 806 // underlying physical output
mjr 34:6b981a2afab7 807 LwOut *out;
mjr 34:6b981a2afab7 808 };
mjr 34:6b981a2afab7 809
mjr 53:9b2611964afc 810 // Global ZB Launch Ball state
mjr 53:9b2611964afc 811 bool zbLaunchOn = false;
mjr 53:9b2611964afc 812
mjr 53:9b2611964afc 813 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 814 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 815 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 816 {
mjr 53:9b2611964afc 817 public:
mjr 53:9b2611964afc 818 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 819 virtual void set(uint8_t val)
mjr 53:9b2611964afc 820 {
mjr 53:9b2611964afc 821 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 822 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 823
mjr 53:9b2611964afc 824 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 825 out->set(val);
mjr 53:9b2611964afc 826 }
mjr 53:9b2611964afc 827
mjr 53:9b2611964afc 828 private:
mjr 53:9b2611964afc 829 // underlying physical or virtual output
mjr 53:9b2611964afc 830 LwOut *out;
mjr 53:9b2611964afc 831 };
mjr 53:9b2611964afc 832
mjr 53:9b2611964afc 833
mjr 40:cc0d9814522b 834 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 835 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 836 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 837 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 838 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 839 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 840 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 841 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 842 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 843 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 844 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 845 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 846 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 847 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 848 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 849 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 850 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 851 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 852 };
mjr 40:cc0d9814522b 853
mjr 40:cc0d9814522b 854 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 855 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 856 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 857 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 858 {
mjr 40:cc0d9814522b 859 public:
mjr 40:cc0d9814522b 860 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 861 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 862
mjr 40:cc0d9814522b 863 private:
mjr 40:cc0d9814522b 864 LwOut *out;
mjr 40:cc0d9814522b 865 };
mjr 40:cc0d9814522b 866
mjr 77:0b96f6867312 867 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 868 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 869 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 870 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 871
mjr 40:cc0d9814522b 872 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 873 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 874 // mode is engaged.
mjr 40:cc0d9814522b 875 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 876 {
mjr 40:cc0d9814522b 877 public:
mjr 40:cc0d9814522b 878 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 879 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 880
mjr 53:9b2611964afc 881 private:
mjr 53:9b2611964afc 882 LwOut *out;
mjr 53:9b2611964afc 883 };
mjr 53:9b2611964afc 884
mjr 53:9b2611964afc 885 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 886 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 887 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 888 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 889 {
mjr 53:9b2611964afc 890 public:
mjr 53:9b2611964afc 891 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 892 virtual void set(uint8_t)
mjr 53:9b2611964afc 893 {
mjr 53:9b2611964afc 894 // ignore the host value and simply show the current
mjr 53:9b2611964afc 895 // night mode setting
mjr 53:9b2611964afc 896 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 897 }
mjr 40:cc0d9814522b 898
mjr 40:cc0d9814522b 899 private:
mjr 40:cc0d9814522b 900 LwOut *out;
mjr 40:cc0d9814522b 901 };
mjr 40:cc0d9814522b 902
mjr 26:cb71c4af2912 903
mjr 35:e959ffba78fd 904 //
mjr 35:e959ffba78fd 905 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 906 // assignments set in config.h.
mjr 33:d832bcab089e 907 //
mjr 35:e959ffba78fd 908 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 909 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 910 {
mjr 35:e959ffba78fd 911 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 912 {
mjr 53:9b2611964afc 913 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 914 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 915 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 916 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 917 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 918 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 919 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 920 }
mjr 35:e959ffba78fd 921 }
mjr 26:cb71c4af2912 922
mjr 40:cc0d9814522b 923 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 924 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 925 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 926 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 927 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 928 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 929 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 930 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 931 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 932 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 933 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 934 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 935 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 936 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 937 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 938 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 939 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 940 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 941 };
mjr 40:cc0d9814522b 942
mjr 40:cc0d9814522b 943 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 944 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 945 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 946 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 947 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 948 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 949 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 950 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 951 // are always 8 bits.
mjr 40:cc0d9814522b 952 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 953 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 954 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 955 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 956 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 957 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 958 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 959 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 960 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 961 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 962 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 963 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 964 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 965 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 966 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 967 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 968 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 969 };
mjr 40:cc0d9814522b 970
mjr 26:cb71c4af2912 971 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 972 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 973 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 974 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 975 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 976 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 977 {
mjr 26:cb71c4af2912 978 public:
mjr 60:f38da020aa13 979 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 980 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 981 {
mjr 26:cb71c4af2912 982 if (val != prv)
mjr 40:cc0d9814522b 983 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 984 }
mjr 60:f38da020aa13 985 uint8_t idx;
mjr 40:cc0d9814522b 986 uint8_t prv;
mjr 26:cb71c4af2912 987 };
mjr 26:cb71c4af2912 988
mjr 40:cc0d9814522b 989 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 990 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 991 {
mjr 40:cc0d9814522b 992 public:
mjr 60:f38da020aa13 993 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 994 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 995 {
mjr 40:cc0d9814522b 996 if (val != prv)
mjr 40:cc0d9814522b 997 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 998 }
mjr 60:f38da020aa13 999 uint8_t idx;
mjr 40:cc0d9814522b 1000 uint8_t prv;
mjr 40:cc0d9814522b 1001 };
mjr 40:cc0d9814522b 1002
mjr 40:cc0d9814522b 1003
mjr 33:d832bcab089e 1004
mjr 34:6b981a2afab7 1005 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1006 // config.h.
