An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Thu Aug 07 19:53:13 2014 +0000
Revision:
7:100a25f8bf56
Parent:
6:cc35eb643e8f
Child:
8:c732e279ee29
Tweaks to launch sensing

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 5:a70c0bce770d 1 /* Copyright 2014 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 5:a70c0bce770d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 5:a70c0bce770d 20 // Pinscape Controller
mjr 5:a70c0bce770d 21 //
mjr 5:a70c0bce770d 22 // "Pinscape" is the name of my custom-built virtual pinball cabinet. I wrote this
mjr 5:a70c0bce770d 23 // software to perform a number of tasks that I needed for my cabinet. It runs on a
mjr 5:a70c0bce770d 24 // Freescale KL25Z microcontroller, which is a small and inexpensive device that
mjr 5:a70c0bce770d 25 // attaches to the host PC via USB and can interface with numerous types of external
mjr 5:a70c0bce770d 26 // hardware.
mjr 5:a70c0bce770d 27 //
mjr 5:a70c0bce770d 28 // I designed the software and hardware in this project especially for Pinscape, but
mjr 5:a70c0bce770d 29 // it uses standard interfaces in Windows and Visual Pinball, so it should be
mjr 5:a70c0bce770d 30 // readily usable in anyone else's VP-based cabinet. I've tried to document the
mjr 5:a70c0bce770d 31 // hardware in enough detail for anyone else to duplicate the entire project, and
mjr 5:a70c0bce770d 32 // the full software is open source.
mjr 5:a70c0bce770d 33 //
mjr 6:cc35eb643e8f 34 // The device appears to the host computer as a USB joystick. This works with the
mjr 6:cc35eb643e8f 35 // standard Windows joystick device drivers, so there's no need to install any
mjr 6:cc35eb643e8f 36 // software on the PC - Windows should recognize it as a joystick when you plug
mjr 6:cc35eb643e8f 37 // it in and shouldn't ask you to install anything. If you bring up the control
mjr 6:cc35eb643e8f 38 // panel for USB Game Controllers, this device will appear as "Pinscape Controller".
mjr 6:cc35eb643e8f 39 // *Don't* do any calibration with the Windows control panel or third-part
mjr 6:cc35eb643e8f 40 // calibration tools. The device calibrates itself automatically for the
mjr 6:cc35eb643e8f 41 // accelerometer data, and has its own special calibration procedure for the
mjr 6:cc35eb643e8f 42 // plunger (see below).
mjr 6:cc35eb643e8f 43 //
mjr 5:a70c0bce770d 44 // The controller provides the following functions. It should be possible to use
mjr 5:a70c0bce770d 45 // any subet of the features without using all of them. External hardware for any
mjr 5:a70c0bce770d 46 // particular function can simply be omitted if that feature isn't needed.
mjr 5:a70c0bce770d 47 //
mjr 5:a70c0bce770d 48 // - Nudge sensing via the KL25Z's on-board accelerometer. Nudge accelerations are
mjr 5:a70c0bce770d 49 // processed into a physics model of a rolling ball, and changes to the ball's
mjr 5:a70c0bce770d 50 // motion are sent to the host computer via the joystick interface. This is designed
mjr 5:a70c0bce770d 51 // especially to work with Visuall Pinball's nudge handling to produce realistic
mjr 5:a70c0bce770d 52 // on-screen results in VP. By doing some physics modeling right on the device,
mjr 5:a70c0bce770d 53 // rather than sending raw accelerometer data to VP, we can produce better results
mjr 5:a70c0bce770d 54 // using our awareness of the real physical parameters of a pinball cabinet.
mjr 5:a70c0bce770d 55 // VP's nudge handling has to be more generic, so it can't make the same sorts
mjr 5:a70c0bce770d 56 // of assumptions that we can about the dynamics of a real cabinet.
mjr 5:a70c0bce770d 57 //
mjr 5:a70c0bce770d 58 // The nudge data reports are compatible with the built-in Windows USB joystick
mjr 5:a70c0bce770d 59 // drivers and with VP's own joystick input scheme, so the nudge sensing is almost
mjr 5:a70c0bce770d 60 // plug-and-play. There are no Windiows drivers to install, and the only VP work
mjr 5:a70c0bce770d 61 // needed is to customize a few global preference settings.
mjr 5:a70c0bce770d 62 //
mjr 5:a70c0bce770d 63 // - Plunger position sensing via an attached TAOS TSL 1410R CCD linear array sensor.
mjr 5:a70c0bce770d 64 // The sensor must be wired to a particular set of I/O ports on the KL25Z, and must
mjr 5:a70c0bce770d 65 // be positioned adjacent to the plunger with proper lighting. The physical and
mjr 5:a70c0bce770d 66 // electronic installation details are desribed in the project documentation. We read
mjr 5:a70c0bce770d 67 // the CCD to determine how far back the plunger is pulled, and report this to Visual
mjr 5:a70c0bce770d 68 // Pinball via the joystick interface. As with the nudge data, this is all nearly
mjr 5:a70c0bce770d 69 // plug-and-play, in that it works with the default Windows USB drivers and works
mjr 5:a70c0bce770d 70 // with the existing VP handling for analog plunger input. A few VP settings are
mjr 5:a70c0bce770d 71 // needed to tell VP to allow the plunger.
mjr 5:a70c0bce770d 72 //
mjr 6:cc35eb643e8f 73 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 74 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 75 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 76 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 6:cc35eb643e8f 77 // sensor or the mechanical plunger, since their alignment might change slightly
mjr 6:cc35eb643e8f 78 // when you put everything back together.) To calibrate, you have to attach a
mjr 6:cc35eb643e8f 79 // momentary switch (e.g., a push-button switch) between one of the KL25Z ground
mjr 6:cc35eb643e8f 80 // pins (e.g., jumper J9 pin 12) and PTE29 (J10 pin 9). Press and hold the
mjr 6:cc35eb643e8f 81 // button for about two seconds - the LED on the KL25Z wlil flash blue while
mjr 6:cc35eb643e8f 82 // you hold the button, and will turn solid blue when you've held it down long
mjr 6:cc35eb643e8f 83 // enough to enter calibration mode. This mode will last about 15 seconds.
mjr 6:cc35eb643e8f 84 // Simply pull the plunger all the way back, hold it for a few moments, and
mjr 6:cc35eb643e8f 85 // gradually return it to the starting position. *Don't* release it - we want
mjr 6:cc35eb643e8f 86 // to measure the maximum retracted position and the rest position, but NOT
mjr 6:cc35eb643e8f 87 // the maximum forward position when the outer barrel spring is compressed.
mjr 6:cc35eb643e8f 88 // After about 15 seconds, the device will save the new calibration settings
mjr 6:cc35eb643e8f 89 // to its flash memory, and the LED will return to the regular "heartbeat"
mjr 6:cc35eb643e8f 90 // flashes. If this is the first time you calibrated, you should observe the
mjr 6:cc35eb643e8f 91 // color of the flashes change from yellow/green to blue/green to indicate
mjr 6:cc35eb643e8f 92 // that the plunger has been calibrated.
mjr 6:cc35eb643e8f 93 //
mjr 6:cc35eb643e8f 94 // Note that while Visual Pinball itself has good native support for analog
mjr 6:cc35eb643e8f 95 // plungers, most of the VP tables in circulation don't implement the necessary
mjr 6:cc35eb643e8f 96 // scripting features to make this work properly. Therefore, you'll have to do
mjr 6:cc35eb643e8f 97 // a little scripting work for each table you download to add the required code
mjr 6:cc35eb643e8f 98 // to that individual table. The work has to be customized for each table, so
mjr 6:cc35eb643e8f 99 // I haven't been able to automate this process, but I have tried to reduce it
mjr 6:cc35eb643e8f 100 // to a relatively simple recipe that I've documented separately.
mjr 5:a70c0bce770d 101 //
mjr 5:a70c0bce770d 102 // - In addition to the CCD sensor, a button should be attached (also described in
mjr 5:a70c0bce770d 103 // the project documentation) to activate calibration mode for the plunger. When
mjr 5:a70c0bce770d 104 // calibration mode is activated, the software reads the plunger position for about
mjr 5:a70c0bce770d 105 // 10 seconds when to note the limits of travel, and uses these limits to ensure
mjr 5:a70c0bce770d 106 // accurate reports to VP that properly report the actual position of the physical
mjr 5:a70c0bce770d 107 // plunger. The calibration is stored in non-volatile memory on the KL25Z, so it's
mjr 5:a70c0bce770d 108 // only necessary to calibrate once - the calibration will survive power cycling
mjr 5:a70c0bce770d 109 // and reboots of the PC. It's only necessary to recalibrate if the CCD sensor or
mjr 5:a70c0bce770d 110 // the plunger are removed and reinstalled, since the relative alignment of the
mjr 5:a70c0bce770d 111 // parts could cahnge slightly when reinstalling.
mjr 5:a70c0bce770d 112 //
mjr 5:a70c0bce770d 113 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 114 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 115 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 5:a70c0bce770d 116 // of ports. (The KL25Z can only provide 6 PWM ports. Intensity level settings on
mjr 5:a70c0bce770d 117 // other ports is ignored, so non-PWM ports can only be used for simple on/off
mjr 5:a70c0bce770d 118 // devices such as contactors and solenoids.) The KL25Z can only supply 4mA on its
mjr 5:a70c0bce770d 119 // output ports, so external hardware is required to take advantage of the LedWiz
mjr 5:a70c0bce770d 120 // emulation. Many different hardware designs are possible, but there's a simple
mjr 5:a70c0bce770d 121 // reference design in the documentation that uses a Darlington array IC to
mjr 5:a70c0bce770d 122 // increase the output from each port to 500mA (the same level as the LedWiz),
mjr 5:a70c0bce770d 123 // plus an extended design that adds an optocoupler and MOSFET to provide very
mjr 5:a70c0bce770d 124 // high power handling, up to about 45A or 150W, with voltages up to 100V.
mjr 5:a70c0bce770d 125 // That will handle just about any DC device directly (wtihout relays or other
mjr 5:a70c0bce770d 126 // amplifiers), and switches fast enough to support PWM devices.
mjr 5:a70c0bce770d 127 //
mjr 5:a70c0bce770d 128 // The device can report any desired LedWiz unit number to the host, which makes
mjr 5:a70c0bce770d 129 // it possible to use the LedWiz emulation on a machine that also has one or more
mjr 5:a70c0bce770d 130 // actual LedWiz devices intalled. The LedWiz design allows for up to 16 units
mjr 5:a70c0bce770d 131 // to be installed in one machine - each one is invidually addressable by its
mjr 5:a70c0bce770d 132 // distinct unit number.
mjr 5:a70c0bce770d 133 //
mjr 5:a70c0bce770d 134 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 135 // build any of the external port hardware (or attach anything to the output
mjr 5:a70c0bce770d 136 // ports at all) if the LedWiz features aren't needed. Most people won't have
mjr 5:a70c0bce770d 137 // any use for the LedWiz features. I built them mostly as a learning exercise,
mjr 5:a70c0bce770d 138 // but with a slight practical need for a handful of extra ports (I'm using the
mjr 5:a70c0bce770d 139 // cutting-edge 10-contactor setup, so my real LedWiz is full!).
