An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Sun Mar 19 05:30:53 2017 +0000
Revision:
78:1e00b3fa11af
Parent:
77:0b96f6867312
Child:
79:682ae3171a08
Ad hoc IR command send; Shift button 'AND' and 'OR' modes; new accelerometer auto centering options

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 77:0b96f6867312 55 // Note that VP has built-in support for plunger devices like this one, but
mjr 77:0b96f6867312 56 // some VP tables can't use it without some additional scripting work. The
mjr 77:0b96f6867312 57 // Build Guide has advice on adjusting tables to add plunger support when
mjr 77:0b96f6867312 58 // necessary.
mjr 5:a70c0bce770d 59 //
mjr 6:cc35eb643e8f 60 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 61 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 62 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 63 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 64 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 65 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 66 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 67 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 68 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 69 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 70 //
mjr 17:ab3cec0c8bf4 71 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 72 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 73 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 74 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 75 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 76 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 77 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 78 //
mjr 77:0b96f6867312 79 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 80 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 81 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 82 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 83 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 84 //
mjr 53:9b2611964afc 85 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 86 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 87 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 88 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 89 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 90 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 91 // attached devices without any modifications.
mjr 5:a70c0bce770d 92 //
mjr 53:9b2611964afc 93 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 94 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 95 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 96 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 97 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 98 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 99 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 100 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 101 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 102 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 103 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 104 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 105 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 106 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 107 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 108 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 109 //
mjr 26:cb71c4af2912 110 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 111 // external PWM controller chips for controlling device outputs, instead of using
mjr 53:9b2611964afc 112 // the on-board GPIO ports as described above. The software can control a set of
mjr 53:9b2611964afc 113 // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just
mjr 53:9b2611964afc 114 // need two of them to get the full complement of 32 output ports of a real LedWiz.
mjr 53:9b2611964afc 115 // You can hook up even more, though. Four chips gives you 64 ports, which should
mjr 53:9b2611964afc 116 // be plenty for nearly any virtual pinball project. To accommodate the larger
mjr 53:9b2611964afc 117 // supply of ports possible with the PWM chips, the controller software provides
mjr 53:9b2611964afc 118 // a custom, extended version of the LedWiz protocol that can handle up to 128
mjr 53:9b2611964afc 119 // ports. PC software designed only for the real LedWiz obviously won't know
mjr 53:9b2611964afc 120 // about the extended protocol and won't be able to take advantage of its extra
mjr 53:9b2611964afc 121 // capabilities, but the latest version of DOF (DirectOutput Framework) *does*
mjr 53:9b2611964afc 122 // know the new language and can take full advantage. Older software will still
mjr 53:9b2611964afc 123 // work, though - the new extensions are all backward compatible, so old software
mjr 53:9b2611964afc 124 // that only knows about the original LedWiz protocol will still work, with the
mjr 53:9b2611964afc 125 // obvious limitation that it can only access the first 32 ports.
mjr 53:9b2611964afc 126 //
mjr 53:9b2611964afc 127 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 128 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 129 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 130 // outputs with full PWM control and power handling for high-current devices
mjr 53:9b2611964afc 131 // built in to the boards.
mjr 26:cb71c4af2912 132 //
mjr 38:091e511ce8a0 133 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 134 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 135 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 136 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 137 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 138 //
mjr 38:091e511ce8a0 139 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 140 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 141 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 142 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 143 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 144 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 145 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 146 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 147 // remote control transmitter feature below.
mjr 77:0b96f6867312 148 //
mjr 77:0b96f6867312 149 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 150 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 151 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 152 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 153 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 154 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 155 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 156 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 157 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 158 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 159 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 160 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 161 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 162 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 163 //
mjr 35:e959ffba78fd 164 //
mjr 35:e959ffba78fd 165 //
mjr 33:d832bcab089e 166 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 167 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 168 //
mjr 48:058ace2aed1d 169 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 170 //
mjr 48:058ace2aed1d 171 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 172 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 173 // has been established)
mjr 48:058ace2aed1d 174 //
mjr 48:058ace2aed1d 175 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 176 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 177 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 178 //
mjr 38:091e511ce8a0 179 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 180 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 181 // transmissions are failing.
mjr 38:091e511ce8a0 182 //
mjr 73:4e8ce0b18915 183 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 184 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 185 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 186 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 187 // enabled.
mjr 73:4e8ce0b18915 188 //
mjr 6:cc35eb643e8f 189 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 190 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 191 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 192 // no plunger sensor configured.
mjr 6:cc35eb643e8f 193 //
mjr 38:091e511ce8a0 194 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 195 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 196 //
mjr 48:058ace2aed1d 197 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 198 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 199 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 200 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 201 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 202 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 203 //
mjr 48:058ace2aed1d 204 //
mjr 48:058ace2aed1d 205 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 206 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 207 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 208 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 209 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 210 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 211 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 212 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 213
mjr 33:d832bcab089e 214
mjr 0:5acbbe3f4cf4 215 #include "mbed.h"
mjr 6:cc35eb643e8f 216 #include "math.h"
mjr 74:822a92bc11d2 217 #include "diags.h"
mjr 48:058ace2aed1d 218 #include "pinscape.h"
mjr 0:5acbbe3f4cf4 219 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 220 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 221 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 222 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 223 #include "crc32.h"
mjr 26:cb71c4af2912 224 #include "TLC5940.h"
mjr 34:6b981a2afab7 225 #include "74HC595.h"
mjr 35:e959ffba78fd 226 #include "nvm.h"
mjr 35:e959ffba78fd 227 #include "plunger.h"
mjr 35:e959ffba78fd 228 #include "ccdSensor.h"
mjr 35:e959ffba78fd 229 #include "potSensor.h"
mjr 35:e959ffba78fd 230 #include "nullSensor.h"
mjr 48:058ace2aed1d 231 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 232 #include "IRReceiver.h"
mjr 77:0b96f6867312 233 #include "IRTransmitter.h"
mjr 77:0b96f6867312 234 #include "NewPwm.h"
mjr 74:822a92bc11d2 235
mjr 2:c174f9ee414a 236
mjr 21:5048e16cc9ef 237 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 238 #include "config.h"
mjr 17:ab3cec0c8bf4 239
mjr 76:7f5912b6340e 240 // forward declarations
mjr 76:7f5912b6340e 241 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 242
mjr 53:9b2611964afc 243 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 244 //
mjr 53:9b2611964afc 245 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 246 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 247 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 248 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 249 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 250 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 251 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 252 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 253 // interface.
mjr 53:9b2611964afc 254 //
mjr 53:9b2611964afc 255 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 256 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 257 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 258 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 259 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 260 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 261 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 262 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 263 //
mjr 53:9b2611964afc 264 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 265 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 266 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 267 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 268 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 269 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 270 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 const char *getOpenSDAID()
mjr 53:9b2611964afc 273 {
mjr 53:9b2611964afc 274 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 275 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 276 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 277
mjr 53:9b2611964afc 278 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 279 }
mjr 53:9b2611964afc 280
mjr 53:9b2611964afc 281 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 282 //
mjr 53:9b2611964afc 283 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 284 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 285 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 286 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 287 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 288 // want from this.
mjr 53:9b2611964afc 289 //
mjr 53:9b2611964afc 290 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 291 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 292 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 293 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 294 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 295 // macros.
mjr 53:9b2611964afc 296 //
mjr 53:9b2611964afc 297 const char *getBuildID()
mjr 53:9b2611964afc 298 {
mjr 53:9b2611964afc 299 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 300 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 301 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 302
mjr 53:9b2611964afc 303 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 304 }
mjr 53:9b2611964afc 305
mjr 74:822a92bc11d2 306 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 307 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 308 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 309 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 310 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 311 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 312 Timer mainLoopTimer;
mjr 76:7f5912b6340e 313 #endif
mjr 76:7f5912b6340e 314
mjr 53:9b2611964afc 315
mjr 48:058ace2aed1d 316 // --------------------------------------------------------------------------
mjr 48:058ace2aed1d 317 //
mjr 59:94eb9265b6d7 318 // Custom memory allocator. We use our own version of malloc() for more
mjr 59:94eb9265b6d7 319 // efficient memory usage, and to provide diagnostics if we run out of heap.
mjr 48:058ace2aed1d 320 //
mjr 59:94eb9265b6d7 321 // We can implement a more efficient malloc than the library can because we
mjr 59:94eb9265b6d7 322 // can make an assumption that the library can't: allocations are permanent.
mjr 59:94eb9265b6d7 323 // The normal malloc has to assume that allocations can be freed, so it has
mjr 59:94eb9265b6d7 324 // to track blocks individually. For the purposes of this program, though,
mjr 59:94eb9265b6d7 325 // we don't have to do this because virtually all of our allocations are
mjr 59:94eb9265b6d7 326 // de facto permanent. We only allocate dyanmic memory during setup, and
mjr 59:94eb9265b6d7 327 // once we set things up, we never delete anything. This means that we can
mjr 59:94eb9265b6d7 328 // allocate memory in bare blocks without any bookkeeping overhead.
mjr 59:94eb9265b6d7 329 //
mjr 78:1e00b3fa11af 330 // In addition, we can make a larger overall pool of memory available in
mjr 78:1e00b3fa11af 331 // a custom allocator. The RTL malloc() seems to have a pool of about 3K
mjr 78:1e00b3fa11af 332 // to work with, even though there really seems to be at least 8K left after
mjr 78:1e00b3fa11af 333 // reserving a reasonable amount of space for the stack.
mjr 77:0b96f6867312 334
mjr 77:0b96f6867312 335 // halt with a diagnostic display if we run out of memory
mjr 77:0b96f6867312 336 void HaltOutOfMem()
mjr 77:0b96f6867312 337 {
mjr 77:0b96f6867312 338 printf("\r\nOut Of Memory\r\n");
mjr 77:0b96f6867312 339 // halt with the diagnostic display (by looping forever)
mjr 77:0b96f6867312 340 for (;;)
mjr 77:0b96f6867312 341 {
mjr 77:0b96f6867312 342 diagLED(1, 0, 0);
mjr 77:0b96f6867312 343 wait_us(200000);
mjr 77:0b96f6867312 344 diagLED(1, 0, 1);
mjr 77:0b96f6867312 345 wait_us(200000);
mjr 77:0b96f6867312 346 }
mjr 77:0b96f6867312 347 }
mjr 77:0b96f6867312 348
mjr 77:0b96f6867312 349 // For our custom malloc, we take advantage of the known layout of the
mjr 77:0b96f6867312 350 // mbed library memory management. The mbed library puts all of the
mjr 77:0b96f6867312 351 // static read/write data at the low end of RAM; this includes the
mjr 77:0b96f6867312 352 // initialized statics and the "ZI" (zero-initialized) statics. The
mjr 77:0b96f6867312 353 // malloc heap starts just after the last static, growing upwards as
mjr 77:0b96f6867312 354 // memory is allocated. The stack starts at the top of RAM and grows
mjr 77:0b96f6867312 355 // downwards.
mjr 77:0b96f6867312 356 //
mjr 77:0b96f6867312 357 // To figure out where the free memory starts, we simply call the system
mjr 77:0b96f6867312 358 // malloc() to make a dummy allocation the first time we're called, and
mjr 77:0b96f6867312 359 // use the address it returns as the start of our free memory pool. The
mjr 77:0b96f6867312 360 // first malloc() call presumably returns the lowest byte of the pool in
mjr 77:0b96f6867312 361 // the compiler RTL's way of thinking, and from what we know about the
mjr 77:0b96f6867312 362 // mbed heap layout, we know everything above this point should be free,
mjr 77:0b96f6867312 363 // at least until we reach the lowest address used by the stack.
mjr 77:0b96f6867312 364 //
mjr 77:0b96f6867312 365 // The ultimate size of the stack is of course dynamic and unpredictable.
mjr 77:0b96f6867312 366 // In testing, it appears that we currently need a little over 1K. To be
mjr 77:0b96f6867312 367 // conservative, we'll reserve 2K for the stack, by taking it out of the
mjr 77:0b96f6867312 368 // space at top of memory we consider fair game for malloc.
mjr 77:0b96f6867312 369 //
mjr 77:0b96f6867312 370 // Note that we could do this a little more low-level-ly if we wanted.
mjr 77:0b96f6867312 371 // The ARM linker provides a pre-defined extern char[] variable named
mjr 77:0b96f6867312 372 // Image$$RW_IRAM1$$ZI$$Limit, which is always placed just after the
mjr 77:0b96f6867312 373 // last static data variable. In principle, this tells us the start
mjr 77:0b96f6867312 374 // of the available malloc pool. However, in testing, it doesn't seem
mjr 77:0b96f6867312 375 // safe to use this as the start of our malloc pool. I'm not sure why,
mjr 77:0b96f6867312 376 // but probably something in the startup code (either in the C RTL or
mjr 77:0b96f6867312 377 // the mbed library) is allocating from the pool before we get control.
mjr 77:0b96f6867312 378 // So we won't use that approach. Besides, that would tie us even more
mjr 77:0b96f6867312 379 // closely to the ARM compiler. With our malloc() probe approach, we're
mjr 77:0b96f6867312 380 // at least portable to any compiler that uses the same basic memory
mjr 77:0b96f6867312 381 // layout, with the heap above the statics and the stack at top of
mjr 77:0b96f6867312 382 // memory; this isn't universal, but it's very typical.
mjr 77:0b96f6867312 383
mjr 77:0b96f6867312 384 static char *xmalloc_nxt = 0;
mjr 77:0b96f6867312 385 size_t xmalloc_rem = 0;
mjr 77:0b96f6867312 386 void *xmalloc(size_t siz)
mjr 77:0b96f6867312 387 {
mjr 77:0b96f6867312 388 if (xmalloc_nxt == 0)
mjr 77:0b96f6867312 389 {
mjr 77:0b96f6867312 390 xmalloc_nxt = (char *)malloc(4);
mjr 77:0b96f6867312 391 xmalloc_rem = 0x20003000UL - 2*1024 - uint32_t(xmalloc_nxt);
mjr 77:0b96f6867312 392 }
mjr 77:0b96f6867312 393
mjr 77:0b96f6867312 394 siz = (siz + 3) & ~3;
mjr 77:0b96f6867312 395 if (siz > xmalloc_rem)
mjr 77:0b96f6867312 396 HaltOutOfMem();
mjr 77:0b96f6867312 397
mjr 77:0b96f6867312 398 char *ret = xmalloc_nxt;
mjr 77:0b96f6867312 399 xmalloc_nxt += siz;
mjr 77:0b96f6867312 400 xmalloc_rem -= siz;
mjr 77:0b96f6867312 401
mjr 77:0b96f6867312 402 return ret;
mjr 77:0b96f6867312 403 }
mjr 48:058ace2aed1d 404
mjr 59:94eb9265b6d7 405 // Overload operator new to call our custom malloc. This ensures that
mjr 59:94eb9265b6d7 406 // all 'new' allocations throughout the program (including library code)
mjr 59:94eb9265b6d7 407 // go through our private allocator.
mjr 48:058ace2aed1d 408 void *operator new(size_t siz) { return xmalloc(siz); }
mjr 48:058ace2aed1d 409 void *operator new[](size_t siz) { return xmalloc(siz); }
mjr 5:a70c0bce770d 410
mjr 59:94eb9265b6d7 411 // Since we don't do bookkeeping to track released memory, 'delete' does
mjr 59:94eb9265b6d7 412 // nothing. In actual testing, this routine appears to never be called.
mjr 59:94eb9265b6d7 413 // If it *is* ever called, it will simply leave the block in place, which
mjr 59:94eb9265b6d7 414 // will make it unavailable for re-use but will otherwise be harmless.
mjr 59:94eb9265b6d7 415 void operator delete(void *ptr) { }
mjr 59:94eb9265b6d7 416
mjr 59:94eb9265b6d7 417
mjr 5:a70c0bce770d 418 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 419 //
mjr 38:091e511ce8a0 420 // Forward declarations
mjr 38:091e511ce8a0 421 //
mjr 38:091e511ce8a0 422 void setNightMode(bool on);
mjr 38:091e511ce8a0 423 void toggleNightMode();
mjr 38:091e511ce8a0 424
mjr 38:091e511ce8a0 425 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 426 // utilities
mjr 17:ab3cec0c8bf4 427
mjr 77:0b96f6867312 428 // int/float point square of a number
mjr 77:0b96f6867312 429 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 430 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 431
mjr 26:cb71c4af2912 432 // floating point rounding
mjr 26:cb71c4af2912 433 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 434
mjr 17:ab3cec0c8bf4 435
mjr 33:d832bcab089e 436 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 437 //
mjr 40:cc0d9814522b 438 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 439 // the running state.
mjr 40:cc0d9814522b 440 //
mjr 77:0b96f6867312 441 class ExtTimer: public Timer
mjr 40:cc0d9814522b 442 {
mjr 40:cc0d9814522b 443 public:
mjr 77:0b96f6867312 444 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 445
mjr 40:cc0d9814522b 446 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 447 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 448
mjr 40:cc0d9814522b 449 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 450
mjr 40:cc0d9814522b 451 private:
mjr 40:cc0d9814522b 452 bool running;
mjr 40:cc0d9814522b 453 };
mjr 40:cc0d9814522b 454
mjr 53:9b2611964afc 455
mjr 53:9b2611964afc 456 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 457 //
mjr 33:d832bcab089e 458 // USB product version number
mjr 5:a70c0bce770d 459 //
mjr 47:df7a88cd249c 460 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 461
mjr 33:d832bcab089e 462 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 463 //
mjr 6:cc35eb643e8f 464 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 465 //
mjr 6:cc35eb643e8f 466 #define JOYMAX 4096
mjr 6:cc35eb643e8f 467
mjr 9:fd65b0a94720 468
mjr 17:ab3cec0c8bf4 469 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 470 //
mjr 40:cc0d9814522b 471 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 472 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 473 //
mjr 35:e959ffba78fd 474
mjr 35:e959ffba78fd 475 // unsigned 16-bit integer
mjr 35:e959ffba78fd 476 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 477 {
mjr 35:e959ffba78fd 478 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 479 }
mjr 40:cc0d9814522b 480 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 481 {
mjr 40:cc0d9814522b 482 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 483 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 484 }
mjr 35:e959ffba78fd 485
mjr 35:e959ffba78fd 486 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 487 {
mjr 35:e959ffba78fd 488 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 489 }
mjr 40:cc0d9814522b 490 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 491 {
mjr 40:cc0d9814522b 492 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 493 }
mjr 35:e959ffba78fd 494
mjr 35:e959ffba78fd 495 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 496 {
mjr 35:e959ffba78fd 497 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 498 }
mjr 40:cc0d9814522b 499 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 500 {
mjr 40:cc0d9814522b 501 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 502 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 503 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 504 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 505 }
mjr 35:e959ffba78fd 506
mjr 35:e959ffba78fd 507 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 508 {
mjr 35:e959ffba78fd 509 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 510 }
mjr 35:e959ffba78fd 511
mjr 53:9b2611964afc 512 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 513 //
mjr 53:9b2611964afc 514 // The internal mbed PinName format is
mjr 53:9b2611964afc 515 //
mjr 53:9b2611964afc 516 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 517 //
mjr 53:9b2611964afc 518 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 519 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 520 //
mjr 53:9b2611964afc 521 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 522 // pin name fits in 8 bits:
mjr 53:9b2611964afc 523 //
mjr 53:9b2611964afc 524 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 525 //
mjr 53:9b2611964afc 526 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 527 //
mjr 53:9b2611964afc 528 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 529 //
mjr 53:9b2611964afc 530 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 531 {
mjr 53:9b2611964afc 532 if (c == 0xFF)
mjr 53:9b2611964afc 533 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 534 else
mjr 53:9b2611964afc 535 return PinName(
mjr 53:9b2611964afc 536 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 537 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 538 }
mjr 40:cc0d9814522b 539 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 540 {
mjr 53:9b2611964afc 541 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 542 }
mjr 35:e959ffba78fd 543
mjr 35:e959ffba78fd 544
mjr 35:e959ffba78fd 545 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 546 //
mjr 38:091e511ce8a0 547 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 548 //
mjr 38:091e511ce8a0 549 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 550 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 551 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 552 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 553 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 554 // SPI capability.
mjr 38:091e511ce8a0 555 //
mjr 38:091e511ce8a0 556 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 557
mjr 73:4e8ce0b18915 558 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 559 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 560 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 561 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 562
mjr 38:091e511ce8a0 563 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 564 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 565 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 566 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 567 {
mjr 73:4e8ce0b18915 568 // remember the new state
mjr 73:4e8ce0b18915 569 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 570
mjr 73:4e8ce0b18915 571 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 572 // applying it to the blue LED
mjr 73:4e8ce0b18915 573 if (diagLEDState == 0)
mjr 77:0b96f6867312 574 {
mjr 77:0b96f6867312 575 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 576 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 577 }
mjr 73:4e8ce0b18915 578
mjr 73:4e8ce0b18915 579 // set the new state
mjr 38:091e511ce8a0 580 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 581 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 582 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 583 }
mjr 38:091e511ce8a0 584
mjr 73:4e8ce0b18915 585 // update the LEDs with the current state
mjr 73:4e8ce0b18915 586 void diagLED(void)
mjr 73:4e8ce0b18915 587 {
mjr 73:4e8ce0b18915 588 diagLED(
mjr 73:4e8ce0b18915 589 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 590 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 591 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 592 }
mjr 73:4e8ce0b18915 593
mjr 38:091e511ce8a0 594 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 595 // an on-board LED segment
mjr 38:091e511ce8a0 596 struct LedSeg
mjr 38:091e511ce8a0 597 {
mjr 38:091e511ce8a0 598 bool r, g, b;
mjr 38:091e511ce8a0 599 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 600
mjr 38:091e511ce8a0 601 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 602 {
mjr 38:091e511ce8a0 603 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 604 // our on-board LED segments
mjr 38:091e511ce8a0 605 int t = pc.typ;
mjr 38:091e511ce8a0 606 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 607 {
mjr 38:091e511ce8a0 608 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 609 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 610 if (pin == LED1)
mjr 38:091e511ce8a0 611 r = true;
mjr 38:091e511ce8a0 612 else if (pin == LED2)
mjr 38:091e511ce8a0 613 g = true;
mjr 38:091e511ce8a0 614 else if (pin == LED3)
mjr 38:091e511ce8a0 615 b = true;
mjr 38:091e511ce8a0 616 }
mjr 38:091e511ce8a0 617 }
mjr 38:091e511ce8a0 618 };
mjr 38:091e511ce8a0 619
mjr 38:091e511ce8a0 620 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 621 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 622 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 623 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 624 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 625 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 626 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 627 {
mjr 38:091e511ce8a0 628 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 629 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 630 LedSeg l;
mjr 38:091e511ce8a0 631 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 632 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 633
mjr 38:091e511ce8a0 634 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 635 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 636 // LedWiz use.
mjr 38:091e511ce8a0 637 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 638 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 639 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 640 }
mjr 38:091e511ce8a0 641
mjr 38:091e511ce8a0 642
mjr 38:091e511ce8a0 643 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 644 //
mjr 76:7f5912b6340e 645 // LedWiz emulation
mjr 76:7f5912b6340e 646 //
mjr 76:7f5912b6340e 647
mjr 76:7f5912b6340e 648 // LedWiz output states.
mjr 76:7f5912b6340e 649 //
mjr 76:7f5912b6340e 650 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 651 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 652 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 653 // The two axes are independent.
mjr 76:7f5912b6340e 654 //
mjr 76:7f5912b6340e 655 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 656 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 657 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 658 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 659 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 660 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 661 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 662 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 663
mjr 76:7f5912b6340e 664 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 665 static uint8_t *wizOn;
mjr 76:7f5912b6340e 666
mjr 76:7f5912b6340e 667 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 668 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 669 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 670 //
mjr 76:7f5912b6340e 671 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 672 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 673 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 674 // 130 = flash on / off
mjr 76:7f5912b6340e 675 // 131 = on / ramp down
mjr 76:7f5912b6340e 676 // 132 = ramp up / on
mjr 5:a70c0bce770d 677 //
mjr 76:7f5912b6340e 678 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 679 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 680 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 681 static uint8_t *wizVal;
mjr 76:7f5912b6340e 682
mjr 76:7f5912b6340e 683 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 684 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 685 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 686 // by the extended protocol:
mjr 76:7f5912b6340e 687 //
mjr 76:7f5912b6340e 688 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 689 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 690 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 691 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 692 // if the brightness is non-zero.
mjr 76:7f5912b6340e 693 //
mjr 76:7f5912b6340e 694 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 695 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 696 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 697 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 698 // 0..255 range.
mjr 26:cb71c4af2912 699 //
mjr 76:7f5912b6340e 700 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 701 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 702 // level.
mjr 26:cb71c4af2912 703 //
mjr 76:7f5912b6340e 704 static uint8_t *outLevel;
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706
mjr 76:7f5912b6340e 707 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 708 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 709 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 710 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 711 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 712 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 713 //
mjr 76:7f5912b6340e 714 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 715 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 716 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 717 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 718 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 719 // at the maximum size.
mjr 76:7f5912b6340e 720 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 721 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 722
mjr 26:cb71c4af2912 723 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 724 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 725 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 726 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 727 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 728
mjr 76:7f5912b6340e 729
mjr 76:7f5912b6340e 730 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 731 //
mjr 76:7f5912b6340e 732 // Output Ports
mjr 76:7f5912b6340e 733 //
mjr 76:7f5912b6340e 734 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 735 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 736 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 737 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 738 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 739 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 740 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 741 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 742 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 743 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 744 // you have to ration pins among features.
mjr 76:7f5912b6340e 745 //
mjr 76:7f5912b6340e 746 // To overcome some of these limitations, we also provide two types of
mjr 76:7f5912b6340e 747 // peripheral controllers that allow adding many more outputs, using only
mjr 76:7f5912b6340e 748 // a small number of GPIO pins to interface with the peripherals. First,
mjr 76:7f5912b6340e 749 // we support TLC5940 PWM controller chips. Each TLC5940 provides 16 ports
mjr 76:7f5912b6340e 750 // with full PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 76:7f5912b6340e 751 // chip only requires 5 GPIO pins for the interface, no matter how many
mjr 76:7f5912b6340e 752 // chips are in the chain, so it effectively converts 5 GPIO pins into
mjr 76:7f5912b6340e 753 // almost any number of PWM outputs. Second, we support 74HC595 chips.
mjr 76:7f5912b6340e 754 // These provide only digital outputs, but like the TLC5940 they can be
mjr 76:7f5912b6340e 755 // daisy-chained to provide almost unlimited outputs with a few GPIO pins
mjr 76:7f5912b6340e 756 // to control the whole chain.
mjr 76:7f5912b6340e 757 //
mjr 76:7f5912b6340e 758 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 759 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 760 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 761 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 762 //
mjr 76:7f5912b6340e 763 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 764 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 765 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 766 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 767 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 768 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 769 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 770 // of physical devices they're connected to.
mjr 76:7f5912b6340e 771
mjr 76:7f5912b6340e 772
mjr 26:cb71c4af2912 773 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 774 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 775 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 776 class LwOut
mjr 6:cc35eb643e8f 777 {
mjr 6:cc35eb643e8f 778 public:
mjr 40:cc0d9814522b 779 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 780 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 781 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 782 };
mjr 26:cb71c4af2912 783
mjr 35:e959ffba78fd 784 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 785 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 786 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 787 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 788 // numbering.
mjr 35:e959ffba78fd 789 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 790 {
mjr 33:d832bcab089e 791 public:
mjr 35:e959ffba78fd 792 LwVirtualOut() { }
mjr 40:cc0d9814522b 793 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 794 };
mjr 26:cb71c4af2912 795
mjr 34:6b981a2afab7 796 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 797 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 798 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 799 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 800 {
mjr 34:6b981a2afab7 801 public:
mjr 34:6b981a2afab7 802 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 803 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 804
mjr 34:6b981a2afab7 805 private:
mjr 53:9b2611964afc 806 // underlying physical output
mjr 34:6b981a2afab7 807 LwOut *out;
mjr 34:6b981a2afab7 808 };
mjr 34:6b981a2afab7 809
mjr 53:9b2611964afc 810 // Global ZB Launch Ball state
mjr 53:9b2611964afc 811 bool zbLaunchOn = false;
mjr 53:9b2611964afc 812
mjr 53:9b2611964afc 813 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 814 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 815 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 816 {
mjr 53:9b2611964afc 817 public:
mjr 53:9b2611964afc 818 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 819 virtual void set(uint8_t val)
mjr 53:9b2611964afc 820 {
mjr 53:9b2611964afc 821 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 822 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 823
mjr 53:9b2611964afc 824 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 825 out->set(val);
mjr 53:9b2611964afc 826 }
mjr 53:9b2611964afc 827
mjr 53:9b2611964afc 828 private:
mjr 53:9b2611964afc 829 // underlying physical or virtual output
mjr 53:9b2611964afc 830 LwOut *out;
mjr 53:9b2611964afc 831 };
mjr 53:9b2611964afc 832
mjr 53:9b2611964afc 833
mjr 40:cc0d9814522b 834 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 835 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 836 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 837 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 838 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 839 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 840 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 841 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 842 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 843 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 844 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 845 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 846 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 847 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 848 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 849 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 850 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 851 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 852 };
mjr 40:cc0d9814522b 853
mjr 40:cc0d9814522b 854 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 855 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 856 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 857 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 858 {
mjr 40:cc0d9814522b 859 public:
mjr 40:cc0d9814522b 860 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 861 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 862
mjr 40:cc0d9814522b 863 private:
mjr 40:cc0d9814522b 864 LwOut *out;
mjr 40:cc0d9814522b 865 };
mjr 40:cc0d9814522b 866
mjr 77:0b96f6867312 867 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 868 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 869 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 870 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 871
mjr 40:cc0d9814522b 872 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 873 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 874 // mode is engaged.
mjr 40:cc0d9814522b 875 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 876 {
mjr 40:cc0d9814522b 877 public:
mjr 40:cc0d9814522b 878 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 879 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 880
mjr 53:9b2611964afc 881 private:
mjr 53:9b2611964afc 882 LwOut *out;
mjr 53:9b2611964afc 883 };
mjr 53:9b2611964afc 884
mjr 53:9b2611964afc 885 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 886 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 887 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 888 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 889 {
mjr 53:9b2611964afc 890 public:
mjr 53:9b2611964afc 891 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 892 virtual void set(uint8_t)
mjr 53:9b2611964afc 893 {
mjr 53:9b2611964afc 894 // ignore the host value and simply show the current
mjr 53:9b2611964afc 895 // night mode setting
mjr 53:9b2611964afc 896 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 897 }
mjr 40:cc0d9814522b 898
mjr 40:cc0d9814522b 899 private:
mjr 40:cc0d9814522b 900 LwOut *out;
mjr 40:cc0d9814522b 901 };
mjr 40:cc0d9814522b 902
mjr 26:cb71c4af2912 903
mjr 35:e959ffba78fd 904 //
mjr 35:e959ffba78fd 905 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 906 // assignments set in config.h.
mjr 33:d832bcab089e 907 //
mjr 35:e959ffba78fd 908 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 909 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 910 {
mjr 35:e959ffba78fd 911 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 912 {
mjr 53:9b2611964afc 913 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 914 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 915 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 916 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 917 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 918 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 919 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 920 }
mjr 35:e959ffba78fd 921 }
mjr 26:cb71c4af2912 922
mjr 40:cc0d9814522b 923 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 924 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 925 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 926 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 927 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 928 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 929 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 930 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 931 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 932 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 933 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 934 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 935 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 936 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 937 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 938 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 939 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 940 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 941 };
mjr 40:cc0d9814522b 942
mjr 40:cc0d9814522b 943 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 944 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 945 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 946 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 947 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 948 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 949 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 950 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 951 // are always 8 bits.
