An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Tue Jan 05 05:23:07 2016 +0000
Revision:
38:091e511ce8a0
Parent:
37:ed52738445fc
Child:
39:b3815a1c3802
USB improvements

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 /* Copyright 2014, 2015 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 5:a70c0bce770d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 38:091e511ce8a0 23 // This project implements an I/O controller for virtual pinball cabinets. Its
mjr 38:091e511ce8a0 24 // function is to connect Windows pinball software, such as Visual Pinball, with
mjr 38:091e511ce8a0 25 // physical devices in the cabinet: buttons, sensors, and feedback devices that
mjr 38:091e511ce8a0 26 // create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 38:091e511ce8a0 28 // The software can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 38:091e511ce8a0 42 // - Plunger position sensing, with mulitple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 38:091e511ce8a0 55 // Note VP has built-in support for plunger devices like this one, but some VP
mjr 38:091e511ce8a0 56 // tables can't use it without some additional scripting work. The Build Guide has
mjr 38:091e511ce8a0 57 // advice on adjusting tables to add plunger support when necessary.
mjr 5:a70c0bce770d 58 //
mjr 6:cc35eb643e8f 59 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 60 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 61 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 62 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 63 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 64 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 65 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 66 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 67 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 68 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 69 //
mjr 17:ab3cec0c8bf4 70 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 71 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 72 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 73 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 74 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 75 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 76 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 77 //
mjr 13:72dda449c3c0 78 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 38:091e511ce8a0 79 // for buttons and switches. You can wire each input to a physical pinball-style
mjr 38:091e511ce8a0 80 // button or switch, such as flipper buttons, Start buttons, coin chute switches,
mjr 38:091e511ce8a0 81 // tilt bobs, and service buttons. Each button can be configured to be reported
mjr 38:091e511ce8a0 82 // to the PC as a joystick button or as a keyboard key (you can select which key
mjr 38:091e511ce8a0 83 // is used for each button).
mjr 13:72dda449c3c0 84 //
mjr 5:a70c0bce770d 85 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 86 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 87 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 5:a70c0bce770d 88 // of ports. (The KL25Z can only provide 6 PWM ports. Intensity level settings on
mjr 5:a70c0bce770d 89 // other ports is ignored, so non-PWM ports can only be used for simple on/off
mjr 5:a70c0bce770d 90 // devices such as contactors and solenoids.) The KL25Z can only supply 4mA on its
mjr 5:a70c0bce770d 91 // output ports, so external hardware is required to take advantage of the LedWiz
mjr 5:a70c0bce770d 92 // emulation. Many different hardware designs are possible, but there's a simple
mjr 5:a70c0bce770d 93 // reference design in the documentation that uses a Darlington array IC to
mjr 5:a70c0bce770d 94 // increase the output from each port to 500mA (the same level as the LedWiz),
mjr 5:a70c0bce770d 95 // plus an extended design that adds an optocoupler and MOSFET to provide very
mjr 5:a70c0bce770d 96 // high power handling, up to about 45A or 150W, with voltages up to 100V.
mjr 5:a70c0bce770d 97 // That will handle just about any DC device directly (wtihout relays or other
mjr 5:a70c0bce770d 98 // amplifiers), and switches fast enough to support PWM devices.
mjr 5:a70c0bce770d 99 //
mjr 5:a70c0bce770d 100 // The device can report any desired LedWiz unit number to the host, which makes
mjr 5:a70c0bce770d 101 // it possible to use the LedWiz emulation on a machine that also has one or more
mjr 5:a70c0bce770d 102 // actual LedWiz devices intalled. The LedWiz design allows for up to 16 units
mjr 5:a70c0bce770d 103 // to be installed in one machine - each one is invidually addressable by its
mjr 5:a70c0bce770d 104 // distinct unit number.
mjr 5:a70c0bce770d 105 //
mjr 5:a70c0bce770d 106 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 107 // build any of the external port hardware (or attach anything to the output
mjr 5:a70c0bce770d 108 // ports at all) if the LedWiz features aren't needed. Most people won't have
mjr 5:a70c0bce770d 109 // any use for the LedWiz features. I built them mostly as a learning exercise,
mjr 5:a70c0bce770d 110 // but with a slight practical need for a handful of extra ports (I'm using the
mjr 5:a70c0bce770d 111 // cutting-edge 10-contactor setup, so my real LedWiz is full!).
mjr 6:cc35eb643e8f 112 //
mjr 26:cb71c4af2912 113 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 114 // external PWM controller chips for controlling device outputs, instead of using
mjr 26:cb71c4af2912 115 // the limited LedWiz emulation through the on-board GPIO ports as described above.
mjr 26:cb71c4af2912 116 // The software can control a set of daisy-chained TLC5940 chips, which provide
mjr 26:cb71c4af2912 117 // 16 PWM outputs per chip. Two of these chips give you the full complement
mjr 26:cb71c4af2912 118 // of 32 output ports of an actual LedWiz, and four give you 64 ports, which
mjr 33:d832bcab089e 119 // should be plenty for nearly any virtual pinball project. A private, extended
mjr 33:d832bcab089e 120 // version of the LedWiz protocol lets the host control the extra outputs, up to
mjr 33:d832bcab089e 121 // 128 outputs per KL25Z (8 TLC5940s). To take advantage of the extra outputs
mjr 33:d832bcab089e 122 // on the PC side, you need software that knows about the protocol extensions,
mjr 33:d832bcab089e 123 // which means you need the latest version of DirectOutput Framework (DOF). VP
mjr 33:d832bcab089e 124 // uses DOF for its output, so VP will be able to use the added ports without any
mjr 33:d832bcab089e 125 // extra work on your part. Older software (e.g., Future Pinball) that doesn't
mjr 33:d832bcab089e 126 // use DOF will still be able to use the LedWiz-compatible protocol, so it'll be
mjr 33:d832bcab089e 127 // able to control your first 32 ports (numbered 1-32 in the LedWiz scheme), but
mjr 33:d832bcab089e 128 // older software won't be able to address higher-numbered ports. That shouldn't
mjr 33:d832bcab089e 129 // be a problem because older software wouldn't know what to do with the extra
mjr 33:d832bcab089e 130 // devices anyway - FP, for example, is limited to a pre-defined set of outputs.
mjr 33:d832bcab089e 131 // As long as you put the most common devices on the first 32 outputs, and use
mjr 33:d832bcab089e 132 // higher numbered ports for the less common devices that older software can't
mjr 33:d832bcab089e 133 // use anyway, you'll get maximum functionality out of software new and old.
mjr 26:cb71c4af2912 134 //
mjr 38:091e511ce8a0 135 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 136 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 137 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 138 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 139 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 140 //
mjr 38:091e511ce8a0 141 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 142 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 143 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 144 // To use this feature, you have to build some external circuitry to allow the
mjr 38:091e511ce8a0 145 // software to sense the power supply status, and you have to run wires to your
mjr 38:091e511ce8a0 146 // TV's on/off button, which requires opening the case on your TV. The Build
mjr 38:091e511ce8a0 147 // Guide has details on the necessary circuitry and connections to the TV.
mjr 38:091e511ce8a0 148 //
mjr 35:e959ffba78fd 149 //
mjr 35:e959ffba78fd 150 //
mjr 33:d832bcab089e 151 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 152 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 153 //
mjr 6:cc35eb643e8f 154 // two short red flashes = the device is powered but hasn't successfully
mjr 6:cc35eb643e8f 155 // connected to the host via USB (either it's not physically connected
mjr 6:cc35eb643e8f 156 // to the USB port, or there was a problem with the software handshake
mjr 6:cc35eb643e8f 157 // with the USB device driver on the computer)
mjr 6:cc35eb643e8f 158 //
mjr 6:cc35eb643e8f 159 // short red flash = the host computer is in sleep/suspend mode
mjr 6:cc35eb643e8f 160 //
mjr 38:091e511ce8a0 161 // long red/yellow = USB connection problem. The device still has a USB
mjr 38:091e511ce8a0 162 // connection to the host, but data transmissions are failing. This
mjr 38:091e511ce8a0 163 // condition shouldn't ever occur; if it does, it probably indicates
mjr 38:091e511ce8a0 164 // a bug in the device's USB software. This display is provided to
mjr 38:091e511ce8a0 165 // flag any occurrences for investigation. You'll probably need to
mjr 38:091e511ce8a0 166 // manually reset the device if this occurs.
mjr 38:091e511ce8a0 167 //
mjr 6:cc35eb643e8f 168 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 169 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 170 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 171 // no plunger sensor configured.
mjr 6:cc35eb643e8f 172 //
mjr 38:091e511ce8a0 173 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 174 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 175 //
mjr 10:976666ffa4ef 176 //
mjr 35:e959ffba78fd 177 // USB PROTOCOL: please refer to USBProtocol.h for details on the USB
mjr 35:e959ffba78fd 178 // message protocol.
mjr 33:d832bcab089e 179
mjr 33:d832bcab089e 180
mjr 0:5acbbe3f4cf4 181 #include "mbed.h"
mjr 6:cc35eb643e8f 182 #include "math.h"
mjr 0:5acbbe3f4cf4 183 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 184 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 185 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 186 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 187 #include "crc32.h"
mjr 26:cb71c4af2912 188 #include "TLC5940.h"
mjr 34:6b981a2afab7 189 #include "74HC595.h"
mjr 35:e959ffba78fd 190 #include "nvm.h"
mjr 35:e959ffba78fd 191 #include "plunger.h"
mjr 35:e959ffba78fd 192 #include "ccdSensor.h"
mjr 35:e959ffba78fd 193 #include "potSensor.h"
mjr 35:e959ffba78fd 194 #include "nullSensor.h"
mjr 2:c174f9ee414a 195
mjr 21:5048e16cc9ef 196 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 197 #include "config.h"
mjr 17:ab3cec0c8bf4 198
mjr 5:a70c0bce770d 199
mjr 5:a70c0bce770d 200 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 201 //
mjr 38:091e511ce8a0 202 // Forward declarations
mjr 38:091e511ce8a0 203 //
mjr 38:091e511ce8a0 204 void setNightMode(bool on);
mjr 38:091e511ce8a0 205 void toggleNightMode();
mjr 38:091e511ce8a0 206
mjr 38:091e511ce8a0 207 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 208 // utilities
mjr 17:ab3cec0c8bf4 209
mjr 17:ab3cec0c8bf4 210 // number of elements in an array
mjr 17:ab3cec0c8bf4 211 #define countof(x) (sizeof(x)/sizeof((x)[0]))
mjr 17:ab3cec0c8bf4 212
mjr 26:cb71c4af2912 213 // floating point square of a number
mjr 26:cb71c4af2912 214 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 215
mjr 26:cb71c4af2912 216 // floating point rounding
mjr 26:cb71c4af2912 217 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 218
mjr 17:ab3cec0c8bf4 219
mjr 33:d832bcab089e 220 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 221 //
mjr 33:d832bcab089e 222 // USB product version number
mjr 5:a70c0bce770d 223 //
mjr 35:e959ffba78fd 224 const uint16_t USB_VERSION_NO = 0x0008;
mjr 33:d832bcab089e 225
mjr 33:d832bcab089e 226 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 227 //
mjr 6:cc35eb643e8f 228 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 229 //
mjr 6:cc35eb643e8f 230 #define JOYMAX 4096
mjr 6:cc35eb643e8f 231
mjr 9:fd65b0a94720 232
mjr 17:ab3cec0c8bf4 233 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 234 //
mjr 35:e959ffba78fd 235 // Wire protocol value translations. These translate byte values from
mjr 35:e959ffba78fd 236 // the USB protocol to local native format.
mjr 35:e959ffba78fd 237 //
mjr 35:e959ffba78fd 238
mjr 35:e959ffba78fd 239 // unsigned 16-bit integer
mjr 35:e959ffba78fd 240 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 241 {
mjr 35:e959ffba78fd 242 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 243 }
mjr 35:e959ffba78fd 244
mjr 35:e959ffba78fd 245 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 246 {
mjr 35:e959ffba78fd 247 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 248 }
mjr 35:e959ffba78fd 249
mjr 35:e959ffba78fd 250 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 251 {
mjr 35:e959ffba78fd 252 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 253 }
mjr 35:e959ffba78fd 254
mjr 35:e959ffba78fd 255 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 256 {
mjr 35:e959ffba78fd 257 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 258 }
mjr 35:e959ffba78fd 259
mjr 35:e959ffba78fd 260 inline PinName wirePinName(int c)
mjr 35:e959ffba78fd 261 {
mjr 35:e959ffba78fd 262 static const PinName p[] = {
mjr 38:091e511ce8a0 263 NC, PTA1, PTA2, PTA4, PTA5, PTA12, PTA13, PTA16, PTA17, PTB0, // 0-9
mjr 38:091e511ce8a0 264 PTB1, PTB2, PTB3, PTB8, PTB9, PTB10, PTB11, PTB18, PTB19, PTC0, // 10-19
mjr 38:091e511ce8a0 265 PTC1, PTC2, PTC3, PTC4, PTC5, PTC6, PTC7, PTC8, PTC9, PTC10, // 20-29
mjr 38:091e511ce8a0 266 PTC11, PTC12, PTC13, PTC16, PTC17, PTD0, PTD1, PTD2, PTD3, PTD4, // 30-39
mjr 38:091e511ce8a0 267 PTD5, PTD6, PTD7, PTE0, PTE1, PTE2, PTE3, PTE4, PTE5, PTE20, // 40-49
mjr 38:091e511ce8a0 268 PTE21, PTE22, PTE23, PTE29, PTE30, PTE31 // 50-55
mjr 35:e959ffba78fd 269 };
mjr 35:e959ffba78fd 270 return (c < countof(p) ? p[c] : NC);
mjr 35:e959ffba78fd 271 }
mjr 35:e959ffba78fd 272
mjr 35:e959ffba78fd 273
mjr 35:e959ffba78fd 274 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 275 //
mjr 38:091e511ce8a0 276 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 277 //
mjr 38:091e511ce8a0 278 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 279 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 280 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 281 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 282 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 283 // SPI capability.
mjr 38:091e511ce8a0 284 //
mjr 38:091e511ce8a0 285 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 286
mjr 38:091e511ce8a0 287 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 288 // on, and -1 is no change (leaves the current setting intact).
mjr 38:091e511ce8a0 289 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 290 {
mjr 38:091e511ce8a0 291 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 292 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 293 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 294 }
mjr 38:091e511ce8a0 295
mjr 38:091e511ce8a0 296 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 297 // an on-board LED segment
mjr 38:091e511ce8a0 298 struct LedSeg
mjr 38:091e511ce8a0 299 {
mjr 38:091e511ce8a0 300 bool r, g, b;
mjr 38:091e511ce8a0 301 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 302
mjr 38:091e511ce8a0 303 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 304 {
mjr 38:091e511ce8a0 305 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 306 // our on-board LED segments
mjr 38:091e511ce8a0 307 int t = pc.typ;
mjr 38:091e511ce8a0 308 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 309 {
mjr 38:091e511ce8a0 310 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 311 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 312 if (pin == LED1)
mjr 38:091e511ce8a0 313 r = true;
mjr 38:091e511ce8a0 314 else if (pin == LED2)
mjr 38:091e511ce8a0 315 g = true;
mjr 38:091e511ce8a0 316 else if (pin == LED3)
mjr 38:091e511ce8a0 317 b = true;
mjr 38:091e511ce8a0 318 }
mjr 38:091e511ce8a0 319 }
mjr 38:091e511ce8a0 320 };
mjr 38:091e511ce8a0 321
mjr 38:091e511ce8a0 322 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 323 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 324 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 325 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 326 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 327 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 328 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 329 {
mjr 38:091e511ce8a0 330 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 331 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 332 LedSeg l;
mjr 38:091e511ce8a0 333 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 334 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 335
mjr 38:091e511ce8a0 336 // check the special ports
mjr 38:091e511ce8a0 337 for (int i = 0 ; i < countof(cfg.specialPort) ; ++i)
mjr 38:091e511ce8a0 338 l.check(cfg.specialPort[i]);
mjr 38:091e511ce8a0 339
mjr 38:091e511ce8a0 340 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 341 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 342 // LedWiz use.
mjr 38:091e511ce8a0 343 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 344 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 345 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 346 }
mjr 38:091e511ce8a0 347
mjr 38:091e511ce8a0 348
mjr 38:091e511ce8a0 349 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 350 //
mjr 29:582472d0bc57 351 // LedWiz emulation, and enhanced TLC5940 output controller
mjr 5:a70c0bce770d 352 //
mjr 26:cb71c4af2912 353 // There are two modes for this feature. The default mode uses the on-board
mjr 26:cb71c4af2912 354 // GPIO ports to implement device outputs - each LedWiz software port is
mjr 26:cb71c4af2912 355 // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10
mjr 26:cb71c4af2912 356 // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the
mjr 26:cb71c4af2912 357 // rest are strictly on/off. The KL25Z also has a limited number of GPIO
mjr 26:cb71c4af2912 358 // ports overall - not enough for the full complement of 32 LedWiz ports
mjr 26:cb71c4af2912 359 // and 24 VP joystick inputs, so it's necessary to trade one against the
mjr 26:cb71c4af2912 360 // other if both features are to be used.
mjr 26:cb71c4af2912 361 //
mjr 26:cb71c4af2912 362 // The alternative, enhanced mode uses external TLC5940 PWM controller
mjr 26:cb71c4af2912 363 // chips to control device outputs. In this mode, each LedWiz software
mjr 26:cb71c4af2912 364 // port is mapped to an output on one of the external TLC5940 chips.
mjr 26:cb71c4af2912 365 // Two 5940s is enough for the full set of 32 LedWiz ports, and we can
mjr 26:cb71c4af2912 366 // support even more chips for even more outputs (although doing so requires
mjr 26:cb71c4af2912 367 // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired
mjr 26:cb71c4af2912 368 // for 32 outputs). Every port in this mode has full PWM support.
mjr 26:cb71c4af2912 369 //
mjr 5:a70c0bce770d 370
mjr 29:582472d0bc57 371
mjr 26:cb71c4af2912 372 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 373 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 374 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 375 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 376 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 377
mjr 26:cb71c4af2912 378 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 379 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 380 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 381 class LwOut
mjr 6:cc35eb643e8f 382 {
mjr 6:cc35eb643e8f 383 public:
mjr 26:cb71c4af2912 384 // Set the output intensity. 'val' is 0.0 for fully off, 1.0 for
mjr 26:cb71c4af2912 385 // fully on, and fractional values for intermediate intensities.
mjr 6:cc35eb643e8f 386 virtual void set(float val) = 0;
mjr 6:cc35eb643e8f 387 };
mjr 26:cb71c4af2912 388
mjr 35:e959ffba78fd 389 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 390 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 391 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 392 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 393 // numbering.
mjr 35:e959ffba78fd 394 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 395 {
mjr 33:d832bcab089e 396 public:
mjr 35:e959ffba78fd 397 LwVirtualOut() { }
mjr 33:d832bcab089e 398 virtual void set(float val) { }
mjr 33:d832bcab089e 399 };
mjr 26:cb71c4af2912 400
mjr 34:6b981a2afab7 401 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 402 // on top of the physical pin interface. This simply inverts the value of
mjr 34:6b981a2afab7 403 // the output value, so that 1.0 means fully off and 0.0 means fully on.
