An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Thu Jul 24 05:50:36 2014 +0000
Revision:
4:02c7cd7b2183
Parent:
3:3514575d4f86
Child:
5:a70c0bce770d
USB 3 connection problems fixed. Host power status reflected in diagnostic LEDs. Non-blocking initial connection.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 0:5acbbe3f4cf4 1 #include "mbed.h"
mjr 0:5acbbe3f4cf4 2 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 3 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 4 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 5 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 6 #include "crc32.h"
mjr 2:c174f9ee414a 7
mjr 2:c174f9ee414a 8 // customization of the joystick class to expose connect/suspend status
mjr 2:c174f9ee414a 9 class MyUSBJoystick: public USBJoystick
mjr 2:c174f9ee414a 10 {
mjr 2:c174f9ee414a 11 public:
mjr 2:c174f9ee414a 12 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release)
mjr 4:02c7cd7b2183 13 : USBJoystick(vendor_id, product_id, product_release, false)
mjr 2:c174f9ee414a 14 {
mjr 2:c174f9ee414a 15 suspended_ = false;
mjr 2:c174f9ee414a 16 }
mjr 2:c174f9ee414a 17
mjr 3:3514575d4f86 18 int isConnected() { return configured(); }
mjr 2:c174f9ee414a 19 int isSuspended() const { return suspended_; }
mjr 2:c174f9ee414a 20
mjr 2:c174f9ee414a 21 protected:
mjr 2:c174f9ee414a 22 virtual void suspendStateChanged(unsigned int suspended)
mjr 2:c174f9ee414a 23 { suspended_ = suspended; }
mjr 2:c174f9ee414a 24
mjr 2:c174f9ee414a 25 int suspended_;
mjr 2:c174f9ee414a 26 };
mjr 0:5acbbe3f4cf4 27
mjr 4:02c7cd7b2183 28 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 4:02c7cd7b2183 29 DigitalOut ledR(LED1), ledG(LED2), ledB(LED3);
mjr 0:5acbbe3f4cf4 30
mjr 1:d913e0afb2ac 31 // calibration button - switch input and LED output
mjr 1:d913e0afb2ac 32 DigitalIn calBtn(PTE29);
mjr 1:d913e0afb2ac 33 DigitalOut calBtnLed(PTE23);
mjr 0:5acbbe3f4cf4 34
mjr 0:5acbbe3f4cf4 35 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 36
mjr 0:5acbbe3f4cf4 37 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 38 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 39
mjr 0:5acbbe3f4cf4 40 // profile (brightness/blink) state for each LedWiz output
mjr 1:d913e0afb2ac 41 static uint8_t wizVal[32] = {
mjr 0:5acbbe3f4cf4 42 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 43 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 44 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 45 0, 0, 0, 0, 0, 0, 0, 0
mjr 0:5acbbe3f4cf4 46 };
mjr 0:5acbbe3f4cf4 47
mjr 1:d913e0afb2ac 48 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 49 {
mjr 1:d913e0afb2ac 50 if (wizOn[idx]) {
mjr 0:5acbbe3f4cf4 51 // on - map profile brightness state to PWM level
mjr 1:d913e0afb2ac 52 uint8_t val = wizVal[idx];
mjr 0:5acbbe3f4cf4 53 if (val >= 1 && val <= 48)
mjr 0:5acbbe3f4cf4 54 return 1.0 - val/48.0;
mjr 0:5acbbe3f4cf4 55 else if (val >= 129 && val <= 132)
mjr 0:5acbbe3f4cf4 56 return 0.0;
mjr 0:5acbbe3f4cf4 57 else
mjr 0:5acbbe3f4cf4 58 return 1.0;
mjr 0:5acbbe3f4cf4 59 }
mjr 0:5acbbe3f4cf4 60 else {
mjr 0:5acbbe3f4cf4 61 // off
mjr 0:5acbbe3f4cf4 62 return 1.0;
mjr 0:5acbbe3f4cf4 63 }
mjr 0:5acbbe3f4cf4 64 }
mjr 0:5acbbe3f4cf4 65
mjr 1:d913e0afb2ac 66 static void updateWizOuts()
mjr 1:d913e0afb2ac 67 {
mjr 4:02c7cd7b2183 68 ledR = wizState(0);
mjr 4:02c7cd7b2183 69 ledG = wizState(1);
mjr 4:02c7cd7b2183 70 ledB = wizState(2);
mjr 1:d913e0afb2ac 71 }
mjr 1:d913e0afb2ac 72
mjr 1:d913e0afb2ac 73 struct AccPrv
mjr 0:5acbbe3f4cf4 74 {
mjr 1:d913e0afb2ac 75 AccPrv() : x(0), y(0) { }
mjr 1:d913e0afb2ac 76 float x;
mjr 1:d913e0afb2ac 77 float y;
mjr 1:d913e0afb2ac 78
mjr 1:d913e0afb2ac 79 double dist(AccPrv &b)
mjr 1:d913e0afb2ac 80 {
mjr 1:d913e0afb2ac 81 float dx = x - b.x, dy = y - b.y;
mjr 1:d913e0afb2ac 82 return sqrt(dx*dx + dy*dy);
mjr 1:d913e0afb2ac 83 }
mjr 1:d913e0afb2ac 84 };
mjr 0:5acbbe3f4cf4 85
mjr 2:c174f9ee414a 86 // Non-volatile memory structure. We store persistent a small
mjr 2:c174f9ee414a 87 // amount of persistent data in flash memory to retain calibration
mjr 2:c174f9ee414a 88 // data between sessions.