mjr 6:cc35eb643e8f 140 //
mjr 6:cc35eb643e8f 141 // The on-board LED on the KL25Z flashes to indicate the current device status:
mjr 6:cc35eb643e8f 142 //
mjr 6:cc35eb643e8f 143 // two short red flashes = the device is powered but hasn't successfully
mjr 6:cc35eb643e8f 144 // connected to the host via USB (either it's not physically connected
mjr 6:cc35eb643e8f 145 // to the USB port, or there was a problem with the software handshake
mjr 6:cc35eb643e8f 146 // with the USB device driver on the computer)
mjr 6:cc35eb643e8f 147 //
mjr 6:cc35eb643e8f 148 // short red flash = the host computer is in sleep/suspend mode
mjr 6:cc35eb643e8f 149 //
mjr 6:cc35eb643e8f 150 // long red/green = the LedWiz unti number has been changed, so a reset
mjr 6:cc35eb643e8f 151 // is needed. You can simply unplug the device and plug it back in,
mjr 6:cc35eb643e8f 152 // or presss and hold the reset button on the device for a few seconds.
mjr 6:cc35eb643e8f 153 //
mjr 6:cc35eb643e8f 154 // long yellow/green = everything's working, but the plunger hasn't
mjr 6:cc35eb643e8f 155 // been calibrated; follow the calibration procedure described above.
mjr 6:cc35eb643e8f 156 // This flash mode won't appear if the CCD has been disabled. Note
mjr 6:cc35eb643e8f 157 // that the device can't tell whether a CCD is physically attached,
mjr 6:cc35eb643e8f 158 // so you should use the config command to disable the CCD software
mjr 6:cc35eb643e8f 159 // features if you won't be attaching a CCD.
mjr 6:cc35eb643e8f 160 //
mjr 6:cc35eb643e8f 161 // alternating blue/green = everything's working
mjr 6:cc35eb643e8f 162 //
mjr 6:cc35eb643e8f 163 // Software configuration: you can change option settings by sending special
mjr 6:cc35eb643e8f 164 // USB commands from the PC. I've provided a Windows program for this purpose;
mjr 6:cc35eb643e8f 165 // refer to the documentation for details. For reference, here's the format
mjr 6:cc35eb643e8f 166 // of the USB command for option changes:
mjr 6:cc35eb643e8f 167 //
mjr 6:cc35eb643e8f 168 // length of report = 8 bytes
mjr 6:cc35eb643e8f 169 // byte 0 = 65 (0x41)
mjr 6:cc35eb643e8f 170 // byte 1 = 1 (0x01)
mjr 6:cc35eb643e8f 171 // byte 2 = new LedWiz unit number, 0x01 to 0x0f
mjr 6:cc35eb643e8f 172 // byte 3 = feature enable bit mask:
mjr 6:cc35eb643e8f 173 // 0x01 = enable CCD (default = on)
mjr 5:a70c0bce770d 174
mjr 6:cc35eb643e8f 175
mjr 0:5acbbe3f4cf4 176 #include "mbed.h"
mjr 6:cc35eb643e8f 177 #include "math.h"
mjr 0:5acbbe3f4cf4 178 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 179 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 180 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 181 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 182 #include "crc32.h"
mjr 2:c174f9ee414a 183
mjr 5:a70c0bce770d 184
mjr 5:a70c0bce770d 185 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 186 //
mjr 5:a70c0bce770d 187 // Configuration details
mjr 5:a70c0bce770d 188 //
mjr 2:c174f9ee414a 189
mjr 5:a70c0bce770d 190 // Our USB device vendor ID, product ID, and version.
mjr 5:a70c0bce770d 191 // We use the vendor ID for the LedWiz, so that the PC-side software can
mjr 5:a70c0bce770d 192 // identify us as capable of performing LedWiz commands. The LedWiz uses
mjr 5:a70c0bce770d 193 // a product ID value from 0xF0 to 0xFF; the last four bits identify the
mjr 5:a70c0bce770d 194 // unit number (e.g., product ID 0xF7 means unit #7). This allows multiple
mjr 5:a70c0bce770d 195 // LedWiz units to be installed in a single PC; the software on the PC side
mjr 5:a70c0bce770d 196 // uses the unit number to route commands to the devices attached to each
mjr 5:a70c0bce770d 197 // unit. On the real LedWiz, the unit number must be set in the firmware
mjr 5:a70c0bce770d 198 // at the factory; it's not configurable by the end user. Most LedWiz's
mjr 5:a70c0bce770d 199 // ship with the unit number set to 0, but the vendor will set different
mjr 5:a70c0bce770d 200 // unit numbers if requested at the time of purchase. So if you have a
mjr 5:a70c0bce770d 201 // single LedWiz already installed in your cabinet, and you didn't ask for
mjr 5:a70c0bce770d 202 // a non-default unit number, your existing LedWiz will be unit 0.
mjr 5:a70c0bce770d 203 //
mjr 5:a70c0bce770d 204 // We use unit #7 by default. There doesn't seem to be a requirement that
mjr 5:a70c0bce770d 205 // unit numbers be contiguous (DirectOutput Framework and other software
mjr 5:a70c0bce770d 206 // seem happy to have units 0 and 7 installed, without 1-6 existing).
mjr 5:a70c0bce770d 207 // Marking this unit as #7 should work for almost everybody out of the box;
mjr 5:a70c0bce770d 208 // the most common case seems to be to have a single LedWiz installed, and
mjr 5:a70c0bce770d 209 // it's probably extremely rare to more than two.
mjr 6:cc35eb643e8f 210 //
mjr 6:cc35eb643e8f 211 // Note that the USB_PRODUCT_ID value set here omits the unit number. We
mjr 6:cc35eb643e8f 212 // take the unit number from the saved configuration. We provide a
mjr 6:cc35eb643e8f 213 // configuration command that can be sent via the USB connection to change
mjr 6:cc35eb643e8f 214 // the unit number, so that users can select the unit number without having
mjr 6:cc35eb643e8f 215 // to install a different version of the software. We'll combine the base
mjr 6:cc35eb643e8f 216 // product ID here with the unit number to get the actual product ID that
mjr 6:cc35eb643e8f 217 // we send to the USB controller.
mjr 5:a70c0bce770d 218 const uint16_t USB_VENDOR_ID = 0xFAFA;
mjr 6:cc35eb643e8f 219 const uint16_t USB_PRODUCT_ID = 0x00F0;
mjr 6:cc35eb643e8f 220 const uint16_t USB_VERSION_NO = 0x0006;
mjr 6:cc35eb643e8f 221 const uint8_t DEFAULT_LEDWIZ_UNIT_NUMBER = 0x07;
mjr 0:5acbbe3f4cf4 222
mjr 4:02c7cd7b2183 223 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 4:02c7cd7b2183 224 DigitalOut ledR(LED1), ledG(LED2), ledB(LED3);
mjr 0:5acbbe3f4cf4 225
mjr 1:d913e0afb2ac 226 // calibration button - switch input and LED output
mjr 1:d913e0afb2ac 227 DigitalIn calBtn(PTE29);
mjr 1:d913e0afb2ac 228 DigitalOut calBtnLed(PTE23);
mjr 0:5acbbe3f4cf4 229
mjr 6:cc35eb643e8f 230 // LED-Wiz emulation output pin assignments. The LED-Wiz protocol
mjr 6:cc35eb643e8f 231 // can support up to 32 outputs. The KL25Z can physically provide
mjr 6:cc35eb643e8f 232 // about 48 (in addition to the ports we're already using for the
mjr 6:cc35eb643e8f 233 // CCD sensor and the calibration button), but to stay compatible
mjr 6:cc35eb643e8f 234 // with the LED-Wiz protocol we'll stop at 32.
mjr 6:cc35eb643e8f 235 //
mjr 6:cc35eb643e8f 236 // The LED-Wiz protocol allows setting individual intensity levels
mjr 6:cc35eb643e8f 237 // on all outputs, with 48 levels of intensity. This can be used
mjr 6:cc35eb643e8f 238 // to control lamp brightness and motor speeds, among other things.
mjr 6:cc35eb643e8f 239 // Unfortunately, the KL25Z only has 10 PWM channels, so while we
mjr 6:cc35eb643e8f 240 // can support the full complement of 32 outputs, we can only provide
mjr 6:cc35eb643e8f 241 // PWM dimming/speed control on 10 of them. The remaining outputs
mjr 6:cc35eb643e8f 242 // can only be switched fully on and fully off - we can't support
mjr 6:cc35eb643e8f 243 // dimming on these, so they'll ignore any intensity level setting
mjr 6:cc35eb643e8f 244 // requested by the host. Use these for devices that don't have any
mjr 6:cc35eb643e8f 245 // use for intensity settings anyway, such as contactors and knockers.
mjr 6:cc35eb643e8f 246 //
mjr 6:cc35eb643e8f 247 // The mapping between physical output pins on the KL25Z and the
mjr 6:cc35eb643e8f 248 // assigned LED-Wiz port numbers is essentially arbitrary - you can
mjr 6:cc35eb643e8f 249 // customize this by changing the entries in the array below if you
mjr 6:cc35eb643e8f 250 // wish to rearrange the pins for any reason. Be aware that some
mjr 6:cc35eb643e8f 251 // of the physical outputs are already used for other purposes
mjr 6:cc35eb643e8f 252 // (e.g., some of the GPIO pins on header J10 are used for the
mjr 6:cc35eb643e8f 253 // CCD sensor - but you can of course reassign those as well by
mjr 6:cc35eb643e8f 254 // changing the corresponding declarations elsewhere in this module).
mjr 6:cc35eb643e8f 255 // The assignments we make here have two main objectives: first,
mjr 6:cc35eb643e8f 256 // to group the outputs on headers J1 and J2 (to facilitate neater
mjr 6:cc35eb643e8f 257 // wiring by keeping the output pins together physically), and
mjr 6:cc35eb643e8f 258 // second, to make the physical pin layout match the LED-Wiz port
mjr 6:cc35eb643e8f 259 // numbering order to the extent possible. There's one big wrench
mjr 6:cc35eb643e8f 260 // in the works, though, which is the limited number and discontiguous
mjr 6:cc35eb643e8f 261 // placement of the KL25Z PWM-capable output pins. This prevents
mjr 6:cc35eb643e8f 262 // us from doing the most obvious sequential ordering of the pins,
mjr 6:cc35eb643e8f 263 // so we end up with the outputs arranged into several blocks.
mjr 6:cc35eb643e8f 264 // Hopefully this isn't too confusing; for more detailed rationale,
mjr 6:cc35eb643e8f 265 // read on...
mjr 6:cc35eb643e8f 266 //
mjr 6:cc35eb643e8f 267 // With the LED-Wiz, the host software configuration usually
mjr 6:cc35eb643e8f 268 // assumes that each RGB LED is hooked up to three consecutive ports
mjr 6:cc35eb643e8f 269 // (for the red, green, and blue components, which need to be
mjr 6:cc35eb643e8f 270 // physically wired to separate outputs to allow each color to be
mjr 6:cc35eb643e8f 271 // controlled independently). To facilitate this, we arrange the
mjr 6:cc35eb643e8f 272 // PWM-enabled outputs so that they're grouped together in the
mjr 6:cc35eb643e8f 273 // port numbering scheme. Unfortunately, these outputs aren't
mjr 6:cc35eb643e8f 274 // together in a single group in the physical pin layout, so to
mjr 6:cc35eb643e8f 275 // group them logically in the LED-Wiz port numbering scheme, we
mjr 6:cc35eb643e8f 276 // have to break up the overall numbering scheme into several blocks.
mjr 6:cc35eb643e8f 277 // So our port numbering goes sequentially down each column of
mjr 6:cc35eb643e8f 278 // header pins, but there are several break points where we have
mjr 6:cc35eb643e8f 279 // to interrupt the obvious sequence to keep the PWM pins grouped
mjr 6:cc35eb643e8f 280 // logically.