mjr 34:6b981a2afab7 404 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 405 {
mjr 34:6b981a2afab7 406 public:
mjr 34:6b981a2afab7 407 LwInvertedOut(LwOut *o) : out(o) { }
mjr 34:6b981a2afab7 408 virtual void set(float val) { out->set(1.0 - val); }
mjr 34:6b981a2afab7 409
mjr 34:6b981a2afab7 410 private:
mjr 34:6b981a2afab7 411 LwOut *out;
mjr 34:6b981a2afab7 412 };
mjr 34:6b981a2afab7 413
mjr 26:cb71c4af2912 414
mjr 35:e959ffba78fd 415 //
mjr 35:e959ffba78fd 416 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 417 // assignments set in config.h.
mjr 33:d832bcab089e 418 //
mjr 35:e959ffba78fd 419 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 420 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 423 {
mjr 35:e959ffba78fd 424 tlc5940 = new TLC5940(cfg.tlc5940.sclk, cfg.tlc5940.sin, cfg.tlc5940.gsclk,
mjr 35:e959ffba78fd 425 cfg.tlc5940.blank, cfg.tlc5940.xlat, cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 426 }
mjr 35:e959ffba78fd 427 }
mjr 26:cb71c4af2912 428
mjr 26:cb71c4af2912 429 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 430 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 431 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 432 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 433 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 434 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 435 {
mjr 26:cb71c4af2912 436 public:
mjr 26:cb71c4af2912 437 Lw5940Out(int idx) : idx(idx) { prv = -1; }
mjr 26:cb71c4af2912 438 virtual void set(float val)
mjr 26:cb71c4af2912 439 {
mjr 26:cb71c4af2912 440 if (val != prv)
mjr 38:091e511ce8a0 441 tlc5940->set(idx, (int)((prv = val) * 4095.0f));
mjr 26:cb71c4af2912 442 }
mjr 26:cb71c4af2912 443 int idx;
mjr 26:cb71c4af2912 444 float prv;
mjr 26:cb71c4af2912 445 };
mjr 26:cb71c4af2912 446
mjr 33:d832bcab089e 447
mjr 34:6b981a2afab7 448 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 449 // config.h.
mjr 35:e959ffba78fd 450 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 451
mjr 35:e959ffba78fd 452 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 453 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 454 {
mjr 35:e959ffba78fd 455 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 456 {
mjr 35:e959ffba78fd 457 hc595 = new HC595(cfg.hc595.nchips, cfg.hc595.sin, cfg.hc595.sclk, cfg.hc595.latch, cfg.hc595.ena);
mjr 35:e959ffba78fd 458 hc595->init();
mjr 35:e959ffba78fd 459 hc595->update();
mjr 35:e959ffba78fd 460 }
mjr 35:e959ffba78fd 461 }
mjr 34:6b981a2afab7 462
mjr 34:6b981a2afab7 463 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 464 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 465 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 466 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 467 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 468 class Lw595Out: public LwOut
mjr 33:d832bcab089e 469 {
mjr 33:d832bcab089e 470 public:
mjr 34:6b981a2afab7 471 Lw595Out(int idx) : idx(idx) { prv = -1; }
mjr 34:6b981a2afab7 472 virtual void set(float val)
mjr 34:6b981a2afab7 473 {
mjr 34:6b981a2afab7 474 if (val != prv)
mjr 35:e959ffba78fd 475 hc595->set(idx, (prv = val) == 0.0 ? 0 : 1);
mjr 34:6b981a2afab7 476 }
mjr 34:6b981a2afab7 477 int idx;
mjr 34:6b981a2afab7 478 float prv;
mjr 33:d832bcab089e 479 };
mjr 33:d832bcab089e 480
mjr 26:cb71c4af2912 481
mjr 26:cb71c4af2912 482 //
mjr 26:cb71c4af2912 483 // Default LedWiz mode - using on-board GPIO ports. In this mode, we
mjr 26:cb71c4af2912 484 // assign a KL25Z GPIO port to each LedWiz output. We have to use a
mjr 26:cb71c4af2912 485 // mix of PWM-capable and Digital-Only ports in this configuration,
mjr 26:cb71c4af2912 486 // since the KL25Z hardware only has 10 PWM channels, which isn't
mjr 26:cb71c4af2912 487 // enough to fill out the full complement of 32 LedWiz outputs.
mjr 26:cb71c4af2912 488 //
mjr 26:cb71c4af2912 489
mjr 26:cb71c4af2912 490 // LwOut class for a PWM-capable GPIO port
mjr 6:cc35eb643e8f 491 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 492 {
mjr 6:cc35eb643e8f 493 public:
mjr 13:72dda449c3c0 494 LwPwmOut(PinName pin) : p(pin) { prv = -1; }
mjr 13:72dda449c3c0 495 virtual void set(float val)
mjr 13:72dda449c3c0 496 {
mjr 13:72dda449c3c0 497 if (val != prv)
mjr 13:72dda449c3c0 498 p.write(prv = val);
mjr 13:72dda449c3c0 499 }
mjr 6:cc35eb643e8f 500 PwmOut p;
mjr 13:72dda449c3c0 501 float prv;
mjr 6:cc35eb643e8f 502 };
mjr 26:cb71c4af2912 503
mjr 26:cb71c4af2912 504 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 505 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 506 {
mjr 6:cc35eb643e8f 507 public:
mjr 13:72dda449c3c0 508 LwDigOut(PinName pin) : p(pin) { prv = -1; }
mjr 13:72dda449c3c0 509 virtual void set(float val)
mjr 13:72dda449c3c0 510 {
mjr 13:72dda449c3c0 511 if (val != prv)
mjr 13:72dda449c3c0 512 p.write((prv = val) == 0.0 ? 0 : 1);
mjr 13:72dda449c3c0 513 }
mjr 6:cc35eb643e8f 514 DigitalOut p;
mjr 13:72dda449c3c0 515 float prv;
mjr 6:cc35eb643e8f 516 };
mjr 26:cb71c4af2912 517
mjr 29:582472d0bc57 518 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 519 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 520 // port n (0-based).
mjr 35:e959ffba78fd 521 //
mjr 35:e959ffba78fd 522 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 523 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 524 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 525 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 526 // 74HC595 ports).
mjr 33:d832bcab089e 527 static int numOutputs;
mjr 33:d832bcab089e 528 static LwOut **lwPin;
mjr 33:d832bcab089e 529
mjr 38:091e511ce8a0 530 // Special output ports:
mjr 38:091e511ce8a0 531 //
mjr 38:091e511ce8a0 532 // [0] = Night Mode indicator light
mjr 38:091e511ce8a0 533 //
mjr 38:091e511ce8a0 534 static LwOut *specialPin[1];
mjr 38:091e511ce8a0 535
mjr 38:091e511ce8a0 536
mjr 35:e959ffba78fd 537 // Number of LedWiz emulation outputs. This is the number of ports
mjr 35:e959ffba78fd 538 // accessible through the standard (non-extended) LedWiz protocol
mjr 35:e959ffba78fd 539 // messages. The protocol has a fixed set of 32 outputs, but we
mjr 35:e959ffba78fd 540 // might have fewer actual outputs. This is therefore set to the
mjr 35:e959ffba78fd 541 // lower of 32 or the actual number of outputs.
mjr 35:e959ffba78fd 542 static int numLwOutputs;
mjr 35:e959ffba78fd 543
mjr 33:d832bcab089e 544 // Current absolute brightness level for an output. This is a float
mjr 38:091e511ce8a0 545 // value from 0.0 for fully off to 1.0 for fully on. This is used
mjr 38:091e511ce8a0 546 // for all extended ports (33 and above), and for any LedWiz port
mjr 38:091e511ce8a0 547 // with wizVal == 255.
mjr 33:d832bcab089e 548 static float *outLevel;
mjr 6:cc35eb643e8f 549
mjr 38:091e511ce8a0 550 // Day/night mode override for an output. For each output, this is
mjr 38:091e511ce8a0 551 // set to 1 if the output is enabled and 0 if the output is disabled
mjr 38:091e511ce8a0 552 // by a global mode control, such as Night Mode (currently Night Mode
mjr 38:091e511ce8a0 553 // is the only such global mode, but the idea could be extended to
mjr 38:091e511ce8a0 554 // other similar controls if other needs emerge). To get the final
mjr 38:091e511ce8a0 555 // output level for each output, we simply multiply the outLevel value
mjr 38:091e511ce8a0 556 // for the port by this override vlaue.
mjr 38:091e511ce8a0 557 static uint8_t *modeLevel;
mjr 38:091e511ce8a0 558
mjr 38:091e511ce8a0 559 // create a single output pin
mjr 38:091e511ce8a0 560 LwOut *createLwPin(LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 561 {
mjr 38:091e511ce8a0 562 // get this item's values
mjr 38:091e511ce8a0 563 int typ = pc.typ;
mjr 38:091e511ce8a0 564 int pin = pc.pin;
mjr 38:091e511ce8a0 565 int flags = pc.flags;
mjr 38:091e511ce8a0 566 int activeLow = flags & PortFlagActiveLow;
mjr 38:091e511ce8a0 567
mjr 38:091e511ce8a0 568 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 569 LwOut *lwp;
mjr 38:091e511ce8a0 570 switch (typ)
mjr 38:091e511ce8a0 571 {
mjr 38:091e511ce8a0 572 case PortTypeGPIOPWM:
mjr 38:091e511ce8a0 573 // PWM GPIO port
mjr 38:091e511ce8a0 574 lwp = new LwPwmOut(wirePinName(pin));
mjr 38:091e511ce8a0 575 break;
mjr 38:091e511ce8a0 576
mjr 38:091e511ce8a0 577 case PortTypeGPIODig:
mjr 38:091e511ce8a0 578 // Digital GPIO port
mjr 38:091e511ce8a0 579 lwp = new LwDigOut(wirePinName(pin));
mjr 38:091e511ce8a0 580 break;
mjr 38:091e511ce8a0 581
mjr 38:091e511ce8a0 582 case PortTypeTLC5940:
mjr 38:091e511ce8a0 583 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 584 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 585 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 38:091e511ce8a0 586 lwp = new Lw5940Out(pin);
mjr 38:091e511ce8a0 587 else
mjr 38:091e511ce8a0 588 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 589 break;
mjr 38:091e511ce8a0 590
mjr 38:091e511ce8a0 591 case PortType74HC595:
mjr 38:091e511ce8a0 592 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 593 // output number, create a virtual port)
mjr 38:091e511ce8a0 594 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 595 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 596 else
mjr 38:091e511ce8a0 597 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 598 break;
mjr 38:091e511ce8a0 599
mjr 38:091e511ce8a0 600 case PortTypeVirtual:
mjr 38:091e511ce8a0 601 default:
mjr 38:091e511ce8a0 602 // virtual or unknown
mjr 38:091e511ce8a0 603 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 604 break;
mjr 38:091e511ce8a0 605 }
mjr 38:091e511ce8a0 606
mjr 38:091e511ce8a0 607 // if it's Active Low, layer on an inverter
mjr 38:091e511ce8a0 608 if (activeLow)
mjr 38:091e511ce8a0 609 lwp = new LwInvertedOut(lwp);
mjr 38:091e511ce8a0 610
mjr 38:091e511ce8a0 611 // turn it off initially
mjr 38:091e511ce8a0 612 lwp->set(0);
mjr 38:091e511ce8a0 613
mjr 38:091e511ce8a0 614 // return the pin
mjr 38:091e511ce8a0 615 return lwp;
mjr 38:091e511ce8a0 616 }
mjr 38:091e511ce8a0 617
mjr 6:cc35eb643e8f 618 // initialize the output pin array
mjr 35:e959ffba78fd 619 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 620 {
mjr 35:e959ffba78fd 621 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 622 // total number of ports.
mjr 35:e959ffba78fd 623 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 624 int i;
mjr 35:e959ffba78fd 625 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 626 {
mjr 35:e959ffba78fd 627 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 628 {
mjr 35:e959ffba78fd 629 numOutputs = i;
mjr 34:6b981a2afab7 630 break;
mjr 34:6b981a2afab7 631 }
mjr 33:d832bcab089e 632 }
mjr 33:d832bcab089e 633
mjr 35:e959ffba78fd 634 // the real LedWiz protocol can access at most 32 ports, or the
mjr 35:e959ffba78fd 635 // actual number of outputs, whichever is lower
mjr 35:e959ffba78fd 636 numLwOutputs = (numOutputs < 32 ? numOutputs : 32);
mjr 35:e959ffba78fd 637
mjr 33:d832bcab089e 638 // allocate the pin array
mjr 33:d832bcab089e 639 lwPin = new LwOut*[numOutputs];
mjr 33:d832bcab089e 640
mjr 38:091e511ce8a0 641 // Allocate the current brightness array. For these, allocate at
mjr 38:091e511ce8a0 642 // least 32, so that we have enough for all LedWiz messages, but
mjr 38:091e511ce8a0 643 // allocate the full set of actual ports if we have more than the
mjr 38:091e511ce8a0 644 // LedWiz complement.
mjr 38:091e511ce8a0 645 int minOuts = numOutputs < 32 ? 32 : numOutputs;
mjr 38:091e511ce8a0 646 outLevel = new float[minOuts];
mjr 38:091e511ce8a0 647
mjr 38:091e511ce8a0 648 // Allocate the mode override array
mjr 38:091e511ce8a0 649 modeLevel = new uint8_t[minOuts];
mjr 38:091e511ce8a0 650
mjr 38:091e511ce8a0 651 // start with all modeLevel values set to ON
mjr 38:091e511ce8a0 652 memset(modeLevel, 1, minOuts);
mjr 33:d832bcab089e 653
mjr 35:e959ffba78fd 654 // create the pin interface object for each port
mjr 35:e959ffba78fd 655 for (i = 0 ; i < numOutputs ; ++i)
mjr 38:091e511ce8a0 656 lwPin[i] = createLwPin(cfg.outPort[i], cfg);
mjr 34:6b981a2afab7 657
mjr 38:091e511ce8a0 658 // create the pin interface for each special port
mjr 38:091e511ce8a0 659 for (i = 0 ; i < countof(cfg.specialPort) ; ++i)
mjr 38:091e511ce8a0 660 specialPin[i] = createLwPin(cfg.specialPort[i], cfg);
mjr 6:cc35eb643e8f 661 }
mjr 6:cc35eb643e8f 662
mjr 29:582472d0bc57 663 // LedWiz output states.
mjr 29:582472d0bc57 664 //
mjr 29:582472d0bc57 665 // The LedWiz protocol has two separate control axes for each output.
mjr 29:582472d0bc57 666 // One axis is its on/off state; the other is its "profile" state, which
mjr 29:582472d0bc57 667 // is either a fixed brightness or a blinking pattern for the light.
mjr 29:582472d0bc57 668 // The two axes are independent.
mjr 29:582472d0bc57 669 //
mjr 29:582472d0bc57 670 // Note that the LedWiz protocol can only address 32 outputs, so the
mjr 29:582472d0bc57 671 // wizOn and wizVal arrays have fixed sizes of 32 elements no matter
mjr 29:582472d0bc57 672 // how many physical outputs we're using.
mjr 29:582472d0bc57 673
mjr 0:5acbbe3f4cf4 674 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 675 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 676
mjr 29:582472d0bc57 677 // Profile (brightness/blink) state for each LedWiz output. If the
mjr 29:582472d0bc57 678 // output was last updated through an LedWiz protocol message, it
mjr 29:582472d0bc57 679 // will have one of these values:
mjr 29:582472d0bc57 680 //
mjr 29:582472d0bc57 681 // 0-48 = fixed brightness 0% to 100%
mjr 29:582472d0bc57 682 // 129 = ramp up / ramp down
mjr 29:582472d0bc57 683 // 130 = flash on / off
mjr 29:582472d0bc57 684 // 131 = on / ramp down
mjr 29:582472d0bc57 685 // 132 = ramp up / on
mjr 29:582472d0bc57 686 //
mjr 29:582472d0bc57 687 // Special value 255: If the output was updated through the
mjr 29:582472d0bc57 688 // extended protocol, we'll set the wizVal entry to 255, which has
mjr 29:582472d0bc57 689 // no meaning in the LedWiz protocol. This tells us that the value
mjr 29:582472d0bc57 690 // in outLevel[] was set directly from the extended protocol, so it
mjr 29:582472d0bc57 691 // shouldn't be derived from wizVal[].
mjr 29:582472d0bc57 692 //
mjr 1:d913e0afb2ac 693 static uint8_t wizVal[32] = {
mjr 13:72dda449c3c0 694 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 695 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 696 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 697 48, 48, 48, 48, 48, 48, 48, 48
mjr 0:5acbbe3f4cf4 698 };
mjr 0:5acbbe3f4cf4 699
mjr 29:582472d0bc57 700 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 29:582472d0bc57 701 // rate for lights in blinking states.
mjr 29:582472d0bc57 702 static uint8_t wizSpeed = 2;
mjr 29:582472d0bc57 703
mjr 29:582472d0bc57 704 // Current LedWiz flash cycle counter.
mjr 29:582472d0bc57 705 static uint8_t wizFlashCounter = 0;
mjr 29:582472d0bc57 706
mjr 29:582472d0bc57 707 // Get the current brightness level for an LedWiz output.
mjr 1:d913e0afb2ac 708 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 709 {
mjr 29:582472d0bc57 710 // if the output was last set with an extended protocol message,
mjr 29:582472d0bc57 711 // use the value set there, ignoring the output's LedWiz state
mjr 29:582472d0bc57 712 if (wizVal[idx] == 255)
mjr 29:582472d0bc57 713 return outLevel[idx];
mjr 29:582472d0bc57 714
mjr 29:582472d0bc57 715 // if it's off, show at zero intensity
mjr 29:582472d0bc57 716 if (!wizOn[idx])
mjr 29:582472d0bc57 717 return 0;
mjr 29:582472d0bc57 718
mjr 29:582472d0bc57 719 // check the state
mjr 29:582472d0bc57 720 uint8_t val = wizVal[idx];
mjr 29:582472d0bc57 721 if (val <= 48)
mjr 29:582472d0bc57 722 {
mjr 29:582472d0bc57 723 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 29:582472d0bc57 724 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 29:582472d0bc57 725 // Note that on the actual LedWiz, level 48 is actually about
mjr 29:582472d0bc57 726 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 29:582472d0bc57 727 // the true 100% level. (In the documentation, level 49 is
mjr 29:582472d0bc57 728 // simply not a valid setting.) Even so, we treat level 48 as
mjr 29:582472d0bc57 729 // 100% on to match the documentation. This won't be perfectly
mjr 29:582472d0bc57 730 // ocmpatible with the actual LedWiz, but it makes for such a
mjr 29:582472d0bc57 731 // small difference in brightness (if the output device is an
mjr 29:582472d0bc57 732 // LED, say) that no one should notice. It seems better to
mjr 29:582472d0bc57 733 // err in this direction, because while the difference in
mjr 29:582472d0bc57 734 // brightness when attached to an LED won't be noticeable, the
mjr 29:582472d0bc57 735 // difference in duty cycle when attached to something like a
mjr 29:582472d0bc57 736 // contactor *can* be noticeable - anything less than 100%
mjr 29:582472d0bc57 737 // can cause a contactor or relay to chatter. There's almost
mjr 29:582472d0bc57 738 // never a situation where you'd want values other than 0% and
mjr 29:582472d0bc57 739 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 29:582472d0bc57 740 // makes us work properly with software that's expecting the
mjr 29:582472d0bc57 741 // documented LedWiz behavior and therefore uses level 48 to
mjr 29:582472d0bc57 742 // turn a contactor or relay fully on.