mjr 2:c174f9ee414a 89 struct NVM
mjr 2:c174f9ee414a 90 {
mjr 2:c174f9ee414a 91 // checksum - we use this to determine if the flash record
mjr 2:c174f9ee414a 92 // has been initialized
mjr 2:c174f9ee414a 93 uint32_t checksum;
mjr 2:c174f9ee414a 94
mjr 2:c174f9ee414a 95 // signature value
mjr 2:c174f9ee414a 96 static const uint32_t SIGNATURE = 0x4D4A522A;
mjr 2:c174f9ee414a 97 static const uint16_t VERSION = 0x0002;
mjr 2:c174f9ee414a 98
mjr 2:c174f9ee414a 99 // stored data (excluding the checksum)
mjr 2:c174f9ee414a 100 struct
mjr 2:c174f9ee414a 101 {
mjr 2:c174f9ee414a 102 // signature and version - further verification that we have valid
mjr 2:c174f9ee414a 103 // initialized data
mjr 2:c174f9ee414a 104 uint32_t sig;
mjr 2:c174f9ee414a 105 uint16_t vsn;
mjr 2:c174f9ee414a 106
mjr 2:c174f9ee414a 107 // direction - 0 means unknown, 1 means bright end is pixel 0, 2 means reversed
mjr 2:c174f9ee414a 108 uint8_t dir;
mjr 2:c174f9ee414a 109
mjr 2:c174f9ee414a 110 // plunger calibration min and max
mjr 2:c174f9ee414a 111 int plungerMin;
mjr 2:c174f9ee414a 112 int plungerMax;
mjr 2:c174f9ee414a 113 } d;
mjr 2:c174f9ee414a 114 };
mjr 2:c174f9ee414a 115
mjr 3:3514575d4f86 116 // Accelerometer handler
mjr 3:3514575d4f86 117 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 3:3514575d4f86 118 class Accel
mjr 3:3514575d4f86 119 {
mjr 3:3514575d4f86 120 public:
mjr 3:3514575d4f86 121 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 122 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 123 {
mjr 3:3514575d4f86 124 // set the initial ball velocity to zero
mjr 3:3514575d4f86 125 vx_ = vy_ = 0;
mjr 3:3514575d4f86 126
mjr 3:3514575d4f86 127 // set the initial raw acceleration reading to zero
mjr 3:3514575d4f86 128 xRaw_ = yRaw_ = 0;
mjr 3:3514575d4f86 129
mjr 3:3514575d4f86 130 // enable the interrupt
mjr 3:3514575d4f86 131 mma_.setInterruptMode(irqPin == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 132
mjr 3:3514575d4f86 133 // set up the interrupt handler
mjr 3:3514575d4f86 134 intIn_.rise(this, &Accel::isr);
mjr 3:3514575d4f86 135
mjr 3:3514575d4f86 136 // read the current registers to clear the data ready flag
mjr 3:3514575d4f86 137 float z;
mjr 3:3514575d4f86 138 mma_.getAccXYZ(xRaw_, yRaw_, z);
mjr 3:3514575d4f86 139
mjr 3:3514575d4f86 140 // start our timers
mjr 3:3514575d4f86 141 tGet_.start();
mjr 3:3514575d4f86 142 tInt_.start();
mjr 3:3514575d4f86 143 }
mjr 3:3514575d4f86 144
mjr 3:3514575d4f86 145 void get(float &x, float &y, float &rx, float &ry)
mjr 3:3514575d4f86 146 {
mjr 3:3514575d4f86 147 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 148 __disable_irq();
mjr 3:3514575d4f86 149
mjr 3:3514575d4f86 150 // read the shared data and store locally for calculations
mjr 3:3514575d4f86 151 float vx = vx_, vy = vy_, xRaw = xRaw_, yRaw = yRaw_;
mjr 3:3514575d4f86 152
mjr 3:3514575d4f86 153 // reset the velocity
mjr 3:3514575d4f86 154 vx_ = vy_ = 0;
mjr 3:3514575d4f86 155
mjr 3:3514575d4f86 156 // get the time since the last get() sample
mjr 3:3514575d4f86 157 float dt = tGet_.read_us()/1.0e6;
mjr 3:3514575d4f86 158 tGet_.reset();
mjr 3:3514575d4f86 159
mjr 3:3514575d4f86 160 // done manipulating the shared data
mjr 3:3514575d4f86 161 __enable_irq();
mjr 3:3514575d4f86 162
mjr 3:3514575d4f86 163 // calculate the acceleration since the last get(): a = dv/dt
mjr 3:3514575d4f86 164 x = vx/dt;
mjr 3:3514575d4f86 165 y = vy/dt;
mjr 3:3514575d4f86 166
mjr 3:3514575d4f86 167 // return the raw accelerometer data in rx,ry
mjr 3:3514575d4f86 168 rx = xRaw;
mjr 3:3514575d4f86 169 ry = yRaw;
mjr 3:3514575d4f86 170 }
mjr 3:3514575d4f86 171
mjr 3:3514575d4f86 172 private:
mjr 3:3514575d4f86 173 // interrupt handler
mjr 3:3514575d4f86 174 void isr()
mjr 3:3514575d4f86 175 {
mjr 3:3514575d4f86 176 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 177 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 178 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 179 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 180 // off to on, so we have to make sure it's off.
mjr 3:3514575d4f86 181 float z;
mjr 3:3514575d4f86 182 mma_.getAccXYZ(xRaw_, yRaw_, z);
mjr 3:3514575d4f86 183
mjr 3:3514575d4f86 184 // calculate the time since the last interrupt
mjr 3:3514575d4f86 185 float dt = tInt_.read_us()/1.0e6;
mjr 3:3514575d4f86 186 tInt_.reset();
mjr 3:3514575d4f86 187
mjr 3:3514575d4f86 188 // Accelerate the model ball: v = a*dt. Assume that the raw
mjr 3:3514575d4f86 189 // data from the accelerometer reflects the average physical
mjr 3:3514575d4f86 190 // acceleration over the interval since the last sample.