mjr 40:cc0d9814522b 952 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 953 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 954 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 955 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 956 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 957 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 958 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 959 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 960 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 961 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 962 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 963 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 964 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 965 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 966 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 967 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 968 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 969 };
mjr 40:cc0d9814522b 970
mjr 26:cb71c4af2912 971 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 972 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 973 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 974 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 975 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 976 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 977 {
mjr 26:cb71c4af2912 978 public:
mjr 60:f38da020aa13 979 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 980 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 981 {
mjr 26:cb71c4af2912 982 if (val != prv)
mjr 40:cc0d9814522b 983 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 984 }
mjr 60:f38da020aa13 985 uint8_t idx;
mjr 40:cc0d9814522b 986 uint8_t prv;
mjr 26:cb71c4af2912 987 };
mjr 26:cb71c4af2912 988
mjr 40:cc0d9814522b 989 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 990 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 991 {
mjr 40:cc0d9814522b 992 public:
mjr 60:f38da020aa13 993 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 994 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 995 {
mjr 40:cc0d9814522b 996 if (val != prv)
mjr 40:cc0d9814522b 997 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 998 }
mjr 60:f38da020aa13 999 uint8_t idx;
mjr 40:cc0d9814522b 1000 uint8_t prv;
mjr 40:cc0d9814522b 1001 };
mjr 40:cc0d9814522b 1002
mjr 40:cc0d9814522b 1003
mjr 33:d832bcab089e 1004
mjr 34:6b981a2afab7 1005 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1006 // config.h.
mjr 35:e959ffba78fd 1007 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1008
mjr 35:e959ffba78fd 1009 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1010 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1011 {
mjr 35:e959ffba78fd 1012 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1013 {
mjr 53:9b2611964afc 1014 hc595 = new HC595(
mjr 53:9b2611964afc 1015 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1016 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1017 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1018 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1019 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1020 hc595->init();
mjr 35:e959ffba78fd 1021 hc595->update();
mjr 35:e959ffba78fd 1022 }
mjr 35:e959ffba78fd 1023 }
mjr 34:6b981a2afab7 1024
mjr 34:6b981a2afab7 1025 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1026 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1027 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1028 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1029 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1030 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1031 {
mjr 33:d832bcab089e 1032 public:
mjr 60:f38da020aa13 1033 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1034 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1035 {
mjr 34:6b981a2afab7 1036 if (val != prv)
mjr 40:cc0d9814522b 1037 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1038 }
mjr 60:f38da020aa13 1039 uint8_t idx;
mjr 40:cc0d9814522b 1040 uint8_t prv;
mjr 33:d832bcab089e 1041 };
mjr 33:d832bcab089e 1042
mjr 26:cb71c4af2912 1043
mjr 40:cc0d9814522b 1044
mjr 64:ef7ca92dff36 1045 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1046 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1047 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1048 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1049 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1050 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1051 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1052 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1053 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1054 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1055 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1056 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1057 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1058 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1059 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1060 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1061 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1062 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1063 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1064 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1065 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1066 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1067 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1068 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1069 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1070 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1071 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1072 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1073 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1074 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1075 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1076 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1077 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1078 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1079 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1080 };
mjr 26:cb71c4af2912 1081
mjr 64:ef7ca92dff36 1082
mjr 64:ef7ca92dff36 1083 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 1084 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 1085 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 1086 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 1087 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 1088 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1089 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1090 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1091 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1092 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1093 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1094 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1095 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1096 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1097 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1098 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1099 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1100 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1101 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1102 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1103 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1104 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1105 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1106 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1107 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1108 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1109 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1110 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1111 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1112 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1113 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1114 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1115 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1116 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1117 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1118 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1119 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1120 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1121 };
mjr 64:ef7ca92dff36 1122
mjr 77:0b96f6867312 1123 // Polled-update PWM output list
mjr 74:822a92bc11d2 1124 //
mjr 77:0b96f6867312 1125 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1126 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1127 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1128 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1129 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1130 //
mjr 77:0b96f6867312 1131 // Our solution is to simply repeat all PWM updates periodically. If a write
mjr 77:0b96f6867312 1132 // is lost on one cycle, it'll eventually be applied on a subseuqent periodic
mjr 77:0b96f6867312 1133 // update. For low overhead, we do these repeat updates periodically during
mjr 77:0b96f6867312 1134 // the main loop.
mjr 74:822a92bc11d2 1135 //
mjr 77:0b96f6867312 1136 // The mbed library has its own solution to this bug, but it creates a
mjr 77:0b96f6867312 1137 // separate problem of its own. The mbed solution is to write the value
mjr 77:0b96f6867312 1138 // register immediately, and then also reset the "count" register in the
mjr 77:0b96f6867312 1139 // TPM unit containing the output. The count reset truncates the current
mjr 77:0b96f6867312 1140 // PWM cycle, which avoids the hardware problem with more than one write per
mjr 77:0b96f6867312 1141 // cycle. The problem is that the truncated cycle causes visible flicker if
mjr 77:0b96f6867312 1142 // the output is connected to an LED. This is particularly noticeable during
mjr 77:0b96f6867312 1143 // fades, when we're updating the value register repeatedly and rapidly: an
mjr 77:0b96f6867312 1144 // attempt to fade from fully on to fully off causes rapid fluttering and
mjr 77:0b96f6867312 1145 // flashing rather than a smooth brightness fade.
mjr 74:822a92bc11d2 1146 //
mjr 77:0b96f6867312 1147 // The hardware bug is a case of good intentions gone bad. The hardware is
mjr 77:0b96f6867312 1148 // *supposed* to make it easy for software to avoid glitching during PWM
mjr 77:0b96f6867312 1149 // updates, by providing a staging register in front of the real value
mjr 77:0b96f6867312 1150 // register. The software actually writes to the staging register, which
mjr 77:0b96f6867312 1151 // holds updates until the end of the cycle, at which point the hardware
mjr 77:0b96f6867312 1152 // automatically moves the value from the staging register into the real
mjr 77:0b96f6867312 1153 // register. This ensures that the real register is always updated exactly
mjr 77:0b96f6867312 1154 // at a cycle boundary, which in turn ensures that there's no flicker when
mjr 77:0b96f6867312 1155 // values are updated. A great design - except that it doesn't quite work.
mjr 77:0b96f6867312 1156 // The problem is that the staging register actually seems to be implemented
mjr 77:0b96f6867312 1157 // as a one-element FIFO in "stop when full" mode. That is, when you write
mjr 77:0b96f6867312 1158 // the FIFO, it becomes full. When the cycle ends and the hardware reads it
mjr 77:0b96f6867312 1159 // to move the staged value into the real register, the FIFO becomes empty.
mjr 77:0b96f6867312 1160 // But if you try to write the FIFO twice before the hardware reads it and
mjr 77:0b96f6867312 1161 // empties it, the second write fails, leaving the first value in the queue.
mjr 77:0b96f6867312 1162 // There doesn't seem to be any way to clear the FIFO from software, so you
mjr 77:0b96f6867312 1163 // just have to wait for the cycle to end before writing another update.
mjr 77:0b96f6867312 1164 // That more or less defeats the purpose of the staging register, whose whole
mjr 77:0b96f6867312 1165 // point is to free software from worrying about timing considerations with
mjr 77:0b96f6867312 1166 // updates. It frees us of the need to align our timing on cycle boundaries,
mjr 77:0b96f6867312 1167 // but it leaves us with the need to limit writes to once per cycle.
mjr 74:822a92bc11d2 1168 //
mjr 77:0b96f6867312 1169 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1170 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1171 // of polled items.
mjr 74:822a92bc11d2 1172 static int numPolledPwm;
mjr 74:822a92bc11d2 1173 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1174
mjr 74:822a92bc11d2 1175 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1176 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1177 {
mjr 6:cc35eb643e8f 1178 public:
mjr 43:7a6364d82a41 1179 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1180 {
mjr 77:0b96f6867312 1181 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1182 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1183 polledPwm[numPolledPwm++] = this;
mjr 77:0b96f6867312 1184
mjr 77:0b96f6867312 1185 // set the initial value
mjr 77:0b96f6867312 1186 set(initVal);
mjr 43:7a6364d82a41 1187 }
mjr 74:822a92bc11d2 1188
mjr 40:cc0d9814522b 1189 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1190 {
mjr 77:0b96f6867312 1191 // save the new value
mjr 74:822a92bc11d2 1192 this->val = val;
mjr 77:0b96f6867312 1193
mjr 77:0b96f6867312 1194 // commit it to the hardware
mjr 77:0b96f6867312 1195 commit();
mjr 13:72dda449c3c0 1196 }
mjr 74:822a92bc11d2 1197
mjr 74:822a92bc11d2 1198 // handle periodic update polling
mjr 74:822a92bc11d2 1199 void poll()
mjr 74:822a92bc11d2 1200 {
mjr 77:0b96f6867312 1201 commit();
mjr 74:822a92bc11d2 1202 }
mjr 74:822a92bc11d2 1203
mjr 74:822a92bc11d2 1204 protected:
mjr 77:0b96f6867312 1205 virtual void commit()
mjr 74:822a92bc11d2 1206 {
mjr 74:822a92bc11d2 1207 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1208 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1209 }
mjr 74:822a92bc11d2 1210
mjr 77:0b96f6867312 1211 NewPwmOut p;
mjr 77:0b96f6867312 1212 uint8_t val;
mjr 6:cc35eb643e8f 1213 };
mjr 26:cb71c4af2912 1214
mjr 74:822a92bc11d2 1215 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1216 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1217 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1218 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1219 {
mjr 64:ef7ca92dff36 1220 public:
mjr 64:ef7ca92dff36 1221 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1222 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1223 {
mjr 64:ef7ca92dff36 1224 }
mjr 74:822a92bc11d2 1225
mjr 74:822a92bc11d2 1226 protected:
mjr 77:0b96f6867312 1227 virtual void commit()
mjr 64:ef7ca92dff36 1228 {
mjr 74:822a92bc11d2 1229 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1230 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1231 }
mjr 64:ef7ca92dff36 1232 };
mjr 64:ef7ca92dff36 1233
mjr 74:822a92bc11d2 1234 // poll the PWM outputs
mjr 74:822a92bc11d2 1235 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1236 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1237 void pollPwmUpdates()
mjr 74:822a92bc11d2 1238 {
mjr 74:822a92bc11d2 1239 // if it's been at least 25ms since the last update, do another update
mjr 74:822a92bc11d2 1240 if (polledPwmTimer.read_us() >= 25000)
mjr 74:822a92bc11d2 1241 {
mjr 74:822a92bc11d2 1242 // time the run for statistics collection
mjr 74:822a92bc11d2 1243 IF_DIAG(
mjr 74:822a92bc11d2 1244 Timer t;
mjr 74:822a92bc11d2 1245 t.start();
mjr 74:822a92bc11d2 1246 )
mjr 74:822a92bc11d2 1247
mjr 74:822a92bc11d2 1248 // poll each output
mjr 74:822a92bc11d2 1249 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1250 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1251
mjr 74:822a92bc11d2 1252 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1253 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1254
mjr 74:822a92bc11d2 1255 // collect statistics
mjr 74:822a92bc11d2 1256 IF_DIAG(
mjr 76:7f5912b6340e 1257 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1258 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1259 )
mjr 74:822a92bc11d2 1260 }
mjr 74:822a92bc11d2 1261 }
mjr 64:ef7ca92dff36 1262
mjr 26:cb71c4af2912 1263 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1264 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1265 {
mjr 6:cc35eb643e8f 1266 public:
mjr 43:7a6364d82a41 1267 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1268 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1269 {
mjr 13:72dda449c3c0 1270 if (val != prv)
mjr 40:cc0d9814522b 1271 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1272 }
mjr 6:cc35eb643e8f 1273 DigitalOut p;
mjr 40:cc0d9814522b 1274 uint8_t prv;
mjr 6:cc35eb643e8f 1275 };
mjr 26:cb71c4af2912 1276
mjr 29:582472d0bc57 1277 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1278 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1279 // port n (0-based).
mjr 35:e959ffba78fd 1280 //
mjr 35:e959ffba78fd 1281 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1282 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1283 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1284 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1285 // 74HC595 ports).
mjr 33:d832bcab089e 1286 static int numOutputs;
mjr 33:d832bcab089e 1287 static LwOut **lwPin;
mjr 33:d832bcab089e 1288
mjr 38:091e511ce8a0 1289 // create a single output pin
mjr 53:9b2611964afc 1290 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1291 {
mjr 38:091e511ce8a0 1292 // get this item's values
mjr 38:091e511ce8a0 1293 int typ = pc.typ;
mjr 38:091e511ce8a0 1294 int pin = pc.pin;
mjr 38:091e511ce8a0 1295 int flags = pc.flags;
mjr 40:cc0d9814522b 1296 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1297 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1298 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1299
mjr 38:091e511ce8a0 1300 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1301 LwOut *lwp;
mjr 38:091e511ce8a0 1302 switch (typ)
mjr 38:091e511ce8a0 1303 {
mjr 38:091e511ce8a0 1304 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1305 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1306 if (pin != 0)
mjr 64:ef7ca92dff36 1307 {
mjr 64:ef7ca92dff36 1308 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1309 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1310 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1311 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1312 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1313 {
mjr 64:ef7ca92dff36 1314 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1315 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1316
mjr 64:ef7ca92dff36 1317 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1318 gamma = false;
mjr 64:ef7ca92dff36 1319 }
mjr 64:ef7ca92dff36 1320 else
mjr 64:ef7ca92dff36 1321 {
mjr 64:ef7ca92dff36 1322 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1323 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1324 }
mjr 64:ef7ca92dff36 1325 }
mjr 48:058ace2aed1d 1326 else
mjr 48:058ace2aed1d 1327 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1328 break;
mjr 38:091e511ce8a0 1329
mjr 38:091e511ce8a0 1330 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1331 // Digital GPIO port
mjr 48:058ace2aed1d 1332 if (pin != 0)
mjr 48:058ace2aed1d 1333 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1334 else
mjr 48:058ace2aed1d 1335 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1336 break;
mjr 38:091e511ce8a0 1337
mjr 38:091e511ce8a0 1338 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1339 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1340 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1341 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1342 {
mjr 40:cc0d9814522b 1343 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1344 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1345 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1346 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1347 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1348 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1349 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1350 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1351 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1352 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1353 // for this unlikely case.
mjr 40:cc0d9814522b 1354 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1355 {
mjr 40:cc0d9814522b 1356 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1357 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1358
mjr 40:cc0d9814522b 1359 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1360 gamma = false;
mjr 40:cc0d9814522b 1361 }
mjr 40:cc0d9814522b 1362 else
mjr 40:cc0d9814522b 1363 {
mjr 40:cc0d9814522b 1364 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1365 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1366 }
mjr 40:cc0d9814522b 1367 }
mjr 38:091e511ce8a0 1368 else
mjr 40:cc0d9814522b 1369 {
mjr 40:cc0d9814522b 1370 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1371 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1372 }
mjr 38:091e511ce8a0 1373 break;
mjr 38:091e511ce8a0 1374
mjr 38:091e511ce8a0 1375 case PortType74HC595:
mjr 38:091e511ce8a0 1376 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 1377 // output number, create a virtual port)
mjr 38:091e511ce8a0 1378 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1379 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1380 else
mjr 38:091e511ce8a0 1381 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1382 break;
mjr 38:091e511ce8a0 1383
mjr 38:091e511ce8a0 1384 case PortTypeVirtual:
mjr 43:7a6364d82a41 1385 case PortTypeDisabled:
mjr 38:091e511ce8a0 1386 default:
mjr 38:091e511ce8a0 1387 // virtual or unknown
mjr 38:091e511ce8a0 1388 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1389 break;
mjr 38:091e511ce8a0 1390 }
mjr 38:091e511ce8a0 1391
mjr 40:cc0d9814522b 1392 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1393 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1394 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1395 if (activeLow)
mjr 38:091e511ce8a0 1396 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1397
mjr 40:cc0d9814522b 1398 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1399 // needs to be
mjr 40:cc0d9814522b 1400 if (noisy)
mjr 40:cc0d9814522b 1401 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1402
mjr 40:cc0d9814522b 1403 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1404 if (gamma)
mjr 40:cc0d9814522b 1405 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1406
mjr 53:9b2611964afc 1407 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1408 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1409 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1410 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1411 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1412
mjr 53:9b2611964afc 1413 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1414 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1415 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1416
mjr 38:091e511ce8a0 1417 // turn it off initially
mjr 38:091e511ce8a0 1418 lwp->set(0);
mjr 38:091e511ce8a0 1419
mjr 38:091e511ce8a0 1420 // return the pin
mjr 38:091e511ce8a0 1421 return lwp;
mjr 38:091e511ce8a0 1422 }
mjr 38:091e511ce8a0 1423
mjr 6:cc35eb643e8f 1424 // initialize the output pin array
mjr 35:e959ffba78fd 1425 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1426 {
mjr 35:e959ffba78fd 1427 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1428 // total number of ports.
mjr 35:e959ffba78fd 1429 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1430 int i;
mjr 35:e959ffba78fd 1431 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1432 {
mjr 35:e959ffba78fd 1433 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1434 {
mjr 35:e959ffba78fd 1435 numOutputs = i;
mjr 34:6b981a2afab7 1436 break;
mjr 34:6b981a2afab7 1437 }
mjr 33:d832bcab089e 1438 }
mjr 33:d832bcab089e 1439
mjr 73:4e8ce0b18915 1440 // allocate the pin array
mjr 73:4e8ce0b18915 1441 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1442
mjr 73:4e8ce0b18915 1443 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1444 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1445
mjr 73:4e8ce0b18915 1446 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1447 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1448 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1449
mjr 73:4e8ce0b18915 1450 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1451 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1452 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1453
mjr 73:4e8ce0b18915 1454 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1455 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1456 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1457
mjr 35:e959ffba78fd 1458 // create the pin interface object for each port
mjr 35:e959ffba78fd 1459 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1460 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1461 }
mjr 6:cc35eb643e8f 1462
mjr 76:7f5912b6340e 1463 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1464 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1465 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1466 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1467 // equivalent to 48.
mjr 40:cc0d9814522b 1468 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1469 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1470 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1471 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1472 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1473 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1474 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1475 255, 255
mjr 40:cc0d9814522b 1476 };
mjr 40:cc0d9814522b 1477
mjr 76:7f5912b6340e 1478 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1479 // level (1..48)
mjr 76:7f5912b6340e 1480 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1481 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1482 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1483 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1484 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1485 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1486 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1487 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1488 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1489 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1490 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1491 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1492 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1493 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1494 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1495 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1496 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1497 };
mjr 76:7f5912b6340e 1498
mjr 74:822a92bc11d2 1499 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1500 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1501 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1502 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1503 //
mjr 74:822a92bc11d2 1504 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1505 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1506 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1507 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1508 //
mjr 74:822a92bc11d2 1509 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1510 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1511 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1512 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1513 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1514 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1515 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1516 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1517 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1518 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1519 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1520 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1521 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1522 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1523 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1524 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1525 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1526 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1527 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1528 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1529
mjr 74:822a92bc11d2 1530 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1531 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1532 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1533 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1534 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1535 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1536 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1537 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1538 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1539 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1540 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1541 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1542 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1543 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1544 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1545 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1546 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1547
mjr 74:822a92bc11d2 1548 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1549 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1550 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1551 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1552 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1553 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1554 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1555 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1556 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1557 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1558 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1559 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1560 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1561 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1562 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1563 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1564 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1565
mjr 74:822a92bc11d2 1566 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1567 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1568 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1569 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1570 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1571 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1572 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1573 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1574 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1575 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1576 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1577 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1578 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1579 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1580 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1581 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1582 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1583 };
mjr 74:822a92bc11d2 1584
mjr 74:822a92bc11d2 1585 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1586 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1587 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1588
mjr 76:7f5912b6340e 1589 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1590 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1591
mjr 76:7f5912b6340e 1592 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1593 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1594 // outputs on each cycle.
mjr 29:582472d0bc57 1595 static void wizPulse()
mjr 29:582472d0bc57 1596 {
mjr 76:7f5912b6340e 1597 // current bank
mjr 76:7f5912b6340e 1598 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1599
mjr 76:7f5912b6340e 1600 // start a timer for statistics collection
mjr 76:7f5912b6340e 1601 IF_DIAG(
mjr 76:7f5912b6340e 1602 Timer t;
mjr 76:7f5912b6340e 1603 t.start();
mjr 76:7f5912b6340e 1604 )
mjr 76:7f5912b6340e 1605
mjr 76:7f5912b6340e 1606 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1607 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1608 //
mjr 76:7f5912b6340e 1609 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1610 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1611 //
mjr 76:7f5912b6340e 1612 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1613 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1614 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1615 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1616 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1617 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1618 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1619 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1620 // current cycle.
mjr 76:7f5912b6340e 1621 //
mjr 76:7f5912b6340e 1622 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1623 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1624 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1625 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1626 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1627 //
mjr 76:7f5912b6340e 1628 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1629 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1630 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1631 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1632 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1633 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1634 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1635 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1636 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1637 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1638 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1639 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1640 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1641 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1642 // bit counts.
mjr 76:7f5912b6340e 1643 //
mjr 76:7f5912b6340e 1644 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1645 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1646 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1647 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1648 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1649 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1650 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1651 // one division for another!
mjr 76:7f5912b6340e 1652 //
mjr 76:7f5912b6340e 1653 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1654 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1655 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1656 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1657 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1658 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1659 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1660 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1661 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1662 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1663 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1664 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1665 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1666 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1667 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1668 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1669 // remainder calculation anyway.
mjr 76:7f5912b6340e 1670 //
mjr 76:7f5912b6340e 1671 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1672 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1673 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1674 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1675 //
mjr 76:7f5912b6340e 1676 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1677 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1678 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1679 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1680 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1681 // the result, since we started with 32.
mjr 76:7f5912b6340e 1682 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1683 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1684 };
mjr 76:7f5912b6340e 1685 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1686
mjr 76:7f5912b6340e 1687 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1688 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1689 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1690 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1691 toPort = numOutputs;
mjr 76:7f5912b6340e 1692
mjr 76:7f5912b6340e 1693 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1694 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1695 {
mjr 76:7f5912b6340e 1696 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1697 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1698 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1699 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1700 if (wizOn[i])
mjr 29:582472d0bc57 1701 {
mjr 76:7f5912b6340e 1702 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 1703 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 1704 {
mjr 76:7f5912b6340e 1705 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 1706 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 1707 }
mjr 29:582472d0bc57 1708 }
mjr 76:7f5912b6340e 1709 }
mjr 76:7f5912b6340e 1710
mjr 34:6b981a2afab7 1711 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1712 if (hc595 != 0)
mjr 35:e959ffba78fd 1713 hc595->update();
mjr 76:7f5912b6340e 1714
mjr 76:7f5912b6340e 1715 // switch to the next bank
mjr 76:7f5912b6340e 1716 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 1717 wizPulseBank = 0;
mjr 76:7f5912b6340e 1718
mjr 76:7f5912b6340e 1719 // collect timing statistics
mjr 76:7f5912b6340e 1720 IF_DIAG(
mjr 76:7f5912b6340e 1721 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 1722 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 1723 )
mjr 1:d913e0afb2ac 1724 }
mjr 38:091e511ce8a0 1725
mjr 76:7f5912b6340e 1726 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 1727 static void updateLwPort(int port)
mjr 38:091e511ce8a0 1728 {
mjr 76:7f5912b6340e 1729 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 1730 if (wizOn[port])
mjr 76:7f5912b6340e 1731 {
mjr 76:7f5912b6340e 1732 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 1733 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 1734 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 1735 // it on the next cycle.
mjr 76:7f5912b6340e 1736 int val = wizVal[port];
mjr 76:7f5912b6340e 1737 if (val <= 49)
mjr 76:7f5912b6340e 1738 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 1739 }
mjr 76:7f5912b6340e 1740 else
mjr 76:7f5912b6340e 1741 {
mjr 76:7f5912b6340e 1742 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 1743 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 1744 }
mjr 73:4e8ce0b18915 1745 }
mjr 73:4e8ce0b18915 1746
mjr 73:4e8ce0b18915 1747 // Turn off all outputs and restore everything to the default LedWiz
mjr 73:4e8ce0b18915 1748 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 73:4e8ce0b18915 1749 // brightness) and switch state Off, sets all extended outputs (#33
mjr 73:4e8ce0b18915 1750 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 73:4e8ce0b18915 1751 // This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 1752 //
mjr 73:4e8ce0b18915 1753 void allOutputsOff()
mjr 73:4e8ce0b18915 1754 {
mjr 73:4e8ce0b18915 1755 // reset all LedWiz outputs to OFF/48
mjr 73:4e8ce0b18915 1756 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 1757 {
mjr 73:4e8ce0b18915 1758 outLevel[i] = 0;
mjr 73:4e8ce0b18915 1759 wizOn[i] = 0;
mjr 73:4e8ce0b18915 1760 wizVal[i] = 48;
mjr 73:4e8ce0b18915 1761 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 1762 }
mjr 73:4e8ce0b18915 1763
mjr 73:4e8ce0b18915 1764 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 1765 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1766 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 1767
mjr 73:4e8ce0b18915 1768 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 1769 if (hc595 != 0)
mjr 38:091e511ce8a0 1770 hc595->update();
mjr 38:091e511ce8a0 1771 }
mjr 38:091e511ce8a0 1772
mjr 74:822a92bc11d2 1773 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 1774 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 1775 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 1776 // address any port group.
mjr 74:822a92bc11d2 1777 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 1778 {
mjr 76:7f5912b6340e 1779 // update all on/off states in the group
mjr 74:822a92bc11d2 1780 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 1781 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 1782 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 1783 {
mjr 74:822a92bc11d2 1784 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 1785 if (bit == 0x100) {
mjr 74:822a92bc11d2 1786 bit = 1;
mjr 74:822a92bc11d2 1787 ++imsg;
mjr 74:822a92bc11d2 1788 }
mjr 74:822a92bc11d2 1789
mjr 74:822a92bc11d2 1790 // set the on/off state
mjr 76:7f5912b6340e 1791 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 1792
mjr 76:7f5912b6340e 1793 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 1794 updateLwPort(port);
mjr 74:822a92bc11d2 1795 }
mjr 74:822a92bc11d2 1796
mjr 74:822a92bc11d2 1797 // set the flash speed for the port group
mjr 74:822a92bc11d2 1798 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 1799 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 1800
mjr 76:7f5912b6340e 1801 // update 74HC959 outputs
mjr 76:7f5912b6340e 1802 if (hc595 != 0)
mjr 76:7f5912b6340e 1803 hc595->update();
mjr 74:822a92bc11d2 1804 }
mjr 74:822a92bc11d2 1805
mjr 74:822a92bc11d2 1806 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 1807 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 1808 {
mjr 74:822a92bc11d2 1809 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 1810 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 1811 {
mjr 74:822a92bc11d2 1812 // get the value
mjr 74:822a92bc11d2 1813 uint8_t v = data[i];
mjr 74:822a92bc11d2 1814
mjr 74:822a92bc11d2 1815 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 1816 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 1817 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 1818 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 1819 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 1820 // as such.
mjr 74:822a92bc11d2 1821 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 1822 v = 48;
mjr 74:822a92bc11d2 1823
mjr 74:822a92bc11d2 1824 // store it
mjr 76:7f5912b6340e 1825 wizVal[port] = v;
mjr 76:7f5912b6340e 1826
mjr 76:7f5912b6340e 1827 // update the port
mjr 76:7f5912b6340e 1828 updateLwPort(port);
mjr 74:822a92bc11d2 1829 }
mjr 74:822a92bc11d2 1830
mjr 76:7f5912b6340e 1831 // update 74HC595 outputs
mjr 76:7f5912b6340e 1832 if (hc595 != 0)
mjr 76:7f5912b6340e 1833 hc595->update();
mjr 74:822a92bc11d2 1834 }
mjr 74:822a92bc11d2 1835
mjr 77:0b96f6867312 1836 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 1837 //
mjr 77:0b96f6867312 1838 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 1839 //
mjr 77:0b96f6867312 1840
mjr 77:0b96f6867312 1841 // receiver
mjr 77:0b96f6867312 1842 IRReceiver *ir_rx;
mjr 77:0b96f6867312 1843
mjr 77:0b96f6867312 1844 // transmitter
mjr 77:0b96f6867312 1845 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 1846
mjr 77:0b96f6867312 1847 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 1848 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 1849 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 1850 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 1851 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 1852 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 1853 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 1854 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 1855 // configuration slot n
mjr 77:0b96f6867312 1856 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 1857
mjr 78:1e00b3fa11af 1858 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 1859 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 1860 // protocol.
mjr 78:1e00b3fa11af 1861 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 1862
mjr 78:1e00b3fa11af 1863 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 1864 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 1865 // while waiting for the rest.
mjr 78:1e00b3fa11af 1866 static struct
mjr 78:1e00b3fa11af 1867 {
mjr 78:1e00b3fa11af 1868 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 1869 uint64_t code; // code
mjr 78:1e00b3fa11af 1870 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 1871 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 1872 } IRAdHocCmd;
mjr 78:1e00b3fa11af 1873
mjr 77:0b96f6867312 1874
mjr 77:0b96f6867312 1875 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 1876 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 1877 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 1878 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 1879 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 1880 // amount of time.
mjr 77:0b96f6867312 1881 Timer IRTimer;
mjr 77:0b96f6867312 1882
mjr 77:0b96f6867312 1883 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 1884 // The states are:
mjr 77:0b96f6867312 1885 //
mjr 77:0b96f6867312 1886 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 1887 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 1888 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 1889 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 1890 //
mjr 77:0b96f6867312 1891 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 1892 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 1893 // received within a reasonable time.
mjr 77:0b96f6867312 1894 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 1895
mjr 77:0b96f6867312 1896 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 1897 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 1898 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 1899 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 1900 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 1901 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 1902 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 1903 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 1904 IRCommand learnedIRCode;
mjr 77:0b96f6867312 1905
mjr 78:1e00b3fa11af 1906 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 1907 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 1908 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 1909 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 1910 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 1911 // index; 0 represents no command.
mjr 77:0b96f6867312 1912 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 1913
mjr 77:0b96f6867312 1914 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 1915 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 1916 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 1917 // command we received.
mjr 77:0b96f6867312 1918 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 1919
mjr 77:0b96f6867312 1920 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 1921 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 1922 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 1923 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 1924 // distinct key press.
mjr 77:0b96f6867312 1925 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 1926
mjr 78:1e00b3fa11af 1927
mjr 77:0b96f6867312 1928 // initialize
mjr 77:0b96f6867312 1929 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 1930 {
mjr 77:0b96f6867312 1931 PinName pin;
mjr 77:0b96f6867312 1932
mjr 77:0b96f6867312 1933 // start the IR timer
mjr 77:0b96f6867312 1934 IRTimer.start();
mjr 77:0b96f6867312 1935
mjr 77:0b96f6867312 1936 // if there's a transmitter, set it up
mjr 77:0b96f6867312 1937 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 1938 {
mjr 77:0b96f6867312 1939 // no virtual buttons yet
mjr 77:0b96f6867312 1940 int nVirtualButtons = 0;
mjr 77:0b96f6867312 1941 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 1942
mjr 77:0b96f6867312 1943 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 1944 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1945 {
mjr 77:0b96f6867312 1946 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 1947 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 1948 }
mjr 77:0b96f6867312 1949
mjr 77:0b96f6867312 1950 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 1951 // real button inputs
mjr 77:0b96f6867312 1952 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 1953 {
mjr 77:0b96f6867312 1954 // get the button
mjr 77:0b96f6867312 1955 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 1956
mjr 77:0b96f6867312 1957 // check the unshifted button
mjr 77:0b96f6867312 1958 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 1959 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1960 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1961 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1962
mjr 77:0b96f6867312 1963 // check the shifted button
mjr 77:0b96f6867312 1964 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 1965 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1966 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1967 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1968 }
mjr 77:0b96f6867312 1969
mjr 77:0b96f6867312 1970 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 1971 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 1972 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 1973
mjr 77:0b96f6867312 1974 // create the transmitter
mjr 77:0b96f6867312 1975 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 1976
mjr 77:0b96f6867312 1977 // program the commands into the virtual button slots
mjr 77:0b96f6867312 1978 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1979 {
mjr 77:0b96f6867312 1980 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 1981 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 1982 if (vb != 0xFF)
mjr 77:0b96f6867312 1983 {
mjr 77:0b96f6867312 1984 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1985 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 1986 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 1987 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 1988 }
mjr 77:0b96f6867312 1989 }
mjr 77:0b96f6867312 1990 }
mjr 77:0b96f6867312 1991
mjr 77:0b96f6867312 1992 // if there's a receiver, set it up
mjr 77:0b96f6867312 1993 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 1994 {
mjr 77:0b96f6867312 1995 // create the receiver
mjr 77:0b96f6867312 1996 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 1997
mjr 77:0b96f6867312 1998 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 1999 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 2000 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 2001
mjr 77:0b96f6867312 2002 // enable it
mjr 77:0b96f6867312 2003 ir_rx->enable();
mjr 77:0b96f6867312 2004
mjr 77:0b96f6867312 2005 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 2006 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 2007 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 2008 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2009 {
mjr 77:0b96f6867312 2010 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2011 if (cb.protocol != 0
mjr 77:0b96f6867312 2012 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2013 {
mjr 77:0b96f6867312 2014 kbKeys = true;
mjr 77:0b96f6867312 2015 break;
mjr 77:0b96f6867312 2016 }
mjr 77:0b96f6867312 2017 }
mjr 77:0b96f6867312 2018 }
mjr 77:0b96f6867312 2019 }
mjr 77:0b96f6867312 2020
mjr 77:0b96f6867312 2021 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2022 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2023 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2024 {
mjr 77:0b96f6867312 2025 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2026 if (ir_tx != 0)
mjr 77:0b96f6867312 2027 {
mjr 77:0b96f6867312 2028 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2029 int slot = cmd - 1;
mjr 77:0b96f6867312 2030
mjr 77:0b96f6867312 2031 // press or release the virtual button
mjr 77:0b96f6867312 2032 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2033 }
mjr 77:0b96f6867312 2034 }
mjr 77:0b96f6867312 2035
mjr 78:1e00b3fa11af 2036 // Process IR input and output
mjr 77:0b96f6867312 2037 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2038 {
mjr 78:1e00b3fa11af 2039 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2040 if (ir_tx != 0)
mjr 77:0b96f6867312 2041 {
mjr 78:1e00b3fa11af 2042 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2043 // is ready to send, send it.