mjr 6:cc35eb643e8f 281 //
mjr 6:cc35eb643e8f 282 // In the list below, "pin J1-2" refers to pin 2 on header J1 on
mjr 6:cc35eb643e8f 283 // the KL25Z, using the standard pin numbering in the KL25Z
mjr 6:cc35eb643e8f 284 // documentation - this is the physical pin that the port controls.
mjr 6:cc35eb643e8f 285 // "LW port 1" means LED-Wiz port 1 - this is the LED-Wiz port
mjr 6:cc35eb643e8f 286 // number that you use on the PC side (in the DirectOutput config
mjr 6:cc35eb643e8f 287 // file, for example) to address the port. PWM-capable ports are
mjr 6:cc35eb643e8f 288 // marked as such - we group the PWM-capable ports into the first
mjr 6:cc35eb643e8f 289 // 10 LED-Wiz port numbers.
mjr 6:cc35eb643e8f 290 //
mjr 6:cc35eb643e8f 291 struct {
mjr 6:cc35eb643e8f 292 PinName pin;
mjr 6:cc35eb643e8f 293 bool isPWM;
mjr 6:cc35eb643e8f 294 } ledWizPortMap[32] = {
mjr 6:cc35eb643e8f 295 { PTA1, true }, // pin J1-2, LW port 1 (PWM capable - TPM 2.0 = channel 9)
mjr 6:cc35eb643e8f 296 { PTA2, true }, // pin J1-4, LW port 2 (PWM capable - TPM 2.1 = channel 10)
mjr 6:cc35eb643e8f 297 { PTD4, true }, // pin J1-6, LW port 3 (PWM capable - TPM 0.4 = channel 5)
mjr 6:cc35eb643e8f 298 { PTA12, true }, // pin J1-8, LW port 4 (PWM capable - TPM 1.0 = channel 7)
mjr 6:cc35eb643e8f 299 { PTA4, true }, // pin J1-10, LW port 5 (PWM capable - TPM 0.1 = channel 2)
mjr 6:cc35eb643e8f 300 { PTA5, true }, // pin J1-12, LW port 6 (PWM capable - TPM 0.2 = channel 3)
mjr 6:cc35eb643e8f 301 { PTA13, true }, // pin J2-2, LW port 7 (PWM capable - TPM 1.1 = channel 13)
mjr 6:cc35eb643e8f 302 { PTD5, true }, // pin J2-4, LW port 8 (PWM capable - TPM 0.5 = channel 6)
mjr 6:cc35eb643e8f 303 { PTD0, true }, // pin J2-6, LW port 9 (PWM capable - TPM 0.0 = channel 1)
mjr 6:cc35eb643e8f 304 { PTD3, true }, // pin J2-10, LW port 10 (PWM capable - TPM 0.3 = channel 4)
mjr 6:cc35eb643e8f 305 { PTC8, false }, // pin J1-14, LW port 11
mjr 6:cc35eb643e8f 306 { PTC9, false }, // pin J1-16, LW port 12
mjr 6:cc35eb643e8f 307 { PTC7, false }, // pin J1-1, LW port 13
mjr 6:cc35eb643e8f 308 { PTC0, false }, // pin J1-3, LW port 14
mjr 6:cc35eb643e8f 309 { PTC3, false }, // pin J1-5, LW port 15
mjr 6:cc35eb643e8f 310 { PTC4, false }, // pin J1-7, LW port 16
mjr 6:cc35eb643e8f 311 { PTC5, false }, // pin J1-9, LW port 17
mjr 6:cc35eb643e8f 312 { PTC6, false }, // pin J1-11, LW port 18
mjr 6:cc35eb643e8f 313 { PTC10, false }, // pin J1-13, LW port 19
mjr 6:cc35eb643e8f 314 { PTC11, false }, // pin J1-15, LW port 20
mjr 6:cc35eb643e8f 315 { PTC12, false }, // pin J2-1, LW port 21
mjr 6:cc35eb643e8f 316 { PTC13, false }, // pin J2-3, LW port 22
mjr 6:cc35eb643e8f 317 { PTC16, false }, // pin J2-5, LW port 23
mjr 6:cc35eb643e8f 318 { PTC17, false }, // pin J2-7, LW port 24
mjr 6:cc35eb643e8f 319 { PTA16, false }, // pin J2-9, LW port 25
mjr 6:cc35eb643e8f 320 { PTA17, false }, // pin J2-11, LW port 26
mjr 6:cc35eb643e8f 321 { PTE31, false }, // pin J2-13, LW port 27
mjr 6:cc35eb643e8f 322 { PTD6, false }, // pin J2-17, LW port 29
mjr 6:cc35eb643e8f 323 { PTD7, false }, // pin J2-19, LW port 30
mjr 6:cc35eb643e8f 324 { PTE0, false }, // pin J2-18, LW port 31
mjr 6:cc35eb643e8f 325 { PTE1, false } // pin J2-20, LW port 32
mjr 6:cc35eb643e8f 326 };
mjr 6:cc35eb643e8f 327
mjr 6:cc35eb643e8f 328
mjr 5:a70c0bce770d 329 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 5:a70c0bce770d 330 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 5:a70c0bce770d 331
mjr 5:a70c0bce770d 332 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 5:a70c0bce770d 333 #define MMA8451_SCL_PIN PTE25
mjr 5:a70c0bce770d 334 #define MMA8451_SDA_PIN PTE24
mjr 5:a70c0bce770d 335
mjr 5:a70c0bce770d 336 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 5:a70c0bce770d 337 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 5:a70c0bce770d 338 // wired on this board to the MMA8451 interrupt controller.
mjr 5:a70c0bce770d 339 #define MMA8451_INT_PIN PTA15
mjr 5:a70c0bce770d 340
mjr 6:cc35eb643e8f 341 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 6:cc35eb643e8f 342 #define JOYMAX 4096
mjr 6:cc35eb643e8f 343
mjr 5:a70c0bce770d 344
mjr 5:a70c0bce770d 345 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 346 //
mjr 5:a70c0bce770d 347 // LedWiz emulation
mjr 5:a70c0bce770d 348 //
mjr 5:a70c0bce770d 349
mjr 0:5acbbe3f4cf4 350 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 351
mjr 6:cc35eb643e8f 352 // LedWiz output pin interface. We create a cover class to virtualize
mjr 6:cc35eb643e8f 353 // digital vs PWM outputs and give them a common interface. The KL25Z
mjr 6:cc35eb643e8f 354 // unfortunately doesn't have enough hardware PWM channels to support
mjr 6:cc35eb643e8f 355 // PWM on all 32 LedWiz outputs, so we provide as many PWM channels as
mjr 6:cc35eb643e8f 356 // we can (10), and fill out the rest of the outputs with plain digital
mjr 6:cc35eb643e8f 357 // outs.
mjr 6:cc35eb643e8f 358 class LwOut
mjr 6:cc35eb643e8f 359 {
mjr 6:cc35eb643e8f 360 public:
mjr 6:cc35eb643e8f 361 virtual void set(float val) = 0;
mjr 6:cc35eb643e8f 362 };
mjr 6:cc35eb643e8f 363 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 364 {
mjr 6:cc35eb643e8f 365 public:
mjr 6:cc35eb643e8f 366 LwPwmOut(PinName pin) : p(pin) { }
mjr 6:cc35eb643e8f 367 virtual void set(float val) { p = val; }
mjr 6:cc35eb643e8f 368 PwmOut p;
mjr 6:cc35eb643e8f 369 };
mjr 6:cc35eb643e8f 370 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 371 {
mjr 6:cc35eb643e8f 372 public:
mjr 6:cc35eb643e8f 373 LwDigOut(PinName pin) : p(pin) { }
mjr 6:cc35eb643e8f 374 virtual void set(float val) { p = val; }
mjr 6:cc35eb643e8f 375 DigitalOut p;
mjr 6:cc35eb643e8f 376 };
mjr 6:cc35eb643e8f 377
mjr 6:cc35eb643e8f 378 // output pin array
mjr 6:cc35eb643e8f 379 static LwOut *lwPin[32];
mjr 6:cc35eb643e8f 380
mjr 6:cc35eb643e8f 381 // initialize the output pin array
mjr 6:cc35eb643e8f 382 void initLwOut()
mjr 6:cc35eb643e8f 383 {
mjr 6:cc35eb643e8f 384 for (int i = 0 ; i < sizeof(lwPin) / sizeof(lwPin[0]) ; ++i)
mjr 6:cc35eb643e8f 385 {
mjr 6:cc35eb643e8f 386 PinName p = ledWizPortMap[i].pin;
mjr 6:cc35eb643e8f 387 lwPin[i] = (ledWizPortMap[i].isPWM
mjr 6:cc35eb643e8f 388 ? (LwOut *)new LwPwmOut(p)
mjr 6:cc35eb643e8f 389 : (LwOut *)new LwDigOut(p));
mjr 6:cc35eb643e8f 390 }
mjr 6:cc35eb643e8f 391 }
mjr 6:cc35eb643e8f 392
mjr 0:5acbbe3f4cf4 393 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 394 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 395
mjr 0:5acbbe3f4cf4 396 // profile (brightness/blink) state for each LedWiz output
mjr 1:d913e0afb2ac 397 static uint8_t wizVal[32] = {
mjr 0:5acbbe3f4cf4 398 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 399 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 400 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 401 0, 0, 0, 0, 0, 0, 0, 0
mjr 0:5acbbe3f4cf4 402 };
mjr 0:5acbbe3f4cf4 403
mjr 1:d913e0afb2ac 404 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 405 {
mjr 1:d913e0afb2ac 406 if (wizOn[idx]) {
mjr 0:5acbbe3f4cf4 407 // on - map profile brightness state to PWM level
mjr 1:d913e0afb2ac 408 uint8_t val = wizVal[idx];
mjr 0:5acbbe3f4cf4 409 if (val >= 1 && val <= 48)
mjr 0:5acbbe3f4cf4 410 return 1.0 - val/48.0;
mjr 0:5acbbe3f4cf4 411 else if (val >= 129 && val <= 132)
mjr 0:5acbbe3f4cf4 412 return 0.0;
mjr 0:5acbbe3f4cf4 413 else
mjr 0:5acbbe3f4cf4 414 return 1.0;
mjr 0:5acbbe3f4cf4 415 }
mjr 0:5acbbe3f4cf4 416 else {
mjr 0:5acbbe3f4cf4 417 // off
mjr 0:5acbbe3f4cf4 418 return 1.0;
mjr 0:5acbbe3f4cf4 419 }
mjr 0:5acbbe3f4cf4 420 }
mjr 0:5acbbe3f4cf4 421
mjr 1:d913e0afb2ac 422 static void updateWizOuts()
mjr 1:d913e0afb2ac 423 {
mjr 6:cc35eb643e8f 424 for (int i = 0 ; i < 32 ; ++i)
mjr 6:cc35eb643e8f 425 lwPin[i]->set(wizState(i));
mjr 1:d913e0afb2ac 426 }
mjr 1:d913e0afb2ac 427
mjr 5:a70c0bce770d 428 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 429 //
mjr 5:a70c0bce770d 430 // Non-volatile memory (NVM)
mjr 5:a70c0bce770d 431 //
mjr 0:5acbbe3f4cf4 432
mjr 5:a70c0bce770d 433 // Structure defining our NVM storage layout. We store a small
mjr 2:c174f9ee414a 434 // amount of persistent data in flash memory to retain calibration
mjr 5:a70c0bce770d 435 // data when powered off.
