An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Fri Feb 26 18:42:03 2016 +0000
Revision:
48:058ace2aed1d
Parent:
44:b5ac89b9cd5d
Child:
51:57eb311faafa
New plunger processing 1

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 17:ab3cec0c8bf4 1 // Pinscape Controller Configuration
mjr 17:ab3cec0c8bf4 2 //
mjr 35:e959ffba78fd 3 // New for 2016: dynamic configuration! To configure the controller, connect
mjr 35:e959ffba78fd 4 // the KL25Z to your PC, install the .bin file, and run the Windows config tool.
mjr 35:e959ffba78fd 5 // There's no need (as there was in the past) to edit this file or to compile a
mjr 35:e959ffba78fd 6 // custom version of the binary (.bin) to customize setup options.
mjr 35:e959ffba78fd 7 //
mjr 35:e959ffba78fd 8 // In earlier versions, configuration was largely handled with compile-time
mjr 35:e959ffba78fd 9 // constants. To customize the setup, you had to create a private forked copy
mjr 35:e959ffba78fd 10 // of the source code, edit the constants defined in config.h, and compile a
mjr 35:e959ffba78fd 11 // custom binary. That's no longer necessary!
mjr 35:e959ffba78fd 12 //
mjr 35:e959ffba78fd 13 // The new approach is to do everything (or as much as possible, anyway)
mjr 35:e959ffba78fd 14 // via the Windows config tool. You shouldn't have to recompile a custom
mjr 35:e959ffba78fd 15 // version just to make a configurable change. Of course, you're still free
mjr 35:e959ffba78fd 16 // to create a custom version if you need to add or change features in ways
mjr 35:e959ffba78fd 17 // that weren't anticipated in the original design.
mjr 35:e959ffba78fd 18 //
mjr 35:e959ffba78fd 19
mjr 48:058ace2aed1d 20 // $$$ TESTING CONFIGURATIONS
mjr 48:058ace2aed1d 21 #define TEST_CONFIG_EXPAN 0
mjr 48:058ace2aed1d 22 #define TEST_CONFIG_CAB 1
mjr 48:058ace2aed1d 23 #define TEST_KEEP_PRINTF 1
mjr 48:058ace2aed1d 24
mjr 17:ab3cec0c8bf4 25
mjr 25:e22b88bd783a 26 #ifndef CONFIG_H
mjr 25:e22b88bd783a 27 #define CONFIG_H
mjr 17:ab3cec0c8bf4 28
mjr 33:d832bcab089e 29
mjr 35:e959ffba78fd 30 // Plunger type codes
mjr 35:e959ffba78fd 31 // NOTE! These values are part of the external USB interface. New
mjr 35:e959ffba78fd 32 // values can be added, but the meaning of an existing assigned number
mjr 35:e959ffba78fd 33 // should remain fixed to keep the PC-side config tool compatible across
mjr 35:e959ffba78fd 34 // versions.
mjr 35:e959ffba78fd 35 const int PlungerType_None = 0; // no plunger
mjr 35:e959ffba78fd 36 const int PlungerType_TSL1410RS = 1; // TSL1410R linear image sensor (1280x1 pixels, 400dpi), serial mode
mjr 35:e959ffba78fd 37 const int PlungerType_TSL1410RP = 2; // TSL1410R, parallel mode (reads the two sensor sections concurrently)
mjr 35:e959ffba78fd 38 const int PlungerType_TSL1412RS = 3; // TSL1412R linear image sensor (1536x1 pixels, 400dpi), serial mode
mjr 35:e959ffba78fd 39 const int PlungerType_TSL1412RP = 4; // TSL1412R, parallel mode
mjr 35:e959ffba78fd 40 const int PlungerType_Pot = 5; // potentionmeter
mjr 35:e959ffba78fd 41 const int PlungerType_OptQuad = 6; // AEDR8300 optical quadrature sensor
mjr 35:e959ffba78fd 42 const int PlungerType_MagQuad = 7; // AS5304 magnetic quadrature sensor
mjr 21:5048e16cc9ef 43
mjr 35:e959ffba78fd 44 // Accelerometer orientation codes
mjr 35:e959ffba78fd 45 // These values are part of the external USB interface
mjr 35:e959ffba78fd 46 const int OrientationFront = 0; // USB ports pointed toward front of cabinet
mjr 35:e959ffba78fd 47 const int OrientationLeft = 1; // ports pointed toward left side of cabinet
mjr 35:e959ffba78fd 48 const int OrientationRight = 2; // ports pointed toward right side of cabinet
mjr 35:e959ffba78fd 49 const int OrientationRear = 3; // ports pointed toward back of cabinet
mjr 25:e22b88bd783a 50
mjr 35:e959ffba78fd 51 // input button types
mjr 35:e959ffba78fd 52 const int BtnTypeJoystick = 1; // joystick button
mjr 35:e959ffba78fd 53 const int BtnTypeKey = 2; // regular keyboard key
mjr 35:e959ffba78fd 54 const int BtnTypeModKey = 3; // keyboard modifier key (shift, ctrl, etc)
mjr 35:e959ffba78fd 55 const int BtnTypeMedia = 4; // media control key (volume up/down, etc)
mjr 38:091e511ce8a0 56 const int BtnTypeSpecial = 5; // special button (night mode switch, etc)
mjr 38:091e511ce8a0 57
mjr 38:091e511ce8a0 58 // input button flags
mjr 38:091e511ce8a0 59 const uint8_t BtnFlagPulse = 0x01; // pulse mode - reports each change in the physical switch state
mjr 38:091e511ce8a0 60 // as a brief press of the logical button/keyboard key