mjr 3:3514575d4f86 191 vx_ += xRaw_ * dt;
mjr 3:3514575d4f86 192 vy_ += yRaw_ * dt;
mjr 3:3514575d4f86 193 }
mjr 3:3514575d4f86 194
mjr 3:3514575d4f86 195 // current modeled ball velocity
mjr 3:3514575d4f86 196 float vx_, vy_;
mjr 3:3514575d4f86 197
mjr 3:3514575d4f86 198 // last raw axis readings
mjr 3:3514575d4f86 199 float xRaw_, yRaw_;
mjr 3:3514575d4f86 200
mjr 3:3514575d4f86 201 // underlying accelerometer object
mjr 3:3514575d4f86 202 MMA8451Q mma_;
mjr 3:3514575d4f86 203
mjr 3:3514575d4f86 204 // interrupt router
mjr 3:3514575d4f86 205 InterruptIn intIn_;
mjr 3:3514575d4f86 206
mjr 3:3514575d4f86 207 // timer for measuring time between get() samples
mjr 3:3514575d4f86 208 Timer tGet_;
mjr 3:3514575d4f86 209
mjr 3:3514575d4f86 210 // timer for measuring time between interrupts
mjr 3:3514575d4f86 211 Timer tInt_;
mjr 3:3514575d4f86 212 };
mjr 3:3514575d4f86 213
mjr 0:5acbbe3f4cf4 214 int main(void)
mjr 0:5acbbe3f4cf4 215 {
mjr 1:d913e0afb2ac 216 // turn off our on-board indicator LED
mjr 4:02c7cd7b2183 217 ledR = 1;
mjr 4:02c7cd7b2183 218 ledG = 1;
mjr 4:02c7cd7b2183 219 ledB = 1;
mjr 1:d913e0afb2ac 220
mjr 2:c174f9ee414a 221 // set up a flash memory controller
mjr 2:c174f9ee414a 222 FreescaleIAP iap;
mjr 2:c174f9ee414a 223
mjr 2:c174f9ee414a 224 // use the last sector of flash for our non-volatile memory structure
mjr 2:c174f9ee414a 225 int flash_addr = (iap.flash_size() - SECTOR_SIZE);
mjr 2:c174f9ee414a 226 NVM *flash = (NVM *)flash_addr;
mjr 2:c174f9ee414a 227 NVM cfg;
mjr 2:c174f9ee414a 228
mjr 2:c174f9ee414a 229 // check for valid flash
mjr 2:c174f9ee414a 230 bool flash_valid = (flash->d.sig == flash->SIGNATURE
mjr 2:c174f9ee414a 231 && flash->d.vsn == flash->VERSION
mjr 2:c174f9ee414a 232 && flash->checksum == CRC32(&flash->d, sizeof(flash->d)));
mjr 2:c174f9ee414a 233
mjr 2:c174f9ee414a 234 // Number of pixels we read from the sensor on each frame. This can be
mjr 2:c174f9ee414a 235 // less than the physical pixel count if desired; we'll read every nth
mjr 2:c174f9ee414a 236 // piexl if so. E.g., with a 1280-pixel physical sensor, if npix is 320,
mjr 2:c174f9ee414a 237 // we'll read every 4th pixel. VP doesn't seem to have very high
mjr 2:c174f9ee414a 238 // resolution internally for the plunger, so it's probably not necessary
mjr 2:c174f9ee414a 239 // to use the full resolution of the sensor - about 160 pixels seems
mjr 2:c174f9ee414a 240 // perfectly adequate. We can read the sensor faster (and thus provide
mjr 2:c174f9ee414a 241 // a higher refresh rate) if we read fewer pixels in each frame.
mjr 2:c174f9ee414a 242 const int npix = 160;
mjr 2:c174f9ee414a 243
mjr 2:c174f9ee414a 244 // if the flash is valid, load it; otherwise initialize to defaults
mjr 2:c174f9ee414a 245 if (flash_valid) {
mjr 2:c174f9ee414a 246 memcpy(&cfg, flash, sizeof(cfg));
mjr 2:c174f9ee414a 247 printf("Flash restored: plunger min=%d, max=%d\r\n",
mjr 2:c174f9ee414a 248 cfg.d.plungerMin, cfg.d.plungerMax);
mjr 2:c174f9ee414a 249 }
mjr 2:c174f9ee414a 250 else {
mjr 2:c174f9ee414a 251 printf("Factory reset\r\n");
mjr 2:c174f9ee414a 252 cfg.d.sig = cfg.SIGNATURE;
mjr 2:c174f9ee414a 253 cfg.d.vsn = cfg.VERSION;
mjr 2:c174f9ee414a 254 cfg.d.plungerMin = 0;
mjr 2:c174f9ee414a 255 cfg.d.plungerMax = npix;
mjr 2:c174f9ee414a 256 }
mjr 1:d913e0afb2ac 257
mjr 1:d913e0afb2ac 258 // plunger calibration button debounce timer
mjr 1:d913e0afb2ac 259 Timer calBtnTimer;
mjr 1:d913e0afb2ac 260 calBtnTimer.start();
mjr 1:d913e0afb2ac 261 int calBtnDownTime = 0;
mjr 1:d913e0afb2ac 262 int calBtnLit = false;
mjr 1:d913e0afb2ac 263
mjr 1:d913e0afb2ac 264 // Calibration button state:
mjr 1:d913e0afb2ac 265 // 0 = not pushed
mjr 1:d913e0afb2ac 266 // 1 = pushed, not yet debounced