mjr 38:091e511ce8a0 743 return val/48.0f;
mjr 29:582472d0bc57 744 }
mjr 29:582472d0bc57 745 else if (val == 49)
mjr 13:72dda449c3c0 746 {
mjr 29:582472d0bc57 747 // 49 is undefined in the LedWiz documentation, but actually
mjr 29:582472d0bc57 748 // means 100% on. The documentation says that levels 1-48 are
mjr 29:582472d0bc57 749 // the full PWM range, but empirically it appears that the real
mjr 29:582472d0bc57 750 // range implemented in the firmware is 1-49. Some software on
mjr 29:582472d0bc57 751 // the PC side (notably DOF) is aware of this and uses level 49
mjr 29:582472d0bc57 752 // to mean "100% on". To ensure compatibility with existing
mjr 29:582472d0bc57 753 // PC-side software, we need to recognize level 49.
mjr 38:091e511ce8a0 754 return 1.0f;
mjr 29:582472d0bc57 755 }
mjr 29:582472d0bc57 756 else if (val == 129)
mjr 29:582472d0bc57 757 {
mjr 29:582472d0bc57 758 // 129 = ramp up / ramp down
mjr 30:6e9902f06f48 759 return wizFlashCounter < 128
mjr 38:091e511ce8a0 760 ? wizFlashCounter/128.0f
mjr 38:091e511ce8a0 761 : (256 - wizFlashCounter)/128.0f;
mjr 29:582472d0bc57 762 }
mjr 29:582472d0bc57 763 else if (val == 130)
mjr 29:582472d0bc57 764 {
mjr 29:582472d0bc57 765 // 130 = flash on / off
mjr 38:091e511ce8a0 766 return wizFlashCounter < 128 ? 1.0f : 0.0f;
mjr 29:582472d0bc57 767 }
mjr 29:582472d0bc57 768 else if (val == 131)
mjr 29:582472d0bc57 769 {
mjr 29:582472d0bc57 770 // 131 = on / ramp down
mjr 38:091e511ce8a0 771 return wizFlashCounter < 128 ? 1.0f : (255 - wizFlashCounter)/128.0f;
mjr 0:5acbbe3f4cf4 772 }
mjr 29:582472d0bc57 773 else if (val == 132)
mjr 29:582472d0bc57 774 {
mjr 29:582472d0bc57 775 // 132 = ramp up / on
mjr 38:091e511ce8a0 776 return wizFlashCounter < 128 ? wizFlashCounter/128.0f : 1.0f;
mjr 29:582472d0bc57 777 }
mjr 29:582472d0bc57 778 else
mjr 13:72dda449c3c0 779 {
mjr 29:582472d0bc57 780 // Other values are undefined in the LedWiz documentation. Hosts
mjr 29:582472d0bc57 781 // *should* never send undefined values, since whatever behavior an
mjr 29:582472d0bc57 782 // LedWiz unit exhibits in response is accidental and could change
mjr 29:582472d0bc57 783 // in a future version. We'll treat all undefined values as equivalent
mjr 29:582472d0bc57 784 // to 48 (fully on).
mjr 38:091e511ce8a0 785 return 1.0f;
mjr 0:5acbbe3f4cf4 786 }
mjr 0:5acbbe3f4cf4 787 }
mjr 0:5acbbe3f4cf4 788
mjr 29:582472d0bc57 789 // LedWiz flash timer pulse. This fires periodically to update
mjr 29:582472d0bc57 790 // LedWiz flashing outputs. At the slowest pulse speed set via
mjr 29:582472d0bc57 791 // the SBA command, each waveform cycle has 256 steps, so we
mjr 29:582472d0bc57 792 // choose the pulse time base so that the slowest cycle completes
mjr 29:582472d0bc57 793 // in 2 seconds. This seems to roughly match the real LedWiz
mjr 29:582472d0bc57 794 // behavior. We run the pulse timer at the same rate regardless
mjr 29:582472d0bc57 795 // of the pulse speed; at higher pulse speeds, we simply use
mjr 29:582472d0bc57 796 // larger steps through the cycle on each interrupt. Running
mjr 29:582472d0bc57 797 // every 1/127 of a second = 8ms seems to be a pretty light load.
mjr 29:582472d0bc57 798 Timeout wizPulseTimer;
mjr 38:091e511ce8a0 799 #define WIZ_PULSE_TIME_BASE (1.0f/127.0f)
mjr 29:582472d0bc57 800 static void wizPulse()
mjr 29:582472d0bc57 801 {
mjr 29:582472d0bc57 802 // increase the counter by the speed increment, and wrap at 256
mjr 29:582472d0bc57 803 wizFlashCounter += wizSpeed;
mjr 29:582472d0bc57 804 wizFlashCounter &= 0xff;
mjr 29:582472d0bc57 805
mjr 29:582472d0bc57 806 // if we have any flashing lights, update them
mjr 29:582472d0bc57 807 int ena = false;
mjr 35:e959ffba78fd 808 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 809 {
mjr 29:582472d0bc57 810 if (wizOn[i])
mjr 29:582472d0bc57 811 {
mjr 29:582472d0bc57 812 uint8_t s = wizVal[i];
mjr 29:582472d0bc57 813 if (s >= 129 && s <= 132)
mjr 29:582472d0bc57 814 {
mjr 38:091e511ce8a0 815 lwPin[i]->set(wizState(i) * modeLevel[i]);
mjr 29:582472d0bc57 816 ena = true;
mjr 29:582472d0bc57 817 }
mjr 29:582472d0bc57 818 }
mjr 29:582472d0bc57 819 }
mjr 29:582472d0bc57 820
mjr 29:582472d0bc57 821 // Set up the next timer pulse only if we found anything flashing.
mjr 29:582472d0bc57 822 // To minimize overhead from this feature, we only enable the interrupt
mjr 29:582472d0bc57 823 // when we need it. This eliminates any performance penalty to other
mjr 29:582472d0bc57 824 // features when the host software doesn't care about the flashing
mjr 29:582472d0bc57 825 // modes. For example, DOF never uses these modes, so there's no
mjr 29:582472d0bc57 826 // need for them when running Visual Pinball.
mjr 29:582472d0bc57 827 if (ena)
mjr 29:582472d0bc57 828 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 29:582472d0bc57 829 }
mjr 29:582472d0bc57 830
mjr 29:582472d0bc57 831 // Update the physical outputs connected to the LedWiz ports. This is
mjr 29:582472d0bc57 832 // called after any update from an LedWiz protocol message.
mjr 1:d913e0afb2ac 833 static void updateWizOuts()
mjr 1:d913e0afb2ac 834 {
mjr 29:582472d0bc57 835 // update each output
mjr 29:582472d0bc57 836 int pulse = false;
mjr 35:e959ffba78fd 837 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 838 {
mjr 29:582472d0bc57 839 pulse |= (wizVal[i] >= 129 && wizVal[i] <= 132);
mjr 38:091e511ce8a0 840 lwPin[i]->set(wizState(i) * modeLevel[i]);
mjr 29:582472d0bc57 841 }
mjr 29:582472d0bc57 842
mjr 29:582472d0bc57 843 // if any outputs are set to flashing mode, and the pulse timer
mjr 29:582472d0bc57 844 // isn't running, turn it on
mjr 29:582472d0bc57 845 if (pulse)
mjr 29:582472d0bc57 846 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 34:6b981a2afab7 847
mjr 34:6b981a2afab7 848 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 849 if (hc595 != 0)
mjr 35:e959ffba78fd 850 hc595->update();
mjr 1:d913e0afb2ac 851 }
mjr 38:091e511ce8a0 852
mjr 38:091e511ce8a0 853 // Update all physical outputs. This is called after a change to a global
mjr 38:091e511ce8a0 854 // setting that affects all outputs, such as engaging or canceling Night Mode.
mjr 38:091e511ce8a0 855 static void updateAllOuts()
mjr 38:091e511ce8a0 856 {
mjr 38:091e511ce8a0 857 // uddate each LedWiz output
mjr 38:091e511ce8a0 858 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 38:091e511ce8a0 859 lwPin[i]->set(wizState(i) * modeLevel[i]);
mjr 34:6b981a2afab7 860
mjr 38:091e511ce8a0 861 // update each extended output
mjr 38:091e511ce8a0 862 for (int i = 33 ; i < numOutputs ; ++i)
mjr 38:091e511ce8a0 863 lwPin[i]->set(outLevel[i] * modeLevel[i]);
mjr 38:091e511ce8a0 864
mjr 38:091e511ce8a0 865 // flush 74HC595 changes, if necessary
mjr 38:091e511ce8a0 866 if (hc595 != 0)
mjr 38:091e511ce8a0 867 hc595->update();
mjr 38:091e511ce8a0 868 }
mjr 38:091e511ce8a0 869
mjr 11:bd9da7088e6e 870 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 871 //
mjr 11:bd9da7088e6e 872 // Button input
mjr 11:bd9da7088e6e 873 //
mjr 11:bd9da7088e6e 874
mjr 18:5e890ebd0023 875 // button state
mjr 18:5e890ebd0023 876 struct ButtonState
mjr 18:5e890ebd0023 877 {
mjr 38:091e511ce8a0 878 ButtonState()
mjr 38:091e511ce8a0 879 {
mjr 38:091e511ce8a0 880 di = NULL;
mjr 38:091e511ce8a0 881 on = 0;
mjr 38:091e511ce8a0 882 pressed = prev = 0;
mjr 38:091e511ce8a0 883 dbstate = 0;
mjr 38:091e511ce8a0 884 js = 0;
mjr 38:091e511ce8a0 885 keymod = 0;
mjr 38:091e511ce8a0 886 keycode = 0;
mjr 38:091e511ce8a0 887 special = 0;
mjr 38:091e511ce8a0 888 pulseState = 0;
mjr 38:091e511ce8a0 889 pulseTime = 0.0f;
mjr 38:091e511ce8a0 890 }
mjr 35:e959ffba78fd 891
mjr 35:e959ffba78fd 892 // DigitalIn for the button
mjr 35:e959ffba78fd 893 DigitalIn *di;
mjr 38:091e511ce8a0 894
mjr 38:091e511ce8a0 895 // current PHYSICAL on/off state, after debouncing
mjr 38:091e511ce8a0 896 uint8_t on;
mjr 18:5e890ebd0023 897
mjr 38:091e511ce8a0 898 // current LOGICAL on/off state as reported to the host.
mjr 38:091e511ce8a0 899 uint8_t pressed;
mjr 38:091e511ce8a0 900
mjr 38:091e511ce8a0 901 // previous logical on/off state, when keys were last processed for USB
mjr 38:091e511ce8a0 902 // reports and local effects
mjr 38:091e511ce8a0 903 uint8_t prev;
mjr 38:091e511ce8a0 904
mjr 38:091e511ce8a0 905 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 906 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 907 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 908 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 909 // a parameter that determines how long we wait for transients to settle).
mjr 38:091e511ce8a0 910 uint8_t dbstate;
mjr 35:e959ffba78fd 911
mjr 35:e959ffba78fd 912 // joystick button mask for the button, if mapped as a joystick button
mjr 35:e959ffba78fd 913 uint32_t js;
mjr 35:e959ffba78fd 914
mjr 35:e959ffba78fd 915 // keyboard modifier bits and scan code for the button, if mapped as a keyboard key
mjr 35:e959ffba78fd 916 uint8_t keymod;
mjr 35:e959ffba78fd 917 uint8_t keycode;
mjr 35:e959ffba78fd 918
mjr 35:e959ffba78fd 919 // media control key code
mjr 35:e959ffba78fd 920 uint8_t mediakey;
mjr 35:e959ffba78fd 921
mjr 38:091e511ce8a0 922 // special key code
mjr 38:091e511ce8a0 923 uint8_t special;
mjr 38:091e511ce8a0 924
mjr 38:091e511ce8a0 925 // Pulse mode: a button in pulse mode transmits a brief logical button press and
mjr 38:091e511ce8a0 926 // release each time the attached physical switch changes state. This is useful
mjr 38:091e511ce8a0 927 // for cases where the host expects a key press for each change in the state of
mjr 38:091e511ce8a0 928 // the physical switch. The canonical example is the Coin Door switch in VPinMAME,
mjr 38:091e511ce8a0 929 // which requires pressing the END key to toggle the open/closed state. This
mjr 38:091e511ce8a0 930 // software design isn't easily implemented in a physical coin door, though -
mjr 38:091e511ce8a0 931 // the easiest way to sense a physical coin door's state is with a simple on/off
mjr 38:091e511ce8a0 932 // switch. Pulse mode bridges that divide by converting a physical switch state
mjr 38:091e511ce8a0 933 // to on/off toggle key reports to the host.
mjr 38:091e511ce8a0 934 //
mjr 38:091e511ce8a0 935 // Pulse state:
mjr 38:091e511ce8a0 936 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 937 // 1 -> off
mjr 38:091e511ce8a0 938 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 939 // 3 -> on
mjr 38:091e511ce8a0 940 // 4 -> transitioning on-off
mjr 38:091e511ce8a0 941 //
mjr 38:091e511ce8a0 942 // Each state change sticks for a minimum period; when the timer expires,
mjr 38:091e511ce8a0 943 // if the underlying physical switch is in a different state, we switch
mjr 38:091e511ce8a0 944 // to the next state and restart the timer. pulseTime is the amount of
mjr 38:091e511ce8a0 945 // time remaining before we can make another state transition. The state
mjr 38:091e511ce8a0 946 // transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...; this
mjr 38:091e511ce8a0 947 // guarantees that the parity of the pulse count always matches the
mjr 38:091e511ce8a0 948 // current physical switch state when the latter is stable, which makes
mjr 38:091e511ce8a0 949 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 38:091e511ce8a0 950 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 38:091e511ce8a0 951 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 38:091e511ce8a0 952 // This software system can't be fooled that way.)
mjr 38:091e511ce8a0 953 uint8_t pulseState;
mjr 38:091e511ce8a0 954 float pulseTime;
mjr 38:091e511ce8a0 955
mjr 35:e959ffba78fd 956 } buttonState[MAX_BUTTONS];
mjr 18:5e890ebd0023 957
mjr 38:091e511ce8a0 958
mjr 38:091e511ce8a0 959 // Button data
mjr 38:091e511ce8a0 960 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 961
mjr 38:091e511ce8a0 962 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 963 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 964 // modifier keys.
mjr 38:091e511ce8a0 965 struct
mjr 38:091e511ce8a0 966 {
mjr 38:091e511ce8a0 967 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 968 int nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 969 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 970 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 971 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 972
mjr 38:091e511ce8a0 973 // Media key state
mjr 38:091e511ce8a0 974 struct
mjr 38:091e511ce8a0 975 {
mjr 38:091e511ce8a0 976 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 977 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 978 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 979
mjr 38:091e511ce8a0 980 // button scan interrupt ticker
mjr 38:091e511ce8a0 981 Ticker buttonTicker;
mjr 38:091e511ce8a0 982
mjr 38:091e511ce8a0 983 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 984 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 985 void scanButtons()
mjr 38:091e511ce8a0 986 {
mjr 38:091e511ce8a0 987 // scan all button input pins
mjr 38:091e511ce8a0 988 ButtonState *bs = buttonState;
mjr 38:091e511ce8a0 989 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 38:091e511ce8a0 990 {
mjr 38:091e511ce8a0 991 // if it's connected, check its physical state
mjr 38:091e511ce8a0 992 if (bs->di != NULL)
mjr 38:091e511ce8a0 993 {
mjr 38:091e511ce8a0 994 // Shift the new state into the debounce history. Note that
mjr 38:091e511ce8a0 995 // the physical pin inputs are active low (0V/GND = ON), so invert
mjr 38:091e511ce8a0 996 // the reading by XOR'ing the low bit with 1. And of course we
mjr 38:091e511ce8a0 997 // only want the low bit (since the history is effectively a bit
mjr 38:091e511ce8a0 998 // vector), so mask the whole thing with 0x01 as well.
mjr 38:091e511ce8a0 999 uint8_t db = bs->dbstate;
mjr 38:091e511ce8a0 1000 db <<= 1;
mjr 38:091e511ce8a0 1001 db |= (bs->di->read() & 0x01) ^ 0x01;
mjr 38:091e511ce8a0 1002 bs->dbstate = db;
mjr 38:091e511ce8a0 1003
mjr 38:091e511ce8a0 1004 // if we have all 0's or 1's in the history for the required
mjr 38:091e511ce8a0 1005 // debounce period, the key state is stable - check for a change
mjr 38:091e511ce8a0 1006 // to the last stable state
mjr 38:091e511ce8a0 1007 const uint8_t stable = 0x1F; // 00011111b -> 5 stable readings
mjr 38:091e511ce8a0 1008 db &= stable;
mjr 38:091e511ce8a0 1009 if (db == 0 || db == stable)
mjr 38:091e511ce8a0 1010 bs->on = db;
mjr 38:091e511ce8a0 1011 }
mjr 38:091e511ce8a0 1012 }
mjr 38:091e511ce8a0 1013 }
mjr 38:091e511ce8a0 1014
mjr 38:091e511ce8a0 1015 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 1016 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 1017 // in the physical button state.