mjr 40:cc0d9814522b 61
mjr 40:cc0d9814522b 62 // button setup structure
mjr 40:cc0d9814522b 63 struct ButtonCfg
mjr 40:cc0d9814522b 64 {
mjr 40:cc0d9814522b 65 uint8_t pin; // physical input GPIO pin - a USB-to-PinName mapping index
mjr 40:cc0d9814522b 66 uint8_t typ; // key type reported to PC - a BtnTypeXxx value
mjr 40:cc0d9814522b 67 uint8_t val; // key value reported - meaning depends on 'typ' value
mjr 40:cc0d9814522b 68 uint8_t flags; // key flags - a bitwise combination of BtnFlagXxx values
mjr 40:cc0d9814522b 69
mjr 40:cc0d9814522b 70 void set(uint8_t pin, uint8_t typ, uint8_t val, uint8_t flags = 0)
mjr 40:cc0d9814522b 71 {
mjr 40:cc0d9814522b 72 this->pin = pin;
mjr 40:cc0d9814522b 73 this->typ = typ;
mjr 40:cc0d9814522b 74 this->val = val;
mjr 40:cc0d9814522b 75 this->flags = flags;
mjr 40:cc0d9814522b 76 }
mjr 40:cc0d9814522b 77
mjr 40:cc0d9814522b 78 } __attribute__((packed));
mjr 40:cc0d9814522b 79
mjr 33:d832bcab089e 80
mjr 35:e959ffba78fd 81 // maximum number of input button mappings
mjr 35:e959ffba78fd 82 const int MAX_BUTTONS = 32;
mjr 33:d832bcab089e 83
mjr 35:e959ffba78fd 84 // LedWiz output port type codes
mjr 35:e959ffba78fd 85 // These values are part of the external USB interface
mjr 35:e959ffba78fd 86 const int PortTypeDisabled = 0; // port is disabled - not visible to LedWiz/DOF host
mjr 35:e959ffba78fd 87 const int PortTypeGPIOPWM = 1; // GPIO port, PWM enabled
mjr 35:e959ffba78fd 88 const int PortTypeGPIODig = 2; // GPIO port, digital out
mjr 35:e959ffba78fd 89 const int PortTypeTLC5940 = 3; // TLC5940 port
mjr 35:e959ffba78fd 90 const int PortType74HC595 = 4; // 74HC595 port
mjr 35:e959ffba78fd 91 const int PortTypeVirtual = 5; // Virtual port - visible to host software, but not connected to a physical output
mjr 17:ab3cec0c8bf4 92
mjr 35:e959ffba78fd 93 // LedWiz output port flag bits
mjr 38:091e511ce8a0 94 const uint8_t PortFlagActiveLow = 0x01; // physical output is active-low
mjr 38:091e511ce8a0 95 const uint8_t PortFlagNoisemaker = 0x02; // noisemaker device - disable when night mode is engaged
mjr 40:cc0d9814522b 96 const uint8_t PortFlagGamma = 0x04; // apply gamma correction to this output
mjr 35:e959ffba78fd 97
mjr 35:e959ffba78fd 98 // maximum number of output ports
mjr 48:058ace2aed1d 99 const int MAX_OUT_PORTS = 128;
mjr 33:d832bcab089e 100
mjr 38:091e511ce8a0 101 // port configuration data
mjr 38:091e511ce8a0 102 struct LedWizPortCfg
mjr 38:091e511ce8a0 103 {
mjr 38:091e511ce8a0 104 uint8_t typ; // port type: a PortTypeXxx value
mjr 38:091e511ce8a0 105 uint8_t pin; // physical output pin: for a GPIO port, this is an index in the
mjr 38:091e511ce8a0 106 // USB-to-PinName mapping list; for a TLC5940 or 74HC595 port, it's
mjr 38:091e511ce8a0 107 // the output number, starting from 0 for OUT0 on the first chip in
mjr 38:091e511ce8a0 108 // the daisy chain. For inactive and virtual ports, it's unused.
mjr 38:091e511ce8a0 109 uint8_t flags; // flags: a combination of PortFlagXxx values
mjr 40:cc0d9814522b 110
mjr 40:cc0d9814522b 111 void set(uint8_t typ, uint8_t pin, uint8_t flags = 0)
mjr 40:cc0d9814522b 112 {
mjr 40:cc0d9814522b 113 this->typ = typ;
mjr 40:cc0d9814522b 114 this->pin = pin;
mjr 40:cc0d9814522b 115 this->flags = flags;
mjr 40:cc0d9814522b 116 }
mjr 40:cc0d9814522b 117
mjr 38:091e511ce8a0 118 } __attribute__((packed));
mjr 38:091e511ce8a0 119
mjr 38:091e511ce8a0 120
mjr 35:e959ffba78fd 121 struct Config
mjr 35:e959ffba78fd 122 {
mjr 35:e959ffba78fd 123 // set all values to factory defaults
mjr 35:e959ffba78fd 124 void setFactoryDefaults()
mjr 35:e959ffba78fd 125 {
mjr 35:e959ffba78fd 126 // By default, pretend to be LedWiz unit #8. This can be from 1 to 16. Real
mjr 35:e959ffba78fd 127 // LedWiz units have their unit number set at the factory, and the vast majority
mjr 35:e959ffba78fd 128 // are set up as unit #1, since that's the default for anyone who doesn't ask
mjr 35:e959ffba78fd 129 // for a different setting. It seems rare for anyone to use more than one unit
mjr 35:e959ffba78fd 130 // in a pin cab, but for the few who do, the others will probably be numbered
mjr 35:e959ffba78fd 131 // sequentially as #2, #3, etc. It seems safe to assume that no one out there
mjr 48:058ace2aed1d 132 // has a unit #8, so we'll use that as our default. This can be changed from
mjr 48:058ace2aed1d 133 // the config tool, but for the sake of convenience, it's better to pick a
mjr 48:058ace2aed1d 134 // default that most people won't have to change.