mjr 1:d913e0afb2ac 267 // 2 = pushed, debounced, waiting for hold time
mjr 1:d913e0afb2ac 268 // 3 = pushed, hold time completed - in calibration mode
mjr 1:d913e0afb2ac 269 int calBtnState = 0;
mjr 1:d913e0afb2ac 270
mjr 1:d913e0afb2ac 271 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 272 Timer hbTimer;
mjr 1:d913e0afb2ac 273 hbTimer.start();
mjr 1:d913e0afb2ac 274 int t0Hb = hbTimer.read_ms();
mjr 1:d913e0afb2ac 275 int hb = 0;
mjr 1:d913e0afb2ac 276
mjr 1:d913e0afb2ac 277 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 278 Timer acTimer;
mjr 1:d913e0afb2ac 279 acTimer.start();
mjr 1:d913e0afb2ac 280 int t0ac = acTimer.read_ms();
mjr 1:d913e0afb2ac 281
mjr 4:02c7cd7b2183 282 // Create the joystick USB client
mjr 3:3514575d4f86 283 MyUSBJoystick js(0xFAFA, 0x00F7, 0x0003);
mjr 2:c174f9ee414a 284
mjr 0:5acbbe3f4cf4 285 // create the accelerometer object
mjr 3:3514575d4f86 286 Accel accel(PTE25, PTE24, MMA8451_I2C_ADDRESS, PTA15);
mjr 0:5acbbe3f4cf4 287
mjr 0:5acbbe3f4cf4 288 // create the CCD array object
mjr 1:d913e0afb2ac 289 TSL1410R ccd(PTE20, PTE21, PTB0);
mjr 2:c174f9ee414a 290
mjr 1:d913e0afb2ac 291 // recent accelerometer readings, for auto centering
mjr 1:d913e0afb2ac 292 int iAccPrv = 0, nAccPrv = 0;
mjr 1:d913e0afb2ac 293 const int maxAccPrv = 5;
mjr 1:d913e0afb2ac 294 AccPrv accPrv[maxAccPrv];
mjr 0:5acbbe3f4cf4 295
mjr 1:d913e0afb2ac 296 // last accelerometer report, in mouse coordinates
mjr 1:d913e0afb2ac 297 int x = 127, y = 127, z = 0;
mjr 2:c174f9ee414a 298
mjr 1:d913e0afb2ac 299 // raw accelerator centerpoint, on the unit interval (-1.0 .. +1.0)
mjr 1:d913e0afb2ac 300 float xCenter = 0.0, yCenter = 0.0;
mjr 2:c174f9ee414a 301
mjr 2:c174f9ee414a 302 // start the first CCD integration cycle
mjr 2:c174f9ee414a 303 ccd.clear();
mjr 1:d913e0afb2ac 304
mjr 1:d913e0afb2ac 305 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 306 // host requests
mjr 0:5acbbe3f4cf4 307 for (;;)
mjr 0:5acbbe3f4cf4 308 {
mjr 0:5acbbe3f4cf4 309 // Look for an incoming report. Continue processing input as
mjr 0:5acbbe3f4cf4 310 // long as there's anything pending - this ensures that we
mjr 0:5acbbe3f4cf4 311 // handle input in as timely a fashion as possible by deferring
mjr 0:5acbbe3f4cf4 312 // output tasks as long as there's input to process.
mjr 0:5acbbe3f4cf4 313 HID_REPORT report;
mjr 0:5acbbe3f4cf4 314 while (js.readNB(&report) && report.length == 8)
mjr 0:5acbbe3f4cf4 315 {
mjr 0:5acbbe3f4cf4 316 uint8_t *data = report.data;
mjr 1:d913e0afb2ac 317 if (data[0] == 64)
mjr 1:d913e0afb2ac 318 {
mjr 0:5acbbe3f4cf4 319 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 0:5acbbe3f4cf4 320 // for the outputs; 5th byte is the pulse speed (0-7)
mjr 0:5acbbe3f4cf4 321 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 0:5acbbe3f4cf4 322 // data[1], data[2], data[3], data[4], data[5]);
mjr 0:5acbbe3f4cf4 323
mjr 0:5acbbe3f4cf4 324 // update all on/off states
mjr 0:5acbbe3f4cf4 325 for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1)
mjr 0:5acbbe3f4cf4 326 {
mjr 0:5acbbe3f4cf4 327 if (bit == 0x100) {
mjr 0:5acbbe3f4cf4 328 bit = 1;
mjr 0:5acbbe3f4cf4 329 ++ri;
mjr 0:5acbbe3f4cf4 330 }
mjr 1:d913e0afb2ac 331 wizOn[i] = ((data[ri] & bit) != 0);
mjr 0:5acbbe3f4cf4 332 }
mjr 0:5acbbe3f4cf4 333
mjr 1:d913e0afb2ac 334 // update the physical outputs
mjr 1:d913e0afb2ac 335 updateWizOuts();
mjr 0:5acbbe3f4cf4 336
mjr 0:5acbbe3f4cf4 337 // reset the PBA counter
mjr 0:5acbbe3f4cf4 338 pbaIdx = 0;
mjr 0:5acbbe3f4cf4 339 }
mjr 1:d913e0afb2ac 340 else
mjr 1:d913e0afb2ac 341 {
mjr 0:5acbbe3f4cf4 342 // LWZ-PBA - full state dump; each byte is one output
mjr 0:5acbbe3f4cf4 343 // in the current bank. pbaIdx keeps track of the bank;
mjr 0:5acbbe3f4cf4 344 // this is incremented implicitly by each PBA message.