mjr 78:1e00b3fa11af 2044 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2045 {
mjr 78:1e00b3fa11af 2046 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2047 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2048 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2049 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2050
mjr 78:1e00b3fa11af 2051 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2052 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2053 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2054
mjr 78:1e00b3fa11af 2055 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2056 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2057 }
mjr 77:0b96f6867312 2058 }
mjr 78:1e00b3fa11af 2059
mjr 78:1e00b3fa11af 2060 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2061 if (ir_rx != 0)
mjr 77:0b96f6867312 2062 {
mjr 78:1e00b3fa11af 2063 // Time out any received command
mjr 78:1e00b3fa11af 2064 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2065 {
mjr 78:1e00b3fa11af 2066 // Time out inter-key gap mode after 30ms; time out all
mjr 78:1e00b3fa11af 2067 // commands after 100ms.
mjr 78:1e00b3fa11af 2068 uint32_t t = IRTimer.read_us();
mjr 78:1e00b3fa11af 2069 if (t > 100000)
mjr 78:1e00b3fa11af 2070 IRCommandIn = 0;
mjr 78:1e00b3fa11af 2071 else if (t > 30000)
mjr 78:1e00b3fa11af 2072 IRKeyGap = false;
mjr 78:1e00b3fa11af 2073 }
mjr 78:1e00b3fa11af 2074
mjr 78:1e00b3fa11af 2075 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2076 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2077 {
mjr 78:1e00b3fa11af 2078 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2079 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2080 // limit.
mjr 78:1e00b3fa11af 2081 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2082 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2083 int n;
mjr 78:1e00b3fa11af 2084 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2085
mjr 78:1e00b3fa11af 2086 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2087 if (n != 0)
mjr 78:1e00b3fa11af 2088 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2089
mjr 78:1e00b3fa11af 2090 // check for a command
mjr 78:1e00b3fa11af 2091 IRCommand c;
mjr 78:1e00b3fa11af 2092 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2093 {
mjr 78:1e00b3fa11af 2094 // check the current learning state
mjr 78:1e00b3fa11af 2095 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2096 {
mjr 78:1e00b3fa11af 2097 case 1:
mjr 78:1e00b3fa11af 2098 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2099 // This is it.
mjr 78:1e00b3fa11af 2100 learnedIRCode = c;
mjr 78:1e00b3fa11af 2101
mjr 78:1e00b3fa11af 2102 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2103 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2104 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2105 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2106 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2107 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2108 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2109 break;
mjr 78:1e00b3fa11af 2110
mjr 78:1e00b3fa11af 2111 case 2:
mjr 78:1e00b3fa11af 2112 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2113 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2114 //
mjr 78:1e00b3fa11af 2115 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2116 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2117 //
mjr 78:1e00b3fa11af 2118 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2119 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2120 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2121 // them.
mjr 78:1e00b3fa11af 2122 //
mjr 78:1e00b3fa11af 2123 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2124 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2125 // over.
mjr 78:1e00b3fa11af 2126 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2127 && c.hasDittos
mjr 78:1e00b3fa11af 2128 && c.ditto)
mjr 78:1e00b3fa11af 2129 {
mjr 78:1e00b3fa11af 2130 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2131 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2132 }
mjr 78:1e00b3fa11af 2133 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2134 && c.hasDittos
mjr 78:1e00b3fa11af 2135 && !c.ditto
mjr 78:1e00b3fa11af 2136 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2137 {
mjr 78:1e00b3fa11af 2138 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2139 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2140 // protocol supports them
mjr 78:1e00b3fa11af 2141 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2142 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2143 }
mjr 78:1e00b3fa11af 2144 else
mjr 78:1e00b3fa11af 2145 {
mjr 78:1e00b3fa11af 2146 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2147 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2148 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2149 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2150 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2151 }
mjr 78:1e00b3fa11af 2152 break;
mjr 78:1e00b3fa11af 2153 }
mjr 77:0b96f6867312 2154
mjr 78:1e00b3fa11af 2155 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2156 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2157 // learning mode.
mjr 78:1e00b3fa11af 2158 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2159 {
mjr 78:1e00b3fa11af 2160 // figure the flags:
mjr 78:1e00b3fa11af 2161 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2162 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2163 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2164 flags |= 0x02;
mjr 78:1e00b3fa11af 2165
mjr 78:1e00b3fa11af 2166 // report the code
mjr 78:1e00b3fa11af 2167 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2168
mjr 78:1e00b3fa11af 2169 // exit learning mode
mjr 78:1e00b3fa11af 2170 IRLearningMode = 0;
mjr 77:0b96f6867312 2171 }
mjr 77:0b96f6867312 2172 }
mjr 77:0b96f6867312 2173
mjr 78:1e00b3fa11af 2174 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2175 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2176 {
mjr 78:1e00b3fa11af 2177 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2178 // zero data elements
mjr 78:1e00b3fa11af 2179 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2180
mjr 78:1e00b3fa11af 2181
mjr 78:1e00b3fa11af 2182 // cancel learning mode
mjr 77:0b96f6867312 2183 IRLearningMode = 0;
mjr 77:0b96f6867312 2184 }
mjr 77:0b96f6867312 2185 }
mjr 78:1e00b3fa11af 2186 else
mjr 77:0b96f6867312 2187 {
mjr 78:1e00b3fa11af 2188 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2189 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2190 ir_rx->process();
mjr 78:1e00b3fa11af 2191
mjr 78:1e00b3fa11af 2192 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2193 // have been read.
mjr 78:1e00b3fa11af 2194 IRCommand c;
mjr 78:1e00b3fa11af 2195 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2196 {
mjr 78:1e00b3fa11af 2197 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2198 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2199 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2200 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2201 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2202 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2203 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2204 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2205 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2206 //
mjr 78:1e00b3fa11af 2207 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2208 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2209 // command.
mjr 78:1e00b3fa11af 2210 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2211 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2212 {
mjr 78:1e00b3fa11af 2213 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2214 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2215 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2216 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2217 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2218 if (c.ditto)
mjr 78:1e00b3fa11af 2219 {
mjr 78:1e00b3fa11af 2220 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2221 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2222 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2223 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2224 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2225 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2226 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2227 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2228 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2229 }
mjr 78:1e00b3fa11af 2230 else
mjr 78:1e00b3fa11af 2231 {
mjr 78:1e00b3fa11af 2232 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2233 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2234 // prior command.
mjr 78:1e00b3fa11af 2235 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2236 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2237 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2238
mjr 78:1e00b3fa11af 2239 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2240 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2241 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2242 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2243 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2244 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2245 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2246 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2247 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2248 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2249 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2250 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2251 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2252 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2253 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2254 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2255 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2256 autoRepeat =
mjr 78:1e00b3fa11af 2257 repeat
mjr 78:1e00b3fa11af 2258 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2259 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2260 }
mjr 78:1e00b3fa11af 2261 }
mjr 78:1e00b3fa11af 2262
mjr 78:1e00b3fa11af 2263 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2264 if (repeat)
mjr 78:1e00b3fa11af 2265 {
mjr 78:1e00b3fa11af 2266 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2267 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2268 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2269 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2270 // key press event.
mjr 78:1e00b3fa11af 2271 if (!autoRepeat)
mjr 78:1e00b3fa11af 2272 IRKeyGap = true;
mjr 78:1e00b3fa11af 2273
mjr 78:1e00b3fa11af 2274 // restart the key-up timer
mjr 78:1e00b3fa11af 2275 IRTimer.reset();
mjr 78:1e00b3fa11af 2276 }
mjr 78:1e00b3fa11af 2277 else if (c.ditto)
mjr 78:1e00b3fa11af 2278 {
mjr 78:1e00b3fa11af 2279 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2280 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2281 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2282 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2283 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2284 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2285 // a full command for a new key press.
mjr 78:1e00b3fa11af 2286 IRCommandIn = 0;
mjr 77:0b96f6867312 2287 }
mjr 77:0b96f6867312 2288 else
mjr 77:0b96f6867312 2289 {
mjr 78:1e00b3fa11af 2290 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2291 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2292 // the new command).
mjr 78:1e00b3fa11af 2293 IRCommandIn = 0;
mjr 77:0b96f6867312 2294
mjr 78:1e00b3fa11af 2295 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2296 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2297 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2298 {
mjr 78:1e00b3fa11af 2299 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2300 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2301 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2302 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2303 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2304 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2305 {
mjr 78:1e00b3fa11af 2306 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2307 // remember the starting time.
mjr 78:1e00b3fa11af 2308 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2309 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2310 IRTimer.reset();
mjr 78:1e00b3fa11af 2311
mjr 78:1e00b3fa11af 2312 // no need to keep searching
mjr 78:1e00b3fa11af 2313 break;
mjr 78:1e00b3fa11af 2314 }
mjr 77:0b96f6867312 2315 }
mjr 77:0b96f6867312 2316 }
mjr 77:0b96f6867312 2317 }
mjr 77:0b96f6867312 2318 }
mjr 77:0b96f6867312 2319 }
mjr 77:0b96f6867312 2320 }
mjr 77:0b96f6867312 2321
mjr 74:822a92bc11d2 2322
mjr 11:bd9da7088e6e 2323 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2324 //
mjr 11:bd9da7088e6e 2325 // Button input
mjr 11:bd9da7088e6e 2326 //
mjr 11:bd9da7088e6e 2327
mjr 18:5e890ebd0023 2328 // button state
mjr 18:5e890ebd0023 2329 struct ButtonState
mjr 18:5e890ebd0023 2330 {
mjr 38:091e511ce8a0 2331 ButtonState()
mjr 38:091e511ce8a0 2332 {
mjr 53:9b2611964afc 2333 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2334 virtState = 0;
mjr 53:9b2611964afc 2335 dbState = 0;
mjr 38:091e511ce8a0 2336 pulseState = 0;
mjr 53:9b2611964afc 2337 pulseTime = 0;
mjr 38:091e511ce8a0 2338 }
mjr 35:e959ffba78fd 2339
mjr 53:9b2611964afc 2340 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2341 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2342 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2343 //
mjr 53:9b2611964afc 2344 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2345 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2346 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2347 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2348 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2349 void virtPress(bool on)
mjr 53:9b2611964afc 2350 {
mjr 53:9b2611964afc 2351 // Increment or decrement the current state
mjr 53:9b2611964afc 2352 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2353 }
mjr 53:9b2611964afc 2354
mjr 53:9b2611964afc 2355 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2356 TinyDigitalIn di;
mjr 38:091e511ce8a0 2357
mjr 65:739875521aae 2358 // Time of last pulse state transition.
mjr 65:739875521aae 2359 //
mjr 65:739875521aae 2360 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2361 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2362 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2363 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2364 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2365 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2366 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2367 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2368 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2369 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2370 // This software system can't be fooled that way.)
mjr 65:739875521aae 2371 uint32_t pulseTime;
mjr 18:5e890ebd0023 2372
mjr 65:739875521aae 2373 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2374 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2375 uint8_t cfgIndex;
mjr 53:9b2611964afc 2376
mjr 53:9b2611964afc 2377 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2378 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2379 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2380 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2381 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2382 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2383 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2384 // and physical source states.
mjr 53:9b2611964afc 2385 uint8_t virtState;
mjr 38:091e511ce8a0 2386
mjr 38:091e511ce8a0 2387 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2388 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2389 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2390 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2391 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2392 uint8_t dbState;
mjr 38:091e511ce8a0 2393
mjr 65:739875521aae 2394 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2395 uint8_t physState : 1;
mjr 65:739875521aae 2396
mjr 65:739875521aae 2397 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2398 uint8_t logState : 1;
mjr 65:739875521aae 2399
mjr 65:739875521aae 2400 // previous logical on/off state, when keys were last processed for USB
mjr 65:739875521aae 2401 // reports and local effects
mjr 65:739875521aae 2402 uint8_t prevLogState : 1;
mjr 65:739875521aae 2403
mjr 65:739875521aae 2404 // Pulse state
mjr 65:739875521aae 2405 //
mjr 65:739875521aae 2406 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2407 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2408 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2409 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2410 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2411 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2412 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2413 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2414 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2415 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2416 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 65:739875521aae 2417 // option brdiges this gap by generating a toggle key event each time
mjr 65:739875521aae 2418 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2419 //
mjr 38:091e511ce8a0 2420 // Pulse state:
mjr 38:091e511ce8a0 2421 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2422 // 1 -> off
mjr 38:091e511ce8a0 2423 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2424 // 3 -> on
mjr 38:091e511ce8a0 2425 // 4 -> transitioning on-off
mjr 65:739875521aae 2426 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2427
mjr 65:739875521aae 2428 } __attribute__((packed));
mjr 65:739875521aae 2429
mjr 65:739875521aae 2430 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2431 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2432 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2433
mjr 66:2e3583fbd2f4 2434 // Shift button state
mjr 66:2e3583fbd2f4 2435 struct
mjr 66:2e3583fbd2f4 2436 {
mjr 66:2e3583fbd2f4 2437 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 2438 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 2439 // 0 = not shifted
mjr 66:2e3583fbd2f4 2440 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2441 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 2442 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 2443 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 2444 }
mjr 66:2e3583fbd2f4 2445 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2446
mjr 38:091e511ce8a0 2447 // Button data
mjr 38:091e511ce8a0 2448 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2449
mjr 38:091e511ce8a0 2450 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2451 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2452 // modifier keys.
mjr 38:091e511ce8a0 2453 struct
mjr 38:091e511ce8a0 2454 {
mjr 38:091e511ce8a0 2455 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2456 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2457 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2458 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2459 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2460
mjr 38:091e511ce8a0 2461 // Media key state
mjr 38:091e511ce8a0 2462 struct
mjr 38:091e511ce8a0 2463 {
mjr 38:091e511ce8a0 2464 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2465 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2466 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2467
mjr 38:091e511ce8a0 2468 // button scan interrupt ticker
mjr 38:091e511ce8a0 2469 Ticker buttonTicker;
mjr 38:091e511ce8a0 2470
mjr 38:091e511ce8a0 2471 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2472 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2473 void scanButtons()
mjr 38:091e511ce8a0 2474 {
mjr 38:091e511ce8a0 2475 // scan all button input pins
mjr 73:4e8ce0b18915 2476 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2477 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2478 {
mjr 73:4e8ce0b18915 2479 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2480 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2481 bs->dbState = db;
mjr 73:4e8ce0b18915 2482
mjr 73:4e8ce0b18915 2483 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2484 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2485 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2486 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2487 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2488 db &= stable;
mjr 73:4e8ce0b18915 2489 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2490 bs->physState = !db;
mjr 38:091e511ce8a0 2491 }
mjr 38:091e511ce8a0 2492 }
mjr 38:091e511ce8a0 2493
mjr 38:091e511ce8a0 2494 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2495 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2496 // in the physical button state.
mjr 38:091e511ce8a0 2497 Timer buttonTimer;
mjr 12:669df364a565 2498
mjr 65:739875521aae 2499 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2500 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2501 {
mjr 65:739875521aae 2502 // count it
mjr 65:739875521aae 2503 ++nButtons;
mjr 65:739875521aae 2504
mjr 67:c39e66c4e000 2505 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2506 // keyboard interface
mjr 72:884207c0aab0 2507 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2508 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2509 kbKeys = true;
mjr 65:739875521aae 2510 }
mjr 65:739875521aae 2511
mjr 11:bd9da7088e6e 2512 // initialize the button inputs
mjr 35:e959ffba78fd 2513 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2514 {
mjr 66:2e3583fbd2f4 2515 // presume no shift key
mjr 66:2e3583fbd2f4 2516 shiftButton.index = -1;
mjr 66:2e3583fbd2f4 2517
mjr 65:739875521aae 2518 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2519 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2520 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2521 nButtons = 0;
mjr 65:739875521aae 2522 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2523 {
mjr 65:739875521aae 2524 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2525 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 2526 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 2527 }
mjr 65:739875521aae 2528
mjr 65:739875521aae 2529 // Count virtual buttons
mjr 65:739875521aae 2530
mjr 65:739875521aae 2531 // ZB Launch
mjr 65:739875521aae 2532 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 2533 {
mjr 65:739875521aae 2534 // valid - remember the live button index
mjr 65:739875521aae 2535 zblButtonIndex = nButtons;
mjr 65:739875521aae 2536
mjr 65:739875521aae 2537 // count it
mjr 72:884207c0aab0 2538 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 2539 }
mjr 65:739875521aae 2540
mjr 65:739875521aae 2541 // Allocate the live button slots
mjr 65:739875521aae 2542 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 2543
mjr 65:739875521aae 2544 // Configure the physical inputs
mjr 65:739875521aae 2545 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2546 {
mjr 65:739875521aae 2547 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 2548 if (pin != NC)
mjr 65:739875521aae 2549 {
mjr 65:739875521aae 2550 // point back to the config slot for the keyboard data
mjr 65:739875521aae 2551 bs->cfgIndex = i;
mjr 65:739875521aae 2552
mjr 65:739875521aae 2553 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 2554 bs->di.assignPin(pin);
mjr 65:739875521aae 2555
mjr 65:739875521aae 2556 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 2557 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 2558 bs->pulseState = 1;
mjr 65:739875521aae 2559
mjr 66:2e3583fbd2f4 2560 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 2561 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 2562 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 2563 // config slots are left unused.
mjr 78:1e00b3fa11af 2564 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 2565 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 2566
mjr 65:739875521aae 2567 // advance to the next button
mjr 65:739875521aae 2568 ++bs;
mjr 65:739875521aae 2569 }
mjr 65:739875521aae 2570 }
mjr 65:739875521aae 2571
mjr 53:9b2611964afc 2572 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 2573 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 2574 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 2575 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 2576
mjr 53:9b2611964afc 2577 // ZB Launch Ball button
mjr 65:739875521aae 2578 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 2579 {
mjr 65:739875521aae 2580 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 2581 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 2582 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 2583 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 2584 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 2585 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 2586 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 2587 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 2588
mjr 66:2e3583fbd2f4 2589 // advance to the next button
mjr 65:739875521aae 2590 ++bs;
mjr 11:bd9da7088e6e 2591 }
mjr 12:669df364a565 2592
mjr 38:091e511ce8a0 2593 // start the button scan thread
mjr 38:091e511ce8a0 2594 buttonTicker.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 2595
mjr 38:091e511ce8a0 2596 // start the button state transition timer
mjr 12:669df364a565 2597 buttonTimer.start();
mjr 11:bd9da7088e6e 2598 }
mjr 11:bd9da7088e6e 2599
mjr 67:c39e66c4e000 2600 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 2601 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 2602 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 2603 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 2604 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 2605 //
mjr 67:c39e66c4e000 2606 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 2607 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 2608 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 2609 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 2610 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 2611 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 2612 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 2613 //
mjr 67:c39e66c4e000 2614 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 2615 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 2616 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 2617 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 2618 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 2619 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 2620 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 2621 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 2622 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 2623 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 2624 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 2625 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 2626 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 2627 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 2628 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 2629 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 2630 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 2631 };
mjr 77:0b96f6867312 2632
mjr 77:0b96f6867312 2633 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 2634 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 2635 // states of the button iputs.
mjr 77:0b96f6867312 2636 struct KeyState
mjr 77:0b96f6867312 2637 {
mjr 77:0b96f6867312 2638 KeyState()
mjr 77:0b96f6867312 2639 {
mjr 77:0b96f6867312 2640 // zero all members
mjr 77:0b96f6867312 2641 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 2642 }
mjr 77:0b96f6867312 2643
mjr 77:0b96f6867312 2644 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 2645 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 2646 uint8_t mediakeys;
mjr 77:0b96f6867312 2647
mjr 77:0b96f6867312 2648 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 2649 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 2650 // USBJoystick.cpp).
mjr 77:0b96f6867312 2651 uint8_t modkeys;
mjr 77:0b96f6867312 2652
mjr 77:0b96f6867312 2653 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 2654 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 2655 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 2656 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 2657 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 2658 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 2659 uint8_t keys[7];
mjr 77:0b96f6867312 2660
mjr 77:0b96f6867312 2661 // number of valid entries in keys[] array
mjr 77:0b96f6867312 2662 int nkeys;
mjr 77:0b96f6867312 2663
mjr 77:0b96f6867312 2664 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 2665 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 2666 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 2667 uint32_t js;
mjr 77:0b96f6867312 2668
mjr 77:0b96f6867312 2669
mjr 77:0b96f6867312 2670 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 2671 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 2672 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 2673 {
mjr 77:0b96f6867312 2674 // add the key according to the type
mjr 77:0b96f6867312 2675 switch (typ)
mjr 77:0b96f6867312 2676 {
mjr 77:0b96f6867312 2677 case BtnTypeJoystick:
mjr 77:0b96f6867312 2678 // joystick button
mjr 77:0b96f6867312 2679 js |= (1 << (val - 1));
mjr 77:0b96f6867312 2680 break;
mjr 77:0b96f6867312 2681
mjr 77:0b96f6867312 2682 case BtnTypeKey:
mjr 77:0b96f6867312 2683 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 2684 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 2685 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 2686 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 2687 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 2688 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 2689 // explicitly using media keys if desired.
mjr 77:0b96f6867312 2690 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 2691 {
mjr 77:0b96f6867312 2692 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 2693 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 2694 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 2695 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 2696 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 2697 }
mjr 77:0b96f6867312 2698 else
mjr 77:0b96f6867312 2699 {
mjr 77:0b96f6867312 2700 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 2701 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 2702 // apply, add the key to the key array.
mjr 77:0b96f6867312 2703 if (nkeys < 7)
mjr 77:0b96f6867312 2704 {
mjr 77:0b96f6867312 2705 bool found = false;
mjr 77:0b96f6867312 2706 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 2707 {
mjr 77:0b96f6867312 2708 if (keys[i] == val)
mjr 77:0b96f6867312 2709 {
mjr 77:0b96f6867312 2710 found = true;
mjr 77:0b96f6867312 2711 break;
mjr 77:0b96f6867312 2712 }
mjr 77:0b96f6867312 2713 }
mjr 77:0b96f6867312 2714 if (!found)
mjr 77:0b96f6867312 2715 keys[nkeys++] = val;
mjr 77:0b96f6867312 2716 }
mjr 77:0b96f6867312 2717 }
mjr 77:0b96f6867312 2718 break;
mjr 77:0b96f6867312 2719
mjr 77:0b96f6867312 2720 case BtnTypeMedia:
mjr 77:0b96f6867312 2721 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 2722 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 2723 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 2724 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 2725 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 2726 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 2727 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 2728 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 2729 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 2730 break;
mjr 77:0b96f6867312 2731 }
mjr 77:0b96f6867312 2732 }
mjr 77:0b96f6867312 2733 };
mjr 67:c39e66c4e000 2734
mjr 67:c39e66c4e000 2735
mjr 38:091e511ce8a0 2736 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 2737 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 2738 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 2739 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 2740 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 2741 {
mjr 77:0b96f6867312 2742 // key state
mjr 77:0b96f6867312 2743 KeyState ks;
mjr 38:091e511ce8a0 2744
mjr 38:091e511ce8a0 2745 // calculate the time since the last run
mjr 53:9b2611964afc 2746 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 2747 buttonTimer.reset();
mjr 66:2e3583fbd2f4 2748
mjr 66:2e3583fbd2f4 2749 // check the shift button state
mjr 66:2e3583fbd2f4 2750 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 2751 {
mjr 78:1e00b3fa11af 2752 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 2753 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 2754
mjr 78:1e00b3fa11af 2755 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 2756 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 2757 {
mjr 66:2e3583fbd2f4 2758 case 0:
mjr 78:1e00b3fa11af 2759 default:
mjr 78:1e00b3fa11af 2760 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 2761 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 2762 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 2763 switch (shiftButton.state)
mjr 78:1e00b3fa11af 2764 {
mjr 78:1e00b3fa11af 2765 case 0:
mjr 78:1e00b3fa11af 2766 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 2767 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 2768 if (sbs->physState)
mjr 78:1e00b3fa11af 2769 shiftButton.state = 1;
mjr 78:1e00b3fa11af 2770 break;
mjr 78:1e00b3fa11af 2771
mjr 78:1e00b3fa11af 2772 case 1:
mjr 78:1e00b3fa11af 2773 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 2774 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 2775 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 2776 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 2777 // pulse event.
mjr 78:1e00b3fa11af 2778 if (!sbs->physState)
mjr 78:1e00b3fa11af 2779 {
mjr 78:1e00b3fa11af 2780 shiftButton.state = 3;
mjr 78:1e00b3fa11af 2781 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 2782 }
mjr 78:1e00b3fa11af 2783 break;
mjr 78:1e00b3fa11af 2784
mjr 78:1e00b3fa11af 2785 case 2:
mjr 78:1e00b3fa11af 2786 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 2787 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 2788 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 2789 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 2790 // suppressed.
mjr 78:1e00b3fa11af 2791 if (!sbs->physState)
mjr 78:1e00b3fa11af 2792 shiftButton.state = 0;
mjr 78:1e00b3fa11af 2793 break;
mjr 78:1e00b3fa11af 2794
mjr 78:1e00b3fa11af 2795 case 3:
mjr 78:1e00b3fa11af 2796 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 2797 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 2798 // has expired.
mjr 78:1e00b3fa11af 2799 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 2800 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 2801 else
mjr 78:1e00b3fa11af 2802 shiftButton.state = 0;
mjr 78:1e00b3fa11af 2803 break;
mjr 78:1e00b3fa11af 2804 }
mjr 66:2e3583fbd2f4 2805 break;
mjr 66:2e3583fbd2f4 2806
mjr 66:2e3583fbd2f4 2807 case 1:
mjr 78:1e00b3fa11af 2808 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 2809 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 2810 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 2811 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 2812 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 2813 break;
mjr 66:2e3583fbd2f4 2814 }
mjr 66:2e3583fbd2f4 2815 }
mjr 38:091e511ce8a0 2816
mjr 11:bd9da7088e6e 2817 // scan the button list
mjr 18:5e890ebd0023 2818 ButtonState *bs = buttonState;
mjr 65:739875521aae 2819 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 2820 {
mjr 77:0b96f6867312 2821 // get the config entry for the button
mjr 77:0b96f6867312 2822 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 2823
mjr 66:2e3583fbd2f4 2824 // Check the button type:
mjr 66:2e3583fbd2f4 2825 // - shift button
mjr 66:2e3583fbd2f4 2826 // - pulsed button
mjr 66:2e3583fbd2f4 2827 // - regular button
mjr 66:2e3583fbd2f4 2828 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 2829 {
mjr 78:1e00b3fa11af 2830 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 2831 // depends on the mode.
mjr 78:1e00b3fa11af 2832 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 2833 {
mjr 78:1e00b3fa11af 2834 case 0:
mjr 78:1e00b3fa11af 2835 default:
mjr 78:1e00b3fa11af 2836 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 2837 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 2838 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 2839 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 2840 break;
mjr 78:1e00b3fa11af 2841
mjr 78:1e00b3fa11af 2842 case 1:
mjr 78:1e00b3fa11af 2843 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 2844 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 2845 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 2846 break;
mjr 66:2e3583fbd2f4 2847 }
mjr 66:2e3583fbd2f4 2848 }
mjr 66:2e3583fbd2f4 2849 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 2850 {
mjr 38:091e511ce8a0 2851 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 2852 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 2853 {
mjr 53:9b2611964afc 2854 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 2855 bs->pulseTime -= dt;
mjr 53:9b2611964afc 2856 }
mjr 53:9b2611964afc 2857 else
mjr 53:9b2611964afc 2858 {
mjr 53:9b2611964afc 2859 // pulse time expired - check for a state change
mjr 53:9b2611964afc 2860 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 2861 switch (bs->pulseState)
mjr 18:5e890ebd0023 2862 {
mjr 38:091e511ce8a0 2863 case 1:
mjr 38:091e511ce8a0 2864 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 2865 if (bs->physState)
mjr 53:9b2611964afc 2866 {
mjr 38:091e511ce8a0 2867 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2868 bs->pulseState = 2;
mjr 53:9b2611964afc 2869 bs->logState = 1;
mjr 38:091e511ce8a0 2870 }
mjr 38:091e511ce8a0 2871 break;
mjr 18:5e890ebd0023 2872
mjr 38:091e511ce8a0 2873 case 2:
mjr 38:091e511ce8a0 2874 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 2875 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 2876 // change in state in the logical button
mjr 38:091e511ce8a0 2877 bs->pulseState = 3;
mjr 38:091e511ce8a0 2878 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2879 bs->logState = 0;
mjr 38:091e511ce8a0 2880 break;
mjr 38:091e511ce8a0 2881
mjr 38:091e511ce8a0 2882 case 3:
mjr 38:091e511ce8a0 2883 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 2884 if (!bs->physState)
mjr 53:9b2611964afc 2885 {
mjr 38:091e511ce8a0 2886 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2887 bs->pulseState = 4;
mjr 53:9b2611964afc 2888 bs->logState = 1;
mjr 38:091e511ce8a0 2889 }
mjr 38:091e511ce8a0 2890 break;
mjr 38:091e511ce8a0 2891
mjr 38:091e511ce8a0 2892 case 4:
mjr 38:091e511ce8a0 2893 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 2894 bs->pulseState = 1;
mjr 38:091e511ce8a0 2895 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2896 bs->logState = 0;
mjr 38:091e511ce8a0 2897 break;
mjr 18:5e890ebd0023 2898 }
mjr 18:5e890ebd0023 2899 }
mjr 38:091e511ce8a0 2900 }
mjr 38:091e511ce8a0 2901 else
mjr 38:091e511ce8a0 2902 {
mjr 38:091e511ce8a0 2903 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 2904 bs->logState = bs->physState;
mjr 38:091e511ce8a0 2905 }
mjr 77:0b96f6867312 2906
mjr 77:0b96f6867312 2907 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 2908 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 2909 //
mjr 78:1e00b3fa11af 2910 // - the shift button is down, AND
mjr 78:1e00b3fa11af 2911 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 2912 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 2913 //
mjr 78:1e00b3fa11af 2914 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 2915 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 2916 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 2917 //
mjr 78:1e00b3fa11af 2918 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 2919 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 2920 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 2921 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 2922 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 2923 bool useShift =
mjr 77:0b96f6867312 2924 (shiftButton.state != 0
mjr 78:1e00b3fa11af 2925 && shiftButton.index != i
mjr 77:0b96f6867312 2926 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 2927 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 2928 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 2929
mjr 77:0b96f6867312 2930 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 2931 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 2932 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 2933 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 2934 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 2935 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 2936 shiftButton.state = 2;
mjr 35:e959ffba78fd 2937
mjr 38:091e511ce8a0 2938 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 2939 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 2940 {
mjr 77:0b96f6867312 2941 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 2942 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 2943 {
mjr 77:0b96f6867312 2944 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 2945 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 2946 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 2947 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 2948 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 2949 // the night mode state.