mjr 35:e959ffba78fd 1007 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1008
mjr 35:e959ffba78fd 1009 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1010 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1011 {
mjr 35:e959ffba78fd 1012 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1013 {
mjr 53:9b2611964afc 1014 hc595 = new HC595(
mjr 53:9b2611964afc 1015 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1016 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1017 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1018 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1019 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1020 hc595->init();
mjr 35:e959ffba78fd 1021 hc595->update();
mjr 35:e959ffba78fd 1022 }
mjr 35:e959ffba78fd 1023 }
mjr 34:6b981a2afab7 1024
mjr 34:6b981a2afab7 1025 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1026 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1027 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1028 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1029 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1030 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1031 {
mjr 33:d832bcab089e 1032 public:
mjr 60:f38da020aa13 1033 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1034 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1035 {
mjr 34:6b981a2afab7 1036 if (val != prv)
mjr 40:cc0d9814522b 1037 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1038 }
mjr 60:f38da020aa13 1039 uint8_t idx;
mjr 40:cc0d9814522b 1040 uint8_t prv;
mjr 33:d832bcab089e 1041 };
mjr 33:d832bcab089e 1042
mjr 26:cb71c4af2912 1043
mjr 40:cc0d9814522b 1044
mjr 64:ef7ca92dff36 1045 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1046 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1047 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1048 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1049 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1050 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1051 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1052 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1053 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1054 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1055 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1056 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1057 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1058 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1059 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1060 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1061 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1062 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1063 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1064 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1065 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1066 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1067 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1068 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1069 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1070 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1071 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1072 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1073 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1074 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1075 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1076 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1077 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1078 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1079 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1080 };
mjr 26:cb71c4af2912 1081
mjr 64:ef7ca92dff36 1082
mjr 64:ef7ca92dff36 1083 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 1084 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 1085 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 1086 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 1087 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 1088 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1089 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1090 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1091 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1092 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1093 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1094 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1095 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1096 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1097 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1098 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1099 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1100 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1101 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1102 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1103 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1104 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1105 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1106 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1107 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1108 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1109 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1110 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1111 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1112 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1113 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1114 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1115 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1116 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1117 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1118 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1119 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1120 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1121 };
mjr 64:ef7ca92dff36 1122
mjr 77:0b96f6867312 1123 // Polled-update PWM output list
mjr 74:822a92bc11d2 1124 //
mjr 77:0b96f6867312 1125 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1126 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1127 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1128 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1129 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1130 //
mjr 77:0b96f6867312 1131 // Our solution is to simply repeat all PWM updates periodically. If a write
mjr 77:0b96f6867312 1132 // is lost on one cycle, it'll eventually be applied on a subseuqent periodic
mjr 77:0b96f6867312 1133 // update. For low overhead, we do these repeat updates periodically during
mjr 77:0b96f6867312 1134 // the main loop.
mjr 74:822a92bc11d2 1135 //
mjr 77:0b96f6867312 1136 // The mbed library has its own solution to this bug, but it creates a
mjr 77:0b96f6867312 1137 // separate problem of its own. The mbed solution is to write the value
mjr 77:0b96f6867312 1138 // register immediately, and then also reset the "count" register in the
mjr 77:0b96f6867312 1139 // TPM unit containing the output. The count reset truncates the current
mjr 77:0b96f6867312 1140 // PWM cycle, which avoids the hardware problem with more than one write per
mjr 77:0b96f6867312 1141 // cycle. The problem is that the truncated cycle causes visible flicker if
mjr 77:0b96f6867312 1142 // the output is connected to an LED. This is particularly noticeable during
mjr 77:0b96f6867312 1143 // fades, when we're updating the value register repeatedly and rapidly: an
mjr 77:0b96f6867312 1144 // attempt to fade from fully on to fully off causes rapid fluttering and
mjr 77:0b96f6867312 1145 // flashing rather than a smooth brightness fade.
mjr 74:822a92bc11d2 1146 //
mjr 77:0b96f6867312 1147 // The hardware bug is a case of good intentions gone bad. The hardware is
mjr 77:0b96f6867312 1148 // *supposed* to make it easy for software to avoid glitching during PWM
mjr 77:0b96f6867312 1149 // updates, by providing a staging register in front of the real value
mjr 77:0b96f6867312 1150 // register. The software actually writes to the staging register, which
mjr 77:0b96f6867312 1151 // holds updates until the end of the cycle, at which point the hardware
mjr 77:0b96f6867312 1152 // automatically moves the value from the staging register into the real
mjr 77:0b96f6867312 1153 // register. This ensures that the real register is always updated exactly
mjr 77:0b96f6867312 1154 // at a cycle boundary, which in turn ensures that there's no flicker when
mjr 77:0b96f6867312 1155 // values are updated. A great design - except that it doesn't quite work.
mjr 77:0b96f6867312 1156 // The problem is that the staging register actually seems to be implemented
mjr 77:0b96f6867312 1157 // as a one-element FIFO in "stop when full" mode. That is, when you write
mjr 77:0b96f6867312 1158 // the FIFO, it becomes full. When the cycle ends and the hardware reads it
mjr 77:0b96f6867312 1159 // to move the staged value into the real register, the FIFO becomes empty.
mjr 77:0b96f6867312 1160 // But if you try to write the FIFO twice before the hardware reads it and
mjr 77:0b96f6867312 1161 // empties it, the second write fails, leaving the first value in the queue.
mjr 77:0b96f6867312 1162 // There doesn't seem to be any way to clear the FIFO from software, so you
mjr 77:0b96f6867312 1163 // just have to wait for the cycle to end before writing another update.
mjr 77:0b96f6867312 1164 // That more or less defeats the purpose of the staging register, whose whole
mjr 77:0b96f6867312 1165 // point is to free software from worrying about timing considerations with
mjr 77:0b96f6867312 1166 // updates. It frees us of the need to align our timing on cycle boundaries,
mjr 77:0b96f6867312 1167 // but it leaves us with the need to limit writes to once per cycle.
mjr 74:822a92bc11d2 1168 //
mjr 77:0b96f6867312 1169 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1170 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1171 // of polled items.
mjr 74:822a92bc11d2 1172 static int numPolledPwm;
mjr 74:822a92bc11d2 1173 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1174
mjr 74:822a92bc11d2 1175 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1176 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1177 {
mjr 6:cc35eb643e8f 1178 public:
mjr 43:7a6364d82a41 1179 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1180 {
mjr 77:0b96f6867312 1181 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1182 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1183 polledPwm[numPolledPwm++] = this;
mjr 77:0b96f6867312 1184