mjr 0:5acbbe3f4cf4 345 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 0:5acbbe3f4cf4 346 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 0:5acbbe3f4cf4 347
mjr 0:5acbbe3f4cf4 348 // update all output profile settings
mjr 0:5acbbe3f4cf4 349 for (int i = 0 ; i < 8 ; ++i)
mjr 1:d913e0afb2ac 350 wizVal[pbaIdx + i] = data[i];
mjr 0:5acbbe3f4cf4 351
mjr 0:5acbbe3f4cf4 352 // update the physical LED state if this is the last bank
mjr 0:5acbbe3f4cf4 353 if (pbaIdx == 24)
mjr 1:d913e0afb2ac 354 updateWizOuts();
mjr 0:5acbbe3f4cf4 355
mjr 0:5acbbe3f4cf4 356 // advance to the next bank
mjr 0:5acbbe3f4cf4 357 pbaIdx = (pbaIdx + 8) & 31;
mjr 0:5acbbe3f4cf4 358 }
mjr 0:5acbbe3f4cf4 359 }
mjr 1:d913e0afb2ac 360
mjr 1:d913e0afb2ac 361 // check for plunger calibration
mjr 1:d913e0afb2ac 362 if (!calBtn)
mjr 0:5acbbe3f4cf4 363 {
mjr 1:d913e0afb2ac 364 // check the state
mjr 1:d913e0afb2ac 365 switch (calBtnState)
mjr 0:5acbbe3f4cf4 366 {
mjr 1:d913e0afb2ac 367 case 0:
mjr 1:d913e0afb2ac 368 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 369 calBtnTimer.reset();
mjr 1:d913e0afb2ac 370 calBtnDownTime = calBtnTimer.read_ms();
mjr 1:d913e0afb2ac 371 calBtnState = 1;
mjr 1:d913e0afb2ac 372 break;
mjr 1:d913e0afb2ac 373
mjr 1:d913e0afb2ac 374 case 1:
mjr 1:d913e0afb2ac 375 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 376 // passed, start the hold period
mjr 1:d913e0afb2ac 377 if (calBtnTimer.read_ms() - calBtnDownTime > 50)
mjr 1:d913e0afb2ac 378 calBtnState = 2;
mjr 1:d913e0afb2ac 379 break;
mjr 1:d913e0afb2ac 380
mjr 1:d913e0afb2ac 381 case 2:
mjr 1:d913e0afb2ac 382 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 383 // for the entire hold period, move to calibration mode
mjr 1:d913e0afb2ac 384 if (calBtnTimer.read_ms() - calBtnDownTime > 2050)
mjr 1:d913e0afb2ac 385 {
mjr 1:d913e0afb2ac 386 // enter calibration mode
mjr 1:d913e0afb2ac 387 calBtnState = 3;
mjr 1:d913e0afb2ac 388
mjr 1:d913e0afb2ac 389 // reset the calibration limits
mjr 2:c174f9ee414a 390 cfg.d.plungerMax = 0;
mjr 2:c174f9ee414a 391 cfg.d.plungerMin = npix;
mjr 1:d913e0afb2ac 392 }
mjr 1:d913e0afb2ac 393 break;
mjr 2:c174f9ee414a 394
mjr 2:c174f9ee414a 395 case 3:
mjr 2:c174f9ee414a 396 // Already in calibration mode - pushing the button in this
mjr 2:c174f9ee414a 397 // state doesn't change the current state, but we won't leave
mjr 2:c174f9ee414a 398 // this state as long as it's held down. We can simply do
mjr 2:c174f9ee414a 399 // nothing here.
mjr 2:c174f9ee414a 400 break;
mjr 0:5acbbe3f4cf4 401 }
mjr 0:5acbbe3f4cf4 402 }
mjr 1:d913e0afb2ac 403 else
mjr 1:d913e0afb2ac 404 {
mjr 2:c174f9ee414a 405 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 406 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 407 // and save the results to flash.
mjr 2:c174f9ee414a 408 //
mjr 2:c174f9ee414a 409 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 410 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 411 // mode, it simply cancels the attempt.
mjr 2:c174f9ee414a 412 if (calBtnState == 3
mjr 2:c174f9ee414a 413 && calBtnTimer.read_ms() - calBtnDownTime > 17500)
mjr 2:c174f9ee414a 414 {
mjr 2:c174f9ee414a 415 // exit calibration mode
mjr 1:d913e0afb2ac 416 calBtnState = 0;
mjr 2:c174f9ee414a 417
mjr 2:c174f9ee414a 418 // Save the current configuration state to flash, so that it
mjr 2:c174f9ee414a 419 // will be preserved through power off. Update the checksum
mjr 2:c174f9ee414a 420 // first so that we recognize the flash record as valid.