mjr 2:c174f9ee414a 436 struct NVM
mjr 2:c174f9ee414a 437 {
mjr 2:c174f9ee414a 438 // checksum - we use this to determine if the flash record
mjr 6:cc35eb643e8f 439 // has been properly initialized
mjr 2:c174f9ee414a 440 uint32_t checksum;
mjr 2:c174f9ee414a 441
mjr 2:c174f9ee414a 442 // signature value
mjr 2:c174f9ee414a 443 static const uint32_t SIGNATURE = 0x4D4A522A;
mjr 6:cc35eb643e8f 444 static const uint16_t VERSION = 0x0003;
mjr 6:cc35eb643e8f 445
mjr 6:cc35eb643e8f 446 // Is the data structure valid? We test the signature and
mjr 6:cc35eb643e8f 447 // checksum to determine if we've been properly stored.
mjr 6:cc35eb643e8f 448 int valid() const
mjr 6:cc35eb643e8f 449 {
mjr 6:cc35eb643e8f 450 return (d.sig == SIGNATURE
mjr 6:cc35eb643e8f 451 && d.vsn == VERSION
mjr 6:cc35eb643e8f 452 && d.sz == sizeof(NVM)
mjr 6:cc35eb643e8f 453 && checksum == CRC32(&d, sizeof(d)));
mjr 6:cc35eb643e8f 454 }
mjr 6:cc35eb643e8f 455
mjr 6:cc35eb643e8f 456 // save to non-volatile memory
mjr 6:cc35eb643e8f 457 void save(FreescaleIAP &iap, int addr)
mjr 6:cc35eb643e8f 458 {
mjr 6:cc35eb643e8f 459 // update the checksum and structure size
mjr 6:cc35eb643e8f 460 checksum = CRC32(&d, sizeof(d));
mjr 6:cc35eb643e8f 461 d.sz = sizeof(NVM);
mjr 6:cc35eb643e8f 462
mjr 6:cc35eb643e8f 463 // erase the sector
mjr 6:cc35eb643e8f 464 iap.erase_sector(addr);
mjr 6:cc35eb643e8f 465
mjr 6:cc35eb643e8f 466 // save the data
mjr 6:cc35eb643e8f 467 iap.program_flash(addr, this, sizeof(*this));
mjr 6:cc35eb643e8f 468 }
mjr 2:c174f9ee414a 469
mjr 2:c174f9ee414a 470 // stored data (excluding the checksum)
mjr 2:c174f9ee414a 471 struct
mjr 2:c174f9ee414a 472 {
mjr 6:cc35eb643e8f 473 // Signature, structure version, and structure size - further verification
mjr 6:cc35eb643e8f 474 // that we have valid initialized data. The size is a simple proxy for a
mjr 6:cc35eb643e8f 475 // structure version, as the most common type of change to the structure as
mjr 6:cc35eb643e8f 476 // the software evolves will be the addition of new elements. We also
mjr 6:cc35eb643e8f 477 // provide an explicit version number that we can update manually if we
mjr 6:cc35eb643e8f 478 // make any changes that don't affect the structure size but would affect
mjr 6:cc35eb643e8f 479 // compatibility with a saved record (e.g., swapping two existing elements).
mjr 2:c174f9ee414a 480 uint32_t sig;
mjr 2:c174f9ee414a 481 uint16_t vsn;
mjr 6:cc35eb643e8f 482 int sz;
mjr 2:c174f9ee414a 483
mjr 6:cc35eb643e8f 484 // has the plunger been manually calibrated?
mjr 6:cc35eb643e8f 485 int plungerCal;
mjr 6:cc35eb643e8f 486
mjr 2:c174f9ee414a 487 // plunger calibration min and max
mjr 2:c174f9ee414a 488 int plungerMin;
mjr 6:cc35eb643e8f 489 int plungerZero;
mjr 2:c174f9ee414a 490 int plungerMax;
mjr 6:cc35eb643e8f 491
mjr 6:cc35eb643e8f 492 // is the CCD enabled?
mjr 6:cc35eb643e8f 493 int ccdEnabled;
mjr 6:cc35eb643e8f 494
mjr 6:cc35eb643e8f 495 // LedWiz unit number
mjr 6:cc35eb643e8f 496 uint8_t ledWizUnitNo;
mjr 2:c174f9ee414a 497 } d;
mjr 2:c174f9ee414a 498 };
mjr 2:c174f9ee414a 499
mjr 5:a70c0bce770d 500
mjr 5:a70c0bce770d 501 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 502 //
mjr 5:a70c0bce770d 503 // Customization joystick subbclass
mjr 5:a70c0bce770d 504 //
mjr 5:a70c0bce770d 505
mjr 5:a70c0bce770d 506 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 507 {
mjr 5:a70c0bce770d 508 public:
mjr 5:a70c0bce770d 509 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release)
mjr 5:a70c0bce770d 510 : USBJoystick(vendor_id, product_id, product_release, true)
mjr 5:a70c0bce770d 511 {
mjr 5:a70c0bce770d 512 suspended_ = false;
mjr 5:a70c0bce770d 513 }
mjr 5:a70c0bce770d 514
mjr 5:a70c0bce770d 515 // are we connected?
mjr 5:a70c0bce770d 516 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 517
mjr 5:a70c0bce770d 518 // Are we in suspend mode?
mjr 5:a70c0bce770d 519 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 520
mjr 5:a70c0bce770d 521 protected:
mjr 5:a70c0bce770d 522 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 523 { suspended_ = suspended; }
mjr 5:a70c0bce770d 524
mjr 5:a70c0bce770d 525 // are we suspended?
mjr 5:a70c0bce770d 526 int suspended_;
mjr 5:a70c0bce770d 527 };
mjr 5:a70c0bce770d 528
mjr 5:a70c0bce770d 529 // ---------------------------------------------------------------------------
mjr 6:cc35eb643e8f 530 //
mjr 6:cc35eb643e8f 531 // Some simple math service routines
mjr 6:cc35eb643e8f 532 //
mjr 6:cc35eb643e8f 533
mjr 6:cc35eb643e8f 534 inline float square(float x) { return x*x; }
mjr 6:cc35eb643e8f 535 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 6:cc35eb643e8f 536
mjr 6:cc35eb643e8f 537 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 538 //
mjr 5:a70c0bce770d 539 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 540 //
mjr 5:a70c0bce770d 541
mjr 5:a70c0bce770d 542 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 543 //
mjr 5:a70c0bce770d 544 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 545 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 546 // automatic calibration.
mjr 5:a70c0bce770d 547 //
mjr 5:a70c0bce770d 548 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 549 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 550 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 551 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 552 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 553 // every sample.
mjr 5:a70c0bce770d 554 //
mjr 6:cc35eb643e8f 555 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 556 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 557 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 558 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 559 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 560 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 561 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 562 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 563 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 564 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 565 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 566 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 567 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 568 // of nudging, say).
mjr 5:a70c0bce770d 569 //
mjr 5:a70c0bce770d 570
mjr 6:cc35eb643e8f 571 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 572 struct AccHist
mjr 5:a70c0bce770d 573 {
mjr 6:cc35eb643e8f 574 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 575 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 576 {
mjr 6:cc35eb643e8f 577 // save the raw position
mjr 6:cc35eb643e8f 578 this->x = x;
mjr 6:cc35eb643e8f 579 this->y = y;
mjr 6:cc35eb643e8f 580 this->d = distance(prv);
mjr 6:cc35eb643e8f 581 }
mjr 6:cc35eb643e8f 582
mjr 6:cc35eb643e8f 583 // reading for this entry
mjr 5:a70c0bce770d 584 float x, y;
mjr 5:a70c0bce770d 585
mjr 6:cc35eb643e8f 586 // distance from previous entry
mjr 6:cc35eb643e8f 587 float d;
mjr 5:a70c0bce770d 588
mjr 6:cc35eb643e8f 589 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 590 float xtot, ytot;
mjr 6:cc35eb643e8f 591 int cnt;
mjr 6:cc35eb643e8f 592
mjr 6:cc35eb643e8f 593 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 594 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 595 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 596 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 597
mjr 6:cc35eb643e8f 598 float distance(AccHist *p)
mjr 6:cc35eb643e8f 599 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 600 };
mjr 5:a70c0bce770d 601
mjr 5:a70c0bce770d 602 // accelerometer wrapper class
mjr 3:3514575d4f86 603 class Accel
mjr 3:3514575d4f86 604 {
mjr 3:3514575d4f86 605 public:
mjr 3:3514575d4f86 606 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 607 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 608 {
mjr 5:a70c0bce770d 609 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 610 irqPin_ = irqPin;
mjr 5:a70c0bce770d 611
mjr 5:a70c0bce770d 612 // reset and initialize
mjr 5:a70c0bce770d 613 reset();
mjr 5:a70c0bce770d 614 }
mjr 5:a70c0bce770d 615
mjr 5:a70c0bce770d 616 void reset()
mjr 5:a70c0bce770d 617 {
mjr 6:cc35eb643e8f 618 // clear the center point
mjr 6:cc35eb643e8f 619 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 620
mjr 6:cc35eb643e8f 621 // start the calibration timer
mjr 5:a70c0bce770d 622 tCenter_.start();
mjr 5:a70c0bce770d 623 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 624
mjr 5:a70c0bce770d 625 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 626 mma_.init();
mjr 6:cc35eb643e8f 627
mjr 6:cc35eb643e8f 628 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 629 vx_ = vy_ = 0;
mjr 3:3514575d4f86 630
mjr 6:cc35eb643e8f 631 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 632 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 633 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 634
mjr 3:3514575d4f86 635 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 636 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 637
mjr 3:3514575d4f86 638 // start our timers
mjr 3:3514575d4f86 639 tGet_.start();
mjr 3:3514575d4f86 640 tInt_.start();
mjr 3:3514575d4f86 641 }
mjr 3:3514575d4f86 642
mjr 6:cc35eb643e8f 643 void get(int &x, int &y, int &rx, int &ry)
mjr 3:3514575d4f86 644 {
mjr 3:3514575d4f86 645 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 646 __disable_irq();
mjr 3:3514575d4f86 647
mjr 3:3514575d4f86 648 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 649 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 650 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 651
mjr 6:cc35eb643e8f 652 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 653 vx_ = vy_ = 0;
mjr 3:3514575d4f86 654
mjr 3:3514575d4f86 655 // get the time since the last get() sample
mjr 3:3514575d4f86 656 float dt = tGet_.read_us()/1.0e6;
mjr 3:3514575d4f86 657 tGet_.reset();
mjr 3:3514575d4f86 658
mjr 3:3514575d4f86 659 // done manipulating the shared data
mjr 3:3514575d4f86 660 __enable_irq();
mjr 3:3514575d4f86 661
mjr 6:cc35eb643e8f 662 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 663 vx /= dt;
mjr 6:cc35eb643e8f 664 vy /= dt;
mjr 6:cc35eb643e8f 665
mjr 6:cc35eb643e8f 666 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 667 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 668 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 669
mjr 5:a70c0bce770d 670 // check for auto-centering every so often
mjr 5:a70c0bce770d 671 if (tCenter_.read_ms() > 1000)
mjr 5:a70c0bce770d 672 {
mjr 5:a70c0bce770d 673 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 674 AccHist *prv = p;
mjr 5:a70c0bce770d 675 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 676 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 677 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 678
mjr 5:a70c0bce770d 679 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 680 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 681 {