mjr 77:0b96f6867312 1185 // set the initial value
mjr 77:0b96f6867312 1186 set(initVal);
mjr 43:7a6364d82a41 1187 }
mjr 74:822a92bc11d2 1188
mjr 40:cc0d9814522b 1189 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1190 {
mjr 77:0b96f6867312 1191 // save the new value
mjr 74:822a92bc11d2 1192 this->val = val;
mjr 77:0b96f6867312 1193
mjr 77:0b96f6867312 1194 // commit it to the hardware
mjr 77:0b96f6867312 1195 commit();
mjr 13:72dda449c3c0 1196 }
mjr 74:822a92bc11d2 1197
mjr 74:822a92bc11d2 1198 // handle periodic update polling
mjr 74:822a92bc11d2 1199 void poll()
mjr 74:822a92bc11d2 1200 {
mjr 77:0b96f6867312 1201 commit();
mjr 74:822a92bc11d2 1202 }
mjr 74:822a92bc11d2 1203
mjr 74:822a92bc11d2 1204 protected:
mjr 77:0b96f6867312 1205 virtual void commit()
mjr 74:822a92bc11d2 1206 {
mjr 74:822a92bc11d2 1207 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1208 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1209 }
mjr 74:822a92bc11d2 1210
mjr 77:0b96f6867312 1211 NewPwmOut p;
mjr 77:0b96f6867312 1212 uint8_t val;
mjr 6:cc35eb643e8f 1213 };
mjr 26:cb71c4af2912 1214
mjr 74:822a92bc11d2 1215 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1216 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1217 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1218 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1219 {
mjr 64:ef7ca92dff36 1220 public:
mjr 64:ef7ca92dff36 1221 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1222 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1223 {
mjr 64:ef7ca92dff36 1224 }
mjr 74:822a92bc11d2 1225
mjr 74:822a92bc11d2 1226 protected:
mjr 77:0b96f6867312 1227 virtual void commit()
mjr 64:ef7ca92dff36 1228 {
mjr 74:822a92bc11d2 1229 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1230 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1231 }
mjr 64:ef7ca92dff36 1232 };
mjr 64:ef7ca92dff36 1233
mjr 74:822a92bc11d2 1234 // poll the PWM outputs
mjr 74:822a92bc11d2 1235 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1236 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1237 void pollPwmUpdates()
mjr 74:822a92bc11d2 1238 {
mjr 74:822a92bc11d2 1239 // if it's been at least 25ms since the last update, do another update
mjr 74:822a92bc11d2 1240 if (polledPwmTimer.read_us() >= 25000)
mjr 74:822a92bc11d2 1241 {
mjr 74:822a92bc11d2 1242 // time the run for statistics collection
mjr 74:822a92bc11d2 1243 IF_DIAG(
mjr 74:822a92bc11d2 1244 Timer t;
mjr 74:822a92bc11d2 1245 t.start();
mjr 74:822a92bc11d2 1246 )
mjr 74:822a92bc11d2 1247
mjr 74:822a92bc11d2 1248 // poll each output
mjr 74:822a92bc11d2 1249 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1250 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1251
mjr 74:822a92bc11d2 1252 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1253 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1254
mjr 74:822a92bc11d2 1255 // collect statistics
mjr 74:822a92bc11d2 1256 IF_DIAG(
mjr 76:7f5912b6340e 1257 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1258 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1259 )
mjr 74:822a92bc11d2 1260 }
mjr 74:822a92bc11d2 1261 }
mjr 64:ef7ca92dff36 1262
mjr 26:cb71c4af2912 1263 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1264 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1265 {
mjr 6:cc35eb643e8f 1266 public:
mjr 43:7a6364d82a41 1267 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1268 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1269 {
mjr 13:72dda449c3c0 1270 if (val != prv)
mjr 40:cc0d9814522b 1271 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1272 }
mjr 6:cc35eb643e8f 1273 DigitalOut p;
mjr 40:cc0d9814522b 1274 uint8_t prv;
mjr 6:cc35eb643e8f 1275 };
mjr 26:cb71c4af2912 1276
mjr 29:582472d0bc57 1277 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1278 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1279 // port n (0-based).
mjr 35:e959ffba78fd 1280 //
mjr 35:e959ffba78fd 1281 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1282 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1283 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1284 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1285 // 74HC595 ports).
mjr 33:d832bcab089e 1286 static int numOutputs;
mjr 33:d832bcab089e 1287 static LwOut **lwPin;
mjr 33:d832bcab089e 1288
mjr 38:091e511ce8a0 1289 // create a single output pin
mjr 53:9b2611964afc 1290 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1291 {
mjr 38:091e511ce8a0 1292 // get this item's values
mjr 38:091e511ce8a0 1293 int typ = pc.typ;
mjr 38:091e511ce8a0 1294 int pin = pc.pin;
mjr 38:091e511ce8a0 1295 int flags = pc.flags;
mjr 40:cc0d9814522b 1296 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1297 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1298 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1299
mjr 38:091e511ce8a0 1300 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1301 LwOut *lwp;
mjr 38:091e511ce8a0 1302 switch (typ)
mjr 38:091e511ce8a0 1303 {
mjr 38:091e511ce8a0 1304 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1305 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1306 if (pin != 0)
mjr 64:ef7ca92dff36 1307 {
mjr 64:ef7ca92dff36 1308 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1309 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1310 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1311 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1312 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1313 {
mjr 64:ef7ca92dff36 1314 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1315 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1316
mjr 64:ef7ca92dff36 1317 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1318 gamma = false;
mjr 64:ef7ca92dff36 1319 }
mjr 64:ef7ca92dff36 1320 else
mjr 64:ef7ca92dff36 1321 {
mjr 64:ef7ca92dff36 1322 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1323 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1324 }
mjr 64:ef7ca92dff36 1325 }
mjr 48:058ace2aed1d 1326 else
mjr 48:058ace2aed1d 1327 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1328 break;
mjr 38:091e511ce8a0 1329
mjr 38:091e511ce8a0 1330 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1331 // Digital GPIO port
mjr 48:058ace2aed1d 1332 if (pin != 0)
mjr 48:058ace2aed1d 1333 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1334 else
mjr 48:058ace2aed1d 1335 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1336 break;
mjr 38:091e511ce8a0 1337
mjr 38:091e511ce8a0 1338 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1339 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1340 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1341 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1342 {
mjr 40:cc0d9814522b 1343 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1344 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1345 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1346 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1347 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1348 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1349 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1350 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1351 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1352 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1353 // for this unlikely case.
mjr 40:cc0d9814522b 1354 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1355 {
mjr 40:cc0d9814522b 1356 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1357 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1358
mjr 40:cc0d9814522b 1359 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1360 gamma = false;
mjr 40:cc0d9814522b 1361 }
mjr 40:cc0d9814522b 1362 else
mjr 40:cc0d9814522b 1363 {
mjr 40:cc0d9814522b 1364 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1365 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1366 }
mjr 40:cc0d9814522b 1367 }
mjr 38:091e511ce8a0 1368 else
mjr 40:cc0d9814522b 1369 {
mjr 40:cc0d9814522b 1370 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1371 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1372 }
mjr 38:091e511ce8a0 1373 break;
mjr 38:091e511ce8a0 1374
mjr 38:091e511ce8a0 1375 case PortType74HC595:
mjr 38:091e511ce8a0 1376 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 1377 // output number, create a virtual port)
mjr 38:091e511ce8a0 1378 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1379 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1380 else
mjr 38:091e511ce8a0 1381 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1382 break;
mjr 38:091e511ce8a0 1383
mjr 38:091e511ce8a0 1384 case PortTypeVirtual:
mjr 43:7a6364d82a41 1385 case PortTypeDisabled:
mjr 38:091e511ce8a0 1386 default:
mjr 38:091e511ce8a0 1387 // virtual or unknown
mjr 38:091e511ce8a0 1388 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1389 break;
mjr 38:091e511ce8a0 1390 }
mjr 38:091e511ce8a0 1391
mjr 40:cc0d9814522b 1392 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1393 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1394 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1395 if (activeLow)
mjr 38:091e511ce8a0 1396 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1397
mjr 40:cc0d9814522b 1398 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1399 // needs to be
mjr 40:cc0d9814522b 1400 if (noisy)
mjr 40:cc0d9814522b 1401 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1402
mjr 40:cc0d9814522b 1403 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1404 if (gamma)
mjr 40:cc0d9814522b 1405 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1406
mjr 53:9b2611964afc 1407 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1408 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1409 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1410 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1411 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1412
mjr 53:9b2611964afc 1413 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1414 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1415 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1416
mjr 38:091e511ce8a0 1417 // turn it off initially
mjr 38:091e511ce8a0 1418 lwp->set(0);
mjr 38:091e511ce8a0 1419
mjr 38:091e511ce8a0 1420 // return the pin
mjr 38:091e511ce8a0 1421 return lwp;
mjr 38:091e511ce8a0 1422 }
mjr 38:091e511ce8a0 1423
mjr 6:cc35eb643e8f 1424 // initialize the output pin array
mjr 35:e959ffba78fd 1425 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1426 {
mjr 35:e959ffba78fd 1427 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1428 // total number of ports.