mjr 2:c174f9ee414a 421 cfg.checksum = CRC32(&cfg.d, sizeof(cfg.d));
mjr 2:c174f9ee414a 422 iap.erase_sector(flash_addr);
mjr 2:c174f9ee414a 423 iap.program_flash(flash_addr, &cfg, sizeof(cfg));
mjr 2:c174f9ee414a 424
mjr 2:c174f9ee414a 425 // the flash state is now valid
mjr 2:c174f9ee414a 426 flash_valid = true;
mjr 2:c174f9ee414a 427 }
mjr 2:c174f9ee414a 428 else if (calBtnState != 3)
mjr 2:c174f9ee414a 429 {
mjr 2:c174f9ee414a 430 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 431 calBtnState = 0;
mjr 2:c174f9ee414a 432 }
mjr 1:d913e0afb2ac 433 }
mjr 1:d913e0afb2ac 434
mjr 1:d913e0afb2ac 435 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 436 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 437 switch (calBtnState)
mjr 0:5acbbe3f4cf4 438 {
mjr 1:d913e0afb2ac 439 case 2:
mjr 1:d913e0afb2ac 440 // in the hold period - flash the light
mjr 1:d913e0afb2ac 441 newCalBtnLit = (((calBtnTimer.read_ms() - calBtnDownTime)/250) & 1);
mjr 1:d913e0afb2ac 442 break;
mjr 1:d913e0afb2ac 443
mjr 1:d913e0afb2ac 444 case 3:
mjr 1:d913e0afb2ac 445 // calibration mode - show steady on
mjr 1:d913e0afb2ac 446 newCalBtnLit = true;
mjr 1:d913e0afb2ac 447 break;
mjr 1:d913e0afb2ac 448
mjr 1:d913e0afb2ac 449 default:
mjr 1:d913e0afb2ac 450 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 451 newCalBtnLit = false;
mjr 1:d913e0afb2ac 452 break;
mjr 1:d913e0afb2ac 453 }
mjr 3:3514575d4f86 454
mjr 3:3514575d4f86 455 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 456 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 457 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 458 {
mjr 1:d913e0afb2ac 459 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 460 if (calBtnLit) {
mjr 2:c174f9ee414a 461 calBtnLed = 1;
mjr 4:02c7cd7b2183 462 ledR = 1;
mjr 4:02c7cd7b2183 463 ledG = 1;
mjr 4:02c7cd7b2183 464 ledB = 1;
mjr 2:c174f9ee414a 465 }
mjr 2:c174f9ee414a 466 else {
mjr 2:c174f9ee414a 467 calBtnLed = 0;
mjr 4:02c7cd7b2183 468 ledR = 1;
mjr 4:02c7cd7b2183 469 ledG = 1;
mjr 4:02c7cd7b2183 470 ledB = 0;
mjr 2:c174f9ee414a 471 }
mjr 1:d913e0afb2ac 472 }
mjr 1:d913e0afb2ac 473
mjr 1:d913e0afb2ac 474 // read the plunger sensor
mjr 1:d913e0afb2ac 475 int znew = z;
mjr 2:c174f9ee414a 476 uint16_t pix[npix];
mjr 2:c174f9ee414a 477 ccd.read(pix, npix);
mjr 2:c174f9ee414a 478
mjr 2:c174f9ee414a 479 // get the average brightness at each end of the sensor
mjr 2:c174f9ee414a 480 long avg1 = (long(pix[0]) + long(pix[1]) + long(pix[2]) + long(pix[3]) + long(pix[4]))/5;
mjr 2:c174f9ee414a 481 long avg2 = (long(pix[npix-1]) + long(pix[npix-2]) + long(pix[npix-3]) + long(pix[npix-4]) + long(pix[npix-5]))/5;
mjr 2:c174f9ee414a 482
mjr 2:c174f9ee414a 483 // figure the midpoint in the brightness; multiply by 3 so that we can
mjr 2:c174f9ee414a 484 // compare sums of three pixels at a time to smooth out noise
mjr 2:c174f9ee414a 485 long midpt = (avg1 + avg2)/2 * 3;
mjr 2:c174f9ee414a 486
mjr 2:c174f9ee414a 487 // Work from the bright end to the dark end. VP interprets the
mjr 2:c174f9ee414a 488 // Z axis value as the amount the plunger is pulled: the minimum
mjr 2:c174f9ee414a 489 // is the rest position, the maximum is fully pulled. So we
mjr 2:c174f9ee414a 490 // essentially want to report how much of the sensor is lit,
mjr 2:c174f9ee414a 491 // since this increases as the plunger is pulled back.
mjr 2:c174f9ee414a 492 int si = 1, di = 1;
mjr 2:c174f9ee414a 493 if (avg1 < avg2)
mjr 2:c174f9ee414a 494 si = npix - 2, di = -1;
mjr 2:c174f9ee414a 495
mjr 2:c174f9ee414a 496 // scan for the midpoint
mjr 2:c174f9ee414a 497 uint16_t *pixp = pix + si;
mjr 2:c174f9ee414a 498 for (int n = 1 ; n < npix - 1 ; ++n, pixp += di)
mjr 1:d913e0afb2ac 499 {
mjr 2:c174f9ee414a 500 // if we've crossed the midpoint, report this position
mjr 2:c174f9ee414a 501 if (long(pixp[-1]) + long(pixp[0]) + long(pixp[1]) < midpt)
mjr 1:d913e0afb2ac 502 {
mjr 2:c174f9ee414a 503 // note the new position
mjr 2:c174f9ee414a 504 int pos = n;
mjr 2:c174f9ee414a 505
mjr 2:c174f9ee414a 506 // if the bright end and dark end don't differ by enough, skip this
mjr 2:c174f9ee414a 507 // reading entirely - we must have an overexposed or underexposed frame
mjr 2:c174f9ee414a 508 if (labs(avg1 - avg2) < 0x3333)
mjr 2:c174f9ee414a 509 break;
mjr 2:c174f9ee414a 510
mjr 2:c174f9ee414a 511 // Calibrate, or apply calibration, depending on the mode.
mjr 2:c174f9ee414a 512 // In either case, normalize to a 0-127 range. VP appears to
mjr 2:c174f9ee414a 513 // ignore negative Z axis values.