mjr 35:e959ffba78fd 135 usbVendorID = 0xFAFA; // LedWiz vendor code
mjr 48:058ace2aed1d 136 usbProductID = 0x00F7; // LedWiz product code for unit #8
mjr 35:e959ffba78fd 137 psUnitNo = 8;
mjr 35:e959ffba78fd 138
mjr 35:e959ffba78fd 139 // enable joystick reports
mjr 35:e959ffba78fd 140 joystickEnabled = true;
mjr 35:e959ffba78fd 141
mjr 35:e959ffba78fd 142 // assume standard orientation, with USB ports toward front of cabinet
mjr 35:e959ffba78fd 143 orientation = OrientationFront;
mjr 25:e22b88bd783a 144
mjr 35:e959ffba78fd 145 // assume no plunger is attached
mjr 35:e959ffba78fd 146 plunger.enabled = false;
mjr 35:e959ffba78fd 147 plunger.sensorType = PlungerType_None;
mjr 35:e959ffba78fd 148
mjr 48:058ace2aed1d 149 #if TEST_CONFIG_EXPAN || TEST_CONFIG_CAB // $$$
mjr 43:7a6364d82a41 150 plunger.enabled = true;
mjr 43:7a6364d82a41 151 plunger.sensorType = PlungerType_TSL1410RS;
mjr 43:7a6364d82a41 152 plunger.sensorPin[0] = PTE20; // SI
mjr 43:7a6364d82a41 153 plunger.sensorPin[1] = PTE21; // SCLK
mjr 43:7a6364d82a41 154 plunger.sensorPin[2] = PTB0; // AO1 = PTB0 = ADC0_SE8
mjr 43:7a6364d82a41 155 plunger.sensorPin[3] = PTE22; // AO2 (parallel mode) = PTE22 = ADC0_SE3
mjr 43:7a6364d82a41 156 #endif
mjr 43:7a6364d82a41 157
mjr 48:058ace2aed1d 158 // default plunger calibration button settings
mjr 48:058ace2aed1d 159 plunger.cal.btn = PTE29;
mjr 48:058ace2aed1d 160 plunger.cal.led = PTE23;
mjr 35:e959ffba78fd 161
mjr 44:b5ac89b9cd5d 162 // set the default plunger calibration
mjr 44:b5ac89b9cd5d 163 plunger.cal.setDefaults();
mjr 35:e959ffba78fd 164
mjr 35:e959ffba78fd 165 // disable the ZB Launch Ball by default
mjr 35:e959ffba78fd 166 plunger.zbLaunchBall.port = 0;
mjr 35:e959ffba78fd 167 plunger.zbLaunchBall.btn = 0;
mjr 35:e959ffba78fd 168
mjr 35:e959ffba78fd 169 // assume no TV ON switch
mjr 43:7a6364d82a41 170 TVON.statusPin = NC;
mjr 43:7a6364d82a41 171 TVON.latchPin = NC;
mjr 43:7a6364d82a41 172 TVON.relayPin = NC;
mjr 43:7a6364d82a41 173 TVON.delayTime = 7;
mjr 48:058ace2aed1d 174 #if TEST_CONFIG_EXPAN //$$$
mjr 38:091e511ce8a0 175 TVON.statusPin = PTD2;
mjr 38:091e511ce8a0 176 TVON.latchPin = PTE0;
mjr 38:091e511ce8a0 177 TVON.relayPin = PTD3;
mjr 38:091e511ce8a0 178 TVON.delayTime = 7;
mjr 38:091e511ce8a0 179 #endif
mjr 35:e959ffba78fd 180
mjr 35:e959ffba78fd 181 // assume no TLC5940 chips
mjr 35:e959ffba78fd 182 tlc5940.nchips = 0;
mjr 48:058ace2aed1d 183 #if TEST_CONFIG_EXPAN // $$$
mjr 48:058ace2aed1d 184 tlc5940.nchips = 4;
mjr 38:091e511ce8a0 185 #endif
mjr 38:091e511ce8a0 186
mjr 38:091e511ce8a0 187 // default TLC5940 pin assignments
mjr 38:091e511ce8a0 188 tlc5940.sin = PTC6;
mjr 38:091e511ce8a0 189 tlc5940.sclk = PTC5;
mjr 38:091e511ce8a0 190 tlc5940.xlat = PTC10;
mjr 38:091e511ce8a0 191 tlc5940.blank = PTC7;
mjr 38:091e511ce8a0 192 tlc5940.gsclk = PTA1;
mjr 35:e959ffba78fd 193
mjr 35:e959ffba78fd 194 // assume no 74HC595 chips
mjr 35:e959ffba78fd 195 hc595.nchips = 0;
mjr 48:058ace2aed1d 196 #if TEST_CONFIG_EXPAN // $$$
mjr 48:058ace2aed1d 197 hc595.nchips = 1;
mjr 40:cc0d9814522b 198 #endif
mjr 40:cc0d9814522b 199
mjr 38:091e511ce8a0 200 // default 74HC595 pin assignments
mjr 38:091e511ce8a0 201 hc595.sin = PTA5;
mjr 38:091e511ce8a0 202 hc595.sclk = PTA4;
mjr 38:091e511ce8a0 203 hc595.latch = PTA12;
mjr 38:091e511ce8a0 204 hc595.ena = PTD4;
mjr 38:091e511ce8a0 205
mjr 35:e959ffba78fd 206 // initially configure with no LedWiz output ports
mjr 35:e959ffba78fd 207 outPort[0].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 208 for (int i = 0 ; i < sizeof(specialPort)/sizeof(specialPort[0]) ; ++i)
mjr 38:091e511ce8a0 209 specialPort[i].typ = PortTypeDisabled;