mjr 77:0b96f6867312 2950 //
mjr 77:0b96f6867312 2951 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 2952 // mode. Shifting only works for toggle mode.
mjr 53:9b2611964afc 2953 if (cfg.nightMode.flags & 0x01)
mjr 53:9b2611964afc 2954 {
mjr 77:0b96f6867312 2955 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 2956 // current switch state.
mjr 53:9b2611964afc 2957 setNightMode(bs->logState);
mjr 53:9b2611964afc 2958 }
mjr 53:9b2611964afc 2959 else
mjr 53:9b2611964afc 2960 {
mjr 77:0b96f6867312 2961 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 2962 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 2963 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 2964 // OFF to ON.
mjr 66:2e3583fbd2f4 2965 //
mjr 77:0b96f6867312 2966 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 2967 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 2968 // button.
mjr 77:0b96f6867312 2969 bool pressed;
mjr 66:2e3583fbd2f4 2970 if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 2971 {
mjr 77:0b96f6867312 2972 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 2973 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 2974 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 2975 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 2976 }
mjr 77:0b96f6867312 2977 else
mjr 77:0b96f6867312 2978 {
mjr 77:0b96f6867312 2979 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 2980 // regular unshifted button. The button press only
mjr 77:0b96f6867312 2981 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 2982 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 2983 }
mjr 66:2e3583fbd2f4 2984
mjr 66:2e3583fbd2f4 2985 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 2986 // toggle night mode
mjr 66:2e3583fbd2f4 2987 if (pressed)
mjr 53:9b2611964afc 2988 toggleNightMode();
mjr 53:9b2611964afc 2989 }
mjr 35:e959ffba78fd 2990 }
mjr 38:091e511ce8a0 2991
mjr 77:0b96f6867312 2992 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 2993 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 2994 if (irc != 0)
mjr 77:0b96f6867312 2995 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 2996
mjr 38:091e511ce8a0 2997 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 2998 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 2999 }
mjr 38:091e511ce8a0 3000
mjr 53:9b2611964afc 3001 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 3002 // key state list
mjr 53:9b2611964afc 3003 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 3004 {
mjr 70:9f58735a1732 3005 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 3006 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 3007 uint8_t typ, val;
mjr 77:0b96f6867312 3008 if (useShift)
mjr 66:2e3583fbd2f4 3009 {
mjr 77:0b96f6867312 3010 typ = bc->typ2;
mjr 77:0b96f6867312 3011 val = bc->val2;
mjr 66:2e3583fbd2f4 3012 }
mjr 77:0b96f6867312 3013 else
mjr 77:0b96f6867312 3014 {
mjr 77:0b96f6867312 3015 typ = bc->typ;
mjr 77:0b96f6867312 3016 val = bc->val;
mjr 77:0b96f6867312 3017 }
mjr 77:0b96f6867312 3018
mjr 70:9f58735a1732 3019 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 3020 // the keyboard or joystick event.
mjr 77:0b96f6867312 3021 ks.addKey(typ, val);
mjr 18:5e890ebd0023 3022 }
mjr 11:bd9da7088e6e 3023 }
mjr 77:0b96f6867312 3024
mjr 77:0b96f6867312 3025 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 3026 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 3027 // the IR key.
mjr 77:0b96f6867312 3028 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 3029 {
mjr 77:0b96f6867312 3030 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 3031 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 3032 }
mjr 77:0b96f6867312 3033
mjr 77:0b96f6867312 3034 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 3035 // key state variables to reflect the new state.
mjr 77:0b96f6867312 3036
mjr 77:0b96f6867312 3037 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 3038 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 3039 jsButtons = ks.js;
mjr 77:0b96f6867312 3040
mjr 77:0b96f6867312 3041 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 3042 // something changes)
mjr 77:0b96f6867312 3043 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 3044 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 3045 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 3046 {
mjr 35:e959ffba78fd 3047 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3048 kbState.changed = true;
mjr 77:0b96f6867312 3049 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 3050 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 3051 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 3052 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 3053 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 3054 }
mjr 35:e959ffba78fd 3055 else {
mjr 35:e959ffba78fd 3056 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 3057 kbState.nkeys = 6;
mjr 35:e959ffba78fd 3058 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 3059 }
mjr 35:e959ffba78fd 3060 }
mjr 35:e959ffba78fd 3061
mjr 77:0b96f6867312 3062 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 3063 // something changes)
mjr 77:0b96f6867312 3064 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 3065 {
mjr 77:0b96f6867312 3066 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3067 mediaState.changed = true;
mjr 77:0b96f6867312 3068 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 3069 }
mjr 11:bd9da7088e6e 3070 }
mjr 11:bd9da7088e6e 3071
mjr 73:4e8ce0b18915 3072 // Send a button status report
mjr 73:4e8ce0b18915 3073 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 3074 {
mjr 73:4e8ce0b18915 3075 // start with all buttons off
mjr 73:4e8ce0b18915 3076 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 3077 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 3078
mjr 73:4e8ce0b18915 3079 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 3080 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 3081 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 3082 {
mjr 73:4e8ce0b18915 3083 // get the physical state
mjr 73:4e8ce0b18915 3084 int b = bs->physState;
mjr 73:4e8ce0b18915 3085
mjr 73:4e8ce0b18915 3086 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 3087 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 3088 int si = idx / 8;
mjr 73:4e8ce0b18915 3089 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 3090 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3091 }
mjr 73:4e8ce0b18915 3092
mjr 73:4e8ce0b18915 3093 // send the report
mjr 73:4e8ce0b18915 3094 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3095 }
mjr 73:4e8ce0b18915 3096
mjr 5:a70c0bce770d 3097 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3098 //
mjr 5:a70c0bce770d 3099 // Customization joystick subbclass
mjr 5:a70c0bce770d 3100 //
mjr 5:a70c0bce770d 3101
mjr 5:a70c0bce770d 3102 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3103 {
mjr 5:a70c0bce770d 3104 public:
mjr 35:e959ffba78fd 3105 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 3106 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 3107 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 3108 {
mjr 54:fd77a6b2f76c 3109 sleeping_ = false;
mjr 54:fd77a6b2f76c 3110 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3111 timer_.start();
mjr 54:fd77a6b2f76c 3112 }
mjr 54:fd77a6b2f76c 3113
mjr 54:fd77a6b2f76c 3114 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3115 void diagFlash()
mjr 54:fd77a6b2f76c 3116 {
mjr 54:fd77a6b2f76c 3117 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3118 {
mjr 54:fd77a6b2f76c 3119 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3120 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3121 {
mjr 54:fd77a6b2f76c 3122 // short red flash
mjr 54:fd77a6b2f76c 3123 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3124 wait_us(50000);
mjr 54:fd77a6b2f76c 3125 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3126 wait_us(50000);
mjr 54:fd77a6b2f76c 3127 }
mjr 54:fd77a6b2f76c 3128 }
mjr 5:a70c0bce770d 3129 }
mjr 5:a70c0bce770d 3130
mjr 5:a70c0bce770d 3131 // are we connected?
mjr 5:a70c0bce770d 3132 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3133
mjr 54:fd77a6b2f76c 3134 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3135 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3136 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3137 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3138 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3139
mjr 54:fd77a6b2f76c 3140 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3141 //
mjr 54:fd77a6b2f76c 3142 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3143 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3144 // other way.
mjr 54:fd77a6b2f76c 3145 //
mjr 54:fd77a6b2f76c 3146 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3147 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3148 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3149 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3150 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3151 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3152 //
mjr 54:fd77a6b2f76c 3153 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3154 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3155 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3156 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3157 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3158 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3159 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3160 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3161 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3162 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3163 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3164 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3165 // is effectively dead.
mjr 54:fd77a6b2f76c 3166 //
mjr 54:fd77a6b2f76c 3167 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3168 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3169 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3170 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3171 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3172 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3173 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3174 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3175 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3176 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3177 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3178 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3179 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3180 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3181 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3182 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3183 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3184 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3185 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3186 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3187 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3188 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3189 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3190 // a disconnect.
mjr 54:fd77a6b2f76c 3191 //
mjr 54:fd77a6b2f76c 3192 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3193 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3194 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3195 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3196 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3197 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3198 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3199 //
mjr 54:fd77a6b2f76c 3200 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3201 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3202 //
mjr 54:fd77a6b2f76c 3203 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3204 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3205 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3206 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3207 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3208 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3209 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3210 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3211 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3212 // reliable in practice.
mjr 54:fd77a6b2f76c 3213 //
mjr 54:fd77a6b2f76c 3214 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3215 //
mjr 54:fd77a6b2f76c 3216 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3217 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3218 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3219 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3220 // return.
mjr 54:fd77a6b2f76c 3221 //
mjr 54:fd77a6b2f76c 3222 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3223 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3224 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3225 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3226 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3227 //
mjr 54:fd77a6b2f76c 3228 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3229 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3230 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3231 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3232 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3233 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3234 //
mjr 54:fd77a6b2f76c 3235 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3236 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3237 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3238 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3239 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3240 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3241 // freezes over.
mjr 54:fd77a6b2f76c 3242 //
mjr 54:fd77a6b2f76c 3243 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3244 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3245 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3246 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3247 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3248 void recoverConnection()
mjr 54:fd77a6b2f76c 3249 {
mjr 54:fd77a6b2f76c 3250 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3251 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3252 {
mjr 54:fd77a6b2f76c 3253 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3254 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 3255 {
mjr 54:fd77a6b2f76c 3256 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 3257 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 3258 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 3259 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 3260 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 3261 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 3262 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 3263 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 3264 __disable_irq();
mjr 54:fd77a6b2f76c 3265 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 3266 {
mjr 54:fd77a6b2f76c 3267 connect(false);
mjr 54:fd77a6b2f76c 3268 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3269 done = true;
mjr 54:fd77a6b2f76c 3270 }
mjr 54:fd77a6b2f76c 3271 __enable_irq();
mjr 54:fd77a6b2f76c 3272 }
mjr 54:fd77a6b2f76c 3273 }
mjr 54:fd77a6b2f76c 3274 }
mjr 5:a70c0bce770d 3275
mjr 5:a70c0bce770d 3276 protected:
mjr 54:fd77a6b2f76c 3277 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 3278 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 3279 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 3280 //
mjr 54:fd77a6b2f76c 3281 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 3282 //
mjr 54:fd77a6b2f76c 3283 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 3284 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 3285 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 3286 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 3287 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 3288 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 3289 {
mjr 54:fd77a6b2f76c 3290 // note the new state
mjr 54:fd77a6b2f76c 3291 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 3292
mjr 54:fd77a6b2f76c 3293 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 3294 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 3295 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 3296 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 3297 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 3298 {
mjr 54:fd77a6b2f76c 3299 disconnect();
mjr 54:fd77a6b2f76c 3300 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 3301 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 3302 }
mjr 54:fd77a6b2f76c 3303 }
mjr 54:fd77a6b2f76c 3304
mjr 54:fd77a6b2f76c 3305 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 3306 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 3307
mjr 54:fd77a6b2f76c 3308 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 3309 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 3310
mjr 54:fd77a6b2f76c 3311 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 3312 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 3313
mjr 54:fd77a6b2f76c 3314 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 3315 Timer timer_;
mjr 5:a70c0bce770d 3316 };
mjr 5:a70c0bce770d 3317
mjr 5:a70c0bce770d 3318 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3319 //
mjr 5:a70c0bce770d 3320 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 3321 //
mjr 5:a70c0bce770d 3322
mjr 5:a70c0bce770d 3323 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 3324 //
mjr 5:a70c0bce770d 3325 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 3326 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 3327 // automatic calibration.
mjr 5:a70c0bce770d 3328 //
mjr 77:0b96f6867312 3329 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 3330 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 3331 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 3332 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 3333 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 3334 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 3335 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 3336 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 3337 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 3338 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 3339 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 3340 //
mjr 77:0b96f6867312 3341 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 3342 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 3343 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 3344 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 3345 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 3346 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 3347 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 3348 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 3349 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 3350 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 3351 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 3352 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 3353 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 3354 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 3355 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 3356 // rather than change it across the board.
mjr 5:a70c0bce770d 3357 //
mjr 6:cc35eb643e8f 3358 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 3359 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 3360 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 3361 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 3362 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 3363 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 3364 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 3365 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 3366 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 3367 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 3368 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 3369 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 3370 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 3371 // of nudging, say).
mjr 5:a70c0bce770d 3372 //
mjr 5:a70c0bce770d 3373
mjr 17:ab3cec0c8bf4 3374 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 3375 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 3376
mjr 17:ab3cec0c8bf4 3377 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 3378 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 3379 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 3380
mjr 17:ab3cec0c8bf4 3381 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 3382 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 3383 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 3384 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 3385
mjr 17:ab3cec0c8bf4 3386
mjr 6:cc35eb643e8f 3387 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 3388 struct AccHist
mjr 5:a70c0bce770d 3389 {
mjr 77:0b96f6867312 3390 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3391 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 3392 {
mjr 6:cc35eb643e8f 3393 // save the raw position
mjr 6:cc35eb643e8f 3394 this->x = x;
mjr 6:cc35eb643e8f 3395 this->y = y;
mjr 77:0b96f6867312 3396 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 3397 }
mjr 6:cc35eb643e8f 3398
mjr 6:cc35eb643e8f 3399 // reading for this entry
mjr 77:0b96f6867312 3400 int x, y;
mjr 77:0b96f6867312 3401
mjr 77:0b96f6867312 3402 // (distance from previous entry) squared
mjr 77:0b96f6867312 3403 int dsq;
mjr 5:a70c0bce770d 3404
mjr 6:cc35eb643e8f 3405 // total and count of samples averaged over this period
mjr 77:0b96f6867312 3406 int xtot, ytot;
mjr 6:cc35eb643e8f 3407 int cnt;
mjr 6:cc35eb643e8f 3408
mjr 77:0b96f6867312 3409 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3410 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 3411 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 3412 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 3413
mjr 77:0b96f6867312 3414 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 3415 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 3416 };
mjr 5:a70c0bce770d 3417
mjr 5:a70c0bce770d 3418 // accelerometer wrapper class
mjr 3:3514575d4f86 3419 class Accel
mjr 3:3514575d4f86 3420 {
mjr 3:3514575d4f86 3421 public:
mjr 78:1e00b3fa11af 3422 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin,
mjr 78:1e00b3fa11af 3423 int range, int autoCenterMode)
mjr 77:0b96f6867312 3424 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 3425 {
mjr 5:a70c0bce770d 3426 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 3427 irqPin_ = irqPin;
mjr 77:0b96f6867312 3428
mjr 77:0b96f6867312 3429 // remember the range
mjr 77:0b96f6867312 3430 range_ = range;
mjr 78:1e00b3fa11af 3431
mjr 78:1e00b3fa11af 3432 // set the auto-centering mode
mjr 78:1e00b3fa11af 3433 setAutoCenterMode(autoCenterMode);
mjr 78:1e00b3fa11af 3434
mjr 78:1e00b3fa11af 3435 // no manual centering request has been received
mjr 78:1e00b3fa11af 3436 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 3437
mjr 5:a70c0bce770d 3438 // reset and initialize
mjr 5:a70c0bce770d 3439 reset();
mjr 5:a70c0bce770d 3440 }
mjr 5:a70c0bce770d 3441
mjr 78:1e00b3fa11af 3442 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 3443 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 3444 // as soon as we have enough data.
mjr 78:1e00b3fa11af 3445 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 3446
mjr 78:1e00b3fa11af 3447 // set the auto-centering mode
mjr 78:1e00b3fa11af 3448 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 3449 {
mjr 78:1e00b3fa11af 3450 // remember the mode
mjr 78:1e00b3fa11af 3451 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 3452
mjr 78:1e00b3fa11af 3453 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 3454 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 3455 if (mode == 0)
mjr 78:1e00b3fa11af 3456 {
mjr 78:1e00b3fa11af 3457 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 3458 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 3459 }
mjr 78:1e00b3fa11af 3460 else if (mode <= 60)
mjr 78:1e00b3fa11af 3461 {
mjr 78:1e00b3fa11af 3462 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 3463 // interval is 1/5 of this
mjr 78:1e00b3fa11af 3464 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 3465 }
mjr 78:1e00b3fa11af 3466 else
mjr 78:1e00b3fa11af 3467 {
mjr 78:1e00b3fa11af 3468 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 3469 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 3470 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 3471 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 3472 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 3473 // includes recent data.
mjr 78:1e00b3fa11af 3474 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 3475 }
mjr 78:1e00b3fa11af 3476 }
mjr 78:1e00b3fa11af 3477
mjr 5:a70c0bce770d 3478 void reset()
mjr 5:a70c0bce770d 3479 {
mjr 6:cc35eb643e8f 3480 // clear the center point
mjr 77:0b96f6867312 3481 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 3482
mjr 77:0b96f6867312 3483 // start the auto-centering timer
mjr 5:a70c0bce770d 3484 tCenter_.start();
mjr 5:a70c0bce770d 3485 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 3486
mjr 5:a70c0bce770d 3487 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 3488 mma_.init();
mjr 77:0b96f6867312 3489
mjr 77:0b96f6867312 3490 // set the range
mjr 77:0b96f6867312 3491 mma_.setRange(
mjr 77:0b96f6867312 3492 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 3493 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 3494 2);
mjr 6:cc35eb643e8f 3495
mjr 77:0b96f6867312 3496 // set the average accumulators to zero
mjr 77:0b96f6867312 3497 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3498 nSum_ = 0;
mjr 3:3514575d4f86 3499
mjr 3:3514575d4f86 3500 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 3501 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 3502 }
mjr 3:3514575d4f86 3503
mjr 77:0b96f6867312 3504 void poll()
mjr 76:7f5912b6340e 3505 {
mjr 77:0b96f6867312 3506 // read samples until we clear the FIFO
mjr 77:0b96f6867312 3507 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 3508 {
mjr 77:0b96f6867312 3509 int x, y, z;
mjr 77:0b96f6867312 3510 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 3511
mjr 77:0b96f6867312 3512 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 3513 xSum_ += (x - cx_);
mjr 77:0b96f6867312 3514 ySum_ += (y - cy_);
mjr 77:0b96f6867312 3515 ++nSum_;
mjr 77:0b96f6867312 3516
mjr 77:0b96f6867312 3517 // store the updates
mjr 77:0b96f6867312 3518 ax_ = x;
mjr 77:0b96f6867312 3519 ay_ = y;
mjr 77:0b96f6867312 3520 az_ = z;
mjr 77:0b96f6867312 3521 }
mjr 76:7f5912b6340e 3522 }
mjr 77:0b96f6867312 3523
mjr 9:fd65b0a94720 3524 void get(int &x, int &y)
mjr 3:3514575d4f86 3525 {
mjr 77:0b96f6867312 3526 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 3527 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 3528 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 3529 int nSum = nSum_;
mjr 6:cc35eb643e8f 3530
mjr 77:0b96f6867312 3531 // reset the average accumulators for the next run
mjr 77:0b96f6867312 3532 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3533 nSum_ = 0;
mjr 77:0b96f6867312 3534
mjr 77:0b96f6867312 3535 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 3536 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3537 p->addAvg(ax, ay);
mjr 77:0b96f6867312 3538
mjr 78:1e00b3fa11af 3539 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 3540 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 3541 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 3542 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 3543 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 3544 {
mjr 77:0b96f6867312 3545 // add the latest raw sample to the history list
mjr 77:0b96f6867312 3546 AccHist *prv = p;
mjr 77:0b96f6867312 3547 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 3548 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3549 iAccPrv_ = 0;
mjr 77:0b96f6867312 3550 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3551 p->set(ax, ay, prv);
mjr 77:0b96f6867312 3552
mjr 78:1e00b3fa11af 3553 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 3554 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3555 {
mjr 78:1e00b3fa11af 3556 // Center if:
mjr 78:1e00b3fa11af 3557 //
mjr 78:1e00b3fa11af 3558 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 3559 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 3560 //
mjr 78:1e00b3fa11af 3561 // - A manual centering request is pending
mjr 78:1e00b3fa11af 3562 //
mjr 77:0b96f6867312 3563 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 3564 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 3565 if (manualCenterRequest_
mjr 78:1e00b3fa11af 3566 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 3567 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 3568 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 3569 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 3570 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 3571 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 3572 {
mjr 77:0b96f6867312 3573 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 3574 // the samples over the rest period
mjr 77:0b96f6867312 3575 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 3576 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 3577
mjr 78:1e00b3fa11af 3578 // clear any pending manual centering request
mjr 78:1e00b3fa11af 3579 manualCenterRequest_ = false;
mjr 77:0b96f6867312 3580 }
mjr 77:0b96f6867312 3581 }
mjr 77:0b96f6867312 3582 else
mjr 77:0b96f6867312 3583 {
mjr 77:0b96f6867312 3584 // not enough samples yet; just up the count
mjr 77:0b96f6867312 3585 ++nAccPrv_;
mjr 77:0b96f6867312 3586 }
mjr 6:cc35eb643e8f 3587
mjr 77:0b96f6867312 3588 // clear the new item's running totals
mjr 77:0b96f6867312 3589 p->clearAvg();
mjr 5:a70c0bce770d 3590
mjr 77:0b96f6867312 3591 // reset the timer
mjr 77:0b96f6867312 3592 tCenter_.reset();
mjr 77:0b96f6867312 3593 }
mjr 5:a70c0bce770d 3594
mjr 77:0b96f6867312 3595 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 3596 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 3597 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 3598
mjr 6:cc35eb643e8f 3599 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 3600 if (x != 0 || y != 0)
mjr 77:0b96f6867312 3601 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 3602 #endif
mjr 77:0b96f6867312 3603 }
mjr 29:582472d0bc57 3604
mjr 3:3514575d4f86 3605 private:
mjr 6:cc35eb643e8f 3606 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 3607 int rawToReport(int v)
mjr 5:a70c0bce770d 3608 {
mjr 77:0b96f6867312 3609 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 3610 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 3611 // so their scale is 2^13.
mjr 77:0b96f6867312 3612 //
mjr 77:0b96f6867312 3613 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 3614 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 3615 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 3616 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 3617 int i = v*JOYMAX;
mjr 77:0b96f6867312 3618 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 3619
mjr 6:cc35eb643e8f 3620 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 3621 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 3622 static const int filter[] = {
mjr 6:cc35eb643e8f 3623 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 3624 0,
mjr 6:cc35eb643e8f 3625 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 3626 };
mjr 6:cc35eb643e8f 3627 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 3628 }
mjr 5:a70c0bce770d 3629
mjr 3:3514575d4f86 3630 // underlying accelerometer object
mjr 3:3514575d4f86 3631 MMA8451Q mma_;
mjr 3:3514575d4f86 3632
mjr 77:0b96f6867312 3633 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 3634 // scale -8192..+8191
mjr 77:0b96f6867312 3635 int ax_, ay_, az_;
mjr 77:0b96f6867312 3636
mjr 77:0b96f6867312 3637 // running sum of readings since last get()
mjr 77:0b96f6867312 3638 int xSum_, ySum_;
mjr 77:0b96f6867312 3639
mjr 77:0b96f6867312 3640 // number of readings since last get()
mjr 77:0b96f6867312 3641 int nSum_;
mjr 6:cc35eb643e8f 3642
mjr 6:cc35eb643e8f 3643 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 3644 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 3645 // at rest.
mjr 77:0b96f6867312 3646 int cx_, cy_;
mjr 77:0b96f6867312 3647
mjr 77:0b96f6867312 3648 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 3649 uint8_t range_;
mjr 78:1e00b3fa11af 3650
mjr 78:1e00b3fa11af 3651 // auto-center mode:
mjr 78:1e00b3fa11af 3652 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 3653 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 3654 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 3655 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 3656
mjr 78:1e00b3fa11af 3657 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 3658 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 3659
mjr 78:1e00b3fa11af 3660 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 3661 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 3662
mjr 77:0b96f6867312 3663 // atuo-centering timer
mjr 5:a70c0bce770d 3664 Timer tCenter_;
mjr 6:cc35eb643e8f 3665
mjr 6:cc35eb643e8f 3666 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 3667 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 3668 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 3669 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 3670 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 3671 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 3672 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 3673 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 3674 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 3675 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 3676 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 3677 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 3678 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 3679 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 3680 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 3681
mjr 5:a70c0bce770d 3682 // interurupt pin name
mjr 5:a70c0bce770d 3683 PinName irqPin_;
mjr 3:3514575d4f86 3684 };
mjr 3:3514575d4f86 3685
mjr 5:a70c0bce770d 3686 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3687 //
mjr 14:df700b22ca08 3688 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 3689 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 3690 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 3691 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 3692 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 3693 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 3694 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 3695 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 3696 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 3697 //
mjr 14:df700b22ca08 3698 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 3699 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 3700 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 3701 //
mjr 5:a70c0bce770d 3702 void clear_i2c()
mjr 5:a70c0bce770d 3703 {
mjr 38:091e511ce8a0 3704 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 3705 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 3706 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 3707
mjr 5:a70c0bce770d 3708 // clock the SCL 9 times
mjr 5:a70c0bce770d 3709 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 3710 {
mjr 5:a70c0bce770d 3711 scl = 1;
mjr 5:a70c0bce770d 3712 wait_us(20);
mjr 5:a70c0bce770d 3713 scl = 0;
mjr 5:a70c0bce770d 3714 wait_us(20);
mjr 5:a70c0bce770d 3715 }
mjr 5:a70c0bce770d 3716 }
mjr 76:7f5912b6340e 3717
mjr 76:7f5912b6340e 3718
mjr 14:df700b22ca08 3719 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 3720 //
mjr 33:d832bcab089e 3721 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 3722 // for a given interval before allowing an update.
mjr 33:d832bcab089e 3723 //
mjr 33:d832bcab089e 3724 class Debouncer
mjr 33:d832bcab089e 3725 {
mjr 33:d832bcab089e 3726 public:
mjr 33:d832bcab089e 3727 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 3728 {
mjr 33:d832bcab089e 3729 t.start();
mjr 33:d832bcab089e 3730 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 3731 this->tmin = tmin;
mjr 33:d832bcab089e 3732 }
mjr 33:d832bcab089e 3733
mjr 33:d832bcab089e 3734 // Get the current stable value
mjr 33:d832bcab089e 3735 bool val() const { return stable; }
mjr 33:d832bcab089e 3736
mjr 33:d832bcab089e 3737 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 3738 // input device.
mjr 33:d832bcab089e 3739 void sampleIn(bool val)
mjr 33:d832bcab089e 3740 {
mjr 33:d832bcab089e 3741 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 3742 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 3743 // on the sample reader.
mjr 33:d832bcab089e 3744 if (val != prv)
mjr 33:d832bcab089e 3745 {
mjr 33:d832bcab089e 3746 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 3747 t.reset();
mjr 33:d832bcab089e 3748
mjr 33:d832bcab089e 3749 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 3750 prv = val;
mjr 33:d832bcab089e 3751 }
mjr 33:d832bcab089e 3752 else if (val != stable)
mjr 33:d832bcab089e 3753 {
mjr 33:d832bcab089e 3754 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 3755 // and different from the stable value. This means that
mjr 33:d832bcab089e 3756 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 3757 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 3758 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 3759 if (t.read() > tmin)
mjr 33:d832bcab089e 3760 stable = val;
mjr 33:d832bcab089e 3761 }
mjr 33:d832bcab089e 3762 }
mjr 33:d832bcab089e 3763
mjr 33:d832bcab089e 3764 private:
mjr 33:d832bcab089e 3765 // current stable value
mjr 33:d832bcab089e 3766 bool stable;
mjr 33:d832bcab089e 3767
mjr 33:d832bcab089e 3768 // last raw sample value
mjr 33:d832bcab089e 3769 bool prv;
mjr 33:d832bcab089e 3770
mjr 33:d832bcab089e 3771 // elapsed time since last raw input change
mjr 33:d832bcab089e 3772 Timer t;
mjr 33:d832bcab089e 3773
mjr 33:d832bcab089e 3774 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 3775 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 3776 float tmin;
mjr 33:d832bcab089e 3777 };
mjr 33:d832bcab089e 3778
mjr 33:d832bcab089e 3779
mjr 33:d832bcab089e 3780 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 3781 //
mjr 33:d832bcab089e 3782 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 3783 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 3784 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 3785 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 3786 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 3787 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 3788 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 3789 //
mjr 33:d832bcab089e 3790 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 3791 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 3792 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 3793 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 3794 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 3795 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 3796 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 3797 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 3798 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 3799 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 3800 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 3801 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 3802 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 3803 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 3804 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 3805 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 3806 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 3807 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 3808 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 3809 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 3810 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 3811 //
mjr 40:cc0d9814522b 3812 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 3813 // of tricky but likely scenarios:
mjr 33:d832bcab089e 3814 //
mjr 33:d832bcab089e 3815 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 3816 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 3817 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 3818 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 3819 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 3820 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 3821 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 3822 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 3823 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 3824 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 3825 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 3826 //
mjr 33:d832bcab089e 3827 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 3828 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 3829 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 3830 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 3831 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 3832 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 3833 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 3834 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 3835 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 3836 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 3837 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 3838 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 3839 // first check.
mjr 33:d832bcab089e 3840 //
mjr 33:d832bcab089e 3841 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 3842 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 3843 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 3844 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 3845 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 3846 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 3847 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 3848 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 3849 //
mjr 33:d832bcab089e 3850
mjr 77:0b96f6867312 3851 // Current PSU2 power state:
mjr 33:d832bcab089e 3852 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 3853 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 3854 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 3855 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 3856 // 5 -> TV relay on
mjr 77:0b96f6867312 3857 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 3858 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 3859
mjr 73:4e8ce0b18915 3860 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 3861 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 3862 // separate state for each:
mjr 73:4e8ce0b18915 3863 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 3864 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 3865 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 3866 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 3867 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 3868
mjr 77:0b96f6867312 3869 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 3870 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 3871 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 3872 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 3873 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 3874 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 3875 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 3876 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 3877 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 3878 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 3879 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 3880
mjr 77:0b96f6867312 3881 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 3882 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 3883
mjr 35:e959ffba78fd 3884 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 3885 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 3886 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 3887
mjr 73:4e8ce0b18915 3888 // Apply the current TV relay state
mjr 73:4e8ce0b18915 3889 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 3890 {
mjr 73:4e8ce0b18915 3891 // update the state
mjr 73:4e8ce0b18915 3892 if (state)
mjr 73:4e8ce0b18915 3893 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 3894 else
mjr 73:4e8ce0b18915 3895 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 3896
mjr 73:4e8ce0b18915 3897 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 3898 if (tv_relay != 0)
mjr 73:4e8ce0b18915 3899 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 3900 }
mjr 35:e959ffba78fd 3901
mjr 77:0b96f6867312 3902 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 3903 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 3904 // functions.
mjr 77:0b96f6867312 3905 Timer powerStatusTimer;
mjr 77:0b96f6867312 3906 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 3907 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 3908 {
mjr 77:0b96f6867312 3909 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 3910 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 3911 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 3912 // skip this whole routine.