mjr 5:a70c0bce770d 682 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 683 static const float accTol = .01;
mjr 6:cc35eb643e8f 684 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 685 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 686 && p0[1].d < accTol
mjr 6:cc35eb643e8f 687 && p0[2].d < accTol
mjr 6:cc35eb643e8f 688 && p0[3].d < accTol
mjr 6:cc35eb643e8f 689 && p0[4].d < accTol)
mjr 5:a70c0bce770d 690 {
mjr 6:cc35eb643e8f 691 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 692 // the samples over the rest period
mjr 6:cc35eb643e8f 693 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 694 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 695 }
mjr 5:a70c0bce770d 696 }
mjr 5:a70c0bce770d 697 else
mjr 5:a70c0bce770d 698 {
mjr 5:a70c0bce770d 699 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 700 ++nAccPrv_;
mjr 5:a70c0bce770d 701 }
mjr 6:cc35eb643e8f 702
mjr 6:cc35eb643e8f 703 // clear the new item's running totals
mjr 6:cc35eb643e8f 704 p->clearAvg();
mjr 5:a70c0bce770d 705
mjr 5:a70c0bce770d 706 // reset the timer
mjr 5:a70c0bce770d 707 tCenter_.reset();
mjr 5:a70c0bce770d 708 }
mjr 5:a70c0bce770d 709
mjr 6:cc35eb643e8f 710 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 711 x = rawToReport(vx);
mjr 6:cc35eb643e8f 712 y = rawToReport(vy);
mjr 5:a70c0bce770d 713
mjr 6:cc35eb643e8f 714 // apply a small dead zone near the center
mjr 6:cc35eb643e8f 715 // if (abs(x) < 6) x = 0;
mjr 6:cc35eb643e8f 716 // if (abs(y) < 6) y = 0;
mjr 5:a70c0bce770d 717
mjr 5:a70c0bce770d 718 // report the calibrated instantaneous acceleration in rx,ry
mjr 6:cc35eb643e8f 719 rx = int(round((ax - cx_)*JOYMAX));
mjr 6:cc35eb643e8f 720 ry = int(round((ay - cy_)*JOYMAX));
mjr 6:cc35eb643e8f 721
mjr 6:cc35eb643e8f 722 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 723 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 724 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 725 #endif
mjr 3:3514575d4f86 726 }
mjr 3:3514575d4f86 727
mjr 3:3514575d4f86 728 private:
mjr 6:cc35eb643e8f 729 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 730 int rawToReport(float v)
mjr 5:a70c0bce770d 731 {
mjr 6:cc35eb643e8f 732 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 733 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 734
mjr 6:cc35eb643e8f 735 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 736 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 737 static const int filter[] = {
mjr 6:cc35eb643e8f 738 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 739 0,
mjr 6:cc35eb643e8f 740 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 741 };
mjr 6:cc35eb643e8f 742 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 743 }
mjr 5:a70c0bce770d 744
mjr 3:3514575d4f86 745 // interrupt handler
mjr 3:3514575d4f86 746 void isr()
mjr 3:3514575d4f86 747 {
mjr 3:3514575d4f86 748 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 749 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 750 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 751 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 752 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 753 float x, y, z;
mjr 5:a70c0bce770d 754 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 755
mjr 3:3514575d4f86 756 // calculate the time since the last interrupt
mjr 3:3514575d4f86 757 float dt = tInt_.read_us()/1.0e6;
mjr 3:3514575d4f86 758 tInt_.reset();
mjr 6:cc35eb643e8f 759
mjr 6:cc35eb643e8f 760 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 761 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 762 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 763
mjr 6:cc35eb643e8f 764 // store the updates
mjr 6:cc35eb643e8f 765 ax_ = x;
mjr 6:cc35eb643e8f 766 ay_ = y;
mjr 6:cc35eb643e8f 767 az_ = z;
mjr 3:3514575d4f86 768 }
mjr 3:3514575d4f86 769
mjr 3:3514575d4f86 770 // underlying accelerometer object
mjr 3:3514575d4f86 771 MMA8451Q mma_;
mjr 3:3514575d4f86 772
mjr 5:a70c0bce770d 773 // last raw acceleration readings
mjr 6:cc35eb643e8f 774 float ax_, ay_, az_;
mjr 5:a70c0bce770d 775
mjr 6:cc35eb643e8f 776 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 777 float vx_, vy_;
mjr 6:cc35eb643e8f 778
mjr 3:3514575d4f86 779 // timer for measuring time between get() samples
mjr 3:3514575d4f86 780 Timer tGet_;
mjr 3:3514575d4f86 781
mjr 3:3514575d4f86 782 // timer for measuring time between interrupts
mjr 3:3514575d4f86 783 Timer tInt_;
mjr 5:a70c0bce770d 784
mjr 6:cc35eb643e8f 785 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 786 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 787 // at rest.
mjr 6:cc35eb643e8f 788 float cx_, cy_;
mjr 5:a70c0bce770d 789
mjr 5:a70c0bce770d 790 // timer for atuo-centering
mjr 5:a70c0bce770d 791 Timer tCenter_;
mjr 6:cc35eb643e8f 792
mjr 6:cc35eb643e8f 793 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 794 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 795 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 796 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 797 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 798 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 799 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 800 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 801 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 802 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 803 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 804 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 805 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 806 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 807 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 808
mjr 5:a70c0bce770d 809 // interurupt pin name
mjr 5:a70c0bce770d 810 PinName irqPin_;
mjr 5:a70c0bce770d 811
mjr 5:a70c0bce770d 812 // interrupt router
mjr 5:a70c0bce770d 813 InterruptIn intIn_;
mjr 3:3514575d4f86 814 };
mjr 3:3514575d4f86 815
mjr 5:a70c0bce770d 816
mjr 5:a70c0bce770d 817 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 818 //
mjr 5:a70c0bce770d 819 // Clear the I2C bus for the MMA8451!. This seems necessary some of the time
mjr 5:a70c0bce770d 820 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 821 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 822 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 5:a70c0bce770d 823 // the SCL line is supposed to clear this conidtion.
mjr 5:a70c0bce770d 824 //
mjr 5:a70c0bce770d 825 void clear_i2c()
mjr 5:a70c0bce770d 826 {
mjr 5:a70c0bce770d 827 // assume a general-purpose output pin to the I2C clock
mjr 5:a70c0bce770d 828 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 829 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 830
mjr 5:a70c0bce770d 831 // clock the SCL 9 times
mjr 5:a70c0bce770d 832 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 833 {
mjr 5:a70c0bce770d 834 scl = 1;
mjr 5:a70c0bce770d 835 wait_us(20);
mjr 5:a70c0bce770d 836 scl = 0;
mjr 5:a70c0bce770d 837 wait_us(20);
mjr 5:a70c0bce770d 838 }
mjr 5:a70c0bce770d 839 }
mjr 5:a70c0bce770d 840
mjr 5:a70c0bce770d 841 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 842 //
mjr 5:a70c0bce770d 843 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 844 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 845 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 846 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 847 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 848 // port outputs.
mjr 5:a70c0bce770d 849 //
mjr 0:5acbbe3f4cf4 850 int main(void)
mjr 0:5acbbe3f4cf4 851 {
mjr 1:d913e0afb2ac 852 // turn off our on-board indicator LED
mjr 4:02c7cd7b2183 853 ledR = 1;
mjr 4:02c7cd7b2183 854 ledG = 1;
mjr 4:02c7cd7b2183 855 ledB = 1;
mjr 1:d913e0afb2ac 856
mjr 6:cc35eb643e8f 857 // initialize the LedWiz ports
mjr 6:cc35eb643e8f 858 initLwOut();
mjr 6:cc35eb643e8f 859
mjr 6:cc35eb643e8f 860 // we don't need a reset yet
mjr 6:cc35eb643e8f 861 bool needReset = false;
mjr 6:cc35eb643e8f 862
mjr 5:a70c0bce770d 863 // clear the I2C bus for the accelerometer
mjr 5:a70c0bce770d 864 clear_i2c();
mjr 5:a70c0bce770d 865
mjr 2:c174f9ee414a 866 // set up a flash memory controller
mjr 2:c174f9ee414a 867 FreescaleIAP iap;
mjr 2:c174f9ee414a 868
mjr 2:c174f9ee414a 869 // use the last sector of flash for our non-volatile memory structure
mjr 2:c174f9ee414a 870 int flash_addr = (iap.flash_size() - SECTOR_SIZE);
mjr 2:c174f9ee414a 871 NVM *flash = (NVM *)flash_addr;
mjr 2:c174f9ee414a 872 NVM cfg;
mjr 2:c174f9ee414a 873
mjr 2:c174f9ee414a 874 // check for valid flash
mjr 6:cc35eb643e8f 875 bool flash_valid = flash->valid();
mjr 2:c174f9ee414a 876
mjr 2:c174f9ee414a 877 // Number of pixels we read from the sensor on each frame. This can be
mjr 2:c174f9ee414a 878 // less than the physical pixel count if desired; we'll read every nth
mjr 2:c174f9ee414a 879 // piexl if so. E.g., with a 1280-pixel physical sensor, if npix is 320,
mjr 5:a70c0bce770d 880 // we'll read every 4th pixel. It takes time to read each pixel, so the
mjr 5:a70c0bce770d 881 // fewer pixels we read, the higher the refresh rate we can achieve.
mjr 5:a70c0bce770d 882 // It's therefore better not to read more pixels than we have to.
mjr 5:a70c0bce770d 883 //
mjr 5:a70c0bce770d 884 // VP seems to have an internal resolution in the 8-bit range, so there's
mjr 5:a70c0bce770d 885 // no apparent benefit to reading more than 128-256 pixels when using VP.
mjr 5:a70c0bce770d 886 // Empirically, 160 pixels seems about right. The overall travel of a
mjr 5:a70c0bce770d 887 // standard pinball plunger is about 3", so 160 pixels gives us resolution
mjr 5:a70c0bce770d 888 // of about 1/50". This seems to take full advantage of VP's modeling
mjr 5:a70c0bce770d 889 // ability, and is probably also more precise than a human player's
mjr 5:a70c0bce770d 890 // perception of the plunger position.
mjr 2:c174f9ee414a 891 const int npix = 160;
mjr 2:c174f9ee414a 892
mjr 2:c174f9ee414a 893 // if the flash is valid, load it; otherwise initialize to defaults
mjr 2:c174f9ee414a 894 if (flash_valid) {
mjr 2:c174f9ee414a 895 memcpy(&cfg, flash, sizeof(cfg));
mjr 6:cc35eb643e8f 896 printf("Flash restored: plunger cal=%d, min=%d, zero=%d, max=%d\r\n",
mjr 6:cc35eb643e8f 897 cfg.d.plungerCal, cfg.d.plungerMin, cfg.d.plungerZero, cfg.d.plungerMax);
mjr 2:c174f9ee414a 898 }
mjr 2:c174f9ee414a 899 else {
mjr 2:c174f9ee414a 900 printf("Factory reset\r\n");
mjr 2:c174f9ee414a 901 cfg.d.sig = cfg.SIGNATURE;
mjr 2:c174f9ee414a 902 cfg.d.vsn = cfg.VERSION;
mjr 6:cc35eb643e8f 903 cfg.d.plungerCal = 0;
mjr 6:cc35eb643e8f 904 cfg.d.plungerZero = 0;
mjr 2:c174f9ee414a 905 cfg.d.plungerMin = 0;
mjr 2:c174f9ee414a 906 cfg.d.plungerMax = npix;
mjr 6:cc35eb643e8f 907 cfg.d.ledWizUnitNo = DEFAULT_LEDWIZ_UNIT_NUMBER;
mjr 6:cc35eb643e8f 908 cfg.d.ccdEnabled = true;
mjr 2:c174f9ee414a 909 }
mjr 1:d913e0afb2ac 910
mjr 6:cc35eb643e8f 911 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 912 // number from the saved configuration.