mjr 35:e959ffba78fd 210
mjr 35:e959ffba78fd 211 // initially configure with no input buttons
mjr 35:e959ffba78fd 212 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 35:e959ffba78fd 213 button[i].pin = 0; // 0 == index of NC in USB-to-PinName mapping
mjr 38:091e511ce8a0 214
mjr 48:058ace2aed1d 215 #if TEST_CONFIG_EXPAN | TEST_CONFIG_CAB
mjr 38:091e511ce8a0 216 for (int i = 0 ; i < 24 ; ++i) {
mjr 38:091e511ce8a0 217 static int bp[] = {
mjr 38:091e511ce8a0 218 21, // 1 = PTC2
mjr 38:091e511ce8a0 219 12, // 2 = PTB3
mjr 38:091e511ce8a0 220 11, // 3 = PTB2
mjr 38:091e511ce8a0 221 10, // 4 = PTB1
mjr 38:091e511ce8a0 222 54, // 5 = PTE30
mjr 48:058ace2aed1d 223 #if TEST_CONFIG_EXPAN
mjr 38:091e511ce8a0 224 30, // 6 = PTC11
mjr 48:058ace2aed1d 225 #elif TEST_CONFIG_CAG
mjr 48:058ace2aed1d 226 51, // 6 = PTE22
mjr 48:058ace2aed1d 227 #endif
mjr 38:091e511ce8a0 228 48, // 7 = PTE5
mjr 38:091e511ce8a0 229 47, // 8 = PTE4
mjr 38:091e511ce8a0 230 46, // 9 = PTE3
mjr 38:091e511ce8a0 231 45, // 10 = PTE2
mjr 38:091e511ce8a0 232 16, // 11 = PTB11
mjr 38:091e511ce8a0 233 15, // 12 = PTB10
mjr 38:091e511ce8a0 234 14, // 13 = PTB9
mjr 38:091e511ce8a0 235 13, // 14 = PTB8
mjr 38:091e511ce8a0 236 31, // 15 = PTC12
mjr 38:091e511ce8a0 237 32, // 16 = PTC13
mjr 38:091e511ce8a0 238 33, // 17 = PTC16
mjr 38:091e511ce8a0 239 34, // 18 = PTC17
mjr 38:091e511ce8a0 240 7, // 19 = PTA16
mjr 38:091e511ce8a0 241 8, // 20 = PTA17
mjr 38:091e511ce8a0 242 55, // 21 = PTE31
mjr 38:091e511ce8a0 243 41, // 22 = PTD6
mjr 38:091e511ce8a0 244 42, // 23 = PTD7
mjr 38:091e511ce8a0 245 44 // 24 = PTE1
mjr 40:cc0d9814522b 246 };
mjr 48:058ace2aed1d 247 button[i].set(bp[i],
mjr 48:058ace2aed1d 248 #if TEST_CONFIG_EXPAN
mjr 48:058ace2aed1d 249 BtnTypeKey, i+4); // keyboard key A, B, C...
mjr 48:058ace2aed1d 250 #elif TEST_CONFIG_CAB
mjr 48:058ace2aed1d 251 BtnTypeJoystick, i); // joystick button 0, 1, ...
mjr 48:058ace2aed1d 252 #endif
mjr 48:058ace2aed1d 253
mjr 38:091e511ce8a0 254 }
mjr 38:091e511ce8a0 255 #endif
mjr 38:091e511ce8a0 256
mjr 38:091e511ce8a0 257 #if 0
mjr 38:091e511ce8a0 258 button[23].typ = BtnTypeJoystick;
mjr 38:091e511ce8a0 259 button[23].val = 5; // B
mjr 38:091e511ce8a0 260 button[23].flags = 0x01; // pulse button
mjr 38:091e511ce8a0 261
mjr 38:091e511ce8a0 262 button[22].typ = BtnTypeModKey;
mjr 38:091e511ce8a0 263 button[22].val = 0x02; // left shift
mjr 38:091e511ce8a0 264
mjr 38:091e511ce8a0 265 button[21].typ = BtnTypeMedia;
mjr 38:091e511ce8a0 266 button[21].val = 0x02; // vol down
mjr 38:091e511ce8a0 267
mjr 38:091e511ce8a0 268 button[20].typ = BtnTypeMedia;
mjr 38:091e511ce8a0 269 button[20].val = 0x01; // vol up
mjr 39:b3815a1c3802 270
mjr 38:091e511ce8a0 271 #endif
mjr 38:091e511ce8a0 272
mjr 43:7a6364d82a41 273
mjr 48:058ace2aed1d 274 #if TEST_CONFIG_EXPAN // $$$
mjr 40:cc0d9814522b 275 // CONFIGURE EXPANSION BOARD PORTS
mjr 40:cc0d9814522b 276 //
mjr 40:cc0d9814522b 277 // We have the following hardware attached:
mjr 40:cc0d9814522b 278 //
mjr 40:cc0d9814522b 279 // Main board
mjr 40:cc0d9814522b 280 // TLC ports 0-15 -> flashers
mjr 40:cc0d9814522b 281 // TLC ports 16 -> strobe
mjr 40:cc0d9814522b 282 // TLC ports 17-31 -> flippers
mjr 40:cc0d9814522b 283 // Dig GPIO PTC8 -> knocker (timer-protected outputs)
mjr 40:cc0d9814522b 284 //
mjr 40:cc0d9814522b 285 // Power board:
mjr 40:cc0d9814522b 286 // TLC ports 32-63 -> general purpose outputs
mjr 40:cc0d9814522b 287 //
mjr 40:cc0d9814522b 288 // Chime board:
mjr 40:cc0d9814522b 289 // HC595 ports 0-7 -> timer-protected outputs
mjr 40:cc0d9814522b 290 //
mjr 38:091e511ce8a0 291 {
mjr 38:091e511ce8a0 292 int n = 0;