mjr 35:e959ffba78fd 1429 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1430 int i;
mjr 35:e959ffba78fd 1431 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1432 {
mjr 35:e959ffba78fd 1433 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1434 {
mjr 35:e959ffba78fd 1435 numOutputs = i;
mjr 34:6b981a2afab7 1436 break;
mjr 34:6b981a2afab7 1437 }
mjr 33:d832bcab089e 1438 }
mjr 33:d832bcab089e 1439
mjr 73:4e8ce0b18915 1440 // allocate the pin array
mjr 73:4e8ce0b18915 1441 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1442
mjr 73:4e8ce0b18915 1443 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1444 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1445
mjr 73:4e8ce0b18915 1446 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1447 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1448 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1449
mjr 73:4e8ce0b18915 1450 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1451 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1452 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1453
mjr 73:4e8ce0b18915 1454 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1455 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1456 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1457
mjr 35:e959ffba78fd 1458 // create the pin interface object for each port
mjr 35:e959ffba78fd 1459 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1460 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1461 }
mjr 6:cc35eb643e8f 1462
mjr 76:7f5912b6340e 1463 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1464 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1465 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1466 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1467 // equivalent to 48.
mjr 40:cc0d9814522b 1468 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1469 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1470 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1471 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1472 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1473 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1474 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1475 255, 255
mjr 40:cc0d9814522b 1476 };
mjr 40:cc0d9814522b 1477
mjr 76:7f5912b6340e 1478 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1479 // level (1..48)
mjr 76:7f5912b6340e 1480 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1481 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1482 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1483 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1484 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1485 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1486 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1487 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1488 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1489 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1490 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1491 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1492 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1493 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1494 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1495 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1496 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1497 };
mjr 76:7f5912b6340e 1498
mjr 74:822a92bc11d2 1499 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1500 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1501 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1502 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1503 //
mjr 74:822a92bc11d2 1504 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1505 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1506 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1507 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1508 //
mjr 74:822a92bc11d2 1509 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1510 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1511 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1512 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1513 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1514 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1515 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1516 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1517 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1518 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1519 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1520 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1521 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1522 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1523 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1524 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1525 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1526 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1527 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1528 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1529
mjr 74:822a92bc11d2 1530 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1531 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1532 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1533 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1534 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1535 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1536 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1537 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1538 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1539 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1540 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1541 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1542 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1543 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1544 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1545 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1546 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1547
mjr 74:822a92bc11d2 1548 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1549 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1550 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1551 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1552 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1553 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1554 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1555 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1556 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1557 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1558 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1559 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1560 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1561 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1562 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1563 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1564 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1565
mjr 74:822a92bc11d2 1566 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1567 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1568 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1569 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1570 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1571 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1572 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1573 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1574 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1575 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1576 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1577 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1578 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1579 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1580 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1581 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1582 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1583 };
mjr 74:822a92bc11d2 1584
mjr 74:822a92bc11d2 1585 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1586 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1587 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1588
mjr 76:7f5912b6340e 1589 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1590 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1591
mjr 76:7f5912b6340e 1592 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1593 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1594 // outputs on each cycle.
mjr 29:582472d0bc57 1595 static void wizPulse()
mjr 29:582472d0bc57 1596 {
mjr 76:7f5912b6340e 1597 // current bank
mjr 76:7f5912b6340e 1598 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1599
mjr 76:7f5912b6340e 1600 // start a timer for statistics collection
mjr 76:7f5912b6340e 1601 IF_DIAG(
mjr 76:7f5912b6340e 1602 Timer t;
mjr 76:7f5912b6340e 1603 t.start();
mjr 76:7f5912b6340e 1604 )
mjr 76:7f5912b6340e 1605
mjr 76:7f5912b6340e 1606 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1607 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1608 //
mjr 76:7f5912b6340e 1609 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1610 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1611 //
mjr 76:7f5912b6340e 1612 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1613 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1614 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1615 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1616 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1617 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1618 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1619 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1620 // current cycle.
mjr 76:7f5912b6340e 1621 //
mjr 76:7f5912b6340e 1622 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1623 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1624 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1625 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1626 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1627 //
mjr 76:7f5912b6340e 1628 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1629 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1630 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1631 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1632 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1633 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1634 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1635 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1636 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1637 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1638 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1639 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1640 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1641 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1642 // bit counts.
mjr 76:7f5912b6340e 1643 //
mjr 76:7f5912b6340e 1644 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1645 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1646 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1647 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1648 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1649 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1650 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1651 // one division for another!
mjr 76:7f5912b6340e 1652 //
mjr 76:7f5912b6340e 1653 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1654 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1655 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1656 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1657 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1658 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1659 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1660 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1661 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1662 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1663 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1664 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1665 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1666 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1667 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1668 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1669 // remainder calculation anyway.
mjr 76:7f5912b6340e 1670 //
mjr 76:7f5912b6340e 1671 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1672 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1673 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1674 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1675 //
mjr 76:7f5912b6340e 1676 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1677 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1678 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1679 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1680 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1681 // the result, since we started with 32.
mjr 76:7f5912b6340e 1682 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1683 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1684 };
mjr 76:7f5912b6340e 1685 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1686
mjr 76:7f5912b6340e 1687 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1688 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1689 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1690 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1691 toPort = numOutputs;
mjr 76:7f5912b6340e 1692
mjr 76:7f5912b6340e 1693 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1694 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1695 {
mjr 76:7f5912b6340e 1696 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1697 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1698 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1699 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1700 if (wizOn[i])
mjr 29:582472d0bc57 1701 {
mjr 76:7f5912b6340e 1702 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 1703 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 1704 {
mjr 76:7f5912b6340e 1705 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 1706 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 1707 }
mjr 29:582472d0bc57 1708 }
mjr 76:7f5912b6340e 1709 }
mjr 76:7f5912b6340e 1710
mjr 34:6b981a2afab7 1711 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1712 if (hc595 != 0)
mjr 35:e959ffba78fd 1713 hc595->update();
mjr 76:7f5912b6340e 1714
mjr 76:7f5912b6340e 1715 // switch to the next bank
mjr 76:7f5912b6340e 1716 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 1717 wizPulseBank = 0;
mjr 76:7f5912b6340e 1718
mjr 76:7f5912b6340e 1719 // collect timing statistics
mjr 76:7f5912b6340e 1720 IF_DIAG(
mjr 76:7f5912b6340e 1721 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 1722 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 1723 )
mjr 1:d913e0afb2ac 1724 }
mjr 38:091e511ce8a0 1725
mjr 76:7f5912b6340e 1726 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 1727 static void updateLwPort(int port)
mjr 38:091e511ce8a0 1728 {
mjr 76:7f5912b6340e 1729 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 1730 if (wizOn[port])
mjr 76:7f5912b6340e 1731 {
mjr 76:7f5912b6340e 1732 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 1733 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 1734 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 1735 // it on the next cycle.