mjr 38:091e511ce8a0 1018 Timer buttonTimer;
mjr 12:669df364a565 1019
mjr 11:bd9da7088e6e 1020 // initialize the button inputs
mjr 35:e959ffba78fd 1021 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 1022 {
mjr 35:e959ffba78fd 1023 // presume we'll find no keyboard keys
mjr 35:e959ffba78fd 1024 kbKeys = false;
mjr 35:e959ffba78fd 1025
mjr 11:bd9da7088e6e 1026 // create the digital inputs
mjr 35:e959ffba78fd 1027 ButtonState *bs = buttonState;
mjr 35:e959ffba78fd 1028 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 11:bd9da7088e6e 1029 {
mjr 35:e959ffba78fd 1030 PinName pin = wirePinName(cfg.button[i].pin);
mjr 35:e959ffba78fd 1031 if (pin != NC)
mjr 35:e959ffba78fd 1032 {
mjr 35:e959ffba78fd 1033 // set up the GPIO input pin for this button
mjr 35:e959ffba78fd 1034 bs->di = new DigitalIn(pin);
mjr 35:e959ffba78fd 1035
mjr 38:091e511ce8a0 1036 // if it's a pulse mode button, set the initial pulse state to Off
mjr 38:091e511ce8a0 1037 if (cfg.button[i].flags & BtnFlagPulse)
mjr 38:091e511ce8a0 1038 bs->pulseState = 1;
mjr 38:091e511ce8a0 1039
mjr 35:e959ffba78fd 1040 // note if it's a keyboard key of some kind (including media keys)
mjr 35:e959ffba78fd 1041 uint8_t val = cfg.button[i].val;
mjr 35:e959ffba78fd 1042 switch (cfg.button[i].typ)
mjr 35:e959ffba78fd 1043 {
mjr 35:e959ffba78fd 1044 case BtnTypeJoystick:
mjr 35:e959ffba78fd 1045 // joystick button - get the button bit mask
mjr 35:e959ffba78fd 1046 bs->js = 1 << val;
mjr 35:e959ffba78fd 1047 break;
mjr 35:e959ffba78fd 1048
mjr 35:e959ffba78fd 1049 case BtnTypeKey:
mjr 35:e959ffba78fd 1050 // regular keyboard key - note the scan code
mjr 35:e959ffba78fd 1051 bs->keycode = val;
mjr 35:e959ffba78fd 1052 kbKeys = true;
mjr 35:e959ffba78fd 1053 break;
mjr 35:e959ffba78fd 1054
mjr 35:e959ffba78fd 1055 case BtnTypeModKey:
mjr 35:e959ffba78fd 1056 // keyboard mod key - note the modifier mask
mjr 35:e959ffba78fd 1057 bs->keymod = val;
mjr 35:e959ffba78fd 1058 kbKeys = true;
mjr 35:e959ffba78fd 1059 break;
mjr 35:e959ffba78fd 1060
mjr 35:e959ffba78fd 1061 case BtnTypeMedia:
mjr 35:e959ffba78fd 1062 // media key - note the code
mjr 35:e959ffba78fd 1063 bs->mediakey = val;
mjr 35:e959ffba78fd 1064 kbKeys = true;
mjr 35:e959ffba78fd 1065 break;
mjr 35:e959ffba78fd 1066 }
mjr 35:e959ffba78fd 1067 }
mjr 11:bd9da7088e6e 1068 }
mjr 12:669df364a565 1069
mjr 38:091e511ce8a0 1070 // start the button scan thread
mjr 38:091e511ce8a0 1071 buttonTicker.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 1072
mjr 38:091e511ce8a0 1073 // start the button state transition timer
mjr 12:669df364a565 1074 buttonTimer.start();
mjr 11:bd9da7088e6e 1075 }
mjr 11:bd9da7088e6e 1076
mjr 38:091e511ce8a0 1077 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 1078 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 1079 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 1080 // mapped to special device functions (e.g., Night Mode).
mjr 38:091e511ce8a0 1081 void processButtons()
mjr 35:e959ffba78fd 1082 {
mjr 35:e959ffba78fd 1083 // start with an empty list of USB key codes
mjr 35:e959ffba78fd 1084 uint8_t modkeys = 0;
mjr 35:e959ffba78fd 1085 uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 };
mjr 35:e959ffba78fd 1086 int nkeys = 0;
mjr 11:bd9da7088e6e 1087
mjr 35:e959ffba78fd 1088 // clear the joystick buttons
mjr 36:b9747461331e 1089 uint32_t newjs = 0;
mjr 35:e959ffba78fd 1090
mjr 35:e959ffba78fd 1091 // start with no media keys pressed
mjr 35:e959ffba78fd 1092 uint8_t mediakeys = 0;
mjr 38:091e511ce8a0 1093
mjr 38:091e511ce8a0 1094 // calculate the time since the last run
mjr 35:e959ffba78fd 1095 float dt = buttonTimer.read();
mjr 18:5e890ebd0023 1096 buttonTimer.reset();
mjr 38:091e511ce8a0 1097
mjr 11:bd9da7088e6e 1098 // scan the button list
mjr 18:5e890ebd0023 1099 ButtonState *bs = buttonState;
mjr 35:e959ffba78fd 1100 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 11:bd9da7088e6e 1101 {
mjr 38:091e511ce8a0 1102 // if it's a pulse-mode switch, get the virtual pressed state
mjr 38:091e511ce8a0 1103 if (bs->pulseState != 0)
mjr 18:5e890ebd0023 1104 {
mjr 38:091e511ce8a0 1105 // deduct the time to the next state change
mjr 38:091e511ce8a0 1106 bs->pulseTime -= dt;
mjr 38:091e511ce8a0 1107 if (bs->pulseTime < 0)
mjr 38:091e511ce8a0 1108 bs->pulseTime = 0;
mjr 38:091e511ce8a0 1109
mjr 38:091e511ce8a0 1110 // if the timer has expired, check for state changes
mjr 38:091e511ce8a0 1111 if (bs->pulseTime == 0)
mjr 18:5e890ebd0023 1112 {
mjr 38:091e511ce8a0 1113 const float pulseLength = 0.2;
mjr 38:091e511ce8a0 1114 switch (bs->pulseState)
mjr 18:5e890ebd0023 1115 {
mjr 38:091e511ce8a0 1116 case 1:
mjr 38:091e511ce8a0 1117 // off - if the physical switch is now on, start a button pulse
mjr 38:091e511ce8a0 1118 if (bs->on) {
mjr 38:091e511ce8a0 1119 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1120 bs->pulseState = 2;
mjr 38:091e511ce8a0 1121 bs->pressed = 1;
mjr 38:091e511ce8a0 1122 }
mjr 38:091e511ce8a0 1123 break;
mjr 18:5e890ebd0023 1124
mjr 38:091e511ce8a0 1125 case 2:
mjr 38:091e511ce8a0 1126 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 1127 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 1128 // change in state in the logical button
mjr 38:091e511ce8a0 1129 bs->pulseState = 3;
mjr 38:091e511ce8a0 1130 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1131 bs->pressed = 0;
mjr 38:091e511ce8a0 1132 break;
mjr 38:091e511ce8a0 1133
mjr 38:091e511ce8a0 1134 case 3:
mjr 38:091e511ce8a0 1135 // on - if the physical switch is now off, start a button pulse
mjr 38:091e511ce8a0 1136 if (!bs->on) {
mjr 38:091e511ce8a0 1137 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1138 bs->pulseState = 4;
mjr 38:091e511ce8a0 1139 bs->pressed = 1;
mjr 38:091e511ce8a0 1140 }
mjr 38:091e511ce8a0 1141 break;
mjr 38:091e511ce8a0 1142
mjr 38:091e511ce8a0 1143 case 4:
mjr 38:091e511ce8a0 1144 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 1145 bs->pulseState = 1;
mjr 38:091e511ce8a0 1146 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1147 bs->pressed = 0;
mjr 38:091e511ce8a0 1148 break;
mjr 18:5e890ebd0023 1149 }
mjr 18:5e890ebd0023 1150 }
mjr 38:091e511ce8a0 1151 }
mjr 38:091e511ce8a0 1152 else
mjr 38:091e511ce8a0 1153 {
mjr 38:091e511ce8a0 1154 // not a pulse switch - the logical state is the same as the physical state
mjr 38:091e511ce8a0 1155 bs->pressed = bs->on;
mjr 38:091e511ce8a0 1156 }
mjr 35:e959ffba78fd 1157
mjr 38:091e511ce8a0 1158 // carry out any edge effects from buttons changing states
mjr 38:091e511ce8a0 1159 if (bs->pressed != bs->prev)
mjr 38:091e511ce8a0 1160 {
mjr 38:091e511ce8a0 1161 // check for special key transitions
mjr 38:091e511ce8a0 1162 switch (bs->special)
mjr 35:e959ffba78fd 1163 {
mjr 38:091e511ce8a0 1164 case 1:
mjr 38:091e511ce8a0 1165 // night mode momentary switch - when the button transitions from
mjr 38:091e511ce8a0 1166 // OFF to ON, invert night mode
mjr 38:091e511ce8a0 1167 if (bs->pressed)
mjr 38:091e511ce8a0 1168 toggleNightMode();
mjr 38:091e511ce8a0 1169 break;
mjr 35:e959ffba78fd 1170
mjr 38:091e511ce8a0 1171 case 2:
mjr 38:091e511ce8a0 1172 // night mode toggle switch - when the button changes state, change
mjr 38:091e511ce8a0 1173 // night mode to match the new state
mjr 38:091e511ce8a0 1174 setNightMode(bs->pressed);
mjr 38:091e511ce8a0 1175 break;
mjr 35:e959ffba78fd 1176 }
mjr 38:091e511ce8a0 1177
mjr 38:091e511ce8a0 1178 // remember the new state for comparison on the next run
mjr 38:091e511ce8a0 1179 bs->prev = bs->pressed;
mjr 38:091e511ce8a0 1180 }
mjr 38:091e511ce8a0 1181
mjr 38:091e511ce8a0 1182 // if it's pressed, add it to the appropriate key state list
mjr 38:091e511ce8a0 1183 if (bs->pressed)
mjr 38:091e511ce8a0 1184 {
mjr 38:091e511ce8a0 1185 // OR in the joystick button bit, mod key bits, and media key bits
mjr 38:091e511ce8a0 1186 newjs |= bs->js;
mjr 38:091e511ce8a0 1187 modkeys |= bs->keymod;
mjr 38:091e511ce8a0 1188 mediakeys |= bs->mediakey;
mjr 38:091e511ce8a0 1189
mjr 38:091e511ce8a0 1190 // if it has a keyboard key, add the scan code to the active list
mjr 38:091e511ce8a0 1191 if (bs->keycode != 0 && nkeys < 7)
mjr 38:091e511ce8a0 1192 keys[nkeys++] = bs->keycode;
mjr 18:5e890ebd0023 1193 }
mjr 11:bd9da7088e6e 1194 }
mjr 36:b9747461331e 1195
mjr 36:b9747461331e 1196 // check for joystick button changes
mjr 36:b9747461331e 1197 if (jsButtons != newjs)
mjr 36:b9747461331e 1198 jsButtons = newjs;
mjr 11:bd9da7088e6e 1199
mjr 35:e959ffba78fd 1200 // Check for changes to the keyboard keys
mjr 35:e959ffba78fd 1201 if (kbState.data[0] != modkeys
mjr 35:e959ffba78fd 1202 || kbState.nkeys != nkeys
mjr 35:e959ffba78fd 1203 || memcmp(keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 1204 {
mjr 35:e959ffba78fd 1205 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 1206 kbState.changed = true;
mjr 35:e959ffba78fd 1207 kbState.data[0] = modkeys;
mjr 35:e959ffba78fd 1208 if (nkeys <= 6) {
mjr 35:e959ffba78fd 1209 // 6 or fewer simultaneous keys - report the key codes
mjr 35:e959ffba78fd 1210 kbState.nkeys = nkeys;
mjr 35:e959ffba78fd 1211 memcpy(&kbState.data[2], keys, 6);
mjr 35:e959ffba78fd 1212 }
mjr 35:e959ffba78fd 1213 else {
mjr 35:e959ffba78fd 1214 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 1215 kbState.nkeys = 6;
mjr 35:e959ffba78fd 1216 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 1217 }
mjr 35:e959ffba78fd 1218 }
mjr 35:e959ffba78fd 1219
mjr 35:e959ffba78fd 1220 // Check for changes to media keys
mjr 35:e959ffba78fd 1221 if (mediaState.data != mediakeys)
mjr 35:e959ffba78fd 1222 {
mjr 35:e959ffba78fd 1223 mediaState.changed = true;
mjr 35:e959ffba78fd 1224 mediaState.data = mediakeys;
mjr 35:e959ffba78fd 1225 }
mjr 11:bd9da7088e6e 1226 }
mjr 11:bd9da7088e6e 1227
mjr 5:a70c0bce770d 1228 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1229 //
mjr 5:a70c0bce770d 1230 // Customization joystick subbclass
mjr 5:a70c0bce770d 1231 //
mjr 5:a70c0bce770d 1232
mjr 5:a70c0bce770d 1233 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 1234 {
mjr 5:a70c0bce770d 1235 public:
mjr 35:e959ffba78fd 1236 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 1237 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 1238 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 1239 {
mjr 5:a70c0bce770d 1240 suspended_ = false;
mjr 5:a70c0bce770d 1241 }
mjr 5:a70c0bce770d 1242
mjr 5:a70c0bce770d 1243 // are we connected?
mjr 5:a70c0bce770d 1244 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 1245
mjr 5:a70c0bce770d 1246 // Are we in suspend mode?
mjr 5:a70c0bce770d 1247 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 1248
mjr 5:a70c0bce770d 1249 protected:
mjr 5:a70c0bce770d 1250 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 1251 { suspended_ = suspended; }
mjr 5:a70c0bce770d 1252
mjr 5:a70c0bce770d 1253 // are we suspended?
mjr 5:a70c0bce770d 1254 int suspended_;
mjr 5:a70c0bce770d 1255 };
mjr 5:a70c0bce770d 1256
mjr 5:a70c0bce770d 1257 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1258 //
mjr 5:a70c0bce770d 1259 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 1260 //
mjr 5:a70c0bce770d 1261
mjr 5:a70c0bce770d 1262 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 1263 //
mjr 5:a70c0bce770d 1264 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 1265 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 1266 // automatic calibration.
mjr 5:a70c0bce770d 1267 //
mjr 5:a70c0bce770d 1268 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 1269 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 1270 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 1271 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 1272 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 1273 // every sample.
mjr 5:a70c0bce770d 1274 //
mjr 6:cc35eb643e8f 1275 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 1276 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 1277 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 1278 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 1279 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 1280 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 1281 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 1282 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 1283 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 1284 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 1285 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 1286 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 1287 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 1288 // of nudging, say).
mjr 5:a70c0bce770d 1289 //
mjr 5:a70c0bce770d 1290
mjr 17:ab3cec0c8bf4 1291 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 1292 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 1293
mjr 17:ab3cec0c8bf4 1294 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 1295 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 1296 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 1297
mjr 17:ab3cec0c8bf4 1298 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 1299 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 1300 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 1301 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 1302
mjr 17:ab3cec0c8bf4 1303
mjr 6:cc35eb643e8f 1304 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 1305 struct AccHist
mjr 5:a70c0bce770d 1306 {
mjr 6:cc35eb643e8f 1307 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 1308 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 1309 {
mjr 6:cc35eb643e8f 1310 // save the raw position
mjr 6:cc35eb643e8f 1311 this->x = x;
mjr 6:cc35eb643e8f 1312 this->y = y;
mjr 6:cc35eb643e8f 1313 this->d = distance(prv);
mjr 6:cc35eb643e8f 1314 }
mjr 6:cc35eb643e8f 1315
mjr 6:cc35eb643e8f 1316 // reading for this entry
mjr 5:a70c0bce770d 1317 float x, y;
mjr 5:a70c0bce770d 1318
mjr 6:cc35eb643e8f 1319 // distance from previous entry
mjr 6:cc35eb643e8f 1320 float d;
mjr 5:a70c0bce770d 1321
mjr 6:cc35eb643e8f 1322 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 1323 float xtot, ytot;
mjr 6:cc35eb643e8f 1324 int cnt;
mjr 6:cc35eb643e8f 1325
mjr 6:cc35eb643e8f 1326 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 1327 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 1328 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 1329 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 1330
mjr 6:cc35eb643e8f 1331 float distance(AccHist *p)
mjr 6:cc35eb643e8f 1332 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 1333 };
mjr 5:a70c0bce770d 1334
mjr 5:a70c0bce770d 1335 // accelerometer wrapper class
mjr 3:3514575d4f86 1336 class Accel
mjr 3:3514575d4f86 1337 {
mjr 3:3514575d4f86 1338 public:
mjr 3:3514575d4f86 1339 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 1340 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 1341 {
mjr 5:a70c0bce770d 1342 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 1343 irqPin_ = irqPin;
mjr 5:a70c0bce770d 1344
mjr 5:a70c0bce770d 1345 // reset and initialize
mjr 5:a70c0bce770d 1346 reset();
mjr 5:a70c0bce770d 1347 }
mjr 5:a70c0bce770d 1348
mjr 5:a70c0bce770d 1349 void reset()
mjr 5:a70c0bce770d 1350 {
mjr 6:cc35eb643e8f 1351 // clear the center point
mjr 6:cc35eb643e8f 1352 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 1353
mjr 6:cc35eb643e8f 1354 // start the calibration timer
mjr 5:a70c0bce770d 1355 tCenter_.start();
mjr 5:a70c0bce770d 1356 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 1357
mjr 5:a70c0bce770d 1358 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 1359 mma_.init();
mjr 6:cc35eb643e8f 1360
mjr 6:cc35eb643e8f 1361 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 1362 vx_ = vy_ = 0;
mjr 3:3514575d4f86 1363
mjr 6:cc35eb643e8f 1364 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 1365 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 1366 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 1367
mjr 3:3514575d4f86 1368 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 1369 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 1370
mjr 3:3514575d4f86 1371 // start our timers
mjr 3:3514575d4f86 1372 tGet_.start();
mjr 3:3514575d4f86 1373 tInt_.start();
mjr 3:3514575d4f86 1374 }
mjr 3:3514575d4f86 1375
mjr 9:fd65b0a94720 1376 void get(int &x, int &y)
mjr 3:3514575d4f86 1377 {
mjr 3:3514575d4f86 1378 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 1379 __disable_irq();
mjr 3:3514575d4f86 1380
mjr 3:3514575d4f86 1381 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 1382 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 1383 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 1384
mjr 6:cc35eb643e8f 1385 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 1386 vx_ = vy_ = 0;
mjr 3:3514575d4f86 1387
mjr 3:3514575d4f86 1388 // get the time since the last get() sample
mjr 38:091e511ce8a0 1389 float dt = tGet_.read_us()/1.0e6f;
mjr 3:3514575d4f86 1390 tGet_.reset();
mjr 3:3514575d4f86 1391
mjr 3:3514575d4f86 1392 // done manipulating the shared data
mjr 3:3514575d4f86 1393 __enable_irq();
mjr 3:3514575d4f86 1394
mjr 6:cc35eb643e8f 1395 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 1396 vx /= dt;
mjr 6:cc35eb643e8f 1397 vy /= dt;
mjr 6:cc35eb643e8f 1398
mjr 6:cc35eb643e8f 1399 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 1400 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 1401 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 1402
mjr 5:a70c0bce770d 1403 // check for auto-centering every so often
mjr 5:a70c0bce770d 1404 if (tCenter_.read_ms() > 1000)
mjr 5:a70c0bce770d 1405 {
mjr 5:a70c0bce770d 1406 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 1407 AccHist *prv = p;
mjr 5:a70c0bce770d 1408 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 1409 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 1410 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 1411
mjr 5:a70c0bce770d 1412 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 1413 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 1414 {
mjr 5:a70c0bce770d 1415 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 1416 static const float accTol = .01;
mjr 6:cc35eb643e8f 1417 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 1418 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 1419 && p0[1].d < accTol
mjr 6:cc35eb643e8f 1420 && p0[2].d < accTol
mjr 6:cc35eb643e8f 1421 && p0[3].d < accTol
mjr 6:cc35eb643e8f 1422 && p0[4].d < accTol)
mjr 5:a70c0bce770d 1423 {
mjr 6:cc35eb643e8f 1424 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 1425 // the samples over the rest period
mjr 6:cc35eb643e8f 1426 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 1427 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 1428 }
mjr 5:a70c0bce770d 1429 }
mjr 5:a70c0bce770d 1430 else
mjr 5:a70c0bce770d 1431 {
mjr 5:a70c0bce770d 1432 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 1433 ++nAccPrv_;
mjr 5:a70c0bce770d 1434 }
mjr 6:cc35eb643e8f 1435
mjr 6:cc35eb643e8f 1436 // clear the new item's running totals
mjr 6:cc35eb643e8f 1437 p->clearAvg();
mjr 5:a70c0bce770d 1438
mjr 5:a70c0bce770d 1439 // reset the timer
mjr 5:a70c0bce770d 1440 tCenter_.reset();
mjr 5:a70c0bce770d 1441 }
mjr 5:a70c0bce770d 1442
mjr 6:cc35eb643e8f 1443 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 1444 x = rawToReport(vx);
mjr 6:cc35eb643e8f 1445 y = rawToReport(vy);
mjr 5:a70c0bce770d 1446
mjr 6:cc35eb643e8f 1447 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1448 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1449 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 1450 #endif
mjr 3:3514575d4f86 1451 }
mjr 29:582472d0bc57 1452
mjr 3:3514575d4f86 1453 private:
mjr 6:cc35eb643e8f 1454 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 1455 int rawToReport(float v)
mjr 5:a70c0bce770d 1456 {
mjr 6:cc35eb643e8f 1457 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 1458 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 1459
mjr 6:cc35eb643e8f 1460 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 1461 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 1462 static const int filter[] = {
mjr 6:cc35eb643e8f 1463 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 1464 0,
mjr 6:cc35eb643e8f 1465 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 1466 };
mjr 6:cc35eb643e8f 1467 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 1468 }
mjr 5:a70c0bce770d 1469
mjr 3:3514575d4f86 1470 // interrupt handler
mjr 3:3514575d4f86 1471 void isr()
mjr 3:3514575d4f86 1472 {
mjr 3:3514575d4f86 1473 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 1474 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 1475 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 1476 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 1477 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 1478 float x, y, z;
mjr 5:a70c0bce770d 1479 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 1480
mjr 3:3514575d4f86 1481 // calculate the time since the last interrupt
mjr 3:3514575d4f86 1482 float dt = tInt_.read_us()/1.0e6;
mjr 3:3514575d4f86 1483 tInt_.reset();
mjr 6:cc35eb643e8f 1484
mjr 6:cc35eb643e8f 1485 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 1486 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 1487 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 1488
mjr 6:cc35eb643e8f 1489 // store the updates
mjr 6:cc35eb643e8f 1490 ax_ = x;
mjr 6:cc35eb643e8f 1491 ay_ = y;
mjr 6:cc35eb643e8f 1492 az_ = z;
mjr 3:3514575d4f86 1493 }
mjr 3:3514575d4f86 1494
mjr 3:3514575d4f86 1495 // underlying accelerometer object
mjr 3:3514575d4f86 1496 MMA8451Q mma_;
mjr 3:3514575d4f86 1497
mjr 5:a70c0bce770d 1498 // last raw acceleration readings
mjr 6:cc35eb643e8f 1499 float ax_, ay_, az_;
mjr 5:a70c0bce770d 1500
mjr 6:cc35eb643e8f 1501 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 1502 float vx_, vy_;
mjr 6:cc35eb643e8f 1503
mjr 3:3514575d4f86 1504 // timer for measuring time between get() samples
mjr 3:3514575d4f86 1505 Timer tGet_;
mjr 3:3514575d4f86 1506
mjr 3:3514575d4f86 1507 // timer for measuring time between interrupts
mjr 3:3514575d4f86 1508 Timer tInt_;
mjr 5:a70c0bce770d 1509
mjr 6:cc35eb643e8f 1510 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 1511 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 1512 // at rest.