mjr 40:cc0d9814522b 293
mjr 40:cc0d9814522b 294 // 1-15 = flashers (TLC ports 0-15)
mjr 40:cc0d9814522b 295 // 16 = strobe (TLC port 15)
mjr 40:cc0d9814522b 296 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 297 outPort[n++].set(PortTypeTLC5940, i, PortFlagGamma);
mjr 40:cc0d9814522b 298
mjr 40:cc0d9814522b 299 // 17 = knocker
mjr 40:cc0d9814522b 300 outPort[n++].set(PortTypeGPIODig, 27);
mjr 35:e959ffba78fd 301
mjr 40:cc0d9814522b 302 // 18-49 = power board outputs 1-32 (TLC ports 32-63)
mjr 40:cc0d9814522b 303 for (int i = 0 ; i < 32 ; ++i)
mjr 40:cc0d9814522b 304 outPort[n++].set(PortTypeTLC5940, i+32);
mjr 40:cc0d9814522b 305
mjr 40:cc0d9814522b 306 // 50-65 = flipper RGB (TLC ports 16-31)
mjr 40:cc0d9814522b 307 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 308 outPort[n++].set(PortTypeTLC5940, i+16, PortFlagGamma);
mjr 40:cc0d9814522b 309
mjr 40:cc0d9814522b 310 // 66-73 = chime board ports 1-8 (74HC595 ports 0-7)
mjr 40:cc0d9814522b 311 for (int i = 0 ; i < 8 ; ++i)
mjr 40:cc0d9814522b 312 outPort[n++].set(PortType74HC595, i);
mjr 40:cc0d9814522b 313
mjr 40:cc0d9814522b 314 // set Disabled to signify end of configured outputs
mjr 38:091e511ce8a0 315 outPort[n].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 316 }
mjr 38:091e511ce8a0 317 #endif
mjr 48:058ace2aed1d 318
mjr 48:058ace2aed1d 319 #if TEST_CONFIG_CAB
mjr 48:058ace2aed1d 320 #if TEST_KEEP_PRINTF
mjr 48:058ace2aed1d 321 outPort[ 0].set(PortTypeGPIOPWM, 0); // port 1 = PTA1 -> NC to keep debug printf
mjr 48:058ace2aed1d 322 outPort[ 1].set(PortTypeGPIOPWM, 0); // port 2 = PTA2 -> NC to keep debug printf
mjr 48:058ace2aed1d 323 #else
mjr 48:058ace2aed1d 324 outPort[ 0].set(PortTypeGPIOPWM, 1); // port 1 = PTA1
mjr 48:058ace2aed1d 325 outPort[ 1].set(PortTypeGPIOPWM, 2); // port 2 = PTA2
mjr 48:058ace2aed1d 326 #endif
mjr 48:058ace2aed1d 327 outPort[ 2].set(PortTypeGPIOPWM, 39); // port 3 = PTD4
mjr 48:058ace2aed1d 328 outPort[ 3].set(PortTypeGPIOPWM, 5); // port 4 = PTA12
mjr 48:058ace2aed1d 329 outPort[ 4].set(PortTypeGPIOPWM, 3); // port 5 = PTA4
mjr 48:058ace2aed1d 330 outPort[ 5].set(PortTypeGPIOPWM, 4); // port 6 = PTA5
mjr 48:058ace2aed1d 331 outPort[ 6].set(PortTypeGPIOPWM, 6); // port 7 = PTA13
mjr 48:058ace2aed1d 332 outPort[ 7].set(PortTypeGPIOPWM, 40); // port 8 = PTD5
mjr 48:058ace2aed1d 333 outPort[ 8].set(PortTypeGPIOPWM, 35); // port 9 = PTD0
mjr 48:058ace2aed1d 334 outPort[ 9].set(PortTypeGPIOPWM, 38); // port 10 = PTD3
mjr 48:058ace2aed1d 335 outPort[10].set(PortTypeGPIODig, 37); // port 11 = PTD2
mjr 48:058ace2aed1d 336 outPort[11].set(PortTypeGPIODig, 27); // port 12 = PCT8
mjr 48:058ace2aed1d 337 outPort[12].set(PortTypeGPIODig, 28); // port 13 = PCT9
mjr 48:058ace2aed1d 338 outPort[13].set(PortTypeGPIODig, 26); // port 14 = PTC7
mjr 48:058ace2aed1d 339 outPort[14].set(PortTypeGPIODig, 19); // port 15 = PTC0
mjr 48:058ace2aed1d 340 outPort[15].set(PortTypeGPIODig, 22); // port 16 = PTC3
mjr 48:058ace2aed1d 341 outPort[16].set(PortTypeGPIODig, 23); // port 17 = PTC4
mjr 48:058ace2aed1d 342 outPort[17].set(PortTypeGPIODig, 24); // port 18 = PTC5
mjr 48:058ace2aed1d 343 outPort[18].set(PortTypeGPIODig, 25); // port 19 = PTC6
mjr 48:058ace2aed1d 344 outPort[19].set(PortTypeGPIODig, 29); // port 20 = PTC10
mjr 48:058ace2aed1d 345 outPort[20].set(PortTypeGPIODig, 30); // port 21 = PTC11
mjr 48:058ace2aed1d 346 outPort[21].set(PortTypeGPIODig, 43); // port 22 = PTE0
mjr 48:058ace2aed1d 347 #endif
mjr 48:058ace2aed1d 348
mjr 38:091e511ce8a0 349 #if 0
mjr 40:cc0d9814522b 350 // configure the on-board RGB LED as outputs 1,2,3
mjr 40:cc0d9814522b 351 outPort[0].set(PortTypeGPIOPWM, 17, PortFlagActiveLow); // PTB18 = LED1 = Red LED