mjr 6:cc35eb643e8f 913 MyUSBJoystick js(
mjr 6:cc35eb643e8f 914 USB_VENDOR_ID,
mjr 6:cc35eb643e8f 915 USB_PRODUCT_ID | cfg.d.ledWizUnitNo,
mjr 6:cc35eb643e8f 916 USB_VERSION_NO);
mjr 6:cc35eb643e8f 917
mjr 1:d913e0afb2ac 918 // plunger calibration button debounce timer
mjr 1:d913e0afb2ac 919 Timer calBtnTimer;
mjr 1:d913e0afb2ac 920 calBtnTimer.start();
mjr 1:d913e0afb2ac 921 int calBtnDownTime = 0;
mjr 1:d913e0afb2ac 922 int calBtnLit = false;
mjr 1:d913e0afb2ac 923
mjr 1:d913e0afb2ac 924 // Calibration button state:
mjr 1:d913e0afb2ac 925 // 0 = not pushed
mjr 1:d913e0afb2ac 926 // 1 = pushed, not yet debounced
mjr 1:d913e0afb2ac 927 // 2 = pushed, debounced, waiting for hold time
mjr 1:d913e0afb2ac 928 // 3 = pushed, hold time completed - in calibration mode
mjr 1:d913e0afb2ac 929 int calBtnState = 0;
mjr 1:d913e0afb2ac 930
mjr 1:d913e0afb2ac 931 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 932 Timer hbTimer;
mjr 1:d913e0afb2ac 933 hbTimer.start();
mjr 1:d913e0afb2ac 934 int hb = 0;
mjr 5:a70c0bce770d 935 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 936
mjr 1:d913e0afb2ac 937 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 938 Timer acTimer;
mjr 1:d913e0afb2ac 939 acTimer.start();
mjr 1:d913e0afb2ac 940
mjr 0:5acbbe3f4cf4 941 // create the accelerometer object
mjr 5:a70c0bce770d 942 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 0:5acbbe3f4cf4 943
mjr 0:5acbbe3f4cf4 944 // create the CCD array object
mjr 1:d913e0afb2ac 945 TSL1410R ccd(PTE20, PTE21, PTB0);
mjr 2:c174f9ee414a 946
mjr 1:d913e0afb2ac 947 // last accelerometer report, in mouse coordinates
mjr 6:cc35eb643e8f 948 int x = 0, y = 0, z = 0;
mjr 6:cc35eb643e8f 949
mjr 6:cc35eb643e8f 950 // previous two plunger readings, for "debouncing" the results (z0 is
mjr 6:cc35eb643e8f 951 // the most recent, z1 is the one before that)
mjr 6:cc35eb643e8f 952 int z0 = 0, z1 = 0, z2 = 0;
mjr 6:cc35eb643e8f 953
mjr 6:cc35eb643e8f 954 // Firing in progress: we set this when we detect the start of rapid
mjr 6:cc35eb643e8f 955 // plunger movement from a retracted position towards the rest position.
mjr 6:cc35eb643e8f 956 // The actual plunger spring return speed seems to be too slow for VP,
mjr 6:cc35eb643e8f 957 // so when we detect the start of this motion, we immediately tell VP
mjr 6:cc35eb643e8f 958 // to return the plunger to rest, then we monitor the real plunger
mjr 6:cc35eb643e8f 959 // until it atcually stops.
mjr 6:cc35eb643e8f 960 bool firing = false;
mjr 2:c174f9ee414a 961
mjr 2:c174f9ee414a 962 // start the first CCD integration cycle
mjr 2:c174f9ee414a 963 ccd.clear();
mjr 1:d913e0afb2ac 964
mjr 1:d913e0afb2ac 965 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 966 // host requests
mjr 0:5acbbe3f4cf4 967 for (;;)
mjr 0:5acbbe3f4cf4 968 {
mjr 0:5acbbe3f4cf4 969 // Look for an incoming report. Continue processing input as
mjr 0:5acbbe3f4cf4 970 // long as there's anything pending - this ensures that we
mjr 0:5acbbe3f4cf4 971 // handle input in as timely a fashion as possible by deferring
mjr 0:5acbbe3f4cf4 972 // output tasks as long as there's input to process.
mjr 0:5acbbe3f4cf4 973 HID_REPORT report;
mjr 6:cc35eb643e8f 974 while (js.readNB(&report))
mjr 0:5acbbe3f4cf4 975 {
mjr 6:cc35eb643e8f 976 // all Led-Wiz reports are 8 bytes exactly
mjr 6:cc35eb643e8f 977 if (report.length == 8)
mjr 1:d913e0afb2ac 978 {
mjr 6:cc35eb643e8f 979 uint8_t *data = report.data;
mjr 6:cc35eb643e8f 980 if (data[0] == 64)
mjr 0:5acbbe3f4cf4 981 {
mjr 6:cc35eb643e8f 982 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 6:cc35eb643e8f 983 // for the outputs; 5th byte is the pulse speed (0-7)
mjr 6:cc35eb643e8f 984 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 6:cc35eb643e8f 985 // data[1], data[2], data[3], data[4], data[5]);
mjr 0:5acbbe3f4cf4 986
mjr 6:cc35eb643e8f 987 // update all on/off states
mjr 6:cc35eb643e8f 988 for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1)
mjr 6:cc35eb643e8f 989 {
mjr 6:cc35eb643e8f 990 if (bit == 0x100) {
mjr 6:cc35eb643e8f 991 bit = 1;
mjr 6:cc35eb643e8f 992 ++ri;
mjr 6:cc35eb643e8f 993 }
mjr 6:cc35eb643e8f 994 wizOn[i] = ((data[ri] & bit) != 0);
mjr 6:cc35eb643e8f 995 }
mjr 6:cc35eb643e8f 996
mjr 6:cc35eb643e8f 997 // update the physical outputs
mjr 1:d913e0afb2ac 998 updateWizOuts();
mjr 6:cc35eb643e8f 999
mjr 6:cc35eb643e8f 1000 // reset the PBA counter
mjr 6:cc35eb643e8f 1001 pbaIdx = 0;
mjr 6:cc35eb643e8f 1002 }
mjr 6:cc35eb643e8f 1003 else if (data[0] == 65)
mjr 6:cc35eb643e8f 1004 {
mjr 6:cc35eb643e8f 1005 // Private control message. This isn't an LedWiz message - it's
mjr 6:cc35eb643e8f 1006 // an extension for this device. 65 is an invalid PBA setting,
mjr 6:cc35eb643e8f 1007 // and isn't used for any other LedWiz message, so we appropriate
mjr 6:cc35eb643e8f 1008 // it for our own private use. The first byte specifies the
mjr 6:cc35eb643e8f 1009 // message type.
mjr 6:cc35eb643e8f 1010 if (data[1] == 1)
mjr 6:cc35eb643e8f 1011 {
mjr 6:cc35eb643e8f 1012 // Set Configuration:
mjr 6:cc35eb643e8f 1013 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 6:cc35eb643e8f 1014 // data[3] = feature enable bit mask:
mjr 6:cc35eb643e8f 1015 // 0x01 = enable CCD
mjr 6:cc35eb643e8f 1016
mjr 6:cc35eb643e8f 1017 // we'll need a reset if the LedWiz unit number is changing
mjr 6:cc35eb643e8f 1018 uint8_t newUnitNo = data[2] & 0x0f;
mjr 6:cc35eb643e8f 1019 needReset |= (newUnitNo != cfg.d.ledWizUnitNo);
mjr 6:cc35eb643e8f 1020
mjr 6:cc35eb643e8f 1021 // set the configuration parameters from the message
mjr 6:cc35eb643e8f 1022 cfg.d.ledWizUnitNo = newUnitNo;
mjr 6:cc35eb643e8f 1023 cfg.d.ccdEnabled = data[3] & 0x01;
mjr 6:cc35eb643e8f 1024
mjr 6:cc35eb643e8f 1025 // save the configuration
mjr 6:cc35eb643e8f 1026 cfg.save(iap, flash_addr);
mjr 6:cc35eb643e8f 1027 }
mjr 6:cc35eb643e8f 1028 }
mjr 6:cc35eb643e8f 1029 else
mjr 6:cc35eb643e8f 1030 {
mjr 6:cc35eb643e8f 1031 // LWZ-PBA - full state dump; each byte is one output
mjr 6:cc35eb643e8f 1032 // in the current bank. pbaIdx keeps track of the bank;
mjr 6:cc35eb643e8f 1033 // this is incremented implicitly by each PBA message.
mjr 6:cc35eb643e8f 1034 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 6:cc35eb643e8f 1035 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 6:cc35eb643e8f 1036
mjr 6:cc35eb643e8f 1037 // update all output profile settings
mjr 6:cc35eb643e8f 1038 for (int i = 0 ; i < 8 ; ++i)
mjr 6:cc35eb643e8f 1039 wizVal[pbaIdx + i] = data[i];
mjr 6:cc35eb643e8f 1040
mjr 6:cc35eb643e8f 1041 // update the physical LED state if this is the last bank
mjr 6:cc35eb643e8f 1042 if (pbaIdx == 24)
mjr 6:cc35eb643e8f 1043 updateWizOuts();
mjr 6:cc35eb643e8f 1044
mjr 6:cc35eb643e8f 1045 // advance to the next bank
mjr 6:cc35eb643e8f 1046 pbaIdx = (pbaIdx + 8) & 31;
mjr 6:cc35eb643e8f 1047 }
mjr 0:5acbbe3f4cf4 1048 }
mjr 0:5acbbe3f4cf4 1049 }
mjr 1:d913e0afb2ac 1050
mjr 1:d913e0afb2ac 1051 // check for plunger calibration
mjr 1:d913e0afb2ac 1052 if (!calBtn)
mjr 0:5acbbe3f4cf4 1053 {
mjr 1:d913e0afb2ac 1054 // check the state
mjr 1:d913e0afb2ac 1055 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1056 {
mjr 1:d913e0afb2ac 1057 case 0:
mjr 1:d913e0afb2ac 1058 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 1059 calBtnTimer.reset();
mjr 1:d913e0afb2ac 1060 calBtnDownTime = calBtnTimer.read_ms();
mjr 1:d913e0afb2ac 1061 calBtnState = 1;
mjr 1:d913e0afb2ac 1062 break;
mjr 1:d913e0afb2ac 1063
mjr 1:d913e0afb2ac 1064 case 1:
mjr 1:d913e0afb2ac 1065 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 1066 // passed, start the hold period
mjr 1:d913e0afb2ac 1067 if (calBtnTimer.read_ms() - calBtnDownTime > 50)
mjr 1:d913e0afb2ac 1068 calBtnState = 2;
mjr 1:d913e0afb2ac 1069 break;
mjr 1:d913e0afb2ac 1070
mjr 1:d913e0afb2ac 1071 case 2:
mjr 1:d913e0afb2ac 1072 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 1073 // for the entire hold period, move to calibration mode
mjr 1:d913e0afb2ac 1074 if (calBtnTimer.read_ms() - calBtnDownTime > 2050)
mjr 1:d913e0afb2ac 1075 {
mjr 1:d913e0afb2ac 1076 // enter calibration mode
mjr 1:d913e0afb2ac 1077 calBtnState = 3;
mjr 1:d913e0afb2ac 1078
mjr 6:cc35eb643e8f 1079 // set extremes for the calibration data, so that the actual
mjr 6:cc35eb643e8f 1080 // values we read will set new high/low water marks on the fly
mjr 2:c174f9ee414a 1081 cfg.d.plungerMax = 0;
mjr 6:cc35eb643e8f 1082 cfg.d.plungerZero = npix;
mjr 2:c174f9ee414a 1083 cfg.d.plungerMin = npix;
mjr 1:d913e0afb2ac 1084 }
mjr 1:d913e0afb2ac 1085 break;
mjr 2:c174f9ee414a 1086
mjr 2:c174f9ee414a 1087 case 3:
mjr 2:c174f9ee414a 1088 // Already in calibration mode - pushing the button in this
mjr 2:c174f9ee414a 1089 // state doesn't change the current state, but we won't leave
mjr 2:c174f9ee414a 1090 // this state as long as it's held down. We can simply do
mjr 2:c174f9ee414a 1091 // nothing here.