mjr 6:cc35eb643e8f 1513 float cx_, cy_;
mjr 5:a70c0bce770d 1514
mjr 5:a70c0bce770d 1515 // timer for atuo-centering
mjr 5:a70c0bce770d 1516 Timer tCenter_;
mjr 6:cc35eb643e8f 1517
mjr 6:cc35eb643e8f 1518 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 1519 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 1520 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 1521 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 1522 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 1523 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 1524 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 1525 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 1526 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 1527 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 1528 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 1529 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 1530 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 1531 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 1532 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 1533
mjr 5:a70c0bce770d 1534 // interurupt pin name
mjr 5:a70c0bce770d 1535 PinName irqPin_;
mjr 5:a70c0bce770d 1536
mjr 5:a70c0bce770d 1537 // interrupt router
mjr 5:a70c0bce770d 1538 InterruptIn intIn_;
mjr 3:3514575d4f86 1539 };
mjr 3:3514575d4f86 1540
mjr 5:a70c0bce770d 1541
mjr 5:a70c0bce770d 1542 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1543 //
mjr 14:df700b22ca08 1544 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 1545 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 1546 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 1547 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 1548 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 1549 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 1550 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 1551 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 1552 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 1553 //
mjr 14:df700b22ca08 1554 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 1555 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 1556 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 1557 //
mjr 5:a70c0bce770d 1558 void clear_i2c()
mjr 5:a70c0bce770d 1559 {
mjr 38:091e511ce8a0 1560 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 1561 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 1562 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 1563
mjr 5:a70c0bce770d 1564 // clock the SCL 9 times
mjr 5:a70c0bce770d 1565 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 1566 {
mjr 5:a70c0bce770d 1567 scl = 1;
mjr 5:a70c0bce770d 1568 wait_us(20);
mjr 5:a70c0bce770d 1569 scl = 0;
mjr 5:a70c0bce770d 1570 wait_us(20);
mjr 5:a70c0bce770d 1571 }
mjr 5:a70c0bce770d 1572 }
mjr 14:df700b22ca08 1573
mjr 14:df700b22ca08 1574 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 1575 //
mjr 33:d832bcab089e 1576 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 1577 // for a given interval before allowing an update.
mjr 33:d832bcab089e 1578 //
mjr 33:d832bcab089e 1579 class Debouncer
mjr 33:d832bcab089e 1580 {
mjr 33:d832bcab089e 1581 public:
mjr 33:d832bcab089e 1582 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 1583 {
mjr 33:d832bcab089e 1584 t.start();
mjr 33:d832bcab089e 1585 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 1586 this->tmin = tmin;
mjr 33:d832bcab089e 1587 }
mjr 33:d832bcab089e 1588
mjr 33:d832bcab089e 1589 // Get the current stable value
mjr 33:d832bcab089e 1590 bool val() const { return stable; }
mjr 33:d832bcab089e 1591
mjr 33:d832bcab089e 1592 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 1593 // input device.
mjr 33:d832bcab089e 1594 void sampleIn(bool val)
mjr 33:d832bcab089e 1595 {
mjr 33:d832bcab089e 1596 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 1597 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 1598 // on the sample reader.
mjr 33:d832bcab089e 1599 if (val != prv)
mjr 33:d832bcab089e 1600 {
mjr 33:d832bcab089e 1601 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 1602 t.reset();
mjr 33:d832bcab089e 1603
mjr 33:d832bcab089e 1604 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 1605 prv = val;
mjr 33:d832bcab089e 1606 }
mjr 33:d832bcab089e 1607 else if (val != stable)
mjr 33:d832bcab089e 1608 {
mjr 33:d832bcab089e 1609 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 1610 // and different from the stable value. This means that
mjr 33:d832bcab089e 1611 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 1612 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 1613 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 1614 if (t.read() > tmin)
mjr 33:d832bcab089e 1615 stable = val;
mjr 33:d832bcab089e 1616 }
mjr 33:d832bcab089e 1617 }
mjr 33:d832bcab089e 1618
mjr 33:d832bcab089e 1619 private:
mjr 33:d832bcab089e 1620 // current stable value
mjr 33:d832bcab089e 1621 bool stable;
mjr 33:d832bcab089e 1622
mjr 33:d832bcab089e 1623 // last raw sample value
mjr 33:d832bcab089e 1624 bool prv;
mjr 33:d832bcab089e 1625
mjr 33:d832bcab089e 1626 // elapsed time since last raw input change
mjr 33:d832bcab089e 1627 Timer t;
mjr 33:d832bcab089e 1628
mjr 33:d832bcab089e 1629 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 1630 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 1631 float tmin;
mjr 33:d832bcab089e 1632 };
mjr 33:d832bcab089e 1633
mjr 33:d832bcab089e 1634
mjr 33:d832bcab089e 1635 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 1636 //
mjr 33:d832bcab089e 1637 // Turn off all outputs and restore everything to the default LedWiz
mjr 33:d832bcab089e 1638 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 33:d832bcab089e 1639 // brightness) and switch state Off, sets all extended outputs (#33
mjr 33:d832bcab089e 1640 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 33:d832bcab089e 1641 // This effectively restores the power-on conditions.
mjr 33:d832bcab089e 1642 //
mjr 33:d832bcab089e 1643 void allOutputsOff()
mjr 33:d832bcab089e 1644 {
mjr 33:d832bcab089e 1645 // reset all LedWiz outputs to OFF/48
mjr 35:e959ffba78fd 1646 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 33:d832bcab089e 1647 {
mjr 33:d832bcab089e 1648 outLevel[i] = 0;
mjr 33:d832bcab089e 1649 wizOn[i] = 0;
mjr 33:d832bcab089e 1650 wizVal[i] = 48;
mjr 33:d832bcab089e 1651 lwPin[i]->set(0);
mjr 33:d832bcab089e 1652 }
mjr 33:d832bcab089e 1653
mjr 33:d832bcab089e 1654 // reset all extended outputs (ports >32) to full off (brightness 0)
mjr 33:d832bcab089e 1655 for (int i = 32 ; i < numOutputs ; ++i)
mjr 33:d832bcab089e 1656 {
mjr 33:d832bcab089e 1657 outLevel[i] = 0;
mjr 33:d832bcab089e 1658 lwPin[i]->set(0);
mjr 33:d832bcab089e 1659 }
mjr 33:d832bcab089e 1660
mjr 33:d832bcab089e 1661 // restore default LedWiz flash rate
mjr 33:d832bcab089e 1662 wizSpeed = 2;
mjr 34:6b981a2afab7 1663
mjr 34:6b981a2afab7 1664 // flush changes to hc595, if applicable
mjr 35:e959ffba78fd 1665 if (hc595 != 0)
mjr 35:e959ffba78fd 1666 hc595->update();
mjr 33:d832bcab089e 1667 }
mjr 33:d832bcab089e 1668
mjr 33:d832bcab089e 1669 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 1670 //
mjr 33:d832bcab089e 1671 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 1672 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 1673 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 1674 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 1675 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 1676 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 1677 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 1678 //
mjr 33:d832bcab089e 1679 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 1680 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 1681 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 1682 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 1683 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 1684 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 1685 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 1686 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 1687 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 1688 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 1689 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 1690 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 1691 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 1692 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 1693 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 1694 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 1695 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 1696 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 1697 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 1698 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 1699 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 1700 //
mjr 33:d832bcab089e 1701 // This scheme might seem a little convoluted, but it neatly handles
mjr 33:d832bcab089e 1702 // all of the different cases that can occur:
mjr 33:d832bcab089e 1703 //
mjr 33:d832bcab089e 1704 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 33:d832bcab089e 1705 // so that the PC goes into "Soft Off" mode (ACPI state S5, in Windows
mjr 33:d832bcab089e 1706 // parlance) when the user turns off the cabinet. In this state, the
mjr 33:d832bcab089e 1707 // motherboard supplies power to USB devices, so the KL25Z continues
mjr 33:d832bcab089e 1708 // running without interruption. The latch system lets us monitor
mjr 33:d832bcab089e 1709 // the power state even when we're never rebooted, since the latch
mjr 33:d832bcab089e 1710 // will turn off when PSU2 is off regardless of what the KL25Z is doing.
mjr 33:d832bcab089e 1711 //
mjr 33:d832bcab089e 1712 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 1713 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 1714 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 1715 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 1716 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 1717 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 1718 // will power up before or after PSU2, so it's not good enough to
mjr 33:d832bcab089e 1719 // observe the *current* state of PSU2 when we first check - if PSU2
mjr 33:d832bcab089e 1720 // were to come on first, checking the current state alone would fool
mjr 33:d832bcab089e 1721 // us into thinking that no action is required, because we would never
mjr 33:d832bcab089e 1722 // have known that PSU2 was ever off. The latch handles this case by
mjr 33:d832bcab089e 1723 // letting us see that PSU2 *was* off before we checked.
mjr 33:d832bcab089e 1724 //
mjr 33:d832bcab089e 1725 // - If the KL25Z is rebooted while the main system is running, or the
mjr 33:d832bcab089e 1726 // KL25Z is unplugged and plugged back in, we will correctly leave the
mjr 33:d832bcab089e 1727 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 1728 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 1729 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 1730 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 1731 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 1732 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 1733 //
mjr 33:d832bcab089e 1734 //
mjr 33:d832bcab089e 1735
mjr 33:d832bcab089e 1736 // Current PSU2 state:
mjr 33:d832bcab089e 1737 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 1738 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 1739 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 1740 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 1741 // 5 -> TV relay on
mjr 33:d832bcab089e 1742 //
mjr 33:d832bcab089e 1743 int psu2_state = 1;
mjr 35:e959ffba78fd 1744
mjr 35:e959ffba78fd 1745 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 1746 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 1747 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 1748
mjr 35:e959ffba78fd 1749 // TV ON switch relay control
mjr 35:e959ffba78fd 1750 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 1751
mjr 35:e959ffba78fd 1752 // Timer interrupt
mjr 35:e959ffba78fd 1753 Ticker tv_ticker;
mjr 35:e959ffba78fd 1754 float tv_delay_time;
mjr 33:d832bcab089e 1755 void TVTimerInt()
mjr 33:d832bcab089e 1756 {
mjr 35:e959ffba78fd 1757 // time since last state change
mjr 35:e959ffba78fd 1758 static Timer tv_timer;
mjr 35:e959ffba78fd 1759
mjr 33:d832bcab089e 1760 // Check our internal state
mjr 33:d832bcab089e 1761 switch (psu2_state)
mjr 33:d832bcab089e 1762 {
mjr 33:d832bcab089e 1763 case 1:
mjr 33:d832bcab089e 1764 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 1765 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 1766 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 1767 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 1768 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 1769 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 1770 {
mjr 33:d832bcab089e 1771 // switch to OFF state
mjr 33:d832bcab089e 1772 psu2_state = 2;
mjr 33:d832bcab089e 1773
mjr 33:d832bcab089e 1774 // try setting the latch
mjr 35:e959ffba78fd 1775 psu2_status_set->write(1);
mjr 33:d832bcab089e 1776 }
mjr 33:d832bcab089e 1777 break;
mjr 33:d832bcab089e 1778
mjr 33:d832bcab089e 1779 case 2:
mjr 33:d832bcab089e 1780 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 1781 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 1782 psu2_status_set->write(0);
mjr 33:d832bcab089e 1783 psu2_state = 3;
mjr 33:d832bcab089e 1784 break;
mjr 33:d832bcab089e 1785
mjr 33:d832bcab089e 1786 case 3:
mjr 33:d832bcab089e 1787 // CHECK state: we pulsed SET, and we're now ready to see
mjr 33:d832bcab089e 1788 // if that stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 1789 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 1790 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 1791 if (psu2_status_sense->read())
mjr 33:d832bcab089e 1792 {
mjr 33:d832bcab089e 1793 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 1794 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 1795 tv_timer.reset();
mjr 33:d832bcab089e 1796 tv_timer.start();
mjr 33:d832bcab089e 1797 psu2_state = 4;
mjr 33:d832bcab089e 1798 }
mjr 33:d832bcab089e 1799 else
mjr 33:d832bcab089e 1800 {
mjr 33:d832bcab089e 1801 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 1802 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 1803 // was turned on since the last check.
mjr 35:e959ffba78fd 1804 psu2_status_set->write(1);
mjr 33:d832bcab089e 1805 psu2_state = 2;
mjr 33:d832bcab089e 1806 }
mjr 33:d832bcab089e 1807 break;
mjr 33:d832bcab089e 1808
mjr 33:d832bcab089e 1809 case 4:
mjr 33:d832bcab089e 1810 // TV timer countdown in progress. If we've reached the
mjr 33:d832bcab089e 1811 // delay time, pulse the relay.
mjr 35:e959ffba78fd 1812 if (tv_timer.read() >= tv_delay_time)
mjr 33:d832bcab089e 1813 {
mjr 33:d832bcab089e 1814 // turn on the relay for one timer interval
mjr 35:e959ffba78fd 1815 tv_relay->write(1);
mjr 33:d832bcab089e 1816 psu2_state = 5;
mjr 33:d832bcab089e 1817 }
mjr 33:d832bcab089e 1818 break;
mjr 33:d832bcab089e 1819
mjr 33:d832bcab089e 1820 case 5:
mjr 33:d832bcab089e 1821 // TV timer relay on. We pulse this for one interval, so
mjr 33:d832bcab089e 1822 // it's now time to turn it off and return to the default state.
mjr 35:e959ffba78fd 1823 tv_relay->write(0);
mjr 33:d832bcab089e 1824 psu2_state = 1;
mjr 33:d832bcab089e 1825 break;
mjr 33:d832bcab089e 1826 }
mjr 33:d832bcab089e 1827 }
mjr 33:d832bcab089e 1828
mjr 35:e959ffba78fd 1829 // Start the TV ON checker. If the status sense circuit is enabled in
mjr 35:e959ffba78fd 1830 // the configuration, we'll set up the pin connections and start the
mjr 35:e959ffba78fd 1831 // interrupt handler that periodically checks the status. Does nothing
mjr 35:e959ffba78fd 1832 // if any of the pins are configured as NC.
mjr 35:e959ffba78fd 1833 void startTVTimer(Config &cfg)
mjr 35:e959ffba78fd 1834 {
mjr 35:e959ffba78fd 1835 // only start the timer if the status sense circuit pins are configured
mjr 35:e959ffba78fd 1836 if (cfg.TVON.statusPin != NC && cfg.TVON.latchPin != NC && cfg.TVON.relayPin != NC)
mjr 35:e959ffba78fd 1837 {
mjr 35:e959ffba78fd 1838 psu2_status_sense = new DigitalIn(cfg.TVON.statusPin);
mjr 35:e959ffba78fd 1839 psu2_status_set = new DigitalOut(cfg.TVON.latchPin);
mjr 35:e959ffba78fd 1840 tv_relay = new DigitalOut(cfg.TVON.relayPin);
mjr 35:e959ffba78fd 1841 tv_delay_time = cfg.TVON.delayTime;
mjr 35:e959ffba78fd 1842
mjr 35:e959ffba78fd 1843 // Set up our time routine to run every 1/4 second.
mjr 35:e959ffba78fd 1844 tv_ticker.attach(&TVTimerInt, 0.25);
mjr 35:e959ffba78fd 1845 }
mjr 35:e959ffba78fd 1846 }
mjr 35:e959ffba78fd 1847
mjr 35:e959ffba78fd 1848 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 1849 //
mjr 35:e959ffba78fd 1850 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 1851 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 1852 //
mjr 35:e959ffba78fd 1853 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 1854 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 1855 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 1856 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 1857 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 1858 // again each time the firmware is updated.