mjr 40:cc0d9814522b 352 outPort[1].set(PortTypeGPIOPWM, 18, PortFlagActiveLow); // PTB19 = LED2 = Green LED
mjr 40:cc0d9814522b 353 outPort[2].set(PortTypeGPIOPWM, 36, PortFlagActiveLow); // PTD1 = LED3 = Blue LED
mjr 38:091e511ce8a0 354 outPort[3].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 355 #endif
mjr 35:e959ffba78fd 356 }
mjr 35:e959ffba78fd 357
mjr 35:e959ffba78fd 358 // --- USB DEVICE CONFIGURATION ---
mjr 35:e959ffba78fd 359
mjr 35:e959ffba78fd 360 // USB device identification - vendor ID and product ID. For LedLWiz
mjr 35:e959ffba78fd 361 // emulation, use vendor ID 0xFAFA and product ID 0x00EF + unit#, where
mjr 35:e959ffba78fd 362 // unit# is the nominal LedWiz unit number from 1 to 16. Alternatively,
mjr 35:e959ffba78fd 363 // if LedWiz emulation isn't desired or causes any driver conflicts on
mjr 35:e959ffba78fd 364 // the host, we have a private Pinscape assignment as vendor ID 0x1209
mjr 35:e959ffba78fd 365 // and product ID 0xEAEA (registered with http://pid.codes, a registry
mjr 35:e959ffba78fd 366 // for open-source USB projects).
mjr 35:e959ffba78fd 367 uint16_t usbVendorID;
mjr 35:e959ffba78fd 368 uint16_t usbProductID;
mjr 35:e959ffba78fd 369
mjr 35:e959ffba78fd 370 // Pinscape Controller unit number. This is the nominal unit number,
mjr 35:e959ffba78fd 371 // from 1 to 16. We report this in the status query; DOF uses it to
mjr 35:e959ffba78fd 372 // distinguish multiple Pinscape units. Note that this doesn't affect
mjr 35:e959ffba78fd 373 // the LedWiz unit numbering, which is implied by the USB Product ID.
mjr 35:e959ffba78fd 374 uint8_t psUnitNo;
mjr 35:e959ffba78fd 375
mjr 35:e959ffba78fd 376 // Are joystick reports enabled? Joystick reports can be turned off, to
mjr 35:e959ffba78fd 377 // use the device as purely an output controller.
mjr 35:e959ffba78fd 378 char joystickEnabled;
mjr 35:e959ffba78fd 379
mjr 35:e959ffba78fd 380
mjr 35:e959ffba78fd 381 // --- ACCELEROMETER ---
mjr 35:e959ffba78fd 382
mjr 35:e959ffba78fd 383 // accelerometer orientation (ORIENTATION_xxx value)
mjr 35:e959ffba78fd 384 char orientation;
mjr 35:e959ffba78fd 385
mjr 35:e959ffba78fd 386
mjr 35:e959ffba78fd 387 // --- PLUNGER CONFIGURATION ---
mjr 35:e959ffba78fd 388 struct
mjr 35:e959ffba78fd 389 {
mjr 35:e959ffba78fd 390 // plunger enabled/disabled
mjr 35:e959ffba78fd 391 char enabled;
mjr 33:d832bcab089e 392
mjr 35:e959ffba78fd 393 // plunger sensor type
mjr 35:e959ffba78fd 394 char sensorType;
mjr 35:e959ffba78fd 395
mjr 35:e959ffba78fd 396 // Plunger sensor pins. To accommodate a wide range of sensor types,
mjr 35:e959ffba78fd 397 // we keep a generic list of 4 pin assignments. The use of each pin
mjr 35:e959ffba78fd 398 // varies by sensor. The lists below are in order of the generic
mjr 35:e959ffba78fd 399 // pins; NC means that the pin isn't used by the sensor. Each pin's
mjr 35:e959ffba78fd 400 // GPIO usage is also listed. Certain usages limit which physical
mjr 35:e959ffba78fd 401 // pins can be assigned (e.g., AnalogIn or PwmOut).
mjr 35:e959ffba78fd 402 //
mjr 35:e959ffba78fd 403 // TSL1410R/1412R, serial: SI (DigitalOut), CLK (DigitalOut), AO (AnalogIn), NC
mjr 35:e959ffba78fd 404 // TSL1410R/1412R, parallel: SI (DigitalOut), CLK (DigitalOut), AO1 (AnalogIn), AO2 (AnalogIn)
mjr 35:e959ffba78fd 405 // Potentiometer: AO (AnalogIn), NC, NC, NC
mjr 35:e959ffba78fd 406 // AEDR8300: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 407 // AS5304: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 408 PinName sensorPin[4];
mjr 35:e959ffba78fd 409
mjr 35:e959ffba78fd 410 // Pseudo LAUNCH BALL button.