mjr 77:0b96f6867312 3913 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 3914 return;
mjr 77:0b96f6867312 3915
mjr 77:0b96f6867312 3916 // reset the update timer for next time
mjr 77:0b96f6867312 3917 powerStatusTimer.reset();
mjr 77:0b96f6867312 3918
mjr 77:0b96f6867312 3919 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 3920 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 3921 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 3922 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 3923 static Timer tv_timer;
mjr 35:e959ffba78fd 3924
mjr 33:d832bcab089e 3925 // Check our internal state
mjr 33:d832bcab089e 3926 switch (psu2_state)
mjr 33:d832bcab089e 3927 {
mjr 33:d832bcab089e 3928 case 1:
mjr 33:d832bcab089e 3929 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 3930 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 3931 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 3932 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 3933 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 3934 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 3935 {
mjr 33:d832bcab089e 3936 // switch to OFF state
mjr 33:d832bcab089e 3937 psu2_state = 2;
mjr 33:d832bcab089e 3938
mjr 33:d832bcab089e 3939 // try setting the latch
mjr 35:e959ffba78fd 3940 psu2_status_set->write(1);
mjr 33:d832bcab089e 3941 }
mjr 77:0b96f6867312 3942 powerTimerDiagState = 0;
mjr 33:d832bcab089e 3943 break;
mjr 33:d832bcab089e 3944
mjr 33:d832bcab089e 3945 case 2:
mjr 33:d832bcab089e 3946 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 3947 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 3948 psu2_status_set->write(0);
mjr 33:d832bcab089e 3949 psu2_state = 3;
mjr 77:0b96f6867312 3950 powerTimerDiagState = 0;
mjr 33:d832bcab089e 3951 break;
mjr 33:d832bcab089e 3952
mjr 33:d832bcab089e 3953 case 3:
mjr 33:d832bcab089e 3954 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 3955 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 3956 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 3957 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 3958 if (psu2_status_sense->read())
mjr 33:d832bcab089e 3959 {
mjr 33:d832bcab089e 3960 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 3961 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 3962 tv_timer.reset();
mjr 33:d832bcab089e 3963 tv_timer.start();
mjr 33:d832bcab089e 3964 psu2_state = 4;
mjr 73:4e8ce0b18915 3965
mjr 73:4e8ce0b18915 3966 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 3967 powerTimerDiagState = 2;
mjr 33:d832bcab089e 3968 }
mjr 33:d832bcab089e 3969 else
mjr 33:d832bcab089e 3970 {
mjr 33:d832bcab089e 3971 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 3972 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 3973 // was turned on since the last check.
mjr 35:e959ffba78fd 3974 psu2_status_set->write(1);
mjr 33:d832bcab089e 3975 psu2_state = 2;
mjr 33:d832bcab089e 3976 }
mjr 33:d832bcab089e 3977 break;
mjr 33:d832bcab089e 3978
mjr 33:d832bcab089e 3979 case 4:
mjr 77:0b96f6867312 3980 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 3981 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 3982 // off again before the countdown finished.
mjr 77:0b96f6867312 3983 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 3984 {
mjr 77:0b96f6867312 3985 // power is off - start a new check cycle
mjr 77:0b96f6867312 3986 psu2_status_set->write(1);
mjr 77:0b96f6867312 3987 psu2_state = 2;
mjr 77:0b96f6867312 3988 break;
mjr 77:0b96f6867312 3989 }
mjr 77:0b96f6867312 3990
mjr 77:0b96f6867312 3991 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 3992 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 3993
mjr 77:0b96f6867312 3994 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 3995 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 3996 {
mjr 33:d832bcab089e 3997 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 3998 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 3999 psu2_state = 5;
mjr 77:0b96f6867312 4000
mjr 77:0b96f6867312 4001 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 4002 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4003 }
mjr 33:d832bcab089e 4004 break;
mjr 33:d832bcab089e 4005
mjr 33:d832bcab089e 4006 case 5:
mjr 33:d832bcab089e 4007 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 4008 // it's now time to turn it off.
mjr 73:4e8ce0b18915 4009 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 4010
mjr 77:0b96f6867312 4011 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 4012 psu2_state = 6;
mjr 77:0b96f6867312 4013 tvon_ir_state = 0;
mjr 77:0b96f6867312 4014
mjr 77:0b96f6867312 4015 // diagnostic LEDs off for now
mjr 77:0b96f6867312 4016 powerTimerDiagState = 0;
mjr 77:0b96f6867312 4017 break;
mjr 77:0b96f6867312 4018
mjr 77:0b96f6867312 4019 case 6:
mjr 77:0b96f6867312 4020 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 4021 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 4022 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 4023 psu2_state = 1;
mjr 77:0b96f6867312 4024 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 4025
mjr 77:0b96f6867312 4026 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 4027 if (ir_tx != 0)
mjr 77:0b96f6867312 4028 {
mjr 77:0b96f6867312 4029 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 4030 if (ir_tx->isSending())
mjr 77:0b96f6867312 4031 {
mjr 77:0b96f6867312 4032 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 4033 // state 6.
mjr 77:0b96f6867312 4034 psu2_state = 6;
mjr 77:0b96f6867312 4035 powerTimerDiagState = 4;
mjr 77:0b96f6867312 4036 break;
mjr 77:0b96f6867312 4037 }
mjr 77:0b96f6867312 4038
mjr 77:0b96f6867312 4039 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 4040 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 4041 // number.
mjr 77:0b96f6867312 4042 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 4043 {
mjr 77:0b96f6867312 4044 // is this a TV ON command?
mjr 77:0b96f6867312 4045 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 4046 {
mjr 77:0b96f6867312 4047 // It's a TV ON command - check if it's the one we're
mjr 77:0b96f6867312 4048 // looking for.
mjr 77:0b96f6867312 4049 if (n == tvon_ir_state)
mjr 77:0b96f6867312 4050 {
mjr 77:0b96f6867312 4051 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 4052 // pushing its virtual button.
mjr 77:0b96f6867312 4053 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 4054 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 4055
mjr 77:0b96f6867312 4056 // Pushing the button starts transmission, and once
mjr 77:0b96f6867312 4057 // started, the transmission will run to completion
mjr 77:0b96f6867312 4058 // even if the button is no longer pushed. So we
mjr 77:0b96f6867312 4059 // can immediately un-push the button, since we only
mjr 77:0b96f6867312 4060 // need to send the code once.
mjr 77:0b96f6867312 4061 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 4062
mjr 77:0b96f6867312 4063 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 4064 // await the end of this transmission and move on to
mjr 77:0b96f6867312 4065 // the next one.
mjr 77:0b96f6867312 4066 psu2_state = 6;
mjr 77:0b96f6867312 4067 tvon_ir_state++;
mjr 77:0b96f6867312 4068 break;
mjr 77:0b96f6867312 4069 }
mjr 77:0b96f6867312 4070
mjr 77:0b96f6867312 4071 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 4072 ++n;
mjr 77:0b96f6867312 4073 }
mjr 77:0b96f6867312 4074 }
mjr 77:0b96f6867312 4075 }
mjr 33:d832bcab089e 4076 break;
mjr 33:d832bcab089e 4077 }
mjr 77:0b96f6867312 4078
mjr 77:0b96f6867312 4079 // update the diagnostic LEDs
mjr 77:0b96f6867312 4080 diagLED();
mjr 33:d832bcab089e 4081 }
mjr 33:d832bcab089e 4082
mjr 77:0b96f6867312 4083 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4084 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4085 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4086 // are configured as NC.
mjr 77:0b96f6867312 4087 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4088 {
mjr 55:4db125cd11a0 4089 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4090 // time is nonzero
mjr 77:0b96f6867312 4091 powerStatusTimer.reset();
mjr 77:0b96f6867312 4092 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4093 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4094 {
mjr 77:0b96f6867312 4095 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4096 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4097 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4098
mjr 77:0b96f6867312 4099 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4100 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4101 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4102
mjr 77:0b96f6867312 4103 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4104 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4105 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4106 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4107
mjr 77:0b96f6867312 4108 // Start the TV timer
mjr 77:0b96f6867312 4109 powerStatusTimer.start();
mjr 35:e959ffba78fd 4110 }
mjr 35:e959ffba78fd 4111 }
mjr 35:e959ffba78fd 4112
mjr 73:4e8ce0b18915 4113 // TV relay manual control timer. This lets us pulse the TV relay
mjr 73:4e8ce0b18915 4114 // under manual control, separately from the TV ON timer.
mjr 73:4e8ce0b18915 4115 Ticker tv_manualTicker;
mjr 73:4e8ce0b18915 4116 void TVManualInt()
mjr 73:4e8ce0b18915 4117 {
mjr 73:4e8ce0b18915 4118 tv_manualTicker.detach();
mjr 73:4e8ce0b18915 4119 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4120 }
mjr 73:4e8ce0b18915 4121
mjr 73:4e8ce0b18915 4122 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4123 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4124 //
mjr 73:4e8ce0b18915 4125 // Mode:
mjr 73:4e8ce0b18915 4126 // 0 = turn relay off
mjr 73:4e8ce0b18915 4127 // 1 = turn relay on
mjr 73:4e8ce0b18915 4128 // 2 = pulse relay
mjr 73:4e8ce0b18915 4129 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4130 {
mjr 73:4e8ce0b18915 4131 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4132 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4133 return;
mjr 73:4e8ce0b18915 4134
mjr 73:4e8ce0b18915 4135 switch (mode)
mjr 73:4e8ce0b18915 4136 {
mjr 73:4e8ce0b18915 4137 case 0:
mjr 73:4e8ce0b18915 4138 // relay off
mjr 73:4e8ce0b18915 4139 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4140 break;
mjr 73:4e8ce0b18915 4141
mjr 73:4e8ce0b18915 4142 case 1:
mjr 73:4e8ce0b18915 4143 // relay on
mjr 73:4e8ce0b18915 4144 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4145 break;
mjr 73:4e8ce0b18915 4146
mjr 73:4e8ce0b18915 4147 case 2:
mjr 73:4e8ce0b18915 4148 // Pulse the relay. Turn it on, then set our timer for 250ms.
mjr 73:4e8ce0b18915 4149 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4150 tv_manualTicker.attach(&TVManualInt, 0.25);
mjr 73:4e8ce0b18915 4151 break;
mjr 73:4e8ce0b18915 4152 }
mjr 73:4e8ce0b18915 4153 }
mjr 73:4e8ce0b18915 4154
mjr 73:4e8ce0b18915 4155
mjr 35:e959ffba78fd 4156 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4157 //
mjr 35:e959ffba78fd 4158 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4159 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4160 //
mjr 35:e959ffba78fd 4161 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4162 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4163 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4164 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4165 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4166 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4167 //
mjr 35:e959ffba78fd 4168 NVM nvm;
mjr 35:e959ffba78fd 4169
mjr 77:0b96f6867312 4170 // Flag: configuration save requested. The USB command message handler
mjr 77:0b96f6867312 4171 // sets this flag when a command is sent requesting the save. We don't
mjr 77:0b96f6867312 4172 // do the save inline in the command handler, but handle it on the next
mjr 77:0b96f6867312 4173 // main loop iteration.
mjr 77:0b96f6867312 4174 const uint8_t SAVE_CONFIG_ONLY = 1;
mjr 77:0b96f6867312 4175 const uint8_t SAVE_CONFIG_AND_REBOOT = 2;
mjr 77:0b96f6867312 4176 uint8_t saveConfigPending = 0;
mjr 77:0b96f6867312 4177
mjr 77:0b96f6867312 4178 // If saveConfigPending == SAVE_CONFIG_AND_REBOOT, this specifies the
mjr 77:0b96f6867312 4179 // delay time in seconds before rebooting.
mjr 77:0b96f6867312 4180 uint8_t saveConfigRebootTime;
mjr 77:0b96f6867312 4181
mjr 35:e959ffba78fd 4182 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4183 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4184
mjr 35:e959ffba78fd 4185 // flash memory controller interface
mjr 35:e959ffba78fd 4186 FreescaleIAP iap;
mjr 35:e959ffba78fd 4187
mjr 76:7f5912b6340e 4188 // NVM structure in memory. This has to be aliend on a sector boundary,
mjr 76:7f5912b6340e 4189 // since we have to be able to erase its page(s) in order to write it.
mjr 76:7f5912b6340e 4190 // Further, we have to ensure that nothing else occupies any space within
mjr 76:7f5912b6340e 4191 // the same pages, since we'll erase that entire space whenever we write.
mjr 76:7f5912b6340e 4192 static const union
mjr 76:7f5912b6340e 4193 {
mjr 76:7f5912b6340e 4194 NVM nvm; // the NVM structure
mjr 76:7f5912b6340e 4195 char guard[((sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE)*SECTOR_SIZE];
mjr 76:7f5912b6340e 4196 }
mjr 76:7f5912b6340e 4197 flash_nvm_memory __attribute__ ((aligned(SECTOR_SIZE))) = { };
mjr 76:7f5912b6340e 4198
mjr 35:e959ffba78fd 4199 // figure the flash address as a pointer
mjr 35:e959ffba78fd 4200 NVM *configFlashAddr()
mjr 35:e959ffba78fd 4201 {
mjr 77:0b96f6867312 4202 return (NVM *)&flash_nvm_memory;
mjr 35:e959ffba78fd 4203 }
mjr 35:e959ffba78fd 4204
mjr 76:7f5912b6340e 4205 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4206 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4207 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4208 // in either case.
mjr 76:7f5912b6340e 4209 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4210 {
mjr 35:e959ffba78fd 4211 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4212 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4213 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4214 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4215 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4216 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4217 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4218 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4219 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4220 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4221 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4222 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4223 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4224 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4225 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4226 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4227
mjr 35:e959ffba78fd 4228 // Figure how many sectors we need for our structure
mjr 35:e959ffba78fd 4229 NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4230
mjr 35:e959ffba78fd 4231 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 4232 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 4233 if (nvm_valid)
mjr 35:e959ffba78fd 4234 {
mjr 35:e959ffba78fd 4235 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 4236 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 4237 }
mjr 35:e959ffba78fd 4238 else
mjr 35:e959ffba78fd 4239 {
mjr 76:7f5912b6340e 4240 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 4241 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 4242 }
mjr 76:7f5912b6340e 4243
mjr 76:7f5912b6340e 4244 // tell the caller what happened
mjr 76:7f5912b6340e 4245 return nvm_valid;
mjr 35:e959ffba78fd 4246 }
mjr 35:e959ffba78fd 4247
mjr 35:e959ffba78fd 4248 void saveConfigToFlash()
mjr 33:d832bcab089e 4249 {
mjr 76:7f5912b6340e 4250 // make sure the plunger sensor isn't busy
mjr 76:7f5912b6340e 4251 waitPlungerIdle();
mjr 76:7f5912b6340e 4252
mjr 76:7f5912b6340e 4253 // get the config block location in the flash memory
mjr 77:0b96f6867312 4254 uint32_t addr = uint32_t(configFlashAddr());
mjr 76:7f5912b6340e 4255
mjr 76:7f5912b6340e 4256 // loop until we save it successfully
mjr 76:7f5912b6340e 4257 for (int i = 0 ; i < 5 ; ++i)
mjr 76:7f5912b6340e 4258 {
mjr 76:7f5912b6340e 4259 // show cyan while writing
mjr 76:7f5912b6340e 4260 diagLED(0, 1, 1);
mjr 76:7f5912b6340e 4261
mjr 76:7f5912b6340e 4262 // save the data
mjr 76:7f5912b6340e 4263 nvm.save(iap, addr);
mjr 76:7f5912b6340e 4264
mjr 76:7f5912b6340e 4265 // diagnostic lights off
mjr 76:7f5912b6340e 4266 diagLED(0, 0, 0);
mjr 76:7f5912b6340e 4267
mjr 76:7f5912b6340e 4268 // verify the data
mjr 76:7f5912b6340e 4269 if (nvm.verify(addr))
mjr 76:7f5912b6340e 4270 {
mjr 77:0b96f6867312 4271 // show a diagnostic success flash (rapid green)
mjr 77:0b96f6867312 4272 for (int j = 0 ; j < 4 ; ++j)
mjr 76:7f5912b6340e 4273 {
mjr 77:0b96f6867312 4274 diagLED(0, 1, 0);
mjr 76:7f5912b6340e 4275 wait_us(50000);
mjr 76:7f5912b6340e 4276 diagLED(0, 0, 0);
mjr 76:7f5912b6340e 4277 wait_us(50000);
mjr 76:7f5912b6340e 4278 }
mjr 76:7f5912b6340e 4279
mjr 76:7f5912b6340e 4280 // success - no need to write again
mjr 76:7f5912b6340e 4281 break;
mjr 76:7f5912b6340e 4282 }
mjr 76:7f5912b6340e 4283 else
mjr 76:7f5912b6340e 4284 {
mjr 76:7f5912b6340e 4285 // Write failed. For diagnostic purposes, flash red a few times.
mjr 76:7f5912b6340e 4286 // Then go back through the loop to make another attempt at the
mjr 76:7f5912b6340e 4287 // write.
mjr 76:7f5912b6340e 4288 for (int j = 0 ; j < 5 ; ++j)
mjr 76:7f5912b6340e 4289 {
mjr 76:7f5912b6340e 4290 diagLED(1, 0, 0);
mjr 76:7f5912b6340e 4291 wait_us(50000);
mjr 76:7f5912b6340e 4292 diagLED(0, 0, 0);
mjr 76:7f5912b6340e 4293 wait_us(50000);
mjr 76:7f5912b6340e 4294 }
mjr 76:7f5912b6340e 4295 }
mjr 76:7f5912b6340e 4296 }
mjr 76:7f5912b6340e 4297 }
mjr 76:7f5912b6340e 4298
mjr 76:7f5912b6340e 4299 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 4300 //
mjr 76:7f5912b6340e 4301 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 4302 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 4303 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 4304 // downloading it to the device.
mjr 76:7f5912b6340e 4305 //
mjr 76:7f5912b6340e 4306 // Ideally, we'd use the host-loaded memory for all configuration updates,
mjr 76:7f5912b6340e 4307 // because the KL25Z doesn't seem to be 100% reliable writing flash itself.
mjr 76:7f5912b6340e 4308 // There seems to be a chance of memory bus contention while a write is in
mjr 76:7f5912b6340e 4309 // progress, which can either corrupt the write or cause the CPU to lock up
mjr 76:7f5912b6340e 4310 // before the write is completed. It seems more reliable to program the
mjr 76:7f5912b6340e 4311 // flash externally, via the OpenSDA connection. Unfortunately, none of
mjr 76:7f5912b6340e 4312 // the available OpenSDA versions are capable of programming specific flash
mjr 76:7f5912b6340e 4313 // sectors; they always erase the entire flash memory space. We *could*
mjr 76:7f5912b6340e 4314 // make the Windows config program simply re-download the entire firmware
mjr 76:7f5912b6340e 4315 // for every configuration update, but I'd rather not because of the extra
mjr 76:7f5912b6340e 4316 // wear this would put on the flash. So, as a compromise, we'll use the
mjr 76:7f5912b6340e 4317 // host-loaded config whenever the user explicitly updates the firmware,
mjr 76:7f5912b6340e 4318 // but we'll use the on-board writer when only making a config change.
mjr 76:7f5912b6340e 4319 //
mjr 76:7f5912b6340e 4320 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 4321 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 4322 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 4323 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 4324 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 4325 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 4326 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 4327 //
mjr 76:7f5912b6340e 4328 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 4329 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 4330 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 4331 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 4332 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 4333 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 4334 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 4335 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 4336 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 4337 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 4338
mjr 76:7f5912b6340e 4339 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 4340 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 4341 {
mjr 76:7f5912b6340e 4342 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 4343 // 32-byte signature header
mjr 76:7f5912b6340e 4344 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 4345 };
mjr 76:7f5912b6340e 4346
mjr 76:7f5912b6340e 4347 // forward reference to config var store function
mjr 76:7f5912b6340e 4348 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 4349
mjr 76:7f5912b6340e 4350 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 4351 // configuration object.
mjr 76:7f5912b6340e 4352 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 4353 {
mjr 76:7f5912b6340e 4354 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 4355 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 4356 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 4357 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 4358 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 4359 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 4360 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 4361 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 4362 {
mjr 76:7f5912b6340e 4363 // load this variable
mjr 76:7f5912b6340e 4364 configVarSet(p);
mjr 76:7f5912b6340e 4365 }
mjr 35:e959ffba78fd 4366 }
mjr 35:e959ffba78fd 4367
mjr 35:e959ffba78fd 4368 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4369 //
mjr 55:4db125cd11a0 4370 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 4371 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 4372 //
mjr 55:4db125cd11a0 4373 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 4374 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 4375 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 4376
mjr 55:4db125cd11a0 4377
mjr 55:4db125cd11a0 4378
mjr 55:4db125cd11a0 4379 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 4380 //
mjr 40:cc0d9814522b 4381 // Night mode setting updates
mjr 40:cc0d9814522b 4382 //
mjr 38:091e511ce8a0 4383
mjr 38:091e511ce8a0 4384 // Turn night mode on or off
mjr 38:091e511ce8a0 4385 static void setNightMode(bool on)
mjr 38:091e511ce8a0 4386 {
mjr 77:0b96f6867312 4387 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 4388 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 4389 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 4390 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 4391
mjr 40:cc0d9814522b 4392 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 4393 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 4394 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 4395 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 4396
mjr 76:7f5912b6340e 4397 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 4398 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 4399 // mode change.
mjr 76:7f5912b6340e 4400 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 4401 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 4402
mjr 76:7f5912b6340e 4403 // update 74HC595 outputs
mjr 76:7f5912b6340e 4404 if (hc595 != 0)
mjr 76:7f5912b6340e 4405 hc595->update();
mjr 38:091e511ce8a0 4406 }
mjr 38:091e511ce8a0 4407
mjr 38:091e511ce8a0 4408 // Toggle night mode
mjr 38:091e511ce8a0 4409 static void toggleNightMode()
mjr 38:091e511ce8a0 4410 {
mjr 53:9b2611964afc 4411 setNightMode(!nightMode);
mjr 38:091e511ce8a0 4412 }
mjr 38:091e511ce8a0 4413
mjr 38:091e511ce8a0 4414
mjr 38:091e511ce8a0 4415 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 4416 //
mjr 35:e959ffba78fd 4417 // Plunger Sensor
mjr 35:e959ffba78fd 4418 //
mjr 35:e959ffba78fd 4419
mjr 35:e959ffba78fd 4420 // the plunger sensor interface object
mjr 35:e959ffba78fd 4421 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 4422
mjr 76:7f5912b6340e 4423 // wait for the plunger sensor to complete any outstanding read
mjr 76:7f5912b6340e 4424 static void waitPlungerIdle(void)
mjr 76:7f5912b6340e 4425 {
mjr 76:7f5912b6340e 4426 while (!plungerSensor->ready()) { }
mjr 76:7f5912b6340e 4427 }
mjr 76:7f5912b6340e 4428
mjr 35:e959ffba78fd 4429 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 4430 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 4431 void createPlunger()
mjr 35:e959ffba78fd 4432 {
mjr 35:e959ffba78fd 4433 // create the new sensor object according to the type
mjr 35:e959ffba78fd 4434 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 4435 {
mjr 35:e959ffba78fd 4436 case PlungerType_TSL1410RS:
mjr 69:cc5039284fac 4437 // TSL1410R, serial mode (all pixels read in one file)
mjr 35:e959ffba78fd 4438 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4439 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 4440 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4441 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 4442 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 4443 NC);
mjr 35:e959ffba78fd 4444 break;
mjr 35:e959ffba78fd 4445
mjr 35:e959ffba78fd 4446 case PlungerType_TSL1410RP:
mjr 69:cc5039284fac 4447 // TSL1410R, parallel mode (each half-sensor's pixels read separately)
mjr 35:e959ffba78fd 4448 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 4449 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 4450 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4451 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 4452 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 4453 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 4454 break;
mjr 35:e959ffba78fd 4455
mjr 69:cc5039284fac 4456 case PlungerType_TSL1412SS:
mjr 69:cc5039284fac 4457 // TSL1412S, serial mode
mjr 35:e959ffba78fd 4458 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 4459 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 4460 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4461 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 4462 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 4463 NC);
mjr 35:e959ffba78fd 4464 break;
mjr 35:e959ffba78fd 4465
mjr 69:cc5039284fac 4466 case PlungerType_TSL1412SP:
mjr 69:cc5039284fac 4467 // TSL1412S, parallel mode
mjr 35:e959ffba78fd 4468 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 4469 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 4470 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4471 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 4472 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 4473 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 4474 break;
mjr 35:e959ffba78fd 4475
mjr 35:e959ffba78fd 4476 case PlungerType_Pot:
mjr 35:e959ffba78fd 4477 // pins are: AO
mjr 53:9b2611964afc 4478 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 4479 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 4480 break;
mjr 35:e959ffba78fd 4481
mjr 35:e959ffba78fd 4482 case PlungerType_None:
mjr 35:e959ffba78fd 4483 default:
mjr 35:e959ffba78fd 4484 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 4485 break;
mjr 35:e959ffba78fd 4486 }
mjr 33:d832bcab089e 4487 }
mjr 33:d832bcab089e 4488
mjr 52:8298b2a73eb2 4489 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 4490 bool plungerCalMode;
mjr 52:8298b2a73eb2 4491
mjr 48:058ace2aed1d 4492 // Plunger reader
mjr 51:57eb311faafa 4493 //
mjr 51:57eb311faafa 4494 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 4495 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 4496 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 4497 //
mjr 51:57eb311faafa 4498 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 4499 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 4500 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 4501 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 4502 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 4503 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 4504 // firing motion.
mjr 51:57eb311faafa 4505 //
mjr 51:57eb311faafa 4506 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 4507 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 4508 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 4509 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 4510 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 4511 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 4512 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 4513 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 4514 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 4515 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 4516 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 4517 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 4518 // a classic digital aliasing effect.
mjr 51:57eb311faafa 4519 //
mjr 51:57eb311faafa 4520 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 4521 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 4522 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 4523 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 4524 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 4525 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 4526 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 4527 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 4528 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 4529 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 4530 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 4531 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 4532 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 4533 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 4534 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 4535 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 4536 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 4537 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 4538 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 4539 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 4540 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 4541 //
mjr 48:058ace2aed1d 4542 class PlungerReader
mjr 48:058ace2aed1d 4543 {
mjr 48:058ace2aed1d 4544 public:
mjr 48:058ace2aed1d 4545 PlungerReader()
mjr 48:058ace2aed1d 4546 {
mjr 48:058ace2aed1d 4547 // not in a firing event yet
mjr 48:058ace2aed1d 4548 firing = 0;
mjr 48:058ace2aed1d 4549
mjr 48:058ace2aed1d 4550 // no history yet
mjr 48:058ace2aed1d 4551 histIdx = 0;
mjr 55:4db125cd11a0 4552
mjr 55:4db125cd11a0 4553 // initialize the filter
mjr 55:4db125cd11a0 4554 initFilter();
mjr 48:058ace2aed1d 4555 }
mjr 76:7f5912b6340e 4556
mjr 48:058ace2aed1d 4557 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 4558 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 4559 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 4560 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 4561 void read()
mjr 48:058ace2aed1d 4562 {
mjr 76:7f5912b6340e 4563 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 4564 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 4565 return;
mjr 76:7f5912b6340e 4566
mjr 48:058ace2aed1d 4567 // Read a sample from the sensor
mjr 48:058ace2aed1d 4568 PlungerReading r;
mjr 48:058ace2aed1d 4569 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 4570 {
mjr 69:cc5039284fac 4571 // filter the raw sensor reading
mjr 69:cc5039284fac 4572 applyPreFilter(r);
mjr 69:cc5039284fac 4573
mjr 51:57eb311faafa 4574 // Pull the previous reading from the history
mjr 50:40015764bbe6 4575 const PlungerReading &prv = nthHist(0);
mjr 48:058ace2aed1d 4576
mjr 69:cc5039284fac 4577 // If the new reading is within 1ms of the previous reading,
mjr 48:058ace2aed1d 4578 // ignore it. We require a minimum time between samples to
mjr 48:058ace2aed1d 4579 // ensure that we have a usable amount of precision in the
mjr 48:058ace2aed1d 4580 // denominator (the time interval) for calculating the plunger
mjr 69:cc5039284fac 4581 // velocity. The CCD sensor hardware takes about 2.5ms to
mjr 69:cc5039284fac 4582 // read, so it will never be affected by this, but other sensor
mjr 69:cc5039284fac 4583 // types don't all have the same hardware cycle time, so we need
mjr 69:cc5039284fac 4584 // to throttle them artificially. E.g., the potentiometer only
mjr 69:cc5039284fac 4585 // needs one ADC sample per reading, which only takes about 15us.
mjr 69:cc5039284fac 4586 // We don't need to check which sensor type we have here; we
mjr 69:cc5039284fac 4587 // just ignore readings until the minimum interval has passed,
mjr 69:cc5039284fac 4588 // so if the sensor is already slower than this, we'll end up
mjr 69:cc5039284fac 4589 // using all of its readings.
mjr 69:cc5039284fac 4590 if (uint32_t(r.t - prv.t) < 1000UL)
mjr 48:058ace2aed1d 4591 return;
mjr 53:9b2611964afc 4592
mjr 53:9b2611964afc 4593 // check for calibration mode
mjr 53:9b2611964afc 4594 if (plungerCalMode)
mjr 53:9b2611964afc 4595 {
mjr 53:9b2611964afc 4596 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 4597 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 4598 // expand the envelope to include this new value.
mjr 53:9b2611964afc 4599 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 4600 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 4601 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 4602 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 4603
mjr 76:7f5912b6340e 4604 // update our cached calibration data
mjr 76:7f5912b6340e 4605 onUpdateCal();
mjr 50:40015764bbe6 4606
mjr 53:9b2611964afc 4607 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 4608 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 4609 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 4610 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 4611 if (calState == 0)
mjr 53:9b2611964afc 4612 {
mjr 53:9b2611964afc 4613 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 4614 {
mjr 53:9b2611964afc 4615 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 4616 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 4617 {
mjr 53:9b2611964afc 4618 // we've been at rest long enough - count it
mjr 53:9b2611964afc 4619 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 4620 calZeroPosN += 1;
mjr 53:9b2611964afc 4621
mjr 53:9b2611964afc 4622 // update the zero position from the new average
mjr 53:9b2611964afc 4623 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 4624 onUpdateCal();
mjr 53:9b2611964afc 4625
mjr 53:9b2611964afc 4626 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 4627 calState = 1;
mjr 53:9b2611964afc 4628 }
mjr 53:9b2611964afc 4629 }
mjr 53:9b2611964afc 4630 else
mjr 53:9b2611964afc 4631 {
mjr 53:9b2611964afc 4632 // we're not close to the last position - start again here
mjr 53:9b2611964afc 4633 calZeroStart = r;
mjr 53:9b2611964afc 4634 }
mjr 53:9b2611964afc 4635 }
mjr 53:9b2611964afc 4636
mjr 53:9b2611964afc 4637 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 4638 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 4639 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 4640 r.pos = int(
mjr 53:9b2611964afc 4641 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 4642 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 4643 }
mjr 53:9b2611964afc 4644 else
mjr 53:9b2611964afc 4645 {
mjr 53:9b2611964afc 4646 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 4647 // rescale to the joystick range.
mjr 76:7f5912b6340e 4648 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 4649
mjr 53:9b2611964afc 4650 // limit the result to the valid joystick range
mjr 53:9b2611964afc 4651 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 4652 r.pos = JOYMAX;
mjr 53:9b2611964afc 4653 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 4654 r.pos = -JOYMAX;
mjr 53:9b2611964afc 4655 }
mjr 50:40015764bbe6 4656
mjr 50:40015764bbe6 4657 // Calculate the velocity from the second-to-last reading
mjr 50:40015764bbe6 4658 // to here, in joystick distance units per microsecond.
mjr 50:40015764bbe6 4659 // Note that we use the second-to-last reading rather than
mjr 50:40015764bbe6 4660 // the very last reading to give ourselves a little longer
mjr 50:40015764bbe6 4661 // time base. The time base is so short between consecutive
mjr 50:40015764bbe6 4662 // readings that the error bars in the position would be too
mjr 50:40015764bbe6 4663 // large.
mjr 50:40015764bbe6 4664 //
mjr 50:40015764bbe6 4665 // For reference, the physical plunger velocity ranges up
mjr 50:40015764bbe6 4666 // to about 100,000 joystick distance units/sec. This is
mjr 50:40015764bbe6 4667 // based on empirical measurements. The typical time for
mjr 50:40015764bbe6 4668 // a real plunger to travel the full distance when released
mjr 50:40015764bbe6 4669 // from full retraction is about 85ms, so the average velocity
mjr 50:40015764bbe6 4670 // covering this distance is about 56,000 units/sec. The
mjr 50:40015764bbe6 4671 // peak is probably about twice that. In real-world units,
mjr 50:40015764bbe6 4672 // this translates to an average speed of about .75 m/s and
mjr 50:40015764bbe6 4673 // a peak of about 1.5 m/s.