mjr 2:c174f9ee414a 1092 break;
mjr 0:5acbbe3f4cf4 1093 }
mjr 0:5acbbe3f4cf4 1094 }
mjr 1:d913e0afb2ac 1095 else
mjr 1:d913e0afb2ac 1096 {
mjr 2:c174f9ee414a 1097 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 1098 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 1099 // and save the results to flash.
mjr 2:c174f9ee414a 1100 //
mjr 2:c174f9ee414a 1101 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 1102 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 1103 // mode, it simply cancels the attempt.
mjr 2:c174f9ee414a 1104 if (calBtnState == 3
mjr 2:c174f9ee414a 1105 && calBtnTimer.read_ms() - calBtnDownTime > 17500)
mjr 2:c174f9ee414a 1106 {
mjr 2:c174f9ee414a 1107 // exit calibration mode
mjr 1:d913e0afb2ac 1108 calBtnState = 0;
mjr 2:c174f9ee414a 1109
mjr 6:cc35eb643e8f 1110 // save the updated configuration
mjr 6:cc35eb643e8f 1111 cfg.d.plungerCal = 1;
mjr 6:cc35eb643e8f 1112 cfg.save(iap, flash_addr);
mjr 2:c174f9ee414a 1113
mjr 2:c174f9ee414a 1114 // the flash state is now valid
mjr 2:c174f9ee414a 1115 flash_valid = true;
mjr 2:c174f9ee414a 1116 }
mjr 2:c174f9ee414a 1117 else if (calBtnState != 3)
mjr 2:c174f9ee414a 1118 {
mjr 2:c174f9ee414a 1119 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 1120 calBtnState = 0;
mjr 2:c174f9ee414a 1121 }
mjr 1:d913e0afb2ac 1122 }
mjr 1:d913e0afb2ac 1123
mjr 1:d913e0afb2ac 1124 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 1125 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 1126 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1127 {
mjr 1:d913e0afb2ac 1128 case 2:
mjr 1:d913e0afb2ac 1129 // in the hold period - flash the light
mjr 1:d913e0afb2ac 1130 newCalBtnLit = (((calBtnTimer.read_ms() - calBtnDownTime)/250) & 1);
mjr 1:d913e0afb2ac 1131 break;
mjr 1:d913e0afb2ac 1132
mjr 1:d913e0afb2ac 1133 case 3:
mjr 1:d913e0afb2ac 1134 // calibration mode - show steady on
mjr 1:d913e0afb2ac 1135 newCalBtnLit = true;
mjr 1:d913e0afb2ac 1136 break;
mjr 1:d913e0afb2ac 1137
mjr 1:d913e0afb2ac 1138 default:
mjr 1:d913e0afb2ac 1139 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 1140 newCalBtnLit = false;
mjr 1:d913e0afb2ac 1141 break;
mjr 1:d913e0afb2ac 1142 }
mjr 3:3514575d4f86 1143
mjr 3:3514575d4f86 1144 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 1145 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 1146 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 1147 {
mjr 1:d913e0afb2ac 1148 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 1149 if (calBtnLit) {
mjr 2:c174f9ee414a 1150 calBtnLed = 1;
mjr 4:02c7cd7b2183 1151 ledR = 1;
mjr 4:02c7cd7b2183 1152 ledG = 1;
mjr 4:02c7cd7b2183 1153 ledB = 1;
mjr 2:c174f9ee414a 1154 }
mjr 2:c174f9ee414a 1155 else {
mjr 2:c174f9ee414a 1156 calBtnLed = 0;
mjr 4:02c7cd7b2183 1157 ledR = 1;
mjr 4:02c7cd7b2183 1158 ledG = 1;
mjr 4:02c7cd7b2183 1159 ledB = 0;
mjr 2:c174f9ee414a 1160 }
mjr 1:d913e0afb2ac 1161 }
mjr 1:d913e0afb2ac 1162
mjr 6:cc35eb643e8f 1163 // read the plunger sensor, if it's enabled
mjr 6:cc35eb643e8f 1164 if (cfg.d.ccdEnabled)
mjr 6:cc35eb643e8f 1165 {
mjr 6:cc35eb643e8f 1166 // start with the previous reading, in case we don't have a
mjr 6:cc35eb643e8f 1167 // clear result on this frame
mjr 6:cc35eb643e8f 1168 int znew = z;
mjr 2:c174f9ee414a 1169
mjr 6:cc35eb643e8f 1170 // read the array
mjr 6:cc35eb643e8f 1171 uint16_t pix[npix];
mjr 6:cc35eb643e8f 1172 ccd.read(pix, npix);
mjr 6:cc35eb643e8f 1173
mjr 6:cc35eb643e8f 1174 // get the average brightness at each end of the sensor
mjr 6:cc35eb643e8f 1175 long avg1 = (long(pix[0]) + long(pix[1]) + long(pix[2]) + long(pix[3]) + long(pix[4]))/5;
mjr 6:cc35eb643e8f 1176 long avg2 = (long(pix[npix-1]) + long(pix[npix-2]) + long(pix[npix-3]) + long(pix[npix-4]) + long(pix[npix-5]))/5;
mjr 6:cc35eb643e8f 1177
mjr 6:cc35eb643e8f 1178 // figure the midpoint in the brightness; multiply by 3 so that we can
mjr 6:cc35eb643e8f 1179 // compare sums of three pixels at a time to smooth out noise
mjr 6:cc35eb643e8f 1180 long midpt = (avg1 + avg2)/2 * 3;
mjr 6:cc35eb643e8f 1181
mjr 6:cc35eb643e8f 1182 // Work from the bright end to the dark end. VP interprets the
mjr 6:cc35eb643e8f 1183 // Z axis value as the amount the plunger is pulled: zero is the
mjr 6:cc35eb643e8f 1184 // rest position, and the axis maximum is fully pulled. So we
mjr 6:cc35eb643e8f 1185 // essentially want to report how much of the sensor is lit,
mjr 6:cc35eb643e8f 1186 // since this increases as the plunger is pulled back.
mjr 6:cc35eb643e8f 1187 int si = 1, di = 1;
mjr 6:cc35eb643e8f 1188 if (avg1 < avg2)
mjr 6:cc35eb643e8f 1189 si = npix - 2, di = -1;
mjr 6:cc35eb643e8f 1190
mjr 6:cc35eb643e8f 1191 // If the bright end and dark end don't differ by enough, skip this
mjr 6:cc35eb643e8f 1192 // reading entirely - we must have an overexposed or underexposed frame.
mjr 6:cc35eb643e8f 1193 // Otherwise proceed with the scan.
mjr 6:cc35eb643e8f 1194 if (labs(avg1 - avg2) > 0x1000)
mjr 6:cc35eb643e8f 1195 {
mjr 6:cc35eb643e8f 1196 uint16_t *pixp = pix + si;
mjr 6:cc35eb643e8f 1197 for (int n = 1 ; n < npix - 1 ; ++n, pixp += di)
mjr 6:cc35eb643e8f 1198 {
mjr 6:cc35eb643e8f 1199 // if we've crossed the midpoint, report this position
mjr 6:cc35eb643e8f 1200 if (long(pixp[-1]) + long(pixp[0]) + long(pixp[1]) < midpt)
mjr 6:cc35eb643e8f 1201 {
mjr 6:cc35eb643e8f 1202 // note the new position
mjr 6:cc35eb643e8f 1203 int pos = n;
mjr 6:cc35eb643e8f 1204
mjr 6:cc35eb643e8f 1205 // Calibrate, or apply calibration, depending on the mode.
mjr 6:cc35eb643e8f 1206 // In either case, normalize to our range. VP appears to
mjr 6:cc35eb643e8f 1207 // ignore negative Z axis values.
mjr 6:cc35eb643e8f 1208 if (calBtnState == 3)
mjr 6:cc35eb643e8f 1209 {
mjr 6:cc35eb643e8f 1210 // calibrating - note if we're expanding the calibration envelope
mjr 6:cc35eb643e8f 1211 if (pos < cfg.d.plungerMin)
mjr 6:cc35eb643e8f 1212 cfg.d.plungerMin = pos;
mjr 6:cc35eb643e8f 1213 if (pos < cfg.d.plungerZero)
mjr 6:cc35eb643e8f 1214 cfg.d.plungerZero = pos;
mjr 6:cc35eb643e8f 1215 if (pos > cfg.d.plungerMax)
mjr 6:cc35eb643e8f 1216 cfg.d.plungerMax = pos;
mjr 6:cc35eb643e8f 1217
mjr 6:cc35eb643e8f 1218 // normalize to the full physical range while calibrating
mjr 6:cc35eb643e8f 1219 znew = int(round(float(pos)/npix * JOYMAX));
mjr 6:cc35eb643e8f 1220 }
mjr 6:cc35eb643e8f 1221 else
mjr 6:cc35eb643e8f 1222 {
mjr 6:cc35eb643e8f 1223 // Running normally - normalize to the calibration range. Note
mjr 6:cc35eb643e8f 1224 // that values below the zero point are allowed - the zero point
mjr 6:cc35eb643e8f 1225 // represents the park position, where the plunger sits when at
mjr 6:cc35eb643e8f 1226 // rest, but a mechanical plunger has a smmall amount of travel
mjr 6:cc35eb643e8f 1227 // in the "push" direction. We represent forward travel with
mjr 6:cc35eb643e8f 1228 // negative z values.
mjr 6:cc35eb643e8f 1229 if (pos > cfg.d.plungerMax)
mjr 6:cc35eb643e8f 1230 pos = cfg.d.plungerMax;
mjr 6:cc35eb643e8f 1231 znew = int(round(float(pos - cfg.d.plungerZero)
mjr 6:cc35eb643e8f 1232 / (cfg.d.plungerMax - cfg.d.plungerZero + 1) * JOYMAX));
mjr 6:cc35eb643e8f 1233 }
mjr 6:cc35eb643e8f 1234
mjr 6:cc35eb643e8f 1235 // done
mjr 6:cc35eb643e8f 1236 break;
mjr 6:cc35eb643e8f 1237 }
mjr 6:cc35eb643e8f 1238 }
mjr 6:cc35eb643e8f 1239 }
mjr 7:100a25f8bf56 1240
mjr 7:100a25f8bf56 1241 // Determine if the plunger is being fired - i.e., if the player
mjr 7:100a25f8bf56 1242 // has just released the plunger from a retracted position.