mjr 76:7f5912b6340e 1736 int val = wizVal[port];
mjr 76:7f5912b6340e 1737 if (val <= 49)
mjr 76:7f5912b6340e 1738 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 1739 }
mjr 76:7f5912b6340e 1740 else
mjr 76:7f5912b6340e 1741 {
mjr 76:7f5912b6340e 1742 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 1743 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 1744 }
mjr 73:4e8ce0b18915 1745 }
mjr 73:4e8ce0b18915 1746
mjr 73:4e8ce0b18915 1747 // Turn off all outputs and restore everything to the default LedWiz
mjr 73:4e8ce0b18915 1748 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 73:4e8ce0b18915 1749 // brightness) and switch state Off, sets all extended outputs (#33
mjr 73:4e8ce0b18915 1750 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 73:4e8ce0b18915 1751 // This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 1752 //
mjr 73:4e8ce0b18915 1753 void allOutputsOff()
mjr 73:4e8ce0b18915 1754 {
mjr 73:4e8ce0b18915 1755 // reset all LedWiz outputs to OFF/48
mjr 73:4e8ce0b18915 1756 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 1757 {
mjr 73:4e8ce0b18915 1758 outLevel[i] = 0;
mjr 73:4e8ce0b18915 1759 wizOn[i] = 0;
mjr 73:4e8ce0b18915 1760 wizVal[i] = 48;
mjr 73:4e8ce0b18915 1761 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 1762 }
mjr 73:4e8ce0b18915 1763
mjr 73:4e8ce0b18915 1764 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 1765 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1766 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 1767
mjr 73:4e8ce0b18915 1768 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 1769 if (hc595 != 0)
mjr 38:091e511ce8a0 1770 hc595->update();
mjr 38:091e511ce8a0 1771 }
mjr 38:091e511ce8a0 1772
mjr 74:822a92bc11d2 1773 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 1774 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 1775 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 1776 // address any port group.
mjr 74:822a92bc11d2 1777 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 1778 {
mjr 76:7f5912b6340e 1779 // update all on/off states in the group
mjr 74:822a92bc11d2 1780 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 1781 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 1782 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 1783 {
mjr 74:822a92bc11d2 1784 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 1785 if (bit == 0x100) {
mjr 74:822a92bc11d2 1786 bit = 1;
mjr 74:822a92bc11d2 1787 ++imsg;
mjr 74:822a92bc11d2 1788 }
mjr 74:822a92bc11d2 1789
mjr 74:822a92bc11d2 1790 // set the on/off state
mjr 76:7f5912b6340e 1791 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 1792
mjr 76:7f5912b6340e 1793 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 1794 updateLwPort(port);
mjr 74:822a92bc11d2 1795 }
mjr 74:822a92bc11d2 1796
mjr 74:822a92bc11d2 1797 // set the flash speed for the port group
mjr 74:822a92bc11d2 1798 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 1799 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 1800
mjr 76:7f5912b6340e 1801 // update 74HC959 outputs
mjr 76:7f5912b6340e 1802 if (hc595 != 0)
mjr 76:7f5912b6340e 1803 hc595->update();
mjr 74:822a92bc11d2 1804 }
mjr 74:822a92bc11d2 1805
mjr 74:822a92bc11d2 1806 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 1807 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 1808 {
mjr 74:822a92bc11d2 1809 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 1810 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 1811 {
mjr 74:822a92bc11d2 1812 // get the value
mjr 74:822a92bc11d2 1813 uint8_t v = data[i];
mjr 74:822a92bc11d2 1814
mjr 74:822a92bc11d2 1815 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 1816 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 1817 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 1818 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 1819 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 1820 // as such.
mjr 74:822a92bc11d2 1821 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 1822 v = 48;
mjr 74:822a92bc11d2 1823
mjr 74:822a92bc11d2 1824 // store it
mjr 76:7f5912b6340e 1825 wizVal[port] = v;
mjr 76:7f5912b6340e 1826
mjr 76:7f5912b6340e 1827 // update the port
mjr 76:7f5912b6340e 1828 updateLwPort(port);
mjr 74:822a92bc11d2 1829 }
mjr 74:822a92bc11d2 1830
mjr 76:7f5912b6340e 1831 // update 74HC595 outputs
mjr 76:7f5912b6340e 1832 if (hc595 != 0)
mjr 76:7f5912b6340e 1833 hc595->update();
mjr 74:822a92bc11d2 1834 }
mjr 74:822a92bc11d2 1835
mjr 77:0b96f6867312 1836 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 1837 //
mjr 77:0b96f6867312 1838 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 1839 //
mjr 77:0b96f6867312 1840
mjr 77:0b96f6867312 1841 // receiver
mjr 77:0b96f6867312 1842 IRReceiver *ir_rx;
mjr 77:0b96f6867312 1843
mjr 77:0b96f6867312 1844 // transmitter
mjr 77:0b96f6867312 1845 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 1846
mjr 77:0b96f6867312 1847 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 1848 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 1849 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 1850 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 1851 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 1852 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 1853 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 1854 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 1855 // configuration slot n
mjr 77:0b96f6867312 1856 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 1857
mjr 78:1e00b3fa11af 1858 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 1859 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 1860 // protocol.
mjr 78:1e00b3fa11af 1861 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 1862
mjr 78:1e00b3fa11af 1863 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 1864 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 1865 // while waiting for the rest.
mjr 78:1e00b3fa11af 1866 static struct
mjr 78:1e00b3fa11af 1867 {
mjr 78:1e00b3fa11af 1868 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 1869 uint64_t code; // code
mjr 78:1e00b3fa11af 1870 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 1871 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 1872 } IRAdHocCmd;
mjr 78:1e00b3fa11af 1873
mjr 77:0b96f6867312 1874
mjr 77:0b96f6867312 1875 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 1876 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 1877 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 1878 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 1879 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 1880 // amount of time.
mjr 77:0b96f6867312 1881 Timer IRTimer;
mjr 77:0b96f6867312 1882
mjr 77:0b96f6867312 1883 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 1884 // The states are:
mjr 77:0b96f6867312 1885 //
mjr 77:0b96f6867312 1886 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 1887 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 1888 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 1889 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 1890 //
mjr 77:0b96f6867312 1891 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 1892 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 1893 // received within a reasonable time.