mjr 50:40015764bbe6 4674 //
mjr 50:40015764bbe6 4675 // Note that we actually calculate the value here in units
mjr 50:40015764bbe6 4676 // per *microsecond* - the discussion above is in terms of
mjr 50:40015764bbe6 4677 // units/sec because that's more on a human scale. Our
mjr 50:40015764bbe6 4678 // choice of internal units here really isn't important,
mjr 50:40015764bbe6 4679 // since we only use the velocity for comparison purposes,
mjr 50:40015764bbe6 4680 // to detect acceleration trends. We therefore save ourselves
mjr 50:40015764bbe6 4681 // a little CPU time by using the natural units of our inputs.
mjr 76:7f5912b6340e 4682 //
mjr 76:7f5912b6340e 4683 // We don't care about the absolute velocity; this is a purely
mjr 76:7f5912b6340e 4684 // relative calculation. So to speed things up, calculate it
mjr 76:7f5912b6340e 4685 // in the integer domain, using a fixed-point representation
mjr 76:7f5912b6340e 4686 // with a 64K scale. In other words, with the stored values
mjr 76:7f5912b6340e 4687 // shifted left 16 bits from the actual values: the value 1
mjr 76:7f5912b6340e 4688 // is stored as 1<<16. The position readings are in the range
mjr 76:7f5912b6340e 4689 // -JOYMAX..JOYMAX, which fits in 16 bits, and the time
mjr 76:7f5912b6340e 4690 // differences will generally be on the scale of a few
mjr 76:7f5912b6340e 4691 // milliseconds = thousands of microseconds. So the velocity
mjr 76:7f5912b6340e 4692 // figures will fit nicely into a 32-bit fixed point value with
mjr 76:7f5912b6340e 4693 // a 64K scale factor.
mjr 51:57eb311faafa 4694 const PlungerReading &prv2 = nthHist(1);
mjr 76:7f5912b6340e 4695 int v = ((r.pos - prv2.pos) << 16)/(r.t - prv2.t);
mjr 50:40015764bbe6 4696
mjr 50:40015764bbe6 4697 // presume we'll report the latest instantaneous reading
mjr 50:40015764bbe6 4698 z = r.pos;
mjr 48:058ace2aed1d 4699
mjr 50:40015764bbe6 4700 // Check firing events
mjr 50:40015764bbe6 4701 switch (firing)
mjr 50:40015764bbe6 4702 {
mjr 50:40015764bbe6 4703 case 0:
mjr 50:40015764bbe6 4704 // Default state - not in a firing event.
mjr 50:40015764bbe6 4705
mjr 50:40015764bbe6 4706 // If we have forward motion from a position that's retracted
mjr 50:40015764bbe6 4707 // beyond a threshold, enter phase 1. If we're not pulled back
mjr 50:40015764bbe6 4708 // far enough, don't bother with this, as a release wouldn't
mjr 50:40015764bbe6 4709 // be strong enough to require the synthetic firing treatment.
mjr 50:40015764bbe6 4710 if (v < 0 && r.pos > JOYMAX/6)
mjr 50:40015764bbe6 4711 {
mjr 53:9b2611964afc 4712 // enter firing phase 1
mjr 50:40015764bbe6 4713 firingMode(1);
mjr 50:40015764bbe6 4714
mjr 53:9b2611964afc 4715 // if in calibration state 1 (at rest), switch to state 2 (not
mjr 53:9b2611964afc 4716 // at rest)
mjr 53:9b2611964afc 4717 if (calState == 1)
mjr 53:9b2611964afc 4718 calState = 2;
mjr 53:9b2611964afc 4719
mjr 50:40015764bbe6 4720 // we don't have a freeze position yet, but note the start time
mjr 50:40015764bbe6 4721 f1.pos = 0;
mjr 50:40015764bbe6 4722 f1.t = r.t;
mjr 50:40015764bbe6 4723
mjr 50:40015764bbe6 4724 // Figure the barrel spring "bounce" position in case we complete
mjr 50:40015764bbe6 4725 // the firing event. This is the amount that the forward momentum
mjr 50:40015764bbe6 4726 // of the plunger will compress the barrel spring at the peak of
mjr 50:40015764bbe6 4727 // the forward travel during the release. Assume that this is
mjr 50:40015764bbe6 4728 // linearly proportional to the starting retraction distance.
mjr 50:40015764bbe6 4729 // The barrel spring is about 1/6 the length of the main spring,
mjr 50:40015764bbe6 4730 // so figure it compresses by 1/6 the distance. (This is overly
mjr 53:9b2611964afc 4731 // simplistic and not very accurate, but it seems to give good
mjr 50:40015764bbe6 4732 // visual results, and that's all it's for.)
mjr 50:40015764bbe6 4733 f2.pos = -r.pos/6;
mjr 50:40015764bbe6 4734 }
mjr 50:40015764bbe6 4735 break;
mjr 50:40015764bbe6 4736
mjr 50:40015764bbe6 4737 case 1:
mjr 50:40015764bbe6 4738 // Phase 1 - acceleration. If we cross the zero point, trigger
mjr 50:40015764bbe6 4739 // the firing event. Otherwise, continue monitoring as long as we
mjr 50:40015764bbe6 4740 // see acceleration in the forward direction.
mjr 50:40015764bbe6 4741 if (r.pos <= 0)
mjr 50:40015764bbe6 4742 {
mjr 50:40015764bbe6 4743 // switch to the synthetic firing mode
mjr 50:40015764bbe6 4744 firingMode(2);
mjr 50:40015764bbe6 4745 z = f2.pos;
mjr 50:40015764bbe6 4746
mjr 50:40015764bbe6 4747 // note the start time for the firing phase
mjr 50:40015764bbe6 4748 f2.t = r.t;
mjr 53:9b2611964afc 4749
mjr 53:9b2611964afc 4750 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 4751 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 4752 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 4753 {
mjr 53:9b2611964afc 4754 // collect a new zero point for the average when we
mjr 53:9b2611964afc 4755 // come to rest
mjr 53:9b2611964afc 4756 calState = 0;
mjr 53:9b2611964afc 4757
mjr 53:9b2611964afc 4758 // collect average firing time statistics in millseconds, if
mjr 53:9b2611964afc 4759 // it's in range (20 to 255 ms)
mjr 53:9b2611964afc 4760 int dt = uint32_t(r.t - f1.t)/1000UL;
mjr 53:9b2611964afc 4761 if (dt >= 20 && dt <= 255)
mjr 53:9b2611964afc 4762 {
mjr 53:9b2611964afc 4763 calRlsTimeSum += dt;
mjr 53:9b2611964afc 4764 calRlsTimeN += 1;
mjr 53:9b2611964afc 4765 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 4766 }
mjr 53:9b2611964afc 4767 }
mjr 50:40015764bbe6 4768 }
mjr 50:40015764bbe6 4769 else if (v < vprv2)
mjr 50:40015764bbe6 4770 {
mjr 50:40015764bbe6 4771 // We're still accelerating, and we haven't crossed the zero
mjr 50:40015764bbe6 4772 // point yet - stay in phase 1. (Note that forward motion is
mjr 50:40015764bbe6 4773 // negative velocity, so accelerating means that the new
mjr 50:40015764bbe6 4774 // velocity is more negative than the previous one, which
mjr 50:40015764bbe6 4775 // is to say numerically less than - that's why the test
mjr 50:40015764bbe6 4776 // for acceleration is the seemingly backwards 'v < vprv'.)
mjr 50:40015764bbe6 4777
mjr 50:40015764bbe6 4778 // If we've been accelerating for at least 20ms, we're probably
mjr 50:40015764bbe6 4779 // really doing a release. Jump back to the recent local
mjr 50:40015764bbe6 4780 // maximum where the release *really* started. This is always
mjr 50:40015764bbe6 4781 // a bit before we started seeing sustained accleration, because
mjr 50:40015764bbe6 4782 // the plunger motion for the first few milliseconds is too slow
mjr 50:40015764bbe6 4783 // for our sensor precision to reliably detect acceleration.
mjr 50:40015764bbe6 4784 if (f1.pos != 0)
mjr 50:40015764bbe6 4785 {
mjr 50:40015764bbe6 4786 // we have a reset point - freeze there
mjr 50:40015764bbe6 4787 z = f1.pos;
mjr 50:40015764bbe6 4788 }
mjr 50:40015764bbe6 4789 else if (uint32_t(r.t - f1.t) >= 20000UL)
mjr 50:40015764bbe6 4790 {
mjr 50:40015764bbe6 4791 // it's been long enough - set a reset point.
mjr 50:40015764bbe6 4792 f1.pos = z = histLocalMax(r.t, 50000UL);
mjr 50:40015764bbe6 4793 }
mjr 50:40015764bbe6 4794 }
mjr 50:40015764bbe6 4795 else
mjr 50:40015764bbe6 4796 {
mjr 50:40015764bbe6 4797 // We're not accelerating. Cancel the firing event.
mjr 50:40015764bbe6 4798 firingMode(0);
mjr 53:9b2611964afc 4799 calState = 1;
mjr 50:40015764bbe6 4800 }
mjr 50:40015764bbe6 4801 break;
mjr 50:40015764bbe6 4802
mjr 50:40015764bbe6 4803 case 2:
mjr 50:40015764bbe6 4804 // Phase 2 - start of synthetic firing event. Report the fake
mjr 50:40015764bbe6 4805 // bounce for 25ms. VP polls the joystick about every 10ms, so
mjr 50:40015764bbe6 4806 // this should be enough time to guarantee that VP sees this
mjr 50:40015764bbe6 4807 // report at least once.
mjr 50:40015764bbe6 4808 if (uint32_t(r.t - f2.t) < 25000UL)
mjr 50:40015764bbe6 4809 {
mjr 50:40015764bbe6 4810 // report the bounce position
mjr 50:40015764bbe6 4811 z = f2.pos;
mjr 50:40015764bbe6 4812 }
mjr 50:40015764bbe6 4813 else
mjr 50:40015764bbe6 4814 {
mjr 50:40015764bbe6 4815 // it's been long enough - switch to phase 3, where we
mjr 50:40015764bbe6 4816 // report the park position until the real plunger comes
mjr 50:40015764bbe6 4817 // to rest
mjr 50:40015764bbe6 4818 firingMode(3);
mjr 50:40015764bbe6 4819 z = 0;
mjr 50:40015764bbe6 4820
mjr 50:40015764bbe6 4821 // set the start of the "stability window" to the rest position
mjr 50:40015764bbe6 4822 f3s.t = r.t;
mjr 50:40015764bbe6 4823 f3s.pos = 0;
mjr 50:40015764bbe6 4824
mjr 50:40015764bbe6 4825 // set the start of the "retraction window" to the actual position
mjr 50:40015764bbe6 4826 f3r = r;
mjr 50:40015764bbe6 4827 }
mjr 50:40015764bbe6 4828 break;
mjr 50:40015764bbe6 4829
mjr 50:40015764bbe6 4830 case 3:
mjr 50:40015764bbe6 4831 // Phase 3 - in synthetic firing event. Report the park position
mjr 50:40015764bbe6 4832 // until the plunger position stabilizes. Left to its own devices,
mjr 50:40015764bbe6 4833 // the plunger will usualy bounce off the barrel spring several
mjr 50:40015764bbe6 4834 // times before coming to rest, so we'll see oscillating motion
mjr 50:40015764bbe6 4835 // for a second or two. In the simplest case, we can aimply wait
mjr 50:40015764bbe6 4836 // for the plunger to stop moving for a short time. However, the
mjr 50:40015764bbe6 4837 // player might intervene by pulling the plunger back again, so
mjr 50:40015764bbe6 4838 // watch for that motion as well. If we're just bouncing freely,
mjr 50:40015764bbe6 4839 // we'll see the direction change frequently. If the player is
mjr 50:40015764bbe6 4840 // moving the plunger manually, the direction will be constant
mjr 50:40015764bbe6 4841 // for longer.
mjr 50:40015764bbe6 4842 if (v >= 0)
mjr 50:40015764bbe6 4843 {
mjr 50:40015764bbe6 4844 // We're moving back (or standing still). If this has been
mjr 50:40015764bbe6 4845 // going on for a while, the user must have taken control.
mjr 50:40015764bbe6 4846 if (uint32_t(r.t - f3r.t) > 65000UL)
mjr 50:40015764bbe6 4847 {
mjr 50:40015764bbe6 4848 // user has taken control - cancel firing mode
mjr 50:40015764bbe6 4849 firingMode(0);
mjr 50:40015764bbe6 4850 break;
mjr 50:40015764bbe6 4851 }
mjr 50:40015764bbe6 4852 }
mjr 50:40015764bbe6 4853 else
mjr 50:40015764bbe6 4854 {
mjr 50:40015764bbe6 4855 // forward motion - reset retraction window
mjr 50:40015764bbe6 4856 f3r.t = r.t;
mjr 50:40015764bbe6 4857 }
mjr 50:40015764bbe6 4858
mjr 53:9b2611964afc 4859 // Check if we're close to the last starting point. The joystick
mjr 53:9b2611964afc 4860 // positive axis range (0..4096) covers the retraction distance of
mjr 53:9b2611964afc 4861 // about 2.5", so 1" is about 1638 joystick units, hence 1/16" is
mjr 53:9b2611964afc 4862 // about 100 units.
mjr 53:9b2611964afc 4863 if (abs(r.pos - f3s.pos) < 100)
mjr 50:40015764bbe6 4864 {
mjr 53:9b2611964afc 4865 // It's at roughly the same position as the starting point.
mjr 53:9b2611964afc 4866 // Consider it stable if this has been true for 300ms.
mjr 50:40015764bbe6 4867 if (uint32_t(r.t - f3s.t) > 30000UL)
mjr 50:40015764bbe6 4868 {
mjr 50:40015764bbe6 4869 // we're done with the firing event
mjr 50:40015764bbe6 4870 firingMode(0);
mjr 50:40015764bbe6 4871 }
mjr 50:40015764bbe6 4872 else
mjr 50:40015764bbe6 4873 {
mjr 50:40015764bbe6 4874 // it's close to the last position but hasn't been
mjr 50:40015764bbe6 4875 // here long enough; stay in firing mode and continue
mjr 50:40015764bbe6 4876 // to report the park position
mjr 50:40015764bbe6 4877 z = 0;
mjr 50:40015764bbe6 4878 }
mjr 50:40015764bbe6 4879 }
mjr 50:40015764bbe6 4880 else
mjr 50:40015764bbe6 4881 {
mjr 50:40015764bbe6 4882 // It's not close enough to the last starting point, so use
mjr 50:40015764bbe6 4883 // this as a new starting point, and stay in firing mode.
mjr 50:40015764bbe6 4884 f3s = r;
mjr 50:40015764bbe6 4885 z = 0;
mjr 50:40015764bbe6 4886 }
mjr 50:40015764bbe6 4887 break;
mjr 50:40015764bbe6 4888 }
mjr 50:40015764bbe6 4889
mjr 50:40015764bbe6 4890 // save the velocity reading for next time
mjr 50:40015764bbe6 4891 vprv2 = vprv;
mjr 50:40015764bbe6 4892 vprv = v;
mjr 50:40015764bbe6 4893
mjr 50:40015764bbe6 4894 // add the new reading to the history
mjr 76:7f5912b6340e 4895 hist[histIdx] = r;
mjr 76:7f5912b6340e 4896 if (++histIdx > countof(hist))
mjr 76:7f5912b6340e 4897 histIdx = 0;
mjr 58:523fdcffbe6d 4898
mjr 69:cc5039284fac 4899 // apply the post-processing filter
mjr 69:cc5039284fac 4900 zf = applyPostFilter();
mjr 48:058ace2aed1d 4901 }
mjr 48:058ace2aed1d 4902 }
mjr 48:058ace2aed1d 4903
mjr 48:058ace2aed1d 4904 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 4905 int16_t getPosition()
mjr 58:523fdcffbe6d 4906 {
mjr 58:523fdcffbe6d 4907 // return the last filtered reading
mjr 58:523fdcffbe6d 4908 return zf;
mjr 55:4db125cd11a0 4909 }
mjr 58:523fdcffbe6d 4910
mjr 48:058ace2aed1d 4911 // get the timestamp of the current joystick report (microseconds)
mjr 50:40015764bbe6 4912 uint32_t getTimestamp() const { return nthHist(0).t; }
mjr 48:058ace2aed1d 4913
mjr 48:058ace2aed1d 4914 // Set calibration mode on or off
mjr 52:8298b2a73eb2 4915 void setCalMode(bool f)
mjr 48:058ace2aed1d 4916 {
mjr 52:8298b2a73eb2 4917 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 4918 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 4919 {
mjr 52:8298b2a73eb2 4920 // reset the calibration in the configuration
mjr 48:058ace2aed1d 4921 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 4922
mjr 52:8298b2a73eb2 4923 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 4924 calState = 0;
mjr 52:8298b2a73eb2 4925 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 4926 calZeroPosN = 0;
mjr 52:8298b2a73eb2 4927 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 4928 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 4929
mjr 52:8298b2a73eb2 4930 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 4931 PlungerReading r;
mjr 52:8298b2a73eb2 4932 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 4933 {
mjr 52:8298b2a73eb2 4934 // got a reading - use it as the initial zero point
mjr 69:cc5039284fac 4935 applyPreFilter(r);
mjr 52:8298b2a73eb2 4936 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 4937 onUpdateCal();
mjr 52:8298b2a73eb2 4938
mjr 52:8298b2a73eb2 4939 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 4940 calZeroStart = r;
mjr 52:8298b2a73eb2 4941 }
mjr 52:8298b2a73eb2 4942 else
mjr 52:8298b2a73eb2 4943 {
mjr 52:8298b2a73eb2 4944 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 4945 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 4946 onUpdateCal();
mjr 52:8298b2a73eb2 4947
mjr 52:8298b2a73eb2 4948 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 4949 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 4950 calZeroStart.t = 0;
mjr 53:9b2611964afc 4951 }
mjr 53:9b2611964afc 4952 }
mjr 53:9b2611964afc 4953 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 4954 {
mjr 53:9b2611964afc 4955 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 4956 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 4957 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 4958 // physically meaningless.
mjr 53:9b2611964afc 4959 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 4960 {
mjr 53:9b2611964afc 4961 // bad settings - reset to defaults
mjr 53:9b2611964afc 4962 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 4963 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 4964 onUpdateCal();
mjr 52:8298b2a73eb2 4965 }
mjr 52:8298b2a73eb2 4966 }
mjr 52:8298b2a73eb2 4967
mjr 48:058ace2aed1d 4968 // remember the new mode
mjr 52:8298b2a73eb2 4969 plungerCalMode = f;
mjr 48:058ace2aed1d 4970 }
mjr 48:058ace2aed1d 4971
mjr 76:7f5912b6340e 4972 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 4973 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 4974 // cached inverse is calculated as
mjr 76:7f5912b6340e 4975 //
mjr 76:7f5912b6340e 4976 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 4977 //
mjr 76:7f5912b6340e 4978 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 4979 //
mjr 76:7f5912b6340e 4980 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 4981 //
mjr 76:7f5912b6340e 4982 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 4983 int invCalRange;
mjr 76:7f5912b6340e 4984
mjr 76:7f5912b6340e 4985 // apply the calibration range to a reading
mjr 76:7f5912b6340e 4986 inline int applyCal(int reading)
mjr 76:7f5912b6340e 4987 {
mjr 76:7f5912b6340e 4988 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 4989 }
mjr 76:7f5912b6340e 4990
mjr 76:7f5912b6340e 4991 void onUpdateCal()
mjr 76:7f5912b6340e 4992 {
mjr 76:7f5912b6340e 4993 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 4994 }
mjr 76:7f5912b6340e 4995
mjr 48:058ace2aed1d 4996 // is a firing event in progress?
mjr 53:9b2611964afc 4997 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 4998
mjr 48:058ace2aed1d 4999 private:
mjr 52:8298b2a73eb2 5000
mjr 74:822a92bc11d2 5001 // Plunger data filtering mode: optionally apply filtering to the raw
mjr 74:822a92bc11d2 5002 // plunger sensor readings to try to reduce noise in the signal. This
mjr 74:822a92bc11d2 5003 // is designed for the TSL1410/12 optical sensors, where essentially all
mjr 74:822a92bc11d2 5004 // of the noise in the signal comes from lack of sharpness in the shadow
mjr 74:822a92bc11d2 5005 // edge. When the shadow is blurry, the edge detector has to pick a pixel,
mjr 74:822a92bc11d2 5006 // even though the edge is actually a gradient spanning several pixels.
mjr 74:822a92bc11d2 5007 // The edge detection algorithm decides on the exact pixel, but whatever
mjr 74:822a92bc11d2 5008 // the algorithm, the choice is going to be somewhat arbitrary given that
mjr 74:822a92bc11d2 5009 // there's really no one pixel that's "the edge" when the edge actually
mjr 74:822a92bc11d2 5010 // covers multiple pixels. This can make the choice of pixel sensitive to
mjr 74:822a92bc11d2 5011 // small changes in exposure and pixel respose from frame to frame, which
mjr 74:822a92bc11d2 5012 // means that the reported edge position can move by a pixel or two from
mjr 74:822a92bc11d2 5013 // one frame to the next even when the physical plunger is perfectly still.
mjr 74:822a92bc11d2 5014 // That's the noise we're talking about.
mjr 74:822a92bc11d2 5015 //
mjr 74:822a92bc11d2 5016 // We previously applied a mild hysteresis filter to the signal to try to
mjr 74:822a92bc11d2 5017 // eliminate this noise. The filter tracked the average over the last
mjr 74:822a92bc11d2 5018 // several samples, and rejected readings that wandered within a few
mjr 74:822a92bc11d2 5019 // pixels of the average. If a certain number of readings moved away from
mjr 74:822a92bc11d2 5020 // the average in the same direction, even by small amounts, the filter
mjr 74:822a92bc11d2 5021 // accepted the changes, on the assumption that they represented actual
mjr 74:822a92bc11d2 5022 // slow movement of the plunger. This filter was applied after the firing
mjr 74:822a92bc11d2 5023 // detection.
mjr 74:822a92bc11d2 5024 //
mjr 74:822a92bc11d2 5025 // I also tried a simpler filter that rejected changes that were too fast
mjr 74:822a92bc11d2 5026 // to be physically possible, as well as changes that were very close to
mjr 74:822a92bc11d2 5027 // the last reported position (i.e., simple hysteresis). The "too fast"
mjr 74:822a92bc11d2 5028 // filter was there to reject spurious readings where the edge detector
mjr 74:822a92bc11d2 5029 // mistook a bad pixel value as an edge.
mjr 74:822a92bc11d2 5030 //
mjr 74:822a92bc11d2 5031 // The new "mode 2" edge detector (see ccdSensor.h) seems to do a better
mjr 74:822a92bc11d2 5032 // job of rejecting pixel-level noise by itself than the older "mode 0"
mjr 74:822a92bc11d2 5033 // algorithm did, so I removed the filtering entirely. Any filtering has
mjr 74:822a92bc11d2 5034 // some downsides, so it's better to reduce noise in the underlying signal
mjr 74:822a92bc11d2 5035 // as much as possible first. It seems possible to get a very stable signal
mjr 74:822a92bc11d2 5036 // now with a combination of the mode 2 edge detector and optimizing the
mjr 74:822a92bc11d2 5037 // physical sensor arrangement, especially optimizing the light source to
mjr 74:822a92bc11d2 5038 // cast as sharp as shadow as possible and adjusting the brightness to
mjr 74:822a92bc11d2 5039 // maximize bright/dark contrast in the image.
mjr 74:822a92bc11d2 5040 //
mjr 74:822a92bc11d2 5041 // 0 = No filtering (current default)
mjr 74:822a92bc11d2 5042 // 1 = Filter the data after firing detection using moving average
mjr 74:822a92bc11d2 5043 // hysteresis filter (old version, used in most 2016 releases)
mjr 74:822a92bc11d2 5044 // 2 = Filter the data before firing detection using simple hysteresis
mjr 74:822a92bc11d2 5045 // plus spurious "too fast" motion rejection
mjr 74:822a92bc11d2 5046 //
mjr 73:4e8ce0b18915 5047 #define PLUNGER_FILTERING_MODE 0
mjr 73:4e8ce0b18915 5048
mjr 73:4e8ce0b18915 5049 #if PLUNGER_FILTERING_MODE == 0
mjr 69:cc5039284fac 5050 // Disable all filtering
mjr 74:822a92bc11d2 5051 inline void applyPreFilter(PlungerReading &r) { }
mjr 74:822a92bc11d2 5052 inline int applyPostFilter() { return z; }
mjr 73:4e8ce0b18915 5053 #elif PLUNGER_FILTERING_MODE == 1
mjr 73:4e8ce0b18915 5054 // Apply pre-processing filter. This filter is applied to the raw
mjr 73:4e8ce0b18915 5055 // value coming off the sensor, before calibration or fire-event
mjr 73:4e8ce0b18915 5056 // processing.
mjr 73:4e8ce0b18915 5057 void applyPreFilter(PlungerReading &r)
mjr 73:4e8ce0b18915 5058 {
mjr 73:4e8ce0b18915 5059 }
mjr 73:4e8ce0b18915 5060
mjr 73:4e8ce0b18915 5061 // Figure the next post-processing filtered value. This applies a
mjr 73:4e8ce0b18915 5062 // hysteresis filter to the last raw z value and returns the
mjr 73:4e8ce0b18915 5063 // filtered result.
mjr 73:4e8ce0b18915 5064 int applyPostFilter()
mjr 73:4e8ce0b18915 5065 {
mjr 73:4e8ce0b18915 5066 if (firing <= 1)
mjr 73:4e8ce0b18915 5067 {
mjr 73:4e8ce0b18915 5068 // Filter limit - 5 samples. Once we've been moving
mjr 73:4e8ce0b18915 5069 // in the same direction for this many samples, we'll
mjr 73:4e8ce0b18915 5070 // clear the history and start over.
mjr 73:4e8ce0b18915 5071 const int filterMask = 0x1f;
mjr 73:4e8ce0b18915 5072
mjr 73:4e8ce0b18915 5073 // figure the last average
mjr 73:4e8ce0b18915 5074 int lastAvg = int(filterSum / filterN);
mjr 73:4e8ce0b18915 5075
mjr 73:4e8ce0b18915 5076 // figure the direction of this sample relative to the average,
mjr 73:4e8ce0b18915 5077 // and shift it in to our bit mask of recent direction data
mjr 73:4e8ce0b18915 5078 if (z != lastAvg)
mjr 73:4e8ce0b18915 5079 {
mjr 73:4e8ce0b18915 5080 // shift the new direction bit into the vector
mjr 73:4e8ce0b18915 5081 filterDir <<= 1;
mjr 73:4e8ce0b18915 5082 if (z > lastAvg) filterDir |= 1;
mjr 73:4e8ce0b18915 5083 }
mjr 73:4e8ce0b18915 5084
mjr 73:4e8ce0b18915 5085 // keep only the last N readings, up to the filter limit
mjr 73:4e8ce0b18915 5086 filterDir &= filterMask;
mjr 73:4e8ce0b18915 5087
mjr 73:4e8ce0b18915 5088 // if we've been moving consistently in one direction (all 1's
mjr 73:4e8ce0b18915 5089 // or all 0's in the direction history vector), reset the average
mjr 73:4e8ce0b18915 5090 if (filterDir == 0x00 || filterDir == filterMask)
mjr 73:4e8ce0b18915 5091 {
mjr 73:4e8ce0b18915 5092 // motion away from the average - reset the average
mjr 73:4e8ce0b18915 5093 filterDir = 0x5555;
mjr 73:4e8ce0b18915 5094 filterN = 1;
mjr 73:4e8ce0b18915 5095 filterSum = (lastAvg + z)/2;
mjr 73:4e8ce0b18915 5096 return int16_t(filterSum);
mjr 73:4e8ce0b18915 5097 }
mjr 73:4e8ce0b18915 5098 else
mjr 73:4e8ce0b18915 5099 {
mjr 73:4e8ce0b18915 5100 // we're directionless - return the new average, with the
mjr 73:4e8ce0b18915 5101 // new sample included
mjr 73:4e8ce0b18915 5102 filterSum += z;
mjr 73:4e8ce0b18915 5103 ++filterN;
mjr 73:4e8ce0b18915 5104 return int16_t(filterSum / filterN);
mjr 73:4e8ce0b18915 5105 }
mjr 73:4e8ce0b18915 5106 }
mjr 73:4e8ce0b18915 5107 else
mjr 73:4e8ce0b18915 5108 {
mjr 73:4e8ce0b18915 5109 // firing mode - skip the filter
mjr 73:4e8ce0b18915 5110 filterN = 1;
mjr 73:4e8ce0b18915 5111 filterSum = z;
mjr 73:4e8ce0b18915 5112 filterDir = 0x5555;
mjr 73:4e8ce0b18915 5113 return z;
mjr 73:4e8ce0b18915 5114 }
mjr 73:4e8ce0b18915 5115 }
mjr 73:4e8ce0b18915 5116 #elif PLUNGER_FILTERING_MODE == 2
mjr 69:cc5039284fac 5117 // Apply pre-processing filter. This filter is applied to the raw
mjr 69:cc5039284fac 5118 // value coming off the sensor, before calibration or fire-event
mjr 69:cc5039284fac 5119 // processing.
mjr 69:cc5039284fac 5120 void applyPreFilter(PlungerReading &r)
mjr 69:cc5039284fac 5121 {
mjr 69:cc5039284fac 5122 // get the previous raw reading
mjr 69:cc5039284fac 5123 PlungerReading prv = pre.raw;
mjr 69:cc5039284fac 5124
mjr 69:cc5039284fac 5125 // the new reading is the previous raw reading next time, no
mjr 69:cc5039284fac 5126 // matter how we end up filtering it
mjr 69:cc5039284fac 5127 pre.raw = r;
mjr 69:cc5039284fac 5128
mjr 69:cc5039284fac 5129 // If it's too big an excursion from the previous raw reading,
mjr 69:cc5039284fac 5130 // ignore it and repeat the previous reported reading. This
mjr 69:cc5039284fac 5131 // filters out anomalous spikes where we suddenly jump to a
mjr 69:cc5039284fac 5132 // level that's too far away to be possible. Real plungers
mjr 69:cc5039284fac 5133 // take about 60ms to travel the full distance when released,
mjr 69:cc5039284fac 5134 // so assuming constant acceleration, the maximum realistic
mjr 69:cc5039284fac 5135 // speed is about 2.200 distance units (on our 0..0xffff scale)
mjr 69:cc5039284fac 5136 // per microsecond.
mjr 69:cc5039284fac 5137 //
mjr 69:cc5039284fac 5138 // On the other hand, if the new reading is too *close* to the
mjr 69:cc5039284fac 5139 // previous reading, use the previous reported reading. This
mjr 69:cc5039284fac 5140 // filters out jitter around a stationary position.
mjr 69:cc5039284fac 5141 const float maxDist = 2.184f*uint32_t(r.t - prv.t);
mjr 69:cc5039284fac 5142 const int minDist = 256;
mjr 69:cc5039284fac 5143 const int delta = abs(r.pos - prv.pos);
mjr 69:cc5039284fac 5144 if (maxDist > minDist && delta > maxDist)
mjr 69:cc5039284fac 5145 {
mjr 69:cc5039284fac 5146 // too big an excursion - discard this reading by reporting
mjr 69:cc5039284fac 5147 // the last reported reading instead
mjr 69:cc5039284fac 5148 r.pos = pre.reported;
mjr 69:cc5039284fac 5149 }
mjr 69:cc5039284fac 5150 else if (delta < minDist)
mjr 69:cc5039284fac 5151 {
mjr 69:cc5039284fac 5152 // too close to the prior reading - apply hysteresis
mjr 69:cc5039284fac 5153 r.pos = pre.reported;
mjr 69:cc5039284fac 5154 }
mjr 69:cc5039284fac 5155 else
mjr 69:cc5039284fac 5156 {
mjr 69:cc5039284fac 5157 // the reading is in range - keep it, and remember it as
mjr 69:cc5039284fac 5158 // the last reported reading
mjr 69:cc5039284fac 5159 pre.reported = r.pos;
mjr 69:cc5039284fac 5160 }
mjr 69:cc5039284fac 5161 }
mjr 69:cc5039284fac 5162
mjr 69:cc5039284fac 5163 // pre-filter data
mjr 69:cc5039284fac 5164 struct PreFilterData {
mjr 69:cc5039284fac 5165 PreFilterData()
mjr 69:cc5039284fac 5166 : reported(0)
mjr 69:cc5039284fac 5167 {
mjr 69:cc5039284fac 5168 raw.t = 0;
mjr 69:cc5039284fac 5169 raw.pos = 0;
mjr 69:cc5039284fac 5170 }
mjr 69:cc5039284fac 5171 PlungerReading raw; // previous raw sensor reading
mjr 69:cc5039284fac 5172 int reported; // previous reported reading
mjr 69:cc5039284fac 5173 } pre;
mjr 69:cc5039284fac 5174
mjr 69:cc5039284fac 5175
mjr 69:cc5039284fac 5176 // Apply the post-processing filter. This filter is applied after
mjr 69:cc5039284fac 5177 // the fire-event processing. In the past, this used hysteresis to
mjr 69:cc5039284fac 5178 // try to smooth out jittering readings for a stationary plunger.