mjr 2:c174f9ee414a 514 if (calBtnState == 3)
mjr 1:d913e0afb2ac 515 {
mjr 2:c174f9ee414a 516 // calibrating - note if we're expanding the calibration envelope
mjr 2:c174f9ee414a 517 if (pos < cfg.d.plungerMin)
mjr 2:c174f9ee414a 518 cfg.d.plungerMin = pos;
mjr 2:c174f9ee414a 519 if (pos > cfg.d.plungerMax)
mjr 2:c174f9ee414a 520 cfg.d.plungerMax = pos;
mjr 2:c174f9ee414a 521
mjr 2:c174f9ee414a 522 // normalize to the full physical range while calibrating
mjr 2:c174f9ee414a 523 znew = int(float(pos)/npix * 127);
mjr 1:d913e0afb2ac 524 }
mjr 2:c174f9ee414a 525 else
mjr 2:c174f9ee414a 526 {
mjr 2:c174f9ee414a 527 // running normally - normalize to the calibration range
mjr 2:c174f9ee414a 528 if (pos < cfg.d.plungerMin)
mjr 2:c174f9ee414a 529 pos = cfg.d.plungerMin;
mjr 2:c174f9ee414a 530 if (pos > cfg.d.plungerMax)
mjr 2:c174f9ee414a 531 pos = cfg.d.plungerMax;
mjr 2:c174f9ee414a 532 znew = int(float(pos - cfg.d.plungerMin)
mjr 2:c174f9ee414a 533 / (cfg.d.plungerMax - cfg.d.plungerMin + 1) * 127);
mjr 2:c174f9ee414a 534 }
mjr 2:c174f9ee414a 535
mjr 2:c174f9ee414a 536 // done
mjr 2:c174f9ee414a 537 break;
mjr 1:d913e0afb2ac 538 }
mjr 2:c174f9ee414a 539 }
mjr 1:d913e0afb2ac 540
mjr 1:d913e0afb2ac 541 // read the accelerometer
mjr 3:3514575d4f86 542 float xa, ya, rxa, rya;
mjr 3:3514575d4f86 543 accel.get(xa, ya, rxa, rya);
mjr 1:d913e0afb2ac 544
mjr 1:d913e0afb2ac 545 // check for auto-centering every so often
mjr 1:d913e0afb2ac 546 if (acTimer.read_ms() - t0ac > 1000)
mjr 1:d913e0afb2ac 547 {
mjr 1:d913e0afb2ac 548 // add the sample to the history list
mjr 1:d913e0afb2ac 549 accPrv[iAccPrv].x = xa;
mjr 1:d913e0afb2ac 550 accPrv[iAccPrv].y = ya;
mjr 1:d913e0afb2ac 551
mjr 1:d913e0afb2ac 552 // store the slot
mjr 1:d913e0afb2ac 553 iAccPrv += 1;
mjr 1:d913e0afb2ac 554 iAccPrv %= maxAccPrv;
mjr 1:d913e0afb2ac 555 nAccPrv += 1;
mjr 1:d913e0afb2ac 556
mjr 1:d913e0afb2ac 557 // If we have a full complement, check for stability. The
mjr 1:d913e0afb2ac 558 // raw accelerometer input is in the rnage -4096 to 4096, but
mjr 1:d913e0afb2ac 559 // the class cover normalizes to a unit interval (-1.0 .. +1.0).
mjr 1:d913e0afb2ac 560 const float accTol = .005;
mjr 1:d913e0afb2ac 561 if (nAccPrv >= maxAccPrv
mjr 1:d913e0afb2ac 562 && accPrv[0].dist(accPrv[1]) < accTol
mjr 1:d913e0afb2ac 563 && accPrv[0].dist(accPrv[2]) < accTol
mjr 1:d913e0afb2ac 564 && accPrv[0].dist(accPrv[3]) < accTol
mjr 1:d913e0afb2ac 565 && accPrv[0].dist(accPrv[4]) < accTol)
mjr 1:d913e0afb2ac 566 {
mjr 1:d913e0afb2ac 567 // figure the new center
mjr 1:d913e0afb2ac 568 xCenter = (accPrv[0].x + accPrv[1].x + accPrv[2].x + accPrv[3].x + accPrv[4].x)/5.0;
mjr 1:d913e0afb2ac 569 yCenter = (accPrv[0].y + accPrv[1].y + accPrv[2].y + accPrv[3].y + accPrv[4].y)/5.0;
mjr 1:d913e0afb2ac 570 }
mjr 1:d913e0afb2ac 571
mjr 1:d913e0afb2ac 572 // reset the auto-center timer
mjr 1:d913e0afb2ac 573 acTimer.reset();
mjr 1:d913e0afb2ac 574 t0ac = acTimer.read_ms();
mjr 1:d913e0afb2ac 575 }
mjr 1:d913e0afb2ac 576
mjr 1:d913e0afb2ac 577 // adjust for our auto centering
mjr 1:d913e0afb2ac 578 xa -= xCenter;
mjr 1:d913e0afb2ac 579 ya -= yCenter;
mjr 1:d913e0afb2ac 580
mjr 1:d913e0afb2ac 581 // confine to the unit interval
mjr 1:d913e0afb2ac 582 if (xa < -1.0) xa = -1.0;
mjr 1:d913e0afb2ac 583 if (xa > 1.0) xa = 1.0;
mjr 1:d913e0afb2ac 584 if (ya < -1.0) ya = -1.0;
mjr 1:d913e0afb2ac 585 if (ya > 1.0) ya = 1.0;
mjr 0:5acbbe3f4cf4 586
mjr 1:d913e0afb2ac 587 // figure the new mouse report data
mjr 1:d913e0afb2ac 588 int xnew = (int)(127 * xa);
mjr 1:d913e0afb2ac 589 int ynew = (int)(127 * ya);
mjr 2:c174f9ee414a 590
mjr 2:c174f9ee414a 591 // store the updated joystick coordinates