mjr 77:0b96f6867312 1894 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 1895
mjr 77:0b96f6867312 1896 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 1897 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 1898 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 1899 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 1900 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 1901 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 1902 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 1903 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 1904 IRCommand learnedIRCode;
mjr 77:0b96f6867312 1905
mjr 78:1e00b3fa11af 1906 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 1907 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 1908 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 1909 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 1910 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 1911 // index; 0 represents no command.
mjr 77:0b96f6867312 1912 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 1913
mjr 77:0b96f6867312 1914 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 1915 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 1916 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 1917 // command we received.
mjr 77:0b96f6867312 1918 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 1919
mjr 77:0b96f6867312 1920 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 1921 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 1922 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 1923 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 1924 // distinct key press.
mjr 77:0b96f6867312 1925 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 1926
mjr 78:1e00b3fa11af 1927
mjr 77:0b96f6867312 1928 // initialize
mjr 77:0b96f6867312 1929 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 1930 {
mjr 77:0b96f6867312 1931 PinName pin;
mjr 77:0b96f6867312 1932
mjr 77:0b96f6867312 1933 // start the IR timer
mjr 77:0b96f6867312 1934 IRTimer.start();
mjr 77:0b96f6867312 1935
mjr 77:0b96f6867312 1936 // if there's a transmitter, set it up
mjr 77:0b96f6867312 1937 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 1938 {
mjr 77:0b96f6867312 1939 // no virtual buttons yet
mjr 77:0b96f6867312 1940 int nVirtualButtons = 0;
mjr 77:0b96f6867312 1941 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 1942
mjr 77:0b96f6867312 1943 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 1944 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1945 {
mjr 77:0b96f6867312 1946 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 1947 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 1948 }
mjr 77:0b96f6867312 1949
mjr 77:0b96f6867312 1950 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 1951 // real button inputs
mjr 77:0b96f6867312 1952 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 1953 {
mjr 77:0b96f6867312 1954 // get the button
mjr 77:0b96f6867312 1955 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 1956
mjr 77:0b96f6867312 1957 // check the unshifted button
mjr 77:0b96f6867312 1958 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 1959 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1960 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1961 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1962
mjr 77:0b96f6867312 1963 // check the shifted button
mjr 77:0b96f6867312 1964 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 1965 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1966 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1967 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1968 }
mjr 77:0b96f6867312 1969
mjr 77:0b96f6867312 1970 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 1971 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 1972 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 1973
mjr 77:0b96f6867312 1974 // create the transmitter
mjr 77:0b96f6867312 1975 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 1976
mjr 77:0b96f6867312 1977 // program the commands into the virtual button slots
mjr 77:0b96f6867312 1978 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1979 {
mjr 77:0b96f6867312 1980 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 1981 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 1982 if (vb != 0xFF)
mjr 77:0b96f6867312 1983 {
mjr 77:0b96f6867312 1984 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1985 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 1986 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 1987 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 1988 }
mjr 77:0b96f6867312 1989 }
mjr 77:0b96f6867312 1990 }
mjr 77:0b96f6867312 1991
mjr 77:0b96f6867312 1992 // if there's a receiver, set it up
mjr 77:0b96f6867312 1993 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 1994 {
mjr 77:0b96f6867312 1995 // create the receiver
mjr 77:0b96f6867312 1996 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 1997
mjr 77:0b96f6867312 1998 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 1999 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 2000 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 2001
mjr 77:0b96f6867312 2002 // enable it
mjr 77:0b96f6867312 2003 ir_rx->enable();
mjr 77:0b96f6867312 2004
mjr 77:0b96f6867312 2005 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 2006 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 2007 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 2008 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2009 {
mjr 77:0b96f6867312 2010 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2011 if (cb.protocol != 0
mjr 77:0b96f6867312 2012 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2013 {
mjr 77:0b96f6867312 2014 kbKeys = true;
mjr 77:0b96f6867312 2015 break;
mjr 77:0b96f6867312 2016 }
mjr 77:0b96f6867312 2017 }
mjr 77:0b96f6867312 2018 }
mjr 77:0b96f6867312 2019 }
mjr 77:0b96f6867312 2020
mjr 77:0b96f6867312 2021 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2022 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2023 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2024 {
mjr 77:0b96f6867312 2025 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2026 if (ir_tx != 0)
mjr 77:0b96f6867312 2027 {
mjr 77:0b96f6867312 2028 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2029 int slot = cmd - 1;
mjr 77:0b96f6867312 2030
mjr 77:0b96f6867312 2031 // press or release the virtual button
mjr 77:0b96f6867312 2032 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2033 }
mjr 77:0b96f6867312 2034 }
mjr 77:0b96f6867312 2035
mjr 78:1e00b3fa11af 2036 // Process IR input and output
mjr 77:0b96f6867312 2037 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2038 {
mjr 78:1e00b3fa11af 2039 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2040 if (ir_tx != 0)
mjr 77:0b96f6867312 2041 {
mjr 78:1e00b3fa11af 2042 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2043 // is ready to send, send it.
mjr 78:1e00b3fa11af 2044 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2045 {
mjr 78:1e00b3fa11af 2046 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2047 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2048 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2049 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2050
mjr 78:1e00b3fa11af 2051 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2052 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2053 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2054
mjr 78:1e00b3fa11af 2055 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2056 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2057 }
mjr 77:0b96f6867312 2058 }
mjr 78:1e00b3fa11af 2059
mjr 78:1e00b3fa11af 2060 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2061 if (ir_rx != 0)
mjr 77:0b96f6867312 2062 {
mjr 78:1e00b3fa11af 2063 // Time out any received command
mjr 78:1e00b3fa11af 2064 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2065 {
mjr 78:1e00b3fa11af 2066 // Time out inter-key gap mode after 30ms; time out all
mjr 78:1e00b3fa11af 2067 // commands after 100ms.
mjr 78:1e00b3fa11af 2068 uint32_t t = IRTimer.read_us();
mjr 78:1e00b3fa11af 2069 if (t > 100000)
mjr 78:1e00b3fa11af 2070 IRCommandIn = 0;
mjr 78:1e00b3fa11af 2071 else if (t > 30000)
mjr 78:1e00b3fa11af 2072 IRKeyGap = false;
mjr 78:1e00b3fa11af 2073 }
mjr 78:1e00b3fa11af 2074
mjr 78:1e00b3fa11af 2075 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2076 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2077 {
mjr 78:1e00b3fa11af 2078 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2079 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2080 // limit.