mjr 35:e959ffba78fd 411 //
mjr 35:e959ffba78fd 412 // This configures the "ZB Launch Ball" feature in DOF, based on Zeb's (of
mjr 35:e959ffba78fd 413 // zebsboards.com) scheme for using a mechanical plunger as a Launch button.
mjr 35:e959ffba78fd 414 // Set the port to 0 to disable the feature.
mjr 35:e959ffba78fd 415 //
mjr 35:e959ffba78fd 416 // The port number is an LedWiz port number that we monitor for activation.
mjr 35:e959ffba78fd 417 // This port isn't connected to a physical device; rather, the host turns it
mjr 35:e959ffba78fd 418 // on to indicate that the pseudo Launch button mode is in effect.
mjr 35:e959ffba78fd 419 //
mjr 35:e959ffba78fd 420 // The button number gives the button that we "press" when a launch occurs.
mjr 35:e959ffba78fd 421 // This can be connected to the physical Launch button, or can simply be
mjr 35:e959ffba78fd 422 // an otherwise unused button.
mjr 35:e959ffba78fd 423 //
mjr 40:cc0d9814522b 424 // The "push distance" is the distance, in 1/1000 inch units, for registering a
mjr 40:cc0d9814522b 425 // push on the plunger as a button push. If the player pushes the plunger
mjr 40:cc0d9814522b 426 // forward of the rest position by this amount, we'll treat it as pushing the
mjr 40:cc0d9814522b 427 // button, even if the player didn't pull back the plunger first. This lets
mjr 40:cc0d9814522b 428 // the player treat the plunger knob as a button for games where it's meaningful
mjr 35:e959ffba78fd 429 // to hold down the Launch button for specific intervals (e.g., "Championship
mjr 35:e959ffba78fd 430 // Pub").
mjr 35:e959ffba78fd 431 struct
mjr 35:e959ffba78fd 432 {
mjr 35:e959ffba78fd 433 int port;
mjr 35:e959ffba78fd 434 int btn;
mjr 40:cc0d9814522b 435 int pushDistance;
mjr 35:e959ffba78fd 436
mjr 35:e959ffba78fd 437 } zbLaunchBall;
mjr 35:e959ffba78fd 438
mjr 35:e959ffba78fd 439 // --- PLUNGER CALIBRATION ---
mjr 35:e959ffba78fd 440 struct
mjr 35:e959ffba78fd 441 {
mjr 35:e959ffba78fd 442 // has the plunger been calibrated?
mjr 35:e959ffba78fd 443 int calibrated;
mjr 35:e959ffba78fd 444
mjr 35:e959ffba78fd 445 // calibration button switch pin
mjr 35:e959ffba78fd 446 PinName btn;
mjr 35:e959ffba78fd 447
mjr 35:e959ffba78fd 448 // calibration button indicator light pin
mjr 35:e959ffba78fd 449 PinName led;
mjr 35:e959ffba78fd 450
mjr 48:058ace2aed1d 451 // Plunger calibration min, zero, and max. These are in terms of the
mjr 48:058ace2aed1d 452 // unsigned 16-bit scale (0x0000..0xffff) that we use for the raw sensor
mjr 48:058ace2aed1d 453 // readings.
mjr 48:058ace2aed1d 454 //
mjr 48:058ace2aed1d 455 // The zero point is the rest position (aka park position), where the
mjr 48:058ace2aed1d 456 // plunger is in equilibrium between the main spring and the barrel
mjr 48:058ace2aed1d 457 // spring. In the standard setup, the plunger can travel a small
mjr 48:058ace2aed1d 458 // distance forward of the rest position, because the barrel spring
mjr 48:058ace2aed1d 459 // can be compressed a bit. The minimum is the maximum forward point
mjr 48:058ace2aed1d 460 // where the barrel spring can't be compressed any further.
mjr 48:058ace2aed1d 461 uint16_t min;
mjr 48:058ace2aed1d 462 uint16_t zero;
mjr 48:058ace2aed1d 463 uint16_t max;
mjr 35:e959ffba78fd 464
mjr 44:b5ac89b9cd5d 465 // Reset the plunger calibration
mjr 44:b5ac89b9cd5d 466 void setDefaults()
mjr 35:e959ffba78fd 467 {
mjr 44:b5ac89b9cd5d 468 calibrated = false; // not calibrated
mjr 48:058ace2aed1d 469 min = 0; // assume we can go all the way forward...
mjr 48:058ace2aed1d 470 max = 0xffff; // ...and all the way back
mjr 48:058ace2aed1d 471 zero = max/6; // the rest position is usually around 1/2" back = 1/6 of total travel
mjr 44:b5ac89b9cd5d 472 }
mjr 44:b5ac89b9cd5d 473
mjr 44:b5ac89b9cd5d 474 // Begin calibration. This sets each limit to the worst
mjr 44:b5ac89b9cd5d 475 // case point - for example, we set the retracted position
mjr 44:b5ac89b9cd5d 476 // to all the way forward. Each actual reading that comes
mjr 44:b5ac89b9cd5d 477 // in is then checked against the current limit, and if it's
mjr 44:b5ac89b9cd5d 478 // outside of the limit, we reset the limit to the new reading.