mjr 2:c174f9ee414a 592 x = xnew;
mjr 2:c174f9ee414a 593 y = ynew;
mjr 2:c174f9ee414a 594 z = znew;
mjr 1:d913e0afb2ac 595
mjr 2:c174f9ee414a 596 // if we're in USB suspend or disconnect mode, spin
mjr 2:c174f9ee414a 597 if (js.isSuspended() || !js.isConnected())
mjr 0:5acbbe3f4cf4 598 {
mjr 2:c174f9ee414a 599 // go dark (turn off the indicator LEDs)
mjr 4:02c7cd7b2183 600 ledG = 1;
mjr 4:02c7cd7b2183 601 ledB = 1;
mjr 4:02c7cd7b2183 602 ledR = 1;
mjr 2:c174f9ee414a 603
mjr 2:c174f9ee414a 604 // wait until we're connected and come out of suspend mode
mjr 4:02c7cd7b2183 605 for (uint32_t n = 0 ; js.isSuspended() || !js.isConnected() ; ++n)
mjr 2:c174f9ee414a 606 {
mjr 2:c174f9ee414a 607 // spin for a bit
mjr 2:c174f9ee414a 608 wait(1);
mjr 2:c174f9ee414a 609
mjr 4:02c7cd7b2183 610 // if we're suspended, do a brief red flash; otherwise do a long red flash
mjr 4:02c7cd7b2183 611 if (js.isSuspended())
mjr 4:02c7cd7b2183 612 {
mjr 4:02c7cd7b2183 613 // suspended - flash briefly ever few seconds
mjr 4:02c7cd7b2183 614 if (n % 3 == 0)
mjr 4:02c7cd7b2183 615 {
mjr 4:02c7cd7b2183 616 ledR = 0;
mjr 4:02c7cd7b2183 617 wait(0.05);
mjr 4:02c7cd7b2183 618 ledR = 1;
mjr 4:02c7cd7b2183 619 }
mjr 4:02c7cd7b2183 620 }
mjr 4:02c7cd7b2183 621 else
mjr 4:02c7cd7b2183 622 {
mjr 4:02c7cd7b2183 623 // running, not connected - flash red
mjr 4:02c7cd7b2183 624 ledR = !ledR;
mjr 4:02c7cd7b2183 625 }
mjr 2:c174f9ee414a 626 }
mjr 2:c174f9ee414a 627 }
mjr 1:d913e0afb2ac 628
mjr 3:3514575d4f86 629 // Send the status report. It doesn't really matter what
mjr 3:3514575d4f86 630 // coordinate system we use, since Visual Pinball has config
mjr 3:3514575d4f86 631 // options for rotations and axis reversals, but reversing y
mjr 3:3514575d4f86 632 // at the device level seems to produce the most intuitive
mjr 3:3514575d4f86 633 // results for the Windows joystick control panel view, which
mjr 3:3514575d4f86 634 // is an easy way to check that the device is working.
mjr 3:3514575d4f86 635 js.update(x, -y, z, int(rxa*127), int(rya*127), 0);
mjr 1:d913e0afb2ac 636
mjr 2:c174f9ee414a 637 // show a heartbeat flash in blue every so often if not in
mjr 2:c174f9ee414a 638 // calibration mode
mjr 2:c174f9ee414a 639 if (calBtnState < 2 && hbTimer.read_ms() - t0Hb > 1000)
mjr 1:d913e0afb2ac 640 {
mjr 2:c174f9ee414a 641 if (js.isSuspended())
mjr 2:c174f9ee414a 642 {
mjr 2:c174f9ee414a 643 // suspended - turn off the LEDs entirely
mjr 4:02c7cd7b2183 644 ledR = 1;
mjr 4:02c7cd7b2183 645 ledG = 1;
mjr 4:02c7cd7b2183 646 ledB = 1;
mjr 2:c174f9ee414a 647 }
mjr 2:c174f9ee414a 648 else if (!js.isConnected())
mjr 2:c174f9ee414a 649 {
mjr 2:c174f9ee414a 650 // not connected - flash red
mjr 2:c174f9ee414a 651 hb = !hb;
mjr 4:02c7cd7b2183 652 ledR = (hb ? 0 : 1);
mjr 4:02c7cd7b2183 653 ledG = 1;
mjr 4:02c7cd7b2183 654 ledB = 1;
mjr 2:c174f9ee414a 655 }
mjr 2:c174f9ee414a 656 else if (flash_valid)
mjr 2:c174f9ee414a 657 {
mjr 2:c174f9ee414a 658 // connected, NVM valid - flash blue/green
mjr 2:c174f9ee414a 659 hb = !hb;
mjr 4:02c7cd7b2183 660 ledR = 1;
mjr 4:02c7cd7b2183 661 ledG = (hb ? 0 : 1);
mjr 4:02c7cd7b2183 662 ledB = (hb ? 1 : 0);
mjr 2:c174f9ee414a 663 }
mjr 2:c174f9ee414a 664 else
mjr 2:c174f9ee414a 665 {
mjr 2:c174f9ee414a 666 // connected, factory reset - flash yellow/green
mjr 2:c174f9ee414a 667 hb = !hb;
mjr 4:02c7cd7b2183 668 ledR = (hb ? 0 : 1);
mjr 4:02c7cd7b2183 669 ledG = 0;
mjr 4:02c7cd7b2183 670 ledB = 1;
mjr 2:c174f9ee414a 671 }
mjr 1:d913e0afb2ac 672
mjr 1:d913e0afb2ac 673 // reset the heartbeat timer
mjr 1:d913e0afb2ac 674 hbTimer.reset();
mjr 1:d913e0afb2ac 675 t0Hb = hbTimer.read_ms();
mjr 1:d913e0afb2ac 676 }
mjr 1:d913e0afb2ac 677 }
mjr 0:5acbbe3f4cf4 678 }