mjr 35:e959ffba78fd 1859 //
mjr 35:e959ffba78fd 1860 NVM nvm;
mjr 35:e959ffba78fd 1861
mjr 35:e959ffba78fd 1862 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 1863 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 1864
mjr 35:e959ffba78fd 1865 // flash memory controller interface
mjr 35:e959ffba78fd 1866 FreescaleIAP iap;
mjr 35:e959ffba78fd 1867
mjr 35:e959ffba78fd 1868 // figure the flash address as a pointer along with the number of sectors
mjr 35:e959ffba78fd 1869 // required to store the structure
mjr 35:e959ffba78fd 1870 NVM *configFlashAddr(int &addr, int &numSectors)
mjr 35:e959ffba78fd 1871 {
mjr 35:e959ffba78fd 1872 // figure how many flash sectors we span, rounding up to whole sectors
mjr 35:e959ffba78fd 1873 numSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 35:e959ffba78fd 1874
mjr 35:e959ffba78fd 1875 // figure the address - this is the highest flash address where the
mjr 35:e959ffba78fd 1876 // structure will fit with the start aligned on a sector boundary
mjr 35:e959ffba78fd 1877 addr = iap.flash_size() - (numSectors * SECTOR_SIZE);
mjr 35:e959ffba78fd 1878
mjr 35:e959ffba78fd 1879 // return the address as a pointer
mjr 35:e959ffba78fd 1880 return (NVM *)addr;
mjr 35:e959ffba78fd 1881 }
mjr 35:e959ffba78fd 1882
mjr 35:e959ffba78fd 1883 // figure the flash address as a pointer
mjr 35:e959ffba78fd 1884 NVM *configFlashAddr()
mjr 35:e959ffba78fd 1885 {
mjr 35:e959ffba78fd 1886 int addr, numSectors;
mjr 35:e959ffba78fd 1887 return configFlashAddr(addr, numSectors);
mjr 35:e959ffba78fd 1888 }
mjr 35:e959ffba78fd 1889
mjr 35:e959ffba78fd 1890 // Load the config from flash
mjr 35:e959ffba78fd 1891 void loadConfigFromFlash()
mjr 35:e959ffba78fd 1892 {
mjr 35:e959ffba78fd 1893 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 1894 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 1895 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 1896 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 1897 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 1898 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 1899 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 1900 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 1901 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 1902 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 1903 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 1904 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 1905 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 1906 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 1907 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 1908 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 1909
mjr 35:e959ffba78fd 1910 // Figure how many sectors we need for our structure
mjr 35:e959ffba78fd 1911 NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 1912
mjr 35:e959ffba78fd 1913 // if the flash is valid, load it; otherwise initialize to defaults
mjr 35:e959ffba78fd 1914 if (flash->valid())
mjr 35:e959ffba78fd 1915 {
mjr 35:e959ffba78fd 1916 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 1917 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 1918 }
mjr 35:e959ffba78fd 1919 else
mjr 35:e959ffba78fd 1920 {
mjr 35:e959ffba78fd 1921 // flash is invalid - load factory settings nito RAM structure
mjr 35:e959ffba78fd 1922 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 1923 }
mjr 35:e959ffba78fd 1924 }
mjr 35:e959ffba78fd 1925
mjr 35:e959ffba78fd 1926 void saveConfigToFlash()
mjr 33:d832bcab089e 1927 {
mjr 35:e959ffba78fd 1928 int addr, sectors;
mjr 35:e959ffba78fd 1929 configFlashAddr(addr, sectors);
mjr 35:e959ffba78fd 1930 nvm.save(iap, addr);
mjr 35:e959ffba78fd 1931 }
mjr 35:e959ffba78fd 1932
mjr 35:e959ffba78fd 1933 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 1934 //
mjr 38:091e511ce8a0 1935 // NIGHT MODE flag. When night mode is on, we disable all outputs
mjr 38:091e511ce8a0 1936 // marked as "noisemakers" in the output configuration flags.
mjr 38:091e511ce8a0 1937 int nightMode;
mjr 38:091e511ce8a0 1938
mjr 38:091e511ce8a0 1939 // Update the global output mode settings
mjr 38:091e511ce8a0 1940 static void globalOutputModeChange()
mjr 38:091e511ce8a0 1941 {
mjr 38:091e511ce8a0 1942 // set the global modeLevel[]
mjr 38:091e511ce8a0 1943 for (int i = 0 ; i < numOutputs ; ++i)
mjr 38:091e511ce8a0 1944 {
mjr 38:091e511ce8a0 1945 // assume the port will be on
mjr 38:091e511ce8a0 1946 uint8_t f = 1;
mjr 38:091e511ce8a0 1947
mjr 38:091e511ce8a0 1948 // if night mode is in effect, and this is a noisemaker, disable it
mjr 38:091e511ce8a0 1949 if (nightMode && (cfg.outPort[i].flags & PortFlagNoisemaker) != 0)
mjr 38:091e511ce8a0 1950 f = 0;
mjr 38:091e511ce8a0 1951
mjr 38:091e511ce8a0 1952 // set the final output port override value
mjr 38:091e511ce8a0 1953 modeLevel[i] = f;
mjr 38:091e511ce8a0 1954 }
mjr 38:091e511ce8a0 1955
mjr 38:091e511ce8a0 1956 // update all outputs for the mode change
mjr 38:091e511ce8a0 1957 updateAllOuts();
mjr 38:091e511ce8a0 1958 }
mjr 38:091e511ce8a0 1959
mjr 38:091e511ce8a0 1960 // Turn night mode on or off
mjr 38:091e511ce8a0 1961 static void setNightMode(bool on)
mjr 38:091e511ce8a0 1962 {
mjr 38:091e511ce8a0 1963 nightMode = on;
mjr 38:091e511ce8a0 1964 globalOutputModeChange();
mjr 38:091e511ce8a0 1965 specialPin[0]->set(on ? 255.0 : 0.0);
mjr 38:091e511ce8a0 1966 }
mjr 38:091e511ce8a0 1967
mjr 38:091e511ce8a0 1968 // Toggle night mode
mjr 38:091e511ce8a0 1969 static void toggleNightMode()
mjr 38:091e511ce8a0 1970 {
mjr 38:091e511ce8a0 1971 setNightMode(!nightMode);
mjr 38:091e511ce8a0 1972 }
mjr 38:091e511ce8a0 1973
mjr 38:091e511ce8a0 1974
mjr 38:091e511ce8a0 1975 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 1976 //
mjr 35:e959ffba78fd 1977 // Plunger Sensor
mjr 35:e959ffba78fd 1978 //
mjr 35:e959ffba78fd 1979
mjr 35:e959ffba78fd 1980 // the plunger sensor interface object
mjr 35:e959ffba78fd 1981 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 1982
mjr 35:e959ffba78fd 1983 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 1984 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 1985 void createPlunger()
mjr 35:e959ffba78fd 1986 {
mjr 35:e959ffba78fd 1987 // delete any existing sensor object
mjr 35:e959ffba78fd 1988 if (plungerSensor != 0)
mjr 35:e959ffba78fd 1989 delete plungerSensor;
mjr 35:e959ffba78fd 1990
mjr 35:e959ffba78fd 1991 // create the new sensor object according to the type
mjr 35:e959ffba78fd 1992 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 1993 {
mjr 35:e959ffba78fd 1994 case PlungerType_TSL1410RS:
mjr 35:e959ffba78fd 1995 // pins are: SI, CLOCK, AO
mjr 35:e959ffba78fd 1996 plungerSensor = new PlungerSensorTSL1410R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], NC);
mjr 35:e959ffba78fd 1997 break;
mjr 35:e959ffba78fd 1998
mjr 35:e959ffba78fd 1999 case PlungerType_TSL1410RP:
mjr 35:e959ffba78fd 2000 // pins are: SI, CLOCK, AO1, AO2
mjr 35:e959ffba78fd 2001 plungerSensor = new PlungerSensorTSL1410R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], cfg.plunger.sensorPin[3]);
mjr 35:e959ffba78fd 2002 break;
mjr 35:e959ffba78fd 2003
mjr 35:e959ffba78fd 2004 case PlungerType_TSL1412RS:
mjr 35:e959ffba78fd 2005 // pins are: SI, CLOCK, AO1, AO2
mjr 35:e959ffba78fd 2006 plungerSensor = new PlungerSensorTSL1412R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], NC);
mjr 35:e959ffba78fd 2007 break;
mjr 35:e959ffba78fd 2008
mjr 35:e959ffba78fd 2009 case PlungerType_TSL1412RP:
mjr 35:e959ffba78fd 2010 // pins are: SI, CLOCK, AO1, AO2
mjr 35:e959ffba78fd 2011 plungerSensor = new PlungerSensorTSL1412R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], cfg.plunger.sensorPin[3]);
mjr 35:e959ffba78fd 2012 break;
mjr 35:e959ffba78fd 2013
mjr 35:e959ffba78fd 2014 case PlungerType_Pot:
mjr 35:e959ffba78fd 2015 // pins are: AO
mjr 35:e959ffba78fd 2016 plungerSensor = new PlungerSensorPot(cfg.plunger.sensorPin[0]);
mjr 35:e959ffba78fd 2017 break;
mjr 35:e959ffba78fd 2018
mjr 35:e959ffba78fd 2019 case PlungerType_None:
mjr 35:e959ffba78fd 2020 default:
mjr 35:e959ffba78fd 2021 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 2022 break;
mjr 35:e959ffba78fd 2023 }
mjr 33:d832bcab089e 2024 }
mjr 33:d832bcab089e 2025
mjr 35:e959ffba78fd 2026 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2027 //
mjr 35:e959ffba78fd 2028 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 2029 //
mjr 35:e959ffba78fd 2030 void reboot(USBJoystick &js)
mjr 35:e959ffba78fd 2031 {
mjr 35:e959ffba78fd 2032 // disconnect from USB
mjr 35:e959ffba78fd 2033 js.disconnect();
mjr 35:e959ffba78fd 2034
mjr 35:e959ffba78fd 2035 // wait a few seconds to make sure the host notices the disconnect
mjr 35:e959ffba78fd 2036 wait(5);
mjr 35:e959ffba78fd 2037
mjr 35:e959ffba78fd 2038 // reset the device
mjr 35:e959ffba78fd 2039 NVIC_SystemReset();
mjr 35:e959ffba78fd 2040 while (true) { }
mjr 35:e959ffba78fd 2041 }
mjr 35:e959ffba78fd 2042
mjr 35:e959ffba78fd 2043 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2044 //
mjr 35:e959ffba78fd 2045 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 2046 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 2047 //
mjr 35:e959ffba78fd 2048 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 2049 {
mjr 35:e959ffba78fd 2050 int tmp;
mjr 35:e959ffba78fd 2051 switch (cfg.orientation)
mjr 35:e959ffba78fd 2052 {
mjr 35:e959ffba78fd 2053 case OrientationFront:
mjr 35:e959ffba78fd 2054 tmp = x;
mjr 35:e959ffba78fd 2055 x = y;
mjr 35:e959ffba78fd 2056 y = tmp;
mjr 35:e959ffba78fd 2057 break;
mjr 35:e959ffba78fd 2058
mjr 35:e959ffba78fd 2059 case OrientationLeft:
mjr 35:e959ffba78fd 2060 x = -x;
mjr 35:e959ffba78fd 2061 break;
mjr 35:e959ffba78fd 2062
mjr 35:e959ffba78fd 2063 case OrientationRight:
mjr 35:e959ffba78fd 2064 y = -y;
mjr 35:e959ffba78fd 2065 break;
mjr 35:e959ffba78fd 2066
mjr 35:e959ffba78fd 2067 case OrientationRear:
mjr 35:e959ffba78fd 2068 tmp = -x;
mjr 35:e959ffba78fd 2069 x = -y;
mjr 35:e959ffba78fd 2070 y = tmp;
mjr 35:e959ffba78fd 2071 break;
mjr 35:e959ffba78fd 2072 }
mjr 35:e959ffba78fd 2073 }
mjr 35:e959ffba78fd 2074
mjr 35:e959ffba78fd 2075 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2076 //
mjr 35:e959ffba78fd 2077 // Device status. We report this on each update so that the host config
mjr 35:e959ffba78fd 2078 // tool can detect our current settings. This is a bit mask consisting
mjr 35:e959ffba78fd 2079 // of these bits:
mjr 35:e959ffba78fd 2080 // 0x0001 -> plunger sensor enabled
mjr 35:e959ffba78fd 2081 // 0x8000 -> RESERVED - must always be zero
mjr 35:e959ffba78fd 2082 //
mjr 35:e959ffba78fd 2083 // Note that the high bit (0x8000) must always be 0, since we use that
mjr 35:e959ffba78fd 2084 // to distinguish special request reply packets.
mjr 35:e959ffba78fd 2085 uint16_t statusFlags;
mjr 35:e959ffba78fd 2086
mjr 35:e959ffba78fd 2087 // flag: send a pixel dump after the next read
mjr 35:e959ffba78fd 2088 bool reportPix = false;
mjr 35:e959ffba78fd 2089
mjr 33:d832bcab089e 2090
mjr 35:e959ffba78fd 2091 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2092 //
mjr 35:e959ffba78fd 2093 // Calibration button state:
mjr 35:e959ffba78fd 2094 // 0 = not pushed
mjr 35:e959ffba78fd 2095 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 2096 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 2097 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 2098 int calBtnState = 0;
mjr 35:e959ffba78fd 2099
mjr 35:e959ffba78fd 2100 // calibration button debounce timer
mjr 35:e959ffba78fd 2101 Timer calBtnTimer;
mjr 35:e959ffba78fd 2102
mjr 35:e959ffba78fd 2103 // calibration button light state
mjr 35:e959ffba78fd 2104 int calBtnLit = false;
mjr 35:e959ffba78fd 2105
mjr 35:e959ffba78fd 2106
mjr 35:e959ffba78fd 2107 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2108 //
mjr 35:e959ffba78fd 2109 // Handle a configuration variable update. 'data' is the USB message we
mjr 35:e959ffba78fd 2110 // received from the host.
mjr 35:e959ffba78fd 2111 //
mjr 35:e959ffba78fd 2112 void configVarMsg(uint8_t *data)
mjr 35:e959ffba78fd 2113 {
mjr 35:e959ffba78fd 2114 switch (data[1])
mjr 35:e959ffba78fd 2115 {
mjr 35:e959ffba78fd 2116 case 1:
mjr 35:e959ffba78fd 2117 // USB identification (Vendor ID, Product ID)
mjr 35:e959ffba78fd 2118 cfg.usbVendorID = wireUI16(data+2);
mjr 35:e959ffba78fd 2119 cfg.usbProductID = wireUI16(data+4);
mjr 35:e959ffba78fd 2120 break;
mjr 35:e959ffba78fd 2121
mjr 35:e959ffba78fd 2122 case 2:
mjr 35:e959ffba78fd 2123 // Pinscape Controller unit number - note that data[2] contains
mjr 35:e959ffba78fd 2124 // the nominal unit number, 1-16
mjr 35:e959ffba78fd 2125 if (data[2] >= 1 && data[2] <= 16)
mjr 35:e959ffba78fd 2126 cfg.psUnitNo = data[2];
mjr 35:e959ffba78fd 2127 break;
mjr 35:e959ffba78fd 2128
mjr 35:e959ffba78fd 2129 case 3:
mjr 35:e959ffba78fd 2130 // Enable/disable joystick
mjr 35:e959ffba78fd 2131 cfg.joystickEnabled = data[2];
mjr 35:e959ffba78fd 2132 break;
mjr 35:e959ffba78fd 2133
mjr 35:e959ffba78fd 2134 case 4:
mjr 35:e959ffba78fd 2135 // Accelerometer orientation
mjr 35:e959ffba78fd 2136 cfg.orientation = data[2];
mjr 35:e959ffba78fd 2137 break;
mjr 35:e959ffba78fd 2138
mjr 35:e959ffba78fd 2139 case 5:
mjr 35:e959ffba78fd 2140 // Plunger sensor type
mjr 35:e959ffba78fd 2141 cfg.plunger.sensorType = data[2];
mjr 35:e959ffba78fd 2142 break;
mjr 35:e959ffba78fd 2143
mjr 35:e959ffba78fd 2144 case 6:
mjr 35:e959ffba78fd 2145 // Set plunger pin assignments
mjr 35:e959ffba78fd 2146 cfg.plunger.sensorPin[0] = wirePinName(data[2]);
mjr 35:e959ffba78fd 2147 cfg.plunger.sensorPin[1] = wirePinName(data[3]);
mjr 35:e959ffba78fd 2148 cfg.plunger.sensorPin[2] = wirePinName(data[4]);
mjr 35:e959ffba78fd 2149 cfg.plunger.sensorPin[3] = wirePinName(data[5]);
mjr 35:e959ffba78fd 2150 break;
mjr 35:e959ffba78fd 2151
mjr 35:e959ffba78fd 2152 case 7:
mjr 35:e959ffba78fd 2153 // Plunger calibration button and indicator light pin assignments
mjr 35:e959ffba78fd 2154 cfg.plunger.cal.btn = wirePinName(data[2]);
mjr 35:e959ffba78fd 2155 cfg.plunger.cal.led = wirePinName(data[3]);
mjr 35:e959ffba78fd 2156 break;
mjr 35:e959ffba78fd 2157
mjr 35:e959ffba78fd 2158 case 8:
mjr 35:e959ffba78fd 2159 // ZB Launch Ball setup
mjr 35:e959ffba78fd 2160 cfg.plunger.zbLaunchBall.port = (int)(unsigned char)data[2];
mjr 35:e959ffba78fd 2161 cfg.plunger.zbLaunchBall.btn = (int)(unsigned char)data[3];
mjr 35:e959ffba78fd 2162 cfg.plunger.zbLaunchBall.pushDistance = (float)wireUI16(data+4) / 1000.0;
mjr 35:e959ffba78fd 2163 break;
mjr 35:e959ffba78fd 2164
mjr 35:e959ffba78fd 2165 case 9:
mjr 35:e959ffba78fd 2166 // TV ON setup
mjr 35:e959ffba78fd 2167 cfg.TVON.statusPin = wirePinName(data[2]);
mjr 35:e959ffba78fd 2168 cfg.TVON.latchPin = wirePinName(data[3]);
mjr 35:e959ffba78fd 2169 cfg.TVON.relayPin = wirePinName(data[4]);
mjr 35:e959ffba78fd 2170 cfg.TVON.delayTime = (float)wireUI16(data+5) / 100.0;
mjr 35:e959ffba78fd 2171 break;
mjr 35:e959ffba78fd 2172
mjr 35:e959ffba78fd 2173 case 10:
mjr 35:e959ffba78fd 2174 // TLC5940NT PWM controller chip setup
mjr 35:e959ffba78fd 2175 cfg.tlc5940.nchips = (int)(unsigned char)data[2];
mjr 35:e959ffba78fd 2176 cfg.tlc5940.sin = wirePinName(data[3]);
mjr 35:e959ffba78fd 2177 cfg.tlc5940.sclk = wirePinName(data[4]);
mjr 35:e959ffba78fd 2178 cfg.tlc5940.xlat = wirePinName(data[5]);
mjr 35:e959ffba78fd 2179 cfg.tlc5940.blank = wirePinName(data[6]);
mjr 35:e959ffba78fd 2180 cfg.tlc5940.gsclk = wirePinName(data[7]);
mjr 35:e959ffba78fd 2181 break;
mjr 35:e959ffba78fd 2182
mjr 35:e959ffba78fd 2183 case 11:
mjr 35:e959ffba78fd 2184 // 74HC595 shift register chip setup
mjr 35:e959ffba78fd 2185 cfg.hc595.nchips = (int)(unsigned char)data[2];
mjr 35:e959ffba78fd 2186 cfg.hc595.sin = wirePinName(data[3]);
mjr 35:e959ffba78fd 2187 cfg.hc595.sclk = wirePinName(data[4]);
mjr 35:e959ffba78fd 2188 cfg.hc595.latch = wirePinName(data[5]);
mjr 35:e959ffba78fd 2189 cfg.hc595.ena = wirePinName(data[6]);
mjr 35:e959ffba78fd 2190 break;
mjr 35:e959ffba78fd 2191
mjr 35:e959ffba78fd 2192 case 12:
mjr 35:e959ffba78fd 2193 // button setup
mjr 35:e959ffba78fd 2194 {
mjr 35:e959ffba78fd 2195 // get the button number
mjr 35:e959ffba78fd 2196 int idx = data[2];
mjr 35:e959ffba78fd 2197
mjr 35:e959ffba78fd 2198 // if it's in range, set the button data
mjr 35:e959ffba78fd 2199 if (idx > 0 && idx <= MAX_BUTTONS)
mjr 35:e959ffba78fd 2200 {
mjr 35:e959ffba78fd 2201 // adjust to an array index
mjr 35:e959ffba78fd 2202 --idx;
mjr 35:e959ffba78fd 2203
mjr 35:e959ffba78fd 2204 // set the values
mjr 35:e959ffba78fd 2205 cfg.button[idx].pin = data[3];
mjr 35:e959ffba78fd 2206 cfg.button[idx].typ = data[4];
mjr 35:e959ffba78fd 2207 cfg.button[idx].val = data[5];
mjr 38:091e511ce8a0 2208 cfg.button[idx].flags = data[6];
mjr 35:e959ffba78fd 2209 }
mjr 35:e959ffba78fd 2210 }
mjr 35:e959ffba78fd 2211 break;
mjr 35:e959ffba78fd 2212
mjr 35:e959ffba78fd 2213 case 13:
mjr 35:e959ffba78fd 2214 // LedWiz output port setup
mjr 35:e959ffba78fd 2215 {
mjr 35:e959ffba78fd 2216 // get the port number
mjr 35:e959ffba78fd 2217 int idx = data[2];
mjr 35:e959ffba78fd 2218
mjr 35:e959ffba78fd 2219 // if it's in range, set the port data
mjr 35:e959ffba78fd 2220 if (idx > 0 && idx <= MAX_OUT_PORTS)
mjr 35:e959ffba78fd 2221 {
mjr 35:e959ffba78fd 2222 // adjust to an array index
mjr 35:e959ffba78fd 2223 --idx;
mjr 35:e959ffba78fd 2224
mjr 35:e959ffba78fd 2225 // set the values
mjr 35:e959ffba78fd 2226 cfg.outPort[idx].typ = data[3];
mjr 35:e959ffba78fd 2227 cfg.outPort[idx].pin = data[4];
mjr 35:e959ffba78fd 2228 cfg.outPort[idx].flags = data[5];
mjr 35:e959ffba78fd 2229 }
mjr 38:091e511ce8a0 2230 else if (idx == 254)
mjr 38:091e511ce8a0 2231 {
mjr 38:091e511ce8a0 2232 // special ports
mjr 38:091e511ce8a0 2233 idx -= 254;
mjr 38:091e511ce8a0 2234 cfg.specialPort[idx].typ = data[3];
mjr 38:091e511ce8a0 2235 cfg.specialPort[idx].pin = data[4];
mjr 38:091e511ce8a0 2236 cfg.specialPort[idx].flags = data[5];
mjr 38:091e511ce8a0 2237 }
mjr 35:e959ffba78fd 2238 }
mjr 35:e959ffba78fd 2239 break;
mjr 38:091e511ce8a0 2240
mjr 38:091e511ce8a0 2241 case 14:
mjr 38:091e511ce8a0 2242 // engage/cancel Night Mode
mjr 38:091e511ce8a0 2243 setNightMode(data[2]);
mjr 38:091e511ce8a0 2244 break;
mjr 35:e959ffba78fd 2245 }
mjr 35:e959ffba78fd 2246 }
mjr 35:e959ffba78fd 2247
mjr 35:e959ffba78fd 2248 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2249 //
mjr 35:e959ffba78fd 2250 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 2251 // LedWiz protocol.