mjr 78:1e00b3fa11af 2081 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2082 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2083 int n;
mjr 78:1e00b3fa11af 2084 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2085
mjr 78:1e00b3fa11af 2086 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2087 if (n != 0)
mjr 78:1e00b3fa11af 2088 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2089
mjr 78:1e00b3fa11af 2090 // check for a command
mjr 78:1e00b3fa11af 2091 IRCommand c;
mjr 78:1e00b3fa11af 2092 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2093 {
mjr 78:1e00b3fa11af 2094 // check the current learning state
mjr 78:1e00b3fa11af 2095 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2096 {
mjr 78:1e00b3fa11af 2097 case 1:
mjr 78:1e00b3fa11af 2098 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2099 // This is it.
mjr 78:1e00b3fa11af 2100 learnedIRCode = c;
mjr 78:1e00b3fa11af 2101
mjr 78:1e00b3fa11af 2102 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2103 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2104 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2105 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2106 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2107 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2108 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2109 break;
mjr 78:1e00b3fa11af 2110
mjr 78:1e00b3fa11af 2111 case 2:
mjr 78:1e00b3fa11af 2112 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2113 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2114 //
mjr 78:1e00b3fa11af 2115 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2116 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2117 //
mjr 78:1e00b3fa11af 2118 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2119 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2120 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2121 // them.
mjr 78:1e00b3fa11af 2122 //
mjr 78:1e00b3fa11af 2123 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2124 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2125 // over.
mjr 78:1e00b3fa11af 2126 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2127 && c.hasDittos
mjr 78:1e00b3fa11af 2128 && c.ditto)
mjr 78:1e00b3fa11af 2129 {
mjr 78:1e00b3fa11af 2130 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2131 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2132 }
mjr 78:1e00b3fa11af 2133 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2134 && c.hasDittos
mjr 78:1e00b3fa11af 2135 && !c.ditto
mjr 78:1e00b3fa11af 2136 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2137 {
mjr 78:1e00b3fa11af 2138 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2139 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2140 // protocol supports them
mjr 78:1e00b3fa11af 2141 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2142 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2143 }
mjr 78:1e00b3fa11af 2144 else
mjr 78:1e00b3fa11af 2145 {
mjr 78:1e00b3fa11af 2146 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2147 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2148 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2149 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2150 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2151 }
mjr 78:1e00b3fa11af 2152 break;
mjr 78:1e00b3fa11af 2153 }
mjr 77:0b96f6867312 2154
mjr 78:1e00b3fa11af 2155 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2156 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2157 // learning mode.
mjr 78:1e00b3fa11af 2158 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2159 {
mjr 78:1e00b3fa11af 2160 // figure the flags:
mjr 78:1e00b3fa11af 2161 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2162 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2163 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2164 flags |= 0x02;
mjr 78:1e00b3fa11af 2165
mjr 78:1e00b3fa11af 2166 // report the code
mjr 78:1e00b3fa11af 2167 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2168
mjr 78:1e00b3fa11af 2169 // exit learning mode
mjr 78:1e00b3fa11af 2170 IRLearningMode = 0;
mjr 77:0b96f6867312 2171 }
mjr 77:0b96f6867312 2172 }
mjr 77:0b96f6867312 2173
mjr 78:1e00b3fa11af 2174 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2175 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2176 {
mjr 78:1e00b3fa11af 2177 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2178 // zero data elements
mjr 78:1e00b3fa11af 2179 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2180
mjr 78:1e00b3fa11af 2181
mjr 78:1e00b3fa11af 2182 // cancel learning mode
mjr 77:0b96f6867312 2183 IRLearningMode = 0;
mjr 77:0b96f6867312 2184 }
mjr 77:0b96f6867312 2185 }
mjr 78:1e00b3fa11af 2186 else
mjr 77:0b96f6867312 2187 {
mjr 78:1e00b3fa11af 2188 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2189 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2190 ir_rx->process();
mjr 78:1e00b3fa11af 2191
mjr 78:1e00b3fa11af 2192 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2193 // have been read.
mjr 78:1e00b3fa11af 2194 IRCommand c;
mjr 78:1e00b3fa11af 2195 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2196 {
mjr 78:1e00b3fa11af 2197 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2198 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2199 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2200 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2201 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2202 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2203 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2204 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2205 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2206 //
mjr 78:1e00b3fa11af 2207 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2208 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2209 // command.
mjr 78:1e00b3fa11af 2210 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2211 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2212 {
mjr 78:1e00b3fa11af 2213 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2214 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2215 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2216 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2217 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2218 if (c.ditto)
mjr 78:1e00b3fa11af 2219 {
mjr 78:1e00b3fa11af 2220 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2221 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2222 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2223 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2224 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2225 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2226 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2227 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2228 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2229 }
mjr 78:1e00b3fa11af 2230 else
mjr 78:1e00b3fa11af 2231 {
mjr 78:1e00b3fa11af 2232 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2233 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2234 // prior command.
mjr 78:1e00b3fa11af 2235 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2236 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2237 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2238
mjr 78:1e00b3fa11af 2239 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2240 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2241 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2242 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2243 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2244 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2245 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2246 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2247 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2248 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2249 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2250 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2251 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2252 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2253 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2254 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2255 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2256 autoRepeat =
mjr 78:1e00b3fa11af 2257 repeat
mjr 78:1e00b3fa11af 2258 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2259 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2260 }
mjr 78:1e00b3fa11af 2261 }
mjr 78:1e00b3fa11af 2262
mjr 78:1e00b3fa11af 2263 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2264 if (repeat)
mjr 78:1e00b3fa11af 2265 {
mjr 78:1e00b3fa11af 2266 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2267 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2268 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2269 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2270 // key press event.
mjr 78:1e00b3fa11af 2271 if (!autoRepeat)
mjr 78:1e00b3fa11af 2272 IRKeyGap = true;
mjr 78:1e00b3fa11af 2273
mjr 78:1e00b3fa11af 2274 // restart the key-up timer
mjr 78:1e00b3fa11af 2275 IRTimer.reset();
mjr 78:1e00b3fa11af 2276 }
mjr 78:1e00b3fa11af 2277 else if (c.ditto)
mjr 78:1e00b3fa11af 2278 {
mjr 78:1e00b3fa11af 2279 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2280 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2281 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2282 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2283 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2284 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2285 // a full command for a new key press.
mjr 78:1e00b3fa11af 2286 IRCommandIn = 0;
mjr 77:0b96f6867312 2287 }
mjr 77:0b96f6867312 2288 else
mjr 77:0b96f6867312 2289 {
mjr 78:1e00b3fa11af 2290 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2291 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2292 // the new command).
mjr 78:1e00b3fa11af 2293 IRCommandIn = 0;
mjr 77:0b96f6867312 2294
mjr 78:1e00b3fa11af 2295 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2296 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2297 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2298 {
mjr 78:1e00b3fa11af 2299 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2300 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2301 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2302 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2303 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2304 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2305 {
mjr 78:1e00b3fa11af 2306 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2307 // remember the starting time.