mjr 6:cc35eb643e8f 1243 //
mjr 7:100a25f8bf56 1244 // We treat firing as an event. That is, we tell VP when the
mjr 7:100a25f8bf56 1245 // plunger is fired, and then stop sending data until the firing
mjr 7:100a25f8bf56 1246 // is complete, allowing VP to carry out the firing motion using
mjr 7:100a25f8bf56 1247 // its internal model plunger rather than trying to track the
mjr 7:100a25f8bf56 1248 // intermediate positions of the mechanical plunger throughout
mjr 7:100a25f8bf56 1249 // the firing motion. This has several benefits. First is that
mjr 7:100a25f8bf56 1250 // our readings aren't very accurate during rapid movement,
mjr 7:100a25f8bf56 1251 // because we get too much motion blur. Second is that the
mjr 7:100a25f8bf56 1252 // event approach allows VP to simulate the plunger motion
mjr 7:100a25f8bf56 1253 // according to each table's particular plunger settings.
mjr 7:100a25f8bf56 1254 // Different tables have different plunger strengths and speeds,
mjr 7:100a25f8bf56 1255 // so we want to defer to the model for the physics of the firing
mjr 7:100a25f8bf56 1256 // motion within each simulation.
mjr 6:cc35eb643e8f 1257 //
mjr 7:100a25f8bf56 1258 // To detremine when a firing even occurs, we watch for rapid
mjr 7:100a25f8bf56 1259 // motion from a retracted position towards the rest position -
mjr 7:100a25f8bf56 1260 // that is, large position changes in the negative direction over
mjr 7:100a25f8bf56 1261 // a couple of consecutive readings. When we see a rapid move
mjr 7:100a25f8bf56 1262 // toward zero, we set our internal 'firing' flag, immediately
mjr 7:100a25f8bf56 1263 // report to VP that the plunger has returned to the zero
mjr 7:100a25f8bf56 1264 // position, and then suspend reports until the mechanical
mjr 7:100a25f8bf56 1265 // readings indicate that the plunger has come to rest (indicated
mjr 7:100a25f8bf56 1266 // by several readings in a row at roughly the same position).
mjr 7:100a25f8bf56 1267
mjr 6:cc35eb643e8f 1268 // Check to see if plunger firing is in progress. If not, check
mjr 6:cc35eb643e8f 1269 // to see if it looks like we just started firing.
mjr 6:cc35eb643e8f 1270 const int restTol = JOYMAX/npix * 4;
mjr 6:cc35eb643e8f 1271 const int fireTol = JOYMAX/npix * 12;
mjr 6:cc35eb643e8f 1272 if (firing)
mjr 6:cc35eb643e8f 1273 {
mjr 6:cc35eb643e8f 1274 // Firing in progress - we've already told VP to send its
mjr 6:cc35eb643e8f 1275 // model plunger all the way back to the rest position, so
mjr 6:cc35eb643e8f 1276 // send no further reports until the mechanical plunger
mjr 6:cc35eb643e8f 1277 // actually comes to rest somewhere.
mjr 6:cc35eb643e8f 1278 if (abs(z0 - z2) < restTol && abs(znew - z2) < restTol)
mjr 6:cc35eb643e8f 1279 {
mjr 6:cc35eb643e8f 1280 // the plunger is back at rest - firing is done
mjr 6:cc35eb643e8f 1281 firing = false;
mjr 6:cc35eb643e8f 1282
mjr 6:cc35eb643e8f 1283 // resume normal reporting
mjr 6:cc35eb643e8f 1284 z = z2;
mjr 6:cc35eb643e8f 1285 }
mjr 6:cc35eb643e8f 1286 }
mjr 6:cc35eb643e8f 1287 else if (z0 < z2 && z1 < z2 && znew < z2
mjr 6:cc35eb643e8f 1288 && (z0 < z2 - fireTol
mjr 6:cc35eb643e8f 1289 || z1 < z2 - fireTol
mjr 6:cc35eb643e8f 1290 || znew < z2 - fireTol))
mjr 6:cc35eb643e8f 1291 {
mjr 6:cc35eb643e8f 1292 // Big jumps toward rest position in last two readings -
mjr 6:cc35eb643e8f 1293 // firing has begun. Report an immediate return to the
mjr 6:cc35eb643e8f 1294 // rest position, and send no further reports until the
mjr 6:cc35eb643e8f 1295 // physical plunger has come to rest. This effectively
mjr 6:cc35eb643e8f 1296 // detaches VP's model plunger from the real world for
mjr 6:cc35eb643e8f 1297 // the duration of the spring return, letting VP evolve
mjr 6:cc35eb643e8f 1298 // its model without trying to synchronize with the
mjr 6:cc35eb643e8f 1299 // mechanical version. The release motion is too fast
mjr 6:cc35eb643e8f 1300 // for that to work well; we can't take samples quickly
mjr 6:cc35eb643e8f 1301 // enough to get prcise velocity or acceleration
mjr 6:cc35eb643e8f 1302 // readings. It's better to let VP figure the speed
mjr 6:cc35eb643e8f 1303 // and acceleration through modeling. Plus, that lets
mjr 6:cc35eb643e8f 1304 // each virtual table set the desired parameters for its
mjr 6:cc35eb643e8f 1305 // virtual plunger, rather than imposing the actual
mjr 6:cc35eb643e8f 1306 // mechanical charateristics of the physical plunger on
mjr 6:cc35eb643e8f 1307 // every table.
mjr 6:cc35eb643e8f 1308 firing = true;
mjr 6:cc35eb643e8f 1309 z = 0;
mjr 6:cc35eb643e8f 1310 }
mjr 6:cc35eb643e8f 1311 else
mjr 6:cc35eb643e8f 1312 {
mjr 6:cc35eb643e8f 1313 // everything normal; report the 3rd recent position on
mjr 6:cc35eb643e8f 1314 // tape delay
mjr 6:cc35eb643e8f 1315 z = z2;
mjr 6:cc35eb643e8f 1316 }
mjr 6:cc35eb643e8f 1317
mjr 6:cc35eb643e8f 1318 // shift in the new reading
mjr 6:cc35eb643e8f 1319 z2 = z1;
mjr 6:cc35eb643e8f 1320 z1 = z0;
mjr 6:cc35eb643e8f 1321 z0 = znew;
mjr 2:c174f9ee414a 1322 }
mjr 6:cc35eb643e8f 1323
mjr 1:d913e0afb2ac 1324 // read the accelerometer
mjr 6:cc35eb643e8f 1325 int xa, ya, rxa, rya;
mjr 3:3514575d4f86 1326 accel.get(xa, ya, rxa, rya);
mjr 1:d913e0afb2ac 1327
mjr 6:cc35eb643e8f 1328 // confine the results to our joystick axis range
mjr 6:cc35eb643e8f 1329 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 6:cc35eb643e8f 1330 if (xa > JOYMAX) xa = JOYMAX;
mjr 6:cc35eb643e8f 1331 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 6:cc35eb643e8f 1332 if (ya > JOYMAX) ya = JOYMAX;
mjr 1:d913e0afb2ac 1333
mjr 6:cc35eb643e8f 1334 // store the updated accelerometer coordinates
mjr 6:cc35eb643e8f 1335 x = xa;
mjr 6:cc35eb643e8f 1336 y = ya;
mjr 6:cc35eb643e8f 1337
mjr 6:cc35eb643e8f 1338 // Send the status report.
mjr 5:a70c0bce770d 1339 //
mjr 5:a70c0bce770d 1340 // $$$ button updates are for diagnostics, so we can see that the
mjr 5:a70c0bce770d 1341 // device is sending data properly if the accelerometer gets stuck
mjr 6:cc35eb643e8f 1342 uint16_t btns = hb ? 0x5500 : 0xAA00;
mjr 6:cc35eb643e8f 1343 js.update(x, y, z, rxa, rya, btns);
mjr 1:d913e0afb2ac 1344
mjr 6:cc35eb643e8f 1345 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1346 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1347 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 1348 #endif
mjr 6:cc35eb643e8f 1349
mjr 6:cc35eb643e8f 1350 // provide a visual status indication on the on-board LED
mjr 5:a70c0bce770d 1351 if (calBtnState < 2 && hbTimer.read_ms() > 1000)
mjr 1:d913e0afb2ac 1352 {
mjr 5:a70c0bce770d 1353 if (js.isSuspended() || !js.isConnected())
mjr 2:c174f9ee414a 1354 {
mjr 5:a70c0bce770d 1355 // suspended - turn off the LED
mjr 4:02c7cd7b2183 1356 ledR = 1;
mjr 4:02c7cd7b2183 1357 ledG = 1;
mjr 4:02c7cd7b2183 1358 ledB = 1;
mjr 5:a70c0bce770d 1359
mjr 5:a70c0bce770d 1360 // show a status flash every so often
mjr 5:a70c0bce770d 1361 if (hbcnt % 3 == 0)
mjr 5:a70c0bce770d 1362 {
mjr 6:cc35eb643e8f 1363 // disconnected = red/red flash; suspended = red
mjr 5:a70c0bce770d 1364 for (int n = js.isConnected() ? 1 : 2 ; n > 0 ; --n)
mjr 5:a70c0bce770d 1365 {
mjr 5:a70c0bce770d 1366 ledR = 0;
mjr 5:a70c0bce770d 1367 wait(0.05);
mjr 5:a70c0bce770d 1368 ledR = 1;
mjr 5:a70c0bce770d 1369 wait(0.25);
mjr 5:a70c0bce770d 1370 }
mjr 5:a70c0bce770d 1371 }
mjr 2:c174f9ee414a 1372 }
mjr 6:cc35eb643e8f 1373 else if (needReset)
mjr 2:c174f9ee414a 1374 {
mjr 6:cc35eb643e8f 1375 // connected, need to reset due to changes in config parameters -
mjr 6:cc35eb643e8f 1376 // flash red/green
mjr 6:cc35eb643e8f 1377 hb = !hb;
mjr 6:cc35eb643e8f 1378 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1379 ledG = (hb ? 1 : 0);
mjr 6:cc35eb643e8f 1380 ledB = 0;
mjr 6:cc35eb643e8f 1381 }
mjr 6:cc35eb643e8f 1382 else if (cfg.d.ccdEnabled && !cfg.d.plungerCal)
mjr 6:cc35eb643e8f 1383 {
mjr 6:cc35eb643e8f 1384 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 1385 hb = !hb;
mjr 6:cc35eb643e8f 1386 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1387 ledG = 0;
mjr 6:cc35eb643e8f 1388 ledB = 1;
mjr 6:cc35eb643e8f 1389 }
mjr 6:cc35eb643e8f 1390 else
mjr 6:cc35eb643e8f 1391 {
mjr 6:cc35eb643e8f 1392 // connected - flash blue/green
mjr 2:c174f9ee414a 1393 hb = !hb;
mjr 4:02c7cd7b2183 1394 ledR = 1;
mjr 4:02c7cd7b2183 1395 ledG = (hb ? 0 : 1);
mjr 4:02c7cd7b2183 1396 ledB = (hb ? 1 : 0);
mjr 2:c174f9ee414a 1397 }
mjr 1:d913e0afb2ac 1398
mjr 1:d913e0afb2ac 1399 // reset the heartbeat timer
mjr 1:d913e0afb2ac 1400 hbTimer.reset();
mjr 5:a70c0bce770d 1401 ++hbcnt;
mjr 1:d913e0afb2ac 1402 }
mjr 1:d913e0afb2ac 1403 }
mjr 0:5acbbe3f4cf4 1404 }