mjr 33:d832bcab089e 2252 //
mjr 38:091e511ce8a0 2253 void handleInputMsg(uint8_t data[8], USBJoystick &js, int &z)
mjr 35:e959ffba78fd 2254 {
mjr 38:091e511ce8a0 2255 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 2256 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 2257 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 2258 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 2259 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 2260 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 2261 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 2262 // So our full protocol is as follows:
mjr 38:091e511ce8a0 2263 //
mjr 38:091e511ce8a0 2264 // first byte =
mjr 38:091e511ce8a0 2265 // 0-48 -> LWZ-PBA
mjr 38:091e511ce8a0 2266 // 64 -> LWZ SBA
mjr 38:091e511ce8a0 2267 // 65 -> private control message; second byte specifies subtype
mjr 38:091e511ce8a0 2268 // 129-132 -> LWZ-PBA
mjr 38:091e511ce8a0 2269 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 2270 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 2271 // other -> reserved for future use
mjr 38:091e511ce8a0 2272 //
mjr 38:091e511ce8a0 2273 if (data[0] == 64)
mjr 35:e959ffba78fd 2274 {
mjr 38:091e511ce8a0 2275 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 38:091e511ce8a0 2276 // for the outputs; 5th byte is the pulse speed (1-7)
mjr 38:091e511ce8a0 2277 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 38:091e511ce8a0 2278 // data[1], data[2], data[3], data[4], data[5]);
mjr 38:091e511ce8a0 2279
mjr 38:091e511ce8a0 2280 // update all on/off states
mjr 38:091e511ce8a0 2281 for (int i = 0, bit = 1, ri = 1 ; i < numLwOutputs ; ++i, bit <<= 1)
mjr 35:e959ffba78fd 2282 {
mjr 38:091e511ce8a0 2283 // figure the on/off state bit for this output
mjr 38:091e511ce8a0 2284 if (bit == 0x100) {
mjr 38:091e511ce8a0 2285 bit = 1;
mjr 38:091e511ce8a0 2286 ++ri;
mjr 35:e959ffba78fd 2287 }
mjr 35:e959ffba78fd 2288
mjr 38:091e511ce8a0 2289 // set the on/off state
mjr 38:091e511ce8a0 2290 wizOn[i] = ((data[ri] & bit) != 0);
mjr 38:091e511ce8a0 2291
mjr 38:091e511ce8a0 2292 // If the wizVal setting is 255, it means that this
mjr 38:091e511ce8a0 2293 // output was last set to a brightness value with the
mjr 38:091e511ce8a0 2294 // extended protocol. Return it to LedWiz control by
mjr 38:091e511ce8a0 2295 // rescaling the brightness setting to the LedWiz range
mjr 38:091e511ce8a0 2296 // and updating wizVal with the result. If it's any
mjr 38:091e511ce8a0 2297 // other value, it was previously set by a PBA message,
mjr 38:091e511ce8a0 2298 // so simply retain the last setting - in the normal
mjr 38:091e511ce8a0 2299 // LedWiz protocol, the "profile" (brightness) and on/off
mjr 38:091e511ce8a0 2300 // states are independent, so an SBA just turns an output
mjr 38:091e511ce8a0 2301 // on or off but retains its last brightness level.
mjr 38:091e511ce8a0 2302 if (wizVal[i] == 255)
mjr 38:091e511ce8a0 2303 wizVal[i] = (uint8_t)round(outLevel[i]*48);
mjr 38:091e511ce8a0 2304 }
mjr 38:091e511ce8a0 2305
mjr 38:091e511ce8a0 2306 // set the flash speed - enforce the value range 1-7
mjr 38:091e511ce8a0 2307 wizSpeed = data[5];
mjr 38:091e511ce8a0 2308 if (wizSpeed < 1)
mjr 38:091e511ce8a0 2309 wizSpeed = 1;
mjr 38:091e511ce8a0 2310 else if (wizSpeed > 7)
mjr 38:091e511ce8a0 2311 wizSpeed = 7;
mjr 38:091e511ce8a0 2312
mjr 38:091e511ce8a0 2313 // update the physical outputs
mjr 38:091e511ce8a0 2314 updateWizOuts();
mjr 38:091e511ce8a0 2315 if (hc595 != 0)
mjr 38:091e511ce8a0 2316 hc595->update();
mjr 38:091e511ce8a0 2317
mjr 38:091e511ce8a0 2318 // reset the PBA counter
mjr 38:091e511ce8a0 2319 pbaIdx = 0;
mjr 38:091e511ce8a0 2320 }
mjr 38:091e511ce8a0 2321 else if (data[0] == 65)
mjr 38:091e511ce8a0 2322 {
mjr 38:091e511ce8a0 2323 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 2324 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 2325 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 2326 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 2327 // message type.
mjr 38:091e511ce8a0 2328 if (data[1] == 1)
mjr 38:091e511ce8a0 2329 {
mjr 38:091e511ce8a0 2330 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 2331 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 2332 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 2333 // 0x01 = enable plunger sensor
mjr 38:091e511ce8a0 2334
mjr 38:091e511ce8a0 2335 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 38:091e511ce8a0 2336 // we save the *nominal* unit number 1-16 in the config
mjr 38:091e511ce8a0 2337 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 35:e959ffba78fd 2338
mjr 38:091e511ce8a0 2339 // we'll need a reset if the LedWiz unit number is changing
mjr 38:091e511ce8a0 2340 bool needReset = (newUnitNo != cfg.psUnitNo);
mjr 38:091e511ce8a0 2341
mjr 38:091e511ce8a0 2342 // set the configuration parameters from the message
mjr 38:091e511ce8a0 2343 cfg.psUnitNo = newUnitNo;
mjr 38:091e511ce8a0 2344 cfg.plunger.enabled = data[3] & 0x01;
mjr 38:091e511ce8a0 2345
mjr 38:091e511ce8a0 2346 // update the status flags
mjr 38:091e511ce8a0 2347 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 38:091e511ce8a0 2348
mjr 38:091e511ce8a0 2349 // if the plunger is no longer enabled, use 0 for z reports
mjr 38:091e511ce8a0 2350 if (!cfg.plunger.enabled)
mjr 38:091e511ce8a0 2351 z = 0;
mjr 38:091e511ce8a0 2352
mjr 38:091e511ce8a0 2353 // save the configuration
mjr 38:091e511ce8a0 2354 saveConfigToFlash();
mjr 38:091e511ce8a0 2355
mjr 38:091e511ce8a0 2356 // reboot if necessary
mjr 38:091e511ce8a0 2357 if (needReset)
mjr 38:091e511ce8a0 2358 reboot(js);
mjr 38:091e511ce8a0 2359 }
mjr 38:091e511ce8a0 2360 else if (data[1] == 2)
mjr 38:091e511ce8a0 2361 {
mjr 38:091e511ce8a0 2362 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 2363 // (No parameters)
mjr 38:091e511ce8a0 2364
mjr 38:091e511ce8a0 2365 // enter calibration mode
mjr 38:091e511ce8a0 2366 calBtnState = 3;
mjr 38:091e511ce8a0 2367 calBtnTimer.reset();
mjr 38:091e511ce8a0 2368 cfg.plunger.cal.reset(plungerSensor->npix);
mjr 38:091e511ce8a0 2369 }
mjr 38:091e511ce8a0 2370 else if (data[1] == 3)
mjr 38:091e511ce8a0 2371 {
mjr 38:091e511ce8a0 2372 // 3 = pixel dump
mjr 38:091e511ce8a0 2373 // (No parameters)
mjr 38:091e511ce8a0 2374 reportPix = true;
mjr 38:091e511ce8a0 2375
mjr 38:091e511ce8a0 2376 // show purple until we finish sending the report
mjr 38:091e511ce8a0 2377 diagLED(1, 0, 1);
mjr 38:091e511ce8a0 2378 }
mjr 38:091e511ce8a0 2379 else if (data[1] == 4)
mjr 38:091e511ce8a0 2380 {
mjr 38:091e511ce8a0 2381 // 4 = hardware configuration query
mjr 38:091e511ce8a0 2382 // (No parameters)
mjr 38:091e511ce8a0 2383 wait_ms(1);
mjr 38:091e511ce8a0 2384 js.reportConfig(
mjr 38:091e511ce8a0 2385 numOutputs,
mjr 38:091e511ce8a0 2386 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 38:091e511ce8a0 2387 cfg.plunger.cal.zero, cfg.plunger.cal.max);
mjr 38:091e511ce8a0 2388 }
mjr 38:091e511ce8a0 2389 else if (data[1] == 5)
mjr 38:091e511ce8a0 2390 {
mjr 38:091e511ce8a0 2391 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 2392 allOutputsOff();
mjr 38:091e511ce8a0 2393 }
mjr 38:091e511ce8a0 2394 else if (data[1] == 6)
mjr 38:091e511ce8a0 2395 {
mjr 38:091e511ce8a0 2396 // 6 = Save configuration to flash.
mjr 38:091e511ce8a0 2397 saveConfigToFlash();
mjr 38:091e511ce8a0 2398
mjr 38:091e511ce8a0 2399 // Reboot the microcontroller. Nearly all config changes
mjr 38:091e511ce8a0 2400 // require a reset, and a reset only takes a few seconds,
mjr 38:091e511ce8a0 2401 // so we don't bother tracking whether or not a reboot is
mjr 38:091e511ce8a0 2402 // really needed.
mjr 38:091e511ce8a0 2403 reboot(js);
mjr 38:091e511ce8a0 2404 }
mjr 38:091e511ce8a0 2405 }
mjr 38:091e511ce8a0 2406 else if (data[0] == 66)
mjr 38:091e511ce8a0 2407 {
mjr 38:091e511ce8a0 2408 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 2409 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 2410 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 2411 // in a variable-dependent format.
mjr 38:091e511ce8a0 2412 configVarMsg(data);
mjr 38:091e511ce8a0 2413 }
mjr 38:091e511ce8a0 2414 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 2415 {
mjr 38:091e511ce8a0 2416 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 2417 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 2418 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 2419 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 2420 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 2421 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 2422 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 2423 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 2424 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 2425 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 2426 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 2427 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 2428 //
mjr 38:091e511ce8a0 2429 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 2430 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 2431 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 2432 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 2433 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 2434 // address those ports anyway.
mjr 38:091e511ce8a0 2435 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 2436 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 38:091e511ce8a0 2437 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 2438 {
mjr 38:091e511ce8a0 2439 // set the brightness level for the output
mjr 38:091e511ce8a0 2440 float b = data[i-i0+1]/255.0;
mjr 38:091e511ce8a0 2441 outLevel[i] = b;
mjr 38:091e511ce8a0 2442
mjr 38:091e511ce8a0 2443 // if it's in the basic LedWiz output set, set the LedWiz
mjr 38:091e511ce8a0 2444 // profile value to 255, which means "use outLevel"
mjr 38:091e511ce8a0 2445 if (i < 32)
mjr 38:091e511ce8a0 2446 wizVal[i] = 255;
mjr 38:091e511ce8a0 2447
mjr 38:091e511ce8a0 2448 // set the output
mjr 38:091e511ce8a0 2449 lwPin[i]->set(b * modeLevel[i]);
mjr 38:091e511ce8a0 2450 }
mjr 38:091e511ce8a0 2451
mjr 38:091e511ce8a0 2452 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 2453 if (hc595 != 0)
mjr 38:091e511ce8a0 2454 hc595->update();
mjr 38:091e511ce8a0 2455 }
mjr 38:091e511ce8a0 2456 else
mjr 38:091e511ce8a0 2457 {
mjr 38:091e511ce8a0 2458 // Everything else is LWZ-PBA. This is a full "profile"
mjr 38:091e511ce8a0 2459 // dump from the host for one bank of 8 outputs. Each
mjr 38:091e511ce8a0 2460 // byte sets one output in the current bank. The current
mjr 38:091e511ce8a0 2461 // bank is implied; the bank starts at 0 and is reset to 0
mjr 38:091e511ce8a0 2462 // by any LWZ-SBA message, and is incremented to the next
mjr 38:091e511ce8a0 2463 // bank by each LWZ-PBA message. Our variable pbaIdx keeps
mjr 38:091e511ce8a0 2464 // track of our notion of the current bank. There's no direct
mjr 38:091e511ce8a0 2465 // way for the host to select the bank; it just has to count
mjr 38:091e511ce8a0 2466 // on us staying in sync. In practice, the host will always
mjr 38:091e511ce8a0 2467 // send a full set of 4 PBA messages in a row to set all 32
mjr 38:091e511ce8a0 2468 // outputs.
mjr 38:091e511ce8a0 2469 //
mjr 38:091e511ce8a0 2470 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 2471 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 2472 // wizVal[] entry for each output, and that takes precedence
mjr 38:091e511ce8a0 2473 // over the extended protocol settings.
mjr 38:091e511ce8a0 2474 //
mjr 38:091e511ce8a0 2475 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 2476 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 2477
mjr 38:091e511ce8a0 2478 // Update all output profile settings
mjr 38:091e511ce8a0 2479 for (int i = 0 ; i < 8 ; ++i)
mjr 38:091e511ce8a0 2480 wizVal[pbaIdx + i] = data[i];
mjr 38:091e511ce8a0 2481
mjr 38:091e511ce8a0 2482 // Update the physical LED state if this is the last bank.
mjr 38:091e511ce8a0 2483 // Note that hosts always send a full set of four PBA
mjr 38:091e511ce8a0 2484 // messages, so there's no need to do a physical update
mjr 38:091e511ce8a0 2485 // until we've received the last bank's PBA message.