mjr 44:b5ac89b9cd5d 479 void begin()
mjr 44:b5ac89b9cd5d 480 {
mjr 48:058ace2aed1d 481 min = 0; // we don't calibrate the maximum forward position, so keep this at zero
mjr 48:058ace2aed1d 482 zero = 0xffff; // set the zero position all the way back
mjr 48:058ace2aed1d 483 max = 0; // set the retracted position all the way forward
mjr 35:e959ffba78fd 484 }
mjr 17:ab3cec0c8bf4 485
mjr 35:e959ffba78fd 486 } cal;
mjr 18:5e890ebd0023 487
mjr 35:e959ffba78fd 488 } plunger;
mjr 29:582472d0bc57 489
mjr 35:e959ffba78fd 490
mjr 35:e959ffba78fd 491 // --- TV ON SWITCH ---
mjr 35:e959ffba78fd 492 //
mjr 35:e959ffba78fd 493 // To use the TV ON switch feature, the special power sensing circuitry
mjr 35:e959ffba78fd 494 // implemented on the Expansion Board must be attached (or an equivalent
mjr 35:e959ffba78fd 495 // circuit, as described in the Build Guide). The circuitry lets us
mjr 35:e959ffba78fd 496 // detect power state changes on the secondary power supply.
mjr 35:e959ffba78fd 497 struct
mjr 35:e959ffba78fd 498 {
mjr 35:e959ffba78fd 499 // PSU2 power status sense (DigitalIn pin). This pin goes LOW when the
mjr 35:e959ffba78fd 500 // secondary power supply is turned off, and remains LOW until the LATCH
mjr 35:e959ffba78fd 501 // pin is raised high AND the secondary PSU is turned on. Once HIGH,
mjr 35:e959ffba78fd 502 // it remains HIGH as long as the secondary PSU is on.
mjr 35:e959ffba78fd 503 PinName statusPin;
mjr 35:e959ffba78fd 504
mjr 35:e959ffba78fd 505 // PSU2 power status latch (DigitalOut pin)
mjr 35:e959ffba78fd 506 PinName latchPin;
mjr 35:e959ffba78fd 507
mjr 35:e959ffba78fd 508 // TV ON relay pin (DigitalOut pin). This pin controls the TV switch
mjr 35:e959ffba78fd 509 // relay. Raising the pin HIGH turns the relay ON (energizes the coil).
mjr 35:e959ffba78fd 510 PinName relayPin;
mjr 35:e959ffba78fd 511
mjr 40:cc0d9814522b 512 // TV ON delay time, in 1/100 second units. This is the interval between
mjr 40:cc0d9814522b 513 // sensing that the secondary power supply has turned on and pulsing the
mjr 40:cc0d9814522b 514 // TV ON switch relay.
mjr 40:cc0d9814522b 515 int delayTime;
mjr 35:e959ffba78fd 516
mjr 35:e959ffba78fd 517 } TVON;
mjr 35:e959ffba78fd 518
mjr 29:582472d0bc57 519
mjr 35:e959ffba78fd 520 // --- TLC5940NT PWM Controller Chip Setup ---
mjr 35:e959ffba78fd 521 struct
mjr 35:e959ffba78fd 522 {
mjr 35:e959ffba78fd 523 // number of TLC5940NT chips connected in daisy chain
mjr 35:e959ffba78fd 524 int nchips;
mjr 35:e959ffba78fd 525
mjr 35:e959ffba78fd 526 // pin connections
mjr 35:e959ffba78fd 527 PinName sin; // Serial data - must connect to SPIO MOSI -> PTC6 or PTD2
mjr 35:e959ffba78fd 528 PinName sclk; // Serial clock - must connect to SPIO SCLK -> PTC5 or PTD1
mjr 35:e959ffba78fd 529 // (but don't use PTD1, since it's hard-wired to the on-board blue LED)
mjr 35:e959ffba78fd 530 PinName xlat; // XLAT (latch) signal - connect to any GPIO pin
mjr 35:e959ffba78fd 531 PinName blank; // BLANK signal - connect to any GPIO pin
mjr 35:e959ffba78fd 532 PinName gsclk; // Grayscale clock - must connect to a PWM-out capable pin
mjr 29:582472d0bc57 533
mjr 35:e959ffba78fd 534 } tlc5940;
mjr 35:e959ffba78fd 535
mjr 35:e959ffba78fd 536
mjr 35:e959ffba78fd 537 // --- 74HC595 Shift Register Setup ---
mjr 35:e959ffba78fd 538 struct
mjr 35:e959ffba78fd 539 {
mjr 35:e959ffba78fd 540 // number of 74HC595 chips attached in daisy chain
mjr 35:e959ffba78fd 541 int nchips;
mjr 35:e959ffba78fd 542
mjr 35:e959ffba78fd 543 // pin connections
mjr 35:e959ffba78fd 544 PinName sin; // Serial data - use any GPIO pin
mjr 35:e959ffba78fd 545 PinName sclk; // Serial clock - use any GPIO pin
mjr 35:e959ffba78fd 546 PinName latch; // Latch - use any GPIO pin
mjr 35:e959ffba78fd 547 PinName ena; // Enable signal - use any GPIO pin
mjr 35:e959ffba78fd 548
mjr 35:e959ffba78fd 549 } hc595;
mjr 34:6b981a2afab7 550
mjr 25:e22b88bd783a 551
mjr 35:e959ffba78fd 552 // --- Button Input Setup ---
mjr 40:cc0d9814522b 553 ButtonCfg button[MAX_BUTTONS] __attribute__((packed));
mjr 17:ab3cec0c8bf4 554
mjr 35:e959ffba78fd 555 // --- LedWiz Output Port Setup ---
mjr 38:091e511ce8a0 556 LedWizPortCfg outPort[MAX_OUT_PORTS] __attribute__((packed)); // LedWiz & extended output ports
mjr 38:091e511ce8a0 557 LedWizPortCfg specialPort[1]; // special ports (Night Mode indicator, etc)
mjr 48:058ace2aed1d 558
mjr 17:ab3cec0c8bf4 559 };
mjr 17:ab3cec0c8bf4 560
mjr 35:e959ffba78fd 561 #endif