mjr 78:1e00b3fa11af 2308 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2309 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2310 IRTimer.reset();
mjr 78:1e00b3fa11af 2311
mjr 78:1e00b3fa11af 2312 // no need to keep searching
mjr 78:1e00b3fa11af 2313 break;
mjr 78:1e00b3fa11af 2314 }
mjr 77:0b96f6867312 2315 }
mjr 77:0b96f6867312 2316 }
mjr 77:0b96f6867312 2317 }
mjr 77:0b96f6867312 2318 }
mjr 77:0b96f6867312 2319 }
mjr 77:0b96f6867312 2320 }
mjr 77:0b96f6867312 2321
mjr 74:822a92bc11d2 2322
mjr 11:bd9da7088e6e 2323 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2324 //
mjr 11:bd9da7088e6e 2325 // Button input
mjr 11:bd9da7088e6e 2326 //
mjr 11:bd9da7088e6e 2327
mjr 18:5e890ebd0023 2328 // button state
mjr 18:5e890ebd0023 2329 struct ButtonState
mjr 18:5e890ebd0023 2330 {
mjr 38:091e511ce8a0 2331 ButtonState()
mjr 38:091e511ce8a0 2332 {
mjr 53:9b2611964afc 2333 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2334 virtState = 0;
mjr 53:9b2611964afc 2335 dbState = 0;
mjr 38:091e511ce8a0 2336 pulseState = 0;
mjr 53:9b2611964afc 2337 pulseTime = 0;
mjr 38:091e511ce8a0 2338 }
mjr 35:e959ffba78fd 2339
mjr 53:9b2611964afc 2340 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2341 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2342 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2343 //
mjr 53:9b2611964afc 2344 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2345 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2346 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2347 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2348 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2349 void virtPress(bool on)
mjr 53:9b2611964afc 2350 {
mjr 53:9b2611964afc 2351 // Increment or decrement the current state
mjr 53:9b2611964afc 2352 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2353 }
mjr 53:9b2611964afc 2354
mjr 53:9b2611964afc 2355 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2356 TinyDigitalIn di;
mjr 38:091e511ce8a0 2357
mjr 65:739875521aae 2358 // Time of last pulse state transition.
mjr 65:739875521aae 2359 //
mjr 65:739875521aae 2360 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2361 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2362 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2363 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2364 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2365 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2366 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2367 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2368 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2369 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2370 // This software system can't be fooled that way.)
mjr 65:739875521aae 2371 uint32_t pulseTime;
mjr 18:5e890ebd0023 2372
mjr 65:739875521aae 2373 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2374 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2375 uint8_t cfgIndex;
mjr 53:9b2611964afc 2376
mjr 53:9b2611964afc 2377 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2378 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2379 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2380 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2381 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2382 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2383 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2384 // and physical source states.
mjr 53:9b2611964afc 2385 uint8_t virtState;
mjr 38:091e511ce8a0 2386
mjr 38:091e511ce8a0 2387 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2388 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2389 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2390 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2391 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2392 uint8_t dbState;
mjr 38:091e511ce8a0 2393
mjr 65:739875521aae 2394 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2395 uint8_t physState : 1;
mjr 65:739875521aae 2396
mjr 65:739875521aae 2397 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2398 uint8_t logState : 1;
mjr 65:739875521aae 2399
mjr 65:739875521aae 2400 // previous logical on/off state, when keys were last processed for USB
mjr 65:739875521aae 2401 // reports and local effects
mjr 65:739875521aae 2402 uint8_t prevLogState : 1;
mjr 65:739875521aae 2403
mjr 65:739875521aae 2404 // Pulse state
mjr 65:739875521aae 2405 //
mjr 65:739875521aae 2406 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2407 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2408 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2409 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2410 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2411 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2412 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2413 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2414 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2415 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2416 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 65:739875521aae 2417 // option brdiges this gap by generating a toggle key event each time
mjr 65:739875521aae 2418 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2419 //
mjr 38:091e511ce8a0 2420 // Pulse state:
mjr 38:091e511ce8a0 2421 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2422 // 1 -> off
mjr 38:091e511ce8a0 2423 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2424 // 3 -> on
mjr 38:091e511ce8a0 2425 // 4 -> transitioning on-off
mjr 65:739875521aae 2426 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2427
mjr 65:739875521aae 2428 } __attribute__((packed));
mjr 65:739875521aae 2429
mjr 65:739875521aae 2430 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2431 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2432 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2433
mjr 66:2e3583fbd2f4 2434 // Shift button state
mjr 66:2e3583fbd2f4 2435 struct
mjr 66:2e3583fbd2f4 2436 {
mjr 66:2e3583fbd2f4 2437 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 2438 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 2439 // 0 = not shifted
mjr 66:2e3583fbd2f4 2440 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2441 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 2442 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 2443 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 2444 }
mjr 66:2e3583fbd2f4 2445 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2446
mjr 38:091e511ce8a0 2447 // Button data
mjr 38:091e511ce8a0 2448 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2449
mjr 38:091e511ce8a0 2450 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2451 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2452 // modifier keys.
mjr 38:091e511ce8a0 2453 struct
mjr 38:091e511ce8a0 2454 {
mjr 38:091e511ce8a0 2455 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2456 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2457 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2458 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2459 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2460
mjr 38:091e511ce8a0 2461 // Media key state
mjr 38:091e511ce8a0 2462 struct
mjr 38:091e511ce8a0 2463 {
mjr 38:091e511ce8a0 2464 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2465 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2466 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2467
mjr 38:091e511ce8a0 2468 // button scan interrupt ticker
mjr 38:091e511ce8a0 2469 Ticker buttonTicker;
mjr 38:091e511ce8a0 2470
mjr 38:091e511ce8a0 2471 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2472 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2473 void scanButtons()
mjr 38:091e511ce8a0 2474 {
mjr 38:091e511ce8a0 2475 // scan all button input pins
mjr 73:4e8ce0b18915 2476 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2477 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2478 {
mjr 73:4e8ce0b18915 2479 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2480 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2481 bs->dbState = db;
mjr 73:4e8ce0b18915 2482
mjr 73:4e8ce0b18915 2483 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2484 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2485 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2486 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2487 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2488 db &= stable;
mjr 73:4e8ce0b18915 2489 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2490 bs->physState = !db;
mjr 38:091e511ce8a0 2491 }
mjr 38:091e511ce8a0 2492 }
mjr 38:091e511ce8a0 2493
mjr 38:091e511ce8a0 2494 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2495 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2496 // in the physical button state.
mjr 38:091e511ce8a0 2497 Timer buttonTimer;
mjr 12:669df364a565 2498
mjr 65:739875521aae 2499 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2500 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2501 {
mjr 65:739875521aae 2502 // count it
mjr 65:739875521aae 2503 ++nButtons;
mjr 65:739875521aae 2504
mjr 67:c39e66c4e000 2505 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2506 // keyboard interface
mjr 72:884207c0aab0 2507 if (typ == BtnTypeKey || typ == BtnTypeMedia