mjr 69:cc5039284fac 5179 // We've switched to a different approach that massages the readings
mjr 69:cc5039284fac 5180 // coming off the sensor before
mjr 69:cc5039284fac 5181 int applyPostFilter()
mjr 69:cc5039284fac 5182 {
mjr 69:cc5039284fac 5183 return z;
mjr 69:cc5039284fac 5184 }
mjr 69:cc5039284fac 5185 #endif
mjr 58:523fdcffbe6d 5186
mjr 58:523fdcffbe6d 5187 void initFilter()
mjr 58:523fdcffbe6d 5188 {
mjr 58:523fdcffbe6d 5189 filterSum = 0;
mjr 58:523fdcffbe6d 5190 filterN = 1;
mjr 58:523fdcffbe6d 5191 filterDir = 0x5555;
mjr 58:523fdcffbe6d 5192 }
mjr 58:523fdcffbe6d 5193 int64_t filterSum;
mjr 58:523fdcffbe6d 5194 int64_t filterN;
mjr 58:523fdcffbe6d 5195 uint16_t filterDir;
mjr 58:523fdcffbe6d 5196
mjr 58:523fdcffbe6d 5197
mjr 52:8298b2a73eb2 5198 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 5199 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 5200 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 5201 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5202 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5203 // 1 = at rest
mjr 52:8298b2a73eb2 5204 // 2 = retracting
mjr 52:8298b2a73eb2 5205 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5206 uint8_t calState;
mjr 52:8298b2a73eb2 5207
mjr 52:8298b2a73eb2 5208 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5209 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5210 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5211 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5212 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5213 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5214 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5215 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5216 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5217 long calZeroPosSum;
mjr 52:8298b2a73eb2 5218 int calZeroPosN;
mjr 52:8298b2a73eb2 5219
mjr 52:8298b2a73eb2 5220 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5221 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5222 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5223 int calRlsTimeN;
mjr 52:8298b2a73eb2 5224
mjr 48:058ace2aed1d 5225 // set a firing mode
mjr 48:058ace2aed1d 5226 inline void firingMode(int m)
mjr 48:058ace2aed1d 5227 {
mjr 48:058ace2aed1d 5228 firing = m;
mjr 48:058ace2aed1d 5229 }
mjr 48:058ace2aed1d 5230
mjr 48:058ace2aed1d 5231 // Find the most recent local maximum in the history data, up to
mjr 48:058ace2aed1d 5232 // the given time limit.
mjr 48:058ace2aed1d 5233 int histLocalMax(uint32_t tcur, uint32_t dt)
mjr 48:058ace2aed1d 5234 {
mjr 48:058ace2aed1d 5235 // start with the prior entry
mjr 48:058ace2aed1d 5236 int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1;
mjr 48:058ace2aed1d 5237 int hi = hist[idx].pos;
mjr 48:058ace2aed1d 5238
mjr 48:058ace2aed1d 5239 // scan backwards for a local maximum
mjr 48:058ace2aed1d 5240 for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1)
mjr 48:058ace2aed1d 5241 {
mjr 48:058ace2aed1d 5242 // if this isn't within the time window, stop
mjr 48:058ace2aed1d 5243 if (uint32_t(tcur - hist[idx].t) > dt)
mjr 48:058ace2aed1d 5244 break;
mjr 48:058ace2aed1d 5245
mjr 48:058ace2aed1d 5246 // if this isn't above the current hith, stop
mjr 48:058ace2aed1d 5247 if (hist[idx].pos < hi)
mjr 48:058ace2aed1d 5248 break;
mjr 48:058ace2aed1d 5249
mjr 48:058ace2aed1d 5250 // this is the new high
mjr 48:058ace2aed1d 5251 hi = hist[idx].pos;
mjr 48:058ace2aed1d 5252 }
mjr 48:058ace2aed1d 5253
mjr 48:058ace2aed1d 5254 // return the local maximum
mjr 48:058ace2aed1d 5255 return hi;
mjr 48:058ace2aed1d 5256 }
mjr 48:058ace2aed1d 5257
mjr 50:40015764bbe6 5258 // velocity at previous reading, and the one before that
mjr 76:7f5912b6340e 5259 int vprv, vprv2;
mjr 48:058ace2aed1d 5260
mjr 48:058ace2aed1d 5261 // Circular buffer of recent readings. We keep a short history
mjr 48:058ace2aed1d 5262 // of readings to analyze during firing events. We can only identify
mjr 48:058ace2aed1d 5263 // a firing event once it's somewhat under way, so we need a little
mjr 48:058ace2aed1d 5264 // retrospective information to accurately determine after the fact
mjr 48:058ace2aed1d 5265 // exactly when it started. We throttle our readings to no more
mjr 74:822a92bc11d2 5266 // than one every 1ms, so we have at least N*1ms of history in this
mjr 48:058ace2aed1d 5267 // array.
mjr 74:822a92bc11d2 5268 PlungerReading hist[32];
mjr 48:058ace2aed1d 5269 int histIdx;
mjr 49:37bd97eb7688 5270
mjr 50:40015764bbe6 5271 // get the nth history item (0=last, 1=2nd to last, etc)
mjr 74:822a92bc11d2 5272 inline const PlungerReading &nthHist(int n) const
mjr 50:40015764bbe6 5273 {
mjr 50:40015764bbe6 5274 // histIdx-1 is the last written; go from there
mjr 50:40015764bbe6 5275 n = histIdx - 1 - n;
mjr 50:40015764bbe6 5276
mjr 50:40015764bbe6 5277 // adjust for wrapping
mjr 50:40015764bbe6 5278 if (n < 0)
mjr 50:40015764bbe6 5279 n += countof(hist);
mjr 50:40015764bbe6 5280
mjr 50:40015764bbe6 5281 // return the item
mjr 50:40015764bbe6 5282 return hist[n];
mjr 50:40015764bbe6 5283 }
mjr 48:058ace2aed1d 5284
mjr 48:058ace2aed1d 5285 // Firing event state.
mjr 48:058ace2aed1d 5286 //
mjr 48:058ace2aed1d 5287 // 0 - Default state. We report the real instantaneous plunger
mjr 48:058ace2aed1d 5288 // position to the joystick interface.
mjr 48:058ace2aed1d 5289 //
mjr 53:9b2611964afc 5290 // 1 - Moving forward
mjr 48:058ace2aed1d 5291 //
mjr 53:9b2611964afc 5292 // 2 - Accelerating
mjr 48:058ace2aed1d 5293 //
mjr 53:9b2611964afc 5294 // 3 - Firing. We report the rest position for a minimum interval,
mjr 53:9b2611964afc 5295 // or until the real plunger comes to rest somewhere.
mjr 48:058ace2aed1d 5296 //
mjr 48:058ace2aed1d 5297 int firing;
mjr 48:058ace2aed1d 5298
mjr 51:57eb311faafa 5299 // Position/timestamp at start of firing phase 1. When we see a
mjr 51:57eb311faafa 5300 // sustained forward acceleration, we freeze joystick reports at
mjr 51:57eb311faafa 5301 // the recent local maximum, on the assumption that this was the
mjr 51:57eb311faafa 5302 // start of the release. If this is zero, it means that we're
mjr 51:57eb311faafa 5303 // monitoring accelerating motion but haven't seen it for long
mjr 51:57eb311faafa 5304 // enough yet to be confident that a release is in progress.
mjr 48:058ace2aed1d 5305 PlungerReading f1;
mjr 48:058ace2aed1d 5306
mjr 48:058ace2aed1d 5307 // Position/timestamp at start of firing phase 2. The position is
mjr 48:058ace2aed1d 5308 // the fake "bounce" position we report during this phase, and the
mjr 48:058ace2aed1d 5309 // timestamp tells us when the phase began so that we can end it
mjr 48:058ace2aed1d 5310 // after enough time elapses.
mjr 48:058ace2aed1d 5311 PlungerReading f2;
mjr 48:058ace2aed1d 5312
mjr 48:058ace2aed1d 5313 // Position/timestamp of start of stability window during phase 3.
mjr 48:058ace2aed1d 5314 // We use this to determine when the plunger comes to rest. We set
mjr 51:57eb311faafa 5315 // this at the beginning of phase 3, and then reset it when the
mjr 48:058ace2aed1d 5316 // plunger moves too far from the last position.
mjr 48:058ace2aed1d 5317 PlungerReading f3s;
mjr 48:058ace2aed1d 5318
mjr 48:058ace2aed1d 5319 // Position/timestamp of start of retraction window during phase 3.
mjr 48:058ace2aed1d 5320 // We use this to determine if the user is drawing the plunger back.
mjr 48:058ace2aed1d 5321 // If we see retraction motion for more than about 65ms, we assume
mjr 48:058ace2aed1d 5322 // that the user has taken over, because we should see forward
mjr 48:058ace2aed1d 5323 // motion within this timeframe if the plunger is just bouncing
mjr 48:058ace2aed1d 5324 // freely.
mjr 48:058ace2aed1d 5325 PlungerReading f3r;
mjr 48:058ace2aed1d 5326
mjr 58:523fdcffbe6d 5327 // next raw (unfiltered) Z value to report to the joystick interface
mjr 58:523fdcffbe6d 5328 // (in joystick distance units)
mjr 48:058ace2aed1d 5329 int z;
mjr 48:058ace2aed1d 5330
mjr 58:523fdcffbe6d 5331 // next filtered Z value to report to the joystick interface
mjr 58:523fdcffbe6d 5332 int zf;
mjr 48:058ace2aed1d 5333 };
mjr 48:058ace2aed1d 5334
mjr 48:058ace2aed1d 5335 // plunger reader singleton
mjr 48:058ace2aed1d 5336 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5337
mjr 48:058ace2aed1d 5338 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5339 //
mjr 48:058ace2aed1d 5340 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5341 //
mjr 48:058ace2aed1d 5342 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5343 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5344 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5345 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5346 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5347 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5348 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5349 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5350 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5351 //
mjr 48:058ace2aed1d 5352 // This feature has two configuration components:
mjr 48:058ace2aed1d 5353 //
mjr 48:058ace2aed1d 5354 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5355 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5356 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5357 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5358 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5359 // plunger/launch button connection.
mjr 48:058ace2aed1d 5360 //
mjr 48:058ace2aed1d 5361 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5362 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5363 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5364 // position.
mjr 48:058ace2aed1d 5365 //
mjr 48:058ace2aed1d 5366 class ZBLaunchBall
mjr 48:058ace2aed1d 5367 {
mjr 48:058ace2aed1d 5368 public:
mjr 48:058ace2aed1d 5369 ZBLaunchBall()
mjr 48:058ace2aed1d 5370 {
mjr 48:058ace2aed1d 5371 // start in the default state
mjr 48:058ace2aed1d 5372 lbState = 0;
mjr 53:9b2611964afc 5373 btnState = false;
mjr 48:058ace2aed1d 5374 }
mjr 48:058ace2aed1d 5375
mjr 48:058ace2aed1d 5376 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5377 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5378 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5379 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5380 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5381 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5382 void update()
mjr 48:058ace2aed1d 5383 {
mjr 53:9b2611964afc 5384 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5385 // plunger firing event
mjr 53:9b2611964afc 5386 if (zbLaunchOn)
mjr 48:058ace2aed1d 5387 {
mjr 53:9b2611964afc 5388 // note the new position
mjr 48:058ace2aed1d 5389 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5390
mjr 53:9b2611964afc 5391 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5392 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5393
mjr 53:9b2611964afc 5394 // check the state
mjr 48:058ace2aed1d 5395 switch (lbState)
mjr 48:058ace2aed1d 5396 {
mjr 48:058ace2aed1d 5397 case 0:
mjr 53:9b2611964afc 5398 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5399 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5400 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5401 // the button.
mjr 53:9b2611964afc 5402 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5403 {
mjr 53:9b2611964afc 5404 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5405 lbTimer.reset();
mjr 53:9b2611964afc 5406 lbTimer.start();
mjr 53:9b2611964afc 5407 setButton(true);
mjr 53:9b2611964afc 5408
mjr 53:9b2611964afc 5409 // switch to state 1
mjr 53:9b2611964afc 5410 lbState = 1;
mjr 53:9b2611964afc 5411 }
mjr 48:058ace2aed1d 5412 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5413 {
mjr 53:9b2611964afc 5414 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5415 // button as long as we're pushed forward
mjr 53:9b2611964afc 5416 setButton(true);
mjr 53:9b2611964afc 5417 }
mjr 53:9b2611964afc 5418 else
mjr 53:9b2611964afc 5419 {
mjr 53:9b2611964afc 5420 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5421 setButton(false);
mjr 53:9b2611964afc 5422 }
mjr 48:058ace2aed1d 5423 break;
mjr 48:058ace2aed1d 5424
mjr 48:058ace2aed1d 5425 case 1:
mjr 53:9b2611964afc 5426 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5427 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5428 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5429 {
mjr 53:9b2611964afc 5430 // timer expired - turn off the button
mjr 53:9b2611964afc 5431 setButton(false);
mjr 53:9b2611964afc 5432
mjr 53:9b2611964afc 5433 // switch to state 2
mjr 53:9b2611964afc 5434 lbState = 2;
mjr 53:9b2611964afc 5435 }
mjr 48:058ace2aed1d 5436 break;
mjr 48:058ace2aed1d 5437
mjr 48:058ace2aed1d 5438 case 2:
mjr 53:9b2611964afc 5439 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5440 // plunger launch event to end.
mjr 53:9b2611964afc 5441 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5442 {
mjr 53:9b2611964afc 5443 // firing event done - return to default state
mjr 53:9b2611964afc 5444 lbState = 0;
mjr 53:9b2611964afc 5445 }
mjr 48:058ace2aed1d 5446 break;
mjr 48:058ace2aed1d 5447 }
mjr 53:9b2611964afc 5448 }
mjr 53:9b2611964afc 5449 else
mjr 53:9b2611964afc 5450 {
mjr 53:9b2611964afc 5451 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5452 setButton(false);
mjr 48:058ace2aed1d 5453
mjr 53:9b2611964afc 5454 // return to the default state
mjr 53:9b2611964afc 5455 lbState = 0;
mjr 48:058ace2aed1d 5456 }
mjr 48:058ace2aed1d 5457 }
mjr 53:9b2611964afc 5458
mjr 53:9b2611964afc 5459 // Set the button state
mjr 53:9b2611964afc 5460 void setButton(bool on)
mjr 53:9b2611964afc 5461 {
mjr 53:9b2611964afc 5462 if (btnState != on)
mjr 53:9b2611964afc 5463 {
mjr 53:9b2611964afc 5464 // remember the new state
mjr 53:9b2611964afc 5465 btnState = on;
mjr 53:9b2611964afc 5466
mjr 53:9b2611964afc 5467 // update the virtual button state
mjr 65:739875521aae 5468 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5469 }
mjr 53:9b2611964afc 5470 }
mjr 53:9b2611964afc 5471
mjr 48:058ace2aed1d 5472 private:
mjr 48:058ace2aed1d 5473 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5474 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5475 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5476 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5477 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5478 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5479 //
mjr 48:058ace2aed1d 5480 // States:
mjr 48:058ace2aed1d 5481 // 0 = default
mjr 53:9b2611964afc 5482 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5483 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5484 // firing event to end)
mjr 53:9b2611964afc 5485 uint8_t lbState;
mjr 48:058ace2aed1d 5486
mjr 53:9b2611964afc 5487 // button state
mjr 53:9b2611964afc 5488 bool btnState;
mjr 48:058ace2aed1d 5489
mjr 48:058ace2aed1d 5490 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5491 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5492 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5493 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5494 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5495 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5496 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5497 Timer lbTimer;
mjr 48:058ace2aed1d 5498 };
mjr 48:058ace2aed1d 5499
mjr 35:e959ffba78fd 5500 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5501 //
mjr 35:e959ffba78fd 5502 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 5503 //
mjr 54:fd77a6b2f76c 5504 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 5505 {
mjr 35:e959ffba78fd 5506 // disconnect from USB
mjr 54:fd77a6b2f76c 5507 if (disconnect)
mjr 54:fd77a6b2f76c 5508 js.disconnect();
mjr 35:e959ffba78fd 5509
mjr 35:e959ffba78fd 5510 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 5511 wait_us(pause_us);
mjr 35:e959ffba78fd 5512
mjr 35:e959ffba78fd 5513 // reset the device
mjr 35:e959ffba78fd 5514 NVIC_SystemReset();
mjr 35:e959ffba78fd 5515 while (true) { }
mjr 35:e959ffba78fd 5516 }
mjr 35:e959ffba78fd 5517
mjr 35:e959ffba78fd 5518 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5519 //
mjr 35:e959ffba78fd 5520 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 5521 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 5522 //
mjr 35:e959ffba78fd 5523 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 5524 {
mjr 35:e959ffba78fd 5525 int tmp;
mjr 78:1e00b3fa11af 5526 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 5527 {
mjr 35:e959ffba78fd 5528 case OrientationFront:
mjr 35:e959ffba78fd 5529 tmp = x;
mjr 35:e959ffba78fd 5530 x = y;
mjr 35:e959ffba78fd 5531 y = tmp;
mjr 35:e959ffba78fd 5532 break;
mjr 35:e959ffba78fd 5533
mjr 35:e959ffba78fd 5534 case OrientationLeft:
mjr 35:e959ffba78fd 5535 x = -x;
mjr 35:e959ffba78fd 5536 break;
mjr 35:e959ffba78fd 5537
mjr 35:e959ffba78fd 5538 case OrientationRight:
mjr 35:e959ffba78fd 5539 y = -y;
mjr 35:e959ffba78fd 5540 break;
mjr 35:e959ffba78fd 5541
mjr 35:e959ffba78fd 5542 case OrientationRear:
mjr 35:e959ffba78fd 5543 tmp = -x;
mjr 35:e959ffba78fd 5544 x = -y;
mjr 35:e959ffba78fd 5545 y = tmp;
mjr 35:e959ffba78fd 5546 break;
mjr 35:e959ffba78fd 5547 }
mjr 35:e959ffba78fd 5548 }
mjr 35:e959ffba78fd 5549
mjr 35:e959ffba78fd 5550 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5551 //
mjr 35:e959ffba78fd 5552 // Calibration button state:
mjr 35:e959ffba78fd 5553 // 0 = not pushed
mjr 35:e959ffba78fd 5554 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 5555 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 5556 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 5557 int calBtnState = 0;
mjr 35:e959ffba78fd 5558
mjr 35:e959ffba78fd 5559 // calibration button debounce timer
mjr 35:e959ffba78fd 5560 Timer calBtnTimer;
mjr 35:e959ffba78fd 5561
mjr 35:e959ffba78fd 5562 // calibration button light state
mjr 35:e959ffba78fd 5563 int calBtnLit = false;
mjr 35:e959ffba78fd 5564
mjr 35:e959ffba78fd 5565
mjr 35:e959ffba78fd 5566 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5567 //
mjr 40:cc0d9814522b 5568 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 5569 //
mjr 40:cc0d9814522b 5570
mjr 40:cc0d9814522b 5571 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 5572 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 5573 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 5574 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 5575 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 5576 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 5577 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5578 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5579 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 5580 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 5581 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 5582
mjr 40:cc0d9814522b 5583 // redefine everything for the SET messages
mjr 40:cc0d9814522b 5584 #undef if_msg_valid
mjr 40:cc0d9814522b 5585 #undef v_byte
mjr 40:cc0d9814522b 5586 #undef v_ui16
mjr 77:0b96f6867312 5587 #undef v_ui32
mjr 40:cc0d9814522b 5588 #undef v_pin
mjr 53:9b2611964afc 5589 #undef v_byte_ro
mjr 74:822a92bc11d2 5590 #undef v_ui32_ro
mjr 74:822a92bc11d2 5591 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 5592 #undef v_func
mjr 38:091e511ce8a0 5593
mjr 40:cc0d9814522b 5594 // Handle GET messages - read variable values and return in USB message daa
mjr 40:cc0d9814522b 5595 #define if_msg_valid(test)
mjr 53:9b2611964afc 5596 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 5597 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 5598 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 5599 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 5600 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 5601 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 5602 #define VAR_MODE_SET 0 // we're in GET mode
mjr 76:7f5912b6340e 5603 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 5604 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 5605
mjr 35:e959ffba78fd 5606
mjr 35:e959ffba78fd 5607 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5608 //
mjr 35:e959ffba78fd 5609 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 5610 // LedWiz protocol.
mjr 33:d832bcab089e 5611 //
mjr 78:1e00b3fa11af 5612 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 5613 {
mjr 38:091e511ce8a0 5614 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 5615 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 5616 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 5617 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 5618 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 5619 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 5620 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 5621 // So our full protocol is as follows:
mjr 38:091e511ce8a0 5622 //
mjr 38:091e511ce8a0 5623 // first byte =
mjr 74:822a92bc11d2 5624 // 0-48 -> PBA
mjr 74:822a92bc11d2 5625 // 64 -> SBA
mjr 38:091e511ce8a0 5626 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 5627 // 129-132 -> PBA
mjr 38:091e511ce8a0 5628 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 5629 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 5630 // other -> reserved for future use
mjr 38:091e511ce8a0 5631 //
mjr 39:b3815a1c3802 5632 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 5633 if (data[0] == 64)
mjr 35:e959ffba78fd 5634 {
mjr 74:822a92bc11d2 5635 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 5636 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 5637 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 5638 sba_sbx(0, data);
mjr 74:822a92bc11d2 5639
mjr 74:822a92bc11d2 5640 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 5641 pbaIdx = 0;
mjr 38:091e511ce8a0 5642 }
mjr 38:091e511ce8a0 5643 else if (data[0] == 65)
mjr 38:091e511ce8a0 5644 {
mjr 38:091e511ce8a0 5645 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 5646 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 5647 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 5648 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 5649 // message type.
mjr 39:b3815a1c3802 5650 switch (data[1])
mjr 38:091e511ce8a0 5651 {
mjr 39:b3815a1c3802 5652 case 0:
mjr 39:b3815a1c3802 5653 // No Op
mjr 39:b3815a1c3802 5654 break;
mjr 39:b3815a1c3802 5655
mjr 39:b3815a1c3802 5656 case 1:
mjr 38:091e511ce8a0 5657 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 5658 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 5659 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 5660 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 5661 {
mjr 39:b3815a1c3802 5662
mjr 39:b3815a1c3802 5663 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 5664 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 5665 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 5666
mjr 39:b3815a1c3802 5667 // we'll need a reset if the LedWiz unit number is changing
mjr 39:b3815a1c3802 5668 bool needReset = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 5669
mjr 39:b3815a1c3802 5670 // set the configuration parameters from the message
mjr 39:b3815a1c3802 5671 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 5672 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 5673
mjr 77:0b96f6867312 5674 // set the flag to do the save
mjr 77:0b96f6867312 5675 saveConfigPending = needReset ? SAVE_CONFIG_AND_REBOOT : SAVE_CONFIG_ONLY;
mjr 77:0b96f6867312 5676 saveConfigRebootTime = 0;
mjr 39:b3815a1c3802 5677 }
mjr 39:b3815a1c3802 5678 break;
mjr 38:091e511ce8a0 5679
mjr 39:b3815a1c3802 5680 case 2:
mjr 38:091e511ce8a0 5681 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 5682 // (No parameters)
mjr 38:091e511ce8a0 5683
mjr 38:091e511ce8a0 5684 // enter calibration mode
mjr 38:091e511ce8a0 5685 calBtnState = 3;
mjr 52:8298b2a73eb2 5686 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 5687 calBtnTimer.reset();
mjr 39:b3815a1c3802 5688 break;
mjr 39:b3815a1c3802 5689
mjr 39:b3815a1c3802 5690 case 3:
mjr 52:8298b2a73eb2 5691 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 5692 // data[2] = flag bits
mjr 53:9b2611964afc 5693 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 5694 reportPlungerStat = true;
mjr 53:9b2611964afc 5695 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 5696 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 5697
mjr 38:091e511ce8a0 5698 // show purple until we finish sending the report
mjr 38:091e511ce8a0 5699 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 5700 break;
mjr 39:b3815a1c3802 5701
mjr 39:b3815a1c3802 5702 case 4:
mjr 38:091e511ce8a0 5703 // 4 = hardware configuration query
mjr 38:091e511ce8a0 5704 // (No parameters)
mjr 38:091e511ce8a0 5705 js.reportConfig(
mjr 38:091e511ce8a0 5706 numOutputs,
mjr 38:091e511ce8a0 5707 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 5708 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 5709 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 5710 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 5711 true, // we support the new accelerometer settings
mjr 75:677892300e7a 5712 xmalloc_rem); // remaining memory size
mjr 39:b3815a1c3802 5713 break;
mjr 39:b3815a1c3802 5714
mjr 39:b3815a1c3802 5715 case 5:
mjr 38:091e511ce8a0 5716 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 5717 allOutputsOff();
mjr 39:b3815a1c3802 5718 break;
mjr 39:b3815a1c3802 5719
mjr 39:b3815a1c3802 5720 case 6:
mjr 77:0b96f6867312 5721 // 6 = Save configuration to flash. Reboot after the delay
mjr 77:0b96f6867312 5722 // time in seconds given in data[2].
mjr 77:0b96f6867312 5723 saveConfigPending = SAVE_CONFIG_AND_REBOOT;
mjr 77:0b96f6867312 5724 saveConfigRebootTime = data[2];
mjr 39:b3815a1c3802 5725 break;
mjr 40:cc0d9814522b 5726
mjr 40:cc0d9814522b 5727 case 7:
mjr 40:cc0d9814522b 5728 // 7 = Device ID report
mjr 53:9b2611964afc 5729 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 5730 js.reportID(data[2]);
mjr 40:cc0d9814522b 5731 break;
mjr 40:cc0d9814522b 5732
mjr 40:cc0d9814522b 5733 case 8:
mjr 40:cc0d9814522b 5734 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 5735 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 5736 setNightMode(data[2]);
mjr 40:cc0d9814522b 5737 break;
mjr 52:8298b2a73eb2 5738
mjr 52:8298b2a73eb2 5739 case 9:
mjr 52:8298b2a73eb2 5740 // 9 = Config variable query.
mjr 52:8298b2a73eb2 5741 // data[2] = config var ID
mjr 52:8298b2a73eb2 5742 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 5743 {
mjr 53:9b2611964afc 5744 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 5745 // the rest of the buffer
mjr 52:8298b2a73eb2 5746 uint8_t reply[8];
mjr 52:8298b2a73eb2 5747 reply[1] = data[2];
mjr 52:8298b2a73eb2 5748 reply[2] = data[3];
mjr 53:9b2611964afc 5749 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 5750
mjr 52:8298b2a73eb2 5751 // query the value
mjr 52:8298b2a73eb2 5752 configVarGet(reply);
mjr 52:8298b2a73eb2 5753
mjr 52:8298b2a73eb2 5754 // send the reply
mjr 52:8298b2a73eb2 5755 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 5756 }
mjr 52:8298b2a73eb2 5757 break;
mjr 53:9b2611964afc 5758
mjr 53:9b2611964afc 5759 case 10:
mjr 53:9b2611964afc 5760 // 10 = Build ID query.
mjr 53:9b2611964afc 5761 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 5762 break;
mjr 73:4e8ce0b18915 5763
mjr 73:4e8ce0b18915 5764 case 11:
mjr 73:4e8ce0b18915 5765 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 5766 // data[2] = operation:
mjr 73:4e8ce0b18915 5767 // 0 = turn relay off
mjr 73:4e8ce0b18915 5768 // 1 = turn relay on
mjr 73:4e8ce0b18915 5769 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 5770 TVRelay(data[2]);
mjr 73:4e8ce0b18915 5771 break;
mjr 73:4e8ce0b18915 5772
mjr 73:4e8ce0b18915 5773 case 12:
mjr 77:0b96f6867312 5774 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 5775 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 5776 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 5777 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 5778 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 5779
mjr 77:0b96f6867312 5780 // enter IR learning mode
mjr 77:0b96f6867312 5781 IRLearningMode = 1;
mjr 77:0b96f6867312 5782
mjr 77:0b96f6867312 5783 // cancel any regular IR input in progress
mjr 77:0b96f6867312 5784 IRCommandIn = 0;
mjr 77:0b96f6867312 5785
mjr 77:0b96f6867312 5786 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 5787 IRTimer.reset();
mjr 73:4e8ce0b18915 5788 break;
mjr 73:4e8ce0b18915 5789
mjr 73:4e8ce0b18915 5790 case 13:
mjr 73:4e8ce0b18915 5791 // 13 = Send button status report
mjr 73:4e8ce0b18915 5792 reportButtonStatus(js);
mjr 73:4e8ce0b18915 5793 break;
mjr 78:1e00b3fa11af 5794
mjr 78:1e00b3fa11af 5795 case 14:
mjr 78:1e00b3fa11af 5796 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 5797 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 5798 break;
mjr 78:1e00b3fa11af 5799
mjr 78:1e00b3fa11af 5800 case 15:
mjr 78:1e00b3fa11af 5801 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 5802 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 5803 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 5804 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 5805 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 5806 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 5807 break;
mjr 78:1e00b3fa11af 5808
mjr 78:1e00b3fa11af 5809 case 16:
mjr 78:1e00b3fa11af 5810 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 5811 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 5812 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 5813 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 5814 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 5815 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 5816 break;
mjr 38:091e511ce8a0 5817 }
mjr 38:091e511ce8a0 5818 }
mjr 38:091e511ce8a0 5819 else if (data[0] == 66)
mjr 38:091e511ce8a0 5820 {
mjr 38:091e511ce8a0 5821 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 5822 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 5823 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 5824 // in a variable-dependent format.
mjr 40:cc0d9814522b 5825 configVarSet(data);
mjr 38:091e511ce8a0 5826 }
mjr 74:822a92bc11d2 5827 else if (data[0] == 67)
mjr 74:822a92bc11d2 5828 {
mjr 74:822a92bc11d2 5829 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 5830 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 5831 // to ports beyond the first 32.
mjr 74:822a92bc11d2 5832 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 5833 }
mjr 74:822a92bc11d2 5834 else if (data[0] == 68)
mjr 74:822a92bc11d2 5835 {
mjr 74:822a92bc11d2 5836 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 5837 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 5838 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 5839
mjr 74:822a92bc11d2 5840 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 5841 int portGroup = data[1];
mjr 74:822a92bc11d2 5842
mjr 74:822a92bc11d2 5843 // unpack the brightness values
mjr 74:822a92bc11d2 5844 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 5845 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 5846 uint8_t bri[8] = {
mjr 74:822a92bc11d2 5847 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 5848 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 5849 };
mjr 74:822a92bc11d2 5850
mjr 74:822a92bc11d2 5851 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 5852 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 5853 {
mjr 74:822a92bc11d2 5854 if (bri[i] >= 60)
mjr 74:822a92bc11d2 5855 bri[i] += 129-60;
mjr 74:822a92bc11d2 5856 }
mjr 74:822a92bc11d2 5857
mjr 74:822a92bc11d2 5858 // Carry out the PBA
mjr 74:822a92bc11d2 5859 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 5860 }
mjr 38:091e511ce8a0 5861 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 5862 {
mjr 38:091e511ce8a0 5863 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 5864 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 5865 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 5866 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 5867 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 5868 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 5869 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 5870 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 5871 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 5872 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 5873 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 5874 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 5875 //
mjr 38:091e511ce8a0 5876 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 5877 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 5878 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 5879 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 5880 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 5881 // address those ports anyway.