mjr 38:091e511ce8a0 2486 if (pbaIdx == 24)
mjr 38:091e511ce8a0 2487 {
mjr 35:e959ffba78fd 2488 updateWizOuts();
mjr 35:e959ffba78fd 2489 if (hc595 != 0)
mjr 35:e959ffba78fd 2490 hc595->update();
mjr 35:e959ffba78fd 2491 pbaIdx = 0;
mjr 35:e959ffba78fd 2492 }
mjr 38:091e511ce8a0 2493 else
mjr 38:091e511ce8a0 2494 pbaIdx += 8;
mjr 38:091e511ce8a0 2495 }
mjr 38:091e511ce8a0 2496 }
mjr 35:e959ffba78fd 2497
mjr 33:d832bcab089e 2498
mjr 38:091e511ce8a0 2499 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 2500 //
mjr 38:091e511ce8a0 2501 // Pre-connection diagnostic flasher
mjr 38:091e511ce8a0 2502 //
mjr 38:091e511ce8a0 2503 void preConnectFlasher()
mjr 38:091e511ce8a0 2504 {
mjr 38:091e511ce8a0 2505 diagLED(1, 0, 0);
mjr 38:091e511ce8a0 2506 wait(0.05);
mjr 38:091e511ce8a0 2507 diagLED(0, 0, 0);
mjr 35:e959ffba78fd 2508 }
mjr 17:ab3cec0c8bf4 2509
mjr 17:ab3cec0c8bf4 2510 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 2511 //
mjr 5:a70c0bce770d 2512 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 2513 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 2514 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 2515 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 2516 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 2517 // port outputs.
mjr 5:a70c0bce770d 2518 //
mjr 0:5acbbe3f4cf4 2519 int main(void)
mjr 0:5acbbe3f4cf4 2520 {
mjr 38:091e511ce8a0 2521 printf("\r\nPinscape Controller starting\r\n"); // $$$ debug
mjr 1:d913e0afb2ac 2522
mjr 35:e959ffba78fd 2523 // clear the I2C bus for the accelerometer
mjr 35:e959ffba78fd 2524 clear_i2c();
mjr 38:091e511ce8a0 2525
mjr 35:e959ffba78fd 2526 // load the saved configuration
mjr 35:e959ffba78fd 2527 loadConfigFromFlash();
mjr 35:e959ffba78fd 2528
mjr 38:091e511ce8a0 2529 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 2530 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 2531
mjr 38:091e511ce8a0 2532 // set up the pre-connected ticker
mjr 38:091e511ce8a0 2533 Ticker preConnectTicker;
mjr 38:091e511ce8a0 2534 preConnectTicker.attach(preConnectFlasher, 3);
mjr 38:091e511ce8a0 2535
mjr 33:d832bcab089e 2536 // start the TV timer, if applicable
mjr 35:e959ffba78fd 2537 startTVTimer(cfg);
mjr 33:d832bcab089e 2538
mjr 33:d832bcab089e 2539 // we're not connected/awake yet
mjr 33:d832bcab089e 2540 bool connected = false;
mjr 33:d832bcab089e 2541 time_t connectChangeTime = time(0);
mjr 33:d832bcab089e 2542
mjr 35:e959ffba78fd 2543 // create the plunger sensor interface
mjr 35:e959ffba78fd 2544 createPlunger();
mjr 33:d832bcab089e 2545
mjr 35:e959ffba78fd 2546 // set up the TLC5940 interface and start the TLC5940 clock, if applicable
mjr 35:e959ffba78fd 2547 init_tlc5940(cfg);
mjr 34:6b981a2afab7 2548
mjr 34:6b981a2afab7 2549 // enable the 74HC595 chips, if present
mjr 35:e959ffba78fd 2550 init_hc595(cfg);
mjr 6:cc35eb643e8f 2551
mjr 38:091e511ce8a0 2552 // Initialize the LedWiz ports. Note that it's important to wait until
mjr 38:091e511ce8a0 2553 // after initializing the various off-board output port controller chip
mjr 38:091e511ce8a0 2554 // sybsystems (TLC5940, 74HC595), since pins attached to peripheral
mjr 38:091e511ce8a0 2555 // controllers will need to address their respective controller objects,
mjr 38:091e511ce8a0 2556 // which don't exit until we initialize those subsystems.
mjr 35:e959ffba78fd 2557 initLwOut(cfg);
mjr 2:c174f9ee414a 2558
mjr 35:e959ffba78fd 2559 // start the TLC5940 clock
mjr 35:e959ffba78fd 2560 if (tlc5940 != 0)
mjr 35:e959ffba78fd 2561 tlc5940->start();
mjr 35:e959ffba78fd 2562
mjr 35:e959ffba78fd 2563 // initialize the button input ports
mjr 35:e959ffba78fd 2564 bool kbKeys = false;
mjr 35:e959ffba78fd 2565 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 2566
mjr 6:cc35eb643e8f 2567 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 2568 // number from the saved configuration.
mjr 35:e959ffba78fd 2569 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, true, cfg.joystickEnabled, kbKeys);
mjr 38:091e511ce8a0 2570
mjr 38:091e511ce8a0 2571 // we're now connected - kill the pre-connect ticker
mjr 38:091e511ce8a0 2572 preConnectTicker.detach();
mjr 17:ab3cec0c8bf4 2573
mjr 38:091e511ce8a0 2574 // Last report timer for the joytick interface. We use the joystick timer
mjr 38:091e511ce8a0 2575 // to throttle the report rate, because VP doesn't benefit from reports any
mjr 38:091e511ce8a0 2576 // faster than about every 10ms.
mjr 38:091e511ce8a0 2577 Timer jsReportTimer;
mjr 38:091e511ce8a0 2578 jsReportTimer.start();
mjr 38:091e511ce8a0 2579
mjr 38:091e511ce8a0 2580 // Time since we successfully sent a USB report. This is a hacky workaround
mjr 38:091e511ce8a0 2581 // for sporadic problems in the USB stack that I haven't been able to figure
mjr 38:091e511ce8a0 2582 // out. If we go too long without successfully sending a USB report, we'll
mjr 38:091e511ce8a0 2583 // try resetting the connection.
mjr 38:091e511ce8a0 2584 Timer jsOKTimer;
mjr 38:091e511ce8a0 2585 jsOKTimer.start();
mjr 35:e959ffba78fd 2586
mjr 35:e959ffba78fd 2587 // set the initial status flags
mjr 35:e959ffba78fd 2588 statusFlags = (cfg.plunger.enabled ? 0x01 : 0x00);
mjr 17:ab3cec0c8bf4 2589
mjr 17:ab3cec0c8bf4 2590 // initialize the calibration buttons, if present
mjr 35:e959ffba78fd 2591 DigitalIn *calBtn = (cfg.plunger.cal.btn == NC ? 0 : new DigitalIn(cfg.plunger.cal.btn));
mjr 35:e959ffba78fd 2592 DigitalOut *calBtnLed = (cfg.plunger.cal.led == NC ? 0 : new DigitalOut(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 2593
mjr 35:e959ffba78fd 2594 // initialize the calibration button
mjr 1:d913e0afb2ac 2595 calBtnTimer.start();
mjr 35:e959ffba78fd 2596 calBtnState = 0;
mjr 1:d913e0afb2ac 2597
mjr 1:d913e0afb2ac 2598 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 2599 Timer hbTimer;
mjr 1:d913e0afb2ac 2600 hbTimer.start();
mjr 1:d913e0afb2ac 2601 int hb = 0;
mjr 5:a70c0bce770d 2602 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 2603
mjr 1:d913e0afb2ac 2604 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 2605 Timer acTimer;
mjr 1:d913e0afb2ac 2606 acTimer.start();
mjr 1:d913e0afb2ac 2607
mjr 0:5acbbe3f4cf4 2608 // create the accelerometer object
mjr 5:a70c0bce770d 2609 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 0:5acbbe3f4cf4 2610
mjr 17:ab3cec0c8bf4 2611 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 2612 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 2613 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 2614
mjr 17:ab3cec0c8bf4 2615 // last plunger report position, in 'npix' normalized pixel units
mjr 17:ab3cec0c8bf4 2616 int pos = 0;
mjr 17:ab3cec0c8bf4 2617
mjr 17:ab3cec0c8bf4 2618 // last plunger report, in joystick units (we report the plunger as the
mjr 17:ab3cec0c8bf4 2619 // "z" axis of the joystick, per the VP convention)
mjr 17:ab3cec0c8bf4 2620 int z = 0;
mjr 17:ab3cec0c8bf4 2621
mjr 17:ab3cec0c8bf4 2622 // most recent prior plunger readings, for tracking release events(z0 is
mjr 17:ab3cec0c8bf4 2623 // reading just before the last one we reported, z1 is the one before that,
mjr 17:ab3cec0c8bf4 2624 // z2 the next before that)
mjr 17:ab3cec0c8bf4 2625 int z0 = 0, z1 = 0, z2 = 0;
mjr 17:ab3cec0c8bf4 2626
mjr 17:ab3cec0c8bf4 2627 // Simulated "bounce" position when firing. We model the bounce off of
mjr 17:ab3cec0c8bf4 2628 // the barrel spring when the plunger is released as proportional to the
mjr 17:ab3cec0c8bf4 2629 // distance it was retracted just before being released.
mjr 17:ab3cec0c8bf4 2630 int zBounce = 0;
mjr 2:c174f9ee414a 2631
mjr 17:ab3cec0c8bf4 2632 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 17:ab3cec0c8bf4 2633 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 17:ab3cec0c8bf4 2634 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 17:ab3cec0c8bf4 2635 // back and releases the plunger, or simply pushes on the plunger from
mjr 17:ab3cec0c8bf4 2636 // the rest position. This allows the plunger to be used in lieu of a
mjr 17:ab3cec0c8bf4 2637 // physical Launch Ball button for tables that don't have plungers.
mjr 17:ab3cec0c8bf4 2638 //
mjr 17:ab3cec0c8bf4 2639 // States:
mjr 17:ab3cec0c8bf4 2640 // 0 = default
mjr 17:ab3cec0c8bf4 2641 // 1 = cocked (plunger has been pulled back about 1" from state 0)
mjr 17:ab3cec0c8bf4 2642 // 2 = uncocked (plunger is pulled back less than 1" from state 1)
mjr 21:5048e16cc9ef 2643 // 3 = launching, plunger is forward beyond park position
mjr 21:5048e16cc9ef 2644 // 4 = launching, plunger is behind park position
mjr 21:5048e16cc9ef 2645 // 5 = pressed and holding (plunger has been pressed forward beyond
mjr 21:5048e16cc9ef 2646 // the park position from state 0)
mjr 17:ab3cec0c8bf4 2647 int lbState = 0;
mjr 6:cc35eb643e8f 2648
mjr 35:e959ffba78fd 2649 // button bit for ZB launch ball button
mjr 35:e959ffba78fd 2650 const uint32_t lbButtonBit = (1 << (cfg.plunger.zbLaunchBall.btn - 1));
mjr 35:e959ffba78fd 2651
mjr 17:ab3cec0c8bf4 2652 // Time since last lbState transition. Some of the states are time-
mjr 17:ab3cec0c8bf4 2653 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 17:ab3cec0c8bf4 2654 // we remain in this state for more than a few milliseconds, since
mjr 17:ab3cec0c8bf4 2655 // it indicates that the plunger is being slowly returned to rest
mjr 17:ab3cec0c8bf4 2656 // rather than released. In the "launching" state, we need to release
mjr 17:ab3cec0c8bf4 2657 // the Launch Ball button after a moment, and we need to wait for
mjr 17:ab3cec0c8bf4 2658 // the plunger to come to rest before returning to state 0.
mjr 17:ab3cec0c8bf4 2659 Timer lbTimer;
mjr 17:ab3cec0c8bf4 2660 lbTimer.start();
mjr 17:ab3cec0c8bf4 2661
mjr 18:5e890ebd0023 2662 // Launch Ball simulated push timer. We start this when we simulate
mjr 18:5e890ebd0023 2663 // the button push, and turn off the simulated button when enough time
mjr 18:5e890ebd0023 2664 // has elapsed.
mjr 18:5e890ebd0023 2665 Timer lbBtnTimer;
mjr 18:5e890ebd0023 2666
mjr 17:ab3cec0c8bf4 2667 // Simulated button states. This is a vector of button states
mjr 17:ab3cec0c8bf4 2668 // for the simulated buttons. We combine this with the physical
mjr 17:ab3cec0c8bf4 2669 // button states on each USB joystick report, so we will report
mjr 17:ab3cec0c8bf4 2670 // a button as pressed if either the physical button is being pressed
mjr 17:ab3cec0c8bf4 2671 // or we're simulating a press on the button. This is used for the
mjr 17:ab3cec0c8bf4 2672 // simulated Launch Ball button.
mjr 17:ab3cec0c8bf4 2673 uint32_t simButtons = 0;
mjr 6:cc35eb643e8f 2674
mjr 6:cc35eb643e8f 2675 // Firing in progress: we set this when we detect the start of rapid
mjr 6:cc35eb643e8f 2676 // plunger movement from a retracted position towards the rest position.
mjr 17:ab3cec0c8bf4 2677 //
mjr 17:ab3cec0c8bf4 2678 // When we detect a firing event, we send VP a series of synthetic
mjr 17:ab3cec0c8bf4 2679 // reports simulating the idealized plunger motion. The actual physical
mjr 17:ab3cec0c8bf4 2680 // motion is much too fast to report to VP; in the time between two USB
mjr 17:ab3cec0c8bf4 2681 // reports, the plunger can shoot all the way forward, rebound off of
mjr 17:ab3cec0c8bf4 2682 // the barrel spring, bounce back part way, and bounce forward again,
mjr 17:ab3cec0c8bf4 2683 // or even do all of this more than once. This means that sampling the
mjr 17:ab3cec0c8bf4 2684 // physical motion at the USB report rate would create a misleading
mjr 17:ab3cec0c8bf4 2685 // picture of the plunger motion, since our samples would catch the
mjr 17:ab3cec0c8bf4 2686 // plunger at random points in this oscillating motion. From the
mjr 17:ab3cec0c8bf4 2687 // user's perspective, the physical action that occurred is simply that
mjr 17:ab3cec0c8bf4 2688 // the plunger was released from a particular distance, so it's this
mjr 17:ab3cec0c8bf4 2689 // high-level event that we want to convey to VP. To do this, we
mjr 17:ab3cec0c8bf4 2690 // synthesize a series of reports to convey an idealized version of
mjr 17:ab3cec0c8bf4 2691 // the release motion that's perfectly synchronized to the VP reports.
mjr 17:ab3cec0c8bf4 2692 // Essentially we pretend that our USB position samples are exactly
mjr 17:ab3cec0c8bf4 2693 // aligned in time with (1) the point of retraction just before the
mjr 17:ab3cec0c8bf4 2694 // user released the plunger, (2) the point of maximum forward motion
mjr 17:ab3cec0c8bf4 2695 // just after the user released the plunger (the point of maximum
mjr 17:ab3cec0c8bf4 2696 // compression as the plunger bounces off of the barrel spring), and
mjr 17:ab3cec0c8bf4 2697 // (3) the plunger coming to rest at the park position. This series
mjr 17:ab3cec0c8bf4 2698 // of reports is synthetic in the sense that it's not what we actually
mjr 17:ab3cec0c8bf4 2699 // see on the CCD at the times of these reports - the true plunger
mjr 17:ab3cec0c8bf4 2700 // position is oscillating at high speed during this period. But at
mjr 17:ab3cec0c8bf4 2701 // the same time it conveys a more faithful picture of the true physical
mjr 17:ab3cec0c8bf4 2702 // motion to VP, and allows VP to reproduce the true physical motion
mjr 17:ab3cec0c8bf4 2703 // more faithfully in its simulation model, by correcting for the
mjr 17:ab3cec0c8bf4 2704 // relatively low sampling rate in the communication path between the
mjr 17:ab3cec0c8bf4 2705 // real plunger and VP's model plunger.
mjr 17:ab3cec0c8bf4 2706 //
mjr 17:ab3cec0c8bf4 2707 // If 'firing' is non-zero, it's the index of our current report in
mjr 17:ab3cec0c8bf4 2708 // the synthetic firing report series.
mjr 9:fd65b0a94720 2709 int firing = 0;
mjr 2:c174f9ee414a 2710
mjr 2:c174f9ee414a 2711 // start the first CCD integration cycle
mjr 35:e959ffba78fd 2712 plungerSensor->init();
mjr 10:976666ffa4ef 2713
mjr 1:d913e0afb2ac 2714 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 2715 // host requests
mjr 0:5acbbe3f4cf4 2716 for (;;)
mjr 0:5acbbe3f4cf4 2717 {
mjr 38:091e511ce8a0 2718 // Process incoming reports
mjr 38:091e511ce8a0 2719 LedWizMsg lwmsg;
mjr 38:091e511ce8a0 2720 for (int rr = 0 ; rr < 64 && js.readLedWizMsg(lwmsg) ; ++rr)
mjr 38:091e511ce8a0 2721 handleInputMsg(lwmsg.data, js, z);
mjr 1:d913e0afb2ac 2722
mjr 38:091e511ce8a0 2723
mjr 1:d913e0afb2ac 2724 // check for plunger calibration
mjr 17:ab3cec0c8bf4 2725 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 2726 {
mjr 1:d913e0afb2ac 2727 // check the state
mjr 1:d913e0afb2ac 2728 switch (calBtnState)
mjr 0:5acbbe3f4cf4 2729 {
mjr 1:d913e0afb2ac 2730 case 0:
mjr 1:d913e0afb2ac 2731 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 2732 calBtnTimer.reset();
mjr 1:d913e0afb2ac 2733 calBtnState = 1;
mjr 1:d913e0afb2ac 2734 break;
mjr 1:d913e0afb2ac 2735
mjr 1:d913e0afb2ac 2736 case 1:
mjr 1:d913e0afb2ac 2737 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 2738 // passed, start the hold period
mjr 9:fd65b0a94720 2739 if (calBtnTimer.read_ms() > 50)
mjr 1:d913e0afb2ac 2740 calBtnState = 2;
mjr 1:d913e0afb2ac 2741 break;
mjr 1:d913e0afb2ac 2742
mjr 1:d913e0afb2ac 2743 case 2:
mjr 1:d913e0afb2ac 2744 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 2745 // for the entire hold period, move to calibration mode
mjr 9:fd65b0a94720 2746 if (calBtnTimer.read_ms() > 2050)
mjr 1:d913e0afb2ac 2747 {
mjr 1:d913e0afb2ac 2748 // enter calibration mode
mjr 1:d913e0afb2ac 2749 calBtnState = 3;
mjr 9:fd65b0a94720 2750 calBtnTimer.reset();
mjr 35:e959ffba78fd 2751
mjr 35:e959ffba78fd 2752 // reset the plunger calibration limits
mjr 35:e959ffba78fd 2753 cfg.plunger.cal.reset(plungerSensor->npix);
mjr 1:d913e0afb2ac 2754 }
mjr 1:d913e0afb2ac 2755 break;
mjr 2:c174f9ee414a 2756
mjr 2:c174f9ee414a 2757 case 3:
mjr 9:fd65b0a94720 2758 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 2759 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 2760 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 2761 break;
mjr 0:5acbbe3f4cf4 2762 }
mjr 0:5acbbe3f4cf4 2763 }
mjr 1:d913e0afb2ac 2764 else
mjr 1:d913e0afb2ac 2765 {
mjr 2:c174f9ee414a 2766 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 2767 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 2768 // and save the results to flash.
mjr 2:c174f9ee414a 2769 //
mjr 2:c174f9ee414a 2770 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 2771 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 2772 // mode, it simply cancels the attempt.
mjr 9:fd65b0a94720 2773 if (calBtnState == 3 && calBtnTimer.read_ms() > 15000)
mjr 2:c1