mjr 63:5cd1a5f3a41b 5882
mjr 63:5cd1a5f3a41b 5883 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 5884 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 5885 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 5886
mjr 63:5cd1a5f3a41b 5887 // update each port
mjr 38:091e511ce8a0 5888 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 5889 {
mjr 38:091e511ce8a0 5890 // set the brightness level for the output
mjr 40:cc0d9814522b 5891 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 5892 outLevel[i] = b;
mjr 38:091e511ce8a0 5893
mjr 74:822a92bc11d2 5894 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 5895 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 5896 // LedWiz mode on a future update
mjr 76:7f5912b6340e 5897 if (b != 0)
mjr 76:7f5912b6340e 5898 {
mjr 76:7f5912b6340e 5899 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 5900 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 5901 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 5902 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 5903 // forward unchanged.
mjr 76:7f5912b6340e 5904 wizOn[i] = 1;
mjr 76:7f5912b6340e 5905 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 5906 }
mjr 76:7f5912b6340e 5907 else
mjr 76:7f5912b6340e 5908 {
mjr 76:7f5912b6340e 5909 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 5910 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 5911 wizOn[i] = 0;
mjr 76:7f5912b6340e 5912 }
mjr 74:822a92bc11d2 5913
mjr 38:091e511ce8a0 5914 // set the output
mjr 40:cc0d9814522b 5915 lwPin[i]->set(b);
mjr 38:091e511ce8a0 5916 }
mjr 38:091e511ce8a0 5917
mjr 38:091e511ce8a0 5918 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 5919 if (hc595 != 0)
mjr 38:091e511ce8a0 5920 hc595->update();
mjr 38:091e511ce8a0 5921 }
mjr 38:091e511ce8a0 5922 else
mjr 38:091e511ce8a0 5923 {
mjr 74:822a92bc11d2 5924 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 5925 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 5926 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 5927 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 5928 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 5929 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 5930 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 5931 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 5932 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 5933 //
mjr 38:091e511ce8a0 5934 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 5935 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 5936 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 5937 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 5938 // protocol mode.
mjr 38:091e511ce8a0 5939 //
mjr 38:091e511ce8a0 5940 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 5941 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 5942
mjr 74:822a92bc11d2 5943 // carry out the PBA
mjr 74:822a92bc11d2 5944 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 5945
mjr 74:822a92bc11d2 5946 // update the PBX index state for the next message
mjr 74:822a92bc11d2 5947 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 5948 }
mjr 38:091e511ce8a0 5949 }
mjr 35:e959ffba78fd 5950
mjr 38:091e511ce8a0 5951 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5952 //
mjr 5:a70c0bce770d 5953 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 5954 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 5955 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 5956 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 5957 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 5958 // port outputs.
mjr 5:a70c0bce770d 5959 //
mjr 0:5acbbe3f4cf4 5960 int main(void)
mjr 0:5acbbe3f4cf4 5961 {
mjr 60:f38da020aa13 5962 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 5963 printf("\r\nPinscape Controller starting\r\n");
mjr 77:0b96f6867312 5964
mjr 77:0b96f6867312 5965
mjr 60:f38da020aa13 5966 // debugging: print memory config info
mjr 59:94eb9265b6d7 5967 // -> no longer very useful, since we use our own custom malloc/new allocator (see xmalloc() above)
mjr 60:f38da020aa13 5968 // {int *a = new int; printf("Stack=%lx, heap=%lx, free=%ld\r\n", (long)&a, (long)a, (long)&a - (long)a);}
mjr 1:d913e0afb2ac 5969
mjr 76:7f5912b6340e 5970 // clear the I2C connection
mjr 35:e959ffba78fd 5971 clear_i2c();
mjr 38:091e511ce8a0 5972
mjr 76:7f5912b6340e 5973 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 5974 // configuration data:
mjr 76:7f5912b6340e 5975 //
mjr 76:7f5912b6340e 5976 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 5977 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 5978 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 5979 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 5980 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 5981 // to store user settings updates.
mjr 76:7f5912b6340e 5982 //
mjr 76:7f5912b6340e 5983 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 5984 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 5985 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 5986 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 5987 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 5988 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 5989 // without a separate download of the config data.
mjr 76:7f5912b6340e 5990 //
mjr 76:7f5912b6340e 5991 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 5992 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 5993 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 5994 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 5995 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 5996 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 5997 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 5998 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 5999 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 6000 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 6001 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 6002 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 6003 loadHostLoadedConfig();
mjr 35:e959ffba78fd 6004
mjr 38:091e511ce8a0 6005 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 6006 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 6007
mjr 33:d832bcab089e 6008 // we're not connected/awake yet
mjr 33:d832bcab089e 6009 bool connected = false;
mjr 40:cc0d9814522b 6010 Timer connectChangeTimer;
mjr 33:d832bcab089e 6011
mjr 35:e959ffba78fd 6012 // create the plunger sensor interface
mjr 35:e959ffba78fd 6013 createPlunger();
mjr 76:7f5912b6340e 6014
mjr 76:7f5912b6340e 6015 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 6016 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 6017
mjr 60:f38da020aa13 6018 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 6019 init_tlc5940(cfg);
mjr 34:6b981a2afab7 6020
mjr 60:f38da020aa13 6021 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 6022 init_hc595(cfg);
mjr 6:cc35eb643e8f 6023
mjr 54:fd77a6b2f76c 6024 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 6025 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 6026 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 6027 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 6028 initLwOut(cfg);
mjr 48:058ace2aed1d 6029
mjr 60:f38da020aa13 6030 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 6031 if (tlc5940 != 0)
mjr 35:e959ffba78fd 6032 tlc5940->start();
mjr 77:0b96f6867312 6033
mjr 77:0b96f6867312 6034 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 6035 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 6036 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 6037 // USB keyboard interface.
mjr 77:0b96f6867312 6038 bool kbKeys = false;
mjr 77:0b96f6867312 6039
mjr 77:0b96f6867312 6040 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 6041 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 6042
mjr 77:0b96f6867312 6043 // start the power status time, if applicable
mjr 77:0b96f6867312 6044 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 6045
mjr 35:e959ffba78fd 6046 // initialize the button input ports
mjr 35:e959ffba78fd 6047 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 6048
mjr 60:f38da020aa13 6049 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 6050 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 6051 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 6052 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 6053 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 6054 // to the joystick interface.
mjr 51:57eb311faafa 6055 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 51:57eb311faafa 6056 cfg.joystickEnabled, kbKeys);
mjr 51:57eb311faafa 6057
mjr 60:f38da020aa13 6058 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 6059 // flash pattern while waiting.
mjr 70:9f58735a1732 6060 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 6061 connTimeoutTimer.start();
mjr 70:9f58735a1732 6062 connFlashTimer.start();
mjr 51:57eb311faafa 6063 while (!js.configured())
mjr 51:57eb311faafa 6064 {
mjr 51:57eb311faafa 6065 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 6066 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6067 {
mjr 51:57eb311faafa 6068 // short yellow flash
mjr 51:57eb311faafa 6069 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 6070 wait_us(50000);
mjr 51:57eb311faafa 6071 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6072
mjr 51:57eb311faafa 6073 // reset the flash timer
mjr 70:9f58735a1732 6074 connFlashTimer.reset();
mjr 51:57eb311faafa 6075 }
mjr 70:9f58735a1732 6076
mjr 77:0b96f6867312 6077 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 6078 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 6079 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 6080 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 70:9f58735a1732 6081 if (cfg.disconnectRebootTimeout != 0
mjr 70:9f58735a1732 6082 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout)
mjr 70:9f58735a1732 6083 reboot(js, false, 0);
mjr 77:0b96f6867312 6084
mjr 77:0b96f6867312 6085 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6086 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 6087 }
mjr 60:f38da020aa13 6088
mjr 60:f38da020aa13 6089 // we're now connected to the host
mjr 54:fd77a6b2f76c 6090 connected = true;
mjr 40:cc0d9814522b 6091
mjr 60:f38da020aa13 6092 // Last report timer for the joytick interface. We use this timer to
mjr 60:f38da020aa13 6093 // throttle the report rate to a pace that's suitable for VP. Without
mjr 60:f38da020aa13 6094 // any artificial delays, we could generate data to send on the joystick
mjr 60:f38da020aa13 6095 // interface on every loop iteration. The loop iteration time depends
mjr 60:f38da020aa13 6096 // on which devices are attached, since most of the work in our main
mjr 60:f38da020aa13 6097 // loop is simply polling our devices. For typical setups, the loop
mjr 60:f38da020aa13 6098 // time ranges from about 0.25ms to 2.5ms; the biggest factor is the
mjr 60:f38da020aa13 6099 // plunger sensor. But VP polls for input about every 10ms, so there's
mjr 60:f38da020aa13 6100 // no benefit in sending data faster than that, and there's some harm,
mjr 60:f38da020aa13 6101 // in that it creates USB overhead (both on the wire and on the host
mjr 60:f38da020aa13 6102 // CPU). We therefore use this timer to pace our reports to roughly
mjr 60:f38da020aa13 6103 // the VP input polling rate. Note that there's no way to actually
mjr 60:f38da020aa13 6104 // synchronize with VP's polling, but there's also no need to, as the
mjr 60:f38da020aa13 6105 // input model is designed to reflect the overall current state at any
mjr 60:f38da020aa13 6106 // given time rather than events or deltas. If VP polls twice between
mjr 60:f38da020aa13 6107 // two updates, it simply sees no state change; if we send two updates
mjr 60:f38da020aa13 6108 // between VP polls, VP simply sees the latest state when it does get
mjr 60:f38da020aa13 6109 // around to polling.
mjr 38:091e511ce8a0 6110 Timer jsReportTimer;
mjr 38:091e511ce8a0 6111 jsReportTimer.start();
mjr 38:091e511ce8a0 6112
mjr 60:f38da020aa13 6113 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 6114 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 6115 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 6116 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 6117 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 6118 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 6119 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 6120 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 6121 Timer jsOKTimer;
mjr 38:091e511ce8a0 6122 jsOKTimer.start();
mjr 35:e959ffba78fd 6123
mjr 55:4db125cd11a0 6124 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 6125 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 6126 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 6127 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 6128 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 6129
mjr 55:4db125cd11a0 6130 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 6131 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 6132 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 6133
mjr 55:4db125cd11a0 6134 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 6135 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 6136 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 6137
mjr 35:e959ffba78fd 6138 // initialize the calibration button
mjr 1:d913e0afb2ac 6139 calBtnTimer.start();
mjr 35:e959ffba78fd 6140 calBtnState = 0;
mjr 1:d913e0afb2ac 6141
mjr 1:d913e0afb2ac 6142 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 6143 Timer hbTimer;
mjr 1:d913e0afb2ac 6144 hbTimer.start();
mjr 1:d913e0afb2ac 6145 int hb = 0;
mjr 5:a70c0bce770d 6146 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 6147
mjr 1:d913e0afb2ac 6148 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 6149 Timer acTimer;
mjr 1:d913e0afb2ac 6150 acTimer.start();
mjr 1:d913e0afb2ac 6151
mjr 0:5acbbe3f4cf4 6152 // create the accelerometer object
mjr 77:0b96f6867312 6153 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 78:1e00b3fa11af 6154 MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime);
mjr 76:7f5912b6340e 6155
mjr 17:ab3cec0c8bf4 6156 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 6157 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 6158 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 6159
mjr 48:058ace2aed1d 6160 // initialize the plunger sensor
mjr 35:e959ffba78fd 6161 plungerSensor->init();
mjr 10:976666ffa4ef 6162
mjr 48:058ace2aed1d 6163 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 6164 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 6165
mjr 54:fd77a6b2f76c 6166 // enable the peripheral chips
mjr 54:fd77a6b2f76c 6167 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6168 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6169 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6170 hc595->enable(true);
mjr 74:822a92bc11d2 6171
mjr 76:7f5912b6340e 6172 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 6173 wizCycleTimer.start();
mjr 74:822a92bc11d2 6174
mjr 74:822a92bc11d2 6175 // start the PWM update polling timer
mjr 74:822a92bc11d2 6176 polledPwmTimer.start();
mjr 43:7a6364d82a41 6177
mjr 77:0b96f6867312 6178 // Timer for configuration change reboots
mjr 77:0b96f6867312 6179 ExtTimer saveConfigRebootTimer;
mjr 77:0b96f6867312 6180
mjr 1:d913e0afb2ac 6181 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 6182 // host requests
mjr 0:5acbbe3f4cf4 6183 for (;;)
mjr 0:5acbbe3f4cf4 6184 {
mjr 74:822a92bc11d2 6185 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 6186 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 74:822a92bc11d2 6187
mjr 48:058ace2aed1d 6188 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 6189 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 6190 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 6191 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 6192 LedWizMsg lwm;
mjr 48:058ace2aed1d 6193 Timer lwt;
mjr 48:058ace2aed1d 6194 lwt.start();
mjr 77:0b96f6867312 6195 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 6196 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 6197 {
mjr 78:1e00b3fa11af 6198 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 6199 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 6200 }
mjr 74:822a92bc11d2 6201
mjr 74:822a92bc11d2 6202 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 6203 IF_DIAG(
mjr 74:822a92bc11d2 6204 if (msgCount != 0)
mjr 74:822a92bc11d2 6205 {
mjr 76:7f5912b6340e 6206 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 6207 mainLoopMsgCount++;
mjr 74:822a92bc11d2 6208 }
mjr 74:822a92bc11d2 6209 )
mjr 74:822a92bc11d2 6210
mjr 77:0b96f6867312 6211 // process IR input
mjr 77:0b96f6867312 6212 process_IR(cfg, js);
mjr 77:0b96f6867312 6213
mjr 77:0b96f6867312 6214 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6215 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 6216
mjr 74:822a92bc11d2 6217 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 6218 wizPulse();
mjr 74:822a92bc11d2 6219
mjr 74:822a92bc11d2 6220 // update PWM outputs
mjr 74:822a92bc11d2 6221 pollPwmUpdates();
mjr 77:0b96f6867312 6222
mjr 77:0b96f6867312 6223 // poll the accelerometer
mjr 77:0b96f6867312 6224 accel.poll();
mjr 55:4db125cd11a0 6225
mjr 76:7f5912b6340e 6226 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 6227 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6228
mjr 55:4db125cd11a0 6229 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 6230 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6231 tlc5940->send();
mjr 1:d913e0afb2ac 6232
mjr 76:7f5912b6340e 6233 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 6234 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 6235
mjr 1:d913e0afb2ac 6236 // check for plunger calibration
mjr 17:ab3cec0c8bf4 6237 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 6238 {
mjr 1:d913e0afb2ac 6239 // check the state
mjr 1:d913e0afb2ac 6240 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6241 {
mjr 1:d913e0afb2ac 6242 case 0:
mjr 1:d913e0afb2ac 6243 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 6244 calBtnTimer.reset();
mjr 1:d913e0afb2ac 6245 calBtnState = 1;
mjr 1:d913e0afb2ac 6246 break;
mjr 1:d913e0afb2ac 6247
mjr 1:d913e0afb2ac 6248 case 1:
mjr 1:d913e0afb2ac 6249 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 6250 // passed, start the hold period
mjr 48:058ace2aed1d 6251 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 6252 calBtnState = 2;
mjr 1:d913e0afb2ac 6253 break;
mjr 1:d913e0afb2ac 6254
mjr 1:d913e0afb2ac 6255 case 2:
mjr 1:d913e0afb2ac 6256 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 6257 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 6258 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 6259 {
mjr 1:d913e0afb2ac 6260 // enter calibration mode
mjr 1:d913e0afb2ac 6261 calBtnState = 3;
mjr 9:fd65b0a94720 6262 calBtnTimer.reset();
mjr 35:e959ffba78fd 6263
mjr 44:b5ac89b9cd5d 6264 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 6265 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 6266 }
mjr 1:d913e0afb2ac 6267 break;
mjr 2:c174f9ee414a 6268
mjr 2:c174f9ee414a 6269 case 3:
mjr 9:fd65b0a94720 6270 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6271 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6272 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6273 break;
mjr 0:5acbbe3f4cf4 6274 }
mjr 0:5acbbe3f4cf4 6275 }
mjr 1:d913e0afb2ac 6276 else
mjr 1:d913e0afb2ac 6277 {
mjr 2:c174f9ee414a 6278 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6279 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6280 // and save the results to flash.
mjr 2:c174f9ee414a 6281 //
mjr 2:c174f9ee414a 6282 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6283 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6284 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 6285 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6286 {
mjr 2:c174f9ee414a 6287 // exit calibration mode
mjr 1:d913e0afb2ac 6288 calBtnState = 0;
mjr 52:8298b2a73eb2 6289 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6290
mjr 6:cc35eb643e8f 6291 // save the updated configuration
mjr 35:e959ffba78fd 6292 cfg.plunger.cal.calibrated = 1;
mjr 35:e959ffba78fd 6293 saveConfigToFlash();
mjr 2:c174f9ee414a 6294 }
mjr 2:c174f9ee414a 6295 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6296 {
mjr 2:c174f9ee414a 6297 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6298 calBtnState = 0;
mjr 2:c174f9ee414a 6299 }
mjr 1:d913e0afb2ac 6300 }
mjr 1:d913e0afb2ac 6301
mjr 1:d913e0afb2ac 6302 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6303 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6304 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6305 {
mjr 1:d913e0afb2ac 6306 case 2:
mjr 1:d913e0afb2ac 6307 // in the hold period - flash the light
mjr 48:058ace2aed1d 6308 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6309 break;
mjr 1:d913e0afb2ac 6310
mjr 1:d913e0afb2ac 6311 case 3:
mjr 1:d913e0afb2ac 6312 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6313 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6314 break;
mjr 1:d913e0afb2ac 6315
mjr 1:d913e0afb2ac 6316 default:
mjr 1:d913e0afb2ac 6317 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6318 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6319 break;
mjr 1:d913e0afb2ac 6320 }
mjr 3:3514575d4f86 6321
mjr 3:3514575d4f86 6322 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6323 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6324 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6325 {
mjr 1:d913e0afb2ac 6326 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6327 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6328 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6329 calBtnLed->write(1);
mjr 38:091e511ce8a0 6330 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6331 }
mjr 2:c174f9ee414a 6332 else {
mjr 17:ab3cec0c8bf4 6333 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6334 calBtnLed->write(0);
mjr 38:091e511ce8a0 6335 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6336 }
mjr 1:d913e0afb2ac 6337 }
mjr 35:e959ffba78fd 6338
mjr 76:7f5912b6340e 6339 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6340 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6341
mjr 48:058ace2aed1d 6342 // read the plunger sensor
mjr 48:058ace2aed1d 6343 plungerReader.read();
mjr 48:058ace2aed1d 6344
mjr 76:7f5912b6340e 6345 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6346 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6347
mjr 53:9b2611964afc 6348 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6349 zbLaunchBall.update();
mjr 37:ed52738445fc 6350
mjr 76:7f5912b6340e 6351 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6352 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6353
mjr 53:9b2611964afc 6354 // process button updates
mjr 53:9b2611964afc 6355 processButtons(cfg);
mjr 53:9b2611964afc 6356
mjr 76:7f5912b6340e 6357 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6358 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6359
mjr 38:091e511ce8a0 6360 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6361 if (kbState.changed)
mjr 37:ed52738445fc 6362 {
mjr 38:091e511ce8a0 6363 // send a keyboard report
mjr 37:ed52738445fc 6364 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6365 kbState.changed = false;
mjr 37:ed52738445fc 6366 }
mjr 38:091e511ce8a0 6367
mjr 38:091e511ce8a0 6368 // likewise for the media controller
mjr 37:ed52738445fc 6369 if (mediaState.changed)
mjr 37:ed52738445fc 6370 {
mjr 38:091e511ce8a0 6371 // send a media report
mjr 37:ed52738445fc 6372 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6373 mediaState.changed = false;
mjr 37:ed52738445fc 6374 }
mjr 38:091e511ce8a0 6375
mjr 76:7f5912b6340e 6376 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6377 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6378
mjr 38:091e511ce8a0 6379 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6380 bool jsOK = false;
mjr 55:4db125cd11a0 6381
mjr 55:4db125cd11a0 6382 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6383 uint16_t statusFlags =
mjr 77:0b96f6867312 6384 cfg.plunger.enabled // 0x01
mjr 77:0b96f6867312 6385 | nightMode // 0x02
mjr 77:0b96f6867312 6386 | ((psu2_state & 0x07) << 2); // 0x04 0x08 0x10
mjr 77:0b96f6867312 6387 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6388 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6389
mjr 50:40015764bbe6 6390 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6391 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6392 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 6393 // More frequent reporting would only add USB I/O overhead.
mjr 50:40015764bbe6 6394 if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 17:ab3cec0c8bf4 6395 {
mjr 17:ab3cec0c8bf4 6396 // read the accelerometer
mjr 17:ab3cec0c8bf4 6397 int xa, ya;
mjr 17:ab3cec0c8bf4 6398 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 6399
mjr 17:ab3cec0c8bf4 6400 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 6401 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 6402 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 6403 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 6404 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 6405
mjr 17:ab3cec0c8bf4 6406 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 6407 x = xa;
mjr 17:ab3cec0c8bf4 6408 y = ya;
mjr 17:ab3cec0c8bf4 6409
mjr 48:058ace2aed1d 6410 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 6411 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 6412 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 6413 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 6414 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 6415 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 6416 // regular plunger inputs.
mjr 48:058ace2aed1d 6417 int z = plungerReader.getPosition();
mjr 53:9b2611964afc 6418 int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z);
mjr 35:e959ffba78fd 6419
mjr 35:e959ffba78fd 6420 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 6421 accelRotate(x, y);
mjr 35:e959ffba78fd 6422
mjr 35:e959ffba78fd 6423 // send the joystick report
mjr 53:9b2611964afc 6424 jsOK = js.update(x, y, zrep, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 6425
mjr 17:ab3cec0c8bf4 6426 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 6427 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 6428 }
mjr 21:5048e16cc9ef 6429
mjr 52:8298b2a73eb2 6430 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 6431 if (reportPlungerStat)
mjr 10:976666ffa4ef 6432 {
mjr 17:ab3cec0c8bf4 6433 // send the report
mjr 53:9b2611964afc 6434 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 6435
mjr 10:976666ffa4ef 6436 // we have satisfied this request
mjr 52:8298b2a73eb2 6437 reportPlungerStat = false;
mjr 10:976666ffa4ef 6438 }
mjr 10:976666ffa4ef 6439
mjr 35:e959ffba78fd 6440 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 6441 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 6442 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 6443 {
mjr 55:4db125cd11a0 6444 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 6445 jsReportTimer.reset();
mjr 38:091e511ce8a0 6446 }
mjr 38:091e511ce8a0 6447
mjr 38:091e511ce8a0 6448 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 6449 if (jsOK)
mjr 38:091e511ce8a0 6450 {
mjr 38:091e511ce8a0 6451 jsOKTimer.reset();
mjr 38:091e511ce8a0 6452 jsOKTimer.start();
mjr 21:5048e16cc9ef 6453 }
mjr 21:5048e16cc9ef 6454
mjr 76:7f5912b6340e 6455 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 6456 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6457
mjr 6:cc35eb643e8f 6458 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 6459 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 6460 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 6461 #endif
mjr 6:cc35eb643e8f 6462
mjr 33:d832bcab089e 6463 // check for connection status changes
mjr 54:fd77a6b2f76c 6464 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 6465 if (newConnected != connected)
mjr 33:d832bcab089e 6466 {
mjr 54:fd77a6b2f76c 6467 // give it a moment to stabilize
mjr 40:cc0d9814522b 6468 connectChangeTimer.start();
mjr 55:4db125cd11a0 6469 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 6470 {
mjr 33:d832bcab089e 6471 // note the new status
mjr 33:d832bcab089e 6472 connected = newConnected;
mjr 40:cc0d9814522b 6473
mjr 40:cc0d9814522b 6474 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 6475 connectChangeTimer.stop();
mjr 40:cc0d9814522b 6476 connectChangeTimer.reset();
mjr 33:d832bcab089e 6477
mjr 54:fd77a6b2f76c 6478 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 6479 if (!connected)
mjr 40:cc0d9814522b 6480 {
mjr 54:fd77a6b2f76c 6481 // turn off all outputs
mjr 33:d832bcab089e 6482 allOutputsOff();
mjr 40:cc0d9814522b 6483
mjr 40:cc0d9814522b 6484 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 6485 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 6486 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 6487 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 6488 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 6489 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 6490 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 6491 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 6492 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 6493 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 6494 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 6495 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 6496 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 6497 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 6498 // the power first comes on.
mjr 40:cc0d9814522b 6499 if (tlc5940 != 0)
mjr 40:cc0d9814522b 6500 tlc5940->enable(false);
mjr 40:cc0d9814522b 6501 if (hc595 != 0)
mjr 40:cc0d9814522b 6502 hc595->enable(false);
mjr 40:cc0d9814522b 6503 }
mjr 33:d832bcab089e 6504 }
mjr 33:d832bcab089e 6505 }
mjr 48:058ace2aed1d 6506
mjr 53:9b2611964afc 6507 // if we have a reboot timer pending, check for completion
mjr 77:0b96f6867312 6508 if (saveConfigRebootTimer.isRunning()
mjr 77:0b96f6867312 6509 && saveConfigRebootTimer.read() > saveConfigRebootTime)
mjr 53:9b2611964afc 6510 reboot(js);
mjr 77:0b96f6867312 6511
mjr 77:0b96f6867312 6512 // if a config save is pending, do it now
mjr 77:0b96f6867312 6513 if (saveConfigPending != 0)
mjr 77:0b96f6867312 6514 {
mjr 77:0b96f6867312 6515 // save the configuration
mjr 77:0b96f6867312 6516 saveConfigToFlash();
mjr 77:0b96f6867312 6517
mjr 77:0b96f6867312 6518 // if desired, reboot after the specified delay
mjr 77:0b96f6867312 6519 if (saveConfigPending == SAVE_CONFIG_AND_REBOOT)
mjr 77:0b96f6867312 6520 saveConfigRebootTimer.start();
mjr 77:0b96f6867312 6521
mjr 77:0b96f6867312 6522 // the save is no longer pending
mjr 77:0b96f6867312 6523 saveConfigPending = 0;
mjr 77:0b96f6867312 6524 }
mjr 53:9b2611964afc 6525
mjr 48:058ace2aed1d 6526 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 6527 if (!connected)
mjr 48:058ace2aed1d 6528 {
mjr 54:fd77a6b2f76c 6529 // show USB HAL debug events
mjr 54:fd77a6b2f76c 6530 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 6531 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 6532
mjr 54:fd77a6b2f76c 6533 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 6534 js.diagFlash();
mjr 54:fd77a6b2f76c 6535
mjr 54:fd77a6b2f76c 6536 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 6537 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6538
mjr 51:57eb311faafa 6539 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 6540 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 6541 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 6542
mjr 54:fd77a6b2f76c 6543 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 6544 Timer diagTimer;
mjr 54:fd77a6b2f76c 6545 diagTimer.reset();
mjr 54:fd77a6b2f76c 6546 diagTimer.start();
mjr 74:822a92bc11d2 6547
mjr 74:822a92bc11d2 6548 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 6549 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 6550
mjr 54:fd77a6b2f76c 6551 // loop until we get our connection back
mjr 54:fd77a6b2f76c 6552 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 6553 {
mjr 54:fd77a6b2f76c 6554 // try to recover the connection
mjr 54:fd77a6b2f76c 6555 js.recoverConnection();
mjr 54:fd77a6b2f76c 6556
mjr 55:4db125cd11a0 6557 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 6558 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6559 tlc5940->send();
mjr 55:4db125cd11a0 6560
mjr 54:fd77a6b2f76c 6561 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 6562 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6563 {
mjr 54:fd77a6b2f76c 6564 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 6565 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 6566
mjr 54:fd77a6b2f76c 6567 // show diagnostic feedback
mjr 54:fd77a6b2f76c 6568 js.diagFlash();
mjr 51:57eb311faafa 6569
mjr 51:57eb311faafa 6570 // reset the flash timer
mjr 54:fd77a6b2f76c 6571 diagTimer.reset();
mjr 51:57eb311faafa 6572 }
mjr 51:57eb311faafa 6573
mjr 77:0b96f6867312 6574 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 6575 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 6576 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 6577 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 6578 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 6579 // reliable way to get Windows to notice us again after one
mjr 77:0b96f6867312 6580 // of these events and make it reconnect.
mjr 51:57eb311faafa 6581 if (cfg.disconnectRebootTimeout != 0
mjr 70:9f58735a1732 6582 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 6583 reboot(js, false, 0);
mjr 77:0b96f6867312 6584
mjr 77:0b96f6867312 6585 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6586 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 6587 }
mjr 54:fd77a6b2f76c 6588
mjr 74:822a92bc11d2 6589 // resume the main loop timer
mjr 74:822a92bc11d2 6590 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 6591
mjr 54:fd77a6b2f76c 6592 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 6593 connected = true;
mjr 54:fd77a6b2f76c 6594 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 6595
mjr 54:fd77a6b2f76c 6596 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 6597 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6598 {
mjr 55:4db125cd11a0 6599 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6600 tlc5940->update(true);
mjr 54:fd77a6b2f76c 6601 }
mjr 54:fd77a6b2f76c 6602 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6603 {
mjr 55:4db125cd11a0 6604 hc595->enable(true);
mjr 54:fd77a6b2f76c 6605 hc595->update(true);
mjr 51:57eb311faafa 6606 }
mjr 48:058ace2aed1d 6607 }
mjr 43:7a6364d82a41 6608
mjr 6:cc35eb643e8f 6609 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 6610 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 6611 {
mjr 54:fd77a6b2f76c 6612 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 6613 {
mjr 39:b3815a1c3802 6614 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 6615 //
mjr 54:fd77a6b2f76c 6616 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 6617 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 6618 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 6619 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 6620 hb = !hb;
mjr 38:091e511ce8a0 6621 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 6622
mjr 54:fd77a6b2f76c 6623 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 6624 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 6625 // with the USB connection.
mjr 54:fd77a6b2f76c 6626 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 6627 {
mjr 54:fd77a6b2f76c 6628 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 6629 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 6630 // limit, keep running for now, and leave the OK timer running so
mjr 54:fd77a6b2f76c 6631 // that we can continue to monitor this.
mjr 54:fd77a6b2f76c 6632 if (jsOKTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 6633 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 6634 }
mjr 54:fd77a6b2f76c 6635 else
mjr 54:fd77a6b2f76c 6636 {
mjr 54:fd77a6b2f76c 6637 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 6638 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 6639 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 6640 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 6641 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 6642 }
mjr 38:091e511ce8a0 6643 }
mjr 73:4e8ce0b18915 6644 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 6645 {
mjr 73:4e8ce0b18915 6646 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 6647 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 6648 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 6649 }
mjr 35:e959ffba78fd 6650 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 6651 {
mjr 6:cc35eb643e8f 6652 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 6653 hb = !hb;
mjr 38:091e511ce8a0 6654 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 6655 }
mjr 6:cc35eb643e8f 6656 else
mjr 6:cc35eb643e8f 6657 {
mjr 6:cc35eb643e8f 6658 // connected - flash blue/green
mjr 2:c174f9ee414a 6659 hb = !hb;
mjr 38:091e511ce8a0 6660 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 6661 }
mjr 1:d913e0afb2ac 6662
mjr 1:d913e0afb2ac 6663 // reset the heartbeat timer
mjr 1:d913e0afb2ac 6664 hbTimer.reset();
mjr 5:a70c0bce770d 6665 ++hbcnt;
mjr 1:d913e0afb2ac 6666 }
mjr 74:822a92bc11d2 6667
mjr 74:822a92bc11d2 6668 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 6669 IF_DIAG(
mjr 76:7f5912b6340e 6670 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 6671 mainLoopIterCount++;
mjr 74:822a92bc11d2 6672 )
mjr 1:d913e0afb2ac 6673 }
mjr 0:5acbbe3f4cf4 6674 }